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Trefftz-type boundary elements for the evaluation
of symmetric coefficient matrices

R. Piltner
Department of Civil Engineering, SEMM, University of California at Berkeley,
Berkeley, CA 94720, U.S.A.

Abstract. The classical Trefftz-method can be generalized such that different types of
finite elements and boundary elements are obtained. In a Trefftz-type approach we uti-
lize functions which a priori satisfy the governing differential equations. In this paper
the systematic construction of singular Trefftz-trial functions for elasticity problems is
discussed. For convenience a list of solution representations and particular solutions is
given which did not appear together elsewhere. The Trefftz-trial functions with singular
expressions on the boundary are constructed such that the physical components
(stresses, strains, displacements) remain finite in the solution domain and on the bound-
ary. The unknown coefficients of the linearly independent Trefftz-trial functions for the
physical components can be obtained by using a variational formulation. The symmetric
coefficient matrix in the discussed procedure can be obtained from the evaluation of
boundary integrals. As an application of the proposed boundary element algorithm, the
symmetric stiffness matrices of subdomains (finite element domains) are calculated. For
the numerical example the solution domain is decomposed into triangular subdomains so
that a standard finite element program could be used to assemble the system of equa-
tions. The chosen example is meant as a simple test for the proposed algorithm and
should not be understood as a proposal for a new triangular finite element. Using the
proposed boundary element techniques, symmetric stiffness matrices for irregular
shaped subdomains (finite elements) can be derived. However, in order to use the method
in a finite element package for the coupling of irregular shaped subdomains some pro-
gram modifications will be necessary.

1. Introduction

The research in boundary integral equations and boundary element methods covers by
now many areas and different approaches, see e.g. Annigeri and Tseng (1990), Antes
(1984, 1988), Banerjee and Butterfield (1981), Banerjee and Watson (1986), Beskos
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(1987), Brebbia and Dominguez (1989), Brebbia and Connor (1989), Crouch and Starfield
(1983), Cruse (1969, 1988a, 1988b), Geis (1989), Hartmann (1989), Jaswon and Symm
(1977), Kobayashi and Nishimura (1992), Tanaka and Cruse (1988), Deb and Banerjee
(1990), Heise (1978), Hsiao, Kopp and Wendland (1984), Hunt and Isaacs (1981), Lachat
and Watson (1976), Oliveira (1968), Piltner and Taylor (1989, 1990a, 1990b, 1990c),
Rizzo (1967,1990), Wendland (1985a, 1985b). Since we are particularly interested in
obtaining symmetric coefficient matrices and convenient ways of coupling the boundary
element method with finite elements, it might be helpful for future research to look at
the subject under the aspect of a Trefftz-type approach.

The concept of using a set of linearly independent solution functions of a differential
equation under consideration was introduced by Trefftz (1926). Trefftz chose harmonic
polynomials for the example of the Laplace equation and calculated the unknown coeffi-
cients of his trial functions by using a variational formulation. Since the Trefftz-trial
functions satisfy a priori the governing differential equations, the variational formula-
tion can be rewritten in a form which contains only boundary integrals.

Since computers were not available during Trefftz’s time, it took a long time until the
basic ideas of Trefftz were used for numerical purposes and further developments. Some
of the early numerical applications of the Trefftz method dealt with the coupling of
boundary solution procedures with finite elements, see e.g Stein (1973), Ruoff (1973),
Zienkiewics, Kelly and Bettess (1977).

Further research led to different techniques of obtaining symmetric finite element matri-
ces by using functions in the sense of Treffiz and evaluating integrals along the finite
element edges, see e.g. Jirousek (1978, 1985, 1986), Piltner (1982, 1985a, 1985b, 1985c¢),
Zienkiewics and Taylor (1989). Examples for those finite elements which utilize varia-
tional formulations involving only boundary integrals are elements which can contain
cracks, holes or sharp corners. These types of elements can be obtained from a mixed
variational formulation. Often a Hellinger-Reissner variational formulation is used for
such finite elements. Finite elements based on a Hellinger-Reissner formulation and
stress fields satisfying the equilibrium equations are often called hybrid elements. For
hybrid elements we use two independently assumed fields in the variational formulation.
From the literature on hybrid elements especially the pioneering work of Pian (1964,
1983, 1984, 1988) has to be emphasized.

In order to describe those finite elements for which the trial functions for the stresses
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satisfy not only the equilibrium equations but also the compatibility equations, the term
hybrid Trefftz elements was proposed by Jirousek and Guex (1986) and used thereafter
(Jirousek 1987; Jirousek and Venkatesh 1989; Piltner 1992b). The name "Trefftz" indi-
cates that the trial functions satisfy all governing differential equations. Taking this
point of view one could classify, for example, the hybrid crack elements of Tong, Pian and
Lasry (1973) and Piltner (1985a) as hybrid Trefftz elements.

The techniques used for hybrid Trefftz elements can also be utilized for the derivation of
symmetric boundary element techniques. Whereas in finite element applications we usu-
ally use nonsingular trial functions (except for elements which include a stress singular-
ity, as for example in crack elements), in boundary elements we utilize singular func-
tions. For the proposed boundary element algorithm of this paper, suitable singular func-
tions with poles on the boundary are constructed.

For plane problems a detailed derivation of stress and displacement formulations in com-
plex form is given in the books of Muskhelishvili (1953) and Lekhnitskii (1963, 1968).
Since for plane elasticity problems complex representations for displacements and
stresses have been used with success for numerical applications (Piltner 1882, 1985a,
1985b, 1985¢), one of the research topics of the author became the derivation of solution
representations for three-dimensional elasticity problems and for thick elastic plates, in
extension and under bending (Piltner 1987, 1988a, 1988b, 1989, 1992a). For all elastic-
ity problems considered, the displacements and stresses can be given in terms of arbi-
trary complex valued functions. The functions are arbitrary in the sense that with any
choice of the complex functions the governing differential equations are automatically
satisfied. The displacements of the solution representations satisfy the Navier-equations,
and the stresses satisfy the equilibrium equations. Moreover, the stresses satisfy the
compatibility equations and can be obtained from the displacements u through the con-
stitutive equation o = Es = EDu, where D is a differential operator matrix.

In brief, the Trefftz-type boundary element concept can be characterized as follows:

e The trial functions satisfy the differential equations.
e The trial functions contain singular functions with poles on the boundary.

