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UNCOVERING PROXIMITY OF CHROMOSOME TERRITORIES USING

CLASSICAL ALGEBRAIC STATISTICS

JAVIER ARSUAGA, IDO HESKIA, SERKAN HOŞTEN, AND TATSIANA MASKALEVICH

Abstract. Exchange type chromosome aberrations (ETCAs) are rearrangements of the
genome that occur when chromosomes break and the resulting fragments rejoin with other
fragments from other chromosomes. ETCAs are commonly observed in cancer cells and in
cells exposed to radiation. The frequency of these chromosome rearrangements is correlated
with their spatial proximity, therefore it can be used to infer the three dimensional organiza-
tion of the genome. Extracting statistical significance of spatial proximity from cancer and
radiation data has remained somewhat elusive because of the sparsity of the data. We here
propose a new approach to study the three dimensional organization of the genome using
algebraic statistics. We test our method on a published data set of irradiated human blood
lymphocyte cells. We provide a rigorous method for testing the overall organization of the
genome, and in agreement with previous results we find a random relative positioning of
chromosomes with the exception of the chromosome pairs {1,22} and {13,14} that have a
significantly larger number of ETCAs than the rest of the chromosome pairs suggesting their
spatial proximity. We conclude that algebraic methods can successfully be used to analyze
genetic data and have potential applications to larger and more complex data sets.

1. Introduction

During the early stages of the cell cycle the mammalian genome is organized in chromosome
territories [15, 36] (for a review see [17]). When DNA damaging agents, such as radiation,
cross the cell nucleus they introduce double strand breaks that produce chromosome frag-
ments. These chromosome fragments need to be rejoined with their original partners for the
cell to survive. A small percentage of breaks however are incorrectly rejoined introducing
exchange type chromosome aberrations (ETCAs). ETCAs between non-homologue chro-
mosomes can be detected in the laboratory by means of diverse chromosome painting and
sequencing techniques (see Figure 1 for an example of ETCAs detected by the chromosome
painting technique SKY). It is expected that chromosomes that are in close spatial proxim-
ity form ETCAs more often than those that are far apart [12, 6, 34, 38, 47]. Therefore the
frequency of ETCAs between non-homologous chromosomes is informative of their relative
position and it can be used to reconstruct the three dimensional structure of the genome.

Chromosome painting techniques such Fluorescence in-situ Hybridization (FISH) or its
multicolor versions such as Spectral Karyotyping (SKY) and multiplex FISH (mFISH) [43, 42]
paint every pair of homologue chromosomes the same color (Figure 1). These techniques
have shown that the position of chromosome territories with respect to the center of the
nucleus is driven by gene density, chromosome size and/or local chromatin geometry [10,
27, 35]. In human lymphocytes gene-rich chromosomes such as {1, 19, 17, 22} are located
near the center of the nucleus [10, 17] while gene-poor chromosomes such as {2, 4, 13, 18}
are located closer to the periphery of the nucleus [10, 17]. Studies measuring the relative
position of chromosomes, using radiation induced ETCAs, on the other hand have shown that
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Figure 1. Examples of ETCAs found in a tumor cell. Pairs of homologue
chromosomes were painted the same color using SKY. The arrows point to
ETCAs. Figure kindly provided by J.L. Garćıa.

chromosomes are randomly located with respect to each other with the exception of a few
chromosome clusters [14, 23, 40, 41]. Interestingly this overall random relative organization
has been corroborated by new sequencing techniques [31, 47].

Quantification of the relative position of chromosome territories commonly use tables whose
entries are the number of ETCAs detected for any two non-homologue chromosomes such as
the one we use in Table 2. Several methods have been proposed to study frequency tables
of radiation induced ETCAs. In [8] tables of radiation induced ETCAs detected by FISH
were analyzed. In this type of studies frequency tables were densely populated and with large
entries, therefore chi-square statistics were used to find significant clusters of chromosomes.
In [2, 14] similar tables were generated employing mFISH data. Although more accurate
in some respects, the latter data were more sparse and with small entries. In this case the
proximity of chromosome territories was tested by assigning p-values to clusters of previously
reported chromosome territories. Here we propose a model-based approach that builds a
simple log-linear model to test the proximity of pairs of chromosome territories, referred to
as chromosome pairs from now on, and we use a Markov Chain Monte Carlo method based
on the theory of algebraic statistics to assign significance. The mFISH data we analyze have
already appeared in the literature [2, 14, 32].

