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Abstract

Probabilistic models of DNA sequence

and complex trait variation under adaptation

by

Aaron J. Stern

Doctor of Philosophy in Computational Biology

University of California, Berkeley

Professor Rasmus Nielsen, Chair

Adaptation is a fundamental process in evolution, which leads populations to better

survive and reproduce in changing environments. Akey insight of populationgenetics has

been that present-day genetic variation is affected by past, and even ongoing, adaptations.

Recent expansion of DNA sequencing has afforded us access to genetic variation from

now up to nearly millions of individuals. In this dissertation, I develop modeling and

inference for DNA sequence variation in order to identify the genetic bases of adaptations,

with a focus on evolution of complex traits in humans.

First, I review population genetics approaches for detecting natural selection, and ar-

gue that these approaches have been hamstrung by the intractability of the so-called ‘full

likelihood’ of selection (Chapter 1); I then develop a method to tractably compute this

likelihood via importance sampling of the ancestral recombination graph (ARG), enabling

us to find targets of selection too subtle to detect with previous methods (Chapter 2); I

extend this likelihood method to jointly model DNA sequence variation and complex trait
variation (via genome-wide association study [GWAS] summary statistics) to quantify the

amount of selection acting on a complex trait, and to account for pleiotropy/correlated

response in these estimates (Chapter 3); Finally, I present a method to detect polygenic

adaptations in the presence of population structure, which explicit accounts for uncor-

rected stratification and other sources of error in the GWAS via an approach similar to LD

score regression (Chapter 4).
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Chapter 1

Background: Detecting natural selection

This is work co-authored byRasmusNielsen. It is published in Handbook of StatisticalGenetics,

4th Edition [1].

Abstract
Understandingnatural selection is at the core ofmany evolutionary andpopulationgenetic

investigations. However, it is typically difficult to directly detect natural selection. Instead,

it has to be inferred from observations of DNA sequence data. In this chapter, we will

briefly introduce some standard models of natural selection used in population genetics.

We will then review some of the main signatures of selection that can be identified by

analyses of DNA sequence data, and finally provide an overview of some of the many

different statistical methods that have been developed to identify natural selection. We

will argue that the lack of tractable likelihood approaches has spurred a large literature

on more ad hoc statistical approaches based on summary statistics.

1.1 Introduction
Natural selection arises when individuals differ in fitness due to genetic factors — that is,

have heritable differences in survival probability (viability) or reproductive success (fer-

tility). Other factors, such as mutation and genetic drift, the random sampling of gametes

(via which a new generation is formed by the previous generation), are also important

evolutionary factors. However, selection plays a special role in driving adaptation, the

evolutionary changes in response to environmental stimuli. Hence, understanding selec-

tion is the key to understanding how populations adapt to environments. Furthermore,

at the molecular level, determining which genetic variants affect fitness provides informa-

tion about which variants are important in interactions with the environment, including

the response and susceptibility to disease.
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In population genetics, the effects of natural selection are modeled as changes in allele

frequencies. However, changes in allele frequencies can only rarely be directly observed,

at least at this point in time (althoughwith the increasing number of ancientDNAsamples,

thismay become increasingly viable). Most studies aimed at detecting selection, therefore,

focus on inferring selection indirectly from contemporary samples of DNA sequences.

In this chapter we will discuss some of the statistical methods commonly used to infer

selection (Section 4). Before doing so, wewill briefly review someof the population genetic

theory on natural selection (Section 2), and the general signatures associated with natural

selection (Section 3). Although we will review some basics of negative and balancing

selection, we will focus much of our review on methods for detecting positive selection.

1.2 Types of selection
We will begin by reviewing the most common models of selection in population genetics

theory, acquainting the reader with terminology and properties of these models.

For the sake of simplicity, we will initially consider selection acting on a single di-

allelic locus, with alleles A and a, in a diploid population. The changes in the frequency

of A from generation to generation, the trajectory of the allele, is in part determined by

the relative fitnesses of the three possible genotypes, wAA, wAa , and waa . We can write

these relative fitnesses in terms of the selection coefficients, sAA, sAa , and saa 1, and if we

assume that the frequency of A at generation t is Xt ∈ [0, 1], we expect the frequency in

the subsequent generation Xt+1 to be

E[Xt+1 | Xt � p] � p
1 + sAa q + sAAp

1 + 2sAapq + sAAp2

where q � 1− p. We can then use standard techniques for recurrence relations to describe

the expected trajectory through time. However, since genetic drift is acting on the popu-

lation at the same time, the recurrence relation based on the expectations will only be a

rough approximation that tends to work well when the effect of selection is strong relative

to genetic drift. Adding genetic drift to the model results in discrete-time Markov chain

models, such as the familiar Wright-Fisher model, that describes the trajectory in discrete

generations forward in time assuming binomial sampling of alleles between generations

[2, 3].

These discrete generationmodels can be approximated in continuous time using diffu-

sion equations [4, 5] which have revealed many interesting mathematical results regard-

ing natural selection, such as the probability of fixation of an allele (the probability that it

reaches a frequency of 100%) or the expected time it will take for the allele to reach fixation

or loss [6, 7]. One important insight gained from theoretical population genetics is the fact

1
There is a one-to-onemapping between relative fitnesses and selection coefficients. E.g., herewe choose

to define the selection coefficients by wAA � 1 + sAA , wAa � 1 + sAa , waa � 1, saa � 0. Then, given wAA we

can obtain sAA, and given wAa we can obtain sAa , and vice versa.
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that the effect of genetic drift is stronger in populations with smaller effective population

sizes (Ne). Population geneticists, therefore, often see genetic drift and selection as two

different forces acting at the same time, where Ne and the selection coefficients determine

which of these two forces have the strongest effect on the dynamics of the allele frequency

trajectory.

Directional selection
Models of selection on a di-allelic locus are sometimes classified into either directional

positive selection, directional negative selection, or balancing selection based on the values

of the selection coefficients. Directional positive selection is the case that wAA ≥ wAa ≥

waa , excluding the case of wAA � wAa � waa , if A is the derived (mutant) allele. In this case

we expect the derived allele frequency to increase through time, i.e., E[Xt+1 | Xt � p] > p
if 0 < p < 1, and in the absence of genetic drift the selected allele will eventually go to

fixation (reach a frequency of 100%).

Similarly, directional negative selection is the case that wAA ≤ wAa ≤ waa , excluding

the case that wAA � wAa � waa . Here we expect the frequency of A to decrease on

average, and in the absence of genetic drift A will approach a frequency of 0%. The

special case of wAA � wAa � waa is the neutral case in which no selection is acting, and

E[Xt+1 |Xt � p] � p. In this case, fluctuations from p are only due to genetic drift, rather

than both genetic drift and selection. Throughout this chapter, often we refer to a single

selection coefficient s, rather than sAA and sAa ; unless stated otherwise, we assume that

sAa � s and sAA � 2s, i.e., selection on A/a is additive, as well as positive directional.

Balancing selection
Unlike directional selection, in which alleles under selection tend to be lost or fixed in the

long term, balancing selection refers to selection schemes that maintain multiple alleles

in the population. One situation that produces this effect is heterozygote advantage

(overdominance), where wAa > wAA and wAa > waa . In this case, if we ignore the effects

of drift, Xt converges over time to an intermediate frequency; if wAa � 1, wAA � 1 − sAA,

and waa � 1− saa , then the equilibrium frequency x∗ � limt→∞ Xt � saa/(sAA + saa), rather
than the boundaries at 0 or 1 . By contrast, under heterozygote disadvantage, where

wAa < wAA and wAa < waa , there may exist an equilibrium frequency x∗ ∈ (0, 1) in the

absence of genetic drift; however, if genetic drift causes the frequency to fluctuate away

from x∗, then we expect Xt to be fixed or lost in the long term. For a deeper discussion

of these models as well as the genomic signatures of balancing selection, we direct the

reader to [8].

In addition to heterozygote advantage, selection schemes that can maintain variation

include time- and space-varying selection. In these scenarios, directional selection can

maintain variation, so long as the sign of the selection coefficient changes with sufficient

frequency, either over time or space. Additionally, when the absolute fitness of an allele
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depends negatively on its own frequency— so-called negative frequency-dependent selection
— alleles can also stabilize at intermediate frequencies.

Polygenic selection
The simple di-allelic models described in the sections above are probably not realistic

for much of the selection acting on the genomes of humans or most other organisms.

Typically, a trait will be affected by multiple mutations and selection will, therefore, be

polygenic (see e.g., [9]). While much of the early literature in population genetics focused

on selection affecting a single locus for reasons of mathematical simplicity, there has

recently been a resurgence of interest in polygenic selection. This interest stems in part

from the realization due to genome-wide association studies (GWAS) that most humans

traits of interest are highly polygenic (see e.g., [10]). However, methods for detecting

polygenic selection fromDNA sequence data are still in their infancy, and this chapter will

focus primarily onmethods aimed at detecting selection affecting a single locus. However,

we note that a promising and very active research area is the development of methods for

detecting and analyzing polygenic selection, and we later review several advances in this

regard.

1.3 The signature of selection in the genome
In the previous sections, we reviewed the basic behavior of alleles under selection as-

suming a simple di-allelic model of selection acting on a single locus. The trajectory of

allele frequency changes can be estimated directly from experiments of viral or bacterial

evolution [11, 12, 13] or from analyses of ancient DNA (see e.g., [14, 15]), and can be used

for quantifying and detecting selection [16, 17, 18]. However, most of the time, such direct

inferences of the trajectory of allele frequency change is not possible. Instead, inference

regarding past selection has to be made solely from observations of modern DNA. In the

following sections we will discuss some of the patterns that can be observed in DNA se-

quences that have been subject to selection. Afterwards, wewill review statisticalmethods

for detecting and quantifying these patterns.