¢ The trial functions depend on unknowns on the boundary.

displacements: u= U'ec+ u, inQ and onT 1.1
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stresses: oc=o0c+ o, inQ and onT (1.2)

tractions: T=Tc+T, onT | (1.3)

¢ The trial functions containing singular expressions have to be constructed
such that all displacements and stresses remain finite in Q and on T..

The displacements, stresses, and tractions are decomposed into a homogeneous and a
particular solution part. Only the homogeneous solution part, which satisfy the homoge-
neous differential equations, contains unknown parameters collected in a vector ¢. U°,
o' and T contain singular functions.

The solution terms uy;, oy, Tp contain solutions of the inhomogeneous differential equa-
tions. They can also contain solutions for particular load cases and involve only quanti-
ties which are already known. In a variational formulation, the particular solution
terms will enable us to get rid of the domain integrals which contain body force distribu-

tions.

The vector ¢, involving unknown parameters on the boundary only, can be calculated
with the following methods:

(i) point collocation
(ii) variational formulation, containing only boundary integrals

(iii) least square method, for the minimization of the difference between prescribed
boundary values and approximated values on the boundary.

In method (i), we satisfy the boundary conditions at selected points on the boundary and
get a nonsymmetric coefficient matrix. In methods (ii) and (iii) the boundary conditions
are satisfied in an integral sense and symmetric coefficient matrices are obtained.

Since the main objective of this paper is to present solution representations as a tool for
a systematic construction of singular Trefftz-type trial functions for displacements and
stresses, the following section is devoted to the representation of these physical quanti-
ties in elasticity.



-5.

2 Overview about solution representations for elasticity
problems and some selected particular solutions

In the following a list of homogeneous solutions will be given in complex form. For some
load cases of practical interest particular solutions are given as well. The indices h and p
for "homogeneous" and "particular" are omitted since the section headings indicate
already the type of solution.

2.1 Plane stress and plane strain in isotropic bodies

2.1.1 Homogeneous solution

24u = Re[x®(z) - z®'(z) - ¥(2)]

2uv = Im[xd(z) — z0(z) - ¥(2)]
oxx = Re[20'(z) - 207(z) — ¥'(2)] (2.1)
gyy = Re[2®'(2) + 20"(z) + ¥'(2)]

Ty = Im[20"(2) + ¥'(2)]

where
z =X +1y,
2u=E/(1+v) (2.2)
_ {(3 -v)(1+v) for plane stress
13 -4v) for plane strain

2.1.2 Particular solution for constant body forces f,, f,

_1 It S R _r 7
Zyu--?:a(l 2(ﬂ.+u))f"x 2(ﬁ+u)bfyx}'+(4(z+u)a_ (1+a))fxy2

_ __* VoA Ay 7 52
2yv-—2 (1 2(A+p))fyy 2(2+#)afxxy+(4u+ﬂ)b (1+b))fyx

o=alx, oy=bly 1y=-1+bix-Q+aky (2.3)




where

A f v/(1+v) for plane stress

~~
™
>
N’

24+ p) =1 v for plane strain

and a and b can be chosen arbitrarily, for exampleasa=-1,b=-lorasa=0,b=0.

2.2 Plane stress and plane strain in anisotropic bodies

2.2.1 Homogeneous solution

u =2Re[p;®1(z;) + paPylz3)],
v =2Re[q;P(z;) + quP3(z3)],
O = 2Re[ 130 (27) + p3®,(25)), (2.5)
Oyy = 2 Re[®](z)) + ®y(zy)),
Tyy = - 2Re[ 41 ®(2)) + up®y(25)].
where
zZ) =X+ 41y = (X + ay) +18y,
Zo =X+ Moy = (X + yy) + 18y,
P1=byiuf + by - bieu,

Pz = byjuf + biy - bigus,

b
qq = bgu; + —;2-21— - bag, (2.6)

b
Q2 = biouy + -2 — by,
Ho

b a;j for plane stress

ij= a;3a; .. .

v a; - B33 (4,j=1,2,6) for plane strain.
a33

a; are the elastic compliance coefficients, and 4, u, 4, 4, are the solutions of the char-
acteristic equation

by uf — 2bjgud + (2byy + beg)uf — 2bgg iy + bog = 0. 2.7
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2.2.2 Particular solution for constant body forces f,, f,

1- - 12, =
u= - —z—f,buxz — fbuxy + (b - £,526)y%

v= (b - Bbigx® — Tbuxy - SEbuy

O = —0iX, (2.8)
Oyy = -—f,y,
Try = 0.
2.8 Bending of isotropic thin plates (Kirchhoff-plate theory)
Moments and shear forces:
Mp=—D(wy + vwy)
My = —D(wy, + vwy)
Myy=D(1 — v)wyy (2.9)
= _p--
Q,=-D = Aw
--p
Q=-D 3y Aw
where
Eh3
D= .10
12(1-v?) (2.10)
2.3.1 Homogeneous solution
w(x,y) = Re[zd(z) + ¥(2)]
wy = Re[®(z) + z0'(z) + ¥'(2)]
Wy -=nlm[d>(z) + z®'(z) + ¥'(2)]
Wn=Re[®'(z) + ®'(z) + z0"'(z) + ¥''(2)]
Wyy=Re{®'(z) + ®'(z) —z0''(z) — ¥''(2)]
(2.11)

Wyy=Im{z®''(z) + ¥''(2)]



Aw=4Re[D'(2)]

3"’;-Aw=4Re[q>"(z)]

a e
B;Aw= —4Im[®’'(z)]

where
z=x + iy.

2.3.2 Particular solution for a constant normal load p(x,y)=q,

- qo . 4 4 = o - qo
¥=#mp*& tY)h W= TpT %= 4p
Wy = Jo Wy = D Wyy = 0
== % W=V Mm

_ % FIF TR B ')
Aw=pE+Yy), LAw=opx oMW =ony

2.4 Bending of anisotropic thin plates

Moments and shear forces:

(| 3w a%w a*w ]
My = - LDu Py + Dyy—5 P 2D16“3;;y“ ,
Ry aw
MYY“kDIZaxz Dllayz D26axay ’
(. aw a%w |
M!Y-—DIGax2+D26y2 ﬁaxay ’
_ 33w o’w a%w 2w |
Q= hDu Py + 3Dyg—5— ax3ay + (Dpg + 2D66) y2 o |
[ w aw 33w w |
Q’ = - LDM—XT + (D3 + 2Dgg)—5— xza + 3Dy axay2 + -g-yg'J ,
where
h3
Dy = o475

and c;; are the elastic constants.

