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Phenotypic variation of transcriptomic cell 
types in mouse motor cortex

Federico Scala1,2,12, Dmitry Kobak3,12, Matteo Bernabucci1,2, Yves Bernaerts3,4,  
Cathryn René Cadwell5, Jesus Ramon Castro1,2, Leonard Hartmanis6, Xiaolong Jiang1,2,7, 
Sophie Laturnus3, Elanine Miranda1,2, Shalaka Mulherkar2, Zheng Huan Tan1,2, Zizhen Yao8, 
Hongkui Zeng8, Rickard Sandberg6, Philipp Berens3,9,10,11 ✉ & Andreas S. Tolias1,2 ✉

Cortical neurons exhibit extreme diversity in gene expression as well as in 
morphological and electrophysiological properties1,2. Most existing neural 
taxonomies are based on either transcriptomic3,4 or morpho-electric5,6 criteria, as 
it has been technically challenging to study both aspects of neuronal diversity in 
the same set of cells7. Here we used Patch-seq8 to combine patch-clamp recording, 
biocytin staining, and single-cell RNA sequencing of more than 1,300 neurons in 
adult mouse primary motor cortex, providing a morpho-electric annotation of 
almost all transcriptomically defined neural cell types. We found that, although 
broad families of transcriptomic types (those expressing Vip, Pvalb, Sst and so on) 
had distinct and essentially non-overlapping morpho-electric phenotypes, 
individual transcriptomic types within the same family were not well separated in 
the morpho-electric space. Instead, there was a continuum of variability in 
morphology and electrophysiology, with neighbouring transcriptomic cell types 
showing similar morpho-electric features, often without clear boundaries 
between them. Our results suggest that neuronal types in the neocortex do not 
always form discrete entities. Instead, neurons form a hierarchy that consists of 
distinct non-overlapping branches at the level of families, but can form 
continuous and correlated transcriptomic and morpho-electrical landscapes 
within families.

As animals can be grouped into species and assembled into a hierarchy 
of phylogenetic relationships to form the ‘tree of life’, neurons in the 
brain are thought to form discrete cell types, which in turn can be cast 
in a hierarchy of neuronal families and classes. The current view is that 
a neuronal cell type is characterized by a common genetic profile that 
gives rise to distinct physiological and anatomical properties, including 
patterns of connectivity7,9. A comprehensive multi-modal taxonomy of 
neurons would resemble a ‘parts list’ of the brain, helping us to decipher 
its bewildering complexity10,11.

For decades, neurons have been classified into types by their 
anatomical and physiological characteristics, and more recently by 
molecular markers1,2,12,13. High-throughput single-cell sequencing 
techniques have identified dozens of types of neuron on the basis 
of their transcriptional profiles3,4,14,15, but linking transcriptomically 
defined cell types (t-types) to their phenotypes has remained a major 
challenge16. However, to understand the roles of t-types in cortical 
computations, it is necessary to know their anatomy, connectivity, 
and electrophysiology7.

Our work is part of the BRAIN initiative cell census network (BICCN) 
effort to fully characterize the cellular taxonomy of neurons in mouse 
primary motor cortex (MOp). We used the Patch-seq technique8,17–19 to 
describe the morpho-electric phenotypes for most of the t-types in 
MOp20. Our analysis suggests that, in both excitatory and inhibitory 
classes of neurons, broad transcriptomic families (also known as ‘sub-
classes’20) have largely distinct phenotypes, but uncovers continuous 
morpho-electric variation within most of these families.

Patch-seq of mouse primary motor cortex
We sampled neurons across all layers (L) of adult mouse MOp (median 
postnatal day (P) 75) using various Cre driver lines to cover as diverse 
a population of neurons as possible. Neurons in acute slices were 
patch-clamped and stimulated with brief current pulses to record 
their electrophysiological activity at room temperature and then filled 
with biocytin for subsequent morphological recovery and reconstruc-
tion, and their RNA was extracted and sequenced using the Smart-seq2 
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protocol21 (Extended Data Fig. 1). In total, we performed whole-cell 
recordings from more than 2,000 cells, of which 1,329 cells (from 266 
mice) passed initial quality control. The mRNA of these 1,329 cells 
was sequenced, yielding on average 1.3 million exonic and 0.7 mil-
lion intronic reads (medians; mean ± s.d. on a log10 scale: 6.0 ± 0.6 and 
5.6 ± 0.8, respectively) and 9,100 ± 3,500 (mean ± s.d.) detected genes 
per cell (Extended Data Fig. 2). Of these neurons, 646 had sufficient 
staining for their morphologies to be reconstructed.

Using the gene expression profiles, we mapped all sequenced neurons 
to the transcriptomic cell types (t-types) that have been identified using 
dissociated cells in a parallel study within the BICCN consortium20. To 

assign cell types, we used a nearest centroid classifier with Pearson cor-
relation of log-expression across the most variable genes as a distance 
metric (Extended Data Fig. 1). Bootstrapping over genes was used to 
assess mapping confidence. The mapping was done separately using 
each of the seven reference data sets obtained with different sequencing 
technologies, including single-cell and single-nucleus Smart-seq2 and 
10x sequencing20. We found that Patch-seq expression profiles were 
most similar to the single-nucleus Smart-seq2 data (Extended Data 
Fig. 2g, h). At the same time, there was good agreement between t-type 
assignments based on Smart-seq2 and those based on 10x reference 
data (Extended Data Fig. 2i), so consensus t-type assignment over all 
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Fig. 1 | Transcriptomic coverage. a, Number of Patch-seq cells assigned to 
each of the neural transcriptomic types (t-types)20. Colours and the order of 
types are taken from the original publication20. The filled part of each bar 
shows the number of morphologically reconstructed neurons. Grey labels, 
t-types with no cells. Total number of neurons, 1,227. b, Normalized soma 
depths of all neurons of each t-type. For t-types with at least three cells, 
horizontal lines show medians. Soma depths were normalized by the cortical 
thickness in each slice (0, pia; 1, white matter). Grey horizontal lines, 
approximate layer boundaries identified by Nissl staining (L1, 0.07; L2/3, 0.29; 
L5, 0.73). Total number of neurons, 1,187 (for some cells soma depth could not 
be measured owing to failed staining). c, t-SNE representation of CGE-derived 
interneurons from the single-cell 10x v2 reference data set (n = 15,511; 

perplexity, 30). t-Type names are shortened by omitting the first word; some 
are abbreviated. Patch-seq cells from the Vip, Sncg, and Lamp5 subclasses were 
positioned on this t-SNE atlas23 (black symbols). d, As in c but for MGE-derived 
interneurons (n = 12,083; perplexity, 30). e, As in c but for excitatory neurons 
(n = 93,829; perplexity, 100). f, Example morphologies coloured by t-type. For 
interneurons, dendrites are shown in darker colours. For excitatory neurons, 
only dendrites are shown. Black dots mark soma locations. Three voltage 
traces are shown below for some exemplary cells: the hyperpolarization trace 
obtained with the smallest current stimulation, the first depolarization trace 
that elicited at least one action potential, and the depolarization trace showing 
maximal firing rate. Stimulation length, 600 ms.
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seven reference data sets was used for all subsequent analysis. Cells 
that showed poor mapping (owing to a low read count or excessive 
RNA contamination) were excluded (Extended Data Fig. 2), leaving 
1,227 neurons for further analysis (817 inhibitory, 410 excitatory; 369 
and 269 with morphological reconstructions, respectively).

The resulting data set covered 77 out of the 90 neuronal t-types 
(Fig.  1a), with 73 t-types having at least one morphologically 
reconstructed neuron. The coverage was good for interneurons derived 
from the caudal and medial ganglionic eminences (CGE and MGE) and 
for excitatory neurons. Within-type distributions of soma depths 
(Fig. 1b) agreed well with previous data4 and with the layer-specific 
nomenclature of excitatory t-types, confirming the validity of our 
t-type assignment. Positioning all cells on reference maps made with 
t-distributed stochastic neighbour embedding (t-SNE)22,23 also showed 
good overall coverage (Fig. 1c–e) with only few uncovered regions.

The observed phenotypes included most of the morphological and 
electrophysiological types of cortical neurons that have been described 
previously in mice and rats5,6,24, allowing us to link transcriptomic and 
morpho-electric descriptions (Extended Data Fig. 3, Supplementary 
File 1).

A detailed description of all t-types is provided in Extended Data 
Tables 1, 2. One interesting case was the transcriptomically isolated 
Lamp5 Lhx6 type, which consists of deep L5/L6 neurogliaform 
cells (NGCs). This type, unlike all other Lamp5 types, is putatively 
MGE-derived4, so its identity was an open question16. Our results 
suggest that although all deep NGCs belong to the Lamp5 subclass, 
some are derived from the CGE and some from the MGE, as in the 
hippocampus25–27. Another finding was that the Sst Pvalb Calb2 type, 
which is transcriptomically in between the Sst and Pvalb subclasses, 
was also in between these subclasses in terms of its morpho-electric 
phenotype28. Furthermore, we confirmed that chandelier cells from 
both superficial and deep layers belonged to transcriptomically isolated 
Pvalb Vipr2 types. We also showed that three previously described 
morphological types of L5 Pvalb cells5, as well as two morphological 
types of L5 Martinotti cells29,30, corresponded to different t-types. 
We were also able to identify a t-type, L4/5 IT_1, that was located on 
the boundary between L2/3 and L5 and probably corresponds to the 
quasi-L4 neurons described previously in motor cortex31.

Distinct phenotypes of major families
We next asked to what extent the morpho-electric phenotype could 
be predicted by gene expression across the entire data set. To obtain 
quantitative characterizations of the morpho-electric phenotypes, 
we extracted 29 electrophysiological (Extended Data Fig.  4, 
Supplementary File 2) and about 50 morphological features for each 
cell. We first focused on 17 electrophysiological features and used 
sparse reduced-rank regression32, a technique that predicts the firing 
properties on the basis of a low-dimensional latent space representation 
computed from a sparse selection of genes. We used cross-validation to 
tune the regularization strength (Extended Data Fig. 5). The selected 
model used 25 genes with a 5-dimensional latent space and achieved a 
cross-validated R2 of 0.38. To visualize the structure of the latent space, 
we projected gene expression and electrophysiological properties 
onto the latent dimensions (Fig. 2). The cross-validated correlations 
between the first three pairs of projections were 0.90, 0.74, and 0.67, 
respectively.