The signature of positive directional selection
We begin by reviewing the signatures that arise due to positive directional selection

(see Section 2.1). In this section, we will review signatures such as increased rates of

substitution, changes in the allele frequency distribution around selected alleles, and the

hitchhiking effect.
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Rates of substitution

An obvious consequence of positive selection is that favored alleles will have increased

rates of substitution — i.e., the rate at which these alleles fix at a frequency of 100% is

greater than the rate atwhich neutral alleles fix. Manymethods for detecting selection take

advantage of this insight. However, there are factors other than selection that can increase

the rate of substitution, for example, increased mutation rate. Therefore, methods aimed

at detecting positive selection by identifying increased rates of substitution must employ

some standard of comparison to control for these factors. A common way of doing this is

to compare mutations that a priori are, or are not, expected to be more likely to be under

selection than other mutations. The most common comparison is of the number of non-

synonymous and synonymous mutations that have fixed in protein coding regions (e.g.,

[19]). Due to the redundancy of the genetic code,mutations inprotein coding regions come

in two flavors: those that change the amino acid sequence (non-synonymous changes) and

those that do not (synonymous changes). We expect that most selection in protein coding

regions act at the amino acid level and that non-synonymous mutations, therefore, are

more likely to experience selection than synonymous mutations. Hence, a signature

of positive direction selection would be an increased number of fixed non-synonymous

mutations compared to the number of fixed synonymous mutations. However, we note

that selection may also act on synonymous mutations due factors such as codon usage

preferences or maintenance of splice sites [20, 21, 22].

Frequencies of selected alleles

[23] showed that under equilibrium conditions, mutations are more likely to segregate at

higher frequencies if they are under selection than if they are not. Thus, the frequency of an

allele at a single time-point in itself provides information on whether a particular allele is

under selection. However, if we make the assumption that the vast majority of mutations

entering the population are more or less selectively neutral, then even high-frequency

derived alleles must be primarily neutral [24]. Allele frequency alone is therefore not

a reliable indicator of selection, and we must look to additional genomic signatures to

improve our power to discriminate between selection and neutrality.

Nonetheless, on aggregate, selected mutations will tend to have different frequencies

than neutral mutations. Comparisons of the distribution of allele frequencies in differ-

ent categories of mutations, such as non-synonymous and synonymous mutations, can

therefore be used to infer selection acting on sets of mutations. The distribution of allele

frequencies — the so-called site frequency spectrum (SFS) — in models of selection is typ-

ically modeled using Poisson random field models pioneered by [25]. In these models,

mutations enter the population according to a Poisson process, and selection and drift

then act on the mutations to modify allele frequencies. Comparisons of the SFS stratified

by different categories of mutations is an important tool in analyses of genomic data [26].

In particular, selection acting on a specific category of sites causes the SFS for that cate-
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gory to differ from that of a category of sites assumed to be neutral, or the expected SFS

under selective neutrality. The latter has a particularly simple expression: the expected

proportion of mutations with allele frequency i, in a sample of size n, is given by 1/(ian),
where i ∈ {1, 2, . . . , n − 1} and an �

∑n−1

j�1
j−1

is a normalizing factor [27].

Up to this point, we have mostly considered polymorphisms in a panmictic popula-

tion. Another common signature of selection is differentiated allele frequencies among

populations. Natural selection can increase the level of genetic differentiation among

populations if selection acts differently in different populations or geographic regions

due to differences in environmental factors [28]. Similarly, increased genetic differentia-

tion among populations could also happen due to selection if selection acts on a recently

arisenmutation that has not yet spread to other populations [29]. In fact, increased genetic

differentiation among populations is one of the most characteristic signatures of natural

selection. However, many highly differentiated allele frequencies may be driven by a

combination of genetic drift and restricted gene flow, rather than selection.

Hitchhiking

We have so far discussed the direct effect of selection on the selected allele itself. However,

selection also affects variation at linked neutral sites in the genome. When a selected allele

increases in frequency, linked neutral alleles will also increase in frequency. This is the so-

called “hitchhiking” effect [30, 31]. The consequence is a selective sweep (Fig. 1.1), which in

the genomic region surrounding the favoured allele will lead to decreased variability (e.g.,

the number of segregating sites), increased identity by descent (IBD; i.e., DNA sequence

identity due to recent common ancestry), and increased haplotype homozygosity [32].

Importantly, these patterns differ at different times during the sweep. During the earlier

phase in which the favored allele has reached intermediate frequencies in the population

(an incomplete sweep), haplotypes carrying the selected allele are highly uniform, since

these haplotypes have increased in frequency so fast that recombination andmutationhave

not had much time to act. Consequently, haplotype homozygosity and IBD at this locus

will be high [33, 34]. Furthermore, as we demonstrate in Fig. 1.2, neutral linked alleles

will hitchhike along with the selected allele, resulting in an excess of alleles at frequency

greater than or equal to that of the selected allele. As the sweep completes, haplotype

homozygosity increases, and thee frequencies of linked alleles shift towards 100% along

with the selected allele; thus, the SFS in a region that has recently underwent a recent

sweep often is bimodal, with peaks at the frequencies 1 and n−1. However, this signature

of bimodality is transient, as with time many of these high-frequency hitchhiking alleles

will fix. Thus, a longer-term signature of a completed sweep is an SFS with an excess of

low-frequency alleles due to recentmutation in the region around the selected allele. With

passing time and accruing mutation and recombination, so too the patterns of increased

IBD and haplotype homozygosity in this region become less pronounced.

Another effect of hitchhiking is a change in linkage disequilibrium (LD) around the

selected site. [35] showed thatwhile LD between neutral linked alleles on either side of the
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selected allele increases on average, LD between the neutral linked alleles from opposite

sides will be erased by the selective sweep.

So far, we have discussed models of the effect of a new, favored mutation rapidly

increasing in frequency in the population. This model is known as a hard sweep. An

alternative model involves soft sweeps [36], in which selection is acting on either recurrent

mutations or on standing variation, i.e. on alleles that were already segregating in the

population by the time that selection started to act. The signature of a soft sweep can differ

substantially from that of a hard sweep. [37] showed that while a sweep from standing

variation (SSV) from a low frequency < (2Ne s)−1
results in the same reduction in diversity

as a hard sweep, SSVs affecting alleles of sufficiently high initial frequency > (2Ne s)−1
do

not result in this decrease in diversity. The increased diversity resulting from SSVs relative

to hard sweeps is due to accumulation of recombination near the selected site during the

allele’s neutral phase, before selection started acting.

Soft sweeps do share some signatures with hard sweeps, including decreased variabil-

ity and increased haplotype homozygosity as well as increased IBD [38, 34]. However,

these signatures are less pronounced for soft sweeps, because in this type of sweep several

distinct haplotypes will increase in frequency, rather than a single haplotype under a hard

sweep.

Balancing selection
The effect of balancing selection is in many ways opposite to that of a selective sweep.

Mutations are maintained in the population for a prolonged period of time, leading to

an increase in variability in the region around the selected variant. The SFS in regions

surrounding the selected allele will contain many more alleles of intermediate frequency

than expected for neutral regions. For a hard selective sweep, as selection becomes

stronger, the width of the genomic region affected by the sweep becomes larger. However,

for balancing selection, thewidth of the region inwhich linkedneutral variants are affected

by selection is narrow and on the order of (2Ne r)−1
, where N is the population size and r

is the recombination rate per site [39].

Polygenic selection
Like hard sweeps, polygenic selection has been proposed as a mechanism for rapid adap-

tation. But polygenic selection produces a very different genomic signature than classical

sweeps. Polygenic adaptations can occur without any particular selected allele fixing or

rising in frequency as quickly as a hard sweep. When many polymorphisms control fit-

ness, it is possible for a population to adapt with subtle allele frequency changes spread

across many sites, rather than a classical sweep at any one of these sites; these interactions

across loci create a different genomic signature in surrounding regions, whichwe illustrate

using IBD tracts and allele frequency trajectories (Fig. 1.3). Polygenic selection may act on

de novo mutations, standing variants, or recurrent mutation. While some younger alleles
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Figure 1.1: Genetic variation changes as a sweep progresses due to hitch-

hiking. Individual haplotypes (n � 5) are denoted using a different shape

for each haplotype in the sample at t1, to keep track of recombination events

during the sweep. At t1, the selected allele S mutates into the population on

the 7 background. At this stage, there are six neutral polymorphisms (A–F) in
the sample. At t2, the sweep is ongoing and the frequency of the selected allele

is intermediate (incomplete selective sweep). Relative to a neutral allele, fewer

recombination events have occurred around the selected allele by the time it

reaches this frequency, due to its rapid increase in frequencydrivenby selection.

As a result, diversity within haplotypes carrying S is much reduced compared

to haplotypes carrying the disfavored ancestral allele, i.e. there has been an

increase in haplotype homozygositywithin the allelic class carying S. Note that

at this stage, two recombinations have occurred, both between� and7. At t3, S
has swept to fixation, along with the B allele. Another recombination event has

occurred between 4 and 7. Note the increase in high-frequency derived alleles

and overall reduced levels of variability at t3 relative to t1 and t2, exemplified

by the loss of diversity at three sites (B, C, S). Furthermore, the sample is IBD

for the entire tract B − S.