In our study we test a no-proximity effect model and a single pair proximity model by sam-
pling tables that have the same sufficient statistic as those observed experimentally. Sampling
of the tables is performed by running a Markov Chain Monte Carlo algorithm that uses a
Markov basis [20, 21] for a second hypersimplex [19]. This kind of method is one of the
early contributions of algebraic statistics, hence “classical algebraic statistics” in the title of
this work. Our results indicate that we could not reject the hypothesis of random relative
arrangement of chromosome territories when radiation induced chromosome aberrations were
analyzed. This result is in qualitative agreement with previous studies [2, 14, 32] and suggests
that the specific positions of any two pairs of chromosomes do not influence the frequency of
aberrations observed. However, by assuming the existence of a proximity biasing factor we
found chromosome pairs {1, 22} and {13, 14} to be significant. We conclude that methods
develop in algebraic statistics are suitable for analyzing genetic data of moderate size in which
data sparsity or low numbers of measurements are present.



UNCOVERING PROXIMITY OF CHROMOSOME TERRITORIES USING CLASSICAL ALGEBRAIC STATISTICS3

2. Data and Methods

To test for proximity of chromosome territories we used a radiation induced exchange type
chromosome aberration table published in [2, 46]. In these experiments cells from healthy
donors were irradiated with sparsely ionizing γ-rays at different doses, and mFISH [43] was
used to detect ETCAs. This table includes a total of 3585 records of human peripheral blood
lymphocytes irradiated with sparsely ionizing radiation at different doses.

The frequency of ETCAs was summarized by recording the number of cells in which at least
one exchange between two non-homologous chromosomes occurred. This quantity is robust
with respect to noise introduced by apparently incomplete aberrations (i.e. those aberrations
with not all fragments accounted for) and reduces false positives. Following previous pub-
lications [2, 14] we denote these values by f(j, k) where j and k are the chromosomes that
participate in the exchange. These values are presented in Table 2 as a 22×22 upper-triangular
table.

Table 1. Table of ETCAs in 3585 human lymphocytes as reported in [2, 46].
Each entry f(j, k) holds the number of cells in which at least one exchange
between chromosomes j and k was recorded. The total number of cells in
which a given chromosome was involved in at least one exchange appears in
the ”sum” column.

Chr 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Sum

1 44 38 42 29 26 29 18 39 29 25 18 15 18 34 31 22 12 14 22 9 27 541
2 43 37 32 30 24 25 29 16 24 30 29 9 26 8 24 8 7 12 13 15 485
3 21 31 32 24 21 26 23 25 23 21 18 18 19 21 11 17 11 12 10 465
4 23 27 28 24 26 20 13 19 23 22 20 16 18 11 6 12 10 7 425
5 17 31 26 25 24 30 25 25 15 19 8 19 13 7 16 7 4 426
6 18 22 21 31 13 30 18 15 19 14 15 13 10 9 8 7 395
7 20 20 17 28 25 13 18 8 18 23 11 9 19 6 7 396
8 13 12 24 11 25 15 16 12 16 17 4 9 7 8 345
9 21 25 7 23 23 27 20 15 22 8 9 7 10 416
10 18 21 14 14 10 19 14 9 5 11 7 3 338
11 25 5 15 16 19 15 8 10 12 3 11 364
12 9 16 9 12 16 8 13 10 5 5 337
13 29 10 10 7 16 5 6 7 9 319
14 22 13 6 10 2 6 13 11 310
15 22 13 9 7 11 7 9 332
16 12 15 12 20 8 13 321
17 5 4 11 5 10 291
18 2 11 9 3 223
19 6 0 8 156
20 7 10 240
21 6 156
22 193