These first three components clearly separated five major groups 
of neurons: the Pvalb, Sst, Vip, and Lamp5 interneuron subclasses, and 
the excitatory neuron class (Fig. 2). These groups had distinct electro-
physiological properties: for example, as expected, Pvalb neurons 
were characterized by high firing rates while Sst neurons had high 
values of the hyperpolarization sag and rebound (Fig. 2, right). Some 
of the genes selected by the model were prominent marker genes, 
such as the pan-inhibitory markers Gad1 and Slc6a1 (related to GABA 

(γ-aminobutyric acid) processing), or the more specific inhibitory mark-
ers Sst, Vip, Pvalb, Tac1, and Htr3a. Notably, some other selected genes 
were more directly related to electrophysiological properties, such as 
the calcium channel subunit genes Cacna1e and Cacna2d3 or the potas-
sium channel-interacting protein gene Kcnip2, which can modulate fir-
ing properties in individual families. A reduced-rank regression model 
restricted to using only ion channel genes (Extended Data Fig. 5) did 
not perform much worse than the full model (cross-validated R2 = 0.33 
and correlations 0.86, 0.71, and 0.56, respectively, with regulariza-
tion set to select 25 genes). Reduced-rank regression analysis using 
morphological features supported the separation of major families 
(Extended Data Fig. 5).

Similarly, a 2D t-SNE embedding of Patch-seq cells based on the same 
electrophysiological features showed that the major transcriptomic 
families have distinct electrophysiological properties (Fig. 3a): the 
Pvalb, Lamp5, Sst, Vip, CT (corticothalamic), IT (intratelencephalic), 
and ET (extratelencephalic) subclasses were mostly well separated from 
each other. We quantified this separation using a confusion matrix 
for k-nearest neighbours (kNN) classification of cells into families: 
it was mostly diagonal, with only the ET and IT subclasses strongly 
overlapping (Fig. 3d). We confirmed the electrophysiological overlap 
between IT and ET neurons in follow-up experiments at 34 °C (Extended 
Data Fig. 6).

We also constructed a 2D t-SNE embedding based on the 
morphological features (Fig. 3b). We used only dendritic features for 
the excitatory cells, but both axonal and dendritic features for the 
inhibitory cells, leading to a strong separation between these two 
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major classes. Within each class, cells were strongly segregated by the 
soma depth, with excitatory cells forming mostly a one-dimensional 
manifold. The separability between inhibitory families was weaker 
than with electrophysiological features (Fig. 3d). The between-family 
separability was strongest when we had combined electrophysiological 
and morphological features into a joint representation (Fig. 3c, d), 
showing that these sets of properties are not redundant. The ellipses 
in Fig. 3c highlight prominent t-types and groups of t-types with similar 
morpho-electric properties.

In summary, different transcriptomic families had largely distinct 
morpho-electric phenotypes, in agreement with them being well 
separated in the transcriptomic space4.

Continuous phenotypic variation
Within individual transcriptomic families, morpho-electric phenotypes 
rarely formed isolated clusters (Fig. 3). Moreover, we often found that 
morpho-electric phenotypes varied continuously from one t-type 
to another (Fig. 4). For example, electrophysiological properties of 
the t-types within the Vip subclass varied continuously across the 
transcriptomic landscape; the membrane time constant, for instance, 
had its largest values close to the Sncg subclass and gradually decreased 
towards Vip Gpc3 (Fig. 4a). We observed the same in the Sst subclass, 
which is known to be transcriptomically4 and morpho-electrically29,30,33 
diverse in L5. Here we also found that morpho-electric properties varied 
continuously across the transcriptomic landscape, with neighbouring 
t-types consistently showing similar morphologies and similar rebound 
values (Fig. 4b). We confirmed this effect in follow-up experiments at 
physiological temperature (Extended Data Fig. 6).

To quantify this effect, for each pair of t-types within each family we 
computed the transcriptomic distance (correlation distance between 
average log-counts in the reference data) and the electrophysiological 
distance (Euclidean distance between average feature vectors) between 
them. Pooling the pairs across all families, we found that these two 
distance measures were correlated, with r = 0.60 (Fig. 4c, n = 200 pairs; 
Extended Data Fig. 7). The correlation was also observed within multiple 
individual families and for many individual electrophysiological 
features (Extended Data Fig. 7).

The IT subclass provides an example of a similar phenomenon 
in another data modality (Fig. 4d). IT neurons span all layers from 
L2/3 to L6, and IT t-types are largely layer-restricted4. However, we 
found that IT t-types did not form distinct groups for each cortical 
layer; instead, the soma depth and RNA expression varied continu-
ously along a one-dimensional manifold (Fig. 4d), in agreement with 
parallel findings based on a spatial transcriptomics approach34. For 
example, L4/5 and L5 IT t-types that were transcriptomically close to 
the L2/3 IT t-types were located at the top of L5 close to the border 
between L2/3 and L5, whereas L5 IT t-types that were transcriptomi-
cally close to L6 IT t-types were located at the bottom of L5 close 
to the border with L6. Transcriptomic distances between t-types 
were strongly correlated with the average soma depth differences 
(r = 0.70; Fig. 4d).

Finally, the Pvalb subclass is usually understood as electrophysiologi-
cally homogenous (all neurons are fast spiking) but has been described 
as morphologically diverse, in particular in L55. However, it was previ-
ously unclear whether different morphologies such as shrub-like or 
horizontally elongated correspond to different t-types5. While we found 
that different t-types had different preferred morphologies (Extended 
Data Table 1), they showed substantial overlap, in agreement with the 
L5 Pvalb t-types themselves not having clear boundaries4 (Fig. 1d). 
The shape of the axonal arbor showed continuous changes across 
the transcriptomic landscape (Fig. 4e): small shrub-like basket cells, 
horizontally elongated basket cells, and vertically elongated classical 
basket cells were located in different corners of the t-SNE embedding, 
with intermediate morphologies in between.

In summary, within major transcriptomic families, morpho-electric 
phenotypes and/or soma depth often varied smoothly across neigh-
bouring t-types, indicating that transcriptomic neighbourhood 
relationships in many cases corresponded to similarities in other 
modalities.

Variability in individual t-types
To study the morpho-electric phenotypes of individual t-types, 
we measured how consistently they conformed to their respective 
transcriptomic families (Fig. 5a) and how variable they were within 
a t-type (Fig. 5b). First, we used a kNN classifier to classify cells from 
each t-type with at least ten cells into transcriptomic families, using 
electrophysiological features. Most t-types could be unambiguously 
placed into the correct family (Fig. 5a), but some t-types were in between 
two families. For example, many Sst Pvalb Calb2 neurons were classified 
as belonging to the Pvalb subclass on the basis of electrophysiology. 
Similarly, Lamp5 Egln3_1 neurons had rather Vip- and Sst-like firing 
instead of the typical Lamp5 electrophysiology, and Vip Mybpc1 neurons 
often had Sst-like firing. Thus, while overall transcriptomic family 
was highly predictive of the cell phenotype, some t-types exhibited 
properties similar to those of another transcriptomic family.
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Next, we measured the normalized total variance of each t-type using 
electrophysiological features and compared it to the normalized total 
variance of phenotype clusters derived by k-means clustering (with k 
set to the number of t-types). The rationale here was that the variance 
of the k-means clusters would reflect the minimal possible variance 
obtainable in our data set. Values much above the cluster variances 
indicate non-trivial phenotypic variability within a t-type.

We found that many t-types had total variance substantially above 
the variances of the k-means clusters (Fig. 5b) and an alternative 
analysis using entropies of Leiden clustering35 often highlighted the 
same t-types as variable (Extended Data Fig. 8). Not all t-types showed 
high variability: some of them, such as Pvalb Vipr2_2 (chandelier 
cells), appeared morpho-electrically homogeneous. By contrast, Vip 
Mybpc1_2 was marked as having high electrophysiological variability 
and indeed had high variance in input resistance, membrane time con-
stant, and rebound (Extended Data Fig. 4). This variability was not ran-
dom: overlaying the rebound values on the t-SNE embedding (Fig. 5c)  
showed that cells with low rebound were located close to the boundary 
with the low-rebound Vip Sncg type. Similarly, Sst Pvalb Calb2 cells had 
high variability in terms of the maximum firing rate, but high-firing 
cells were mostly grouped in one part of the transcriptomic landscape 
(Fig. 5d).

We found similar examples in the morphological modality (Extended 
Data Fig. 8). Together, these examples suggest that within-t-type 
morpho-electric variability can in some cases be related to the 
underlying transcriptomic variability. This is in agreement with the 
idea that on a fine within-family scale, both transcriptomic and 
morpho-electric landscapes are continuous rather than discrete.

Discussion
We used Patch-seq to provide the missing link between transcriptomic 
and morpho-electric descriptions of neurons in adult mouse motor cor-
tex. Broad transcriptomic families were mostly well separated in their 

morpho-electric properties. Previous studies using transgenic lines 
had shown that morpho-electric properties within these families can 
be highly variable5,24. We found that this variation is structured across 
the transcriptomic landscape, such that the morpho-electric distance 
between t-types within a family is correlated with their transcriptomic 
distance. Furthermore, we found non-trivial morpho-electric variability 
within multiple t-types. Although we cannot fully exclude the possibility 
that some of this variability can be attributed to technical challenges 
of Patch-seq or to factors such as the exact spatial location of the cell 
within motor cortex36, there are clear cases in our data that suggest 
that within-type morpho-electric variability is related to within-type 
transcriptomic variability.

We therefore suggest that the ‘tree of cortical cell types’ may look 
more like a banana tree with a few large leaves, rather than an olive tree 
with many small ones. In this metaphor, neurons follow a hierarchy 
consisting of distinct, non-overlapping branches at the level of families 
(large leaves), but with a spectrum of cells forming continuous and 
correlated transcriptomic and morpho-electrical landscapes within 
each leaf.

