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UTD Vertex Diffraction Coefficient for the Scattering
by Perfectly Conducting Faceted Structures

Matteo Albani, Member, IEEE, Filippo Capolino, Senior Member, IEEE, Giorgio Carluccio, and
Stefano Maci, Fellow, IEEE

This paper is dedicated to our former Professor and friend
Roberto Tiberio, who introduced us to the theory of spectral
representations and diffraction. It is under his guidance that
our initial research on this topic started, and our approach to
any diffraction matter reflects the long term vision we have

learned from him.

Abstract—A uniform high-frequency description is presented for
vertex (tip) diffraction at the tip of a pyramid, for source and ob-
servation points at finite distance from the tip. This provides an
effective engineering tool able to describe the field scattered by a
perfectly conducting faceted structure made by interconnected flat
plates within a uniform theory of diffraction (UTD) framework.
Despite the adopted approximation, the proposed closed form ex-
pression for the vertex diffracted ray is able to compensate for the
discontinuities of the field predicted by standard UTD, i.e., geo-
metrical optics combined with the UTD wedge diffracted rays. The
present formulation leads to a uniform first order asymptotic field
in all the transition regions of the tip diffracted field. The final an-
alytical expression is cast in a UTD framework by introducing ap-
propriate transition functions containing Generalized Fresnel In-
tegrals. The effectiveness and accuracy of the solution is checked
both through analytical limits and by comparison with numerical
results provided by a full wave method of moments analysis.

Index Terms—Asymptotic diffraction theory, geometrical
theory of diffraction, radar cross section (RCS), scattering, uni-
form theory of diffraction (UTD), vertex diffraction.

I. INTRODUCTION

T HE description of the electromagnetic field in terms of
rays is a very effective tool for modeling complex environ-

ments at high frequencies. This technique has been thoroughly
employed for the prediction of the radar cross section (RCS) of
complex targets or for the computation of radiation character-
istics of antennas in their operating environments (on board of
aircraft, ships, satellites, etc.). Recently, the same technique has
been adopted also for the deterministic prediction of the field

Manuscript received June 24, 2009. First published July 14, 2009; current
version published December 01, 2009.

M. Albani, G. Carluccio, and S. Maci are with the Department of In-
formation Engineering, University of Siena, Siena 53100, Italy (e-mail:
matteo.albani@dii.unisi.it).

F. Capolino is with the Department of Electrical Engineering and Computer
Science, University of California, Irvine, CA 92697 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2009.2027455

propagation in wireless applications for urban and indoor sce-
narios. A commonly used general approach consists in repre-
senting arbitrary scatterers with faceted surfaces, constituted by
interconnecting flat triangular (or polyhedral) flat plates. At their
junctions, plates form wedges and pyramid vertices (tips); when
a plate is isolated and its sides are not connected to other plates,
it contains half-plane edges and plane-angular-sector vertices.
The plane-angular-sector can be regarded as a particular case
of the pyramid geometry. In the faceted representation of scat-
terers, the leading asymptotic contributions are the geometrical
optics (GO) direct and reflected rays of asymptotic order,
where is the wavenumber. Wedge or edge diffracted rays are
added as prescribed by the uniform theory of diffraction (UTD)
[1], thus augmenting the solution the asymptotic order .
This way, the uniform description of the transitional behavior of
the wedge diffracted field restores the continuity of the total pre-
dicted field across the GO shadow boundaries (SBs). However,
this kind of description is not satisfactory when the observation
point lies near the wedge singly-diffracted field SBs, i.e., those
surfaces across which a wedge singly-diffracted ray abruptly ap-
pears/disappears, thus resulting in an unphysical field discon-
tinuity. Furthermore, the UTD (GO+wedge) field description
is not accurate in shadow regions where no GO or wedge dif-
fracted ray occur, thus resulting in a vanishing total field. For
the above mentioned reasons, higher order contributions must
be added; namely, vertex and doubly diffracted contributions.
These contributions augment the asymptotic solution to the
order out of their transition regions, and their uniform descrip-
tion restores the continuity of the field at the wedge singly-dif-
fracted ray SBs. In this paper we focus our attention on vertex
diffracted contributions. Uniform description of edge doubly
diffracted rays can be found in [2]–[5], and in the references
therein contained.

The diffraction at the vertex of a plane angular sector ad-
mits a solution in terms of a spherical wave series expansion
[6]–[13], which however involves the calculation of eigenfunc-
tions and exhibits a critical convergence in the plane-wave far-
field regime, and it is therefore not suitable for asymptotic ray
description. In [14], [15] a plane wave spectrum solution for
the quarterplane was proposed, whose form is amenable for
asymptotics, as that developed in [16]. Though it was claimed
as an exact solution, in [17] it was proved that it does not ful-
fill the boundary conditions. To overcome these problems, other
heuristic solutions were proposed for the asymptotic ray de-
scription of vertex diffracted rays with limitation to plane an-
gular sectors [18]–[24]. The pioneering work [18], which is still
widely applied, heuristically describe the vertex diffracted ray
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transitions simply using products of UTD transition functions
(Fresnel functions). This approach, despite its simplicity does
not reproduce the correct transitional behavior as highlighted in
[25]. Therefore, other solutions ([19], [20]) were developed by
using the generalized Fresnel integral (GFI) [26]–[28] as a spe-
cial function describing the vertex ray transition. Other works
[22], [23] also included the double edge diffraction in the vertex
formulation to augment its accuracy. Plane angular sector fringe
currents (to augment physical optics) were derived in [21] with
a hybrid method of moments approach and in [24] by using the
incremental theory of diffraction [34].

As the pyramid vertex diffraction is concerned, an exact for-
mulation was proposed in [29], [30] by resorting to hybrid nu-
merical-analytical approach, which however does not provide a
uniform closed form solution as required in a UTD framework.

Therefore, an effective uniform, closed form asymptotic UTD
solution for the diffraction by the vertex of a pyramid is still not
available in the literature, thus motivating the present study.

