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Abstract

A dynamical systems model of language processing suggests
a resolution of the debate about the influences of syntactic
and lexical constraints on processing. Syntactic hypotheses
are modeled as aftractors which compete for the processor's
trajectory. When accumulating evidence puts the processor
close to an attractor, processing is quick and lexical differences
are hard to detect. When the processor lands between several
attractors, multiple hypotheses compete and lexical differences
can tip the balance one way or the other. This approach allows
us to be more explicit about the emergent properties of lexicalist
models that are hypothesized to account for syntactic effects
(MacDonald, Pearlmutter & Seidenberg, 1994; Trueswell &
Tanenhaus, 1994).

Introduction

Readers and listeners have clear preferences for certain syn-
tactic sequences (e.g., NVN as a main clause), as revealed by
garden-path effects for temporarily ambiguous sentences that
do not conform to these preferences (1).

(1) a. The horse raced past the bam fell.
b. The patient warned the doctor was incompetent.

However, recent evidence suggests that these garden-path ef-
fects can be sharply reduced by strong lexical constraints,
as illustrated by the examples in (2), which are structurally
similar to those in (1), but do not appear to cause processing
difficulty.

(2) a. The land mine buried in the sand exploded.
b. The patient said the doctor was incompetent.

The interpretation of these lexical effects has been extremely
controversial. In the influential class of “structure-first” mod-
els, category-based parsing phenomena are accounted for by
positing an initial, encapsulated processing stage in which
structure is built using syntactic category information and
a few, general principles (e.g., Frazier, 1987). Lexically-
specific information and other (non-syntactic) constraints ap-
ply at a later stage in processing. In contrast, several research
groups have argued that many of the phenomena that moti-
vated these category-based principles can be reduced to the ef-
fects of interacting lexical constraints (McClelland, St. John,
& Taraban, 1989; MacDonald, Pearlmutter, & Seidenberg
1994; Trueswell & Tanenhaus 1994).

The competition between the lexicalist and structuralist
claims has focused increased attention on a long-standing, em-
pirical debate about the time-course with which lexical con-
straints are observed relative to structural constraints during

on-line sentence processing (for arecent review see Tanenhaus
& Trueswell, 1995). While the results of these experiments
have often been equivocal, two generalizations emerge. First,
the relative strength of structural and lexical constraints varies
across contexts and structures. Second, there are clear cir-
cumstances in which local lexical constraints are insufficient
to capture important processing generalizations (e.g, island
constraints on movement and structural preferences even in
the face of strong contrary lexical biases).

Research on automatic parsing has led to a class of mod-
els which use corpus-tuned probabilistic grammars to com-
pute conditional probabilities of lexical items in contexts (see
Charniak, 1993, for review). Recently, models of this type
have been used to combine lexical and syntactic information to
make reading time predictions (Jurafsky, 1996). These mod-
els provide a theoretical basis for incorporating probabilistic
lexical information in a model that uses syntactic rules, but
they do not provide insight into the variation across contexts
of the relative strengths of structural and lexical constraints.

A promising approach to explaining this variation is to
treat category-based parsing preferences as generalizations
that emerge within a constraint-based learning system be-
cause of similarities among “classes” of lexical items (e.g.,
Juliano & Tanenhaus, 1994). But prior proposals along these
lines have been vague. In this paper we show how certain
constructs of dynamical systems theory allow us to be more
explicit about the nature of the “emergent” representations,
their relationship to traditional syntactic categories, and their
empirical predictions.