This is at odds with the notion that t-types are discrete entities, an 
implicit assumption behind any cluster analysis. Consistent with our 
interpretation, recent transcriptomic and anatomical studies have 
argued that neurons in hippocampus, striatum, and cerebellum can 
be better described as forming partially continuous manifolds27,37–39. 
Similarly, cortical studies have identified many intermediate cells 
with uncertain t-type assignments3,4. Thus, the goal to assemble an 
exhaustive inventory of neural cell types might be unattainable if 
the types, unlike the chemical elements in the periodic table, are not 
discrete entities. We believe that there is an urgent need for theoretical 
work on how to conceptualize and model hierarchical discrete/
continuous cell variability in a principled way7.

Developmentally, it is thought that neural diversity is generated 
through a combination of intrinsic genetic programs in progenitor 
cells, and activity-dependent and environmental factors40–44. It remains 
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unclear to what extent the interplay between hard-wired genetic pro-
grams and extrinsic cues might explain our observations.

Our study has several limitations. First, some t-types were covered 
only sparsely or not at all. Additional experiments with more specific 
Cre lines could fill some of the gaps, but some very rare putative t-types 
might not be amenable to Patch-seq study. Second, as the RNA extrac-
tion process may have interfered with biocytin diffusion17 and as MOp is 
quite thick, it was difficult to recover complete morphologies of some 
groups of neurons, such as deep L5 Martinotti cells with thin long axons 
that reach all the way to L1.

A parallel Patch-seq study of the inhibitory neurons in the mouse 
visual cortex45 focused on isolating multimodal neural types 
(‘met-types’) but also often observed continuous variation. Our data 
sets are overall in good agreement (Extended Data Fig. 9) and together 
offer an unprecedented view of cell type variability in the neocortex. 
Future studies will need to add additional modalities, such as long-range 
projections, local connectivity, and in vivo functional characterization.
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Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized and investigators were not blinded 
to allocation during experiments and outcome assessment, unless 
otherwise stated.

Animals
Experiments on adult male and female mice (n = 266; median age  
75 days, interquartile range 64–100, full range 35–245 days, Extended 
Data Fig. 2a) were performed on wild-type C57Bl/6 (n = 27), Viaat-Cre/
Ai9 (vesicular inhibitory amino acid transporter, encoded by the 
Slc32a1 gene, n = 24), Sst-Cre/Ai9 (somatostatin, n = 75), Vip-Cre/Ai9 
(vasoactive intestinal polypeptide, n = 46), Pvalb-Cre/Ai9 (parvalbumin, 
n = 76), Npy-Cre/Ai9 (neuropeptide Y, n = 2), Vipr2-Cre/Ai9 (vasoactive 
intestinal peptide receptor 2, n = 7), Scl17a8-Cre/Ai9 (VGLUT3, vesicular 
glutamate transporter 3, n = 6), Gnb4-Cre/Ai9 (n = 1), and Slc17a8-iCre/
Ai9 (n = 2) mice. Numbers above refer to mice from which sequencing 
data were successfully obtained. Several more animals were used for 
measuring layer boundaries and follow-up experiments at physiological 
temperature (see below). Mice were co-housed with littermates (2–5 per 
cage) in a controlled environment at 22–24 °C and 30–70% humidity. 
Mice were maintained with unrestricted access to food and water on a 
12-h light/dark cycle. Procedures for mouse maintenance and surgeries 
were performed according to protocols approved by the Institutional 
Animal Care and Use Committee (IACUC) of Baylor College of Medicine.

The Viaat-Cre line was generously donated by Huda Zoghbi (Baylor 
College of Medicine), the Slc17a8-iCre line by Rebecca Seal (University 
of Pittsburg). The Gnb4-Cre line was  from the Allen Institute for Brain 
Science. The other Cre and reporter lines were purchased from the 
Jackson Laboratory: Sst-Cre (stock no. 013044), Vip-Cre (stock no. 
010908), Pvalb-Cre (stock no. 008069), Vipr2-Cre (stock no. 031332), 
Slc17a8-Cre (stock no. 028534), Npy-Cre (stock no. 027851), Ai9 reporter 
(stock no. 007909).

We were unable to find any labelled cells in MOp in the Gnb4-Cre mice: 
all labelled cells were far outside of MOp and close to the claustrum46. 
For this reason, the data set does not include any Gnb4-positive cells.

Slice preparation
The MOp brain slices were obtained following previously described pro-
tocols5,28. In brief, the animals were deeply anaesthetized using 3% iso-
flurane and decapitated. The brain was rapidly removed and collected 
into cold (0–4 °C) oxygenated NMDG (N-methyl-d-glucamine) solution 
containing 93 mM NMDG, 93 mM HCl, 2.5 mM KCl, 1.2 mM NaH2PO4,  
30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 5 mM sodium ascorbate, 
2 mM thiourea, 3 mM sodium pyruvate, 10 mM MgSO4 and 0.5 mM 
CaCl2, pH 7.35 (all from Sigma-Aldrich). We cut 300-μm-thick coronal 
slices using a Leica VT1200 microtome following coordinates provided 
in the Allen Brain Atlas for adult mouse (http://atlas.brain-map.org). 
The slices were subsequently incubated at 34.0 ± 0.5 °C in oxygenated 
NMDG solution for 10–15 min before being transferred to the artificial 
cerebrospinal fluid (ACSF) solution containing: 125 mM NaCl, 2.5 mM 
KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, 1 mM MgCl2, 11.1 mM glucose 
and 2 mM CaCl2, pH 7.4 (all from Sigma-Aldrich) for about 1 h. The slices 
were allowed to recover in ACSF equilibrated with CO2/O2 gas mixture 
(5% CO2, 95% O2), at room temperature (approximately 25 °C) for 1 h 
before experiments. During the recordings, slices were submerged 
in a customized chamber continuously perfused with oxygenated  
physiological solution. Recorded cells were generally located  
15–60 μm deep under the slice surface.

Patch-seq recording procedures
In order to simultaneously obtain electrophysiological, morphological 
and transcriptomic data from the same neurons, we applied our recently 
developed Patch-seq protocol17, with some modifications. In particular, 

changes were made to the internal solution to optimize its osmolarity 
in order to improve staining quality. RNase-free intracellular solution 
was prepared as follows: we dissolved 111 mM potassium gluconate, 
4 mM KCl, 10 mM HEPES and 0.2 mM EGTA in RNase-free water in a 
125-ml Erlenmeyer flask. We then covered the solution with aluminium 
foil and autoclaved it. After the solution was cooled down to room 
temperature, we added 4 mM MgATP, 0.3 mM Na3GTP, 5 mM sodium 
phosphocreatine, and 13.4 mM biocytin (all from Sigma-Aldrich). The 
pH was adjusted to 7.25 with RNase-free 0.5 M KOH using a dedicated 
pH meter (cleaned with RNase Zap and RNase-free water before each 
use). RNase-free water was then added to the solution in order to 
obtain the desired volume. After carefully checking its osmolarity 
(approximately 235–240 mOSM) the solution was stored at −20 °C 
and used for no longer than 3 weeks.

Before each experiment, we combined 494 μl internal solution with 
6 μl recombinant RNase inhibitor (1 U/μl, Takara) to increase RNA yield. 
The addition of the inhibitor resulted in an increase in osmolarity 
to the desired value of 315–320 mOSM without a further dilution17. 
The osmolarity of the ACSF was monitored before each experiment 
and adjusted to be 18–20 mOSM lower than the internal solution. In 
particular, when the ACSF osmolarity was too low, we added a small 
amount of sucrose to ACSF to increase its osmolarity and bring it to 
the desired range. This osmolarity difference between ACSF and the 
internal solution is important to obtain slight swelling of the cell during 
the recording session, which improves the diffusion of biocytin in the 
neuronal processes. All glassware, spatulas, stir bars, counters, and 
anything else that may come into contact with the reagents or solution 
were cleaned thoroughly with RNase Zap before use.

Recording pipettes (B200-116-10; Sutter Instrument) of ~3–7 MΩ 
resistance were filled with 0.1–0.3 μl RNase-free intracellular solution. 
The size of the pipette tip was chosen according to the target neuron 
size: 3–4-MΩ pipettes were used to record large neurons (for example, 
L5 ET excitatory neurons) and 6–7-MΩ pipettes were used to record 
small cells such as L1 or Vip interneurons.

The PatchMaster software (HEKA Elektronik) and custom Matlab 
scripts were used to operate the Quadro EPC 10 amplifiers and to 
perform online and offline data analysis. We used the following qual-
ity control criteria: (1) seal resistance value >1 GΩ before achieving 
whole-cell configuration; (2) access resistance <30 MΩ. Each neuron 
was injected with 600-ms-long current pulses starting from −200 pA  
and up to 1,380 pA with 20-pA increment steps (in some cases stimu-
lation was stopped before reaching 1,380 pA). There were 1.3- or 1.4-s 
intervals between successive current pulses, depending on the used 
setup. For most neurons, the stimulation was then repeated multi-
ple times from the beginning. Electrophysiological traces used for 
the analysis were acquired between 3 and 15 min after achieving the 
whole-cell configuration. Recordings were performed at room tempera-
ture (25 °C), as opposed to physiological temperature (34 °C), in order 
to keep the cells alive for longer. We performed control experiments 
at physiological temperature as well (see below).

Typically, excitatory neurons were recorded for 5–20 min while 
interneurons were recorded for 20–50 min in order to allow biocytin 
to diffuse into distal axonal segments. During the recording, the access 
resistance was checked every three minutes in order to maintain a stable 
seal that would ensure successful biocytin diffusion. The resulting cDNA 
yield was not correlated with the hold time (Spearman correlation −0.01).

Experiments at physiological temperature
A subset of electrophysiological recordings was performed at 34 °C in 
the presence of fast glutamatergic and GABAergic synaptic transmission 
blockers, 1 mM kynurenic acid (Sigma-Aldrich) and 0.1 mM picrotoxin 
(Tocris), respectively. The temperature was maintained stable, and 
constantly monitored using the temperature controller TC07 (Luigs 
and Neumann). In this set of experiments, the morphologies were not 
recovered and multiple neurons were recorded in each slice. The soma 
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depth and the slice thickness were measured before each recording 
using Linlab2 software (Scientifica). Intrinsic electrophysiological 
recordings were obtained using the same stimulation paradigm as 
described above.