The present formulation is outlined in the following.
Section II presents the scalar solution of the proper canonical
problem, i.e., a pyramid of infinite extent, composed by an
arbitrary number of edges confluent at the tip, with either soft
or hard boundary conditions imposed on its faces. By using
an adaptation of the method explained in [31], the field is
rigorously written in terms of integrals along the edges of the
pyramid of the so called Miyamoto-Wolf vector potential [32].
This potential is known only for certain canonical structures,
like an infinite wedge. The expression for the Miyamoto-Wolf
vector potential is not known for the pyramidal geometry
considered in this paper, thus requiring some approximations.
To this end, the Miyamoto-Wolf unknown vector potential is
interpreted as an alignment of incremental field contributions,
and its expression is locally approximated by using the known
vector potential of the wedge geometry [31]. This vector po-
tential is coincident with that provided by the scalar version of
the ITD. The integrals along the semi-infinite edges are then
asymptotically evaluated in a uniform fashion, providing the
expression of the vertex diffracted field which is cast in a UTD
format by introducing a proper transition function involving the
GFI [26]–[28]. Section III discusses the behavior of the scalar
solution focusing on transition regions. In particular we analyze
analytically the single and double transition behavior of the
uniform vertex diffracted field expression. In Section IV we
specialize the result to the cases of plane wave incidence and
far field observation, with particular attention to the RCS case.

The extension to the electromagnetic case is provided in
Section V by using typical ray optic approximation as that used
in the UTD [1]. Numerical examples showing the effectiveness
of our proposed vertex diffracted field expression, and a com-
parison with the method of moments is shown in Section VI.
In this section we clearly show that the use of the UTD field
expressions (GO + edge diffraction) leads to non physical field
jump discontinuities that are repaired by the vertex diffracted
field.

II. SCALAR FORMULATION

Consider an infinite pyramid as in Fig. 1, with edges and
faces on which either soft or hard boundary conditions are

Fig. 1. Pyramid geometry and reference systems centered at the vertex (tip).

assumed. Edges are counted counterclockwise observing the
pyramid from the tip (see Fig. 1); the face tagged by is de-
limited by edges tagged by and . In our formulation the
pyramid is thought of as the superposition of wedges sharing
a common face, all intersecting at the pyramid vertex. It is con-
venient to introduce a reference system for each edge , with its
origin at the pyramid vertex, its axis along the edge, the
axis lying on the half-plane (wedge face) containing the pyramid
face , and the axis parallel to the outgoing normal to the
face (Fig. 1). The exterior angle of wedge equals ,
its and faces correspond to the pyramid
faces and , respectively.

The pyramid is illuminated by an isotropic scalar spherical
wave

(1)

where denotes the distance between the point source at
and the observation point at . Hereinafter, the distance be-

tween two points and will be denoted by . By in-
voking the Helmholtz-Huygens principle, the field scattered by
the pyramid is expressed as the radiation integral over its sur-
face; which is decomposed as the sum of terms, each rele-
vant to a face . Hence, the total field is given by the sum of
the incident and the scattered fields

(2)

where is the surface of the face the unit vector normal
to the surface at the integration point , and

(3)

Here and after, bold face symbols denote vectors, whereas unit
vectors are denoted by a hat. Since
can be expressed through [31], [32]

(4)
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Fig. 2. Reduction of the surface radiation integral on the faces of the pyramid,
to line integrals along the edges, by using the Stokes theorem.

where is the so-called Miyamoto-Wolf vector potential. In
[32], the implicit definition (4) for in terms of a differential
equation is recast in an explicit integral expression. Using (4) in
(2), and applying the Stokes theorem, reduce each term of the
summation to a line integral along the border of the surface ,
i.e., along edges and , plus a residue contribution if a
singularity of occurs on . As shown in [32], is sin-
gular, in the variable, either at a reflection point (shown
in Fig. 2) on the pyramid surface or at the intersection point be-
tween the direct ray and the pyramid surface. Hence, the residue
contributions account either for a GO reflected field (Fig. 2) or
for minus the incident field in the shadow region. This physical
interpretation is further detailed in [32]. This leads to the total
field representation

(5)

where

(6)

is the field diffracted by the pyramid and is obtained by the
sum of the incident field (not shadowed by the pyramid)
and the above residue contributions, thus recovering the total
standard direct and reflected GO terms with their proper exis-
tence region (see [1] for example). In (6), the diffracted field is
given by [31]

(7)

and the -sum tags the edges of the pyramid. In (7), the points
and lie on face and , respectively, and both

approach the integration point on edge (Fig. 2); such
limit leads to a finite value despite the singular behavior of each
of both terms in (7). The evaluation of implies the knowl-
edge of the vector potential on the edges of the pyramid,
which would require the knowledge of the unknown scattered
field [see (3)]. The latter is in general not available in

form suitable for asymptotic evaluations. We seek an expres-
sion that though approximated is able to solve various prob-
lems encountered by engineers when modeling complex struc-
tures made of edges and vertexes. We thus approximate by
the known expression it assumes for the infinite wedge problem
that fits two contiguous pyramid faces. Due to the localization
of high-frequency phenomena, this approximation is accurate
for incremental field contributions arising from points far from
the tip of the pyramid. Furthermore, the infinite wedge poten-
tial exhibits the appropriate pole singularities, in the vari-
able, whose residues reconstruct the GO contributions. Hence,
in transition regions of edge-diffracted rays, when the GO points
(singularity of ) approach an edge (integration contour), the
edge integration provides the appropriate continuity to the GO
emergence or disappearance (as in the UTD). This property is
still true when the GO point approaches an edge near or even
at the tip, i.e., when observing in the simultaneous edge- and
tip-diffracted field transition regions. The transition region of
an edge-diffracted ray or of a tip-diffracted ray (thoroughly dis-
cussed in this paper) is defined as the region where the ray ac-
tually changes its spreading factor to match and compensate the
appearance or disappearance of another ray species, with lower
asymptotic order, at its shadow boundaries. Therefore under the
proposed approximation, though the value of , and in turn that
of , become inaccurate for points near the tip. However, it
is important to note that the resulting approximated diffracted
field (obtained by integrating in (6) the approximate version
of on the pyramid edges) still provides the proper jump dis-
continuity that compensates for the discontinuity of across
its planar shadow boundaries, thus preserving the continuity of
the resulting approximated total field in (5). This property
is crucial for the effectiveness of the final result, and will be ana-
lytically verified in the following section, as well numerically in
Section VI. The analytic expression for the vector potential
associated to an infinite straight wedge diffracted field is given
in [31], and here reported