(2.12)

(2.13)

(2.14)

(2.15)



2.4.1 Homogeneous solution

w = 2Re[d,(z;) + ©y(zy)]

¥y

Mg = = Re[p1®1 (z)) + %5 (22)],

Myy = — Re[q;®1 (z;) + 4%, '(2)],

My = - Re[n®;'(z)) + 1,9, ()],

Qx = —Re[p51P1 (1) + was®3 (2],

Qy = Re[s;®; (z;) + 9, ()],
where

zy = x+ pyy = (x + ay) + iBy,

Z3 = X+ pay = (x + vy) + idy,

P1 = Dy + Dygpf + 2Dyguy,
q = Dy + Dppuf + 2Dy,

1, = Dyg + Dygpf + 2Dgspy,

p2 = D1 + Do + 2Dyguy,
Q2 = Dy3 + Dppd + 2Dyp,,
ry = Dyg + Dogni + 2Dggnts,

Dy
5y = ™ + 3Dyg + (Dyz + 2Dgg)p; + Dogpl,

Dy,
5 = o + 3Dyg + (D12 + 2Dgg)py + Dogp,

P P2
$1 -1 = —, Sz"f2=';;, $i+11=—qipy,. S+ = = Qi

M1

and py, uy, By, | are the solutions of the characteristic equation

Dpuy + 4Dy + 2(Dy; + 2Dgg)p + 4Dyguy + Dyy = 0.

2.4.2 Particular solution for a constant normal load p(x,y)=q,

we Gty o ¥ N oy’
24(Dy; + D)’ ¥ 6(Dy + Dy)’ y

- . - .

= 2(Dy + Dp)’ W 2Dy + Dy’ B

qoX QoY

Wegg = Wy = ————  Weo = 0, Wy =
™ Dp+Dyp’ ™ Dy+Dgp’ o w

~ 6(D;; + Dp)’

(2.16)

(2.17)

(2.18)

(2.19)
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2.5 Three-dimensional plate representations

2.5.1 Homogeneous bending solution involving powers of z

2pu = —zRe[<b+;57+;]-—-i—_l;-[hzz—Z(z-V)-?]Re[q’"],

uv= —zIm[® + {D +x ] + T-l_—;[hzz—Z(Z—v)%a—]Im[d)"],

2v

2uw=Re[[D + x ] +
1—v

22 Re[ @' ],

o = - T_l-;z Re[ 2(1+v)d + (1-v)({D + x )]
L k% —22-0E JRe( @]
1—v 3 ’
Gy = - -i-}:;-z Re[ 2(1+v)®" = 1-»)(1® + x ) ] (2.20)

+ T}? [h% - 2(2—1')-2-;- JRe[ @™ ],

o, =0,
_ _— = 1 z o

Ty = —zIm[{ D" + x ]+-i:—;[h71—2(2—-v)-3—]1m[¢ 1,
2

- liv [22—-%—]Re[d> ],
2

= -2 - 2wl e,

where
{=x+iy, ®=&), x=x({ (2.21)

2.5.2 Homogeneous membrane solution involving powers of z

3-v g v h? L
2uu = Re[ TP 1P —x ]-2 1+v[ 5 72 ] Re[® '],
2uv=Im[ X0 — (D —x ]+ 2~ [-‘Ei—zz]xm[cp"]
1+v 1+v: 12 ’
2uw = —4z —— Re[®], (2.22)

1+vy
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’ - - hrri v hz (X4
= -+ — —_— — —
on =Re[®' + & — (¢ —x"] -2 == - Z]Re[®"],

[ 1] 1t " hz s
6w = R + @ + -2 =21 2 _ 21Re[®]
efd + @ + @ +x']-2 1W[ 5 22} Re[®],

hz
12~

= —Im[ {® + x ]+ 2 ——][ 2] Im(®"],

1+v

O = T =Ty =0.
2.5.3 Homogeneous bending solution involving trigonometric functions of z

g

2uu = — sin wyz,
ay
2pv = — %8 sin wgZ
ox ’
2uw = 0,
azg
Oxx prrl L
3%,
= — i 2.23
Oyy axdy sin wpz, (2.23)
op =0,
Ty = -1-[ ey —-aig—]sinwz
o270 ey ax? bl
T l(.l) agn COs w
2 2 n ay nz’
1 -
Tyz - -i'mn ‘3; COS wpZ,
where g,(x,y) has to satisfy
Agy — i gy = 0 (2.24)

and w, = nn/h (n=1,3,5,....).

Complex representation of g,(x,y) in a star-shaped domain (Vekua 1967):

1
Bal3) = Rel@4(D)] — [ Re(@, ()]} olwar ¥ 1-0) (2.25)

-
£a(X.Y) = Re[®,(0)] In(war) + [ Re[{@a(t])] I(wor ¥ 1t ) dt, (2.26)
0
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where

Iy = modified Bessel function of the first kind.

2.5.4 Homogeneous membrane solution involving trigonometric functions of z

Take relationships (2.23) and write §,, Ap, —COSApZ, SinApZ instead of g,, w,,
sin w,z , and cOS wyZ , respectively, where Ap = mw/h (m=0,2,4,....).

2.5.5 Homogeneous bending and membrane solution barts involving hyperbolic
functions of z

2uu = —G, [ a 2 cosh q2 + b 2sinh q2 + ¢ cosh q2 + d sinh q2 ],
2uv = —Gy [ a 2 cosh q2 + b 2sinh q2 + c cosh q2 + d sinh q2 ],

2uw = G| a{(3-—-4v) cosh gz — q2 sinh qi} + b{(3—-4v) sinh qZ — q2 cosh qi}

—cqsinh q2 —d qcosh q2],
0 = —Gg[a2cosh gz + bzsinh q2 + ¢ cosh g2 + d sinh g2 ]
+ G 2vq[ asinh q2 + bcosh q2 ],

Ogy = -—G”[aiooshqi+bisinhq2+ccoshqi+dsinhq2]

+ G 2vq[ asinh q2 + bcosh qZ ], (2.27)
ox=Gql a{ —q2 cosh g2 + 2(1—-v)sinh q2} + b{ —q2 sinh q2 + 2(1-v)cosh qi}

—cqcosh g2 —dqsinh q2],
= ~Gyy [ a2 cosh q2 + b 2sinh g2 + ccosh q2 + d sinh g2 ],

e = Gg[ a {(1-—-2v) cosh qZ — q2 sinh q2 } + b {(1—2v) sinh q2 — qZ cosh q2 }
—cqsinh g2 —d qcosh g2 ],