In these experiments, we targeted L5 Sst and excitatory neurons 
(Extended Data Fig. 6). We sequenced in total 185 neurons, obtained 
from 8 adult mice (7 Sst-Cre/Ai9 and 1 Pvalb-Cre/Ai9), of which 177 
neurons passed the transcriptomic quality control and got a t-type 
assignment (see below). One hundred and ten cells mapped to the Sst 
subclass, 43 to IT, 12 to ET, 10 to Pvalb, and 2 to NP. 175 cells were assigned 
to L5 in the post hoc analysis (see below). We obtained high-quality 
electrophysiological recordings and extracted electrophysiological 
features of 184 cells.

RNA sequencing of patched cells
At the end of the recording session, cell contents were aspirated into 
the glass pipette by applying a gentle negative pressure (0.7–1.5 pounds 
per square inch) for 1–5 min until the size of the cell body was visibly 
reduced. In most cases, the cell nucleus was visibly attached to the 
pipette tip and extracted from the cell body. We avoided complete 
nucleus aspiration, because it can lead to the collapse of the soma 
structure and of the nearby neurites, resulting in lower staining quality 
and stronger background staining. During the aspiration process, the 
cell body structure and access resistance were constantly monitored. 
Special care was taken to ensure that the seal between the pipette and 
the cell membrane remained intact to reduce contamination from the 
extracellular environment. After aspiration, the contents of the pipette 
were immediately ejected into a 0.2-ml PCR tube containing 4 μl lysis 
buffer (with ERCC spike-ins), and RNA was subsequently converted into 
cDNA using a Smart-seq2-based protocol21 as described previously17. 
The resulting cDNA libraries were screened using an Agilent Bioanalyzer 
2100. Samples containing less than around 1 ng total cDNA (in the 15 μl 
final volume) or with an average size less than 1,500 bp were typically 
not sequenced (with some occasional exceptions). The cDNA libraries 
were then frozen and sent for sequencing in 12 separate batches.

The cDNA libraries derived from each neuron were purified and 0.2 
ng of the purified cDNA was tagmented using the Illumina Nextera 
XT Library Preparation with one-fifth of the volumes stated in the 
manufacturer’s recommendation. Custom 8-bp index primers were 
used at a final concentration of 0.1 μM. The resulting cDNA library of 
each batch was sequenced on an Illumina NextSeq500 instrument with 
a sequencing setup of 75-bp single-end reads and 8-bp index reads. 
The investigators were blinded to the cell type of each sample during 
library construction and sequencing.

The sequencing data were processed using the zUMIs 2.5.6b pipeline 
with default settings47. Sequencing reads were aligned to the mm10 
mouse reference genome using STAR version 2.5.4b48 and transcript 
assignment performed with Gencode transcript annotations, version 
M23. A substantial portion of the RNA extracted from the neurons was 
nascent and contained intronic sequences. To accommodate this, gene 
expression counts were separately calculated using reads mapping 
to annotated intronic and exonic regions. We detected 42,466 genes, 
including pseudogenes and annotated non-coding segments, in at 
least one cell. The resulting exonic and intronic read count data were 
used for all transcriptomic analyses presented here. To quantify gene 
expression, we typically normalized exon and intron counts by exonic 
and intronic gene lengths in kilobases and added normalized counts 
together to obtain normalized exonic + intronic expression levels. See 
below for more details. Throughout the manuscript, ‘detected gene’ 
refers to a gene with a non-zero exonic or intronic count.

Biocytin staining and morphological reconstructions
Morphological recovery was carried out as previously described5,17,28. In 
brief, after the recordings, the slices were immersed in freshly prepared 
2.5% glutaraldehyde, 4% paraformaldehyde solution in 0.1 M PBS at 

4 °C for at least 48 h. The slices were subsequently processed with the 
avidin-biotin-peroxidase method to reveal the morphology of the 
neurons. As previously described, we took several steps to improve 
the staining quality of the fine axonal branches of interneurons5,17. 
First, we used a high biocytin concentration (0.5 g/100 ml). Second, 
we incubated with avidin–biotin complex and detergents at a high 
concentration (Triton X-100, 5%) for at least 24 h before staining with 
3,3′-diaminobenzidine (DAB).

Recovered cells were manually reconstructed using a 
100 × oil-immersion lens and a camera lucida system (MicroBrightField). 
We aimed to reconstruct all cells that had staining of sufficient quality 
(axons and dendrites for the inhibitory neurons; only dendrites for 
the excitatory neurons), and obtained 646 reconstructions in total. In 
addition, we reconstructed the dendrites of 30 neurons from the Vip 
and Scng subclasses that lacked sufficient axonal staining. Vip neurons 
are traditionally classified on the basis of dendritic morphology, so 
these reconstructions can inform t-type characterizations. These 
additional 30 reconstructions are shown, together with the main 646 
reconstructions, in Supplementary File 1.

Forty-five sequenced cells were mistakenly recorded using a 
solution with a much smaller concentration of biocytin, and their 
morphologies could not be recovered. We made sure that the measured 
electrophysiological properties of these cells were not systematically 
different from those of the the other sequenced cells.

Inevitably, neuronal structures can be severed as a result of the 
slicing procedure. We took special care to exclude reconstructions of 
all neurons that showed any signs of damage, lack of contrast, or poor 
overall staining. Consistently with previous studies, tissue shrinkage 
due to the fixation and staining procedures was about 10–20%5,28,49. 
This shrinkage was not compensated for in our analysis.

Cortical thickness normalization and layer assignment
Nissl-stained slices (n = 15 from two wild-type adult mice) were used 
to measure normalized layer boundaries in MOp. The Nissl staining 
protocol was adapted from ref. 50. In brief, brain slices were mounted 
on slides and allowed to dry. The sections were then demyelinated, 
stained with 0.1% cresyl violet-acetate (C5042, Sigma) for 30 min at 
60 °C and further destained. The sections were then coverslipped 
in Cytoseal 60 (Richard Allan Scientific). For each slice we measured 
total thickness from pia to white matter and the depths of the three 
between-layer boundaries (L1 to L2/3, L2/3 to L5, L5 to L6), based 
on the cortical cytoarchitecture, using a Neurolucida system with 
10 × or 20 × magnification. All measurements were normalized by the 
respective slice thickness, and the averages over all n = 15 slices were 
used as the normalized layer boundaries (Extended Data Fig. 2b).

For the Patch-seq neurons, we measured soma depth and the cortical 
thickness of the slice using a Neurolucida system. We took their ratio 
as the normalized soma depth, and assigned each neuron to a layer 
(L1, L2/3, L5, or L6) based on the Nissl-determined layer boundaries 
(Extended Data Fig. 2b). We obtained soma depth information for 
1,284 neurons out of 1,329 (45 neurons were mistakenly recorded 
using a solution with insufficient biocytin concentration, and we 
could measure soma depths for only 2 of those; for 2 other neurons 
the measurements could not be carried out because the slices were 
lost). For the 45 neurons with missing soma depth measurements, we 
used the layer targeted during the recording for all layer-based analyses 
and visualizations (marker shapes in Figs. 1c–e, 3a–c, layer-restricted 
analysis in Fig. 4, Extended Data Fig. 8).

All reconstructed morphologies were normalized by the cortical 
thickness of the respective slice to make it possible to display several 
morphologies next to each other, as in Extended Data Fig. 3.

t-Type assignment
The t-type assignment procedure was done in two rounds. The first 
round was for quality control and initial assignment to one of the three 



large transcriptomic groups (CGE-derived interneurons, MGE-derived 
interneurons, and excitatory neurons) that are perfectly separated from 
each other with no transcriptomically intermediate cells4. The second 
round was done to assign the cells to specific t-types.

In the first round, we mapped each Patch-seq cell to a large annotated 
Smart-seq2 reference data set from adult mouse cortex4, using a 
procedure similar to the one described in ref. 28. Specifically, using 
the exon count matrix of the reference data set, we selected the 3,000 
most variable genes (see below). We then normalized all exon counts 
by exonic gene lengths in kilobases, all intron counts by intronic gene 
lengths in kilobases (plus 10−6, to avoid division by zero) and added 
normalized counts together to obtain normalized exonic + intronic 
expression levels. We log-transformed these values using log2(x + 1) 
transformation and averaged the log-transformed values across all cells 
in each of the 133 t-types, to obtain reference transcriptomic profiles of 
each t-type (133 × 3,000 matrix). Out of these 3,000 genes, 2,666 were 
present in the genome annotation that we used and were detected in our 
data set. We applied the same normalization and log-transformation 
procedure to the exonic and intronic read counts of our cells, and for 
each cell computed Pearson correlation across the 2,666 genes with 
each of the 133 t-types. Each cell was assigned to the t-type to which it 
had the highest correlation (Extended Data Fig. 1d).

Cells meeting any of the following exclusion criteria were declared 
low quality and did not get a t-type assignment (Extended Data 
Fig. 2e): cells with the highest correlation below 0.4 (78 cells); cells 
that would be assigned to non-neural t-types, presumably owing 
to RNA contamination51 (14 cells; see also Extended Data Fig. 2j–n); 
cells with the highest correlation less than 0.02 above the maximal 
correlation in one of the other two large transcriptomic groups  
(5 cells). The remaining 1,232 cells passed quality control and entered 
the second round.

In the second round, cells were independently mapped to the seven 
transcriptomic data sets obtained from mouse MOp20. The mapping 
was done only to the t-types from the transcriptomic group identified 
in the first round, using the 500 most variable genes in that data set 
for that transcriptomic group (so using 7 × 3 = 21 sets of 500 most 
variable genes). Gene selection was performed as described below, 
and t-type assignment was done exactly as described above. Across 
the 21 reference subsets, 421–494 most variable genes were present 
in our data set, and were used for the t-type assignment (Extended 
Data Fig. 1e). When mapping to the Smart-seq2 reference data sets, 
we used normalized intronic and exonic reference counts, as above. 
When mapping to the UMI-based reference data sets, we used the 
unique molecular identifier (UMI) counts directly, without gene length 
normalization.