2.1. The No-proximity and Single-pair Proximity Effects as Log-Linear Models.
ETCAs between two non-homologous chromosomes j and k (j 6= k) were modelled by a

single discrete random variable X with
(

22
2

)
= 231 values corresponding to all possible pairs

of non-homologue chromosomes with a probability density function given by

p : {(j, k) : 1 ≤ j < k ≤ 22} −→ ∆231

where the set

∆231 = {(p12, p13, . . . , p2122) ∈ R231 : pjk ≥ 0
∑
j,k

pjk = 1}



4 JAVIER ARSUAGA, IDO HESKIA, SERKAN HOŞTEN, AND TATSIANA MASKALEVICH

is the probability simplex in R231 and pjk = p(j, k). In this no-proximity effect model the
probability of observing an ETCA between the chromosomes j and k is

pjk = θjθk 1 ≤ j < k ≤ 22.

where θ1, θ2, . . . , θ22 are positive parameters. More precisely, the no-proximity effect model
is the image of R22

+ in ∆231 under the map φ(θ1, . . . , θ22) = (θjθk : 1 ≤ j < k ≤ 22). This
model can be linearized by applying logarithms to both sides of the equation, which gives
log(pjk) = log(θj) + log(θk) = βj + βk and shows that our model is a log-linear model [13].
Therefore the no-proximity effect model is given by a 22 × 231 design matrix, denoted by
A(22), whose columns are ej + ek with 1 ≤ j < k ≤ 22 where ej is the jth standard unit
vector in R22. The columns of A(22) are the vertices of the second hypersymplex in R22 [19].

For a fixed pair {r, s} with r 6= s we define an extended model that we call a single-pair
proximity effect model. This model is given by the map φ′ : R23

+ → ∆231 defined as

(1) pjk = φ′(θ1, .., θ22, µrs) =

{
θrθsµrs if j = r and k = s,
θjθk otherwise.

The parameter µrs is a bias factor for the frequency of an observed exchange between chro-
mosomes r and s. This bias factor corresponds to a proximity factor between the territories
of two chromosomes r and s. By taking the logarithm on both sides of the above equation
we get the parametrization in logarithmic coordinates:

(2) log(pjk) =

{
βr + βs + αrs if j = r, k = s,
βj + βk otherwise.

The single-pair proximity effect model for any pair of chromosomes {r, s} is also a log-linear
model which extends the no-proximity effect model since the set of probability distributions
in this model are those in the image of the map φ′ with αrs = 0. The design matrix A[r, s]
defining this model is a 23 × 231 matrix, identical to A(22) in its first 22 rows, and with an
extra row of all zeros except a 1 in the column corresponding to prs.

In order to assign a p-value to the goodness-of-fit test we propose to sample tables that are
similar to those observed experimentally. More specifically we sample tables with the same
minimal sufficient statistic as the data table f . For each chromosome k we have the marginal
total

uk =
∑
j: j 6=k

f(j, k) for k = 1, . . . , 22.

This quantity is displayed in the Sum column of Table 2. The marginal total of a given
chromosome is a measure of the propensity of each individual chromosome to form ETCAs.
In radiation studies this quantity has been associated to the sensitivity of the chromosomes
to radiation [2, 14] and to repair mechanisms [48]. For the no-proximity effect model φ the
collection of marginal totals u = (uk : k = 1, . . . , 22) is the minimal sufficient statistic. For
the single-pair proximity effect model for the chromosome pair {r, s}, the minimal sufficient
statistic is the same marginal sums together with urs = f(r, s). The set of tables with the
same sufficient statistic is called the fiber of the experimentally observed table and is denoted
by F(u). It is well-known that F(u) consists of lattice points in a polytope.
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2.2. Maximum Likelihood Estimation. The maximum likelihood estimator (MLE) tables
of the data with respect to the no-proximity effect and single-pair proximity models were
computed by the standard numerical algorithm Iterative Proportional Scaling [18]. For log-

linear models, the algorithm converges to the unique MLE table f̂ such that 1
N f̂ lies on the

model where N is the sample size and f̂ has the same sufficient statistic u as the data table
f . The existence of this unique table is guaranteed by Birch’s Theorem (see [21]).

2.3. Hypothesis testing and Monte-Carlo simulations. Our goodness-of-fit test for the
no-proximity effect model uses the standard chi-square statistic

(3) χ2(F ) =
∑

1≤j<k≤22

(F (j, k)− f̂(j, k))2

f̂(j, k)
.

where f̂(j, k) are the entries of the MLE table with respect to the no-proximity effect model
given the data table f , and F (j, k) are the entries of tables F drawn from the fiber F(u).