CHAPTER 1. BACKGROUND 9

1 20 40 60 80 99
Frequency

10 3

10 2

10 1

Pr
ob

ab
ilit

y

1 5 10 15
0.01

0.03

0.1

0.3

Figure 1.2: The SFS (n � 100) of a genomic region undergoing a selective sweep,

in equilibrium population of N � 10000 sampled during different timepoints

in a selective sweep with s � 0.1. We let θ � ρ � 100 (where θ and ρ are the

population-scaledmutation and recombination rates, respectively) and average

the SFS over 100 independent simulations. Gray: the null expected SFS; blue:

the favored allele is at 50% in the population (incomplete sweep); orange: the

favored allele just fixed; green: 4000 generations after fixation; maroon: 12000

generations after fixation. Inset: Depicting the excess of low-frequency alleles

lasting long after fixation.
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under selection are likely to carry some classical signatures of selection, such as elevated

IBD, standing variants under selection are less likely to possess such a drastic excess of

IBD. Hence, all in all the signatures of polygenic selection can be very subtle and therefore

difficult to detect.

[40] argued that in humans, polygenic selection has served as the major mode of

recent adaptation. This is because human population-specific traits such as height and

skin color exhibit high heritability and correlation to environment, and yet we observe a

relative dearth of large allele frequency differences between human populations. These

putative adaptations could be explained more feasibly as polygenic adaptations, rather

than classical sweeps.

Confounders
A number of extraneous factors are frequently confounded with selection because they

create a similar genomic signature to that left behind by selection. Several of these factors,

such as genetic drift and increasedmutation rate, have already beenmentioned. However,

there are a few more confounders of which to be wary. Most notably, selection scans are

frequently confounded by unspecified non-equilibrium demography [41, 42]. For exam-

ple, a hard sweep will in the long-term cause an excess of low-frequency derived alleles,

just as an expansion in population size will cause the same signature, even in the absence

of selection (Fig. 1.4). [43] showed that population size bottlenecks have a local effect

on variation that is indistinguishable from that of a selective sweep. Similarly, balancing

selection and recent selective sweeps can result in an excess of intermediate- and high-

frequency derived alleles, respectively; these signatures can be mimicked under selective

neutrality when sampled individuals hail from two different populations, unknown to

the geneticist [44]. A common strategy for dealing with these demographic confounders

is to control tests for selection using empirical distributions calculated genome-wide; this

approach takes advantage of the tendency for demography to effect the entire genome,

whereas signatures of selection tend to effect smaller genomic regions [43, 41].

Different modes of selection can also produce similar genomic signatures. [45] demon-

strated that soft sweeps can be erroneously detected at the “shoulders” of hard sweeps,

far enough from the selected mutation to host increased diversity, yet close enough to

have an aberrant level of diversity relative to the background. They also show that these

shoulders can be erroneously identified as ongoing sweeps [45].

1.4 Methods for detecting selection
In this section, we give an overview of statistical methods that make use of the signatures

of selection that we discussed in the previous section. We begin with a discussion of

methods to detect selection based on summary statistics, such as substitution rates, the

site frequency spectrum, and haplotype homozygosity. Common tomost of the described
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Figure 1.3: The genomic signatures of hard sweeps vs polygenic adaptations. In
the bottom section of the figure, each row represents the chromosome/genome

of an individual (n � 6), and each column represents a genomic region sur-

rounding a favored allele, colored in blue. In the top section of the figure,

allele frequency trajectories of selected alleles are shown, with de novo variants
colored in red and standing variants in black. Left: In a hard sweep, selected

alleles rise to high frequency or fixation with an excess of identity-by-descent

(IBD) surrounding the driving allele. The red tracts around the selected allele

represent IBD to the ancestral haplotype carrying the selected allele. Right:

Polygenic adaptation acting on both standing and de novo variation at three

different loci. Here, fitness is determined by two standing variants (loci 1 and

3) and two de novo variants that arise after selection begins (loci 2 and 3). At

locus three we demonstrate the interference of a recent recurrent mutation (red

tract signifies IBD between the present-day sample and the original haplotype

carrying the mutation). Trajectories of alleles undergoing a sweep from the

time of mutation are drawn in red, to signify the increased levels of IBD that

tend to surround these alleles. This figure was adapted from [40].
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Figure 1.4: The expected site frequency spectra of n � 10 individuals under

equilibrium demography (i.e., constant Ne in a panmictic population) with a

selective sweep (©), fluctuating Ne with no selection (4), and equilibrium de-

mography with no selection (straight line). We obtain these SFSs by simulating

5000 unlinked loci with θ � ρ � 100 (these parameters are the population-

scaled mutation and recombination rates, respectively). The selective sweep

has Ne � 10
4
and s � 0.1, conditioned on fixing 1.6 × 10

4
generations ago. The

fluctuating Ne model has Ne � 10
4
for 0 ≤ t < 1.2 × 10

4
, Ne � 8 × 10
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.
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methods is that they aim to detect selection by looking for deviations from the genetic

patterns expected under neutrality (and compatible with selection). Thus, these methods

are often called neutrality tests. Another commonality is that often these methods are

applied in the context of a whole-genome scans, i.e., the summary statistic is calculated at

a set of sites throughout the genome to identify regions with extreme deviations. Later,

we discuss how to combine information across these various statistics; we discuss the

challenges associated with likelihood-based inference, and review alternative approaches

in this regard, such as composite likelihood, approximate Bayesian computation, and

machine learning techniques.

Substitution-based methods
The pattern of an increased rate of substitution in a locus under positive selection (Section

3.1.1) has been extensively exploited to identify natural selection. Perhaps most famous

are the tests based on the dN/dS ratio comparing two or more DNA sequences, typically

from different species. The dN/dS ratio is the ratio of non-synonymous mutations per

non-synonymous site to the number of synonymous mutations per synonymous sites.

When comparingmutations amongdifferent species, themutations largely reflect fixations

between species, i.e. substitutions. The basic idea is that if no selection is acting on

the mutations, then dN/dS � 1 in expectation. However, if positive selection is acting,

then dN/dS > 1 in expectation. In its original formulation [46, 47], non-synonymous

and synonymous sites were considered to be physical entities. However, because of the

structure of the genetic code, both synonymous and non-synonymous mutations can

occur in the same physical sites. A solution to this problem was proposed by [48] and

[49] who developed Markov chain models of molecular evolution with a state space on

the set of the 61 possible sense codons. Using such models, parameterized in terms of

the rate of non-synonymous and synonymous rates of evolution, likelihood ratio tests of

H0 : dN/dS � 1 against alternatives of HA : dN/dS > 1 can be established. Furthermore,

these processes can be superimposed along the edges of a phylogeny to allow joint analysis

of dN/dS ratios in multiple species. Popular computer programs implementing such tests

include PAML [50] and HyPhy [51]. These tests have since been extended in various ways

to detect selection acting along the edges of a phylogeny [52], acting in subsets of sites

[53], or a combination of both [54]. Methods for detecting HA : dN/dS > 1 allowing dN/dS
to vary among sites according to some distribution have, in particular, been useful, as the

intensity of selection is likely to vary greatly among sites in real proteins. Furthermore,

even in proteins experiencing substantial amounts of positive selection, we would expect

dN/dS < 1 for most sites, as selection acts mostly to preserve function on most protein

coding genes.

While dN/dS tests originally were intendedmostly for comparative data (data from dif-

ferent species), they can also be similarly applied to data from within a species, although

recombination then poses a challenge [55]. Analyses of dN/dS ratios are usually carried

out assuming a fixed gene tree topology, which mostly is not a problem when only one
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sequence is included from each of a set of divergent species. However, when multiple

sequences from the same species are included, different recombining sites will have dif-

ferent gene tree topologies and the assumption of a single shared gene tree topology is

not longer satisfied by the data.

Methods comparing substitutions and diversity
Some of the most popular methods for detecting selection compare divergence between

species with the amount of diversity within species. For example, the famous McDonald-

Kreitman (MK) test establishes a 2×2 contingency table of the number of non-synonymous

and synonymous mutations — NS and S, respectively — within and between species,

estimated frommultiple aligned sequences [56]. TheMK test is then performed as a simple

test of homogeneity. As the same underlying (set of) gene-trees are shared by synonymous

and non-synonymous mutations, NSwithin ∼ Bin(λ,NSwithin + Swithin) and NSbetween ∼

Bin(λ,NSbetween+Sbetween), where Bin(·, ·) indicates the binomial distribution and λ is the

ratio of the rate of new neutral non-synonymous to synonymousmutations. If no selection

is acting, except to immediately eliminate strongly deleterious mutations, λ should be the

same within and between species. Significant deviations from the null hypothesis can be

caused by either positive selection, resulting in an decrease in

NI � (NSwithin/NSbetween)/(Swithin/Sbetween)

or negative selection causing a similar increase in NI, where NI is the so-called “neutrality

index” [57]. However, some models of negative selection combined with fluctuations in

population sizemay also cause decreases in the neutrality index [58, 59] A related test, and

the first test for detecting selection aimed at DNA sequencing data, is the HKA test [60].

It is similar to the MK test in that it establishes a 2 × 2 contingency table comparing data

within and between species. However, instead of comparing non-synonymous mutations

and synonymous mutations, it compares variability in different regions of the genome.

The test can, therefore, be extended to an arbitrary number of loci, k, in a 2 × k table.

Unfortunately, the rationale for the use of a simple test of homogeneity used for the

MK test does not hold for the HKA test and simulations are needed to test significance.