Dynamical Systems Theory

Dynamical systems theory (see Abraham and Shaw 1984 and
Strogatz 1994 for introductions) is typically concerned with
systems that change continuously with time. Examples of
much-studied dynamical systems include: pendulums swing-
ing on rigid arms; stars and planets orbiting one another in
space; populations fluctuating in an ecosystem; gases swirling
around in the atmosphere. It is useful to consider the trajec-
tories of a dynamical system—i.e., the paths it can follow
as time progresses. In the case of a pendulum, some trajec-
tories swing back and forth, others whirl around the circle,
and two of them remain at one point indefinitely (hanging
down, and, improbably, balanced straight up). If the pendu-
lum is damped, then all trajectories except those leading to
the improbable state approach the low point-trajectory in the
limit. Such a limiting trajectory is called an attractor. Those
starting points from which the system gravitates toward a par-



ticular attractor A are collectively referred 10 as the basin of
attraction of A. The basin of attraction of the pendulum’s
low attractor consists of every state except those that lead to
the improbable state. In a planetary system, each large mass
is surrounded by its own basin of attraction. One particularly
interesting property of multiple-attractor systems is that when
the system is near an attractor A it is dominated by the prop-
erties of A alone, but when it is further away, it may still be in
the basin of A, but other attractors can exert an influence on it.
Below, we use this local dominance property of attractors to
model the variable balance of syntactic and lexical influences
on processing.

Sentence Processing Data

Some recent experiments by Juliano and Tanenhaus (1993)
elucidate the way these dynamical systems notions can help
simplify our understanding of the relationship of syntactic
and lexical influences on processing. Juliano and Tanenhaus
focused on the relationship between verbs that take sentence
complements (V([Sbar]’s) and verbs that take noun phrase
complements (V[NP]’s or transitive verbs). Typically, sen-
tence complements are introduced by the complementizer
that, although the complementizer can be absent (3).

(3) The grocer insisted/agreed/complained/argued (that) the
cheap hotel was pleasant.

When the complementizer is absent and the embedded sen-
tence starts with its subject noun phrase, the beginning of the
main sentence has the form NP-V-NP (or “NVN” for short),
which makes it abstractly consistent with the transitive pat-
tem. It is well known that, in many ambiguous cases, people
prefer to interpret a noun phrase after a verb as a direct ob-
ject (Frazier, 1987). This preference is part of the evidence
that motivates the two-stage model of processing: the prefer-
ence could arise because the processor initially assumes that
any NP after a verb is the verb’s object. Indeed Juliano and
Tanenhaus found high latencies at determiners that immedi-
ately followed V([Sbar]’s, in comparison to determiners that
immediately followed V[NP]’s (Figure 1; see their “Experi-
ment 3” for details). But the effect was correlated with the
context-independent frequency of the verb: verbs low in ab-
solute frequency showed a stronger effect than verbs high in
absolute frequency (see also Trueswell, Tanenhaus, and Kello,
1993). The frequency correlation is hard to understand under
the two-stage model because that model implies that lexical
differences have no effect on initial processing. The results
suggest a model in which incorrect hypotheses can exert a
marginal influence on correct hypotheses to varying degrees,
depending on the frequencies of the items involved. We are
thus led to the idea of letting syntactic hypotheses correspond
to attractors in a dynamical system.

Another experiment by Juliano and Tanenhaus (1993) (their
“Experiment 2”), provides further support for the competing
attractors approach. Although the transitive pattern is indeed
the most common pattern in English declarative-sentence syn-
tax (if we take the Brown Corpus to be representative), it hap-
pens to be the case that when an arbitrary verb is followed
by the word that, the word that is most likely to be a com-
plementizer. Therefore, we might hypothesize that the NVN
schema has to compete with another schema of the form V-
that[Comp]. Following the same line of reasoning as before,
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Figure 1: Reading time differences between V[Sbar]-rthe and
V[NP)]-the. (This figure is based on data reported in Juliano
and Tanenhaus, 1993, Experiment 3)
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we thus expect people to have difficulty when the direct object
of a transitive verb is introduced by the determiner that. Ju-
liano and Tanenhaus (1993) find a strong effect in support of
this interpretation: when the same transitive verb is followed
by rhat and the, reading times at thar are substantially slower.
The effect peaks at the adjective following the determiner and
diminishes again when the noun is reached. One might be
concerned that this result is due either to the high frequency
of the (there is generally an inverse correlation between the
absolute frequency of a word and its processing time), or to
the pragmatic strangeness of using determiner that without
prior mention of its referent (the sentences were presented
without a supporting context). However, the same effect is
observed when that is compared with those (Figure 2). Those
is less frequent than rhar as a determiner (1:3 in the Brown
Corpus) and has similar presuppositions to that. Thus, the
results still seem best explained by positing influence by the
V-that[Comp] schema on NVN sentences.