Typically large χ2(F ) values would indicate that the data table f is “close” to f̂ providing
no evidence for rejecting no-proximity effect model.

The fiber F(u) for the no-proximity effect model is very large while at the same time the
data table f has some small entries including a zero entry. These observations point to using
the well-established standard Markov Chain Monte Carlo method for running the goodness-
of-fit test. One might think that computing a Markov basis for the no-proximity effect model
(or equivalently the second hypersimplex A(22)) is intractable. Luckily, a Markov basis (in
fact a Gröbner basis) for this model is available, see [44, Theorem 9.1] and [19]. Our Markov
basis is defined by the following set of moves: For each 1 ≤ i < j < k < ` ≤ 22 one defines
two moves m[i, j; k, `] and m[i, `; j, k]. The first move is a table where the (i, j) and (k, `)
entries are set to equal 1, the (i, k) and (j, `) entries are set to equal −1, and all the other
entries are set to equal 0. The second move is a table where the (i, `) and (j, k) entries are
set to equal 1, the (i, k) and (j, `) entries are set to equal −1, and all the other entries are set
to equal 0. These tables together with their negatives −m[i, j; k, l] and −m[i, `; j, k] comprise

our Markov basis B. This Markov basis contains 2 · 2 ·
(

22
4

)
= 29, 260 moves.

Using this MCMC we generated a set of m random tables f1, . . . , fm using the Metropolis-
Hastings algorithm and estimated the p-value of goodness-of-fit test by

1

m

 ∑
χ2(fi)≥χ2(f)

1

 .

One important parameter of the Metropolis-Hastings algorithm is the number of steps it
requires between each selection of tables fi and fi+1. The rule of thumb is that one needs
sufficient number of steps so that the Markov chain can reach any table in F(u) starting from
an arbitrary table. We followed the method in [22] to heuristically determine this number of
steps: It is a consequence of the Gröbner basis theory that there is a unique table Tunique
in F(u) where none of the Gröbner basis moves can be applied, and every table in F(u) is
connected to Tunique table via the Markov basis moves. This table is the unique reduced
normal form of the data table with respect to the Gröbner basis from which our Markov basis
B is constructed. Empirically, the average number of steps one needs to go from a randomly
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generated table in F(u) to Tunique using the moves in B is about 15000. Hence, we estimate
that the number of steps needed to connect two tables in F(u) is bounded by 30000.

2.4. Log-Ratio Test. Since the single-pair proximity effect model contains the no-proximity
effect model we compared the relative fit of the two models by a likelihood ratio test . The
likelihood ratio test statistic is defined as:

(4) G2 = 2
∑

1≤j<k≤22

f̂1
jk log

(
f̂1
jk

f̂0
jk

)

where f̂1
jk is the MLE with respect to the single-pair proximity effect model and f̂0

jk is the MLE

with respect to the no-proximity effect model. It is well known [13, Theorem 10.2.8] that, for
large sample sizes N , if the null hypothesis is true (i.e. if the data fits the no-proximity effect
model better than it fits the single-pair proximity effect model) then G2 has a χ2 distribution
with degrees of freedom equal to the difference of the ranks of the nested log-linear models.
In our case, the rank of the no-proximity effect model is equal to rankA(22) = 21 and the
rank of the single-pair proximity effect effect model is equal to rankA[r, s] = 22.

3. Numerical Results

Table 2. Maximum Likelihood Estimate for experimental Table 2 obtained
from irradiated human lymphocytes.

Chr 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Sum

1 47 43 38 37 33 33 27 34 26 28 25 23 22 24 23 20 14 8.9 15 8.8 11 541
2 37 32 32 29 29 24 30 23 25 22 21 20 22 21 18 13 8.3 14 8.2 11 485
3 30 30 27 27 23 28 22 24 22 20 19 21 20 18 13 8.2 14 8.2 11 465
4 27 24 24 21 26 20 22 20 18 18 19 18 16 12 7.8 13 7.8 10 425
5 24 24 21 26 20 22 20 19 18 19 19 17 12 8 13 8 10 426
6 22 19 24 19 20 19 17 17 18 17 16 12 7.7 12 7.7 9.7 395
7 19 24 19 20 19 17 17 18 17 16 12 7.9 13 7.9 9.9 396
8 20 16 18 16 15 15 16 15 14 11 7.2 11 7.2 9 345
9 20 21 20 18 18 19 18 17 13 8.6 13 8.5 11 416
10 17 16 15 15 16 15 14 11 7.3 11 7.4 9.2 338
11 17 16 16 17 16 15 11 8 12 8 9.9 364
12 15 15 16 15 14 11 7.6 12 7.6 9.4 337
13 14 15 15 13 10 7.4 11 7.4 9.1 319
14 15 14 13 10 7.4 11 7.4 9 310
15 15 14 11 7.9 12 7.9 9.6 332
16 14 11 7.9 11 7.9 9.5 321
17 10 7.4 11 7.4 8.9 291
18 6 8.6 6 7.3 223
19 6.4 4.6 5.6 156
20 6.6 7.8 240
21 5.7 156
22 193