As for many of the tests discussed in this review, these simulations must necessarily

assume a specific demographic model and there is no reason to assume that the results

are particularly robust to the assumptions regarding demography.

Methods using the frequency spectrum
As previously mentioned in Section 3.1.2, the site frequency spectrum (SFS) describes

the distribution of allele frequencies in multiple sites. Tests for selection acting on some

category of mutations, such as non-synonymous substitutions, relative to synonymous

substitutions, can also be carried out at the level of allele frequencies. A particular ad-

vantage of this approach is that parametric models of selection can be used to estimate
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distributions of selection coefficients, using the comparisons of the SFS in different cat-

egories of sites, if one of the categories can be assumed to be neutral [61, 24, 26]. Some

of our best estimates of the distributions of selection coefficients in humans and other

organisms come from such comparisons [24, 26].

However, some of the most popular methods for detecting selection are based on a

comparison of the SFS, not to a presumed neutral category of mutations, but rather to the

expected SFS under models of a standard neutrally evolving population. As we discussed

in Section 3.1.3, certaindeviations from this null expectedSFS canbe indicative of selection.

The most commonly used methods in this regard are based on simple summary statistics

of the frequency spectrum, the most famous of which is Tajima’s D [62]:

D �
θ̂π − θ̂W

z(S)

where S is the number of segregating sites in the sample, θ̂π is the average number

of pairwise differences between individuals, and θ̂W is Watterson’s estimator of θ, i.e.

θ̂W � S/an where an �
∑n−1

i�1
i−1

. (The term z(S) standardizes the variance of D.)

Under the null model of a population with constant effective size and selective neu-

trality, E0[θ̂π] � E0[θ̂W ] � θ ≡ 4Neµ, where µ is the per-generation mutation rate of

the locus. Thus, E0[D] � 0, and deviations from the underlying neutral model can

be tested as deviations from D � 0. When applying Tajima’s D to genome-wide data,

D is typically calculated in sliding windows, or non-overlapping windows, to obtain a

genome-wide distribution to which each local value can be compared, which makes it

possible to control for confounding factors like non-equilibrium demography (see Section

3.4). Tajima’s D detects selection primarily because the estimator
ˆθπ places a heavyweight

on intermediate-frequency alleles, which are depleted after a selective sweep. Under these

conditions, E[D] < 0, whereas under balancing selection, E[D] > 0.

Other SFS-based statistics related to Tajima’s D have been proposed. One choice is Fu

and Li’s D (which we call DFL to avoid ambiguity), defined as

DFL �
θ̂W − ξ1

z(ξ)
where ξ is the SFS, ξ1 denotes the number of sites at which only one individual carries the

derived allele (i.e., the number of singletons), and z is again a scaling factor to standardize

the variance of DFL [63]. Similarly to Tajima’s D, DFL has the property that E0[DFL] � 0.

Additionally, as previouslymentioned, selective sweeps cause an excess of singletons after

fixation; thus, like Tajima’s D, we expect DFL to take negative values after a sweep.

Another SFS-based statistic of this type is Fay and Wu’s H, defined as

H �
ˆθπ − ˆθH

z(ξ)
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where

ˆθH �
2

n(n − 1)

n−1∑
i�1

i2ξi

and ξi is the number of i-tons in the sample [64]. A key property of this statistic is that it

places high weight on high-frequency derived alleles, and is thus sensitive to very recent

selection rather than old sweeps; this is because the excess of high-frequency derived

alleles immediately following a sweep is extremely transient. Thus, like D and DFL we

expect H to take on negative values if a selective sweep occurred recently.

This class of methods has also been adapted specifically for detecting balancing se-

lection by [65], who introduced a statistic β that detects balancing selection by weighting

alleles at intermediate frequency. As the reader might have noticed, these classical meth-

ods share a simple mathematical quality: they are all linear combinations of the SFS and

some weight vector ω (see e.g. [66], which shows how to choose ω to detect specific viola-

tions of the neutral model with optimal power. As we discussed regarding Tajima’s D, we

can assess significance by calculating the genome-wide statistics under a particular choice

of ω, and picking the most deviant regions). Other methods that use information from

the SFS to detect selection include machine learning methods and composite likelihood

methods, which we will discuss in later sections.

The performance of the methods based on summary statistics of the SFS varies wildly

depending on whether a sweep has gone to fixation or is currently segregating (a so-

called incomplete sweep); furthermore, they are easily confounded by demography such

as population size bottlenecks [43, 42]. Power is also lessened when the sweep fixed long

time ago after mutation and recombination have diminished the characteristic patterns of

a sweep [42].

Methods using genetic differentiation
The very first test of neutrality [67] was based on detecting patterns of increased genetic

differentiation among populations (see Section 3.1.2). While such methods were perhaps,

for someyears, viewedwith skepticismbymany researchers due to the strong assumptions

they have to make regarding the history of the populations, they have had a resurgence

after the emergence of genomic data as a convenient and simple tool to scan the genome for

evidence of local selection. The most common measure of genetic differentiation among

populations is FST , which can be defined in various ways, and confusingly both can take

on the properties of a statistic and of a parameter (see [68] for a discussion). A common

definition of FST for two populations, in a single di-allelic locus is [69]:

FST �
c1p1(1 − p1) + c2p2(1 − p2)

p̄(1 − p̄)

where c1, c2 > 0, c1 + c2 � 1 (i.e., c1, c2 are the proportion of samples from each pop-

ulation), p1 and p2 are the sample allele frequencies in the first and second population,
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respectively, and p̄ � c1p1 + c2p2 is the mean allele frequency (i.e., the frequency in the

combined sample). Notice that the value of FST falls in [0, 1]; for highly differentiated allele

frequencies we expect a value closer to 1, and for roughly undifferentiated frequencies we

expect a value close to 0.

In genomic data, so-called FST scans are often used to detect selection, as elevated

among-population genetic differentiation (high FST) may be a consequence of selection

(see Section 3.1.2 and [28]). Whether an FST value is significantly elevated can be tested

using parametric models or simulations. For example, [70] developed a hierarchical-

Bayesian method for identifying outlier loci assuming a multinomial-Dirichlet likelihood

function. However, often significance is not tested directly, but rather a list of the most

extreme loci are presented without claims regarding significance.

Methods based on FST can also be extended to identify selection in an individual pop-

ulation by comparisons to multiple other populations. One particularly simple method

for doing this is the so-called population branch statistic (PBS), which is based on trans-

forming FST estimates between pairs of populations to an approximately linear distance

and then inferring the amount of genetic drift distance on each branch of a tree with three

populations [71]. Extreme drift on a population’s branch at a particular locus is compatible

with selection specific to that population acting on that locus.

More parametric methods will likely provide more power than simple methods based

on FST . Furthermore, they can be used to test more specific hypotheses about the factors

driving selection. Of particular interest in this regard are methods such as the one by

[72] which uses a Bayesian model based on a Gaussian likelihood function for allele

frequencies, to identify correlations between allele frequency changes across populations

and specific environmental variables.

Methods based on genetic differentiation are also used to study polygenic traits. For

example, the measure QST is used to quantify differentiation of quantitative traits among

populations [73, 74]. This quantity is calculated analogously to FST , but for a phenotypic

trait instead of allele frequencies, and is often directly comparedwith FST to infer selection

acting on traits. Indeed, under simple neutral conditions we expect genome-wide FST �

QST . Under negative selection for the same phenotype value across populations, we

expect FST > QST , and under directional selection on differing phenotype values among

populations, we expect FST < QST .

Unfortunately, for many realistic models of population structure, such as hierarchical

population models, the assumptions of many of the standard tests are violated. [75]

recently developed a method to test for selection on polygenic traits while controlling for

hierarchical population structure, applying the same principles as in the aforementioned

Gaussian approximationdeployedby [72]. For a particular trait, they consider the quantity

~z � 2A~p

where A is an M × L matrix of population-specific additive effect sizes of alleles on trait

values (typically an estimate obtained from GWAS), ~p is a vector of allele frequencies, M
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is the number of sub-populations and L is the number of alleles genotyped. Correcting

for hierarchical population structure using the inverse sample covariance matrix F−1
, they

obtain ameasure of the deviance of~z, called QX . Under the selectively neutral model with

hierarchical structure, QX ∼ χ2

M−1
, and thus the significance of QX can be evaluated using

the χ2
distribution. A significant value of QX suggests the trait of interest has undergone

recent selection. More recently, [76] developed an even more generalized approach for

inferring polygenic selection in the presence of population structure, allowing selection to

act along specific edges of an admixture graph.

Methods using haplotype structure
The methods discussed previously focused on allele frequencies and allele frequency

changes. However, other features of the data can be leveraged for detecting selection,

in particular, haplotype structure, a signature we introduced in Section 3.1.3. Many

methods aimed at detecting ongoing selection (incomplete selective sweeps, a concept

we introduced in Section 3.1.3) focus solely on haplotypes — specifically, the pattern of

increasedhaplotype homozygosity on chromosomes carrying the advantageousmutation.

[33] developed a statistic called extended haplotype homozygosity (EHH) that esti-

mates the probability that two randomly chosen haplotypes are identical up to a distance

x around a particular candidate SNP called the core SNP. More precisely, we can define

EHH as the number of pairs of identical haplotypes in a window of length x divided by

total number of pairs:

EHH(x) �
∑

h∈H (x)

(nh
2

)(n
2

)
whereH (x) is the set of distinct haplotypes in the sample only considering sites within a

distance x from the core SNP, nh is the number of type-h chromosomes, and n is sample

size2. Notice that if we calculate EHH(x) right around a particular site so that the window

size is 0, then EHH(0) ≈ p2 + q2
, where p is the frequency of the core SNP and q � 1 − p.