: )

Tyy = Gy[a {(1-2v) coshqZ — g2sinh q2 ¢ + b (1-2v) sinh qZ — qZ cosh q2 }

—cqsinh g2 — d q cosh q2],
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where G(x,y) has to satisfy

AG+ @G =0 (2.28)
and
2=z+ hn2. (2.29)
For the bending solution use:
gh —sinh gh = 0 (2.30)
1
bl _ h
c|=4A 122, (2.31)
d q
2(1—v) 1 —cosh gh
q CLE
For the membrane solution use:
gh + sinhgh = 0 (2.32)
1
a 1 + cosh gh
b| _ h
c| =4 1221: (2.33)
d q
2(1-v) 1 + cosh gh
- q qh
For complex values of q, A and G take the real parts of the right-hand sides of (2.27).
Complex representation of G(x,y):
{ Y
a -—
Gxy) = @) = [ &) 57 Il ¥ {E-H) o
_ & N
+ @' - [ ') = J(a ¥ i@ dr, (2.34)
0

where
{=x+ iy, Z=x—iy,

Jo = Bessel function of the first kind.
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2.5.6 Particular homogeneous solution for a constant normal load on the upper

plate face
3
200 = 25 [ @)@ - 307 2) - 30w + ¥z + B,
2pv = fﬁ% [ @-v)(42 - 3h? 2) = 3(1—v)(2 + YD)z + f:h: ik

2uw = Tgfﬁ [ —8(1+v)z* + 24v(x? + y)Z + 12h? (1+v)2

+ 31—v)(x2 + )2 — 6h2v(x + V) — 1821 z1,
Ox = ‘P? [42+v)2 - (9+3v)x2 z — (3+9v)y? z — 30*(2+v)z ],
Tyy = Jls- [ 42+v)2 — B+ W)x? z — (9+3v)y? z — 3h%(2+v)z ],
Op = — _zf;? (z + h)(2z — h)?,
= - 25 (-,
T = 4h3 =B x(2z — h)(2z + h),
ty = 255 y(2z ~ )2z + b).

2.5.7 Particular solution for a constant body force f,

2uu = {;’5 [ 42-v)2 - 3(1-v)(x® + Yz — 2h¥(1-v)z ]x,
2pv = fo':f [ 4(2—v)2 - 3(1-v)(x® + YAz — 2b%(1-v)z Iy,

2uw = f,;? [ —8(1+v)z* + 24v(22 + Y)Z + 4h%(1+v)Z

- 2h2(1+v)(x? + ¥ + 3(1-v)(x* + ¥ 1,

(2.35)

(2.36)
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;f;;z- [42+v)2 = (9+3v)x%z — (3+9)yz — h¥(2+v)z ],

;%; [42+v)2 = 3+%v)x%z = (9+3v)yz —h¥(2+v)z ],

-—?fh% z(2z—-h)(2z+h),

T (1-v)xyz,

3,
prel x(2z-h)(2z+h)

3,

Tp = 7 Y(22-h)(2z+h)

2.6 General three-dimensional elasticity solution representations

In Piltner (1987, 1988a, 1989) a 3-dimensional elasticity solution representation in terms

of six arbitrary complex valued functions was introduced. Using the following three com-
plex variables

{1 =ix + bl(t)y + cl(t)z
Lo = 8a(t)x + 1y + co(t)z

(2.37)
{3 = a3(t)x + b3(t)y +iz

the displacements can be written in terms of ®y({y), Wi ({x) (where k=1,2,3):
2uu = J’ { Im[¥; - 2ix®; + 2(3 - 4v)®,]
a9 Re[-‘i‘g + Ziytb'z ]

a3 Re[-¥; + 2iz®, ]} dt

2;[V= J'{ blRe[-—‘Pl +2]X4>’1 ]

+ Im[ ¥ - 2iy®, + 2(3 - 4v)D,]

+ by Re[-¥5 + 2izd, ]} dt (2.38)
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Quw = j { ¢; Re[-¥; + 2ix®; ]

+ Co RB[-—\Pz + 21yd>'2 ]
+ Im[ ¥3 - 2izd; + 2(3 - 4v)¢3]} dt

where ay(t), ag(t), by(t), bg(t), c1(t), co(t) are parameter functions satisfying
b3(t) + A1) =1
aZ(t)+ i) =1 A (2.39)
a2(t) + b3(t) = 1.

Important examples for the choice of parameter functions are as(t) =cos t, bs(t) =sin t.
An alternative to the representation (2.38) involving three different complex variables is

a representation of the displacement field which needs only one of the complex variables
from (2.37), say {3:

2uu = I{ ag Re[—‘i‘l + ZIX&);] +2(3-4v) Im[<i>1]
+ a3 Re[-¥; + 2iyd; ]

+ a3 Re[-¥3 + 2iz<f>:g ]} dt

2uv = j{ bs Re[-'¥; + 2ixd; ] (2.40)
+bs Re[-¥; + 2iydy] + 2(3 — 4v) Im[®,]
+ bz Re[-¥5 + 2izd; ]} dt
2uw = J{ Im[ ¥, - 2ix<i>‘1 ]
+Im[ ¥, - 2iyd, ]
+Im{ ¥; - 2izd; 1+ 2(3 - 4V)Im[<i>3]} dt

where &, = &(£3), ¥, = W(¢3) and k=1,2,3.
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An illustrative example for the use of the 3-dimensional solution representation in the
case of singular functions is given in Piltner (1989). The derivation of the 3-dimensional
plate representations in section 2.5 can be found in Piltner (1992a).