(8)

where , and
are the observation point, the source location, and

the generic integration point on the edge, respectively, expressed
in the edge coordinate system. In (8)

(9)

where the upper (lower) sign applies to the soft (hard) case and

(10)

with denoting the wedge exterior angle. The unit step func-
tions in (9) vanish for negative argument, i.e., if
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Fig. 3. Distribution of incremental diffracted field contributions along the edge
� and local elevation angles. When the argument of � and� is not specified,
they are referenced to the coordinate system with origin at the tip.

. Physically, this happens when the source or the observer
is located inside the local infinite wedge. In (8) the parameter
is defined as

(11)

where and denote the elevation coordinates
of and , respectively, measured in a spherical reference
system with origin at the point on the edge (see Fig. 3).
(We recall that when the arguments of and are not spec-
ified, these two elevation coordinates are associated to the th
reference system centered at the tip, as in Fig. 1).

In (8), the field at is interpreted as a spherical wave radi-
ated by an incremental point source at excited by the il-
luminating spherical source at , weighted by the factor 2 .
The representation (6) of the field coincides with the distribu-
tion over the semi-infinite edges of the pyramid, of the ITD in-
cremental contributions [33]–[35] relevant to the infinite wedge
problem (Fig. 3).

By using the approximation (8) in the exact expression (6)
we obtain the approximate integral expression for the pyramid
diffracted field

(12)

which is suitable for its asymptotic evaluation.

A. Uniform Asymptotic Evaluation

Each integral in (12) is asymptotically evaluated at its crit-
ical points that consist of an end point at and four pairs
of complex conjugate poles in , each for any function in
(10), whose explicit expression is given in (49) of Appendix A.
Furthermore, each integrand in (12) exhibits a stationary phase
point at

(13)

that satisfies . This point deter-
mines the location of the edge diffraction point (where the edge
diffracted ray arises from) on the edge , that may or may not
lie on the integration path from 0 to , i.e., on the actual edge of
the pyramid. When the diffraction point lies on the actual edge,
i.e., , it leads to the th edge diffracted field. The
asymptotic evaluation at the end-point is associated to the th
contribution to the vertex diffracted field. To isolate saddle point
and end-point contributions and prepare the subsequent asymp-
totic evaluation in terms of edge and vertex field contributions,
each integral term of the sum in (12) is exactly split into

(14)

defined as

(15)

and

(16)

respectively. Decomposition (14) is interpreted as follows.
When , the edge diffraction point lies on the actual
part of the semi-infinite pyramid edge, and (14) is split into
the wedge contribution (15) and the vertex contribution (16).
Conversely, when , the edge diffraction point would lie
in the virtual continuation of the actual edge, and thus the edge
term (15) does not contribute because of the vanishing unit step
function ( or 0, when or , respectively)
in (14). In this case the diffracted field in (14) consists of
the vertex contribution in (16) only. Therefore, in (14) the
wedge diffraction contribution is discontinuous at ,
i.e., when the diffraction point merges with the vertex of the
pyramid; however around this aspect, the vertex contribution
(16) undergoes a transition and exhibits a proper discontinuity
which restores the continuity of the diffracted field term (14).
Note that in (16), the choice of the integration end-point always
excludes the stationary phase point from the integration path,
therefore the integral is asymptotically dominated only by the
end-point, though could be affected by the presence of a nearby
saddle point. The sum of all the contributions leads to the
diffracted field

(17)

in which is the vertex diffracted fields that col-
lects all the end-point asymptotic contributions. The asymp-
totic evaluation carried out in Appendix A leads to the wedge
diffracted field that coincides with the standard
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Fig. 4. Geometrical Optics shadow boundary planes (SBPs) and wedge diffrac-
tion shadow boundary cones (SBCs) associated to the face � of the pyramid;
(a) 3D view of reflection SBPs, (b) 3D view of incidence SBPs, and (c) 2D view.
In (b) and (c), the GO reflected ray is bounded below the SBPs, the wedge dif-
fracted rays exhibit a transition around the respective SBPs and compensate for
the GO field discontinuity. The wedge diffracted rays are bounded inside the
respective SBC, the respective term of the vertex diffraction ray exhibit a tran-
sition around the SBC compensating for wedge diffracted field discontinuity.
SBPs and SBCs all intersect at that aspect (arrow) at which both the GO and the
wedge diffracted contributions are discontinuous, while wedge diffracted fields
are in transition. Here the vertex diffracted field exhibit a double transition able
to restore the continuity of the total field. A similar discussion applies to (a).

UTD expression in [1]. By observing that implies
, with

(18)

the unit step function in (17) bounds the existence of
into the conical region shown in Fig. 4.

Note that here, the observer and source
coordinates are associated to the th reference system centered
at the tip O (Fig. 1). It implies that the wedge diffracted field con-
tribution abruptly vanishes or appears at the Shadow Boundary

Cone (SBC) , for which the UTD edge diffraction
point lies at the pyramid tip.

