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ABSTRACT OF THE DISSERTATION

Exploiting atom-cavity coupling to measure real-time changes in the atomic spatial

distribution

by

Chandler Rae Schlupf

Doctor of Philosophy in Physics

University of California, Los Angeles, 2020

Professor Paul Hamilton, Chair

This dissertation details the construction of a neutral ultracold atom system along with

one completed experiment and one future experiment. This systems contains a two-stage

slowing/cooling scheme with a Zeeman slower and a magneto-optical trap (MOT), as well

as an in-vacuum optical cavity. The optical cavity was specially designed for precision

measurement experiments. When near resonance atoms are present in the cavity, they cause

a phase shift in the light. This enables use of the cavity light transmission as a minimally

invasive feedback for information on the presence of atoms in the cavity. We look at this

atom cavity interaction in two regimes: a deep lattice and a shallow lattice.

Atoms confined to a deep optical lattice are constrained to thousands of individual wells.

Any feedback on the lattice from motion of atoms in a single well is amplified by thousands

due to this repetition. We exploit this deep lattice uniformity to measure atomic motion

immediately after release from the deep lattice using another very shallow probe lattice.

The feedback from the atomic motion on the probe lattice cavity transmission is used to

measure the atomic samples original temperature without losing the atoms. We measure

the sample’s temperature in both the axial and radial direction, with the axial measurement

taking < 10 µs with the ability to recapture 75% of the atoms back into the lattice.
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Atoms in a shallow lattice have wavefunctions spread out across multiple lattice cites.

This enables them to undergo a process called Bloch oscillations, which requires a periodic

potential plus a uniform force (gravity). I perform a simulation of the coupled atom and

lattice distributions to optimize our experimental realization of the system. The atomic

oscillations due to gravity imprint their oscillation frequency on the transmission of cavity

light, which enables us to measure the force on the atoms which is directly proportional to

the frequency. We plan on using this feature to perform a precision measurement on our

atoms to look for ultralight dark matter. I estimate our limits on this type of dark matter,

and discuss the future of this experiment.
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kBT
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3kBT
m
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CHAPTER 1

Introduction

The dipole force from light on atoms can be used both to contain the atoms and to detect

them. One form of containment for ultracold atoms that does not require additional electric

or magnetic fields is the periodic potential created by an optical lattice. Deep and stable

optical lattices are typically created with a laser and an optical cavity. Boundary conditions

restrict the wavelength of light allowed in the cavity to the length of the cavity divided by a

half integer, ensuring a zero electric field on the metallic surfaces. Only light of these specific

wavelengths successfully enters and transmits through the cavity.

When atoms are present in the cavity, they cause a phase shift, changing which wave-

lengths are accepted into the cavity to maintain boundary conditions. This can be thought

of classically as a path length difference of the light caused by the change in the index of

refraction due to the atoms, or quantum mechanically as a two state system (the atom)

coupled to damped driven quantum harmonic oscillator (light in the cavity). This enables

use of the cavity transmission as a minimally invasive measurement tool for information on

the presence of atoms in the cavity. See Figure 1.1 for a simple schematic.

mirror mirror

laser

atoms

transmission

Figure 1.1: A simple schematic of a laser in a cavity, with atoms filling the potential wells

created by the standing wave.
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Within the last ten years atomic molecular optics (AMO) groups have started to exploit

this feedback mechanism to study trapped atoms. Brahms and Stamper-Kurn [BBS12] use

rubidium atoms in an optical cavity to study the relationship between motional excitations

of the atoms and photon transmission frequency, ultimately quantifying the measurement

backaction. Schleier-Smith and Vuletić [SLc10] use a similar technique to measure the level

occupation of a two-level atom beyond the standard quantum limit by spin squeezing. Bohnet

and Thompson [BCW13] show that under the right conditions atoms in a cavity can spon-

taneously synchronize and could be used as a gain medium for a sub-millihertz linewidth

optical laser.

We look at this atom cavity interaction in two regimes: a deep lattice and a shallow

lattice. Atoms confined to a deep lattice collect into individual lattice wells. When the

average energy of the atoms is small compared to the lattice depth, the standing wave

sinusoidal potential can be modeled as a simple harmonic oscillator (SHO) potential for the

atoms. The quantum SHO is a much simpler system to solve than the sinusoidal potential.

Across the lattice we have thousands of repeated harmonic oscillator wells filled with atoms

that are all uniformly coupled to the lattice. Any feedback on the lattice from motion of

atoms in a single well is amplified by thousands due to this repetition. We exploit this deep

lattice uniformity to measure atomic motion immediately after release from the deep lattice

by using another very shallow probe lattice. The feedback from the atomic motion on the

probe lattice cavity transmission is used to measure the atomic sample’s original temperature

without losing the atoms.

Atoms in a shallow lattice, on the other hand, have wavefunctions spread out across mul-

tiple lattice cites. This enables them to undergo a process called Bloch oscillations [Blo29]

(discovered by both Bloch and Zener, sometimes referred to as Bloch-Zener oscillations),

which requires a periodic potential plus a uniform force (in our case, gravity). This phenom-

ena produces atoms oscillating in space with a frequency directly proportional to the uniform

force. Bloch oscillations were first observed by Feldmann and Leo [LFS93] 20 years after

their prediction in a condensed matter system: electrons oscillating in a crystal lattice. Just
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four years later an optical lattice was used by Dahan [BPR96] to observe cesium atoms un-

dergoing Bloch oscillations. This system is highly advantageous because the lattice is easily

tunable, and there are fewer scattering forces that decrease the oscillation coherence time.

Since then Bloch oscillations have entered the field of laboratory-scale precision measure-

ments. Cladé [CMC06] measures the recoil velocity of rubidium by transferring momentum

to the atoms via Bloch oscillations to obtain a precision measurement of the fine structure

constant. Tino [PWT11] use Bloch oscillations to precisely measure the force of gravity for

testing gravitational redshifts and Newtonian law at micrometer scale. These experiments

all measure their oscillations using the destructive time-of-flight technique to determine their

sample’s momentum distribution.

Due to our feedback on the lattice from the motion of the atoms, the Bloch oscillation

frequency is imprinted directly on the transmission of the cavity, allowing for a real-time

nondestructive measurement. Prasanna Venkatesh [PTH09] and Peden [PMC09a] discuss

the theory of this nondestructive technique, which I review in my thesis. We will continue

the trend of using Bloch oscillations for precision measurements by looking for the predicted

small oscillating forces from ultralight dark matter.

This thesis starts by describing the theory of neutral atom cooling and trapping, broken

up into our first two stages of cooling/trapping, the Zeeman slower and the magneto-optical

trap, followed by trapping in an optical lattice. I then focus on the theory of Bloch oscillations

necessary to understand one of our two applications: shallow lattice precision force sensor.

The following chapter goes into technical details of the experimental apparatus. Chapter 4

first discusses results from our deep lattice temperature measurement, followed by projecting

future sensitivities for our shallow lattice dark matter measurement. In the conclusion, I

reflect on our progress towards observing Bloch oscillations, and discuss future plans for the

experiment.
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CHAPTER 2

Theory

2.1 Atomic Cooling and Trapping

Obtaining a gas of atoms cold enough to sit in the wells of an optical lattice requires an

ultrahigh vacuum chamber with multiple stages of cooling. Cooling and trapping atoms led

to the 1997 Nobel Prize for William Daniel Phillips, Claude Cohen-Tannoudji, and Steven

Chu [AB20]. We still use their fundamental techniques today to obtain neutral atoms cold

enough to load into an optical lattice.

2.1.1 Cooling

Interactions with the electromagnetic field allow us to use photons to apply forces and exert

control on atoms. An atom can resonantly absorb a photon of a specific frequency, which

is followed by spontaneous emission of a photon isotropically. After many absorptions and

emissions, the average force is in the direction of the absorbed photons. This force from a

beam of photons on an atom is simply the photon momentum times the rate of scattering.

Each atomic transition has an intrinsic scattering rate (equivalent to its natural linewidth)

Γ, but the rate of absorption also depends on the time spent in the ground or excited state.

The scattering rate for an atom with saturation intensity Is bombarded with a photon beam

of intensity I and frequency detuning δ from an atomic resonance is

Rscatt =
Γ

2

I/Is
1 + I/Is + 4δ2/Γ2

. (2.1)

This equation is only true for a two-state system. Atoms are quite complicated having

many states, but typically the two-state system is an excellent approximation when the
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laser frequency is close to a specific resonance and far from all of the others. The photon

momentum is ~k, where k is the wavenumber, resulting in a scattering force of

Fscatt = ~kRscatt. (2.2)

With enough laser power (I >> Is), the maximum force from a beam of photons is

max(Fscatt) = ~kΓ/2. (2.3)

The factor of two can be thought of qualitatively as occurring because half of the atoms are

in the ground state while the other half are in the excited state at any given time.

The first part of the theory section addresses how the scattering force is used to slow

atoms using a Zeeman slower and cool them using a magneto-optical trap. Next, I talk

about how this force is used to confine atoms to the potential wells of an optical lattice.

The second part discusses more complicated atom-light interactions that occur within the

periodic potential set up by the lattice.

Zeeman Slower A beam of hot atoms is created by sublimating an elemental solid in

an oven and allowing the gas to exit through a collimation tube. The Zeeman slower is a

device that slows the beam of atoms using the scattering force from a counterpropagating

laser beam of frequency ω. It exploits the Zeeman shift of atomic transitions with a specific

magnetic field profile B(z) to counter the Doppler shift of the light as the atoms change

velocity while slowing down. The change in frequency of the atomic transition from the

magnetic Zeeman shift is

∆ωB = ∆E/~ =
µBB

~
(gF ′mF ′ − gFmF ) ≡ ∆µB

~
, (2.4)

where µB is the Bohr magneton, gF is the Landé g-factor, mF is the z-component of the

magnetic field for the total angular momentum F , and I have defined ∆µ as the difference

in effective magnetic moments of the ground and excited state. To keep atoms on resonance

with the laser one needs to satisfy the equation

ωa +
∆µB(z)

~
= ω + kv(z), (2.5)
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where v is the velocity of the atoms.

The maximum achievable acceleration follows from Eq. 2.3,

amax =
~k
m

Γ

2
, (2.6)

where m is the atomic mass. Using this constant acceleration and simple kinematics, the

velocity can be written as a function of distance

v(z) = v0

√
1− 2amaxz

v2
0

, (2.7)

where v0 is the initial atom velocity. Plugging this equation into Eq. 2.5 gives a functional

form for the magnetic field needed to maintain resonance,

B(z) = Bbias +B0

√
1− 2amaxz

v2
0

, (2.8)

where I have defined Bbias = ~
∆µ

(ω− ωa) and B0 = kv0~
∆µ

. Qualitatively, Bbias is the magnetic

field needed to keep the slow atoms on resonance with the highly detuned laser at the end of

the slower, and Bbias +B0 is the magnetic field needed to keep the fast atoms on resonance.

Magneto-Optical Trap A MOT uses a quadrupole magnetic field to create an imbalance

in the scattering force from six red-detuned laser beams to spatially confine and cool atoms.

The optical setup consists of three sets of red-detuned counter propagating beams along three

perpendicular axes, see Figure 2.1(b). The atoms are trapped due to an effective spring force

created by the combination of the scattering and the magnetic field gradient, and cooled by

a dissipative force created by the scattering of the light. The qualitative picture is that

when an atom has a velocity pointing away from the center of the trap, it will absorb and

scatter a red-detuned photon coming from a counter propagating beam and on average are

pushed back towards the center. The atom’s resonance with the photon also has a spatial

dependence due to the magnetic field. A typical MOT uses a transition from a spin zero

ground state to a spin one excited state, allowing for three distinct Zeeman excited states,

see Figure 2.1(a) for a visual. A quadrupole magnetic field has zero field in the center,

6



Figure 2.1: (From [Foo05].) Physics of the magneto-optical trap (MOT). (a) The quadrupole

magnetic field creates a linear shift of the excited state Zeeman levels near the center of the

trap. Counter propagating red-detuned beams of circular polarization (σ±) induce scattering

events if the atoms stray from the center of the trap. (b) A diagram of what a typical MOT

consists of: three pairs of counterpropagating circularly polarized beams and a pair of coils

in the anti-Helmholtz configuration provide the quadrupole magnetic field.

and a linearly increasing field close to the center. As an atom moves away from the center

it gets Zeeman shifted by the linear field and becomes on resonance with the red-detuned

laser beam, causing it to be pushed back towards the center. The correct choice of circular

polarization for each beam ensures that atoms can only undergo a transition that pushes

them back towards the center and will not be accelerated out of the trap.

Quantifying this effect, I consider the force caused by the scattering events while taking

into account the Doppler shift and the Zeeman shift of the levels. Here I simply quote the

results, but a full derivation of this force can be found in Sections 9.3-9.4 of [Foo05]. The
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force exerted by the lasers in the small z regime is

FMOT = −2k
∂Fscatt

∂ω
v − 2

g`µB
~

∂Fscatt

∂ω

dB

dz
z. (2.9)

This equation consists of a restoring spring-like force from the magnetic field proportional

to z, and a dissipative force from the scattering rate proportional to v.

2.1.2 Trapping

Optical Lattice Trap Optical lattices confine the atoms to an even smaller region than the

MOT. An optical lattice consists of a standing wave of light created by counterpropagating

laser beams of the same frequency. Besides the force from absorbing and emitting photons

directly, if there is a gradient in the electric field there also exists a dipole force. Both of

these forces can be derived starting from the potential energy of an atomic dipole with an

electric field ~E,

Ut(z) =
1

2
e~r · ~E, (2.10)

where e is the unit of charge, ~r is the dipole vector of the atom, and the subscript t refers

to this being the trapping potential. Without going into the details of the derivation, which

can be found in Chapter 9 of Foot [Foo05], I quote the potential for an optical lattice far

detuned from the atomic transition,

Ut(z) =
~Γ2

8δ`a

I

Is
cos2(k`z), (2.11)

where δ`a = ω` − ωa is the difference between the lattice frequency ω` and atomic resonant

frequency ωa and k` is the wavenumber of the lattice light. Note that the dipole force scales

as 1/δ`a while the scattering force scales as 1/δ2
`a. This means if we go far enough detuned,

we only need to consider the dipole force when looking at lattice dynamics. This scaling

is important since in many situations one wants to avoid scattering, which destroys atomic

coherence. A more thorough look at the atom-light interaction can be found in Section 2.2.2.

Optical Cavity Our optical lattice is formed by an optical cavity consisting of a pair of

convex mirrors with radius of curvatures Rc and separation length Lc. Due to the boundary
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conditions on the metal reflective mirror surfaces, only light with wavelength λc satisfying

Lc/λc ∈ Z is permitted inside the cavity. (More accurately, assuming no mirror loss, light

with wavelength λc is fully transmitted through the cavity, while off resonance light is trans-

mitted with power following a Lorentzian curve with a specific linewidth as a function of

detuning from the cavity wavelength). From this one can derive the distance between two

permitted frequencies called the free spectral range or longitudinal mode spacing,

∆ωLMS =
πc

Lc
, (2.12)

where c is the speed of light. Transverse spatial modes describe the spatial profile of the

beam using a combination of a Gaussian beam profile with a Laguerre polynomial. The

transverse modes are also separated in frequency space by

∆ωTMS = ∆ωLMS

√
2Lc
π2Rc

. (2.13)

The lowest order mode is a simple Gaussian profile with 1/e2 central waist radius of

w` =

(
λLc
π

√
2− Lc/Rc

4Lc/Rc

)1/2

. (2.14)

In the limit Rc >> Lc satisfied by our experiment, the central waist can be approximated

as the waist along the entire cavity, resulting in a Gaussian mode volume of

V` =
1

4
πw2

`Lc. (2.15)

This is the mode we use for all of our cavity experiments. (I switched to subscript “`” for

lattice since the waist and mode volume are properties of the lattice itself.)

After light enters the cavity, it bounces back and forth between the mirrors many times

depending on the intensity reflectivity R of each mirror, with a chance each time of being

transmitted (assuming no loss) of Θ = 1−R, where Θ is transmission (the more customary

variable T is later used in this thesis for temperature). From the reflectivity, I can define

the finesse,

F =
π
√
R

1−R
, (2.16)
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which is useful when calculating the circulating power inside the cavity Icirc from inputting

light of intensity Ii,

Icirc =
2

π
IiF . (2.17)

The finesse is also useful when determining the linewidth of transmittable light,

κ =
∆ωLMS

F
= c

1−R
Lc
√
R
. (2.18)

The decay rate of light leaving the cavity, κ, is the full-width-half-max frequency space

Lorentzian linewidth of transmission,

Θ =
1

1 +
(

∆ω
κ/2

)2 , (2.19)

where ∆ω is the frequency difference between the light and the nearest longitudinal mode.

2.1.3 Laser Stability

Laser frequencies need to be stabilized to well within the linewidth of the Yb transition in

order to consistently cool, trap and measure the atoms. This can be performed with an

external setup using the modulation transfer spectroscopy technique. This section begins

with simpler laser locking techniques that were first implemented during the experimental

setup. It continues with the theory and experimental setup for the modulation transfer

spectroscopy.

Absorption Spectroscopy Absorption spectroscopy is the simplest type of spectroscopy

that allows one to see the Yb resonance. When a laser at frequency ω is sent through a

small cell containing hot Yb atoms and swept over a resonance of the atoms at ωa, the

atoms absorb the beam and there is a dip in the transmission. Because the Yb in the cell

is not cooled, the resonance lines are heavily Doppler broadened. The natural linewidth of

a transition has a Lorentzian lineshape of width Γ. Dominated by Doppler broadening, the

linewidth instead looks like a Gaussian with half-width-half-max of ωa

√
2kBT ln 2
mc2

[LHW97],

where kB is the Boltzmann constant, and T is the sample’s temperature. This width can be
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as high as 500 MHz in our absorption cell, compared to Yb’s 1S0 →1 P1 29 MHz linewidth,

which would limit our laser locking stability.

Saturation Absorption Spectroscopy Saturation absorption spectroscopy (SAS) is a

technique that yields a signal with resolution on the order of the transition linewidth. Instead

of using a single probe beam, it also uses a higher intensity pump beam of the same frequency,

which is sent through the cell in the opposite direction as the probe. If, for example, the

beams are red-detuned from the atomic transition, the pump will only address atoms Doppler

shifted on resonance moving towards the beam. This also holds true for the probe beam, but

since the beams are propagating in opposite directions, the two beams will be addressing

different sets of atoms. The two beams will only address the same set of atoms, atoms

moving perpendicular to both beam paths, when they are on resonance and not Doppler

shifted. At this point, the pump beam excites this population of atoms leaving at most

half of the sample in the excited state (‘saturation’). As the probe beam interacts with this

sample, the excited half of the atoms undergo stimulated emission. As stimulated emission

is directional, this increases the transmission of the probe beam compared to the case when

all atoms were in the ground state. The signal therefore looks like a large Doppler-broadened

Gaussian dip, with a small Lorentzian peak in the center right on resonance.

Our experimental realization of this is shown in Figure 2.2. SAS yields a signal that is

much narrower than the Doppler linewidth of the atoms. However the signal is difficult to

use as a feedback signal because of its offset from zero and its strong dependence on the

power in both the pump and probe; see Figure 2.3 for an example.