All solution representations involve "arbitrary” complex valued functions. Once those
arbitrary complex functions (dXz), ¥(z), ®,(z) etc.) are chosen we get the real trial func-
tions for the displacements and stresses. Very helpful for the systematic construction of
the real Trefftz-trial functions are symbolic manipulation codes like MACSYMA and
MATHEMATICA. The complex representations are very suitable for a use in symbolic
manipulation programs which can also convert the results into FORTRAN-statements.
This means that we have a convenient way of filling major parts of the subroutines for
the boundary element algorithm without worrying about typing errors.
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8 The systematic construction of singular Trefftz-trial functions
based on a boundary element discretization

The representations of stresses and displacements given in section 2 can be used to
obtain systematically linearly independent trial functions for the physical quantities. For
a Trefftz-type finite element we usually choose the complex functions as complex power
series whereas for a boundary element algorithm we choose singular functions for @, X,
¥, etc. Those complex functions which depend on a variable involving two real space
coordinates (e.g. x + iy) can be chosen in the form of a Cauchy integral

1 f(C)d

3.1
= 3.1

fz) =

where the function fz) stands for the complex functions ®, ¥, X, etc. T is the boundary
of the domain. After discretizing the boundary I into N straight line boundary elements

with the boundary portions T (j=1,2,...,N) (Figure 1). and choosing basic functions ? for
every element we use a discretized form for the Cauchy type integrals:

dZ, (3.2)

In the following notation, the boundary element algorithm will be explained for the
example of the plane strain/stress solution representation (2.1). In this representation
we have the two functions @(z) and W(z) for which we choose the following discretiza-

tions:

1 N &) 1 N

d0=gn X |7 U =g 20
T;
(3.3)

1 N ¥ 1 N
‘P S e—— d _-—_..__..._ \PJ ,
(z) mjglljjg’—-z ¢ 27[151 (2)

where z=x+iy and { is a complex boundary coordinate. Since the boundary values of
® and ¥ are not explicitly given in the plate boundary value problem, we assume for
both functions distributions on the boundary T..

For every boundary element we choose fifth or seventh-order basis functions &' ({) and

‘i’i({ ). Choosing, for example, fifth-order basis functions between nodes (j-1) and j, the
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jri
N-1 unknown nodal values:

N By @, O, Y ¥y Y
j

M o : \___ boundary element j

1 2 i1
with boundary portion [';

Figure 1: Boundary element discretization for a plane stress/strain problem

complex functions take the form
& (6) = Ny(8) ;- ; + Na(s) @)_1(z; — zj-1) + Na(s) @] 1(zj - z;1)* +
Ny(s) ®; + Ni(s) ®j(z — z;-1) + Ne(s) ®;(z; - 1)
and
i) = Ni(8) Wj1 + Na(s) ¥, (2 - 2j-1) + N(s) ¥ (zj -z +

N4(8) \PJ + Ns(S) ‘P_;(zj - Z_j—-l) + Ng(s) \P;(ZJ - Zj_l)z,

where N;(s) G=1,2,...,6) are fifth-order shape functions of the variable

¢ 21
. . b
Zj = 21

(3.4)

(3.5)

(3.6)

and ®;, <D3, <D;, ¥, ‘}‘;, ‘l’J are discrete complex node values at the point z = z;. The shape

functions N; are given in the appendix. For straight line boundary elements the integra-
tion can be performed analytically. For every element with the boundary portion Tj, we

get the boundary element contributions ®'(z) and W(z) from analytical integration.

After adding all contributions ®'(z) and ¥(z) from all boundary elements, we get approx-

imation functions @(z), ¥(z), which, in the above example, have the form
&z) = .2_1”_1[ ®, Fy(z) + @, Gi(2)+ @, Hyz)+- -
-+ @ Fi(2) + @ Gj(z)+ & Hy(z)+ -

ves (DN FN(Z) + q)IN G’N(Z) + d);; HN(Z) 1|’

3.7
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1 , )
W(z) = ETn'[ W, Fy(z)+ ¥, Gy(2)+ ¥, Hy(2) + - (3.8)

oo+ ¥ Fi(2)+ ¥ Gy2)+ ¥ Hi(2) + -

.o+ Wy Fn(z) + Wy Gu(2) + ¥y Hx(2) ]

The explicit expressions, for the approximation functions @Xz) and ¥(z), can be taken

from the appendix. In the appendix the approximation function is denoted by f{z); so in
order to get the functions for ® and ¥, only the notation has to be changed (i.e., change f
into @ and change finto ‘¥, respectively).

For the example of fifth order basis functions we get for F;(z), Gj(z) and Hy(z) the follow-

ing expressions:

where

Zj-—Z

Fi(z) = 3K+ 9K? - 24K® + 12K* + 2N,(K) In

zj—~1 -2

—3L-9L2 +24L% - 12L* + 2N;(L) In 5;_1_—__7;

J

() =z — g W — LSk _ag? 3 _ gK* Z-2
Gi(2) = (z; zﬂ){ 35— g K- 3KE+ 1K - 6K* + Ny In =y 39)
(21~ 2} = = 25 L= 6L% + 13L% - 6L¢ + 2Np(L) In 227
5 6 z; - 2
ol 1 1 1 3 Z; —2Z
: = : - P 2 —— — — 2_..- 3 4 3
Hj(z) (% z,.l){30+12K+3K 2K +K +2N6(K)1nzj_1-z}
1 1 11 5 Z,1—2
) BNl Pl ST (- J i+l
+ (z01 z,){20+4L G L+ 3L - L Ny In }
K=_z_-_§ﬂ, L= i I (3.10)
%= 21 %41 — 24

Some of the representations for the displacements and stresses in section 2 contain the

third-order complex derivative ®". In this case we need seventh-order basis functions

which include @; as an unknown nodal value. For convenience, the results, for the case

of seventh-order boundary element basis functions, are included in the appendix. The

complex derivatives of the approximation functions are also given in the appendix.

It should be emphasized that although the approximation functions for ®, ¥, @, ¥, o
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contain singular expressions, limit values for all points on the boundary can be calcu-

lated. This means that all physical quantities (stresses, strains, displacements) will

remain finite everywhere in the solution domain and on the boundary.

For the functions in equation (3.7), for example, we will get the following limit values as

we approach the nodal point z = z; on the boundary:

I->%; 4ri L zj"zj—l
[ 4
+ q’) -5— {(Zj - Zj_1)+ (Z_j+1 - ZJ)}}
[ 1
+ pr” i §6 {- (Zj - Zj_l)z + (Zj+1 - Zj)2}j|

+ remaining terms },

lim ®(z) = @ - 5 __°
->7 4 Zj—2zi1  Zj1 — 2
] = Zjy1
+®;| 2 In (3.11)
| Zj— 21
o[ 25— Zj-1 | Bl
Tl T4 ]

+ remaining terms },

and
1 [ 20 20
Eﬂ,‘p(z)—-ﬁ{ ; (zi—2-12 (z; —z-)2J

| 4 T 4R a8

+¢; _ 16 _ 16
i Z;—Zjy Ziy1 ~ g

+ @ 21n—-———-—zj—zj+l}
B !