We first computed the MLE tables for the no-proximity effect and the single-pair models
as discussed in the previous section. This algorithm preserves the minimal sufficient statistic
which guarantees that the MLE table belongs to the fiber of the data table. The MLE
table for the no-proximity effect model is displayed above. Note that we display just two
significant digits. The table for the no-proximity effect reveals some marked differences with
the experimentally observed table. Most notably, entries for each chromosome tended to
be more homogeneous than those in the experiment. This is particularly true for small
chromosomes 19 to 22.
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Using the MCMC approach explained earlier we generated 3 × 1010 tables which were
sampled every 3 × 104 times to reduce the intrinsic correlation in the Markov Chain. We
therefore obtained a sample size of 106 tables. The chi-square statistic for each of the sampled
table was computed. Interestingly, none of the 106 tables generated for Table 2 had a test
statistic smaller than the experimentally observed. Hence the no-proximity effect model could
not be rejected. This result is somewhat surprising but can be explained by estimating the
number of tables that are contained in the ellipsoid defined by (3). We will give the details
of this estimation in the Appendix. These results show that the data can be well fit by the
no-proximity model and that the relative positions of chromosomes are random.

Table 3. Table of deviations between observed and MLE counts. Each en-
try is the difference between the observed counts and MLE for each pair of
chromosomes j and k computed for Table 2.

Chr 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 -3.2 -5.5 4.2 -8.2 -7.2 -3.8 -9 5 3.3 -2.9 -7 -8.1 -4 10 8.4 2.2 -2 5.1 6.8 0.2 16
2 6.2 4.6 -0.1 1.2 -4.6 1.1 -0.9 -6.9 -0.9 7.6 8.2 -11 4.4 -13 5.9 -4.9 -1.3 -2.1 4.8 4.3
3 -9.4 0.8 4.7 -3.2 -1.8 -2.4 1.1 1.2 1.4 0.9 -1.3 -2.8 -0.9 3.4 -1.7 8.8 -2.8 3.8 -0.5
4 -3.9 2.5 3.6 3.3 0.3 0.0 -8.7 -0.8 4.5 4.2 0.8 -2.4 1.7 -0.9 -1.8 -0.9 2.2 -3
5 -7.5 6.6 5.2 -0.6 3.9 8.2 5.1 6.4 -3 -0.4 -11 2.5 0.9 -1 2.9 -1.0 -6.2
6 -4.4 2.8 -2.5 12 -7.2 11 0.6 -1.8 0.9 -3.4 -0.5 1.5 2.3 -3.5 0.3 -2.7
7 0.7 -3.5 -1.7 7.7 6.4 -4.5 1.1 -10 0.5 7.3 -0.7 1.1 6.3 -1.9 -2.9
8 -7.2 -4.3 6.4 -5.2 9.7 0.1 0.0 -3.5 2 6.5 -3.2 -2.4 -0.2 -1
9 1.2 3.7 -13 4.5 5.1 7.9 1.6 -1.6 9.5 -0.6 -4.5 -1.5 -0.7