Modulation Transfer Spectroscopy Modulation transfer spectroscopy (MTS) is a more

advanced technique that yields a signal at each atomic resonance on top of a flat background

(as opposed to the Doppler broadened background of SAS). This is very useful when applying

feedback to the laser, and is what we use to stabilize both our 399 nm and 556 nm lasers.

MTS again uses a pump and a probe beam, although in this technique they are approx-
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λ/2

Photodiode

Yb Cell EOM

Figure 2.2: Modulation Transfer setup. Or without the electro-optic modulator (EOM),

saturation absorption spectroscopy setup. The beam is split by the first PBS into a probe

beam (transmission) and a pump beam (reflection). The probe beam is absorbed by a

photodiode (PD).

Figure 2.3: An example of a saturation absorption spectrum with rubidium on top of the

Doppler broadened absorption dip. Due to the current global pandemic, I was unable to get

a trace of our Yb SAS spectrum.
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imately equal in power. To produce the desired error signal, the pump beam is frequency

modulated to produce two side bands. The pump beam, one of its side bands, and the

probe beam mix in the Yb cell to create a fourth beam in a process called four-wave mixing.

Non-linear four-wave mixing occurs because of the vapor’s χ(3) susceptibility. The details

of four-wave mixing are not necessary to understand the basics of this process. The out-

put of the photodiode is mixed with the modulation signal and filtered. The mathematical

description of this process is described next.

An electric field of frequency ω that undergoes frequency modulation at frequency ωm

can be expanded using Bessel functions,

| ~E| = E0 sin(ωt+ Am sinωmt)

= E0

( ∞∑
n=0

Jn(Am) sin(ω + nωm)t+
∞∑
n=0

(−1)nJn(Am) sin(ω − nωm)t
)
,

(2.20)

where E0 is the amplitude of the incoming wave, Am is the size of the modulation, and Jn is

the Bessel function of order n. When Am is small (Am � 1) only the n = 0 and n = 1 terms

contribute to the sum, which corresponds to a wave propagating at the original frequency,

ω, along with two sideband waves propagating at frequencies ω ± ωm. The Yb atoms act as

a non-linear absorbing material and have a third order susceptibility. The probe sidebands

beat with the probe beam to produce a signal at the modulation frequency, ωm. The form

of this signal is [Neg09]:

S(ωm) =
C√

Γ2 + ω2
m

J0(Am)J1(Am)

× [(L−1 − L−1/2 + L1/2 − L1) cos(ωmt) + (D−1 −D−1/2 +D1/2 −D1) sin(ωmt)],

(2.21)

where

Ln =
Γ2

Γ2 + (δ − nωm)2
(2.22)

is the Lorentzian lineshape, and

Dn =
Γ(δ − nωm)

Γ2 + (δ − nωm)2
(2.23)
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is the dispersive lineshape. Γ is the natural linewidth of the transition and δ = ωa− ω. The

sine term is often referred to as the quadrature component, and the cosine term the in-phase

component.

This equation can be written in the form

S(ωm) = L(ωm) cos(ωmt) +D(ωm) cos(ωmt− π/2), (2.24)

where the constants have been grouped together so that

L(ωm) =
C√

Γ2 + ω2
m

J0(Am)J1(Am)(L−1 − L−1/2 + L1/2 − L1) (2.25)

and

D(ωm) =
C√

Γ2 + ω2
m

J0(Am)J1(Am)(D−1 −D−1/2 +D1/2 −D1). (2.26)

The signal from the photodiode is then electronically mixed with the modulation signal,

cos(ωmt + φ), where φ is the phase difference between the signal at the detector and the

applied modulation signal. This results in,

S(ωm) cos(ωmt+ φ) =

L(ωm)(cos(2ωmt+ φ) + cos(φ)) +D(ωm)(cos(2ωmt+ φ− π/2) + cos(φ− π/2)).
(2.27)

The signal is then sent through a low pass filter to obtain a final error signal given by,

S(ωm) cos(ωmt+ φ) = L(ωm) cos(φ) +D(ωm) cos(φ− π/2). (2.28)

Applying different phases creates a signal with different amounts of contribution from the

Lorentzian and dispersive lineshape. With the right choice of φ, near resonance the signal

is proportional to the detuning δ, and can be used to linearly feed back and keep the laser

frequency locked to the resonance. A simulated example error signal can be seen in Figure

2.4. See Section 6.4 of the Appendix for information about the simulation code.

2.2 Bloch Oscillations

The standing waves of light from the optical lattice create a periodic potential for the atoms.

Bloch’s theorem gives a general solution for an atomic wavefunction in a periodic potential.
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Figure 2.4: A simulated example of an error signal generated by MTS. This simulation was

performed with a linewidth of 1 MHz and a driving frequency of 1 MHz.

With the addition of a uniform force (gravity and/or dark matter), atoms also undergo a

phenomena called Bloch oscillations, which result in a oscillation frequency proportional to

the applied force. Measuring this frequency using feedback from the atoms on the optical

cavity transmission allows us to measure forces on the atoms. After reviewing the theory

of Bloch’s theorem and oscillations, I discuss the specific Hamiltonian of our atom-cavity

coupled system. This simulation was used to determine the best optical parameters for our

laser and cavity to optimize our measurement on dark matter.

2.2.1 Bloch’s Theorem

The time independent Schrodinger equation for an atomic wavefunction is

p2

2m
Ψ + Ut(z)Ψ = EΨ, (2.29)

where p is the momentum, m is the atomic mass, Ut(z) is the potential energy, Ψ is the

atomic wavefunction, and E is the atomic energy. In a lattice, the potential will be periodic,
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Ut(z) = Ut,0(z + λ`/2), where λ`/2 is the spacing of a standing wave made from light of

wavelength λ`. Bloch’s theorem states that the solution to this equation is of the form

[AM76b]

Ψq(z) = eiqzuq(z), (2.30)

where uq(z) is some periodic function such that uq(z + λ`/2) = uq(z), and q is a quantity

called the quasi-momentum.

Proof This proof is adapted from Chapter 8 of Ashcroft and Mermin [AM76a]. A periodic

potential can be written as a Fourier series,

Ut(z) =
∑
n

Une
ignz, (2.31)

where Un are the Fourier coefficients and gn = 2πn/a where n = 0, 1, ..., N are the reciprocal

lattice vectors. In the assumption that the lattice is large compared to the periodicity, I can

apply Born-von Karman boundary conditions on the wavefunction, Ψ(z + Nλ`/2) = Ψ(z),

where N is the number of periods of the lattice. The atomic wavefunction can also be

expanded as a Fourier series,

Ψ(z) =

∫
k

Ψ(k)eikzdk. (2.32)

Using the boundary conditions,

Ψ(z +Nλ`/2) = eikNλ`/2
∫
k

Ψ(k)eikzdk = Ψ(z), (2.33)

it is clear that

kn′ =
2πn′

Nλ`/2
(2.34)

for integer n′. kn′ are the possible values of momentum for the atom in the periodic potential.

This turns the integral into a sum,

Ψ(z) =
∑
n′

Cn′e
ikn′z. (2.35)

This sum can be re-written as

Ψ(z) =
∑
n,n′

Cqn′−gne
i(qn′−gn)z, (2.36)
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where the substitution kn′ = qn′ − gn has been made. This momentum, qn′ = 2πn′

Nλ`/2
, is

restricted to the first Brillouin zone to avoid over counting in the sum. The first Brillouin

zone contains the integer values of qn′ that fall between −N/2 and N/2.

The full Schrodinger equation can now be written as

∑
n′

[∑
n

(
~2

2m
(qn′ − gn)2 +

∑
n′′

Ugn′′e
ign′′ − E

)
Cqn′−gne

i(qn′−gn)z

]
= 0. (2.37)

Each value of qn′ in the sum is a basis wavefunction that solves the Schrodinger equation,

Ψqn′
(z) =

∑
n

Cqn′−gne
i(qn′−gn)z. (2.38)

Pulling out the constant exponential term reveals the form of the Bloch state,

Ψqn′
(z) = eiqn′z

∑
gn

Cqn′−gne
−ignz ≡ eiqn′zuqn′ (z). (2.39)

2.2.2 Bloch Oscillations

Semi-Classical Model The lattice atoms not only experience the potential from the

standing wave, but they also experience a constant force from gravity, Fg = mg. The full

Hamiltonian is now

H =
p2

2m
+ Ut(z) + Fgz. (2.40)

This constant force results in a phenomenon called Bloch oscillations. Bloch oscillations can

be understood using a semi-classical argument.

The semi-classical model used to describe these oscillations can be justified by considering

length scales. Ut(z) has a periodicity of π/k`, where k` is on the order of 1/µm, making the

periodicity length scale much smaller than the change in the potential due to gravity over the

same distance. Ut(z) is therefore treated quantum mechanically to obtain the wavefunction,

as was done above, and Fgz is treated classically to determine how the wavefunction changes

with time. It is also important to note that the semi-classical model ignores transitions

between different Brillouin zones; therefore the band index n which defines the Brillouin

zone of the wavefunction is constant in time. This approximation holds true when the
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Landau-Zener tunneling rate [Bal08],

r = e−
mλ`∆E

2

4~2F (2.41)

is small, where ∆E is the band gap. In the limit of a shallow lattice, the band gap is directly

proportional to the lattice depth, ∆E = 8Ut. For our experimental parameters this tunneling

rate is extremely small.

Because q is the good quantum number for this system, one can show that the classical

velocity is given by v(q) = 1
~
dE
dq

. See Appendix E in Solid State Physics by Ashcroft and

Mermin [AM76b] for a derivation of this result for periodic potentials. In order to see how

a constant force changes the classical momentum q, first I expand dq
dz

,

dq

dz
=
dq

dt

dt

dz
=
dq

dt

1

v(q)
. (2.42)

Next, I rearrange and substitute in for v(q),

1

~
dE

dq

dq

dz
=

1

~
dE

dz
=
dq

dt
. (2.43)

Classically, dE
dz

is simply the negative force in the z direction, which in this case is −Fg. This

gives the change in momentum with respect to time as,

dq

dt
= −Fg

~
. (2.44)

Integrating this simple differential equation for momentum I get

q(t) = q(0)− Fg
~
t. (2.45)

Assuming that the band index does not change, q plus a reciprocal lattice vector can be

mapped back onto q : Ψq(z) = Ψq+g(z). Therefore, q(0)+ 2π
a

= q(TB), where TB is the Bloch

period. The Bloch period can then be solved for, obtaining

TB =
2~k`
Fg

. (2.46)

The frequency of Bloch oscillations due to gravity is therefore

ωg =
2π

TB
=
πFg
~k`

. (2.47)
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The Bloch oscillation frequency is proportional to the linear force applied. Therefore, mea-

suring the Bloch oscillation is equivalent to measuring the applied force.

This semi-classical approach does a nice job of finding the Bloch oscillation frequency,

but a more thorough quantum mechanical approach is needed to find the specific atomic

dynamics. In addition, the light field itself changes in reaction to the atomic dynamics,

which results in the need to solve coupled differential equations for the atoms and light.

Next I discuss the fundamental Hamiltonian used to model Bloch oscillations. This

Hamiltonian leads to a pair of coupled equations between the atoms and the cavity light

field. The pair of coupled equations are solved numerically in MATLAB to predict the

experimental signal. The simulation is used to optimize this signal from a unknown force.

The derivation of the coupled equations and the simulation model are followed from P.V.

Balasubramanian’s master’s thesis [Bal08].

Quantum Mechanical Model The Hamiltonian for our system consists of terms for the

atom, for the light, and for the atom-light interaction:

H = Hatom +Hlight +Hint. (2.48)

I model the atom as a two state system, so the atomic Hamiltonian consists of a kinetic

energy term, a gravitational potential term, and an excitation energy term:

Hatom =
p2

2m
+ Fgz +

~ωa
2
σz, (2.49)

where σz is the Pauli matrix. The Hamiltonian for the light in the cavity consists of a photon

energy term, a term for light leaking out of the top cavity mirror, and one for light being

pumped in from the bottom cavity mirror:

Hlight = ~ω`a†a− i~κa†a+ i~η(a†e−iω`t − aeiω`t), (2.50)

where a is the photon ladder operator, η =
√
κIi is the pumping parameter.

The interaction term is the dipole energy, or Stark effect, from Eq. 2.10,

Hint =
1

2
erE. (2.51)
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The dipole vector can be expanded as r = µ(σ+ + σ−), where µ = (cε0π
2Γ2~2/Isat)

1/2
is the

electric dipole moment and σ± are the raising and lowering operators for the atomic two

state system. The electric field can be written in terms of raising and lower operators as

| ~E| =
√

~ω`
2ε0V`

(a+ a†) cos (k`z), ε0 is the vacuum permittivity.

Since we are using a cavity frequency that is close enough to resonance with our atomic

transition, I can use the rotating wave approximation to simplify the interaction term: Hint =

~g0 cos (k`z)(aσ+ + a†σ−), where I have defined g0 = µ
√

ω`
2ε0V`~

which is proportional to the

single-atom-cavity-mode interaction frequency. Specifically, for this approximation to hold,

I need ω` + ωa >> |ω` − ωa|, which can simultaneously be satisfied with the far-detuned

condition earlier |ω` − ωa| >> Γ.

Because of this far-detuned condition, I can assume that fractional population in the

excited state is very low (Rscatt << Γ). This allows us to derive a Hamiltonian that has

adiabatically eliminated the excited state to obtain an effective Hamiltonian modeling the

light-induced potential for the ground state of the atom. The details of this derivation are

not shown, and the result is quoted from [Bal08]:

H =
~ωa
2
σz+

p2

2m
+Fgz+~ω`a†a−

~g2
0 cos2 (k`z)a†a

δ`a
σz−i~η(aeiω`t−a†e−iω`t)−i~κa†a, (2.52)

where the detuning is δ`a = ω` − ωa. Here we can see the expected scaling of the Stark shift

g2
0/δ`a.

Next, I make a unitary transformation, Uu = e(itω`(a
†a+1/2σz)), that allows us to express

the Hamiltonian in terms of the the detuning of the light:

H =
~δ`a

2
σz +

p2

2m
+ Fgz −

~g2
0 cos2 (k`z)a†a

δ`a
σz − i~η(a− a†)− i~κa†a. (2.53)

With this Hamiltonian, I can second-quantize the atomic wavefunction and derive the equa-

tions of motion using the Heisenberg equation of motion equations i~Ψ̇ = [Ψ, H] and

i~ȧ = [a,H]. We assume that the light is in a coherent state with coherent parameter

α, which is valid for laser light. Without explicitly deriving them here, I get the coupled

equations:

i~Ψ̇ =

(
− ~2

2m
∂2
z + Ut(t) cos2 (k`z) + Fgz

)
Ψ (2.54)
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α̇ = −i α
δ`a
g2(t) + η − κα, (2.55)

where I have defined two useful parameters: the atomic back action on the field is defined

as

g2(t) = g2
0

∫
|Ψ|2 cos2 (k`z)dz, (2.56)

and the lattice depth as a function of time as

Ut(t) =
~g2

0

δ`a
α∗(t)α(t). (2.57)

2.2.3 Simulation

The basic steps of the simulation are: 1) Determine the initial α(0) and Ψ(0) values, 2)

determine α(t + ∆t) and Ψ(t + ∆t) as functions of α(t) and Ψ(t), 3) incrementally step α

and Ψ forward in time by amount ∆t.

I begin by examining the evolution of the coherent parameter, starting with Eq. 2.55.

I can assume for a small enough time step ∆t, g2(t) is approximately a constant. This

equation can then be separated and directly integrated,∫ α(t+∆t)

α(t)

dα

η − α(ig2/δ`a + κ)
=

∫ t+∆t

t

dt. (2.58)

Therefore the time evolved α is

α(t+ ∆t) =
η

κ

1

ig2/(δ`aκ) + 1

(
1− e(−ig2/δ`a+κ)∆t

)
+ α(t)e(−ig2/δ`a+κ)∆t. (2.59)

I find the steady state value of the parameter by setting the time derivative to zero in the

differential equation, obtaining

αss =
η

κ

1

−ig2/(δ`aκ) + 1
, (2.60)

which can be used as a good approximate guess for the initial value of α.

The plan for the wavefunction is to transform it into momentum space, and calculate the

time evolution for the coefficients of the momentum eigenstates. For the physical system,

I use Born-Von Karmann (BVK) periodic boundary conditions on the wavefunction which
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discretizes the momentum. I say that the system has size L = Nπ/k`, N wavelengths of

the periodic potential. Using Bloch theory analysis, this restricts the allowed values of the

momentum from Eq. 2.34.

At this point I make a variety of definitions to simplify the equation and make it di-

mensionless. I can set k`z = x and t̄ = t/TB, where TB is the Bloch period. I also use

c1 =
2mg2

0

δ`ak
2
`

and c2 = 4m
TBk

2
`

to scale the cavity depth and atomic function respectively, reducing

the equation to (
− ∂2

∂x2
+ c1α

∗α cos2 (x) + c2x

)
Ψ(x, t) = i

c2

2
Ψ(x, t). (2.61)

Next, I make a simplifying transformation, Ψ(x, t̄) = Ψ̃(x, t̄)e−2it̄x and expand the new

field in momentum space using

Ψ̃(x, t̄) =
∑
n

bn(t̄)eink0x, (2.62)

where in the new dimensionless variables, L = N0π and the allowed values of the momentum

are multiples of k0 = 2π/L. I now have a differential equation for the momentum state

coefficients of the wavefunction,

bm(mk0 − 2t̄)2 +
1

4
c1α

∗α(2bm + bm−N0 + bm+N0) = i
c2

2

dbm
dt̄

. (2.63)

For the numerical simulation, I have to make a choice of how many momentum states to

keep in order to make the calculation finite. This equation can be written in matrix notation

as

A~b = i
c2

2

d~b

dt̄
,

where ~b = [b1, b2, ...] and the matrix A is (take N0 = 1 for this example)

A =


(mk0 − 2t̄)2 + c1α

∗α/2 c1α
∗α/4 0 · · ·

c1α
∗α/4 (mk0 − 2t̄)2 + c1α

∗α/2 c1α
∗α/4 · · ·

0 c1α
∗α/4 (mk0 − 2t̄)2 + c1α

∗α/2 · · ·
...

...
...

. . .

 .
(2.64)

22



This equation can be solved incrementally by b(t̄+ ∆t̄) = exp (− i∆t̄A
c2/2

)b(t̄). The initial vector

of momentum coefficients can be approximated by the eigenvector of A corresponding to the

lowest eigenvalue.

After the momentum vector has been found, I can use it to calculate the atomic back

action in momentum space using

〈cos(x)〉 =
∑
n

|bn|2

2
+

1

4
b∗n(bn+N0 + bn−N0). (2.65)

I can plug that back into α(t+ ∆t) for the next optical time step, and use the new value

of α to get a new Hamiltonian and calculate the next atomic time step.

Results The simulation was used to determine the maximum signal to noise ratio possible

by optimizing the lattice depth given our expected experimental parameters. The signal to

noise ratio (SNR) is the power in the Bloch oscillation frequency divided by the power in the

noise. The signal to noise ratio scales linearly with the contrast of the oscillations, ε. Here

we only consider noise due to shot noise, so the SNR scales as the square root of the laser

intensity into the cavity, Ii.