Both of these results point in the direction of a dynamical
systems treatment. In particular, attractors seem like useful
devices for modeling the way in which the correct pattern usu-
ally “captures” the processor in the long run while incorrect
patterns tend influence its behavior along the way. In the next
section we develop a computational model which allows us to
explicitly model reading times on this basis.

A Dynamical System for Language Processing

We use a vector space to encode the states of the language
processor. Each time the processor encounters a word, it
jumps to some location in the vector space. We recapitulate
most of the distinctions that a symbolic grammar makes by
letting isolated regions correspond to symbolic states. Every
time the symbolic processor would be in a state S;, the vector
space processor is in a region, R;. Additionally, we require
that the distances between regions reflect partial similarity
properties of the data. For example, since PP-complement
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Figure 2: Reading time differences between V[NP]-that and
V([NP]-those
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verbs are relatively similar to transitive verbs in comparison
to nouns and prepositions, the region corresponding to the
processing of a PP-complement verb is placed relatively near
the region corresponding to the processing of a transitive verb.
Moreover, withineach of the isolated regions, subtle statistical
differences between elements are encoded as small within-
region contrasts. We refer to the collection of points visited in
this representation space during processing of a large sample
of language use as a visitation set.

Having established the representation space and the visita-
tion set, we assume that processing a word in a corpus involves
moving to the appropriate place in the representation space
(more on how to do this below) and then migrating to the
nearest big cluster, essentially as in a gravitational system.
Successful parsing corresponds to arriving at (or getting suffi-
ciently near) a cluster locus. Thus the proposed representation
space contains the trajectories of a dynamical system, where
the category clusters correspond to attractor basins. Reading
time is modeled as the time it takes the processor to gravi-
tate 1o an attractor. The processor gravitates quickly when it
lands near a dense cluster; it gravitates more slowly when it
lands near a sparse cluster. Moreover, it reaches the relevant
attractor more quickly if it starts near the center of a cluster
than if it starts somewhere on the periphery. A verb like, roll,
positioned on the periphery of the verb cluster because of the
competing noun interpretation will take longer to process than
an unambiguous verb. Thus the model predicts the general
finding that ambiguous elements slow the processor down.

We used a connectionist network for corpus learning to
generate the visitation set on which the dynamical model is
based. The network had feedforward connections from an
input layer through a hidden layer to an output layer and the
hidden units were recurrently connected to themselves and
one-another (Figure 3). Words were assigned localist repre-
sentations on the input and output layers and the network was
trained using a corpus: each word was presented, in sequence,
on the input layer and the weights were adjusted to improve
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the network’s prediction of the successor word (as in Elman,
1991). Error was propagated using backpropagation through
time and the error gradient was approximated by attending to
only a few, recent timesteps (see Pearlmutter, 1995's review).
The hidden unit space of such a network corresponds to the
representation space described in the previous paragraph. The
visitation set was thus created by collecting a sample of hid-
den units visited by the network during the processing of a
corpus approximating natural usage,

Figure 3: A recurrent network for word prediction. (The
activation of layer HIDDEN; | was set equal to the activation
that layer HIDDEN; had on the previous time-step. The error
signal was backpropagated through 3 time-steps.)

OUTPUT (36 umits) (o] s o
HIDDEN, (5 units) Q 2]
o] o (o] (e}
INPUT, (36 unils) HIDDEN, _; (5 units)

Figure 4: The generating grammar for simulations of Juliano
and Tanenhaus’s experiments.