10 0.8 5 -1.1 -0.7 -5.8 3.7 0.1 -1.6 -2.3 -0.4 -0.4 -6.2
11 7.8 -11 -0.9 -1.0 2.6 0.1 -3.4 2 -0.3 -5 1.1
12 -6.2 1.2 -6.8 -3.3 2 -2.8 5.4 -1.6 -2.6 -4.4
13 15 -5 -4.6 -6.4 5.6 -2.4 -5.2 -0.4 -0.1
14 7.3 -1.3 -7.1 -0.2 -5.4 -5 5.6 2
15 6.8 -0.9 -2 -0.9 -0.7 -0.9 -0.6
16 -1.6 4.2 4.1 8.5 0.1 3.5
17 -5 -3.4 0.3 -2.4 1.1
18 -4 2.4 3 -4.3
19 -0.4 -4.6 2.4
20 0.4 2.2
21 0.4

Microscopy observations however have shown that some groups of chromosomes tend to
be close to each other and form exchange type aberrations more frequently than what one
would predict using the no-proximity effect mode [11]. These chromosomes include those
that are found in the center of the nucleus [2, 14] and those that form the nucleolus [2].
This observation is further supported by the large positive deviations between entries in the
experimentally observed table and the MLE table. The differences between the observed
table and the MLE table are shown in Table 3. A positive entry indicates that the observed
table had more exchanges than the number predicted by the MLE table while a negative
entry shows cases where the MLE table had more exchanges than the observed table. The
largest positive entries in the table are those for chromosome pairs {1,22}, {13,14}, {1,15},
and {9,18}. We therefore tested all chromosome pairs on the single-pair proximity effect
model and performed the log-ratio tests considering the original log-linear models against the
modified modelsfor all chromosome pairs. We found eight pairs of chromosome pairs that
were significant (Column 1 in Table 4). However only two of them were significant after
correction for multiple testing using Bonferroni [1] (Column 4 in Table 4).
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Table 4. Table of pairs of chromosomes with their corresponding Chi-squared
value and p-value corresponding to their extended interaction model and p-
value adjusted with the Bonferroni correction. Significant p-values are labeled
in boldface.

p-value
Chromosome Pair Chi-squared p-value before correction Bonferroni corrected p-value

{1, 22} 17.27 0.00005 0.00138
{13, 14} 13.66 0.00022 0.01012
{3, 19} 7.87 0.00502 0.23092
{6, 10} 7.78 0.00527 0.24242
{6, 12} 6.85 0.00888 0.40848
{9, 18} 6.51 0.0107 0.4922
{16, 20} 5.73 0.01671 0.76866
{8, 13} 5.72 0.01673 0.76958

4. Discussion

In this work we have presented a model-based approach to determine the relative position-
ing of chromosome territories from ETCA frequency tables that are sparse and with small
entries. In previous work a method for dealing with small entries was reported [14], however
the assignment of p-values to specific clusters of chromosome territories was based on groups
of chromosomes previously found in the literature. Our method builds on the techniques
developed in classical algebraic statistics by Diaconis and Sturmfels [20].

Our results show that the overall distribution of chromosome exchanges can be simply
explained by a model in which the relative position of chromosome territories is random. This
finding does not quantitatively agree with the results reported in [2, 14] since a small deviation
from randomness was reported in those studies. However all studies agree upon a rather
random organization of chromosome territories. Several sources can be contributing to this
apparently random organization of the genome. The first is imposed by the limitation of the
data. Chromosome painting techniques are limited by the fact that homologue chromosomes
are painted the same color, and this evidently introduces unavoidable noise since territories of
homologous chromosomes can be positioned in very different environments (i.e. with different
neighbouring chromosome territories). It is also possible that cell to cell variation is very
large or that there is a severe reorganization of the chromosome territories after the radiation
insult. The fact that new sequencing analysis is consistent with this overall picture suggest
that radiation has a small repositioning effect.

Our study shows that a small fraction of chromosome pairs deviate from this picture of
random ETCA formation. We identified eight pairs of chromosome territories that were sig-
nificant prior to multiple testing correction (Table 4). The first two pairs of chromosome
territories (ie. {13, 14} and {1, 22}) were also significant in [2, 14, 46]. There is an easy
explanation for the significance of these pairs although their true functional significance re-
mains to be determined [6] . The pair {13, 14} is part of the cluster of chromosomes in
the nucleolus {13, 14, 15, 21, 22}, an organelle that brings chromosome territories together for
specific needs of the cell. The second pair {1, 22} has been found to be part of a cluster of
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chromosome territories {1, 16, 17, 19, 22} located in the center of the nucleus of lymphocyte
cells. We used a Bonferroni correction method for multiple testing. This method is known
to be very conservative and it is possible that we rejected some informative pairs. In fact all
the pairs that were not significant after Bonferroni correction have been reported in several
clinical blood malignancies suggesting that proximity of these pairs of chromosome territories
may be somewhat common and furthermore may have an important role in the development
of these diseases [5, 9, 24, 25, 33, 49].