I fixed the scattering rate to Rscatt = 1 Hz to allow 1 s of coherent Bloch oscillations.

Setting the lattice depth and the scattering rate fixes the cavity detuning and the input

intensity. Given those restrictions, I scanned the lattice depth and observed that the SNR

decreased for increased lattice depth. Figure 2.5 shows the simulation results for a variety of

lattice depths. Although decreasing the lattice depth increases the SNR, the lattice depth

eventually becomes too small to confine the atoms against gravity, and the oscillations are

obscured, see Figure 2.5(a). A lattice depth amplitude of Ut,0 = 3ER, where ER = (~k`)2

2m
is

the recoil energy of the atom, was found to be a good compromise between SNR and lack of

confinement. This leads to a detuning of δ`a = −2π ·2 GHz, an intensity of Ii = 130 mW and

a contrast of ε = .03. See Section 6.4 in the Appendix for information about the simulation

code.
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Figure 2.5: Simulation results. Each figure shows the expected laser intensity transmitted by

the cavity assuming 100% transmission, with varying lattice depths for the atoms undergoing

Bloch oscillations due to gravity.

24



CHAPTER 3

Apparatus

3.1 Atoms

3.1.1 Ytterbium

When choosing an atomic species to work with in a neutral atom lab, the most important

property an atom can have is a cycling transition. Cycling transitions allow many repeated

photon scatters at a single laser frequency, which is necessary for efficient slowing and cooling.

Atoms with one or two valence electrons typically have accessible cycling transitions; some

common alkalis (one valence electron) used in neutral atom labs are rubidium and cesium,

and a common alkaline-earth (two valence electrons) is strontium. Ytterbium, a lanthanide,

is also commonly used due to being alkaline-earth-like; having two valence electrons.

Each species has different benefits to exploit for different science goals, for example ru-

bidium has a particularly rich Feshbach resonance spectrum, an essential feature for the

control of quantum-degenerate gases [CGJ10]. Our experiment focuses on achieving low-

background measurements in search for new fundamental physics. Because strontium and

ytterbium have two valence electrons, their ground state S levels have no net orbital or spin

angular momentum. This causes them to be particularly magnetically insensitive, which

helps eliminate one possible background systematic from environmental magnetic field fluc-

tuations for future measurements. In our experiment we plan on achieving high sensitivity

by holding our atoms in an optical lattice and observing Bloch oscillations. Low atom-atom

interactions allow for both another elimination of a possible background systematic, and for

long hold times in the lattice allowing for long measurement integrations. Ytterbium 171
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Figure 3.1: Natural abundance of stable Yb isotopes. Light gray isotopes are bosonic, and

dark gray fermionic. [D13]

has an extremely low ground-state (S-wave) self-scattering cross section of order 10−19 m2

[KEK08]. These favorable properties, along with others such as the rich isotope spectrum,

led us to choose Yb for our experiment.

Isotopes One of the benefits of working with Yb is that it has a large variety of naturally-

abundant stable isotopes; see Figure 3.1. This variety allows us to choose between fermionic

or bosonic atoms, and between atoms with different nuclear spin states. With a nuclear

spin of Inuc = 0, 174Yb lacks ground state structure. Because of that and its high natural

abundance, 174Yb has the highest MOT loading rate and tends to be the easiest to work

with. However, we plan on doing our Bloch oscillation experiment with 171Yb because of its

extremely low self cross section, four orders of magnitude lower than that of 174Yb, allowing

for longer lattice hold times. The hyperfine structure of 171Yb, due to a nuclear spin of

Inuc = 1/2, allows for the use of a “magic lattice”, where both the ground state and excited

state of the atom are equally trapped. Note that the ground state of 171Yb has total angular

momentum F = 1/2, and the excited state is split into F
′
= 1/2 and F

′
= 3/2.
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Figure 3.2: The vapor pressure for ytterbium; see Eq. 3.1 . The red circle indicates where

we usually sit on this curve.

Vapor Pressure One drawback to using Yb is that the oven used to produce a gaseous

beam of atoms needs to be kept at a very high temperature to maintain a workable vacuum

pressure; see Figure 3.2. The vapor pressure for Yb is

log10(P/Pa) = 5.006 + 9.111− 8111K/T + 1.0849 log10(T/K), (3.1)

where T is in Kelvin [Wik19]. Our oven is kept at 450◦ C to maintain a vacuum pressure

for Yb of order 10−3 torr, while rubidium for example only needs to be heated to 50◦ C to

achieve similar pressures.

Electronic Properties Ytterbium has two transitions we use for dual-stage cooling. A

diagram of the relevant transitions can be seen in Figure 3.3.

The singlet transition 1S0 →1 P1 at λ1 = 399 nm obeys all of the selection rules for an

electric dipole transition. It thus has a broad transition linewidth of Γ1 = 2π · 29.1 MHz and

is used for our first stage of cooling, the Zeeman slower. The broad transition would only
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Figure 3.3: Level diagram for ytterbium showing the relevant states for our experiment.

The states are labeled using the convention 2S+1LJ, where S is the total spin, L is the orbital

angular momentum and J is the total angular momentum.
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allow us to cool to 700 µK due to the Doppler cooling limit scaling with linewidth:

TD =
~Γ

2kB
. (3.2)

The saturation intensity also scales with linewidth,

Is =
πchΓ

3λ3
, (3.3)

and for this transition is 60 mW/cm2. The transition wavelength 399 nm is produced by

a doubled Ti:Sapphire laser, with an absolute frequency of f1 = 751525987 MHz for 174Yb

and isotope shifts of ∆f1(1/2→ 1/2) = 1153 MHz and ∆f1(1/2→ 3/2) = 832 MHz for the

two excited states of 171Yb.

The three available triplet states, 3P0,1,2, break at least one of the electric dipole selection

rules, and therefore have narrower linewidths than the singlet transition. Of the three, the

broadest linewidth of Γ3 = 2π · 182 kHz is on the intercombination 1S0 →3P1 transition,

making it a good choice for balancing the fast photon cycling needed in a MOT and the

lower Doppler cooling limit. The intercombination transition has a much smaller Doppler

cooling limit of 4 µK and saturation intensity of 0.13 mW/cm2. The transition wavelength

is λ3 = 556 nm and is produced by a doubled diode laser, with an absolute frequency of

f3 = 539385610 MHz for 174Yb and isotope shifts of ∆f3(1/2 → 1/2) = −1177 MHz and

∆f3(1/2 → 3/2) = 4759 MHz for the two excited states of 171Yb. Yb also has an available

clock transition from 1S0 →3 P0 which is not used in this experiment, but could be useful

for future applications.

Magnetic Properties In the weak field regime (where L-S coupling holds — see Chapter

6 in [Foo05]), a state’s energy is shifted by ∆E = gFµBBmF (see Section 2.1.1).

The contribution to the total angular momentum F in the ground states of both isotopes

is solely from the nuclear magnetic moment, which is suppressed by three orders of magnitude

compared to the electronic magnetic moment. The ground state shift of 174Yb is precisely

zero in this coupling scheme as it has mF = 0. For 171Yb the ground state g-factor is

gF (F = 1/2) = −2.282 · 10−4. The g-factors for the excited states are listed in Table 3.1.
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gF (1P1) gF (3P1)

171Yb F
′
= 1/2 1.380 1.990

171Yb F
′
= 3/2 .690 .995

174Yb F
′
= 1 1.035 1.493

Table 3.1: (Experimentally measured) Landé g-factors for the excited states of transitions

from the S ground state for 171Yb and 174Yb[D13].

3.1.2 Oven

The oven converts solid ytterbium chunks into a beam of Yb atoms aimed at the MOT

capture region. Our oven design is extremely simple, but also functional and reliable. It

consists of ytterbium pieces, ranging from flakes to centimeter sized chunks, placed inside of

a nipple with a blank flange on the back end, and a nozzle on the other. 316 stainless steel

vacuum parts and silver gaskets1 are used, both to minimize corrosion from Yb. The nipple

and nozzle are covered with layers of UHV foil, wiring, and insulation. The resistance wire

used is 21 AWG solid ceramic braid insulated wire with a temperature rating of 1200◦C2.

The insulation is made of ceramic fiber and is rated to 1300◦C. The wire is split into a section

around the nozzle and a section around the oven so that the temperatures can be controlled

independently. It was important that the nozzle stayed as hot or hotter than the oven so

the Yb did not condense and clog the holes.

There are various nozzle designs used by the community, ranging from a simple single

hole drilled into a blank flange, to a set of hundreds of micro-capillary tubes [SRG15]. We

decided to go with a fairly simple design to start, and have continued researching more

advanced designs to increase our atomic flow rate into the MOT region.

An ideal nozzle has a tube radius and length chosen to maximize the flow rate of the

1Lesker Company, GA-0275NSP

2PelicanWire, P2721A875CB
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atoms arriving in the capture region of the MOT, while not wasting Yb in order to maintain

a long oven lifetime. The flow rate of atoms out of a long skinny tube is

Ṅa =
2π

3

n0vavgr
3
t

Lt
Nt, (3.4)

where n0 is the number density of atoms, rt is the radius of the tube, Lt is the length of

the tube, Nt is the number of tubes and vavg =
√

8kBT
πm

is the average velocity of atoms in

the oven[GW60]. For ballistic flow the rate of atoms reaching the MOT at the other end

of the vacuum chamber is the ratio of areas of the atomic beam size and the MOT region

multiplied by Ṅa,

ṄM = Ṅa
πr2

M

πr2
t

= Ṅa
r2
M/L

2
M

r2
t /L

2
t

, (3.5)

where rM = 1.5 cm is the radius of the MOT capture region, and LM = 110 cm is the distance

from the tube to the MOT. Here I have used the small angle approximation tan θe = rt/Lt ≈

θe where θe is the exit angle out of the nozzle tubes. The optimal tube size would have

100% of the atoms entering the MOT region, Ṅa = ṄM , which would lead to a relationship

between the tube radius and length: rt = rM
LM
Lt. For ease of manufacturing our “tube” was

constructed by drilling holes into a blank flange of length Lt = 12.7 mm, which results in an

optimized tube radius of rt = .2 mm. Due to manufacturing constraints, our final design has

a tube size of rt = .5 mm. Observing that the number of atoms entering the MOT region

scales with Nt, we added four extra holes of the same radius each 1.5 mm away from the

center hole. The number of extra holes and the distance from the center were also chosen

based on machining constraints.

The oven is heated from the outside using resistance wire to 450◦C resulting in a vapor

pressure of P = 5 · 10−3 torr (see Fig. 3.2), while the nozzle is kept at 550◦C to avoid

clogging. This vapor pressure can be converted into a number density via n0 = P
kBT

= 7 ·1010

atoms·mm−3 which results in a flow rate out of our nozzle of Ṅa = 2·1015/s. With an estimate

of our machine running 10 hours on weekdays (the oven automatically turns on and off so

this is a good estimate), this leads to an ytterbium consumption of 5 grams/year. With an

input of (at least) 25 grams, we expect to run out no earlier than late 2022.
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3.2 Cooling

3.2.1 Laser Systems

The slower and the MOT require two laser wavelengths, 399 nm and 556 nm respectively. In

order to effectively and consistently address the two transitions, each laser must be capable

of a frequency stability much less than the linewidth of the respective transition. This is

accomplished both by internal relative stability components of each laser system, as well as

external absolute stability to the specific Yb transition frequency. I start by discussing some

of the common tools and techniques we use to control our lasers, then I describe each laser

individually and how we use those tools for stability.

Tools and Techniques We use modulation transfer spectroscopy (MTS), described in

Section 2.1.3, to lock both of our Yb transition lasers. For these MTS locking systems, we

use an electro-optic modulator (EOM) to provide phase modulation to our beam. We use

broadband EOMs with AR coatings to limit reflections3. The EOM drive amplitude needs

to be on the order of tens of volts to obtain sufficient phase modulation, and a tank circuit

to match the 50 Ω input impedance at the desired modulation frequency is necessary to

minimize back reflection of the RF signal. Details of this circuit are in Appendix 6.2.

EOMs naturally have some birefringence, so it is important to align the laser polarization

along a single axis of the EOM crystal to limit polarization modulation, which is translated

to amplitude modulation after a PBS. We also found that temperature stabilizing the EOMs

is crucial to limit polarization modulation on the output.

Other than providing sidebands for stability, these sidebands can be used directly as

frequency shifted light. We use a fiber EOM4 to provide 556 nm light shifted up to 6 GHz

away from the Yb resonance for our optical cavity. Our cavity acts as a filter allowing only

the first order at the modulation frequency to transmit, and blocks the on-resonance zero

3Thorlabs, EO-PM-NR-C4

4AdvR, WPM - K0556 - P48P48AL0
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λ/4AOM

Figure 3.4: Typical double pass AOM configuration. A beam is sent in through a PBS and

deflected by the AOM. The deflected beam then goes through a lens and retroreflected back

by a mirror. This allows the angle of the deflection to be changed without changing the

retroreflected alignment of the beam back through the AOM. The beam passes through a

quarter-wave plate twice, changing its polarization by λ/2, allowing it to get reflected by the

initial PBS. To ensure the beam remains collimated, the distance from the AOM to the lens,

and from the lens to the mirror, are both the focal length of the lens. We typically reach an

efficiency of 50%.

order that would cause Yb heating. Similarly, it is important to temperature control the

fiber EOM for maximum efficiency.

A different tool, the acousto-optical modulator (AOM) is used when the frequency mod-

ulated beam needs to be physically separated from the zeroth order. The angle at which the

beam is separated depends on the modulation frequency, which could cause problems with

alignment when sweeping over frequencies, for example in the 532 nm locking setup, Section

3.2.1. This challenge is overcome by using a simple clever optical set up that sends the beam

through the AOM twice [DHL05]. This double-pass configuration can be seen in Figure 3.4.

We are typically able to get 50% efficiency through this setup, with improvements when

optimizing for beam size and focus through the AOM.

399 nm Laser Our continuous wavelength (CW) 399 nm light comes from a doubled

Ti:Sapphire laser5. As the name suggests, the lasing medium consists of a sapphire crystal

5Entire laser system, including Ti:Sapph, external cavity doubler, and pump were purchased and installed
by M-Squared Lasers
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(Al2O3) doped with titanium. The Ti:Sapph is pumped with a diode-pumped solid-state

laser which lases at 1064 nm and is doubled to the Ti:Sapph pump frequency of 532 nm6.

The system provides >1 W of light at our desired wavelength with a linewidth of < 100 kHz.

The wavelength is highly tunable, which allows other possible future applications such as

measuring the 3P1 transition’s magic wavelength.

The 399 nm laser wavelength is set near the transition frequency of 751.5260 THz by

fiber coupling an undoubled pick off beam to a wavemeter. We use the system’s etalon lock

and ECDL lock, and have found that using the reference cavity for linewidth narrowing

was unnecessary (and caused extra problems). A triangle wave voltage is applied to the

piezo controlling the mirror in the laser’s reference cavity, sweeping over the frequency with

a response of 6 GHz/V. For MTS, a 10 mW beam is split in two to form a pump and

probe beam, both sent counterpropagating through an Yb optogalvanic hollow cathode lamp

(HCL)7, with the probe directed into a photodiode.

A HCL is a glass tube that contains a cathode with Yb on one end, an anode on the other,

and a buffer gas in the middle. A large voltage is applied across the anode and cathode,

causing the buffer gas to ionize and be accelerated into the cathode, sputtering off Yb atoms.

This high voltage is run across a 100 kΩ - 25 W resistor, then through the HCL. 15 mA is

the maximum allowed current through our HCL, but we typically keep it at 2.5 mA (300 V)

to maximize the signal without using excess Yb.

The probe beam is sent into a photodiode8, amplified9, and mixed10 with the RF signal.

The mixed signal is sent through a low pass filters11. This all produces an error signal similar

to that of Figure 3.5. See Figure 3.6 for a schematic of the optical and electrical set up.

6Lighthouse Photonics, Sprout-G

7Hamamatsu, exact model no longer available. Other companies that sell a similar model are Analytical
West, Spectrolamps and Photron.

8Thorlabs, PDA36A

9Mini Circuits, ZFL-500LN-BNC+

10Mini Circuits, ZFM-3+

11Thorlabs, EF502
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Figure 3.5: Example of a modulation transfer spectroscopy signal for the 1P1 transition of

Yb. [WYJ11] CO refers to a crossover resonance.
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Figure 3.6: 399 nm modulation transfer spectroscopy set up. The photodiode signal is sent

through two amplifiers, a mixer, and a low pass filter to produce the error signal. Note that

the initial PBS after the fiber is used as a pick off to send 399 nm light into a test setup for

an injection locked based 399 nm laser system.
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Figure 3.7: Example of our modulation transfer spectroscopy signal for the 3P1 transition

of Yb. “Fine In 1” in red is the voltage applied to the cavity piezo which controls the laser

frequency. “Fast in 4” is the modulation transfer signal.

556 nm Laser Our CW 556 nm light comes from a tunable frequency-doubled diode

laser12. The diode is amplified with a high power semiconductor and doubled with a crystal.

The system provides >800 mW of light at our desired wavelength with a linewidth of <

500 kHz.

The 556 nm transition is much weaker than the 399 nm one, leading to a smaller MTS

signal. This can be countered by using a longer Yb cell, allowing for higher absorption by

the beam through the longer beam path. For the 556 nm lock, we used a larger home-built

cell instead of a HCL. Yb metal is held in a vacuum pumped nipple, surrounded by heating

wire keeping the chamber at 450◦C with 3 A of current (70 V). The error signal for all of

the isotopes is in Figure 3.7.

532 nm Laser A 532 nm laser is used as a stable reference laser for our optical cavity

length. This wavelength was chosen because it is close enough to 556 nm to be included in

the cavity mirror bandwidth, while far enough for separation from the 556 nm using a off-

12Toptica, TA-SHG Pro system
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the-shelf filter. Additionally, 532 nm is a common wavelength, and we were able to purchase

a 50 mW Coherent Compass 215M-50 laser head from eBay. Much of our knowledge about

the inner workings of this laser came from Sam’s Lasers FAQ [Com].

An iodine cell is used as a reference for this laser due to its rich spectra around this

wavelength [SR05]. Because the exact frequency of this laser wasn’t necessary (only frequency

stability), we lock to whichever iodine line is nearest to the laser output without the need

for large frequency tuning. We adjust the current and temperature of the laser to bring it

near an iodine line while quickly scanning a double-passed AOM. We then use MTS with

feedback to the AOM to lock the laser to this line.

3.2.2 Vacuum System

Ultra high vacuum (UHV) is necessary in order to keep background particles from knocking

trapped particles out of the MOT and optical lattice. The vacuum pressure is directly

correlated with the MOT lifetime. A decrease in vacuum pressure therefore increases the

amount of time we can load before atoms begin to decay out of the MOT, which combined

with a constant loading rate allows for a larger number of atoms to be captured.