1.00 Sroot: Sp
1.00 S:NPVP
0.67 VP : VP[NP]
033 VP : VP[Sbar]
0.67 VP[NP] : V[NP] NP
033 VP[NP] : V[NP]
0.67 VP[Sbar] : V[Sbar] that S
033 VP[Sbar] : V[Sbar] S
1.00 NP : Det N
[Zipf] Det: 0.44 the, 0.22 a, 0.14 which, 0.10 that 0.10 those
[Zipf] V[NP]: 0.34 called, 0.17 followed, 0.11 pulled,
0.09 caught, 0.07 pushed, 0.06 loved,
0.05 visited, 0.04 studied, 0.04 tossed, 0.03 grabbed
[Zipf] V[Sbar] : 0.34 thought, 0.17 agreed, 0.11 insisted,
0.09 wished, 0.07 hoped, 0.06 remarked,
0.05 pleaded, 0.04 speculated, 0.04 doubted, 0.03 hinted
[Zipf] N :0.34 woman, 0.17 man, 0.11 dog, 0.09 cat,

0.07 blouse, 0.06 hat, 0.05 cake, 0.04 ball,
0.04 watch, 0.03 cypress

To generate a corpus, we used the probabilistic, context
free grammar shown in Figure 4. The frequencies of rules in
the grammar are set according to a simple rubric called Zipf's
Law. Zipf's Law holds that a rank vs. frequency plot of the
vocabulary elements drawn from any large corpus forms the
cusp of ahyperbola (Zipf, 1943). The law has been confirmed
by Zipf and his successors as a fair approximation for numer-
ous corpora in a wide range of languages. We have observed
that it also provides a reasonable approximation for several
of the major lexical categories in the Brown Corpus (Noun,
Verb, Adjective, Adverb, Determiner) and have thus used it to
assign frequencies to lexical items in the grammar. Somewhat



arbitarily, we have also used it to determine the relative fre-
quencies for the grammar’s multi-production syntactic nodes.

After training the network on grammar-generated data until
it had learned all of the major distinctions made by the gram-
mar, we formed a visitation set in the following manner. With
learning turned off, we let the grammar generate 1000 words
in sequence. We presented these to the network in order and
formed a visitation set by recording the set of hidden unit
locations that the network visited. This visitation set defines
the behavior of the dynamical processor. There are a number
of slightly different ways of implementing the dynamics. We
have experimented with one in which we let each point in the
visitation set behave as a point mass and we model the pro-
cessor as a small test mass which follows a trajectory defined
by Newton’s Law of Universal Gravitation. The predictions
of this model are accurate in the cases we have tried, but it
is computationally very expensive. Alternatively, we could
let a recurrent neural network form activation-space attrac-
tors corresponding to grammatical classifications and treat
processing time as relaxation time. Or we could interpret
the inverse of density as a potential surface (so that density
maxima correspond to valley-bottoms and density minima to
hilltops) and model the processor as a ball rolling down this
surface. Since we are not yet sure which implementation is
best, we take a shortcut here and use an easily computable
approximation of attraction time which is most similar to the
density-as-potential model but shares the main properties of
all the systems mentioned. In particular, for a processing state
associated with a juncture, p, between words in a corpus, we
let the multiplicative inverse of density provide an estimate of
altraction time:

(4) Def.
1

Predicted Reading Time at p = ey e
ensity al p

For the network trained on the grammar in Figure 4, a two-
dimensional projection of part of the visitation set is shown in
Figure 5. This projection focuses on cases where a determiner
or complementizer occurred after a verb. It was obtained by
selecting 1000 cases of determiners/complementizers occur-
ring after verbs and plotting the first two principal components
(Jolliffe, 1986) of the corresponding hidden unit locations.
The first Principal Component accounts for 97% of the vari-
ance, the second for 2%. Thus, the data of Figure 5 are pri-
marily spread out in the x-direction. We show the expanded
y-direction for visual clarity.