The uniform asymptotic evaluation for the end-point contri-
bution related to the integral along the th edge is carried out in
Appendix A and leads to the vertex diffracted field expression

(19)

in which is the incident field at
the pyramid tip . Then, by summing all the contributions be-
longing to all the edges, one obtains the total vertex diffracted
field which is cast in the UTD format

(20)

where we have highlighted the spherical wave arising from all
the edge truncations and the vertex diffraction coefficient is

(21)

The expression for each is given in (22)

(22)

where the upper (lower) sign applies to the soft (hard) case and
the “Rubinowicz parameter” is

(23)

In (22), the transition function is a GFI properly normal-
ized (Section III.A) as

(24)

with . Its arguments in (22) are de-
fined as

(25)

and

(26)
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where is the integer that nearest satisfies

(27)

A simple algorithm for the numerical computation of (24) is
suggested in [28]. The distance parameters defined in (26) are
strictly related to the arguments of the UTD Fresnel transition
functions of the wedge diffracted field defined in
[1], and reduce to them on the SBC where . Note that,
though the various contributions associated to the various
edges do not depend on the tip angle (i.e., the angle between two
consecutive edges), when they are summed in the total vertex
diffraction coefficient , their combination is affected by the
tip angle. For instance, if the tip angle between two edges in a
plane angular sector approaches 180 , the two end-point con-
tributions relevant to the two edges cancel, and the total vertex
contribution vanishes, as expected.

III. ANALYSIS OF THE SCALAR SOLUTION

In this section we analyze the behavior of the above obtained
solution for the vertex diffracted field in (20), with special atten-
tion to the analytical description of its behavior in the transition
regions, thus demonstrating its capability of restoring the total
field continuity. It is well known that the GO shadow bound-
aries in the wedge problem have a planar shape. The incident
shadow boundary plane (SBP) occurs at , whereas
the SBPs relevant to the reflection from the faces and

occur at and ,
respectively. The SBPs associated to two wedges delimiting a
face of the pyramid intersect in a line passing through the vertex
of the pyramid (arrows in Fig. 4(a)–(b)). When observing on
this line two possible situations may happen. When the inter-
section is formed by the reflection SBPs, the reflection point
lies exactly at the tip of the pyramid [Fig. 4(a)]. When instead
the intersection is formed by the incident SBPs, the direct GO
ray is intercepted by the tip [Fig. 4(b)]. Wedge diffracted con-
tributions also have a shadow boundary because of the finite-
ness of the edges. Their shadow and the lit regions are sepa-
rated by a shadow boundary cone (SBC), which represents the
limit condition when the diffraction point on the edge lies at the
tip of the pyramid; hence, the SBC coincides with the Keller
diffraction cone when its tip is located exactly at the tip of the
pyramid [Fig. 4(a)–(b)]. Therefore, the surface of the SBC as-
sociated to wedge occurs at . It is important to note
that the two SBCs associated to contiguous wedges, delimiting
the same face of the pyramid, intersect at the same line where
the two GO SBPs intersect [Fig. 4(a)–(b)]. Indeed, the GO and
the two wedge diffracted fields may experience a discontinuity
there, furthermore the two wedge diffracted fields are in transi-
tion there because they need to compensate for the GO discon-
tinuity. At this peculiar observation aspect, the vertex diffracted
field exhibits a double transition able to restore the continuity of
the total field.

A. Far From Transition

When observing “far” from the SBCs the vertex diffracted
field exhibits a ray optical behavior. We define “far” from the

SBC, all spatial locations that are associated to the large param-
eter . This condition is encountered outside a transition
region which envelopes the SBC and whose section in any plane
containing the th edge exhibits the typical parabolic shape of
diffraction transition regions. Therefore, the angular extension
of the transition region in terms of angular coordinates be-
comes narrower for larger , and eventually vanishes in the
plane-wave far-field regime where the transi-
tion region collapse to the SBC. The latter case is of interest in
RCS prediction. For , in (24)

(28)

so that the transition function in (21) and (22) , and
the diffraction coefficient expression in (22) can be greatly sim-
plified. Therefore, “far” from the SBCs the asymptotic order of
the tip diffracted field is , and the field attenu-
ates strictly as away from the tip. In other words the field is
a spherical wave arising from the tip of the pyramid.

B. In Transition Behavior

When approaching the SBC relative to wedge , the
tagged term of vertex diffracted field in (20) exhibits a tran-
sition. Approaching this SBC, one has , therefore
the distance parameter defined in (25) , the transition
function reduces to

(29)

where is the UTD Fresnel transition function [1]. Fur-
thermore, when , in (23) the Rubinowicz parameter

, and one has in (22),
which is equal to the UTD angular function reported in [1].
It is now easy to verify that when approaching the th SBC

the vertex diffracted field grows to the asymptotic
order and assumes the value

(30)

that allows to exactly compensate for the discontinuity of the
th wedge diffracted contribution in (17),

across the th SBC. At the SBC associated to the th edge,
i.e., when , it is possible to give a precise estimate of
the field. The sum of the edge diffracted field and the th term
of the vertex diffracted field is continuous and equal to one half
the diffracted field contribution plus higher order terms:

(31)

C. Double Transition

As mentioned above, the SBCs relevant to a couple of con-
tiguous wedges, say and +1, delimiting the face of the
pyramid, intersect in a semi-infinite line where also the two
GO SBPs intersect. Approaching this particular aspect the GO
contribution is discontinuous when crossing one of the SBPs
and thus also when crossing the intersection line. However,

Authorized licensed use limited to: Filippo Capolino. Downloaded on December 3, 2009 at 23:40 from IEEE Xplore.  Restrictions apply. 



ALBANI et al.: UTD VERTEX DIFFRACTION COEFFICIENT FOR THE SCATTERING 3917

Fig. 5. Intersection of the two SBCs and the two SBPs. Parameterization of the
observation aspect in the neighborhood of the double transition aspect for the
computation of the vertex diffracted field behavior in that limit.

the wedge diffracted contributions
and from the two wedges
are discontinuous, when the observation point crosses the
respective SBCs [Fig. 4(b)] or their intersection. Furthermore,
near the SBC-SBP intersection the wedge diffracted fields

and are in transition because the
observation is close to the GO SBP, hence their asymptotic
behavior is grown to the GO order , as described by
the UTD Fresnel transition function with vanishing argument

(see [1] for more details). Therefore, the job of the
vertex contribution is to restore the continuity of
the total field. In this limit both and ,
thus and ; furthermore, for each wedge,
one of the four UTD distance parameters (26) vanishes since
approaching the associated SBP. We generically denote by

and the vanishing parameter in (26),
relevant to edges th and th.