Vacuum Components Our vacuum system consists of an Yb oven, a Zeeman Slower nip-

ple, a MOT chamber, and a variety of gates, pumps and readouts. There are multiple types

of flanges used to connect vacuum parts, including the most common KF (Klein Flansche -

translation “small flange”) and CF (Conflat). 2.75” CF flanges are used in our experiment

based on the higher baking temperatures and lower vacuum pressures achievable. These

flanges have a knife edge that cuts into a (typically copper) metal gasket13 to create a vac-

uum seal. Out of the most common materials available for viewports, Kodial, Quartz and

Sapphire, we chose to use Quartz14 due to it having the lowest absorption at 399 nm and 556

nm. We AR coated the 2.75” viewports surrounding the MOT chamber to further minimize

13Lesker Company, GA-0275

14Lesker Company, VPZL-275DU
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Figure 3.8: 3D Solidworks model of our vacuum chamber.

reflections.

From +x to −x in Figure 3.8, a Solidworks model of our vacuum system, we start with

the oven nipple15 described in 3.1.2, followed by a buffer nipple to decrease temperature

conductance from the hot oven to the rest of the vacuum system. Next, we have a 6-way

cross16 that branches off into an ion pump, rotary feedthrough17, a viewport, and the rest of

the system (with the remaining two ports attached to blanks).

The rotary feedthrough attached to a custom shutter, see Figure 3.9, is used to block

the Yb beam when not in use in order to decrease cold Yb build up on vacuum parts and

viewports. The rotary is controlled via a stepper motor (attached to the feedthrough), which

is in turn driven by a microstepping motor driver18. This is set up to be rotated via TTL

inputs if necessary, but it is typically turned manually at the beginning and end of each day.

Next down the beam line is an identical 6-way cross with three viewports, and one output

to a turbomolecular pump. This optical access is used as an optional transverse narrowing of

15Lesker Company, FN-0275

16Lesker Company, C6-0275

17Accu-Glass, 102110

18Circuit Specialist, QJ-215
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Figure 3.9: Custom shutter designed in Solidworks that was attached to the vacuum chamber

via a rotary feedthrough. This could be manually or electronically rotated to turn the atom

beam off (left) and on (right).

the atomic beam in the vertical direction, and as a monitoring port of the beam divergence

in the horizontal direction. This right portion of the vacuum system is connected to the left

portion via hydro formed bellows19. The bellows are used for optimization of the alignment

of the beam down the vacuum system. After the bellows is a gate valve20, which allows us,

if needed, to separately open the two halves of the vacuum system without re-pressurizing

the other. Fun fact: the rubber parts of the gate valve do not like to be soaked in acetone.

The left side of the system contains most of the science. First after the gate valve is the

Zeeman slower nipple, which is a custom Lesker 20”-long 1.33”-CF nipple. Following the

slower is the 6” spherical octagon chamber21, which allows optical access for the MOT beams,

and enough room for an in-vacuum optical cavity. This chamber has two 6” viewports22,

19Lesker Company, MH-CF-C03

20Duniway, GVMM-150-CF

21Kimball Physics, 53-180200

22Lesker Company, VPZL-600DUC2
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5 2.75” viewports and one tee23. The top of the tee has a viewport, and the side has a

electronic feedthrough24 used for the optical cavity piezos. Coming out of the left side of the

MOT is a variety of tees and elbows that branch off to a titanium sublimation pump, ion

pump, and ion gauge. The final tee has a viewport on the bottom which looks up onto an

in-vacuum 45◦-set mirror, which allows the 399 nm beam to be sent down the length of the

slower.

Pumps A variety of pumps are needed to get the system at or below 10−9 Torr. A roughing

pump is a first stage pump, used between room pressure and 10−3 Torr. The turbomolecular

pump (turbo pump) is used to bridge the gap between the roughing pump and the sensitive

ion pumps, which could break above 10−6 Torr. Once the pressure reaches 10−6, an angle

valve 25 is used to close off the roughing and turbo pump before turning on the ion pumps,

which continuously run during experimental operation. The final titanium sublimation pump

(ti-sub) is turned on once or twice as the final step and only decreases the pressure by a few

10−10 Torr. Following is a list of each pump part, and a brief description of operation.

• Roughing Pump: The Agilent IDP-3 Dry Scroll Vacuum Pump can reach 10−3 Torr.

It consists of two archimedean spirals, one rotating on top of the other. As the spiral

rotates, it lets air in between the two spirals, then seals off the opening and compresses

the air, pushing it through the spirals out of the system.

• Turbomolecular Pump: The Agilent Turbo-V 81-M Vacuum Pump reaches the next

level of vacuum, approximately 10−6 Torr. This pump is made up of fast rotating

angled blades which hit molecules and give them momentum in the direction of the

exhaust.

• Ion Pump: The Duniway 30l/s Ion Pump and the Agilent VacIon Starcell Plus 40 allow

23Lesker Company, T-0275

24Lesker Company, EFT0143058

25Agilent, 9515027

40



the system to get down to 10−9 Torr. Ion pumps accelerate electrons with electric and

magnetic fields that bombard particles creating ions. These ions then get accelerated

by a kV voltage towards a grounded cathode plate covered in Titanium. The fast heavy

ions sputter titanium that coats the nearby surfaces. Titanium is highly reactive with

typical air molecules which then stick to the surfaces lowering the gas pressure of the

system.

• Titanium Sublimation Pump: The Agilent Titanium Sublimation Cartridge is the last

stage of the pumping process and can push the vacuum down to levels of 10−10 Torr. It

works by sputtering off titanium, coating the local surfaces, and trapping gas particles

on the reactive titanium.

Pressure Before and after the Zeeman slower, the atoms are directed through differential

pumping tubes into the 3D MOT region. This allows for the 3D MOT region to maintain a

pressure of < 10−9 torr when the Zeeman slower region is at a higher value of ≈10−7 torr,

and the chamber right after the oven as high as ≈10−5 torr. The pressure ratio between

two chambers connected by a tube can be found using Pr = Sr
C

+ 1, where Sr = 30 L/s

is the pumping rate on the lower pressure side and C is the molecular conductance. The

conductance of molecules through a tube is C =
πd3
d

12Ld

√
kBT
2πm

, where dd is the diameter of the

tube and Ld is the length. For air at 20◦C and a differential pumping tube with dd = 0.5 cm

and Ld = 7 cm, the pressure ratio is Pr = 340. The Zeeman slower nipple also acts as a long

differential pumping tube with dd = 2 cm and Ld = 30 cm, leading to an additional pressure

ratio of Pr = 12. The two differential pumping tubes and the Zeeman slower nipple combine

to a pressure ratio between the first chamber after the oven and the 3D MOT chamber of

106, ensuring a low enough vacuum pressure to maintain long coherence times (>1 s) in our

optical cavity.

Obtaining UHV A meticulous procedure for all of the vacuum parts is followed to ensure

that UHV levels were reached. A lot of these procedures are lore, but since it would be
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extremely time consuming to try different cleaning techniques, each followed by vacuum

assembly and multiple day bake-out, we follow them religiously.

All parts that come from vacuum manufacturing companies are soaked in ultrasonic baths

of acetone and methanol for 30 minutes each. The acetone cleans the surfaces of the parts

but leaves a residue. A methanol bath is then used to clean off the residue left by the acetone.

Any parts that are made by the machine shop are first washed with Alconox, a de-greaser.

After 30 minutes of the ultrasonic bath filled with Alconox and water, the parts go through

two 30 minute ultrasonic baths with clean water to get rid of the Alconox residue, then go

through the acetone methanol treatment.

In order to get rid of particles stuck to the wall of the chamber and light elements trapped

within the stainless steel itself, the entire chamber is wrapped in heating tape and baked.

In order to ensure uniform heating, a tight layer of aluminum foil, which has a thermal

conductance 17 times higher than steel [The], is applied over the heating tape. Loosely fit

foil over the tight layer provides insulating air pockets. If the chamber is not uniformly

baked, temperature gradients can cause leaks or can cause the glass windows to break. The

goal temperature of 175◦C must be reached by slowly ramping up the temperature so a

gradient is not formed and the glass does not break. The temperature is brought up from

room temperature at approximately 1◦C per minute. The final baking temperature of 175◦C

is limited by the maximum allowed temperature for the windows of 200◦C.

Before baking, the roughing pump and turbo pump are run for about an hour, resulting

in a vacuum of 5 · 10−5 Torr. Once the system reaches its final temperature, it is baked

for a couple of days. After the system is cooled back down (again at approximately 1◦C

per minute), the ion pumps and the titanium sublimation pump are used to decrease the

pressure further, to obtain a final vacuum pressure of ∼ 1 ·10−9 Torr. We expected to be able

to obtain vacuum pressure closer to 1 · 10−10 Torr, and suspect the limitation comes from a

small leak in the tee that houses the 45o angle mirror due to the difficulty in tightening the

double-flange, and due to the stresses incurred as a mounting point for the vacuum chamber.
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3.2.3 Zeeman Slower

A beam of particles exiting a tube have a velocity distribution

f(v) =
v3
z

2v̄4
e−v

2
z/(2v̄

2), (3.6)

where v̄ =
√
kBT/m. The MOT has a capture velocity of 2-10 m/s [KHT99] depending on

the broadening (see Section 3.2.4), while the atoms coming out of the oven at 450◦C have a

most probable velocity of vp =
√

3kT
m

= 322 m/s.

Adding a slowing stage before the atoms reach the MOT can greatly increase the num-

ber of atoms below the capture velocity. A simple slowing design consists of aligning a

counterpropagating resonant laser down the atomic beam path. An atom absorbs a photon

with momentum in the opposite direction, then spontaneously emits it isotropically. After

many absorptions, on average, the atom loses momentum. However, since the atoms start

at vp = 322 m/s and end at near zero velocity, they experience a massive Doppler shift,

∆ωD
ω

=

√
1 + vp/c

1− vp/c
− 1, (3.7)

by as much as ∆ωD = 2π · 800 MHz from the counterpropagating laser. Since the linewidth

of the 399 nm transition for Yb is 2π · 28.9 MHz, the laser can only address a small portion

of the atoms at any given time. The laser can be kept on resonance either by changing the

frequency of the laser as the atoms slow down, or by changing the resonance of the atoms

directly. The Zeeman slower uses a magnetic field to directly change the resonance of the

atomic transitions.

We use the 399 nm cycling transition of mF = 0→ mF ′ = −1 for 174Yb (we equivalently

could have used mF = 0 → mF ′ = 1) and mF = 1/2 → mF ′ = 3/2 (or equivalently

mF = −1/2 → mF ′ = −3/2) for 171Yb. Table 3.1 can be used to determine ∆µ for these

two transitions. Conveniently, both transitions yield ∆µ ≈ µB because of the difference in

mF ′ sublevels, and we don’t have to change the magnetic field parameters when switching

isotopes.
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The design of the Zeeman slower amounts to choosing the magnetic field profile, Eq. 2.8,

the atoms experience as they travel down its length, repeated here for reference,

B(z) = Bbias +B0

√
1− 2amaxz

v2
0

.

The design allows us to get estimates for Bbias, B0, the length of the slower, and the detuning.

In reality, we set up our experiment with these parameters, then scan each one to determine

the value which maximizes the trapped atoms in the MOT.

The span of the magnetic field, B0, is determined by the maximum desired acceptance

speed of Yb from the oven, vm. Compromising high acceptance with ease of magnetic coil

construction, we chose B0 ≈ −600 G, which has an acceptance velocity of vm = 350 m/s,

accepting around half of the atoms that come out of the oven. The value of Bbias is set by

the detuning of the beam from the atomic transition. Because the slower beam necessarily

travels directly through our MOT region, a far detuned beam is necessary to keep from

heating and pushing the MOT atoms. We chose a detuning of ω − ω0 = −2π · 700 MHz,

which only displaces the MOT 3 mm and yields a heating rate which is less than the self-

heating rate of the MOT [Fre15]. This leads to Bbias ≈ 500 G, yielding a magnetic field

range of −100 G to 500 G, which we determined to be manufacturable.

The length of the slower necessary for the atoms to slow to a final speed of vf is Ls =
v2
0−v2

f

2amax

(rearranged from Eq. 2.7). Choosing vf requires balancing the increase in atoms that are

at or below the MOT capture velocity as vf is decreased, and the increase in atoms from

the large divergence out of the slower when vf is increased. We chose a final velocity of

vf = 10 m/s, which would allow for a length as small as Ls = 6 cm. It is typical to decelerate

the atoms at a rate slower than the maximum deceleration in order decrease the sensitivity

to small imperfections in the magnetic field profile and decrease the amount of laser power

needed. We chose to go with the maximum length possible given physical constraints on

our optics table, Ls = 35 cm, which gives us flexibility with beam power, and makes the

construction of the complicated magnetic field profile easier.

The coils needed to make the desired magnetic field were simulated in MATLAB; their
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Figure 3.10: Zeeman slower coil layout. Five distinct coils were used for maximum control

of the magnetic field.

arrangement is in Figure 3.10. The coils consist of five sections of wrapping that are inde-

pendently current controlled. Details about the wiring can be found in Table 3.2. The first

layer is a solenoid made from hollow square kapton-coated wire26 allowing for water cooling

through the middle of the coils. On top of that there are two sets of coils made from flat

solid rectangular kapton-coated wire27, one with a negative taper and one with a positive

taper. On the end of the slower coils on the side leading into the MOT, there are be two

larger sets of coils. The first coil enables the magnetic field to reach its peak value, and the

second coil sharply turns off the magnetic field so that the atoms had a clean break out of

the system at vf , and the magnetic field leakage into the 3D MOT system was limited. The

contribution of each coil to the total magnetic field can be seen in 3.11.

Between the winding layers there is thermal epoxy28 to aid in thermal conductivity so

that the system can be efficiently cooled. Some photos of the construction process are shown

in Figure 3.12. The hollow inner layer of coils has water running through them for cooling.

The large peak and turn-off coils are flanked by metal disks (similar to the plastic one seen

in Figure 3.12), which are also water cooled. These measures allowed for continuous running

26We borrowed this from the Hudson lab and I don’t know the part number.

27Swiger Coil Systems, 033X0.098R

28Duralco, 4525-IP
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Figure 3.11: Magnetic field contribution from each of the five coils used to make the appro-

priate total field for the Zeeman slower.

of the coils with no over-heating.

The 399 nm laser is locked −270 MHz detuned to the transition by locking a first order

mode of an AOM to an Yb reference cell. It is then further red detuned via a double pass

AOM system29 at drive frequency 260 MHz which also allows for small adjustments in the

detuning for optimization. This drive frequency is created by a voltage controlled oscillator

(VCO), with calibration shown in Figure 3.13. Choosing the correct order out of the AOM

gives us a total detuning of −790 MHz. The beam is then blown up to about 0.5 cm radius,

reflected off of an in-vacuum 45◦ mirror, and sent through the length of our chamber. We

use a camera focused on the differential pumping tube near our oven to roughly align the

laser, but ultimately make small aligning adjustments by watching the number of atoms in

the MOT. The complete optical setup for the 399 nm laser is in Figure 3.14.

The slower was tested with the oven at 400◦C. The power in the slower beam laser was

29Isomet, 1250C-829A
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Figure 3.12: The long nipple was covered in tin foil and heating tape for vacuum baking

purposes. A thermocouple was placed inside to monitor temperature. The magnetic wire

was wound on a lathe.
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Figure 3.13: Voltage controller oscillator (VCO) calibration for voltage to drive frequency.

This VCO controls the double passed AOM for our MOT laser. To obtain the MOT detuning,

subtract two times this drive frequency from −270 MHz.
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Figure 3.14: Complete optical setup for the 399 nm laser. The thin film polarizers (Eksma

Optics, number 420-1253E) were used due to the high laser power. The percentages represent

the laser power in each direction with respect to the incoming beam.
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Size of Wire (mm) Current (A)

Solenoid 4 x 4 9.5

Positive Taper 0.8 x 2.5 5.2

Negative Taper 0.8 x 2.5 −5.2

Peak 0.8 x 2.5 6

Turn-off 0.8 x 2.5 −4.1

Table 3.2: Details about the wires used to create the slowing magnetic field.

92 mW, and is subsequently kept at ≈100 mW. The atom number was measured using an

absorption beam that was θa = 3◦ off from perpendicular. The absorption beam detuning

was swept and mapped onto the −x direction velocity of the atoms using the Doppler shift

∆ωD = k3v sin θa, where k3 is the wavenumber for the 556 nm laser. With the slower off,

the atom distribution peaked close to the expected most probable velocity of vp ≈ 300 m/s.

With the slower on, a large population of the atoms was slowed to a center velocity of 8 m/s.

3.2.4 Magneto-Optical Trap

The Zeeman slower slows the high velocity Yb from the oven to a few meters per second.

The magneto-optical trap (MOT) then cools these atoms and spatially traps them at the

center of our vacuum chamber. It is important for the atoms to be much colder than our

optical cavity lattice depth (< 100 µK) to ensure efficient loading. The MOT can nominally

cool the atoms down to their Doppler cooling limit, TD = 1
kB

~Γ
2

= 4 µK for the 556 nm

transition, but we typically observe temperatures of 10–20 µK.

The optical set up uses three pairs of counterpropagating beams along three perpendicular

axes. The beams are separated using PBSs, sent through quarter-wave plates to obtain

circular polarization, and magnified by a factor of four with a telescope. A larger beam

size increases the capture region, but decreases the maximum intensity per beam (we use

the maximum available laser power typically ¿100 mW). Our setup also consists of an in-
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vacuum optical cavity which has cut outs for the beams, limiting the beam size, leading to a

final beam size of 1/e2 intensity radius 1.5 cm. We initially struggled to get large Gaussian

beams without rings. We were using Thorlabs PM-405-XP fibers for all of the beams in

our lab, and found that increasing the center wavelength of the fibers, switching to Thorlabs

PM-488, greatly reduced the contrast of the rings. Note that the easier solution of increasing

the NA of the collimation lens after the fiber was not enough with the 405 nm centered fiber.

Our choice of specific MOT parameters closely follows that of Dörscher’s thesis [D13], with

small adjustments made to optimize our system. Each diagonal beam receives 21% of the

total 100 mW of power, and each axial beam received 8%. A diagram of the optical setup

can be seen in Figure 3.16. A diagram of the complete 556 nm optical setup that produces

the MOT beams can be seen in Figure , as well as the beams used for the optical cavity

talked about in the next section.

The narrow intercombination transition used for the MOT allows for the low Doppler

cooling temperature limit, but also results in a very low capture velocity. If we were to

release the atoms from the Zeeman slower at the capture velocity according to the natural

linewidth of the transition, 2 m/s, the beam expansion would greatly limit the flux into the

MOT capture region. To increase the capture range and therefore increase the flux into

the MOT, we modulate the beam frequency at 300 kHz, slightly larger than the linewidth.

The modulation is performed by modulating the input to the VCO controlling the MOT

detuning. As the atoms slow down, they are resonant with sidebands closer and closer to

their transition frequency. The beam is red-detuned ≈3.7 MHz from the transition, and

symmetrically broadened to a width of ≈3 MHz to ensure there was very little power in any

blue sidebands which heats the atoms.