+ remaining terms }
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Noting that we have
¢j = RE[(I)J] +1 Im[tbj],

—~
o]
oy
[
-

Fj = RE[FJ] +1 Im[Fj],

and similar expressions for d);, <D; and Gj(2), H;(z), we get after substituting the approxi-
mation functions (3.7, 3.8) into the displacement representation (2.1), the real approxi-
mation functions for the displacements. In matrix notation we get u= U’c, where the
vector ¢ contains the real parameters |

Re(®;], Im[®;], Re[®;]], Im[®;], Re[®;], Im[®]],
and
Re['¥j], Im('¥;], Re[¥]], Im[¥]], Re['¥| ], Im[¥;],

where j=1,2,...,N. Since both ® and ¥ can represent rigid body translations, we need to
eliminate the linearly dependent functions terms. This can be done by omitting one com-
plex function term of ¥(z), using the complex coefficient ¥;, which can easily realized by
choosing i=1. So at the first boundary element node, we set Re[¥;] = Im[¥;]=0. In order
to remove the rigid body motions for the plane strain/stress case we set
Re[®;]=Im[®;]= Im[<b'1] = 0. Details about the computation of the complex logarithmic
terms can be found in Piltner and Taylor (1990a).
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4 Variational Formulation

In order to obtain a symmetric form of a boundary element algorithm, we can use the fol-
lowing hybrid variational formulation:

l'IiH=J[-;-(uTDT)E(Du)—uT?]dV— jﬁTTds-j'rT (u-1)ds, (4.1)
v St S

In the used notation f is the body force vector, D is a differential operator matrix and E
is the matrix of material coefficients. T are prescribed tractions on the boundary portion
Sr. The boundary S is decomposed into two portions according to S=8S,+St. The
strains are calculated from € = Du, and the stresses are obtained from o = EDu. Using n
as the matrix of direction cosines on the boundary the tractions can be written as

T =nEDu. (4.2)

The displacement field u is defined in the domain V and on the boundary S, whereas 1 is
chosen on the boundary. Carrying out the variation in (4.1), and noting that §i = T=0
on S,, we obtain the relationship

5n;,=-jauT(DTEDu+f)dv-jaTT(u-ﬁ)dS+jaﬁT(T-T)ds. (4.3)
A" S S

For the discretization, we use
u=U'c+u, (4.4)
i=Uq (4.5)

where U’ contains the Trefftz-type functions with singular expressions. The construction
of such functions was discussed in sections 2 and 3. We recall that, by construction, the
displacement functions have the property that they lead to to stresses and strains for
which we can calculate limit values for all points on the boundary. The vector q contains
the nodal displacements on the boundary, whereas ¢ is the vector of unknown coefficients
in the Trefftz-trial functions.

Since u has the property of satisfying the differential equation
DTEDu+#=0 | (4.6)

inside the solution domain, and all limit values on the boundary exist, we are left with
the task of integrating terms along the boundary S. The discretization of (4.3) leads to



the following form of equations

BN an

L4l
where H is a symmetric matrix. This system of equations can be reduced to
Kq=p (4.8)
where
K=LTH!L=K' (4.9)
p=LTH r, +r,. , (4.10)

Hybrid variational formulations utilizing Trefftz-type trial functions for u have been suc-
cessfully applied for the derivation of several finite elements (e.g., Jirousek and Guex
1986, Jirousek 1987, Jirousek and Vakatesh 1989, Piltner 1985, 1992b). Details of such
discretizations can be found in the given references. The important difference of the
approach in this paper to the one used for the Trefftz-type finite elements is that singu-
lar functions are used in the present approach, whereas nonsingular functions are used
for the Trefftz-type finite elements. (Remark: Exceptions are finite elements containing
a crack for which two singular functions are added to the nonsingular functions).

5 Numerical Results

Singular Trefftz-trial functions, as the ones described in section 3, have been used suc-
cessfully with the point collocation techniques. Numerical results for plane strain/stress
and plate bending problems have been reported in Piltner and Taylor (1989, 1990a,
1990b, 1990c).

For testing the discussed symmetric boundary element form, the stiffness matrices for
triangular and quadrilateral domains under bending have been calculated. Choosing the
same type of nodal degrees of freedom, as in a finite element, we can test the evaluation
of symmetric finite element matrices from a discretization along the boundary. One of
the examples was a triangular Kirchhoff plate bending element (Figure 2). On every
edge of the triangular finite element, one boundary element was used for the discretiza-
tion of the Cauchy integrals. Since the evaluation of the symmetric stiffness matrices is
based on a variational formulation, we obtain finite element matrices for every
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triangular subdomain, and can use a standard finite element program to assemble the
element stiffness matrices into a global stiffness matrix.

Figure 2: Triangular plate bending element

For this example, the complex basis functions for the Cauchy integrals are chosen as
fifth-order functions. The approximation functions for ® and ¥, and the complex deriva-
tives, can be taken from the results listed in the appendix.

For one quarter of a simply supported square plate under uniform load (length a=10,
thickness h=0.1, v = 0.3, E=1, uniform load p=1), the results for the maximum deflection
are listed in Table 1 and compared with the exact solution (Timoshenko 1940).

Table 1: Results obtained with a mesh of triangular plate bending elements based on a
boundary element discretization along the finite element edges (one boundary element
per edge).

number of w w error
finite elements | (numerical) | exact (Timoshenko) %
2 4.338 * 10° 4.43 *10° 2.1
8 4.406 * 10° 4.43 * 10° 0.5
32 4.419 * 10° 4.43 *10° 0.2
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6 Concluding remarks

A systematic way of constructing singular functions for a variety of elasticity problems
has been shown. After substituting the functions listed in the appendix into the solution
representations, we can get limit values for stresses, strains, and displacements for all
points on the boundary. A hybrid variational formulation with two independent fields
can be used for the calculation of symmetric coefficient matrices. Once the discrete
unknowns are computed, we can get, with the aid of the Trefftz-trial functions, the
stresses and displacements inside the solution domain and on the boundary. It is hoped
that some of the new solution representations in section 2 will be helpful for other
aspects in boundary element techniques.



Appendix

A.1 Results for fifth-order complex basis functions

In the following, the fifth-order basis functions and the according shape functions and deriva-

tives are listed. The results of the evaluated Cauchy integrals, for the approximation function

f(z) and the complex derivatives f (z) and f '(z), are given as well.