It is interesting to note that the sum
is the difference of the optical lengths between the path of the
vertex ray (Fig. 1) and that of the GO ray (e.g., for
the direct GO ray, or for the reflected GO ray, as shown
in Fig. 2), and it is therefore the same when measured in the

th or in the th edge reference system, as shown in (56);
hence . Hence, when approaching
the double transition region (the intersection of the SBCs and the
SBPs) the four distance parameters involved can be alternatively
represented in terms of three independent parameters, as

(32)

with approaching the double transition from the angular
direction (Fig. 5). It is convenient to define as the angle
between the surfaces locally (at the intersection) tangent to the

two SBCs. Since and are locally orthogonal, the
angle between the SBPs is .

1) UTD Contributions (GO and Wedge Diffracted Fields):
By using the introduced parameterization, with reference, for
example, to the reflection case of Fig. 4, the lit and shadow re-
gions of the field contributions , and are ex-
pressed in terms of the approaching angle (measured from the

th SBP, Fig. 5), regardless of the value of the parameter .
The GO contribution vanishes in the range ,
whereas the field diffracted by the wedge vanishes outside the

and exhibits a discontinuity across the at ;
namely, near the intersection

.

(33)

Analogously the field diffracted by wedge vanishes
outside the and exhibits a discontinuity across the

at ; namely, near the intersection

.

(34)

As a matter of fact, the standard UTD field (i.e., the sum of the
GO and the wedge diffraction contributions) is discontinuous at
the SBCs. Therefore, at the intersection of the SBCs and SBPs,
the asymptotic order of the discontinuity is , which is the
asymptotic order of the GO field contribution. Indeed, the sum
of the GO contribution and the terms of the wedge dif-
fracted contributions vanishes in the region internal or external
to both the SBCs (terms of the order of and higher do
not vanish there), whereas it equals in the
region internal to a SBC but external to the other. In summary,
the dominant asymptotic order of the field near the inter-
section is shown in (35), at the bottom of the page.

2) Vertex Contribution: We explain now how the vertex dif-
fracted field behaves and show that it restores the required con-
tinuity. As already noted for both edges and a couple
of parameters vanish. Therefore we will use the limit

(36)

(we have dropped the subscripts and ) which will allow
to determine the behavior of the vertex contributions relevant to
the and edges close to the double transition aspect. Con-
sidering the vertex diffracted field expressions (19)–(21) and
using (36) in (22), one can see that the vertex diffracted field
near the transition has the asymptotic order .
In other words, the order of the vertex diffracted field from

, far from transition regions, grew to the asymptotic

.
(35)
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order of the GO contribution. After long but simple algebraic
manipulation one can show that

(37)

and

(38)

respectively. Since the (inverse tangent function) in (36)
is inverted in the range , (37) and (38)
are piecewise linear functions of the approaching angle , with a
zero at the respective SBP and a jump discontinuity at
the respective SBC. Despite the value of each term in the vertex
contribution depends on the approaching angle, and would re-
sulting in a non physical behavior as highlighted in [25] with
reference to the coefficient proposed in [18], the sum of the
two and terms, and in turn the entire vertex contribu-
tion, exhibits a behavior independent of except for a discon-
tinuity at the SBCs, i.e., (39), shown at the bottom of the page.
Thus, without affecting the GO-discontinuity compensation by
the transition behavior of the UTD contributions at SBPs, the
vertex contribution compensates for the discontinuities of UTD
wedge contributions at the SBCs providing a continuous total
field value that is independent of the approaching angle , as
required for a physically sound solution. The limit value of the
leading asymptotic term of total field at the double tran-
sition aspect is

(40)

Equation (40) is interpreted as follows. When the reflection
point (Fig. 2) coincides exactly with the vertex, the GO applied
to the reflected ray tube would predict a lit region in a sector
below the SBPs (of subtended angle ) and a shadowed
region above the SBPs (of subtended angle ), as shown in
Fig. 4. Hence, the field associated to the ray is a percentage of
the GO reflected field that is proportional to the width of the lit
area in the tube section, namely the ratio . This
result coincides with the asymptotic evaluation of the radiation
integral using the Physical Optics approximation (not shown
here), which provides a correct result to the asymptotic order

.

IV. THE CASES OF PLANE WAVE INCIDENCE AND

FAR FIELD OBSERVATION

The solution presented in (20)–(26) is valid for source and
observation at a finite distance from the vertex. Here we pro-
vide the expressions for the particular cases: (a) plane wave in-
cidence and observer at finite distance; (b) source at finite dis-
tance and far field observation; and (c) plane wave incidence and
far field observation (the RCS case). For unitary plane wave in-
cidence, the final expressions are derived by multiplying (20)
by and by letting in (20)–(26). Accord-
ingly, an incident plane wave with value at the tip lo-
cation O produces a vertex diffracted field at given by (20)
where replaces . The diffraction coeffi-
cients and in (19)–(21) are still based on the same
expression (22). Furthermore, the limit implies that

, and thus the arguments (26) and (25) of the
GFI Transition functions in (22), become

(41)

and

(42)

Here, and represent the plane wave incidence angles in
the reference system associated to the th edge (Figs. 1 and 4).
The same discussion carried out in Section III about the transi-
tion regions and limits still applies to this particular case.

For the case with source at finite distance and observer in the
far field, we multiply (20) by and let . Therefore
the far field diffracted field is given by (20) with the last spher-
ical spreading factor suppressed and implicitly intended in the
far field normalization. Furthermore, the far field assumption in
(26) and (25) implies that , and thus the TGF
parameters to be used in (22) are as in (41) and (42) once has
been replaced by .