The quadrupole magnetic field is made using a pair of coils in the anti-Helmholtz config-

uration. Two plastic spools are designed and machined to screw directly onto the vacuum

chamber. We use hollow square wire to allow for the possibility of having large magnetic

fields in the future that would require water cooling. The wire is wrapped with 8 turns per

layer and 7 layers using a lathe, providing a magnetic field gradient at the atoms of roughly
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λ/4
λ/2

16%

84%

8%

21%

Figure 3.15: The beam used for the MOT is typically 100 mW at the fiber exit. It then

passes through a telescope, and a filtering PBS. The beam is subsequently split up into the

6 beams needed for the MOT. Angles and sizes not to scale. The percentages shown are

out of the 100 mW; each of the horizontal beams has 8% of the total power and each of the

diagonal beams has 21% of the total power.
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AOM

Spectroscopy

MOT

Absorption

Science cavity

Fiber EOM

+226 MHz

+114MHz

+115MHz

-110MHz

+113MHz

Optical Pumping

Toptica 556 nm laser

3%

97%

40% Efficiency

8% Efficiency

λ/2

λ/2

Figure 3.16: Complete optical setup for the 556 nm laser. The percentages represent the

laser power in each direction with respect to the incoming beam.
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0.4 Gauss/cm/A. A MATLAB simulation of the coil setup was performed to check the lin-

earity of the magnetic field gradient at the center of the MOT. The gradient was determined

to be a constant within ±1% in the ±1 cm region around the center of the chamber.

Atoms are typically cooled to ∼ 20 µK at a loading rate of 107 atoms/s for Yb174.

3.3 Trapping

3.3.1 Optical Cavity

Atoms trapped in an optical lattice are the crux of our experimental apparatus. The coupling

between the atoms and the lattice allows us to extract information about the atoms by

reading out information from the light. Using an optical cavity to form this lattice has

many benefits compared to other methods like a retro-reflected beam. The light bounces

between the cavity mirrors many times before exiting. Because of this and the boundary

conditions, the amplitude of the standing wave is greatly amplified and decreases our laser

power requirements. In addition, the cavity restricts the geometric spatial mode and phase

relation of the beam, decreasing issues with shot-to-shot fluctuations in the lattice position

and amplitude.

We have a variety of requirements and limitations to keep in mind when designing the

cavity. Spatially, the cavity spacer has to fit within our octagonal vacuum chamber, and be

mounted via brackets30 to one of the windows. Because we directly load the MOT atoms into

the optical lattice, the spacer needs to allow optical access for all six 1.5 cm-diameter MOT

beams. Since we are located in California, the mounting system should also be earthquake

proof.

Fluctuations in the cavity length on the order of one wavelength of the light cause large

fluctuations in the transmitted light, adding noise to our signal. We specifically want to

avoid length fluctuations with frequencies around our expected signals: 1 kHz for gravita-

30Kimball Physics, MCF275GrvGrbC02
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tional Bloch oscillations, < 100 Hz for dark matter and 500 kHz-1 MHz for temperature

measurements. Slow temperature fluctuations can be managed by using piezo actuators to

correct for length changes, however their limited range means we still needed to consider

thermally insensitive materials. Finally, we have to consider machining capabilities and cost

since we are using a glass spacer.

The specifications for the cavity mirrors are important for considering our expected signal

to noise ratio. We also consider ease of alignment and cost when choosing radius of curvature

and transmission requirements for the mirrors. First, I describe spacer design and mounting

system, and walk through some vibrational analysis I performed on the set up. Next, I discuss

our choice of mirror cavities, which is crucial in obtaining the best atom-cavity coupling for

our science goals.

Spacer And Mount Design The cavity spacer we designed was based a cavity spacer

in Justin Bohnet’s PhD thesis [Boh14] in which he explores superradiant lasing and spin

squeezing.

The geometry of the cavity spacer is constrained by the length of the cavity, the space

available inside of the 3D MOT chamber, and the optical access needed for the 3D MOT

beams. The length of the cavity was chosen to be as large as possible given the chamber

constraints, with large cut outs for 3D MOT beam access while not sacrificing rigidity. The

length of the cavity is therefore Lc = 3.6cm. On the top and bottom of the spacer there are

holes for cavity laser access. On the inside of the spacer, there are flattened level surfaces

to which piezos and cavity mirrors are epoxied. See Figure 3.17, and see Appendix 6.1 for a

machining drawing for technical details.

To limit the vertical “squishing” vibrational modes, which change the length of the cavity,

the spacer is designed to only have contact with the cavity mount legs near the vertical

center, and to be as symmetric as possible. The material used is Zerodur, a type of glass

with extremely low thermal expansion, orders of magnitude less than steel.

The squishing modes were estimated before construction by using a simple model of the
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Figure 3.17: Optical cavity and mount. The mirror spacer is made of Zerodur, and has cut

outs to allow optical access for the MOT beams. There are two highly reflective mirrors,

each on top of a piezo for cavity length control. The stainless steel base connects the spacer

to the vacuum chamber.
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system to ensure that the resonance were not in one of the design-excluded regions. The

spring constant of a physical system is kS = SSY/LS, where SS is the surface area of the

spring, Y is the material’s Young’s Modulus and LS is the length of the spring. The Zerodur

piece, with Y = 90.3 GPa [Zer], was modeled as four rectangular springs in parallel. With

the projected mass I estimated the resonant frequency as 1
2π

√
kS
m

= 10 kHz. Using the

manufacturer’s spring constant for the piezos and material estimates for the mirrors, the

expected resonances are 115 kHz and 70 kHz, well out of our problematic ranges.

We are also concerned about total vertical acceleration of the spacers, which by symmetry

would mimic an atomic acceleration in the opposite direction. For this I calculated the

transfer function system, in other words how well a vibration of the table transfers to a

vibration of the cavity. I then used the expected acceleration of the optics table to estimate

the total acceleration the cavity will feel within each frequency range of interest. A mount

rigidly attached to the vacuum chamber, which is in turn rigidly attached to the table, would

have a transfer function of one for all frequencies. I compared this to including four rubber

balls for damping in between the vacuum chamber and the cavity mount. The results of this

analysis are that a rigidly mounted cavity is better than adding an extra layer of passive

damping, but I would like to include my calculations as a reference for how to analyze

mechanical systems in the lab.

I was interested in comparing the transfer function of a four-ball passive damping system

to a rigidly mounted system. The differential equation for a driven system is simply

mẍ+ bẋ+ kSx = Fd cos (ωt), (3.8)

where m is the mass, b is the damping coefficient, x is the displacement of the mass, Fd is

the driving force, and ω is the driving frequency. The solution to this equation is

x(t) =
Fd/m√

(kS/m− ω2)2 + ω2b2/m2
cos (ωt). (3.9)

I am interested in the acceleration response, so the second derivative of the solution is

ẍ(t) =
−ω2Fd/m√

(kS/m− ω2)2 + ω2b2/m2
cos (ωt). (3.10)

56



ω2

kS
Fd is the amplitude of the driving acceleration, so I can divide that out to obtain the

transfer function:
kS/m√

(kS/m− ω2)2 + ω2b2/m2
. (3.11)

The benefit of using a damping mechanism is clear when I look at driving frequencies much

higher than the resonance of the system
√
kS/m. When sqrtkS/m << ω, the function

scales as ω−2, sharply decreasing the acceleration transfer. It is also important to look

at the maximum of the transfer function, which occurs at the critical driving frequency

ωc =
√
kS/m− b2/(2m2), and has a transfer function greater than one. This should not fall

on, for example, the resonance of the optical table.

I modeled the rubber balls as ideal springs, estimating the surface area to be the cross

section of the sphere, and the length to be the diameter of the sphere, 1.5 mm. There are

four balls in parallel, giving a spring constant of kS = 2.8 · 104 N/m. The damping equation

for Viton, the rubber of choice for UHV applications, is found in [CVD]. The loss factor is

b
bc

, where bc = 2
√
kSm is the critical damping coefficient. After reviewing possible materials,

I decided to use a loss factor of 0.1 for this calculation.. This gives an estimated damping

coefficient of b = 56 kg/s.

I obtained the mass of the Zerodur cavity and steel cavity spacer in Solidworks, which

together are approximately 0.2 kg. To lower the spring constant, I also included a cage

mount for a large tungsten cylindrical tube which adds a mass of up to 2.6 kg to the system.

Finally I’d like to compare all of these response frequencies to the amplitude of the driving

frequencies on a typical optical table. Our lab has optical tables31 that include a passive

damping mechanism. Because the table is heavy, the resonance of this damping is quite low,

usually around 1 Hz. These background levels of the table were measured in Achim Peters’

PhD thesis [Pet98], and can be seen in Figure 3.18.

Because the table already provides damping from the environment above 2 Hz, we only

expect large improvements in the total acceleration if our additional passive system has a

31Newport,RS2000-48-12 tabletop with S-2000A-423.5 stabilizing legs
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Figure 3.18: Noise profile of a floating Newport table.

resonance below 2 Hz. However, I found that the critical resonance with and without the

extra tungsten weight would be 16 Hz and 50 Hz respectively. In order to get our system to

have a resonance below 2 Hz, we would need an extra weight of 175 kg. This is not feasible

with simple engineering for our system. One group [Boh14] added large support rods that

connect their cavity to a heavy pendulum that hangs below their chamber, but they still

observed low frequency vibrations on their system at 17 Hz.

Cavity Mirrors Specifications for the mirrors include the coating on two sides and the

radius of curvature. The outside faces of the mirrors are AR coated to minimize spurious

reflections. When choosing an intensity reflectivity R of the inner coating, we consider its

effects on the linewidth of the cavity and the finesse. From the simulation (Section 2.2.3) I

found that decreasing the linewidth increases SNR. The lower limit for our cavity linewidth

is the Bloch frequency. This is countered by the manufacturing challenge of having both

high reflectivity and efficient transmission while maintaining low loss. Loss can come from

both absorption by the mirrors and scattering. Working with manufacturers, the lowest

reasonable loss possible for a single wavelength mirror is 10 ppm. This means that we have

a maximum reflectivity of R = 0.99999 (κ = 2π · 6 kHz) with no transmission. Again

working with manufacturers, we settled on R = 0.999 which allowed for transmission 100
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Cavity Parameter Expected Value Measured Value

Length (Lc) 3.6 cm 3.63121(4) cm

Radius of Curvature (Rc) 70 cm 70.52 cm

Reflectivity (R) .999 .9986

Linewidth (κ) 2π · 1.5 MHz 2π · 1.8 MHz

Finesse (F) 3100 2293

Waist (w`) 140 µm ∼

Table 3.3: Summary of cavity parameters (at time of manufacturing).

times greater than the expected loss. We could consider pushing this reflectivity higher in

the future for a narrower cavity. This results in a nominal linewidth of κ = 2π · 1.5 MHz

and finesse of F = 3100.

The larger radius of curvature increases the mode volume of the lattice allowing for a

higher capture percentage of atoms from the MOT. We also took into consideration that

a high radius of curvature increases the difficulty in aligning the cavity mirrors because of

the increased angular precision necessary to keep the light from walking off the mirrors after

many bounces. We decided on a radius of curvature of Rc = 70 cm. As the coating run is the

expensive part of manufacturing (as opposed to the number of mirrors), we added Rc = 20

cm and Rc = 125 cm mirrors as options for the future. The intensity 1/e2 waist radius of

the cavity mode is w` = 140 µm. We can calculate the expected number of atoms loaded

into the cavity by multiplying the lattice mode volume by the diameter of the MOT divided

by the length of the cavity. For 107 atoms in the MOT with a loading time of 1 s and a

density of 1011 cm−3, we are able to load 106 atoms into the cavity.

Piezos Because the exact laser frequency is quite restricted by the atom resonance and

desired detuning, it is convenient to be able to change the cavity length to match the laser

resonance. Adding piezo-actuators in between the spacer and the cavity allow for scanning
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the length of the cavity and therefore the frequency for fine-tuning. Minimally, we want a

piezo that can scan one free spectral range. However, if we’re trying to match modes of

lasers with two different frequencies, being able to scan multiple FSRs can be very helpful.

We decided to install Noliac NAC2123 piezos on both mirrors in case of accidentally shorting

one during the bake-out. These piezos are ring shaped for optical access, and have a max free

stroke of 3.3 µm, allowing us to scan about 3.3 µm/556 nm∼ 5 FSR’s with each piezo. We

have found the flexibility of having two working piezos very useful - one for gross scanning,

and one for locking feedback.

After failing at manually aligning the piezos and mirrors to a precision necessary to get

a centered cavity mode, the piezos and mirrors were epoxied32 to the spacer by the same

company that machined the spacer.

Stabilizing The cavity length needs to be stabilized to well within the length of our laser

wavelength, ∆Lc � λ`. We use the stabilized 532 nm laser as a reference to lock our cavity

length via the Pound-Drever-Hall technique [DHK83]. An EOM generates sidebands at 24

MHz on the 532 nm laser, then the light is split by a PBS and sent into the science cavity.

The phase change in the reflection from the cavity when near resonance can be used to create

an error signal very similar to that of MTS 2.1.3, see Figure 3.19.

Testing The cavity was manufactured by Stable Laser Systems. After installing the cavity

into the MOT vacuum chamber, and baking down to UHV, we tested the cavity to check

the mirror specifications.

We found that the linewidth was limited by our ability to clean the mirrors, and that

First Contact Cleaning Solution was the best cleaning method. (This solution is also used

by LIGO.) To measure the linewidth, we lock the cavity to a stable reference, then scan the

AOM frequency of the 556 nm laser across the resonance. The transmission is recorded and

fit to a Lorentzian curve. Our first measurement on April 26th, 2018 was κ = 2π · 1.8 MHz.

32Masterbond, EP21TCHT-1
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Figure 3.19: Optical setup for 532 nm stabilizing laser and 556 nm lattice laser into the

optical cavity.
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Figure 3.20: Science cavity linewidth as a function of days since installation. The data fit

well to a line, y/MHz = 0.0024 · days + 1.81.

We also measured the length of the cavity by measuring the FSR to find LC = 3.63121(4) cm.

These two measurements allow us to infer the reflectivity as R = 0.9986, only slightly more

than 1σ lower than spec. The free spectral range can also be measured by scanning the laser

frequency this time with an EOM, and was found to be FSR = 4128.0(5) MHz. With these

two values, we can calculate the finesse F = 2π · FSR/κ = 2293.

Assuming that each mirror has the same reflection and loss values, we expect the ratio

of the output to input power to be 1
(1+l/(1−l−R))2 , where l is the loss of each mirror. Using

a photodiode, we measured the power ratio on resonance to be 0.39, corresponding to a

loss of l = 0.05%. Although this is quite a bit higher than the 10 ppm mentioned by a

manufacturer, we understand that making these mirrors and keeping them perfectly clean is

very challenging, and a total transmission through the cavity of 39% is certainly workable.

We found that over the last two years of use the cavity linewidth has linearly increased;

see Figure 3.20. We are unsure as to why this is happening, but suspect the cause is Yb

build up on the bottom mirror. See more discussion about how this affects our experiment

in Section 5.1.1.
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3.3.2 Loading

Compensation Coils We now have cold trapped atoms in a MOT, and a stable optical

lattice nearby. In order for the atoms to efficiently load into the lattice, the MOT needs to be

well overlapped with the mode volume of the lattice. The lattice is fixed by the cavity spacer,

but the MOT is slightly mobile, as the atoms are trapped at the zero of the magnetic field.

Adding a constant offset to the MOT trapping magnetic field does not affect the quadrupole

form, but does move the location of the zero.

Compensation coils, or shim coils, are located around the science vacuum chamber along

all three axes to have fine control over the zero point of the magnetic field. For each axis

there was a pair of either square or circular coils in the Helmholtz configuration. The size and

shape was restricted by our optical and vacuum chamber set up, but each pair was placed

as close to the MOT as possible. They were all made from 10–20 windings of magnetic wire,

with each pair connected in series to ensure symmetric current in each coil for a uniform

magnetic field. The y and z coils are the closest to the MOT and provide a magnetic field

of 0.21 Gauss/Amp. The x coil is farther away (constrained by the vacuum pumps) and

provides closer to 0.1 Gauss/Amp.

The current ran from the power supply through a control circuit, which allowed us to set

up remote operation by the computer for magnetic field switching as part of our sequence.

This was also very convenient as the optimal currents for loading into the lattice drifted,

and we could perform easy current scans each day to maximize atom number. Details of the

control circuit can be found in Appendix 6.3.

Compressed MOT In addition to optimizing the center of mass overlap, it is possible

to compress the MOT increasing the atom density and therefore the number of atoms over-

lapped with the lattice mode volume. This is done simply by increasing the strength of

the quadrupole MOT magnetic field by a factor of two, tightening the trap. At the same

time the laser intensity in all six MOT beams is ramped down from 100 mW to < 1 mW,

while turning off the broadening modulation and moving the beam frequency to −3.2 MHz.
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Figure 3.21: Trap frequency measurement via trap lattice modulation. This plot shows atoms

being heated out of the lattice as we scan the frequency of modulation. The modulation

depths are 0.005 (green), 0.02 (red) and 0.05 (blue). The largest atom loss occurs at a drive

frequency 1.85 times the lattice frequency.

This reduces the heating rate by decreasing the scattering rate and allows us to reach lower

temperatures, further increasing the number of atoms loaded into the trap.

Lattice Depth The lattice is turned on during the end of the compressed MOT phase

to allow atoms to cool into the potential. The depth is estimated using the power in the

transmission through the cavity and the known amplification due to the large finesse. It

was experimentally confirmed by modulating the lattice depth by 5% at varying frequencies

about the expected trap frequency. The largest heating of atoms out of the lattice occurs

at 1.85 times the lattice frequency due to the anharmonicity of the potential [JPR01]. The

broad resonance is due to the fact that atoms radially far off-center have a smaller trap

frequency.
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Loading Sequence I have now described all of the technical components that are used

when loading our atoms into the optical lattice. The following is a typical loading sequence

into the lattice:

1. Initialize all necessary AOMs for MOT loading33.

2. Turn on MOT coils (7 A) and MOT beams for the MOT loading time, typically one

second. Simultaneously set the compensation coils at best current for lattice loading.

3. Ramp up the MOT magnetic field to 15 A over 50 ms.

4. Turn off the slower beam.

5. Turn off broadening of MOT lasers, change detuning and decrease power. Hold for 100

ms.

6. Turn on the lattice and hold with compressed MOT for 30 ms.

7. Turn off MOT beams and hold in lattice.

3.4 Taking Data

3.4.1 Atom Imaging

Software The example loading sequence in the previous section and all other sequences

were carried about by an open source software package called Cicero [KK13]. See Figure

3.22 as an example of the steps we would use to load atoms into the lattice. This package

allows us to set precise timing sequences with resolutions below a microsecond, set up analog

ramps (see step 16 in Fig. 3.22), and easily connect with National Instrument hardware34.

33All AOM frequencies and amplitudes are controlled by Novatech Instruments’ DDS9ms.

34National Instruments, PCIe-6321
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Figure 3.22: Software used to control loading sequences and timing.
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Absorption Beam A ≈1 cm diameter on-resonance 399 nm absorption beam is sent

through the center of the cavity and directed onto a camera. The absorption cross section

for ytterbium is

σa = 3λ2/2π, (3.12)

where the factor of three comes from the three-fold degeneracy of the excited state. The 399

nm transition has a broad line width compared to the Doppler broadening expected of our

cold atoms, so we don’t have to worry about the Lorentzian lineshape of the cross section

when detuned. The transmission of the beam through the sample is

Iout
Iin

= e−σanLs , (3.13)

where n is the atomic density and Ls is the path length through the sample. By comparing

the intensity with and without atoms, the quantity nLs can be measured and converted

into an atom number. Images for TOF analysis are obtained in 200 µs exposures using an

absorption beam with saturation parameter 1.7 · 104.