The fifth-order complex basis functions fi and their complex derivatives can be written in the

following form:

where

fh(s) = Ny(s) £y + Na(s) £i_1(z; — j—) + Na(s) fiL4(z — zj-1)* +
Ni(s) fj + Ns(s) f(z; — z—1) + Ne(s) £ (z — z1)%,

F(s) = Ny(s) /(g = zjg) + No(s) iy + Na(s) £i2a(z = z0) +
Ny(s) ff(z; — zj1) + Ns(s) i + Ne(s) £’z — zj-0),

() = Ni(s) fi-1/(z; — z-1)* + Na(s) fj_/(z; — 2j=1) + Ny(s) iy +

f‘i..(s) fy/(z; — z,-_.l)2 + f\‘ls(s) fj'/(zj -zq) + ﬁs(s) £

= l"zi-l’

4 = i1
Nij(s) = [ 2 — 20s® + 30s* — 125° )2,
Ny(s) = [ 2s — 125 + 165* — 65° 12,
Nys) = [ & - 38 + 35 - & )2,

Nys) = 205 - 30s* + 126° )2,
Ny(s) = [ 85> + 145 — 65° )2,
Ng(s) = [ $ -2 + )12,

Ni(s) = [ - 60s% + 120s® — 60s* 2,
Ny(s) = [2 — 3657 + 645 — 30s¢ }2,
Ny(s) = [2s — 982 + 1268 — 55412,
Nys) = [  60s® — 1208 + 60s* |12,
Ng(s) = [ —24¢% + 565° — 30s* }2,
Ne(s) = 3 -8 + 52,

(A1.1)

(A1.2)

(A1.3)

(A1.4)
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and

Ny(s) = [ — 120s + 360s? — 240> 112,
Ny(s) = [ —72s + 19282 — 1205° )2,

Na(s) = [2 — 18s + 3682 — 20s° )2, (A1.5)
Nos) = [  120s — 360s* + 240s° )2,

Ng(s) = [ —48s + 168s% — 1205° 12,

Ne(s) = [ 6s — 2452 + 205° )2.

The approximation function f(z) and the complex derivatives f(z), f (z) are obtained as:

Zj"'Z

f(z) = -4—:; +f,-[ 3K + 9K? — 24K* + 12K* + 2N,(K) In- —
J—

Z; —-Z
—3L - 9L2 + 24L3 — 1214 + 2Ny(L) ‘n'l;ﬂ""{’ ]
-

: 11 5 =2
+ 1 1(z - zj_l){ -3 K- 3K2 + 11K3 — 6K* + 2Ng(K) In z): — }

+ (o1 - z}){ oBr et -at s )

Zj+1 -z ]
Zj"'

L
[ —

" 1 1 3 z -z
+ 1 | (- zj_l)z{ 2 T oKt -3—1(2 - 5K3 + K* + 2N¢(K) In zjil — } +

1 1 11 5
+ (241 - zj)z{ 5+t aL- —E—Lz + -2-L3 — L4+ 2N3(L) In

Z; -2
Z; z J

}

(Al1.6)

1
A

2 3 . Zj hadl 4
5 + 20K — 90K“ + 60K’ + 2N4(K) lnz >
-1~

. Z: —Z
+ ————{-—5-20L+90L2—-60L3+2N1(L)ln ’z’" - }
. j—’
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,f [ =5 = 6K + 41K2 - 30K® + 2N(K) In———
1 =
. Z:#l -z ]
+ - L+ 4912 - 3000 420 I | (AL7)
" 1 2 1 . z, -z
+1 g -z L+ 2k - Lg2 4 sk j +
o e 1){ 7 3K K K+ W }

1 14 - j+1 = Z
+ (zjﬂ-zi){z-—-s—l,-» %L2—5L3+2N3(L)lnﬁzijl—:-} + o

, .. z—z
f'(2) = '——1. S b ¢ —1 20 — 240K + 240K? + 2N4(K) In
4 J 2
m (z — z-1) Zj —12

ve . -z
+ -——1-—7 { —20 + 240L — 240L2% + 2N,(L) s 1 }
(@1 — 7 z-z

1
4~ 4

, 2 ‘e Zj -2 ]

+ f; —4 + 108K — 120K* + 2Ns(K) In

) z, —z
. -1

Zj+1 - Z

. )
+ —-——-—-—{ —~16 + 132L — 120L% + 2N,(L) In J (A1.8)

zj+l Zj Z:—Z

)

Zj"

e [ —6 — 14K + 20K? + 2Ng(K) In Za-2

.. Z; il 4
+26L-20L2+2N3(L)1n—lzf-‘-—z—]+ e
-
where

K= 3..:_5_‘_1. L= _z_—.-_EL. : (A1.9)
4~ Zj- Zi+1 ~ I
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A.2 Results for seventh-order complex basis functions

The seventh-order complex basis functions } and their derivatives can be written in the follow-

ing form:

fiis) = Ny(s) fi-1 + Na(s) fi_1(zj — zjo1) + Na(s) f14(z; — 23-)* + N(s) fia(z - z,) +
Ns(s) f; + No() £z —zj—) + No(s) f(z; — z0)? + Ng(s) (5 — -0,
H(s) = Ny(s) f50/(z = 2-1) + No(8) £y + Na(s) §ia(z; — 1) + Nu(s) 13z — 7% +
Ns(s) /(25 — 2-1) + Ne(s) §§ + No(s) §'(zj — zi1) + Na(s) ' (zj — z-0)%,
(A2.1)
H'(s) = Ny(s) fi-p/(z; — 2j-1)? + Nos) §j-4/(z; — zj—1) + Na(s) §i3 + Nu(s) fi53(z — zj-) +
Ng(s) f(z; — z-)* + Nels) /(2 - 2i1) + Nols) §§ + Ng(s) 'z — zj-0),
H(s) = Ny(s) fip/(z; — 1) + No(s) f-l(z; — 70)? + M) £i20/(z; = 7i) + Na(s) £ +

Ny(s) f(z; - z-)® + No(o) /25 — 702 + Nol9) 77z~ z0) + Ne® §

(A2.2)
where
Ny(s) = [ 6 — 210s* + 5045° — 4205 + 12057 V6,
Ny(s) = [ 6s — 120s* + 2705° — 216s° + 60s’ V6,
Na(s) = [ 3% — 30s* + 60s° — 4556 + 1257 16,
Nys)=[ & — 4s*+ 655 — 4s8 + §7 V6,
(A2.3)