Finally, in the RCS case, i.e., for plane wave incidence and far
field observation, as pointed out in Section III.A, the GFI Transi-
tion functions in (22) become unity. In this case the vertex
contribution in (22) is correctly singular on the SBCs (i.e., when

). However, when modeling a finite structure like the
polygonal plate in Fig. 6, the scattered field is only represented
by the sum of the tip contributions associated to its ver-
texes

(43)

with denoting the number of edges intersecting at (a flat
plate has , for ). We denote by

(assume for convenience) the polygonal
plate sides, and we assume for convenience that at
tags the contribution associated to the previous edge , whereas

tags the contribution associated to the following edge

.
(39)
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Fig. 6. Geometry of a polygonal plate with � vertexes for the RCS case.

. The two tip contributions and , at and
, respectively, both relevant to the same finite edge , have

the same SBC angle where they cancel each others’ singularity,
so that the total field is uniform. Also, in the forward or reflec-
tion direction of the polygonal plate, where all the SBCs of all
the edges intersect, all the individual vertex contributions are
singular but their sum is uniform and exactly recovers the PO
prediction

(44)

in which the plus sign applies to the forward direction observa-
tion and to the reflection direction observation for soft boundary
conditions on , whereas the minus sign applies to the reflec-
tion direction observation for hard boundary conditions on .
A proof for (44) is given in Appendix B in connection with the
limit of Gordon’s formula for the same forward/reflection di-
rections, fully exploited in [36]. In fact, Rubinowicz’s theory,
which our formulation is based on, can be formulated also under
the Kirchhoff-Helmholtz (PO) approximation [32], and reduces
to Gordon’s formulation as a special case in the plane-wave
far-field regime.

V. ELECTROMAGNETIC CASE

The solution for the scalar case is here directly employed to
build the solution for the electromagnetic diffraction at a per-
fectly conducting pyramid illuminated by an arbitrarily polar-
ized electromagnetic spherical or plane wave. In this section we
present a ray description in the UTD standard format, leading
to a dyadic compact expression for the vertex diffraction coeffi-
cient. On each th edge we define a ray-fixed [1] spherical ref-
erence system with origin at the pyramid vertex; the incidence
unit vectors are denoted by and the observation
unit vectors by . This allows to express the arbi-
trarily polarized electric field incident at the tip in either of the

edge reference systems as and

Fig. 7. Amplitude of the field scattered by an orthogonal pyramid illuminated
by an electric dipole at � on a circular scan from one edge to the opposite
face (see the inset). Standard UTD solution (dashed line), UTD plus vertex con-
tribution (continuous line), MoM solution for � � ��� (the dotted line) and
� � ����� (dash-dotted line).

the vertex diffracted field as .
The diffracted field is thus expressed in a compact way as

(45)

with the dyadic vertex diffraction coefficient is given by

(46)

in which and are the scalar diffraction coefficients
derived in the previous section for soft or hard boundary
condition, i.e., by choosing the upper or lower sign in (22),
respectively.

The analysis of the electromagnetic solution is very similar
to that of scalar one presented in Section III and leads to the
same conclusions. We omit it for brevity and present instead, in
the next section, some numerical examples of application of the
electromagnetic case also comparing the results against those
provided by the Method of Moments (MoM).

VI. NUMERICAL RESULTS

To analyze the behavior of the field scattered by a single
pyramid vertex, let us consider first a perfectly conducting or-
thogonal pyramid formed by three orthogonal edges; this is a
very common configuration present at any vertex in any cube or
parallelepiped. The three edges coincide with the
and semiaxes of a Cartesian reference system with origin
at the tip, as shown in the inset of Fig. 7. In the ray analysis the
pyramid is assumed as infinite, and thus each face is an infinite
quarterplane. The scattering case considered is chosen to verify
the various transitional behavior of the diffraction coefficient, as
discussed in Section III. The results are validated against those
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from a MoM, and in this numerical analysis the perfectly con-
ducting faces of the pyramid have to be truncated; each face
is thus an electrically large triangle with basis (see insets of
Fig. 7). Such truncations introduce perturbations that, in a ray
picture, are associated to further diffraction mechanisms, like
additional edge and vertex diffractions at the bases of the trian-
gular plates, that are not negligible especially in deep shadow
regions. To isolate and better describe the effect of diffraction at
a single vertex we do not want to include further diffraction con-
tributions in our ray analysis. Therefore, besides having source
and observer close to the considered vertex, in order to reduce
the effects of the plates truncations in the MoM solution, we
added to the bases of the plates a “fence” of small perfectly
conducting triangles whose bases and heights are
and , respectively. The observation point moves
along a circular scan of radius , with (sym-
metric with respect to the pyramid top face) and

. The pyramid is illuminated by a unitary momentum
Am electric dipole placed at

and directed along the unit vector . Along the
considered scan, two distinct compensation mechanisms (tran-
sition regions) occur. At the observation point
crosses the SBC associated to the edge on the axis. Here the
wedge diffracted ray contribution, which is present in the range

, abruptly disappears, while the vertex
diffracted ray contribution experiences a transition as described
in Section III.B. At a different transition occurs: there
the observation point is at the intersection of the two reflection
SBPs and two SBCs, associated to the edges along the and
axes [see Fig. 4(a)], where the vertex contribution experiences
the double transition described in Section III.C and must com-
pensate for the simultaneous appearance of the reflected GO
ray and of the two wedge diffracted rays arising from the edges
along and axes. The amplitude of the scattered field along
the scan is shown in Fig. 7. The dashed line refers to the stan-
dard UTD solution, which consists of the GO reflected field and
the singly edge-diffracted fields. This solution is discontinuous
at where a the wedge diffracted field contribu-
tion from the edge along the -axis disappears, it vanishes in
the range where a zero field is predicted
by the UTD, and exhibits a cusp (discontinuity in the deriva-
tive) at , at the simultaneous appearance of the GO
and of the two in-transition wedge diffracted rays, as detailed
in Section III.C. In the case considered the direct GO contri-
bution never disappears, therefore the wedge diffracted fields
do not need to be discontinuous to compensate for the direct
GO disappearance. Therefore, to emphasize the compensation
mechanisms we plot the scattered field, instead of the total field.
The continuous line (UTD+Vertex) refers to the UTD solution
augmented by our vertex contribution (45), that smoothly com-
pensates for the standard UTD discontinuity and cusp, at the
two different kind of SBs described above. Note that besides
rendering the field continuous, our UTD+Vertex field evalua-
tion is also in good agreement with the MoM solution (dot and
dash-dot curves). To emphasize that the small difference be-
tween our UTD+Vertex and MoM solutions arises from the trun-
cation of the plates, we consider two MoM solutions relative
to plates with different base measures; the dotted line refers to

Fig. 8. Amplitude of field scattered by a � � �� plane angular sector, illu-
minated by an electric dipole at � , on a circular scan orthogonal to the sector
plane (see the inset). Standard UTD solution (dashed line), UTD plus vertex
contribution (continuous line), MoM solution for � � ����� (the dotted line)
and � � ����� (dash-dotted line).