In this figure, there are two densely populated clusters cor-
responding to V[Sbar]’s followed by rhar and V[NP]'s fol-
lowed by an unambiguous determiner. The centers of these
two dense clusters are attractors in the dynamical model and
they correspond to the two main syntactic patterns involved
here: the sentence-complement pattern and the simple transi-
tive (NVN) pattern. There are also two diffuse clusters cor-
responding to V[NP]'s followed by that and S-complement
verbs followed by an unambiguous determiner. The locations
of these diffuse clusters reflect the attractor influences which
give rise (o the predictions we are interested in. The V[NP]-
that cluster corresponds to processor states that are, from the
standpoint of the symbolic grammar, equivalent to the states
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corresponding to the points in the V[NP]-determiner cluster.
Nevertheless, this V[NP]-rhar cluster is drawn over toward
the V([Sbar]-thar cluster because of the strong influence of
the V+rhar-as-complementizer attractor. This displacement
of the V[NP]-that cluster makes the density around its points
low compared to the density in the V[NP]-determiner clus-
ter so gravitation times for points in the V[NP]-thar region
are large and we expect high latencies in reading. This is
how the model predicts the results of Juliano and Tanenhaus's
Experiment 2.

In fact, structural influence effects along the lines of those
observed in Experiment 2 were what led researchers to pro-
pose the two-stage model. But in this case, it's not clear
why processing the word that after a transitive verb should be
difficult under the standard two-stage model which takes the
NVN structure as the first-pass assumption—after all, that is
a legitimate determiner, and thus does not conflict grammati-
cally with the first-pass hypothesis. Moreover, the full range
of data observed in these types of sentences is inconsistent
with two-stage model’s lack of sensitivity to lexical differ-
ences: Juliano and Tanenhaus (1994) showed that replacing
the transitive verb with a strong sentence-complement verb
like insisted makes the difficulty at the word rhar disappear.

These results are also difficult to explain under a model
based on conditional probabilities generated by a reason-
able linguistic grammar (see Charniak 1993, Jurafsky 1996)".
Reading times in such models are most naturally modeled
as the uncertainty of probability distributions conditioned
on grammatical context. Such models, if they calculate the
probabilities accurately, can be thought of as ultra lexically-
sensitive. In the present case, a pure transitive verb provides
clear information that a complementizer interpretation is out
of the question for rhat so the conditional probability models
have no reason to predict greater difficulty with that than with
those in such a context.

Turning now to Juliano and Tanenhaus's Experiment 3,
similar attractor effects explain the difficulty of processing a
unambiguous determiner like rhe after a sentence complement
verb. In particular, the attraction of the V[Sbar]-determiner
cluster (which is associated with a Sentence-Complement in-
terpretation) over in the direction of the V[NP]-determiner
cluster makes the density of points in the V[Sbar]-Determiner
cluster low so gravitation times are high and high latencies
are expected (Figure 5). Again, the two-stage model has trou-
ble predicting this effect both because the determiner is in
keeping with the preferred transitive structure and because of
the sensitivity to lexical differences evidenced by the lower
reading time at the after a transitive verb. The effect may be
altributable to a statistical difference in the likelihood of rhe

'We note that Jurafsky’s models and some of the models de-
scribed by Chamiak do not compute exact conditional probabilites
but rather approximations. They are forced to do this for lack of
sufficient data even in a very large corpus. The approximations they
choose may enhance the ability of their models to handle structural
influence effects like those described here by weakening the sensi-
tivity to lexical differences. We suspect that under this weakening,
their models become similar to the dynamically-interpreted neural
network we describe here. We feel the dynamical analysis approach
is preferable in light of the current data because il provides an ex-
plicit characterization of the structural influences in terms that can
be related to known linguistic constructs.



after the two types of verbs, in which case conditional prob-
ability models may make the right qualitative prediction, but
they have no capability of attributing the influence to adverse
structural effects.

As noted above, to make specific reading time predictions,
we used density to estimate gravitation times. For each point
in the 5-dimensional hidden unit space, we chose a small
radius around it* and counted the number of visited points
within that radius. We measured the predicted reading time
using Equation 4. The resulting reading time predictions are
shown graphically in Figures 7 and 6. Encouragingly, the
model predicts anomalies in essentially the same places as
they occur for human subjects.’