For increasingly large window sizes, EHH(x) converges to zero because all n haplotypes

become distinct when considering a sufficiently large region. However, the rate at which

EHH decays to 0 with respect to x reflects the age of the core SNP, which depends on

the strength of selection. A slow decay of EHH is compatible with recent selection; as

discussed in the section on hitchhiking (Section 3.1.3), the region surrounding the selected

allele tends to be depleted of variation and recombination, and thus EHH decays more

slowly in this case than under selective neutrality. Thus, an elevated value of EHH around

a core SNP serves as a convenient feature for detecting loci under positive selection.

However, one general challenge, in addition to the reliance on phased data and a genetic

map, is that other processes, such as a local reduction in mutation rate or an increase

2
Note that

∑
h nh � n; thus, another approximately equivalent calculation of EHH (assuming n is large)

is EHH(x) �
∑

h p2

h where ph � nh/n.
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in negative selection, also can lead to increased haplotype homozygosity. Therefore, the

relative EHH (rEHH) between different classes of haplotypes (i.e., haplotypes grouped

by the allelic state of the core SNP) was proposed as a more robust method for detecting

selection [77].

A further development of the EHH family of statistics was proposed by [78], who

developed the Integrated Haplotype Score (iHS), a statistic designed to detect ongoing

selection. iHS partitions haplotypes based on the ancestral/derived states of the core

SNP, and is based on integrating EHH from the core SNP until EHH reaches a certain

fixed value (typically 0.05). These integrated EHH values are called iHHA and iHHD ,

and the statistic log(iHHA/iHHD) is then calculated genome-wide and standardized by

the empirical mean and variance of this statistic using other genomic SNPs at the same

frequency. Since selected alleles tend to carry longer surrounding IBD tracts than neutral

alleles at the same frequency as the selected allele, we expect the most negative iHS

values to indicate strongly selected derived alleles. Importantly, iHS is standardized by

allele frequency because low-frequency alleles tend to be younger and thus carry high

amounts of IBD, even if they are selectively neutral. Notice that to calculate iHS, it is

assumed that a genetic map is known to integrate EHH with respect to distance. [79]

proposed an alternative to iHS called nSL (number of segregating sites by length) that

avoids relying on a genetic map by, for each pair of haplotypes, using the number of

mutations within the other n − 2 haplotypes to measure a mutational distance, leading to

increased robustness against recombination and mutation rate variation. One important

note is that the expectation of iHH is infinite under a standard neutral model, making

statistics based on the iHH statistic highly sensitive to the choice of maximal window size

for calculations of iHH [79].

Importantly, the aforementionedmeasures of haplotype homozygosity are underpow-

ered to detect soft sweeps [38, 80]. [81] developed an alternative haplotype-based statistic

specifically designed to detect both hard and soft sweeps. They defined

H12 � (ph(1) + ph(2) )
2

+

∑
j>2

p2

h( j)

where h(1) and h(2) are the first- and second-most frequent haplotypes in the set of distinct

haplotypesH , and ph � nh/n. Under a hard sweep, we expect ph(1) � ph(2) , whereas under

a soft sweep, the discrepancy tends to be less severe; nonetheless, under a soft sweep we

expect the several most frequent haplotypes to still dominate the haplotype distribution,

and thus H12 is sensitive to both cases. To distinguish between hard and soft sweeps, they

propose

H1/H2 �
ph(1)∑

h,h(1) ph

By the same intuition for defining H12, here a high value of H1/H2 implies a hard sweep,

whereas a low value implies a soft sweep.
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Recently, [80] developed a haplotype score called the Singleton Density Score (SDS)

designed to have especially high sensitivity to detect extremely recent signatures of selec-

tion, relative to comparable methods such as iHS. Their approach is based on the intuition

that for ongoing or recent sweeps, the haplotypes carrying the favored allele have a dearth

of singletons. To compute the SDS at a particular site, SDS iterates through each diploid

individual. For each individual, the distance between the nearest singletons up- and

downstream of the core allele is computed, and these n distances are binned based on

whether the individual is homozygous for the derived allele, homozygous for the ances-

tral allele, or heterozygous. A likelihood model is used to infer the “mean tip length” of

ancestral and derived lineages; essentially, long singleton distances imply a short mean tip

length. The inferred ancestral and derivedmean tip lengths, called t̂A and t̂D , respectively,

are standardized similarly to iHS. The SDS exploits the fact that we expect t̂A > t̂D when

the derived allele has risen sharply in frequency in the immediate past. Thus, the hap-

lotypes surrounding a positively selected allele are expected to be depleted of singletons

relative to a neutral allele segregating at the same frequency. The authors also designed a

score called the trait SDS (tSDS), where the sign of the SDS is flipped in the case that the

ancestral allele is associated with increasing the value of the trait (e.g., associated with a

positive change in height). This measure can be used to demonstrate polygenic selection

on a trait by showing an excess in tSDS across associated sites.

While haplotype-based methods are mostly designed for detecting ongoing sweeps,

rather than completed sweeps, there is also a distinct pattern of linkage disequilibrium

arising after a sweep that can be exploited for detecting sweeps. As discussed in Section

3.1.3, right after a completed sweep there will be increased LD to either side of the

selected sweep, but no LD between SNPs from opposite sides of the selected sites [35].

[35] proposed using a statistic, ω, to detect this pattern.

Why full-likelihood methods are intractable for population samples
So farwehavediscussedvarious statistics used in tests aimedat detectingnatural selection.

The statistically minded reader might appropriately at this point wonder why there exists

such a plethora ofmore or less ad hoc statistics, andwhy there are nomethods for detecting

selection based on likelihood functions that incorporate all information regarding the

selection, including allele frequencies and haplotypes. Unfortunately, full likelihood

methods that incorporate selection are considered computationally intractable. Some

progress was done on models of weak selection without recombination [82]. However,

these methods never scaled up to genomic data. Several methods have been developed

that use simulations to approximate the likelihood for a single non-recombining locus

under various assumptions [83, 84]. In particular, [84] developed a likelihood method for

detecting and estimating the strength of selection by first simulating an ancestral allele

frequency trajectory and then simulating a coalescence tree conditionally on the allele

frequency trajectory. Like [82], it is computationally intensive and the assumed absence

of recombination makes it inapplicable to most data, such as human nuclear DNA.
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Because full-likelihood inference is not viable for even small sample sizes, most meth-

ods for detecting selection rely on summary statistics that capture particular signatures of

selection. The major challenge is that calculating the likelihood requires integrating out

many sources of stochasticity, including allele frequency trajectories, the latent ancestral

recombination graph (ARG)3 conditional on this trajectory, and neutral mutations super-

imposed on the ARG. The vast combinatorial space of ARGsmakes analytical calculations

impracticable. However, in lieu of tractable full likelihoodmethods, a number of methods

have been developed that attempt to detect and/or quantify selection using functions that

approximate the likelihood function.

Composite likelihood methods
Using diffusion theory, [86] and [87] developed expressions for the distribution of sam-

ple allele frequencies (i.e., the SFS) as a function of the genetic distance from a recently

completed sweep. Based on these calculations, [87] could define a composite likelihood

formed as the product of the individual likelihood functions calculated for each site along

the length of the sequence, as a function of the sites recombination distance to the selected

SNP and the selection coefficient. They then proposed to use a likelihood ratio to test

the null hypothesis of no selection (s � 0) and to estimate the strength and location of

the sweep. The advantage of this method over previous methods was multiple: First,

it employed all of the information from the allele frequency by using a full-likelihood

approach to the allele frequencies. Secondly, it used the spatial distribution of SNPs and

their allele frequencies to gain power and to locate the most likely selected SNPs. [41]

extended the method using an approximation by [88] which considered the probability

that a particular lineage in the genealogy “escaped” a sweep, i.e., the probability that a

neutral allele linked to the non-beneficial allele recombined onto a beneficial background

prior to loss of the non-beneficial allele. Using this result, the composite likelihood func-

tion could be calculated faster and could incorporate any SFS as the ‘background‘ neutral

allele frequency distribution to be tested against. This method has since been modified in

multiple ways, including extensions to incomplete sweeps [89], modeling of population

structure [90], and incorporation of negative selection in the genomic background [91].

Approximate Bayesian computation
The previous section on composite likelihoodmethods introduced approaches for estimat-

ing selection coefficient and the location of the selective sweep. However, there are other

approaches for addressing this problem—in particular, methods based on approximate

Bayesian computation (ABC) [92]. ABC works by repeatedly sampling parameters (such

as s) from a prior distribution and then subsequently simulating a genomic data set for

3
A complex graphical structure that represents all of the genealogical and recombinant events occurring

in a sample; see e.g. [85]
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each sampled parameter value. Without loss of generality, assuming we wish to approx-

imate the posterior of s, we use an acceptance/rejection scheme where sampled values

of s are rejected if the distance between the resulting simulated data and the observed

data is sufficiently large. To determine distance between the simulated and observed data,

many approaches use classical SFS- or haplotype-based summary statistics and calculate

a distance (e.g., Euclidean distance) between the two summary vectors calculated for the

observed and simulated data. After sampling and simulations are completed, the esti-

mate of the posterior can be used to derive a maximum a posteriori (MAP) estimate of s,
as well as its Bayesian credible interval. Unlike other methods based on individual sum-

mary statistics, ABC takes full advantage of the informative correlation structure between

different types of summary statistics.