Ng(s) = [ 210s* — 504s° + 420s5 — 1205’ V6,
Ng(s) = | —90s* + 234s° — 204s% + 60s’ V6,
Nq(s) = | 15s* — 428 + 3955 — 1257 6,

Ng(s) = | -5t + 35 - 35+ ¢ )6,
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Ny(s) = [ - 840s® + 2520s* — 25205 + 84056 V6,

Ny(s) = [ 6 — 480> + 1350s* — 12965° + 4205 /6,
Ni(s) = [ 6s — 120 + 300s* — 270s° + 84s° /6,

No(s) = [3s2 — 165> + 30s* — 2455 + 75 )6,

: (A2.4)
Ns(s) = [  840s® — 2520s* + 2520s° — 840s° V6,
Ne(s) = [  —360s® + 1170s* — 1224s® + 42056 V6,
Ny(s) = [ 60s — 210s* + 234s° — 84s5 6,
Ng(s) = [ —48 + 155s* — 1885 + 78 6,
Ny(s) = [ —2520s* + 10080s® — 12600s* + 5040s° /6,
Ny(s) = [ - 14408 + 5400s — 6480s* + 2520° 16,
Na(s) = [ 6 — 360s% + 1200s> — 1350s* + 504s° V6,
Ny(s) = [ 6s — 4852 + 120s° — 120s* + 425° 6,
(A2.5)

Ns(s) = [ 2520s* — 10080s® + 12600s* — 5040s° |/6,
Ne(s) = [  —1080s? + 4680s® — 6120s* + 2520s° /6,
No(s) = [  180s% — 840s® + 1170s* — 504s° V6,

Ng(s) = [ —12¢ + 60s —90s* + 425° V6,

Ny(s) = [ — 5040s + 30240s> — 50400s> + 252005 J6,
Ny(s) = [ - 2880s + 16200s — 25920s* + 12600s* J6,
Na(s) = [ - 720s + 3600s* — 5400s° + 2520s* }6,

Nes) = [ 6 — 9%s + 36052 — 480s> + 210s* J6,
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Ng(s) = [ 5040s — 30240s% + 50400s> — 25200s* 16, (A2.6)
Ng(s) = [ —2160s + 14040s? — 24480s> + 12600s* J/6,

Nfs) =  360s — 2520s* + 4680s® — 2520s* 16,

Ngs) = [ —24s + 180s% — 360s° + 210s* }s6.

Substitution of (A2.1)into (3.2) and integration gives us the element contribution fi(z) in the

form

f2) = f,_l:—11769-—81<~181<2-68K3+334K‘-360K5+120K6+6Nla<)m£f—°:z;]
+(z.i-z§_‘)§'.1L %&-%K—ma—meﬂszw—msstowwmaqmﬁ:—f;]
+(zj—zi_,)2f,-'.'.1L%+K—-%K¢——12K’+—8§3—K‘—39K5+121(‘+6N3(K)ln;’g—--:z;]
+ (g — 3% L—é—o—(4+ 14K + 84K? — 875K + 1820K* — 1470K5 + 420K°)
+ N9 o
+ij é%+8K+181(’-+68K3-334K‘+360K5-120K6+6N5(K)1n£;;j
+(z,-—-zi-1)f;;-%-—%K~61(2——26K3+152K‘~—174K5+60K‘+2N6(K)1n£{—:-_-%?
+ (g - )% L-l% + 3K+ 210 + 410 - K¢ + 3K - 12K + 290 mzjz_fl"_zz
+(zi-zi.,)3g"'ﬁ%6 -3 — 7K —21K2 — 105K® + T70K* + 1050K® + 420K%)

+ 2N,(K) mif_—_f-z- : (A2.7)
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Adding neighboring element contributions we obtain for f(z) the representation

f(z)=_1_-2]-;-i-{... +

+fj[ 81<+1ax<2+681<3-3341<4+3601<5—1201<6+6~,a<)1n;’?i;:};'

— 8L — 181% — 68L? + 334L* — 3605 + 120L° + 6Ny(L) In- .zil:zz ]

+f [(zi "75—1){——.;7% —%—361(—6142 —26K? + 152K* — 174K + 60KS + 6Ng(K) m.ﬁ_—zi;l'_zz }

+ (5 *23){178- —%L — 1212 — 4213 + 18214 — 186LF + 60L® + 6N(L) mﬁ:___.'zj‘_"zz }

+f sz—zf-m{%%*%“%“““@'%3"“"33“"”"‘*“’m‘“‘ﬁ%}

vy —Z
+ -Z;)’{—% +L ——;{)—Lz - 121 + §2§-L‘ — 3915 + 1206 + 6Ny(L) xn_zr____zj‘_z }]

420

+ 1 [(21 -q-ﬂ’{—l—( -3 —7K —21K? — 105K + T70K* — 1050K® + 420KS)

e

+ &+ '15)3{;%(4 + 14L + 8412 — 87513 + 1820L* — 1470L% + 420L°)

+6N‘(L)‘“5z?‘-:z°z‘ }] + oo (A2.8)
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The complex derivatives f (z), f (z) and f (z) are obtained as:

f’(z)=.1_211;l,.{... +

+f,-[ lz’_ {14+42K+2101@-—-1540K3+21(X)K‘—-84OK5+61§15(K)1n£-:-£2-}
~—

+ 1 {-—14-42L-210L2+ 1540L3 — 210014 + 840L5 + 6N,(L) In—L= —Z }
L ‘ 5-2

z

+1 [ ~14 — 12K — 78K? + 698K — 1014K* + 420K® + 6Ng(K) lnzzil——-_i

—30L — 13212 + 84213 — 1086L* + 420L% + 6N,(L) lnﬁz*;‘__;- 4 ]

+ [(z,.—zj-,){%+ 1K + 122 - 121 + 192K — 84K + 6(K) m—ﬁ':—z—-}

41 -2

+ (Zor = z,-){l ~ 20y 3917 + 1931 — 22814 + 84LF + 6Ny(L) mi‘::zz }]

+§ [(21- -2;-1)’{2%:6( 7 42K~ 315K® + 3500KE — GOROK' + 294IK)

+ @y — 11)2{2—1?1-)-(14 + 168L — 304512 + 8540L? — 8610L* + 2940L%)

+ &) mﬁ*———'zj‘_"z‘ }l + o (A2.9)
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" 1
f<2>="ﬁ;?{‘“+

1 . z—z
+ £ |———— 142 + 420K — 5460K? + 10080K? — S040K* + 6N. In
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