Image Analysis We use a CCD camera35 with a nominal 5.5 µm pixel width. We attach

a zoom lens providing a magnification of 6.6, which is calibrated using the image of a ruler,

resulting in an effective pixel size of wp = 36.1 µm. This enabled us to resolve our atom cloud

in the lattice, which is typically not smaller than 70 µm in width. The image was processed

in MATLAB and displayed with interactive analysis software that allows us to choose regions

of interest and set background regions for calibration. The software calculates a number of

useful quantities from our region of interest such as atom number, cloud width, and cloud

position.

The atom number is calculated using two images: a cloud image and a background picture

with no atoms taken immediately after. Because we are getting a 2D image of a 3D cloud,

we can only infer the column density of each pixel. The column density ρcol is calculated by

35Allied Vision, Prosilica GB1380
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inverting the absorption formula,

ρcol = − log (Ca/Cb)/σa, (3.14)

with Ca and Cb the atom and background pixel counts, respectively. The total atom number

in the region of interest is a sum over all of the included pixels multiplied by each pixel’s

area,

Na =
∑

ρcolw
2
p. (3.15)

The same calculation was performed in a background region of interest where we did not

expect any absorption to be subtracted off for a final atom count.

To calculate the cloud’s width and position, each dimension of the cloud is fit to a

Gaussian function. For the z direction, each column of pixels in the region of interest is

summed and fit to MATLAB’s Gaussian function of form,

fG(x) = a1e
−
(
x−a2
a3

)2

+ a4, (3.16)

where a3 is the 1/e width of the fit, and the width definition we will use for the rest of the

thesis is the 1/e2 width σi = a3/
√

2, where i refers to the direction.

Time-of-Flight Temperature Method Time-of-flight image analysis is the standard

method for analyzing a sample’s temperature in the field of neutral atoms. It involves taking

a series of absorption images at several time delays. A thermal cloud in free expansion has

a Gaussian width that grows as,

σi =
√
σ2
i,0 + σ2

vi
t2, (3.17)

where σi,0 is the initial width of the trapped atoms and σvi =
√
kBTi/m is the thermal

velocity spread of atoms at temperature Ti in the i = x, y, or z direction [BMZ02].

Following the loading sequence described in Section 3.3.2, the atoms are non-adiabatically

released from the lattice by turning off the lattice light with an AOM. Here, the adiabatic

criteria is that the atoms are released in a time much faster than their trap oscillation period.
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Figure 3.23: Images taken of the atom cloud after a variety of wait times from releasing

them from the optical lattice. Red represents high density and blue low density.

We release them in 100 ns with a trap oscillation period typically >1 µs. Each time they are

loaded and released they are allowed to expand for a variable time ranging from 0-10 ms.

Typically after 7 ms the cloud has expanded to more than twice its original size and is too

diffuse to obtain a reliable width. An example of the time-of-flight images is in Figure 3.23.

An example of the analysis of these images with their fit temperatures is in Figure 3.24.

3.4.2 Cavity Transmission

A simple schematic of the cavity laser can be seen in Figure 3.19. After cavity transmission

the 532 nm and 556 nm laser are separated by a filter and the 556 nm light is directed into

a photodiode. For both our new temperature measurement and our Bloch oscillations, we
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Figure 3.24: Gaussian widths fit for the x and z directions of an expanding atom cloud, fit

to Eq. 3.17, resulting in Tx = 39.6 µK and Tz = 19.9 µK. This image is taken directly from

our analysis program. These fits were performed with 10 data points taken at each of the

seven time of flight times. The x axis is in milliseconds, and the y axis is in microns.

need a very weak laser (< 1 µW) which is below the threshold of the typical photodiode36

we use around the lab due to excess electrical noise.

Focusing on optimizing signal-to-noise for our future Bloch oscillation experiment, we

chose to use an avalanche photodiode37 (APD). This photodiode has an internal gain stage

that adds relatively little noise (compared to, for example, a voltage amplifier). It also has

a large wavelength range of 200–1000 nm and a large bandwidth of DC to 10 MHz, allowing

it to be useful for many future applications, and was immediately put to use for our our new

temperature measurement.

For our dark matter measurements, we do not need to use the entire bandwidth range

(need up to ∼10 kHz) so we use the photodiode at maximum gain. The APD’s responsivity

at our wavelength is 20 A/W and has a transimpedance gain of 500 kV/A for high-impedance

termination. With our wavelength we expect 10 mV/nW at maximum gain.

The background noise expected from the APD is 10−13 W/
√

Hz. Using a bandwidth of

36Thorlabs, PDA36A

37Thorlabs APD410A2
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10 kHz for our Bloch oscillation measurement, the expected background noise contribution

of the APD is 0.01 nW, or 0.1 mV at maximum gain. The new temperature measurement

is performed in < 10 µs and needs the entire bandwidth to capture the atom dynamics, and

therefore expects background noise of 0.3 nW. Without gain the expected background noise

is 1 mV.

Shot noise from the laser also contributes to the expected transmission noise. The stan-

dard deviation of the laser power due to shot noise is σp =
√

2P~ωB where P is the laser

power and B is the detector bandwidth. Our APD has a minimum gain of 50, meaning the

expected measurement noise due to shot noise is amplified by a factor of 50.
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CHAPTER 4

Applications

4.1 New Atomic Temperature Measurement

This section is based on the manuscript “Cavity probe for real-time detection of atom dy-

namics in an optical lattice” written by me and my co-authors, Paul Hamilton and Robert

Niederriter, in preparation for submission to Physical Review Letters.

The spatial distribution of atoms in an optical lattice is important for applications of

trapped atoms such as cavity optomechanics [BBS12], atom interferometry [XJP19], and

real-time observation of Bloch oscillations [PTH09, PMC09b, KKV16]. The prototypical

cavity QED system consisting of an atomic two-level system and an optical cavity provides

a minimally invasive means to probe the atomic spatial distribution. This coupled system

has been used successfully for atom counting [ZMC12], optomechanical sensing [BBS12], and

spin squeezing [SLc10, CGW16].

Measuring the spatial properties of a distribution extending over many lattice sites re-

quires nearly uniform coupling at each lattice site. Typically atoms are trapped in a far-

detuned standing wave and probed with a different cavity mode near the atomic resonance

[BBS12, SLc10, CGW16] leading to non-uniform coupling between the atoms and probe. The

same standing wave can be used to both trap and probe the atom density [PTH09, KKV16],

but this scheme reduces flexibility to independently choose the trap depth and probe de-

tuning; in particular, the trap detuning from the atomic resonance must be small enough

to allow sufficient sensitivity for probing. In addition, strong atom-cavity coupling in this

case leads to coupling between the atom dynamics and trapping field, which is not always

desired.
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Figure 4.1: Experimental setup. (a) Two standing waves of light are formed by driving

adjacent longitudinal modes of an optical cavity. The red (solid) line indicates the red-

detuned trapping lattice used to confine 174Yb atoms, shown as blue Gaussian distributions.

The green (dotted) line represents a weak probe beam used to measure the spatial extent

of the atom density. Note the lattices are not drawn to scale; there are actually ≈300, 000

lattice sites between the mirrors. (b) Detuning of lattice (red solid), probe (green dotted),

and cavity resonances (black) from the 3P1 transition. δca and δcp are the detuning of the

cavity resonance from the bare atomic transition and the probe beam, respectively.
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The difference between trap and probe wavelengths, λ` and λp respectively, can lead to

a limited range over which atoms can be coupled uniformly to the probe. The distance

(in lattice sites) over which the atomic distribution remains nearly uniformly coupled to

the probe is duniform ≈ π/∆φ, where ∆φ = 2π(λ` − λp)/λp is the phase shift of the probe

standing wave between adjacent sites of the trap standing wave. When using a far-off-

resonance lattice and a near detuned probe beam with a typical wavelength difference of

∼50 nm, duniform < 10. While this can be useful for addressing individual lattice sites

[BBS12], it limits the observation of global dynamics. In contrast, this work uses a trap

lattice separated from the probe by one free spectral range (FSR) of 4128.0(1) MHz, as

shown in Fig. 4.1. Over the ≈1000 lattice sites (≈300 µm) occupied by the atoms, the probe

standing wave is shifted by only ≈1 nm. The coupling uniformity allows observing spatial

dynamics of the trapped atoms while remaining far off resonance (2.3×104 Γ3) compared to

the narrow linewidth of the Yb intercombination transition, Γ3 = 2π×180 kHz. The narrow

transitions in alkaline-earth-like atoms such as Sr and Yb provide opportunities for trapping

with moderate detuning as used in this work.

Site-independent coupling enables extracting global information about the atomic distri-

bution in real time. By time-averaging or probing using adjacent cavity longitudinal modes,

others have demonstrated coupling that is independent of atom position [CGW16], [VBE17],

[HBV19]. In contrast, we demonstrate coupling that is independent of lattice site, but im-

portantly still dependent on position within the lattice site. In this way, we are able to

continuously monitor the sub-wavelength motion on microsecond timescales of atoms both

tightly bound in the lattice and recently released from the lattice. We derive theoretical ex-

pressions for the uniform probe coupling to a trapped atomic distribution and demonstrate

an application of this method for a minimally invasive temperature measurement performed

in <10 µs on ytterbium atoms that begin trapped in an optical lattice.
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4.1.1 Theory

Consider a cloud of ultracold two-level atoms with atomic resonance frequency ωa trapped in

a 1D optical lattice with potential depth Ut and optical frequency resonant with a longitudinal

mode of a Fabry-Perot cavity. A probe lattice is also present with trap depth Up � Ut and

a frequency ωp, near resonance with another longitudinal mode at ωc and nearly one FSR

detuned from the trap lattice at ω` (see Fig. 4.1). Interaction of the cavity with the atoms

shifts the cavity resonance and therefore changes the probe transmission through the cavity.

We start by deriving the expected cavity mode shift due to the atom-cavity coupling and

its effect on the probe transmission. We then discuss the specific atomic distribution for our

system and derive the time-dependent probe transmission during axial and radial expansion

after releasing the atoms from the trapping lattice.

The atom-cavity system acts as coupled oscillators with normal modes detuned from

atomic resonance by

∆ω± =
−δca ±

√
δ2
ca + Ω2

2
, (4.1)

where δca = ωc − ωa. Ω = 2g0

√
NaI is the collective vacuum Rabi frequency for Na atoms

trapped in the lattice with single-atom vacuum Rabi frequency 2g0 and dimensionless atom-

probe overlap integral I [RTB89]. When δca = 0, the system exhibits symmetric mode

splitting, known as vacuum Rabi splitting, with peaks detuned from the bare cavity by

±Ω/2. In the far-detuned limit where |δca| � Ω, the resonances split into a cavity-like

mode, ∆ω−, and an atom-like mode, ∆ω+. We will focus on the cavity-like mode which is

shifted from the bare cavity resonance, in the far red-detuned limit (δca � 0), by

∆ω− =
Ω2

4δca
. (4.2)

Loss from transmission through the cavity mirrors leads to a broadening of this mode given

by the cavity full-width-half-max linewidth, κ. Scattering into free space due to spontaneous

emission also leads to broadening but is negligible in the far-detuned limit considered below.

In addition to a shift from the atom-cavity coupling, the probe frequency can be detuned,

δcp = ωc−ωp, from the bare cavity resonance resulting in a total detuning of ∆ω = ∆ω−−δcp.
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See Fig. 4.1.

The cavity transmission power, Θ, at detuning ∆ω follows a Lorentzian lineshape

Θ = Θ0
1

1 +
(

∆ω
κ/2

)2 , (4.3)

where Θ0 is the resonant transmission of the empty cavity. Monitoring the cavity resonance

shift thus gives information on the evolution of the atomic spatial distribution as the coupling

integral, I, changes (Eq. 4.4).

Next we consider dynamics of the atomic distribution when the trapping lattice is turned

off non-adiabatically and the atoms begin to freely expand. Observing the resonance shift of

the cavity mode via the probe transmission provides a real-time measurement of the width

of the atomic distribution. We obtain a functional form for the probe transmission given the

atomic distribution in the lattice and later use this as a model to extract the temperature

from probe transmission measurements. The timescales for changes in transmission due to

the axial and radial dynamics are determined by the corresponding spatial scale of the probe

beam, which is a TEM00 mode of the optical cavity. The atoms are assumed to be confined

at the center of the optical cavity over a region much smaller than the Rayleigh length.

The coupling integral,

I =

∫
ρ(φ, r, z, t)M(φ, r, z)dV, (4.4)

is a dimensionless overlap integral between 0 and 1 indicating the coupling between the

atomic spatial distribution given by the normalized number density ρ = ρφρrρz and the

cavity probe through its spatial intensity profile, M = MφMrMz. The probe mode and the

atomic distribution are cylindrically symmetric and we can factor the coupling integral into

radial and axial contributions, I = IrIz. The spatial mode near the waist is

M(r, z) = sin2 (kpz) exp
(
−2r2/w2

`

)
(4.5)

where kp = 2π/λp is the wavenumber of the probe beam. Because the waist is much larger

than the lattice spacing, w` � λp, the axial overlap integral Iz changes much faster than the

radial overlap integral Ir.

76



In the 1D trapping lattice, the initial positions and velocities of thermalized atoms at each

lattice site are well described in the simple harmonic oscillator limit by Gaussian distributions

with standard deviations σi,0 and σvi =
√
kBTi/m, where i = r, z refer to the radial and axial

directions, respectively, kB is the Boltzmann constant and Ti is the temperature. When the

atoms are released from the trapping lattice, the atomic distribution evolves as [BMZ02]

ρ(r, z, t) = ρr(r, t)ρz(z, t) =
e
− r2

2σ2
r (t)

√
2πσ2

r(t)

e
− z2

2σ2
z(t)

σz(t)
, (4.6)

with

σ2
i (t) = σ2

i,0 + σ2
vi
t2. (4.7)

The atoms start localized at the anti-nodes of the trap lattice and the nodes of the probe

lattice (Fig. 4.1(a)), which we define as r = z = 0. Because we have uniform coupling

over the ≈104 lattice sites that the atoms occupy, the overlap integral for a single lattice

site describes the dynamics of the entire ensemble. While below we consider a thermal

distribution with no coherence between trapping lattice sites, a full quantum mechanical

calculation of the evolution of the spatial distribution can be used when coherent effects are

important [PTH09].

With the functional form of the lattice and the atomic distribution, we can evaluate the

coupling integrals for both directions. The axial integral is

Iz(t, Tz) =
1

2

(
1− e−2k2

pσ
2
z(t)
)

(4.8)

=
1

2

(
1− e−2k2

p

(
σ2
z,0+

kBTz
m

t2
))

and the radial integral is

Ir(t, Tr) =

(
1 +

4

w2
`

σ2
r(t)

)−1

(4.9)

=

(
1 +

4

w2
`

(
σ2
r,0 +

kBTr
m

t2
))−1

.

These overlap integrals set the normal mode frequency (or cavity resonance shift in the

far-detuned limit), and produce the time and temperature dependence of the probe beam

transmission.
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Verification of Atomic Distribution I would like to make a digression into some analysis

I performed on the expected atomic distribution widths. Originally, we attempted to specify

the initial width of our atom cloud, σi,0, as a function of temperature based on our known

lattice potential. We found that for the radial direction this resulted in fit temperatures that

did not match our TOF measurement, in comparison to successfully letting σi,0 be a free

fit parameter. As the TOF fit also allows σi,0 to be unspecified, in retrospect it is perhaps

unsurprising that freeing it improved agreement between the TOF method and our new

method. Despite not including details of this analysis in the final version of our paper, we

still found it interesting because of a mismatch in our expected widths and our measured

widths, which is why I include it here. I start with analysis for the axial direction which

resulted in expected widths that matched fit widths. I follow by discussing the mismatch in

the radial expected widths compared to the measure width of our trapped atoms.

Ytterbium atoms in a lattice are well approximated as non-interacting particles. To

determine our specific ensemble’s axial spatial distribution, I performed a variety of both

quantum and classical estimations assuming a thermal sample.

The quantum energy eigenstates for the full sinusoidal axial lattice potential are not

particularly simple, so I evaluated a variety of approximate potentials and analyzed the

quality of the estimation. I start with the simple harmonic oscillator potential, and build up

a few other approximations based on the results. I then compare these quantum results to

a classical numerical simulation.

The full axial lattice potential is Uz(z) = Ut sin2(k`z). When the energy of the potential

is much larger than the energy of the atoms, Ut � kBTz, we expect the atoms to only

feel the bottom of the potential, in other words |k`z| � 1. With that approximation we

expand the lattice potential as Uz(z) ≈ Ut(1− (k`z)2), a simple harmonic oscillator (SHO).

The effective trap frequency can be determined by equating the SHO coefficients 1
2
mω2

t z
2 =

Utk
2
` z

2, resulting in a trap frequency,

ωt =

√
2Utk2

`

m
. (4.10)
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The wavefunctions of the SHO are

Ψn(z) =
1√
2nn!

(mωt
π~

)1/4

e−
mω2

t z
2

2~ Hn

(√
mωt
~
z

)
, (4.11)

where Hn are the Hermite polynomials. The ensemble’s spatial Boltzmann thermal distri-

bution with characteristic temperature Tz is then

ρz(z) =

∑∞
n=0 |Ψn(z)|2e−

En
kBTz∑∞

n=0 e
− En
kBTz

, (4.12)

where the energy eigenvalues are En = ~ωt(n + 1/2). This summation was numerically

performed in MATLAB and and ρz(z) was fit to a Gaussian. Based on the fit ρz is well

approximated by a Gaussian with standard deviation

σz,0 =

√
(〈n〉+ 1/2)~

mωt
, (4.13)

where the thermal occupation number is

〈n〉 =
(
e

~ωt
kBT − 1

)−1

. (4.14)

This standard deviation is shown in black in Figure 4.2 as a function of the atomic tem-

perature. Somewhat surprisingly the Boltzmann summation of the SHO wavefunctions is

precisely a Gaussian, as proved in pages 46–51 of Feynman’s Statistical Mechanics: a set of

lectures[Fey73].

The next assumption, which I call the warm SHO, is that the average atom energy is much

larger than the ground state of the oscillator, kBTz � ~ωt. Qualitatively, this assumption

states that the majority of the atoms are not in the ground state of the oscillator. By Taylor

expanding 〈n〉 and using 〈n〉 � 1, the standard deviation of the Gaussian simplifies to

σz,0 =

√
kBTz
mω2

t

. (4.15)

The final quantum mechanical consideration, named the chopped SHO, accounts for the

fact that the potential is not an infinite simple harmonic oscillator, but one with a fixed depth.