[93] developed an ABC method to jointly estimate selection coefficients, the time at

which selection started, and the frequency of the selected mutation at the time selection

started. The method could also performmodel selection, distinguishing soft sweeps from

hard sweeps. Similar methods have been used by [94] and [95].

A common pitfall of ABC methods is that they are computationally intensive, and can

suffer from the Curse of Dimensionality. That is, when the sample space of the summary

statistics increases in dimensionality, so does the instability of the likelihood estimate [96].

Recently, [97] showed that using an average one-dependence estimate (AODE) assumption

of the structure of the likelihood can ameliorate this instability problem, while retaining

some of the informative correlation structure of the likelihood.

Machine learning methods
An alternative to composite likelihood and approximate Bayesian methods, for incorpo-

ratingmore information from the data, is to take advantage of standard supervisedmachine

learning methods. Broadly speaking, supervised methods aim to train somemodel to use

statistics extracted from the data, often called features, with the goal of making accurate

predictions based on such features. By contrast, so-called unsupervised methods are used

to find structure in data, rather than generate predictions. Principal components analysis

(PCA) is one example of an unsupervised method, often applied in statistical genetics to

illustrate and control for population structure [98, 99].

Mathematically, we can summarize the supervised learning problem as follows: as-

sume the availability of a training set of pairs {(~xi , yi)}ni�1
, where each pair consists of a

feature vector ~xi and its label yi for each sample i � 1, 2, . . . , n. The objective is then to

select a function f ∗ that maps feature vectors to labels such that

f ∗ � argmin f ∈F

{
1

n

n∑
i�1

l
(

f (~xi), yi
)}

where l( ŷ , y) is a loss function that isminimizedwhen ŷ � y (i.e., when the estimated labels

ŷ perfectlymatch the true labels), and F is a pre-specified set of prediction functions. This
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framework, canbeused todevelopmethods for inferring selection: for example, a so-called

classifier can be trained to detect selection, where the labels y are binary variables such that

y � 0 signifies “neutrality” and y � 1 signifies “sweep”. Additionally, techniques such as

linear regression can be used to estimate the value of the selection coefficient s. Notice

however, that a training set needs to be available for which the correct labels are known.

In population genetics, such training sets are rarely available. Instead, simulated data are

used to train the classifiers. Also, the feature vector has to be chosen, and is usually based

on the same type of summary statistics as used in other simulation based methods. [100]

reviewed supervisedmachine learning in the context of population genetics and detecting

selection, defining the problem and illustrating practical concerns in greater detail.

In the previously mentioned classical SFS-based methods such as Tajima’s D, the SFS

is summarized as a linear combination that has expectation 0 under neutral equilibrium

conditions. By contrast, a method by [101] (SFSelect) uses the full SFS as the high-

dimensional analog to these classical methods . They simulate data under specific sweep

andneutral conditions and train amachine learningmodel called a support vectormachine

(SVM; see [102]) to classify SFS vectors. Similar approaches have been taken to integrate

various haplotype statistics along with the SFS; [103] trained an SVM using a combination

of LD- and SFS-based statistics, and the method EvolBoosting [104] integrates both SFS-

and haplotype-based statistics to detect selection using boosting [105]. SHiC [106] is a

method that extracts a number of haplotype- and SFS-based statistics from simulated data

to train an Extra-Trees classifier [107]. Notably, the latter method has been shown to retain

good power to detect strong selection despite model misspecification during training (i.e.,

trained under equilibrium demography and tested under fluctuating Ne) [106].

1.5 Discussion
As evident from the previous sections, there is a very large set of different methods

for detecting selection. In fact, in this review we have only covered a subset of the

most commonly used methods. For example, recent methods for detecting adaptive

introgression are not covered (see e.g., [108]). A common theme for many of the methods

is that there typically is a trade-off between power and robustness. Since the emergence of

the first neutrality tests [28], there has been an awareness that many demographic models

canmimic the signature of selection. With the emergence of genomic data, it was generally

hoped that this problem would vanish as the signature of demographic processes affect

the entire genome, while selection may only affect one or a few loci. While genomic data

certainly has helped identify signatures of selection, we are still facing challenges when

assigning p-values, or other methods of statistical confidence for inferences of selection.

In the end, almost all methods rely to some degree on the assumption of a demographic

model. By the very nature of the data, the null hypothesis considered will always be

a composite hypothesis that also includes features of the demography. To address this

problem, most studies rely on one of two possible strategies: (1) They may give up on
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including measures of statistical confidence and instead simply produce a list of the best

candidates for targets of selection. One variant of this approach is the use of so-called

“empirical p-values” (e.g., [78]), which in this context simply are quantiles of the empirical

distribution of the test statistic. They are, therefore, not p-values in the classical sense and

should probably more appropriately simply be reported as quantiles. (2) The alternative

approach is to make specific assumptions about the demography, typically based on

estimates of demography obtained from the same or other data. Simulations are then

used in one form or another to generate the distribution of the test statistic under the null

hypothesis. Variants of this approach includes the machine learning and ABC methods

which include simulations as an integrated part of the inference framework.

As previously mentioned, another major challenge of inferences of selection is that full

likelihood methods are not available. However, they may eventually be practicable, or at

least closely approximated, by building on advances in inferring ARGs. ARG inference

methods have historically been impractical for even modest sample size and locus length

[109, 110]. To ease computational costs, [111] calculated a heuristic for the conditional

sampling distribution (CSD) of the nth sequence given n − 1 other sequences, which

allowed them to conduct approximate maximum-likelihood inference of recombination

rates without explicitly sampling the ARG. [112] showed that the so-called sequentially

Markov coalescent (SMC) is remarkably consistent with the coalescent with recombina-

tion; this approximation, along with the SMC’, a similar approximation due to [113],

allow extremely efficient approximate simulation of the ARG and maximum-likelihood

inference of population size history under the pairwise sequentially Markov coalescent

[114]. Recently, [115] developed an probabilistic method approximate the posterior distri-

bution on ARGs, based on both the CSD and SMC/SMC’ approximations. Their method

ARGweaver efficiently samples posterior ARGs, and scales well with genome length and

sample size. Based on these advances, it may be possible in the future to developmethods

for detecting selection that more closely approximate the full likelihood function.

1.6 Overview of dissertation
In this dissertation, I place a special emphasis on methods I developed which address the

aforementioned issue of full-likelihood inference by leveraging recent advances inARG in-

ference (see Chapters 2 and 3). Another focus of this dissertation is in developingmethods

that scale to highly polygenic traits; I approach this problem from two angles, one using

a full-likelihood approach (Chapter 3) aimed at examining within-population variation,

and a simpler regression approach based on random-effects models (Chapter 4) aimed at

examining variation along axes of population variation (e.g., principal components).
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Chapter 2

Approximate full-likelihood of selection
via importance sampling of ancestral
recombination graphs

This is work co-authored by Peter Wilton and Rasmus Nielsen. It is published in PLOS Genetics

[116].

Abstract
Most current methods for detecting natural selection fromDNA sequence data are limited

in that they are either based on summary statistics or a composite likelihood, and as a

consequence, do notmake full use of the information available in DNA sequence data. We

here present a new importance sampling approach for approximating the full likelihood

function for the selection coefficient. The method treats the ancestral recombination

graph (ARG) as a latent variable that is integrated out using previously publishedMarkov

Chain Monte Carlo (MCMC) methods. The method can be used for detecting selection,

estimating selection coefficients, testing models of changes in the strength of selection,

estimating the time of the start of a selective sweep, and for inferring the allele frequency

trajectory of a selected or neutral allele. We perform extensive simulations to evaluate

the method and show that it uniformly improves power to detect selection compared to

current popular methods such as nSL and SDS, under various demographic models and

can provide reliable inferences of allele frequency trajectories under many conditions. We

also explore the potential of ourmethod to detect extremely recent changes in the strength

of selection. We use the method to infer the past allele frequency trajectory for a lactase

persistence SNP (MCM6) in Europeans. We also study a set of 11 pigmentation-associated

variants. Several genes show evidence of strong selection particularly within the last 5,000

years, including ASIP, KITLG, and TYR. However, selection on OCA2/HERC2 seems to

be much older and, in contrast to previous claims, we find no evidence of selection on
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TYRP1.

2.1 Introduction
Direct observation of the change in allele frequency over time (the allele frequency tra-

jectory) allows one to make powerful inferences regarding whether selection acted on the

allele [117, 118]. However, outside of certain contexts such as experimental evolution

of viruses or bacteria [119, 11, 12, 13] or analyses of ancient DNA samples [14, 15], in

most cases such direct observations of allele frequencies at multiple points in the history

of a population are unavailable. Instead, selection must be inferred from contemporary,

modern data. A wide variety of methods have been developed to detect selection based

on patterns observed from modern DNA sequences (e.g. [33, 41, 78]).

The hitch-hiking effect provides a key signature of selection in modern datasets [30].

[30, 31]. Hitch-hiking causes aberrations in the spatial pattern of genetic diversity, includ-

ing the site frequency spectrum (SFS) [62, 86] and the pattern of haplotype homozygosity

[33]. Methods designed to detect these aberrations are particularly useful in the setting

where a single population is surveyed, and the only information available is variation

within this single population.

The most familiar methods for detecting selection are based on linear functionals of

the SFS, such as Tajima’s D, Fu and Li’s D, or Fay and Wu’s H [62, 63, 64]. An advantage

of SFS-based methods is that they do not require the data to be phased. However,

these methods have several limitations: they tend to confound selection with other non-

equilibrium conditions, such as a fluctuating population size [41, 42]; they are not suitable

for estimating parameters such as the value of the selection coefficient s; significance
can usually only be established using an empirical null distribution; and crucially, these

methods do not incorporate any features of the haplotype structure.