We used bootstrapping over genes to assess the confidence of each 
t-type assignment. For each cell and for each of the seven reference 
data sets, we repeatedly selected a bootstrap sample of genes (that is, 
the same number of genes, selected randomly with repetitions) and 
repeated the mapping. This was done 100 times and the fraction of 
times the cell mapped to each t-type was taken as the t-type assignment 
confidence for that t-type (Extended Data Fig. 1f). The confidences 
obtained with seven reference data sets agreed well with each other 
(Extended Data Fig. 2i) and were averaged to obtain the consensus 
confidence. Finally, the cell was assigned to the t-type with the highest 
consensus confidence.

Four cells were assigned to an excitatory t-type, despite having clearly 
inhibitory firing, morphology, and/or soma depth location (such as L1). 
The most likely cause of this was RNA contamination from excitatory 
cells, which are much more abundant than inhibitory cells in the mouse 
cortex (Extended Data Fig. 2). These four cells were excluded from all 
analyses and visualizations (as if they did not pass the transcriptomic 
quality control). In addition, one cell was probably located outside 
MOp, based on the slice anatomy, and was excluded as well. The final 
number of cells with t-type assignment was 1,227.

Selection of most variable genes
Several steps of our analysis required selecting a set of the most variable 
genes in a given transcriptomic data set. We always selected a fixed 
predefined number of genes (such as 500, 1,000, or 3,000).

To select the most variable genes, we found genes that had, at the 
same time, high non-zero expression and a high probability of near-zero 
expression52. Our procedure is described in more detail elsewhere23. 
Specifically, we excluded all genes that had counts of at least cmin (for 
Patch-seq and Smart-seq2: cmin = 32; for 10x: cmin = 0) in fewer than 10 
cells. For each remaining gene we computed the mean log2 count across 
all counts that were larger than cmin (non-zero expression, μ) and the 
fraction of counts that were smaller than or equal to cmin (probability 
of near-zero expression, τ). Across genes, there was a clear inverse 
relationship between μ and τ, that roughly followed the exponential 
law: τ ≈ exp(−1.5 × μ + a) for some horizontal offset a. Using a binary 
search, we found a value b of this offset that yielded the desired number 
of genes with τ > exp(−1.5 × μ + b) + 0.002.

For Smart-seq2 and Patch-seq data sets, we used only exonic counts 
to perform gene selection.

t-SNE visualization of the transcriptomic data
t-SNE embeddings22 of the three subsets of the single-cell 10x v2 data 
set20 (Fig. 1c–e) were constructed using the same 500 most variable 
genes that were used for t-type assignment (see above). The UMI 
counts were normalized by each cell’s sequencing depth (sum of 
counts), multiplied by the median sequencing depth across all cells, 
log2(x + 1)-transformed, and reduced to 50 principal components. The 
resulting n × 50 matrix was used as input to t-SNE. We used FIt-SNE 
1.2.153 with default parameters (including learning rate n/12 and scaled 
principal component analysis (PCA) initialization23). Perplexity was left 
at the default value of 30 for both inhibitory subsets and increased to 
100 for the excitatory subset.

To position Patch-seq cells on a reference t-SNE embedding, we used 
a published procedure23. In brief, each cell was positioned at the median 
embedding location of its ten nearest neighbours, based on Pearson cor-
relation distance in the high-dimensional space. As above, we used the 
sum of the normalized exonic and intronic counts for Patch-seq cells, 
and raw UMI counts for the reference cells. All values were log2(x + 1)- 
transformed and correlations were computed across the same genes 
that were used for t-type assignments (see above).

Extraction of electrophysiological features
Twenty-nine electrophysiological properties of the neurons were 
automatically extracted based on the raw membrane voltage traces 
(Extended Data Fig. 4) using Python scripts from the Allen Software 
Development Kit (SDK) (https://github.com/AllenInstitute/AllenSDK) 
with some modifications to account for our experimental paradigm 
(https://github.com/berenslab/EphysExtraction).

For each hyperpolarizing current injection, the resting membrane 
potential was computed as the mean membrane voltage during 100 
ms before stimulation onset and the input resistance as the difference 
between the steady state voltage and the resting membrane potential, 
divided by the injected current value (we took the average voltage of 
the last 100 ms before stimulus offset as steady state). The median of 
these values over all hyperpolarizing traces was taken as the final resting 
membrane potential and input resistance, respectively.

To estimate the rheobase (the minimum current needed to elicit 
any spikes), we used robust regression (random sample consensus 
algorithm, as implemented in sklearn.linear_model.RANSACRegressor) 
of the spiking frequency onto the injected current using the five lowest 
depolarizing currents with non-zero spike count (if there were fewer 
than five, we used those available). The point at which the regression 
line crossed the x-axis gave the rheobase estimate (Extended Data 
Fig. 4). We restricted it to be between the highest injected current that 
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elicited no spikes and the lowest injected current that elicited at least 
one spike. If the regression line crossed the x-axis outside this interval, 
the first current step that elicited at least one spike was used.

The action potential (AP) threshold, AP amplitude, AP width, 
afterhyperpolarization (AHP), afterdepolarization (ADP), the first AP 
latency, and the upstroke-to-downstroke ratio (UDR) were computed 
as illustrated in Extended Data Fig. 4, using the first AP fired by the 
neuron. AP width was computed at the AP half-height. UDR refers 
to the ratio of the maximal membrane voltage derivative during the 
AP upstroke to the maximal absolute value of the membrane voltage 
derivative during the AP downstroke. We also computed the first AP 
latency at 20 pA current above the smallest current stimulation value 
that elicited a spike.

The interspike interval (ISI) adaptation index for each trace was 
defined as the ratio of the second ISI to the first one. The ISI average 
adaptation index was defined as the mean of ISI ratios corresponding 
to all consecutive pairs of ISIs in that trace. For both quantities we took 
the median over the five lowest depolarizing currents that elicited at 
least three spikes (if fewer than five were available, we used all of them). 
AP amplitude adaptation index and AP amplitude average adaptation 
index were defined analogously to the two ISI adaptation indices, but 
using the ratios of consecutive AP amplitudes (and using the median 
over the five lowest depolarizing currents that elicited at least two 
spikes).

The maximum number of APs refers to the number of APs emitted 
during the 600-ms stimulation window of the highest firing trace. 
The spike frequency adaptation (SFA) denotes the ratio of the number 
of APs in the second half of the stimulation window to the number 
of APs in the first half of the stimulation window of the highest firing 
trace. If the highest firing trace had fewer than five APs, SFA was not 
defined. Here and below the highest firing trace corresponds to the first 
depolarizing current step that showed the maximum number of APs 
during the current stimulation window (after excluding all stimulation 
currents for which at least one AP was observed in 100 ms before or in 
200 ms after the stimulation window; see below).

The membrane time constant (τ) was computed as the time constant 
of the exponential fit to the membrane voltage from the stimulation 
onset to the first local minimum (we took the median over all 
hyperpolarizing traces). Three further features described the sag of 
the first (the lowest) hyperpolarization trace. The sag ratio was defined 
as the difference between the sag trough voltage (average voltage in 
a 5-ms window around the sag trough) and the resting membrane 
potential, divided by the steady state membrane voltage difference 
from the resting membrane potential. The sag time was defined as the 
time period between the first and the second moments at which the 
membrane voltage crossed the steady-state value after the stimulation 
onset. The sag area refers to the absolute value of the integral of the 
membrane voltage minus the steady-state voltage during the sag 
time period (Extended Data Fig. 4). If the sag trough voltage and the 
steady-state voltage differed by less than 4 mV, the sag time and sag 
area were set to zero.

The rebound was defined as the voltage difference between the 
resting membrane potential and the average voltage over 150 ms (or 
whatever time remained until 300 ms after the stimulation offset) after 
rebound onset, which we identified as the time point after stimulation 
offset at which the membrane voltage reached the value of the resting 
membrane potential. If the membrane voltage never reached the resting 
membrane potential during the 300 ms after the stimulation offset, the 
rebound was set to zero. The rebound number of APs was defined as the 
number of APs emitted during the same period of time. Both rebound 
features were computed using the lowest hyperpolarization trace.

The ISI coefficient of variation (CV) refers to the standard deviation 
divided by the mean of all ISIs in the highest firing trace. Note that a 
Poisson firing neuron would have ISI CV equal to one. The ISI Fano factor 
refers to the variance divided by the mean of all ISIs in the highest firing 

rate. The AP CV and AP Fano factor refer to the CV and the Fano factor 
of the AP amplitudes in the highest firing trace, respectively.

The burstiness was defined as the difference between the inverse of 
the smallest ISI within a detected burst and the inverse of the smallest ISI 
outside bursts, divided by their sum. We took the median over the first 
five depolarizing traces. We relied on the Allen SDK code to detect the 
bursts. In brief, within that code a burst onset was identified whenever 
a ‘detour’ ISI was followed by a ‘direct’ ISI. Detour ISIs are ISIs with a 
non-zero ADP or a drop of at least 0.5 mV of the membrane voltage 
after the first AP terminates and before the next one is elicited. Direct 
ISIs are ISIs with no ADP and no such drop of membrane voltage before 
the second AP. A burst offset was identified whenever a direct ISI was 
followed by a detour ISI. Additionally, bursts were required to contain 
no ‘pauselike’ ISIs, defined as unusually long ISIs for that trace (see Allen 
SDK for the implementation details).

Some neurons (in particular neurogliaform cells) started to emit APs 
before and after the current stimulation window, after the stimulation 
currents exceeded a certain amount. To quantify this effect, we defined 
wildness as the difference in the number of APs between the highest 
firing trace (possibly showing APs before or after the stimulation 
window) and the highest firing trace as defined above (without any 
APs outside the stimulation window). For most neurons, wildness was 
equal to zero.