This was implemented in the numerical calculation of the ensemble spatial distribution by
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Figure 4.2: Comparison of Gaussian widths for the simple harmonic oscillator (SHO), the

warm SHO and the chopped SHO, all defined in text, as well as a classical simulation of

the full sinusoidal potential. All approximations converge at our typical thermalization

temperature kBTz = 0.2Ut.

only including energy levels which satisfy En < Ut. I did not determine a closed form solution

for this standard deviation, but the Gaussian fit width can be compared with the widths

from the other approximations in Figure 4.2.

The full sinusoidal potential was simulated classically. A large number of particles were

assigned energies from a Boltzmann distribution. The particles started at z = 0, and were

assigned initial velocities consistent with energy conservation. They were released, and

incrementally stepped according to the force from the local curvature of the potential. After

waiting a large enough number of steps such that the distribution was no longer changing

in time, the distribution was fit to a Gaussian. Figure 4.2 shows that this simulation agrees

well with the warm SHO, which is expected as there is no zero point energy in the classical

simple harmonic oscillator.
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All of approximations work in their appropriate limits, namely the warm SHO breaks

down when kBTz/Ut � 0 and that the chopped SHO breaks down when kBTz/Ut � 0. The

approximations converge between 0.15 < kBTz/Ut < 0.45 to σz,0 values within 2%, which is

within the typical thermalization temperature of our atoms, kBTz ≈ 0.2Ut. See Section 6.4

in the Appendix for information about the simulation code. Directly measuring atomic en-

semble distributions in individual lattice sites is beyond our absorption measurement spatial

resolution. However, I note that for the axial direction the temperature fits did not change

when floating σz,i, and the fit value for the width matches very well with all of the above

approximations.

For the radial direction, the Gaussian approximation was confirmed directly by absorption

imaging; see Figure 4.3. Interestingly, the width is larger than expected based on some simple

calculations. The simplest model approximates the Gaussian potential as a classical simple

harmonic oscillator, resulting in an expected width of

σr,SHO =

√
kBTxw2

`

4Ut
= 40 µm, (4.16)

using our typical temperature of Tx = 0.3Ut/kB. This can be compared to the measured

width of 70 µm. We are deep in the classical regime as our expected thermal average level

occupation number for an SHO is 6000. We do expect a broader width than this simple

model because we have yet to take into account that we are in a 3D lattice. A more accurate

model integrates over the z-direction in the 3D phase space weighted by Boltzmann factors.

The thermal phase space is given by

ρPS = e
− H
kBT r dr dz, (4.17)

where the Hamiltonian H = UtM(r, z) is the lattice potential and 1/kBT is the Boltzmann

weight. I numerically integrated out the z dependence and fit the result to a Gaussian,

leading to a larger estimate, σr,PS = 48 µm; the result is shown in Figure 4.4. This model has

some obvious flaws, as we have different temperatures in the z direction and the r direction

and the Boltzmann distribution assumes the entire sample has a uniform temperature. In

addition, the z direction is not well represented classically as the average level occupation
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number is O(1). It was at this point that we realized retaining σr,i as a fit parameter rather

than trying to obtain a functional form with respect to the temperature was more efficient

and less model sensitive. Perhaps a more sophisticated calculation would yield the correct

width (and a more precise fit), and we would be interested in looking into this further in the

future.
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Figure 4.3: Absorption image of the atom cloud in the optical lattice. Yellow represents

high density and blue represents low density. On the bottom plot, each column from the

picture was averaged (black points) and the resulting row fit (red) to a Gaussian resulting

in a width of σr,i = 71 µm.
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Figure 4.4: A 1D radial projection (black) of the 3D phase space, Eq. 4.17, integrated over

the axial direction, fit to a Gaussian (red).

4.1.2 Experiment

A weak probe beam (Up < 0.05Ut) is coupled into an adjacent TEM00 mode of the optical

cavity with a linear polarization orthogonal to the trap lattice polarization and red-detuned

δca = −2π × 50 MHz from the atomic resonance. The intensity of the probe beam is kept

small to prevent mechanical forces during the free expansion of the atomic cloud. This has

been verified through numerical simulations and by observing the same temperature values

when the probe is blue-detuned from the atom transition. The trapping lattice detuning is

set one FSR red-detuned from the probe beam, causing the probe and lattice standing waves

to be π/2 out of phase at the center of the cavity. The relative positions of the trap and

probe lattices are shown in Fig. 4.1.

The atoms are released non-adiabatically by switching off the trapping lattice in ≈100 ns.

They expand for 10 µs–10 ms (Fig. 4.5a), where large overlap with the probe beam occurs

(Fig. 4.5b) and the normal mode resonance is shifted by up to several MHz (Fig. 4.5c). Fast

temperature measurements are performed by monitoring the probe transmission through

the optical cavity using a 10 MHz bandwidth avalanche photodiode (APD). The signal is

digitized with a 100 MHz bandwidth oscilloscope, and fit with Eq. 4.3 using Eqs. 4.8 and 4.9.
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Figure 4.5: Time evolution of the overlap between the atoms at temperature 30 µK and the

probe beam. (a) Atom density at t=0 µs (blue), 1.5 µs (green), and 4 µs (red) after atoms

are released from the optical lattice. The black (dotted) curve shows the 556 nm probe

standing wave intensity for reference. (b) Cavity transmission spectrum showing the normal

mode resonance shift at the same 0, 1.5, and 4 µs time delays after releasing the atoms from

the optical lattice. The vertical line indicates fixed probe detuning at δcp = −2π × 3 MHz,

and the three shapes indicate where the laser frequency falls on the Lorentzian transmission

curve at each time. (c) Probe transmission vs time. Colored shapes correspond to times in

part (b).
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4.1.3 Results

We observe that the strong atom-cavity coupling has a predictable effect on the probe

beam transmission through the cavity. Qualitatively, the atoms’ expansion changes the

overlap with the probe mode, which shifts the cavity resonance frequency. The atom ex-

pansion sweeps the cavity resonance frequency across the probe frequency, mapping out the

Lorentzian cavity transmission (Eq. 4.3). At long time scales, the transmission tends to the

empty cavity value as the atoms leave the cavity mode. Quantitatively, we fit the transmis-

sion curves with the models described above to measure the axial and radial temperatures.

The probe beam transmission is recorded for the axial and radial timescales and compared

with standard time-of-flight (TOF) temperature measurements.

For different values of the lattice depth (which corresponds to different atomic tempera-

tures), the temperature of the atoms is measured using TOF and the new technique each ten

times. As shown in Fig. 4.6, the new probe measurement obtains similar temperatures to

TOF for both axial and radial directions. There are several systematic differences between

the two methods. In particular, the probe measurement is sensitive to the coupling of all

atoms in the optical cavity mode. Since the signal in the absorption measurement used for

TOF is proportional to density it is less sensitive to a background of diffuse atoms.

Time-of-Flight The time-of-flight (TOF) measurements are performed with a 1 cm radius

399 nm absorption beam with saturation parameter 1.7× 10−4. The beam is directed along

the radial axis of the lattice into a CCD camera with a lens resulting in an effective pixel size

of 36(1) µm. Typically six absorption images are taken at post-lattice-release times ranging

from 0–5 ms, loading new atoms for each image. At each delay time, the radial and axial

widths are determined by Gaussian fits. Fitting the measured σi(t) with Eq. 4.7 yields the

sample’s temperature in each direction.

In the TOF measurement a 3% uncertainty in the magnification of the imaging system

leads to a 3% uncertainty in the temperature. A tilt of the absorption beam with respect to

the horizontal axis leads to an effective measured temperature of T
′
z = Tz cos2 θt + Tr sin2 θt,
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Figure 4.6: Comparison of axial (blue squares) and radial (red circles) temperatures obtained

using the new method and the standard time-of-flight technique. The error bars are the

quadrature sum of the systematic errors described in the text and the standard error on the

mean of ten data points.
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Figure 4.7: TOF measurement taken every 15 seconds for 15 minutes. Fitting the data

results in a linear drift of 0.03± 0.04 µK/minute, consistent with no drift.

where the tilt angle is θt = 13.1 ± 1.8◦. The quoted axial temperature corrects for this

offset and produces a 1% uncertainty on Tz. We estimate an upper limit to the heating

from the absorption beam of ≈1 µK at our saturation parameter 1.7 × 10−4. These added

in quadrature lead to a 5% systematic error. The statistical error on a TOF temperature

measurement comprising seven absorption images is 10%, leading to an effective single-shot

error of 27%.

Beyond these quantified systematics we performed a variety of other checks that did not

significantly contribute errors. Because there was often at least a minute delay between TOF

and probe data, we checked that the TOF measurements did not drift. Over the course of 15

minutes, a time-of-flight temperature measurement was taken every 15 seconds, see Figure

4.7 for results. Fitting the data results in a negligible drift of 0.03 ± 0.04 µK/minute. We

also saw negligible systematics due to absorption beam power and position, lattice turn off

time, and non-Gaussian distribution effects (see Figure 4.3).

New Temperature Measurement The transmission function (Eq. 4.3) is fit to the mea-

sured probe transmission using a non-linear least squares algorithm, with five free parame-

ters: Θ0, Na, σi,0, Ti, and δcp. The experimentally set initial probe detuning, δcp, is included

as a free parameter to account for background atoms shifting the resonance by a constant

value. Fig. 4.8 shows example raw data traces of the probe beam transmission observed after

release of the atoms. Experimentally using a probe detuning such that the experiment starts
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Figure 4.8: Example normalized raw traces (black) of probe transmission after releasing the

atoms from the trapping lattice. The fits (red) use five free parameters: Θ0, Na, σi,0, Ti and

δcp. The data were taken with δca = −2π × 50 MHz, Na = 8 − 10 × 105 atoms. The axial

trace (a) was taken with δcp = −2π × 4 MHz and TOF Tz = 45 µK, and the radial trace

(b) was taken with δcp = −2π × 2 MHz and TOF Tr = 22 µK. Each trace amounts to a

single-shot temperature measurement.

and ends on the side of the Lorentzian transmission curve gives the lowest uncertainty.

The systematic errors in the new measurement are analyzed by varying aspects of the

fit to obtain uncertainties in the temperature. For high probe beam intensity, back-action

causes the probe transmission to vary due to atoms oscillating in the probe potential, in

agreement with numerical simulations. The intensity of the probe beam is kept low to

reduce the frequency and amplitude of these oscillations. Sensitivity to the final background

value in numerical testing gives an upper limit of 5% uncertainty in the temperature from

fitting the tail of the data (≈3–8 µs in Fig. 4.8a). Resolution of the turn-off time of the

trapping lattice is limited to ±20 ns uncertainty from a combination of the APD bandwidth

and the ring down time of the optical cavity. Changing the start time in the fitting by this

amount leads to 3% change in the temperature. Finally the uncertainty in the background
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DC voltage of the APD causes a 1% error on the fit temperature. These combine for a total

6% systematic error. The statistical error on a temperature measurement is 10% for the

axial data and 3% for the radial data.

As with the TOF measurement, there were a variety of additional checks we did to ensure

the accuracy of the new measurement that did not lead to additional systematics. With

respect to fitting, I made small variations in the cavity linewidth and the starting point in

time with no effects, and ensured that the starting points of the five free parameters did not

influence the results. I also tried fewer and additional free parameters, with fewer resulting

in poor fitting, and additional resulting in unconstrained fits due to high correlations. With

respect to the experiment, we verified that small variations in the initial probe detuning and

power did not affect the temperature. We also confirmed that a blue-detuned probe led to

the same results as a red-detuned probe.

We observe a small offset for the axial data between the two methods. We suspect

this arises from the fact that the probe method is more sensitive to the dynamics of a

dilute background of atoms that the TOF method misses. The simple assumption that the

background distribution of atoms is constant in time is only approximately true; instead,

the un-trapped background atoms, which comprise 10%− 30% of the total, will retain some

periodicity due to the trapping lattice potential. This contributes additional time dependence

to the coupling integral, Eq. 4.8, when the lattice is turned off. If this population comes

from atoms that were heated out of the trap with low radial velocity, they remain overlapped

with the probe mode as they fall due to gravity. This population of atoms can be seen

in absorption images; however, due to the vertical extent ranging from the trapped atom

cloud to the bottom of the optical cavity, we are unable to directly measure their axial

temperature with TOF. These atoms will therefore raise the observed temperature of the

new measurement without being observed via TOF, consistent with the results in Fig. 4.6.

As discussed in Section 4.1.1, we also observe a discrepancy between the fit results for

the radial width free parameter σr,0 in the new temperature measurement compared with

the calculated width based on a classical phase space distribution for a Gaussian potential.
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Both the fitting of the probe transmission and the direct measurement of the width via

absorption imaging produced a width up to 70% larger than the calculated width. We

expect a broadening of the width when considering the 2-D phase space including the axial

sinusoidal potential, but simulations suggest this only accounts for a 25% increase. We

suspect a more complicated model including a heating term would be necessary to predict

the width more accurately, and are interested in continuing to understand this discrepancy

and compare observations with other experiments.

4.1.4 Conclusion

We have shown that site-independent coupling between atoms and the cavity mode can be

exploited to provide nondestructive real-time information about the spatial distribution of

atoms in an optical lattice. We demonstrate one useful application of this by measuring the

temperature of atoms confined in an optical lattice.

This thermometry technique has many benefits over the commonly used TOF measure-

ment. Because the measurement in the axial direction can be obtained while turning off

the trapping lattice for only 10 µs, the atoms can easily be re-captured in the lattice. By

turning the MOT beams and magnetic field back on, we were able to recapture about 75%

of the atoms after the measurement. With additional cooling into the lattice, this recapture

percentage should approach 100%. The technique can be extended to in situ thermometry of

trapped atoms without releasing them from the optical lattice by monitoring the probe res-

onance shift as a function of lattice depth. Measuring the cavity resonance shift in reflection

using a PDH error signal or even locking the probe beam to the (shifted) cavity resonance

could increase the dynamic range and resolution of the cavity probe technique.

Other applications of this technique include single-shot observation of optomechanical

oscillations as well as heating and cooling dynamics of trapped atoms. We expect the minimal

perturbation caused by the probe beam will even allow in situ detection of the changes in

atom wavefunction during Bloch oscillations [PTH09, KKV16, GVK17] and enable quantum

sensors based on Bloch oscillations of atoms coupled to an optical cavity.
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4.2 Nondemolition Bloch Oscillation Measurement

In the weak lattice regime, we expect our atoms to undergo Bloch oscillations due to the

periodic potential and the force of gravity. Bloch oscillations are technically happening

in the strong lattice regime described in the previous section as well, but the amplitude of

oscillations would be too small to see due to the confining trap lattice. We plan on measuring

the oscillation signal by observing the Bloch oscillation frequency on our cavity transmission,

monitoring in real time the atoms’ oscillations. In this section I describe a proposed use for

this experiment, a precision measurement search for ultralight dark matter.

4.2.1 Dark matter Review

Dark matter (DM) is one of the most intriguing mysteries of our age. The evidence of its

existence spans fields and techniques: the cosmic microwave background (CMB) angular

power spectrum, velocity dispersion curves within a galaxy, and gravitation lensing from

galaxies, to name just a few [Wik20]. It is approximated to make up 85% of the matter in

our universe, and is likely to be a window into physics beyond the Standard Model.

Research to directly detect dark matter has recently focused on “cold dark matter” be-

cause it is the simplest model consistent with the observed galaxy formation properties. Two

leading candidates are axions, very light particles that are a consequence of the Peccei–Quinn

theory that solves the strong charge-parity (CP) problem of the Standard Model, and weakly

interacting massive particles (WIMPs), a heavy particle motivated by supersymmetry. There

are many expensive experiments to observe a heavy dark matter particle colliding with a

large volume of material, which leads some in the community to feel that we are on the brink

of detecting a WIMP particle. Unfortunately some have felt that way for >10 years, with

still no detection.

Experimental physicists have also looked for a range of other candidates including axions,

sterile neutrinos, gravitinos and other ultralight particles [Pet12]. Tabletop experiments

typical of AMO experiments do not provide the volume necessary for a direct scatter as the
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large-volume WIMP experiments do, but we do have extremely sensitive experiments that

would be able to detect small continuous forces coming from ultralight dark matter. This

type of dark matter goes by a variety of names including dilatons (due to their oscillating

nature), virialized ultralight fields (VULFs) (due to their stable nature) or ultralight axion-

like particles (ULAPs) (due to their similarities to the axion model).

A wide range of laboratory experiment techniques have been used to look for these ul-

tralight particles. The Axion Dark Matter eXperiment (ADMX)[ACH10] has been looking

for axions since 1995. Atom interferometry has compared either two atomic isotopes or two

atomic species in search for equivalence principle violations that are dependent on atomic

composition, motivated by a theory that predicts a boson force mediator coupling that scales

as A−1/3, where A is the atomic mass number [DD10]. Experiments have also used atom

interferometry to look directly for mass oscillations of both the atom and the Earth predicted

by some theories, in a composition independent manner, as we do with our experiment. Be-

sides oscillations in the mass, other fundamental constants are expected to oscillate. Atomic

clocks use their long-term stability to look for slow drifts in the fine-structure constant or

the proton-electron mass ratio, which could indicate a slowly oscillating dark matter particle

[AHV15]. Networks of atomic clocks could strengthen their limit; other network experiments,

like the Global Network of Optical Magnetometers for Exotic physics (GNOME) [PJP13],

look for clumps or walls of dark matter traveling through the Earth. There are also lab

experiments searching for produced DM particles, such as the Heavy Unseen Neutrinos from

Total Energy-momentum Reconstruction (HUNTER) [Smi19] experiment looking for sterile

neutrinos.

Our experiment focuses on the composition independent search for a coherent oscillation

in the mass of our atoms. From cosmological observations we have an estimate of the energy

density of dark matter in our galaxy, ρφ ≈ 0.3 GeV/cm3 [AHV15]. The mass of ultralight

dark matter particles range from 10−21 eV/c2 to 1 eV/c2. The lower mass limit comes from

the upper limit on the size of the deBroglie wavelength, λdB, capped at the size of a galaxy,

the largest coherent dark matter object we have observed. The upper mass limit comes from
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requiring a high enough particle density to observe macroscopic phenomena; the density

is large enough, ρφ � λ−3
dB, that the bosonic particles can be modeled as a coherent wave

[KMW85]. This particle also can act as a force carrier. Due to its mass it should provide a

force with a spatial dependence given by the Yukawa potential. These features are analogous

to a photon, which can act as a classical coherent wave as part of a laser at high density or

act as a mediating force particle for the electric field.

In more detail, the general solution for the field equation of motion for dark matter is

φ(t, x) = φ0 cos (ωφt− kφx), (4.18)

where ωφ = mφc
2/~ is the DM Compton frequency, mφ is the DM mass, kφ = 2π/λdB and

φ0 = ~
√

2ρφ/(mφc) with the assumption that this type of dark matter makes up 100% of the

total amount dark matter (Eq. 6 in [AHV15]). From now on I drop the x dependence since

our experiment is much smaller than the dark matter coherence length, kφx� 1. Because of

the expected spread in velocities of dark matter about the velocity vφ = 10−3c in our galaxy,

there is an expected coherence time to these oscillations,

τcoh =
1

ωφ

c2

v2
φ

(4.19)

which corresponds to 106 oscillations.