To make fuller use of information provided by phased sequence data, a number of

methods have incorporated summary statistics based on haplotype structure. In a broad

sense, these methods are based on calculations of haplotype similarity in a window

around some core site of interest [33]. Several methods have adapted this general concept

to specifically detect ongoing selection [78, 79, 38]. More recently, [80] showed that the

density of singletons surrounding a focal SNP can be a powerful signal of extremely

recent selection in large cohorts. In addition to recent and ongoing selection, it has been

demonstrated that these methods have compelling advantages to detecting selection from

standing variation [38, 106, 80]. However, these methods share the major limitation of

SFS-based method in that they are not suitable for parametric inference and it is unclear

how to establish significance without use of an empirical null model.

Recently, supervised machine learning methods have been proposed as an alternative

to traditional summary-statistic based methods (see e.g., [100]). Standard machine learn-

ing techniques applied to population genomic data afford some major advantages over

methods based on summary-statistics: standard techniques can produce accurate classi-
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fiers based on summaries of the data that live in much higher-dimensional space than the

aforementioned summary statistics, and these techniques often encompass a wide space

of classification functions that are often non-linear (see e.g. [104, 101]). Some studies have

demonstrated these methods can have improved robustness to demographic model mis-

specification [96, 106]. Although these methods can potentially detect complex patterns

left by selection, they accordingly demand a great deal more training data or otherwise

risk overfitting.

In contrast to the aforementioned methods, one might aim to develop a full likelihood

methods which would take into account the full data set, rather than merely summary

statistics. A common strategy for obtaining the full likelihood has been to find the distri-

bution of the genealogy under selection. For example, Krone and Neuhauser described

the distribution of the coalescence tree of a locus under weak selection and no recombi-

nation [82]. Alternatively, one can describe how the genealogy depends on the trajectory

of the selected allele (first described by [120]), and in turn how the trajectory depends

on selection. To this end, Coop and Griffiths [84] developed a sampling method for ap-

proximating the full likelihood of the selection coefficient. Their method uses sampling to

marginalize out two layers of latent variables: the allele frequency trajectory and the ge-

nealogy of the locus. To estimate the likelihood function, they perform random sampling

of both the trajectory, and the genealogy conditioned on the trajectory. Unfortunately,

methods that consider the both coalescence and recombination are generally considered

computationally intractable.

Composite likelihoodmethods (see e.g. [41, 89]) are able to approximate the likelihood

functionusing tractable expressions for the frequencydistributionof aneutral site linked to

the selected site [86, 87]. These methods approximate the joint distribution of frequencies

observed at linked sites as the product of theirmarginals. These approaches can be applied

to test for selection, and estimate the strength of selection. The approximations made by

composite likelihoodmethods are more accurate under strong selection (arguably beyond

the strength of most recent selection in humans), and thus have less power to detect

weak selection — although to some extent low power to detect weak selection is a natural

outcome of any selection method.

Approximate Bayesian computation (ABC) and rejection sampling methods approxi-

mate the likelihood function by simulation. One advantage over the composite likelihood

approach is that ABC can capture dependencies between linked neutral sites. For exam-

ple, methods have been used to jointly infer the strength and timing of selection acting

on a locus and determine whether a sweep occurred from a de novo vs standing variant

[93, 94, 121, 122]. However, a major disadvantage of such approaches is that the amount

of simulation necessary to obtain an accurate estimate grows dramatically with the di-

mensionality of the observed data (for a discussion, see e.g. [97]); similar issues arise in

the process of training machine learning methods (e.g. [106]), requiring considerations to

prevent overfitting and avoid excessive simulation.

The method we present in this paper draws inspiration from the Coop & Griffiths

method [84], and has several key similarities: our method produces a likelihood and



CHAPTER 2. FULL-LIKELIHOOD INFERENCE OF SELECTION 28

involves integrating out the trajectory and genealogy, i.e., the aforementioned two hidden

layers. However, there are several key differences between this method and our approach:

while Coop and Griffiths assume no recombination of the locus, our method is based on

the coalescent with recombination (i.e. the ancestral recombination graph or ARG) [115].

Also, whereas Coop & Griffiths simulate random trajectories, we use a hidden Markov

model (HMM) to completely marginalize the latent trajectory. Lastly, our method uses

a novel importance sampling scheme that allows us to sample ARGs assuming a neutral

prior, and find the likelihood function at arbitrary values of s; this drastically reduces the

amount of ARG sampling necessary.

Furthermore, the newmethod is, to our knowledge, the first that is capable of inferring

the allele frequency trajectories for models with recombination and selection using only

modern data. We are able to accomplish this task using the aforementioned Markovian

structure of both coalescence and the trajectory, forming a HMM over these two hidden

states and solving for the posterior marginals of each hidden allele frequency state over

time. Recently, Edge & Coop proposed a method to reconstruct changes to polygenic

scores over time via such estimates of the local trees, but their method is not suitable for

estimating allele frequency changes or selection at individual loci [123].

2.2 Materials and methods

Overview
We begin with an overview of our method for jointly inferring selection and the allele

frequency trajectory, which we summarize in Fig. 2.1. Our method begins with input

in the form of haplotype data (Fig. 2.1A), although technically, it is also possible to use

unphased data, and sample possible phasings.

Next, we sample the posterior distribution on the genealogy at the selected site

(Fig. 2.1B); in other words, we marginalize out the hidden coalescence events, the first

of two latent variables or “hidden layers” in our model. Specifically, we sample the full

ancestral recombination graph (ARG) of the input haplotypes. The ARG is a graph that

summarizes all of the common ancestry and recombination events that have occurred

within the sample. We sample ARGs rather than gene trees in order to account for recom-

bination, and to incorporate information from sites in long-range linkage disequilibrium

with the selected site. Thenwe extract the genealogy at the site of interest (the “local tree”)

and from here on, this is the only component of the ARG that goes into our subsequent

calculations. To perform ARG sampling, we choose to use ARGweaver [115], which is

the only currently available method to sample the posterior ARG. In practice, it is possi-

ble and straightforward to adapt this method to other ARG inference methods designed

for larger samples, but sampling the posterior yields beneficial statistical properties (see

“Importance Sampling” under Materials and Methods).

Then, for each local tree we have sampled, we form a hidden Markov model (HMM,
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Fig. 2.1C) where observed states are coalescences in this local tree, and hidden states

are the selected allele’s frequency trajectory over time (i.e., the second hidden layer of

our overall model). We use a discrete-time model of the coalescent process to match the

model used by ARGweaver, so that the length of the HMM is of manageable, finite length.

Emission probabilities (i.e., coalescence probabilities) depend both on the frequency and

the most recent prior emission, whereas transition probabilities depend on the selection

coefficient s, the parameter we are ultimately interested in estimating. Solving the HMM

yields the probability of the sample local tree as a function of s. To obtain the likelihood

function of s, we perform importance sampling over all of sample trees, reweighting their

coalescent probabilities and summing them up. This approach allows us to use trees

sampled exclusively under a prior of selective neutrality (s � 0) to calculate the likelihood

function at arbitrary values of s. In other words, this approach allows us to minimize

the amount of ARG sampling necessary to estimate the likelihood function, which is

notable because ARG sampling is generally the most computationally intensive step of

our method.

Finally, we can analyze the results to test for selection or estimate the selection co-

efficient (Fig. 2.1D). Additionally, we show that we can decode the HMMs depicted in

Fig. 2.1C and use them to obtain a posterior estimate of the allele frequency trajectory

(Fig. 2.1E).

Coalescent model for a site under selection
First, let us consider how the distribution of the local tree T at a site under selection

depends on the frequency trajectory of an allele at that site. We assume that the tree is

labeled, i.e. we know which branches subtend each allele. We also assume the tree to be

compatible with the infinite sites assumption, i.e. that there is at most one mutation event

that has occurred at the focal site, and thus the site is bi-allelic. We model the likelihood

of the tree using a structured coalescent; moving backwards in time from the time of

sampling until the time of the mutation, lineages can only coalesce with other lineages

that subtend the same allele, and the coalescence rate within the derived and ancestral

classes depends on both the derived allele frequency X(t) and the effective population size

N (t), both indexed by the time t ≥ 0 in coalescent units before the present day. Proceeding

back in time, lineages coalesce freely after the time of mutation, and the coalescence rate

depends only on N (t). In the rest of this section we treat the trajectory X(t) as known,

but in practice the trajectory is hidden and highly stochastic; in a later section we develop

a hidden Markov model to efficiently integrate out X(t).
We use a discrete-time model of the coalescent employed also by ARGweaver [115].

That is, we only observe the coalescent process at a discrete set of timepoints {t1, . . . , tK },

and also make the additional assumption that all lineages must coalesce by tK . (Typically

tK is set to ∼100×Ne , implying coalescence would be extremely unlikely to occur after

tK , and hence this assumption is very reasonable.) Henceforth, using this discretization
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Figure 2.1: A: To apply ourmethod for inferring selection,webegin by sampling

the posterior ARG of a set of recombining chromosomes. B: For each sample

ARG, we extract local trees at the site of interest (blue). C: For each sample local

tree, we run an HMM to calculate the likelihood of selection, marginalizing out

the hidden allele frequency trajectory based on coalescence in the sample tree.