It is our intention to improve our results by including better outlier detection tools that help
identify other chromosome pairs [37, 29] and by incorporating these results into the developent
of biophysical models. These models are based on different properties of the genome that can
obtained from basic physical priciples such as the radial organization of chromosomes using
overlapping sphere or ellipsoid packings [16, 26, 45] , gene density [28] or DNA decondensation
processes [39] or through the folding of chromatin fibers [4, 7, 31]

Acknowledgements This work is partially supported by NSF grant DMS-1217324 and
NIH grant RO1-GM109457 to J. Arsuaga. We want to thank J. L. Garćıa from Centro de
Investigació del cancer de La Universidad de Salamanca (Spain) for sharing Figure 1.

5. Appendix

In this last section we return to our remark that none of the 106 tables generated for Table
2 in our MCMC procedure had a test statistic smaller than χ2(f). In order to give a heuristic
explanation for this behavior we will estimate the size of F(u) and also estimate the size of
the set of the tables F where χ2(F ) ≤ χ2(f).

We first give a lower bound for the cardinality of F(u), which is the set of lattice points in
a polytope. A standard computational tool such as Latte [3] cannot compute the cardinality
of this immensely large set. Instead we employ a divide-and-conquer approach where we
consider the subtables consisting of the chromosomes 1 through 8 (Subtable A), chromosomes
8 through 15 (Subtable B), chromosomes 15 through 22 (Subtable C) in Table 5.

Table 5. Subtables A-C

Chr 2 3 4 5 6 7 8 Sum
1 44 38 42 29 26 29 18 226
2 43 37 32 30 24 25 235
3 21 31 32 24 21 210
4 23 27 28 24 202
5 17 31 26 189
6 18 22 172
7 20 174
8 156

Chr 9 10 11 12 13 14 15 Sum
8 13 12 24 11 25 15 16 116
9 21 25 7 23 23 27 139
10 18 21 14 14 10 110
11 25 5 15 16 128
12 9 16 9 98
13 29 10 115
14 22 134
15 110

Chr 16 17 18 19 20 21 22 Sum
15 22 13 9 7 11 7 9 78
16 12 15 12 20 8 13 102
17 5 4 11 5 10 60
18 2 11 9 3 54
19 6 0 8 39
20 7 10 76
21 6 42
22 59

The jth entry in the Sum column in each subtable refers to the sum of f(j, k) over all
chromosomes k 6= j included in the subtable. See for instance 1 − 8 in Subtable A in Table
5. The remaining entries of Table 2 were subdivided into six rectangular subtables. Each of
these subtables are indexed by two subsets of chromosomes J and K: Subtable 1 (J = 1− 4,
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K = 9 − 15), Subtable 2 (J = 5 − 7, K = 9 − 15), Subtable 3 (J = 1 − 4, K = 16 − 22),
Subtable 4 (J = 5 − 7, K = 16 − 22), Subtable 5 (J = 8 − 11, K = 16 − 22), Subtable 6
(J = 12− 14, K = 16− 22) in Table 6.

Table 6. Subtables 1-6

Chr 9 10 11 12 13 14 15 RSum
1 39 29 25 18 15 18 34 178
2 29 16 24 30 29 9 26 163
3 26 23 25 23 21 18 18 154
4 26 20 13 19 23 22 20 143
CSum 120 80 87 90 88 67 98

Chr 9 10 11 12 13 14 15 RSum
5 25 24 30 25 25 15 19 163
6 21 31 13 30 18 15 19 147
7 20 17 28 25 13 18 8 129
CSum 66 72 71 80 56 48 46

Chr 16 17 18 19 20 21 22 RSum
1 31 22 12 14 22 9 27 137
2 8 24 8 7 12 13 15 87
3 19 21 11 17 11 12 10 101
4 16 18 11 6 12 10 7 80
CSum 74 85 42 44 57 44 59