This field is predicted to cause coherent oscillations in fundamental particle masses, elec-

tromagnetic interactions and/or gluonic interactions. Here I focus on the gluonic oscillations,

which are expected to be the largest contributor to the oscillations in an atom’s mass,

m(t) = m0(1 + dgκφφ(t)), (4.20)

where κφ =
√

4πG, G is the gravitational constant, m0 is the Standard Model mass, and dg

is the dimensionless coupling coefficient (Eq. 17 in [DD10]).

4.2.2 Expected Sensitivity

When our atoms undergo Bloch oscillations they oscillate at a frequency proportional to the

force of gravity; see Eq. 2.47. Our precision on the frequency of Bloch oscillations is given
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generically by

δωg =
2π

τint

1

SNR
, (4.21)

where τint is the integration time of our experiment, and SNR is the signal to noise ratio.

The average photocurrent from a photodiode is given as 〈i〉 = eRph, where Rph is the

rate of photons hitting the detector, and where I have set the photodiode photoelectron con-

versation rate to one. In reality this conversation rate would be included as a multiplicative

factor and depends on the specific photodiode in use. Shot noise on this current over all fre-

quencies goes as ∆i =
√

2e∆f〈i〉, where ∆f is the bandwidth of the photodetector. Because

of the finite time of our measurement, the frequency spectrum is finite with 1/τint

∆f
maximum

number of bins. Shot noise is white, and the shot noise per frequency bin is ∆ibin =
√

2e〈i〉
τint

.

The signal to noise ratio in the signal frequency bin is

SNR =
ε〈i〉

∆ibin

= ε

√
Rphτint

2
, (4.22)

where ε is the contrast of oscillations at the signal frequency.

The expected fractional precision on the frequency (and therefore the acceleration) given

our simulated experimental parameters (ε = .03, Rph = 1011 Hz) is

δωg
ωg

=
δg

g
=

2π

εωgτint

√
2

Rphτint

≈ 10−7

τ
3/2
int

(4.23)

Because the force of gravity is proportional to the mass, and we expect the mass to

oscillate (Eq. 4.20) given the presence of ultralight dark matter, we expect our signal to look

like an oscillating Bloch oscillation frequency. Our signal without dark matter is the cavity

transmission,

Θ = εRphe cos (ωgt). (4.24)

If we introduce dark matter, the frequency will be oscillating as ω(t) = ωg (1 + α sin (ωφt)),

where α� 1 is the arbitrary relative strength of dark matter. The instantaneous phase from

an oscillating frequency is,

θ(t) =

∫ t

0

ω(t)dt = ωgt− α
ωg
ωφ

cos(ωφt). (4.25)
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The expected signal now has the form,

εRphe cos(θ(t)) ≈ εRphe cos(ωgt)± εRpheα
ωg

2ωφ
cos((ωg ± ωφ)t), (4.26)

where I have applied the Bessel function expansion of an oscillating phase with a small

(α � 1) oscillation amplitude. We therefore expect the dark matter signal to show up as

sidebands on the gravitational Bloch oscillation signal. Using the procedure above to find

the signal to noise for dark matter where 〈i〉 = eRph and now the contrast is εα ωg
2ωφ

, we get,

SNRφ =
εαωg
2ωφ

√
Rphτint

2
. (4.27)

We will fundamentally be limited by our level of shot noise. In order to compare to

limits set by other AMO experiments looking for ultralight dark matter, I define our limit

by setting the dark matter signal to noise ratio equal to one. With this definition, we can

solve for α to obtain a “minimum detectable” α,

αmin =
2ωφ
εωg

√
2

Rphτint

. (4.28)

This corresponds to a 1σ detection level. Comparing this minimum detectable sideband

strength with Eq. 4.20, we can see that α = dgκφφ0, leading us to a minimum detectable

coupling of,

dg =
2ωφ
εωg

1

κφφ0

√
2

Rphτint

. (4.29)

In the case that τcoh > τint, all of our samples are coherent and we get,

dg,τcoh>τint
≈ 1

10−38

(
m4
φc

8/eV4

τint/s

)1/2

. (4.30)

In the case that τcoh < τint, we do not learn more information about the dark matter

after its coherence time, and we just make improvements on our limit by averaging our noise.

According to [BGL14], incoherent averaging after reaching the coherence time continues to

decrease the noise by (τint/τcoh)1/4. This change happens around mφc
2 ≈ 10−15 eV. Due to

the coherence time’s dependence on the mass, the scaling after coherence time is reached
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Figure 4.9: A comparison of our expected limit (dashed blue) to the current bounds for both

composition independent (green) and composition dependent (pink) couplings both taken

from Fig. 3 in [AHV15]. For comparison we used an integration time of τint = 106 s, and

have defined the 1σ limit by setting SNRφ = 1.

scales as,

dg,τcoh<τint
≈ 1

10−40

(
m9
φc

18/eV9

τint/s

)1/4

. (4.31)

See Figure 4.9 for a comparison of our limits to others in the field.

We are currently working on further cooling our atoms beyond the 3D MOT in order

to efficiently load into the ground state of the very shallow lattice needed for large Bloch

oscillations. I will continue the discussion of the future of our experiment as it moves towards

the sensitivity goals described here in Chapter 5.
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CHAPTER 5

The Future

The next experimental push will be to observe Bloch oscillations from our Yb atoms on the

optical cavity transmission. In this section I discuss some of the future barriers and potential

solutions, as well as our plan for a lattice cooling stage.

5.1 Towards observing Bloch oscillations

5.1.1 Signal to noise ratio improvements

As discussed in Section 3.3.1, our cavity linewidth appears to be increasing linearly with

time. Since installation in April 2018, the linewidth has increased by a factor of two (see

Figure 3.20). Our current best guess for this is Yb solidifying onto the bottom mirror surface

as we run our experiment. If this is the problem, we shouldn’t expect the linewidth to get

worse during the months of March to May due to the global pandemic stay-at-home order

since our Yb oven is turned off.

The increased linewidth has a serious effect on our expected Bloch oscillation resolution

and dark matter limits. Running the same simulation that produced Figure 2.5 while chang-

ing the linewidth from the ideal 2π · 1.8 MHz to the current 2π · 3.5 MHz, the signal to

noise drops by a factor of 3.5 and the contrast drops by a factor of 5.5. From Eq. 4.21 we

can see that our limit scales with the SNR. A more thorough analysis of the relationship

between κ and the SNR reveals that the SNR decays exponentially with respect to κ with

an exponential decay constant of ∼ −1.5; see Figure 5.1.

There are two options moving forward to improve the signal to noise ratio: open our
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Figure 5.1: Signal to noise ratio obtained via simulation (Section 3.3.1) for different cavity

linewidths. The fit result is log (SNR) = −1.468 log (κ) + 38.72 showing the exponential

scaling.
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vacuum chamber to replace the mirrors or improve other experimental parameters that will

boost our SNR. Opening up the vacuum chamber is time consuming, but ideally we could

employ some more permanent solution. At the very least, we could install new cavity mirrors.

Installing new mirrors is not an easy process due to the epoxy chosen to attach the

current mirrors. Previous efforts to bake the cavity system at 200◦C until the epoxy was

brittle enough to pull the mirrors off led to breaking the spacer. In addition, we paid to have

the mirrors aligned very well by the company that made the spacer, which was expensive.

With more time and engineering a metal or 3D printed plastic spacer could be used as a

cheaper alignment alternative.

There are a variety of small upgrades I recommend for new mirrors. I would recommend

looking into additional coatings to expand the experimental possibilities of our lattice, for

example looking at the magic wavelength of Yb near 613 nm for a pi transition or near 858

nm for a sigma transition [TYJ18]. If we also want to upgrade the spacer, extending the

side cut outs in the direction of the atom beam would allow for more optical access and

possibly ease mirror alignment. Gluing the new mirrors to a new spacer would also reduce

complications with the epoxy.

Changing other experimental parameters could also allow us to increase our SNR. For

example, we could increase the number of atoms loaded into the lattice. This could be

done by increasing the MOT load time (and taking a hit on experimental down time) or by

improving cooling efficiency. In the next section I discuss some future ideas for improving

cooling. Large improvements are possible due the fact that the SNR scales as the square of

the number of atoms. The other experimental parameter that would be easy to change is

the acceptable scattering rate, which negatively affects our experimental down time while

allowing us to decrease our detuning. The SNR improves exponentially with a decrease in

scattering rate with an exponential constant of 1.5.
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Figure 5.2: Fraction of atoms at temperature Ta loaded into the ground state of a lattice

with potential depth Ut = 3 ER, as calculated from Eq. 5.1.

5.1.2 Cooling

Resolving Bloch oscillations requires that the majority of atoms are in the ground state of

the optical lattice. The fraction of the thermal atom sample loaded into the ground state

can be calculated directly from the Boltzmann distribution,

f =
e
− E0
kBTa∑

n e
− En
kBTa

=
e
− n~ω`
kBTa

1− e−
~ω`
kBTa

. (5.1)

Here I have used the approximation that the potential is an SHO. Loading directly into a

Ut = 3ER lattice for Bloch oscillations at the coldest MOT temperature achieved, 5 µK,

would only lead to a loading fraction of 0.1; see Figure 5.2.

For atoms loaded into a Ut/kB = 100 µK lattice, the fraction of atoms in the ground state

can be seen on Figure 5.3. Atoms thermalize in our lattice at Tz = 0.2Ut/kB, which would

result in a ≈0.35 loading fraction. We attempted to quickly load colder atoms (Ta ≈ 10 µK)

into the lattice followed by adiabatically ramping down the depth to maintain atom state

fractions, but we had problems with atoms leaking out of the lattice radially.

Radial leakage could be solved by radial confinement or radial cooling. We attempted

adding a crossed dipole trap to confine atoms in the radial direction, but we were unable to do
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Figure 5.3: Fraction of atoms at temperature Ta loaded into the ground state of a lattice

with potential depth Ut/kB = 100 µK, as calculated from Equation 5.1.

so without further heating the atoms in both the axial and radial direction. We suspect that

this was due to phase instability of the crossed trapping beams, which leads to amplitude

fluctuation in the lattice depth. In the future we could consider using higher order cavity

modes with a ring structure to radially confine the atoms.

Electromagnetically Induced Transparency (EIT) Cooling Due to these complica-

tions, we have been pushing forward on methods for cooling directly into the ground state

of the lattice. Generically, this can be done by performing a two photon transition, where

the atoms in an electronic ground state and an SHO state n absorb a photon and emit a

photon such that they end back in the ground state, but in an SHO state n− 1. If this is a

cycling transition, the process will occur over and over until the atom occupies the ground

state n = 0.

The main challenge to overcome when cooling in the lattice is resolving the harmonic

oscillator energy bands. To resolve energy bands we need separation of much more than

the natural linewidth, which for us would lead to using a very deep lattice that we possibly

don’t have enough power for. This increased lattice intensity also increases the scattering
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rate from lattice photons, which causes residual heating.

The most promising method is electromagnetically induced transparency (EIT) cooling

[PWB12]. This method of cooling would work on the two magnetic 1S0 F=1/2 ground states

of Yb171 and one 3P1 F=1/2 magnetic excited state. The two photon transition between

the two ground states interferes in such a way to cause an off resonance excitation that is

narrower than the natural linewidth of the transition, allowing us to resolve the trap levels.

Experimental efforts for implementing EIT cooling in our lab have begun; immediately before

the mandated lab shut down we observed the narrow EIT resonance through absorption

imaging of the atoms.

I am excited to watch the future development of this lab and to see all of the cool new

experiments in the years to come.
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CHAPTER 6

Appendix

6.1 Cavity Spacer Technical Drawing

See Figure 6.1.

6.2 EOM Input Impedance Circuit

For all of our MTS locking systems, we use an electro-optic modulator (EOM) to provide

phase modulation to our beam. The EOM drive amplitude needs to be on the order of tens

of volts to obtain sufficient phase modulation, and a tank circuit to match the 50Ω input

impedance at the desired modulation frequency was necessary to minimize back reflection

of the RF signal.

To test the RF signal reflection, a coupler was used to direct the reflected signal to a

spectrum analyzer. The initial reflection out of the EOM was 4.6 dBm. A homemade LC

resonant circuit was placed before the EOM to impedance match and amplify the input.

Different capacitor values were tested, and a 470 pF capacitor was used in the final circuit.

To make an inductor, 18 gauge magnetic wire was coiled around a 2 cm diameter pen cap.

The inductor started with 34 turns and the LC circuit was tested to see if there was improved

reflection at the desired frequency, ωm. Coil spacing and turn number were adjusted until

the reflection was minimized to -8 dBm at the desired ωm of 17.5 MHz. Note that when

the circuit is placed in a metal box, the induction slightly changes along with the resonant

frequency of the circuit.
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Figure 6.1: Technical drawing for the cavity spacer. This drawing was made by Stable Laser

Systems. NOTE: this drawing had an error and the piece needed to be reworked. The sides

labeled “S1” and “S2” should refer to the two facing inner surfaces instead of the two facing

outer surfaces.
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6.3 Compensation Coil Control Circuit

The compensation coil circuits were originally supposed to include an “H bridge” for switch-

ing the direction of the current, and a “control circuit” for controlling the amplitude of the

current. Both circuits contain multiple MOSFETs, and we found that the H bridge MOS-

FETs were breaking too often to be of use. Additionally, we have no need to change the

sign of the fields regularly at this moment. Since both circuits were built and I already

have a description written up for the full circuit, I include both parts here. Upgrading to

MOSFETs with higher current rating fixed them breaking in the control circuit, and could

fix the problem in the H bridge circuit portion too if replaced.

The H bridge circuit can be seen at the top of Figure 6.2. The purpose of this portion

of the circuit is to control the direction of the current flow, and thus the direction of the

magnetic field. The circuit takes a control voltage from a power supply, and a TTL input

controlling the direction of the field.

MOSFETs are used as logic switches to control the direction of the current. When the

input TTL is low, the left 2N7000 MOSFET acts like an open circuit, and the point at ‘NOT

Logic in’ is at the control voltage, while the right 2N7000 MOSFET is active acting as a

closed circuit. The MOSFETs switch rolls when the input TTL is high.

The left part of the H bridge circuit has MOSFET switches controlled by the voltage at

‘Logic in’ and ‘NOT Logic in’. Note that the two top MOSFETs are p-channel, while the

two at the bottom are n-channel. Determined by the TTL input, the current will either flow

from the top left, through the compensation coil, and through the bottom right, or from the

top right to the bottom left. The voltage at the source of the n-channel MOSFETS is set

by the bottom portion of the circuit at around 1 V.

The current control circuit can be seen at the bottom of Figure 6.2. This circuit is set

up to work with either a fixed supply voltage or an analog control voltage. The fixed supply

input is followed by a potentiometer voltage divider, an amplifying op amp circuit, and an

inverting op amp circuit. The third op amp in the row is the control op amp for both the
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Figure 6.2: Compensation coil current control circuits. The top circuit, the H bridge,

controls which direction the current flows. The bottom circuit controls the amplitude of the

current. This circuit drawing was made by Paul Hamilton or one of his colleagues.

fixed supply and the analog supply. This op amp works as feedback to regulate the voltage

at the gate of the control MOSFET to its right. The voltage and resistor values were chosen

such that after the voltage drop from the MOSFETs and coil in the H bridge circuit, the

voltage at the source of the control MOSFET is fixed at 1 V. Therefore, if the gate voltage

is greater than a couple of volts, the MOSFET is active, and current flows. As the voltage
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is changed, the amount of current through the MOSFET changes as well.

6.4 Code Locations

All of the code is located in our Box folder at /Box/Lab files/Matlab, which I will define as

‘∼’ for the following paths.

6.4.1 Modulation Transfer Spectroscopy

This MATLAB script is a simple calculation of the modulation transfer spectroscopy signal

given an atomic linewidth, a modulation frequency and a modulation depth. Simulation

results are in Figure 2.4.

Paths:

• Main: ∼/MTS.m

6.4.2 Bloch Oscillation Simulation

The main code is broken up into sections: constants, initial conditions, time evolution,

plotting and signal to noise ratio calculation. The constants section is where one can adjust

the details of the experimental parameters, as well as simulation constants.

The time evolution section uses a MATLAB kit ‘expokit’ to deal with large sparce matri-

ces with the function ‘expv’. It calls three MATLAB functions to calculate the Hamiltonian

(‘Hamiltonian M.m’), g2(t+ ∆t) (‘g squared.m’) and α(t+ ∆t) (‘alphafunc.m’). Simulation

results are in Figure 2.5.

Paths:

• Main: ∼/BlochOscillationSims/Chandlers Code/lattice depth simulation clean 03 31 20.m

• Expokit (hardcoded add in main script): ∼/BlochOscillationSims/Chandlers Code/expokit

• Hamiltonian: ∼/BlochOscillationSims/Chandlers Code/Hamiltonian M.m
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• g2(t+ ∆t): ∼/BlochOscillationSims/Chandlers Code/g squared.m

• α(t+ ∆t): ∼/BlochOscillationSims/Chandlers Code/alphafunc.m

6.4.3 Zeeman Slower

Most of this code was written by my post-doc Robert Niederriter, so I will simply list the

figure locations.

Paths:

• Figure 3.10: ∼/Zeemann slower sims/Zeeman slower coil positions 9-13-2017.fig

• Figure 3.11: ∼/Zeemann slower sims/Magnetic fields of individual slower coils 9-13-

2017.fig

6.4.4 New Atomic Temperature Measurement

The new temperature fitting analysis was performed in two main scripts, one for the axial

direction and one for the radial. That code allows the fitting of all of the final data at

once. Each fit is individually performed in “Temperature Fitting sfloat.m” and “Tempera-

ture Fitting Trans sfloat.m”. The fitting functions themselves for both directions are called

from those scripts.

I also list the code used to make the figures used in the paper, as well as additional figures

I have included in my thesis. The locations for figures relevant to the verifications of the

atomic distribution also contain much of the analysis.

In this section I will use ∼∗ to represent ∼Temperature Measurement.

Paths:

• Figures 4.1, 4.5, 4.6, 4.8 made in∼∗/Figures for probe paper/FiguresForProbeTemperaturePaper.m

• Final data: ∼∗data plotting.m

• Verification of atomic distribution
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– Figure 4.2: ∼∗/Thermal SHO.m

– Classical simulation: ∼∗ /classical trajectories.m

– Figure 4.3: ∼∗/TOF Fitting/picture analysis.m

– Figure 4.4: ∼∗/Gaussian Width.m

• New temperature fitting

– Main axial: ∼∗/Multi Fit Temperature sfloat FINAL.m

– Temperature fitting axial: ∼∗/Temperature Fitting sfloat.m

– Transmission function axial: ∼∗/Temperature Function sfloat.m

– Main radial: ∼∗/Multi Fit Temperature Trans sfloat FINAL.m

– Temperature fitting radial: ∼∗/Temperature Fitting Trans sfloat.m

– Transmission function radial: ∼∗/Temperature Function Transverse sfloat.m

6.4.5 Dark Matter

Paths:

• Figure ??: ∼Simple Analysis Testing/simple analysis testing.m

• Figure 4.9: ∼Limit Plots.m (works in MATLAB 2015 but not MATLAB 2019)

6.4.6 The Future

Paths:

• Figures 5.2 and 5.3: ∼/Temperature Measurement/Thermal SHO.m
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