For all statistical analysis we used 17 features out of the extracted 
29, excluding features that were equal to zero for many cells 
(afterdepolarization, burstiness, rebound number of APs, sag 
area, sag time, wildness), two Fano factor features that were highly 
correlated with the corresponding coefficient of variation features 
(AP Fano factor, ISI Fano factor) and another measure of latency 
that was highly correlated with the latency itself, features that had 
very skewed distributions (AP amplitude average adaptation index, 
ISI average adaptation index), and features that were undefined for 
some of the cells (spike frequency adaptation). Four features were 
log-transformed to make their distribution more Gaussian-like: AP 
coefficient of variation, ISI coefficient of variation, ISI adaptation index, 
and latency.

Extraction of morphological features
Reconstructed morphologies were converted into the SWC format 
using NLMorphologyConverter 0.9.0 (http://neuronland.org) and 
further analysed using MorphoPy (https://github.com/berenslab/
MorphoPy, version 0.6)54. Each cell was soma-centred in the x (slice 
width) and y (slice depth) dimensions, and aligned to pia in the z (cortical 
depth) dimension so that z = 0 corresponded to pia. All neurites were 
smoothed in the slice depth dimension (y) using a Savitzky–Golay 
filter of order 3 and window length 21, after resampling points to have 
maximally 1 μm spacing. For further analysis we computed two different 
feature representations of each cell: the normalized z-profile and a set 
of morphometric statistics24,28,55.

To compute the normalized z-profile, we divided all the coordinates 
of the neuronal point cloud by the thickness of the respective 
cortical slice, so that z = 1 corresponded to the white matter border. 
We projected this point cloud onto the z-axis and binned it into 20 
equal-sized bins spanning [0, 1]. The resulting histogram describes 
a neuron’s normalized depth profile perpendicular to the pia. For 
the purposes of downstream analysis, we treated this as a set of 20 
features. The z-profiles were separately computed for axons and 
dendrites.

Morphometric statistics were separately computed for the dendritic 
and axonal neurites to quantify their arborization shape and branching 
patterns. For the excitatory neurons, several additional morphometric 
statistics were computed for the apical dendrites, where apical 
dendrite was operationally defined as the dendrite with the longest 
total path length. We further used two ‘somatic’ features: normalized 
soma depth and soma radius. We did not use any features measuring 
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morphological properties in the slice depth (y) direction because of 
possible slice shrinkage artefacts. We did not use any axonal features 
for the excitatory cells because only a small part of the axon could 
typically be reconstructed. For the inhibitory cells, where dendrite 
and axon could both be fully recovered, we included some measures 
of dendritic and axonal overlap. The full list of morphometric statistics 
is given in Supplementary File 3.

We extracted a set of 75 features, of which 40 were defined for 
excitatory neurons and 62 for inhibitory neurons, and processed the 
data for excitatory and inhibitory neurons separately. In each case, 
we excluded features with coefficient of variation below 0.25 (among 
the features with only positive values). This procedure excluded five 
features for the excitatory and nine features for the inhibitory cells. 
The distributions of the remaining features were visually checked for 
outliers and for meaningful variation between transcriptomic types, 
leading to a further exclusion of three features for the inhibitory cells. 
The full list of excluded features is given in Supplementary File 3. The 
resulting set of morphometric statistics used for further analysis 
consisted of 35 features defined for the excitatory neurons and 50 
features defined for the inhibitory neurons.

Reduced-rank regression
For the RRR analysis32 we used 17 electrophyiological features and all 
1,219 cells for which values for all 17 features and a t-type assignment 
could be computed. Electrophysiological features were standardized. 
Exon counts and intron counts were normalized by the exon/intron 
gene lengths as described above, summed together, converted to CPM, 
log2(x + 1)-transformed, and then standardized. We selected the 1,000 
most variable genes (using raw exonic counts) and used only those for 
the RRR analysis.

In brief, RRR finds a linear mapping of gene expression levels 
to a low-dimensional latent representation, from which the 
electrophysiological features are then predicted with another linear 
transformation (for mathematical details, see ref. 32). The model uses 
sparsity constraints in the form of elastic net penalty to select only a 
small number of genes. For Fig. 2 we used a model with rank r = 5, zero 
ridge penalty (α = 1), and lasso penalty tuned to yield a selection of 
25 genes (λ = 0.5). Cross-validation (Extended Data Fig. 5) was done 
using 10 folds, elastic net α-values 0.5, 0.75, and 1.0, and λ-values from 
0.2 to 6.0.

The plots shown in Fig. 2a, b are called bibiplots because they 
combine two biplots: the left biplot shows a mapping of gene expression 
levels onto the two latent dimensions; the right biplot shows the same 
mapping of electrophysiological features. To illustrate the meaning 
of the latent dimensions, each biplot combines the resulting scatter 
plots with lines showing how original features are related to the latent 
dimensions. Specifically, we computed the correlations of individual 
genes or electrophysiological properties with the latent dimensions 
and visualized these correlations as lines on the biplot. The circle shows 
the maximal possible correlation; only lines longer than 0.4 times the 
circle radius are shown in Fig. 2. Label positions were automatically 
adjusted by simulating repulsive forces between all overlapping pairs 
of labels, until there was no overlap.

For the model based on ion channel genes, we obtained the list 
of 328 ion channel genes from https://www.genenames.org/data/
genegroup/#!/group/177and used all 307 of them that had non-zero 
expression in at least 10 of our cells. We used rank r = 5, α = 1, and λ tuned 
to yield 25 genes (λ = 0.303), as above.

t-SNE visualization of the morpho-electric phenotypes
For the t-SNE visualization22 of the electrophysiological phenotypes, 
we used 17 features as described above and all n = 1,320 cells that had 
values for all 17 features. All features were standardized across this set 
of cells and transformed with PCA into a set of 17 PCs. We scaled the PCs 
by the standard deviation of PC1. We used the t-SNE implementation 

from scikit-learn Python library with the default perplexity (30), early 
exaggeration 4 (the default value 12 can be too large for small data 
sets), and scaled PCA initialization23. Fig. 3a shows n = 1,219 cells that 
had a t-type assignment.

For the t-SNE visualization of the morphological phenotypes, we 
combined morphometric statistics with the normalized z-profiles. 
The pre-processing, including PCA, was done separately for the 
excitatory and inhibitory neurons because they used different sets 
of morphometric statistics (see above). Only neurons with assigned 
t-types were used for this analysis. Two inhibitory neurons were left out 
because some of the morphometric statistics could not be extracted 
owing to insufficient dendritic recovery; this left 367 inhibitory neurons 
(with 50 morphometric features) and 269 excitatory neurons (with 35 
morphometric features). All features were standardized and each set 
was reduced to 20 PCs. We scaled the PCs by the standard deviation of 
the respective PC1, to make the inhibitory and the excitatory PCs have 
comparable variances.

We used dendritic z-profiles for the excitatory neurons and axonal 
z-profiles for the inhibitory neurons. We reduced each set to five PCs, 
discarded PC1 (it was strongly correlated with the normalized soma 
depth and made the resulting embedding strongly influenced by 
the soma depth), and scaled the PCs by the standard deviation of the 
respective PC2. We stacked the 20 scaled morphometric PCs and the 4 
scaled z-profile PCs to get a combined 24-dimensional representation, 
separately for the excitatory and for the inhibitory neurons. We 
then combined these representations into one block-diagonal 
48-dimensional matrix. This procedure makes the excitatory and 
the inhibitory populations both have zero mean. To prevent overlap 
between these two populations, we added a small constant value of 
0.25 to the excitatory block-diagonal block, leading to the strong 
excitatory–inhibitory separation in Fig. 3b. The t-SNE was performed 
exactly as described above.

For the t-SNE visualization of the morpho-electrical landscape, we 
stacked together the 48-dimensional morphological representation and 
the 16-dimensional electrophysiological representation obtained above, 
using only cells that had all morphological and all electrophysiologcal 
features (n = 628). We multiplied the electrophysiological block by √2 
to put its total variance on a similar scale (it only consisted of one set 
of scaled PCs, whereas the morphological representation consisted of 
two sets of scaled PCs: morphometrics and z-profiles). The resulting 
64-dimensional morpho-electrical representation was used for t-SNE, 
exactly as described above.

kNN classification of transcriptomic families
To classify neurons into transcriptomic families on the basis of 
electrophysiological, morphological, or combined features (Figs. 3d, 
5a, Extended Data Fig. 8a), we used a kNN classifier with k = 10 and 
Euclidean distance metric (taking the majority family among the k 
nearest neighbours). This is effectively a leave-one-out cross-validation 
procedure. For each data modality we took the exact same data 
representation that was used for computing t-SNE embeddings 
(Fig. 3a–c; see above). Note that the t-SNE algorithm is also based 
on nearest neighbours and makes all close neighbours attract each 
other in the embedding. We chose the kNN classifier as a simple 
but versatile non-parametric classifier that is directly related to the 
t-SNE embeddings. We did not use the Sncg and NP families owing to 
insufficient coverage in our data set (Fig. 1).

Fig. 3d shows the fraction of cells from each family that was classified 
into each family. Fig. 5a and Extended Data Fig. 8a show fractions 
of cells from each t-type that were classified into each family. For 
morphological and combined features, Extended Data Fig. 8a shows 
fractions of cells from the majority layer of each t-type. For example, 
the Pvalb Reln type occurred most often in L5, so only cells from that 
layer were taken for that type. Only t-types with at least ten cells (or at 
least ten layer-restricted cells) are shown.

https://www.genenames.org/data/genegroup/#!/group/177
https://www.genenames.org/data/genegroup/#!/group/177
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Within-family analysis
To study the relationship between transcriptomic and 
electrophyiological distances between pairs of t-types (Fig. 4c, d, 
Extended Data Figs. 6, 7), we took all t-types with five or more cells 
assigned to them (for Extended Data Fig. 7a: with ten or more). For each 
pair of t-types, transcriptomic distance was computed as the Pearson 
correlation between the average log2(x + 1)-transformed UMI counts in 
the single-cell 10x v2 data20. The 1,000 most variable genes across all 
neural types were used for Fig. 4c and Extended Data Fig. 7a, b, and the 
500 most variable genes across the respective transcriptomic group 
(see above) were used for Fig. 4d and Extended Data Figs. 6i, j and 7c–n. 
Electrophysiological distance was computed as the Euclidean distance 
between the average feature vectors. Fig. 4d used the soma depth 
distance, computed as the absolute value of the difference between 
the average normalized soma depths.