, while the dash-dotted line refers to . As
expected, when observing close to the edges (for in
Fig. 7), the UTD reproduces a weaker field singularity than that
in the MoM which accounts also for the near field effects. How-
ever, when approaches a pyramid face ( in Fig. 7), the
agreement is very good. The truncation effects are clearly vis-
ible in the weak field region of the scan where, for the infinite
structure, only the vertex contribution is present. In this weak
field region, truncation effects, present only in the MoM solu-
tion, interfere with the vertex ray-field creating ripples whose
maxima and minima changes for different truncation size. It is
important to note that the difference between the two MoM so-
lutions (relative to two different truncations) is of the same order
of the difference between the MoM results and our UTD+Vertex
solution.

In the second example analyzed in this paper, we still focus
on the properties of vertex diffraction at a single vertex, con-
sidering a perfectly conducting plate with infinite extent. The
plane angular sector is in the xy plane and has its edges along
the directions, as shown in Fig. 8;
the tip angle is . The plane angular sector is illumi-
nated by a unitary momentum electric dipole Am at

, oriented along . The observa-
tion point scans a circle of radius in the plane
(Fig. 8). Also in this case, in order to reduce the truncation ef-
fects, we added a fence of small triangles
to the triangular plate in the MoM model. In Fig. 8 the ampli-
tude of the scattered field along the scan is shown. Similarly
to the previous examples, the standard UTD solution (dashed
line) exhibits jump discontinuities at and at

when crossing the two SBCs associated to the
two edges, respectively, and vanishes for ,
i.e., inside both the SBCs. The introduction of the vertex con-
tribution smoothly compensates for these discontinuities pro-
viding a continuous total field (continuous line). Despite the
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Fig. 9. Amplitude of the total far field radiated by an electric dipole placed over
a �� � �� square perfectly conducting plate. Standard UTD solution (dashed
line), UTD plus vertex contribution (continuous line), MoM (dash-dotted line).

sharp tip angle, after the introduction of our first-order vertex
diffraction coefficient, which does not accounts for multiple
wedge interaction effects, the UTD+Vertex solution is in good
agreement with the reference MoM solutions calculated for two
different triangular plate sizes, i.e., (dotted line) and

(dash-dotted line). Again, small truncation effects
are visible in the MoM results in the weak field region around

.
Next, we consider a perfectly conducting square plate

illuminated by a vertically oriented electric dipole, placed at
and unitary momentum. This case represents

a more complex scenario that often occurs in the antenna radi-
ation analysis, and requires the tracing and the description of
four-edge and four-vertex rays. The total far field amplitude at a
distance (where is diagonal of the square plate)
for and is shown in Fig. 9. In
this case, the standard UTD solution (dashed line) exhibits var-
ious discontinuities that are smoothed out by the introduction
of the vertex contribution (continuous line). The residual dis-
continuity at grazing can be removed by introducing
higher order contributions, like doubly diffracted rays [3], [5]
that would also improve the UTD accuracy. Indeed, the agree-
ment with the MoM solution is good except around grazing.

Finally, we analyze a bistatic RCS case. We consider a tri-
angular plate with sides , and
(Fig. 10). The triangular plate is tilted with respect to the xy
plane; namely, the plate normal unit vector is pointed toward
the spherical coordinates and , so that when
a vertically polarized plane wave impinges on
the plate from and , it is reflected in the

(positive -axis) direction. The RCS is observed along
two scan planes for (inner oblong circle) and
(outer circle), respectively. The first observation scan cuts both
the reflected and the forward scattering beams at and

, respectively. The second scan cuts the reflected RCS
beam at orthogonally to the first scan. As illustrated in

Fig. 10. Triangular plate geometry and bistatic RCS arrangement: illumination
from �� � � � � ��� � �� � with vertical polarization, observation along the
two scan plane at � � �� (inner oblong circle) and � � �	� (outer circle).

Section IV, the Vertex RCS prediction (continuous line) recover
that from PO both in the reflection and in the forward directions.
Note also that results for the two scans agrees at scan intersec-
tion , i.e., in the reflection direction, independently of
the scan plane. This confirms that our Vertex contribution over-
comes the problem highlighted in [25] about the formulation
in [18]. The comparison with the MoM RCS results (dashed
lines) shows how the Vertex results, which possess the correct
wedge boundary conditions and -angular diffraction pattern,
are more accurate than PO at those aspects dominated by single
edge diffraction effects (e.g., scan, grazing observa-
tion aspect ). The discrepancy between Vertex and
MoM results for lower RCS levels is explained by the fact that
minor lobes are due to higher order interaction (edge-vertex,
vertex-edge, etc.) not accounted for in our first order model [37].

VII. CONCLUSION

In this paper we have presented a novel UTD diffraction co-
efficient for the ray diffracted at the tip of a pyramid, which can
be used in the framework of the UTD (i.e., the sum of the GO
and edge diffracted fields). The proposed vertex field expression
has to be summed to the UTD field contributions thus providing
an improved field accuracy, as we have shown analytically and
in the numerical examples.

The solution is accurate because uniformly describes the
proper transitional behavior of the vertex diffracted ray in
connection with GO and UTD wedge ray discontinuities, thus
providing a smooth total field. Furthermore the solution is very
general because it can be applied to many different geometries
like tip of pyramids, vertexes in plates and vertexes at the con-
nection of various plates, also in open structures, as required for
the high frequency analysis of general structures and scenarios.