Figure 5: Hidden unit representations with cluster means
labelled. (PC = Principal Component)
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Conclusion

The results of the simulations are encouraging because they
suggest theoretical framework for resolving the long-standing
dispute in psycholinguistics over whether there is a blind syn-
tactic processing stage. In keeping with the scheme outlined
by McClelland, St. John, and Taraban 1989, the answer in-
dicated here is that people commit (to a degree) to syntactic
hypotheses as the evidence warrants but the particular com-
mitments made are a function of accumnulating lexical indi-
cations and do not reflect context-independent defaults. The
capability of a wrong hypothesis to pull the processor away
from the representation space location corresponding to the
correct hypothesis is due to attractor competition and gives
rise to the behavior pattern that has led people to posit an

20.06 hidden unit units—roughly one third the minimum distance
between cluster means in the two-dimensional subspace where de-
terminers and complementizers are distinguished. This seemed like
an appropriate region in which to estimate this minimum since some
of the subtlest distinctions are made in this region.

*The persistence of high predicted latencies at the word hotel
and the period following rhe woman visited that hotel. . . in Figure
6 is due to the persisting influence of the V-tharf{Complementizer]
attractor as evidenced by the fact that the model shows a nontrivial
tendency to predict a verb instead of a period at the 7th timestep.
Further training of the model brings this case into line with the human
subject data, but tends to diminish the salience of the attractor effects
in the plot corresponding to Figure 5 so we decided to use this case
as an illustration despite its imperfections.
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Figure 6: Comparison of model’s predicted reading-time dif-
ferences (“m") and scaled human subject data (“h") for Ju-
liano and Tanenhaus (1993), Experiment 2. The human sub-
ject data are scaled linearly so they fall in the same range
as the model’s predicted reading times. (Effect is due to the
V-thar[Complementizer] attractor).
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initial, lexically-blind processing stage. If the incorrect hy-
pothesis/attractor is so strong that all grammatically similar
cases get pulled to within a very small radius of the attractor,
then no sensitivity to lexical differences is observed. But, in
many cases the pulling power is of intermediate strength. In
such cases lexical differences can modulate people’s propen-
sities to choose the wrong parse, Moreover, adverse attractor
influences can result in high processing latencies even when
the correct parse is ultimately chosen.

The proposal we make here is very much in keeping with
the model of sentence processing proposed by McClelland, St.
John, and Taraban (1989). Those authors trained a connec-
tionist network to generate appropriate assignments of con-
stituents to roles as a sentence was being processed. Their
model showed some of the same ambivalence in the presence
of ambiguous information that our model shows. Although
they did not use a dynamical system to probe the represen-
tation produced by their network like we do, they are also
working with a learning model which is governed by attrac-
tor dynamics, so it is likely that the predictions made in both
cases have a similar source. The usefulness of introducing
dynamical systems analysis to this domain is that it provides
a way of identifying the structural entities in connectionist
models that are responsible for those abstract constraints on
language that are referred to as “syntactic”. Without such
tools for talking about the nature of synactic organization in
connectionist models, it is hard to elucidate the relationship
between those models and the standard models which make
central reference to syntactic structures.

The attractor-based interpretation makes it clear why nei-
ther two-stage models nor conditional probability models
based on linguistic grammars can handle all the data. In
essence, the two-stage approach attributes too much respon-



Figure 7: Comparison of model’s predicted reading-time dif-
ferences (“m™) and scaled human subject data (“h") for Juliano
and Tanenhaus (1993), Experiment 3. The human subject data
are scaled linearly so they fall in the same range as the model’s
predicted reading times. (Effect is due to the V-NP[Direct Ob-

ject] attractor).
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siblity to structural constraints, while the conditional proba-
bility approach is too lexically sensitive.* Neither of these
approaches allows incompatible structural constraints to in-
teract at a given point in processing. By contrast, the attractor
model succeeds by permitting such interaction to occur in a
limited way. It holds, in effect, that processing is largely
rule-govemned, for it is dominated most of the time by single
attractors which correspond to absolute interpretations. But
it is marginally subject to un-rule-like influences. These oc-
cur when competing hypotheses have equal-enough sway that
subtler, lexical influences can win the day.
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