T-type variability analysis
The normalized total variance in Fig. 5b and Extended Data Fig. 8b 
was computed as follows. For each modality, we took the exact same 
data representation that was used for computing t-SNE embeddings 
(Fig. 3a–c; see above). For each t-type (or layer-restricted t-type; see 
above), we took the sum of its variances in all dimensions as the total 
variance and divided by the sum of variances in all dimensions across 
the whole data set:
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where Xij is a value of feature j of cell i, n is the total number of cells, and 
T is the set of cell numbers belonging to the given t-type. The value 0 
indicates that all cells from this t-type have exactly identical features. 
The value 1 indicates that there is as much variance in this one t-type as 
in the whole data set. Only t-types with at least ten cells (or at least ten 
layer-restricted cells) are shown in Fig. 5b and Extended Data Fig. 8b.

To provide a sensible baseline for the range of possible normalized 
total variances in a population of morpho-electrically homogeneous 
types, we used a clustering analysis. For the cells of all the K t-types 
(or layer-restricted t-types) with at least ten cells in a given panel, we 
used the k-means algorithm to cluster them into K clusters, reasoning 
that these clusters should be as homogeneous as possible given the 
variability in our data set. We used the k-means implementation from 
scikit-learn with default parameters. We then computed the normalized 
total variance of each cluster as described above. Grey shading in Fig. 5b 
and Extended Data Fig. 8b shows the interval between the minimum 
and the maximum cluster variances. Note that the k-means algorithm 
directly minimizes within-cluster total variances.

We used the entropies of a Leiden clustering35 as an alternative way 
to approach the same question. For each modality, using the exact 
same data representation as above, we constructed its kNN graph with 
k = 10 and clustered it using the Leiden algorithm as implemented in 
the Python package leidenalg with RBConfigurationVertexPartition 
quality function and resolution parameter manually tuned to produce 
roughly the same number of clusters for each modality as in ref. 24. 
(Extended Data Fig. 8). For each t-type (or layer-restricted t-type), we 
then measured the entropy of the distribution of electrophysiological or 
morphological cluster IDs, after randomly subsampling the t-type to ten 
cells. Subsampling was done to eliminate a possible bias due to the t-type 
abundance. The whole procedure was repeated 100 times with different 
random seeds for the Leiden clustering and for the subsampling.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All preprocessed data (gene counts, electrophysiological and 
morphological features) and meta data are available at https://
github.com/berenslab/mini-atlas, together with direct links to the 
raw data. Electrophysiological recordings are available at https://
dandiarchive.org/dandiset/000008 (main data set) and https://
dandiarchive.org/dandiset/000035 (physiological temperature) in 
NWB format. Sequencing data are available at http://data.nemoarchive.
org/biccn/grant/zeng/tolias in FASTQ format. Morphological 
reconstructions are available at https://download.brainimagelibrary.
org/3a/88/3a88a7687ab66069/ in SWC format.

Code availability
The analysis code in Python is available at https://github.com/
berenslab/mini-atlas.
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Extended Data Fig. 1 | Patch-seq protocol, mouse Cre lines, and t-type 
assignment. a, Patch-seq combines electrophyiological recordings, RNA 
sequencing using Smart-seq2, and biocytin staining in the same cell.  
b, Four exemplary slice images. Top: an image of the whole slice using 4x 
magnification. Bottom: a flattened 3D image stack using 20× magnification. 
From left to right: L5 ET neuron, L2/3 IT neuron, L5 Sst neuron, L5 Pvalb neuron. 
c, t-Types assigned to cells collected in mice from different Cre lines. ‘WT/Cre-’ 
stands for cells from any Cre line that were not labelled with a fluorescent 
indicator, or for the cells patched in wild type mice. 1,227 cells shown. d, t-Type 

assignment procedure for one example cell (d–f). Correlations to the mean log 
expression of all t-types from ref. 4, using 3,000 most variable genes. Maximum 
correlation is to the excitatory neurons. t-Type names are shortened, and every 
second one is omitted for compactness. e, Correlations to all excitatory t-types 
from ref. 20 using all seven reference data sets and 500 most variable genes.  
f, t-Type assignment confidences for all seven data sets, obtained via 
bootstrapping over genes. The average confidence is shown in black. The mode 
of the average confidence was taken as the final t-type.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Quality control. a, Age distribution of the mice used in 
the experiments. Median: 75 days. b, Soma depths of all cells and cortical 
thickness of the corresponding slices. Dashed lines show layer boundaries, 
based on the Nissl-stained slices (measured layer boundaries shown as blue 
points). All soma depths were normalized by dividing them by the cortical 
thickness. c, Relationship between the number of exonic and intronic counts. 
The apparent bimodality could be explained by whether the nucleus was 
extracted or not during Patch-seq aspiration. Whenever the nucleus was not 
extracted, low amount of nonspliced RNA led to low intronic counts; otherwise, 
the number of intronic and exonic counts was almost the same. Red: cells 
eventually failing quality control. d, Relationship between sequencing depth 
(total number of reads) and the number of detected genes (number of genes 
with non-zero counts). e, Relationship between the number of detected genes 
and the maximal correlation to clusters from ref. 4. Cells with maximal 
correlation below 0.4 were declared low quality. f, Relationship between the 
maximal correlation across neural clusters and the maximal correlation across 
non-neural clusters from ref. 4. Cells with maximal neural correlation below 0.4 
were declared low quality. See Methods for additional QC criteria. g, Maximal 
correlations using single-cell and single-nucleus Smart-seq2 reference data 
sets20. h, Maximal correlations using Smart-seq2 reference data sets (maximum 

across cell types and across two data sets) and using 10x reference data sets 
(maximum across cell types and across five data sets). i, t-Type assignment 
using single-cell Smart-seq2 reference data set and using single-cell 10x v2 
reference data set. All points are on the integer grid; marker size shows the 
number of cells at the corresponding location. Dashed lines separate CGE-
derived interneurons, MGE-derived interneurons, and excitatory neurons.  
The mapping was done within each order, so there cannot be any cells outside 
of the diagonal blocks. j, Expression of several prominent markers of non-
neural cells, in comparison to the Smart-seq2 data set from ref. 4. The values  
are log2(x + 1)-transformed sums of exonic and intronic counts, shown with 
random  ( )U − ,1

2
1
2

 jitter. Percentage values refer to the fraction of cells with non-
zero counts. PVM stands for perivascular macrophages. We selected these 
markers because they have very low expression in neural cells. A neuronal 
marker Snap25 is shown for comparison. Cells from the reference data set are 
shown with the alpha-level set to the ratio of our data set size to that data set 
size (0.06), to make the dot plots more comparable. k, l, Neural and glial 
expression in our data set (k) and in the FACS-sorted data set4 (l) (plotted using 
the colours from the original publication, without transparency). m, n, The 
same using the excitatory marker Slc17a7 and the inhibitory marker Gad2.



Extended Data Fig. 3 | Diversity of mouse cortical neurons. Two 
representative examples per t-type, or one if only one reconstruction was 
available. In total 135 neurons in 73 t-types. For interneurons, dendrites are 
shown in darker colours. For excitatory neurons, only dendrites are shown. 
Black dots mark soma locations. Horizontal grey lines show approximate layer 
boundaries. Three voltage traces are shown for each neuron: the 

hyperpolarization trace obtained with the smallest current stimulation, the 
first depolarization trace eliciting at least one action potential, and the 
depolarization trace showing maximal firing rate. Stimulation length: 600 ms. 
The length of the shown voltage traces: 900 ms. Electrophysiological 
recording for one neuron did not pass quality control and is not shown.
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Extended Data Fig. 4 | Extraction and distribution of electrophysiological 
features. Panels a–f show data from the same exemplary cell. a, Membrane 
potential responses to the consecutive step current injections. Hyperpolarizing 
currents were used to compute the input resistance (274.80 MOhm) and membrane 
time constant tau (21.95 ms). b, The first five traces showing spikes were used to 
compute ISI adaptation index (1.26), ISI average adaptation index (1.15), AP 
amplitude adaptation index (0.91) and AP amplitude average adaptation index 
(0.99). c, The first AP elicited in this neuron. It was used to compute AP threshold 
(−40.18 mV), AP amplitude (81.17 mV), AP width (0.80 ms), AHP (−12.60 mV),  

ADP (0 mV), UDR (1.62) and latency of the first spike (69.28 ms). d, Regression line 
gives the rheobase estimate (20.44 pA). e, The highest firing trace with 32 APs. This 
trace was used to estimate the ISI CV (0.27), ISI Fano factor (0.0014 ms), AP CV (0.17) 
and AP Fano factor (1.32 mV). f, The lowest hyperpolarization trace was used to 
compute the sag ratio (1.17), sag time (0.26 ms), sag area (31.16 mV⋅ms) and rebound 
(17.84 mV). g, Eight important electrophysiological features are shown for all cells 
across all t-types. For t-types with at least three cells, horizontal lines show 
median values. See Supplementary File 2 for all electrophysiological features.



Extended Data Fig. 5 | Additional reduced-rank regression analysis and 
cross-validation. a, Cross-validated R2 of ‘naive’ and ‘relaxed’ sparse RRR 
solutions32 for various elastic net penalties (α and λ). ‘Relaxed’ means that the 
model was re-fit without a lasso penalty using only the selected genes; ‘naive’ 
means that it was not re-fit. Vertical dashed lines at 25 genes corresponds to the 
choice made for Fig. 2. The best performance is around ~100 genes, but we 
chose 25 for the sake of interpretability. The subsequent panels only show 
results for the ‘relaxed’ models. b, Cross-validated R2 using α = 1 for different 
ranks from rank 1 to rank 16 (full rank). c, Cross-validated R2 using α = 1 and λ 
needed to obtain 25 genes for different ranks. The peak performance is 
achieved with rank ~13 (inset), but rank-5 model used in the main text is almost 
as good. d, Cross-validated correlations between sequential projections of the 
transcriptomic and electrophysiological data sets (rank-5 models with α = 1). 