We mention that closed form analytical solutions for the
wedge and vertex diffracted field have been provided also in
the time domain (TD) for short-pulse excitation. In particular, a
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Fig. 11. Bistatic RCS for the triangular plate in Fig. 10 on the two scan planes
� � �� and � � ��� . Vertex (continuous line), MoM (dashed line), and PO
(dash-dotted line).

detailed transient analysis for the edge diffracted field was pro-
vided in [38], [39] allowing the development of a time domain
version of the UTD [40]. The TD-UTD solution has been aug-
mented by uniform expressions for TD doubly diffracted rays
in [41]. The time domain version of the ITD has been presented
in [42]. Based on that, a time domain closed form solution for
vertex diffraction has been derived and summarized in [43].

APPENDIX A

In this Appendix the uniform asymptotic evaluation of (15)
and (16) is carried out leading to (17) with the vertex field ex-
pression in (20). By using (9), (15) and (16) are decomposed as
the sum of four terms each given by

(47)

(48)

respectively, with , and where we
have dropped the subscript for simplicity. The inte-
grand of (47) and (48) exhibits a stationary phase point at

[see (13)]. Furthermore it is singular
at the pairs of complex conjugate poles

(49)

with , and . Note that the
poles may approach the real axis only at the stationary phase
point, i.e., when (i.e., when the observer is at the SBP)
one has that . Introducing in (47) and in (48) the change
of variable defined by (11) (see also [31]), for which

, leads to

(50)

and

(51)

respectively, with
and is the “Rubinowicz parameter” defined in
(23).

Note that (50) is exactly one of the four terms constituting the
wedge diffracted field [1]; its leading uniform asymptotic con-
tribution, associated to the stationary phase point can be
evaluated as in [1] providing one of the four cotangent consti-
tuting the UTD wedge diffracted field associated
to edge ; the transition between the nearest poles and the sta-
tionary phase point is managed by the UTD Fresnel
transition function [1].

We stress again that in (51) the stationary phase point at
does not lie on the integration path (it lies in the

missing part of the integration domain ). There-
fore, the leading asymptotic contribution of (51), associated
to the end-point, is evaluated as follows. First, the change
of variable is introduced for which

; next, the singularities of the inte-
grand nearest to the saddle point are described using an
ad hoc regularizing function, i.e., by multiplying and dividing
by ; finally, the slowly varying part of
the integrand is evaluated at the end point and carried out of the
integral. This procedure leads to

(52)

Denoting by

(53)

the difference in electrical length between the vertex diffracted
ray path and the th wedge diffracted ray path ;
and by

(54)
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the difference in electrical length between the th wedge dif-
fracted ray path and the GO direct or reflected ray path

, (52) reduces to

(55)

where the function is defined in (24).
It is important to note that

(56)

is the difference between the path length of the vertex diffracted
ray and the path length of the GO ray, which is the same for all
the edges; therefore is actually independent of the index

tagging the edges but it depends only on which GO ray is
considered.

The distance parameters in (25) and (26) are approximations
of those defined in (53) and (54), respectively, accordingly to the
analogous simplification used in the UTD [1]. The approxima-
tion simplifies the calculation of the distance parameters (25)
and (26) which can be expressed easily only in terms of the
local vertex ray geometry, as required by the UTD scheme, and
no longer involves information about the edge diffracted rays.
Nonetheless, (25) and (26) recover the exact parameters (53) and
(54) in the neighborhood of the aspects where they vanish, i.e.,
inside the transition region where the transition function
differs significantly from unity and describes the transitional be-
havior of the ray. Far from transition, where the parameters in
(25) and (26) do not well approximate the exact ones (53) and
(54), the equals unity and therefore the non accurate ap-
proximation does not affect the result. Because of the approxi-
mation introduced, the property described in (56) does not hold
rigorously for (25) and (26) but only in the limit
for vanishing parameters, i.e., in the double transition.

Finally, all the analogous terms (55) are summed up and cast
in the UTD format (20); those relevant to the th wedge lead
to the four terms in (22), contributions from all the edges are in
turn summed in (21).

APPENDIX B

In this Appendix it is proved that, in the reflection and for-
ward aspects, the RCS provided by the proposed tip diffraction
coefficient for a polygonal plate equals that provided by PO. The
scalar far field scattered in the direction by the polygonal plate
in Fig. 6, when illuminated by a plane wave travelling along

, is given by (43). When observing in the forward direction
, in (43) each term , with (see Section IV

for symbol definitions), exhibits a double singularity. Indeed in
the forward direction and so that in
(22)

(57)

and

(58)

as can be easily derived by a small argument approximation of
trigonometric and hyperbolic functions in (10). By using (57)
and (58) in (22), the singular behavior at the forward observation
aspect is calculated as

(59)

which is used in (43) leading to

(60)

Though each term is singular, the summation is not, as shown
in the following. Each th term of (60) can be rewritten as an
integral along the th side of the polygonal via the relation

(61)

so that the summation in (60) reduce to an integral around the
polygon perimeter

(62)

Finally, by invoking Stokes’s theorem and

(63)

the line integral on is converted into a surface integral on the
polygonal plate surface

(64)

which reduces to (44) as . Note that, as illustrated in
Section III.C, the vertex field, which is constitutionally of order

, in the forward direction experiences a double transi-
tion. However, in the RCS case the transitional behavior is not
described by the transition functions, which are set to unity, but
by the singularity cancellation among the contributions relevant
to the various vertexes, so that the final result becomes of order

. Also note, that the weaker singularity terms neglected in
(59) (i.e., from the non singular terms in (22)) lead to a higher
order field contribution, of order , whereas the non sin-
gular terms with , if any, provide a field of order

. Hence (44) represents the leading term of the field
asymptotic expansion. The proof reported above can be easily
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repeated for an observation aspect , i.e., in
the plate specular reflection direction, but it is omitted for the
sake of brevity. Its final result is incorporated in (44).
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