Chr 16 17 18 19 20 21 22 RSum
5 8 19 13 7 16 7 4 74
6 14 15 13 10 9 8 7 76
7 18 23 11 9 19 6 7 93
CSum 40 57 37 26 44 21 18

Chr 16 17 18 19 20 21 22 RSum
8 12 16 17 4 9 7 8 73
9 20 15 22 8 9 7 10 91
10 19 14 9 5 11 7 3 68
11 19 15 8 10 12 3 11 78
CSum 70 60 56 27 41 24 32

Chr 16 17 18 19 20 21 22 RSum
12 12 16 8 13 10 5 5 69
13 10 7 16 5 6 7 9 60
14 13 6 10 2 6 13 11 61
CSum 35 29 34 20 22 25 25

In the above tables, the jth entry in the RSum column refers to the sum of the numbers
in the jth row in the corresponding table, and the kth entry in the CSum row refers to the
sum of the numbers in the kth column in the corresponding table. Any table that has been
subdivided in a total of 9 subtables where subtables A − C have same Sum column as in
the subtables A − C of the data table and where subtables 1 − 6 have the same RSum and
CSum columns/rows as in subtables 1 − 6 of the data table is in F(u). So a lower bound for
the cardinality of F(u) can be obtained by the product of the number of subtables of type
A,B,C and 1, . . . , 6 with the given Sum and RSum/CSum columns/rows. The total number of
such subtables range from 1034 for Table A to 1014 for Table 6. The exact number of tables
calculated by Latte [3] are shown in Table 7.

Table 7. Total number subtables associated to subtables A-C and 1-6

Subtable Size
A 2952470953799239962752797659386190
B 252762217255461089482462934497
C 242451808378958740321921
1 384937707376563538670706387547
2 11636397863410272633
3 51895845228141509162048464
4 5538280355961059
5 336625602844011493310899
6 777971438252448

The product of these numbers is in the order of 10214. This estimate however can be
improved by the following arguments. Most of the 29, 260 Markov moves can be applied to
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Table 2 without changing the Sum column. The few moves that cannot be applied are those
that make the (19, 21) entry negative. In addition, only 1554 moves will not change the
Sum or RSum/CSum entries of the above 9 Subtables since the moves occur completely inside
each of the subtables. The remaining 27, 706 Markov moves will alter at least two of these
subtables so that their Sum and/or RSum/CSum entries will change. If we repeat the above
Latte calculations for the nine subtables obtained after the application of each one of these
27, 706 Markov moves (in other words those that change Sum and/or RSum/CSum) we will find
that the number of these new tables will be again of the order 6× 10214. We can repeat the
same argument when two or more Markov moves are considered. For instance if we applied
exactly 30 Markov moves of the 27706 possible moves in sequence then we would obtain a
total number of new tables in F(u) given by 6× 10214 times(

27706

30

)
≈ 7× 10100.

This is approximately 4 × 10315. This calculation however may have some tables that are
counted more than once because two distinct sequences of moves starting from Table 2 can
lead to the same table. This overcounting should be more than compensated by tables that
could be reached with more or fewer than 30 moves. In conclusion we estimate that a lower
bound of 4× 10315 possible tables is justified, but to be on the safe side we adopt 10300 as a
very conservative estimation of the possible size of F(u).

Now we provide a very liberal upper bound on the number of tables whose χ2 value is
smaller than the χ2 value of the data table (346.63). The volume V of the ellipsoid defined by
equation (3) is bounded above by 1.1× 10266 using the volume formula for multidimensional
ellipsoids. It is known that the number of lattice points in an n-dimensional ellipsoid defined
by ∑

1≤j<k≤n
ajkxjk ≤ r2

is approximately equal to V + O(rn/2) [30] and in our case r2 = 346.63 and n = 231, and
we arrive at 1.8 × 10293 as an upper bound on the number of tables which are inside the
ellipsoid defined by (3). We note that this must be a gross estimate, since we should be
counting the tables in the ellipsoid that are also in the fiber F(u). For this we should be
counting the lattice points in another ellipsoid of lower dimension 209. We conclude that a
very conservative estimate of proportion of tables F where χ2(F ) ≤ χ2(f) = 346.63 in F(u)
is extremely small:

≤ 1.8× 10293

10300
≈ 1.8× 10−7.

We believe that the true proportion is much smaller.
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