For any given number of selected genes, correlations decrease monotonically 
for higher components. e, f, Reduced-rank regression model using only ion 
channel genes. A full analogue of Fig. 2 but using only 328 ion channel genes 
(see Methods), of which 307 were detected in our data set in at least 10 cells.  
g–j, Reduced-rank regression model predicting morphological features. An 
analogue of Fig. 2 but using morphological, instead of electrophysiological 
features. The analysis was done separately for the excitatory (g–h) and for the 
inhibitory (i–j) neurons because different sets of morphological features were 
computed for these sets of neurons. Excitatory neurons: 269 cells, 35 features. 
Rank-5 model, λ = 0.59, adjusted to yield 25 genes. Only a subset of 
morphological features are labelled to reduce the clutter (abbreviations:  
“W” — width, “H” — height). Inhibitory neurons: 367 cells, 50 features, λ = 0.49.
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Extended Data Fig. 6 | Electrophysiological properties of IT, ET, and Sst 
neurons in Layer 5 at physiological temperature. a–e, Each panel shows a 
comparison between L5 neurons from the IT and the ET subclasses (pooled across 
all t-types within each subclass). The main set of experiments was done at room 
temperature (25 °C). Follow-up experiments were done at physiological temperature  
(34 °C), in the presence of 1 mM kynurenic acid and 0.1 mM picrotoxin in order to 
block fast glutamatergic and GABAergic synaptic transmission. Horizontal lines 
show median values. The first four panels correspond to features showing the 
largest IT/ET differences at room temperature, according to the two-sided 
Wilcoxon-Mann–Whitney test statistic (and omitting several features that are very 
correlated with the shown ones: upstroke-to-downstroke ratio, sag time, and sag 
area). The last panel additionally shows one feature that showed prominent 
difference at 34 °C. f, g, IT and ET neurons recorded at 34 °C in two-dimensional 
representations using the features with highest separability. h, The change of 

electrophysiological properties between room temperature (25 °C) and 
physiological temperature (34 °C) for various t-types from the Sst subclass. Only L5 
neurons are shown. Only t-types with ≥ 5 cells in both conditions are shown. 
Horizontal lines denote median values. AP amplitude and AP width changed the 
most between conditions, but the relative differences between t-types stayed 
roughly the same. The other four shown features did not change much, and the 
relative differences between t-types stayed the same. i, Overlay of the L5 Sst cells 
over the reference t-SNE embedding, coloured by rebound, as in Fig. 4b. The inset 
shows the correlation between transcriptomic distances and electrophysiological 
differences between all pairs of Sst t-types (only for t-types with at least 5 cells, and 
excluding Sst Chodl), together with its p-value. j, The same analysis as in (c) but using 
the experiments performed at physiological temperature. No corrections for 
multiple comparisons were applied.



Extended Data Fig. 7 | Transcriptomic and electrophysiological distances 
within individual families. a, b, Pooled within-family analysis. The same 
analysis as in Fig. 4c but showing within-family as well as between-family pairs 
of t-types. Using a cutoff of at least 10 neurons per t-type (a) and a cutoff of at 
least 5 neurons per t-type (b). c–n, Transcriptomic and electrophysiological 

distances within individual families. Only t-types with ≥ 5 neurons are  
used for this analysis (used t-types are listed in the second column). 
Transcriptomically well-isolated Sst Chodl and Pvalb Vipr2_2 were excluded. 
Three electrophysiological features with the highest correlation to the 
transcriptomic distance are shown on the right, for each family.



Article

Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Phenotypic variability of individual t-types. The 
extended version of Fig. 5. a, Confusion matrices for classifying cells from each 
t-type into seven transcriptomic families, using electrophysiological, 
morphological, and combined features. Only t-types with at least 10 cells are 
shown. For morphological and combined features we only took cells from one 
cortical layer. Values in each column sum to 1. Arrows mark t-types that are 
classified into wrong families more often than 25% of the time. We used kNN-
based classifier with k = 10. b, Normalized total variance of features in each 
t-type. Higher values correspond to t-types with more variable phenotypes. 
Horizontal grey band shows the min/max normalized variances of k-means 
clusters. c, Three exemplary traces of cells from the Vip Mybpc1_2 type (all with 
confidence ≥ 95%) and t-SNE overlay coloured by the rebound. Inset: the same 
t-SNE embedding as in Fig. 1. Main plot: zoom-in. d, Three exemplary traces of 
cells from the Sst Pvalb Calb2 (confidence ≥ 95%) and t-SNE overlay coloured by 
the maximum firing rate. e, Exemplary morphologies of L5 cells from the Pvalb 
Reln type and t-SNE overlay coloured by the axonal width/height log-ratio as in 

Fig. 4e. f, Exemplary morphologies of Pvalb Vipr2_2 chandelier neurons and 
t-SNE overlay coloured by the axonal width/height log-ratio as in Fig. 4e. g–i, We 
used Leiden clustering35 to cluster the cells based on electrophysiological, 
morphological, and combined features. The clustering resolution was adjusted 
to roughly match the number of e-types, m-types, and em-types from ref. 24. 
The cluster colours in these panels are arbitrary and not the same as the colours 
used for t-types. j–l, For each t-type with at least 10 cells, we measured the 
entropy of the cluster assignments. Entropy zero corresponds to all cells 
getting into one cluster. Higher entropies mean that cells get distributed 
across many clusters. We repeated the clustering 100 times with different 
random seeds, and for each of them, subsampled each t-type to 10 cells to 
measure the entropy. Points show 100 repetitions, big markers show medians. 
When using morphological and combined features, all t-types were layer-
restricted, as above. The t-type colours do not correspond to the colours in 
panels ( j–i).



Article

Extended Data Fig. 9 | Interneurons assigned to the Tasic et al.4 t-types. This 
is an exact analogue of Fig. 1b and Extended Data Fig. 3 using inhibitory t-types 
from ref. 4. It allows the direct comparison with the results from ref. 45. We used 

the same neurons as in Extended Data Fig. 3 whenever possible.  
99 neurons in 55 t-types.



Extended Data Table 1 | Description of the inhibitory t-types

References56–61 are cited in this table.



Article
Extended Data Table 2 | Description of the excitatory t-types

References62–70 are cited in this table.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Electrophysiological recordings: HEKA patch master v2x65 and v2x90.3; morphological reconstructions: neuroleucida and neuroleucida 
explorer 11.04.  In a subset of data the soma position was evaluated in slices during recording using Linlab2 1.0.

Data analysis The sequencing data were processed using the zUMIs 2.5.6b pipeline with default settings; sequencing reads were aligned to the mouse 
reference genome using STAR version 2.5.4b; reconstructed morphologies were converted into the SWC format using 
NLMorphologyConverter 0.9.0 and further analyzed using MorphoPy 0.6; we used custom Python scripts to perform the data analysis. The 
analysis code can be found at https://github.com/berenslab/mini-atlas. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Electrophysiological recordings are available at https://dandiarchive.org/dandiset/000008 in NWB for- mat.  
Sequencing data are available at http://data. nemoarchive.org/biccn/grant/zeng/tolias in FASTQ format.  
Morphological reconstructions are available at ftp://download.brainimagelibrary.org:8811/3a/88/3a88a7687ab66069 in SWC format.  
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All preprocessed data (gene counts, electrophysiological and morphological features) and meta data are available at https://github.com/berenslab/mini-atlas.  
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sampling strategy was determined using pre-existing knowledge of the transcriptional diversity of the mouse cortex (Tasic et al., 2018; Yao et 
al., 2020) and based also on the variability of morphological and electrophysiological types predicted by existing literature (Jiang et al., 2015, 
Gouwens et al. 2019, Scala et al., 2019). 

Data exclusions Cells meeting any of the exclusion criteria described in the following were declared low quality and did not get a t-type assignment: cells with 
the highest correlation below 0.4 (78 cells); cells that would be assigned to non-neural t-types, presumably due to RNA contamination (14 
cells); cells with the highest correlation less than 0.02 above the maximal correlation in one of the other two transcriptomic orders (5 cells). 
Four cells were assigned to an excitatory t-type, despite having clearly inhibitory firing, morphology, and/or soma depth location (such as L1). 
The most likely cause was RNA contamination from excitatory cells that are much more abundant in the mouse cortex. These four cells were 
excluded from all analyses and visualizations (as if they did not pass the transcriptomic quality control). In addition, one cell was likely located 
outside of MOp, based on the slice anatomy, and was excluded as well. For the electrophysiology, the cells were not recorded or included 
when seal resistance values were <1 GΩ before achieving whole-cell configuration and/or initial access resistance was >30 MΩ.  
Cells were excluded from morphological analysis when the staining quality did not match pre-established criteria for inclusion.  Cells that 
showed low staining quality such as poor fill, excessive background, dendritic or axonal truncation were not reconstructed and not included in 
the dataset.

Replication The results of this study were not directly replicated. However, all the results were collected from multiple animals from multiple litters per 
wild-type and transgenic lines.

Randomization There was no randomization performed as the study does not involve multiple study groups.

Blinding There was no blinding performed as the study does not involve multiple study groups. However, for these study most of the neuronal 
electrophysiological proprieties and morphological reconstructions were obtained without having informations about the molecular finger 
print of the neuron. 

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 
quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 
cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.



3

nature research  |  reporting sum
m

ary
April 2020

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology
Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male and Female mice  (median age 75 days, interquartile range 64-100, full range 35-245 days) were used in this study. Specific 
information about every single animal can be found in https://github.com/berenslab/mini-atlas. In particular, we used C57Bl/6 Wild 
type, Viaat-Cre/Ai9 mice, SOM-Cre/Ai9, VIPCre/Ai9, PV-Cre/Ai9, NPY-Cre/Ai9, Scl17a8-Cre/Ai9, Scl17a8-iCre/Ai9, Vipr2-Cre/Ai9 and 
Gnb4-Cre/Ai9. Detailed information about the origin of each single Cre line reported here can be find in the main text.

Wild animals This study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight Procedures for mouse maintenance and mouse surgeries were performed according to protocols approved by the Institutional 
Animal Care and Use Committee (IACUC) of Baylor College of Medicine. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
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Sequencing depth whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used
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Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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