We later use the recursions performed in this step to calculate the posterior

allele frequency trajectory. D: An example of the estimated likelihood function

for an allele under neutrality (top) and selection (bottom). E: An example of

the inferred allele frequency trajectory compared to the ground truth trajectory

under neutrality (top) and selection (bottom). Both (D) and (E) are inferred from

data simulated under a European demographic model with n � 50 haplotypes,

conditioning on the derived allele segregating at 75% in the present day. with

s � 0 and s � 0.003, respectively.
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we also discretize X and N ; we assume X(t) � Xi for t ∈ (ti , ti+1], and N (t) � Ni for

t ∈ (ti , ti+1].

We use C to track the number of lineages remaining at these timepoints leading back

into the past; as long as we keep track of the number of lineages belonging to each of

the allelic classes, by exchangeability of fitness within an allelic class, we can model the

likelihood function in the usual way, as independent of the topology given the waiting

times. Hence, we define three simultaneous, related processes C � (Cder, Canc, Cmix).
The processes Cder

and Canc
refer to coalescence within the derived and ancestral classes

during the time going back from the time of sampling to the time of the mutation. The

mixed process Cmix
refers to coalescence going backwards from the time of the mutation.

We call it the mixed process because it includes un-coalesced lineages from Canc
, as well

as the lineage ancestral to all derived lineages. Assuming the infinite sites model, Cmix

will have one additional lineage relative to Canc
at the time of the mutation, and will

eventually reach Canc � Cmix
once that lineage coalesces with one of the other lineages in

the ancestral class. In Fig. 2.2 we illustrate the lines-of-descent process in the these three

classes.

We model the probability of transitioning from Ci → Ci+1 lineages during some time

interval [ti , ti+1] using a simple variation on Tavare’s formula for the exact distribution of

the number of lines of descent remaining after t generations [124]We use Tavare’s formula

in order to model the coalescent at discrete timepoints, allowing multiple coalescences at

each epoch.

We write the likelihood of a trajectory X given C as

P(C | X,N) �
K−1∏
i�0

P(Ci+1 | Ci ,Xi ,Ni) (2.1)

More precisely, in terms of the derived, ancestral, and mixed processes,

P(C | X,N) �
i∗−1∏
i�0

P(Cder

i+1
| Cder

i ,Xi ,Ni) P(Canc

i+1
| Canc

i ,Xi ,Ni) ×
K−1∏
i�i∗
P(Cmix

i+1
| Cmix

i ,Ni)(2.2)

where i∗ :� max{i : Xi > 0} denotes the index of the epoch during which the allele

arose via mutation. Naturally, the mixed process—which we only keep track of while

the derived allele is nonexistent—does not depend on X. We can write the transition

probabilities using Tavare’s formula [124]:
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Time 0 1 2 3 4 5

Cder
4 3 2 1 1 1

Canc
3 3 2 2 2 1

Cmix
4 4 3 3 2 1

Figure 2.2: Top: Coalescence conditioned on the allele frequency trajectory

(dashed blue line). Blue lineages subtend the derived allele, whereas black

lineages do not. Black lineages belong to the ancestral class while the derived

allele has Xt > 0, and they belong to the mixed class while Xt � 0. Bottom: the

numbers of derived, ancestral, and mixed lineages at each time point. Black

numbers factor into the likelihood calculation, whereas gray numbers do not.

P(Cclass

i+1
� b | Cclass

i � a , Zi � zclassi ) �
a∑

k�b

{
exp

(
−
(k

2

)
(ti+1 − ti)
2zi

)
×

(2k − 1)(−1)k−b

b!(k − b)!(k + b − 1)

k−1∏
l�0

(b + l)(a − l)
(a + l)

}
where

zclassi �




NiXi : class � der

Ni (1 − Xi) : class � anc

Ni : class � mix

(2.3)
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We note that this formula is known to be computationally unstable for large values of

C, large values of N , and/or small values of ∆ti � ti+1 − ti ; under such conditions, the

asymptotic distribution of Ci+1 | Ci � a (where a is, e.g., the number of derived lines of

descent present at ti) takes on a normal distribution [125]:

Ci+1 | Ci � a ∼ N (µ(∆t), σ2(∆t)) (2.4)

where

µ(∆t) �
2η

∆t
(2.5)

and

σ2(∆t) � 2η/∆t(η + β)2(1 + η/(η + β) − η/α − η/(α + β) − 2η)β−2

(2.6)

where α � a∆t/2, β � −∆t/2, and η � αβ/[α(eβ − 1) + βeb
] [125]. In practice, for samples

of n � 50 haplotypes under constant Ne � 10
4
, we find this approximation is unnecessary;

however, for the same sample size under a European demographic model, which exhibits

very large recent Ne , we find it necessary to use this approximation during the roughly 10
3

generations preceding the present day, prior to which Ne , C, and our time discretization

(and hence ∆t) are sufficiently small that we change over to Tavare’s exact formula [126].

Allele frequency transition probabilities
Our likelihood calculations require allele frequency transition distributions for different

selection coefficients, population sizes, and spans of time. Rather than employ the more

common approach of numerically calculating allele frequency transition distributions

using theWright-Fisher diffusion process with drift and selection (e.g., [7, 127]), we follow

[128] and precompute allele frequency transition distributions on a grid of time spans (i.e.,

generations) and scaled selection coefficients (i.e., α � 2Ns) using theWright-Fishermodel

of reproduction in a finite population experiencing genetic drift and natural selection (see

[7]). Specifically, for each value of α, we use simple matrix multiplication to produce allele

frequency transition matrices for discrete frequencies in a haploid population of size

N � 2000 at a number of generations spanning from g � 1 to g � gmax (corresponding

to scaled drift times of 1/2000 to g′ � gmax/2000) with some spacing chosen a priori; in

practice, weuse linear spacing for recent history and/or periods of population growth. We

bin allele frequencies into d discrete frequency categories unevenly distributed between

0 and 1 such that extreme frequency bins outnumber intermediate frequency bins. To

calculate allele frequency transition distributions for time spans and selection coefficients

not contained in the grid of pre-computed values, we linearly interpolate between the

nearest precomputed values. See [128] for details. Additionally, we condition the allele

frequency process on the present-day frequency X0 by using the following reweighting:

P(Xi | Xi+1,X0, s) �
P(Xi | Xi+1, s)P(X0 | Xi , s)

P(X0 | Xi+1, s)



CHAPTER 2. FULL-LIKELIHOOD INFERENCE OF SELECTION 34

where P(Xi1
| Xi2

, s) is the forward-time unconditional probability of transitioning from

Xi2
to Xi1

(in coalescent time, ti2
> ti1

; in forward time, ti2
< ti1

).

Marginalizing the hidden allele frequency states
In the previous sections we showed how we obtain P(C | X) and P(X | s). The full

likelihood of selection given the local tree G is thus

L(s | G) ∝ P(C | s) �
∑
x∈X

P(C | X � x)P(X � x | s). (2.7)

Naively, this involves a prohibitively large sum over dK−1
terms in X, the space of

possible trajectories. But due to the conditional independence of the likelihood, we can

calculate the likelihood much faster using a recursion:

b1(x1) �
∑
x0

P(C1 | C0,X0 � x0,N0) P(X0 � x0 | X1 � x1,N0, s) (2.8)

bi+1(xi+1) �
∑

xi

bi (xi) P(Ci+1 | Ci ,Xi � xi ,Ni) P(Xi � xi | Xi+1 � xi+1,Ni , s) (2.9)

and we can apply this recursion to calculate the likelihood function of s given G as

L(s | G) ∝ bK (0). (2.10)

The above is commonly knownas the backward algorithm. In ourmodel, the backward

algorithm’s recursion proceeds backwards through time. Alternatively, using the forward

algorithm, with its recursion proceeding forwards in time:

fK−1(xK−1) � P(XK−1 � xK−1 | XK � 0,NK−1, s) (2.11)

fi−l (xi−1) � P(Xi−1 � xi−1 | Xi � xi ,Ni−1, s)
∑

xi

fi (xi)P(Ci+1 | Ci ,Xi � xi ,Ni) (2.12)

and we can apply this recursion to calculate the likelihood function of s given G as

L(s | G) ∝
∑
x0

f0(x0) (2.13)

To calculate the posterior probability of the allele frequency during the ith epoch Xi ,

P(Xi � xi | C, s) �
bi (xi) fi (xi)∑
x′i

bi (x′i) fi (x′i)
(2.14)

gives the posterior marginal of Xi using the familiar forward-backward algorithm.
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Importance sampling to estimate the likelihood function
The above formulas pertain immediately only to the case inwhich the local tree is observed

directly and without noise. In practical settings, the local tree is hidden to us and we

must integrate over the space of possible local trees using sampling methods. Here

we describe a novel importance sampling method to reweight posterior samples of the

ARG to approximate the likelihood function of selection. Althoughwe use s to express the
argument of the likelihood function, we use this as shorthand for estimating the likelihood

function of arbitrarily complex parameters; for example, one could estimate the selection

coefficient s, as well as the time of selection’s onset, ts , before which the allele behaved

neutrally.

We are given haplotype data D representing n haplotypes with l sites that are fixed

for the derived allele. We wish to use D to infer the maximum-likelihood value of s
for some locus k ∈ {1, 2, . . . , l} assuming that all other loci are selectively neutral (i.e.

s j � 0 ∀j ∈ {1, 2, . . . , k − 1, k + 1, . . . , l}). In other words, we restrict ourselves to testing

simple hypotheses of the form “site k has selection coefficient sk and all of its flanking

sites are selectively neutral.”

The likelihood of s under the data can be expressed as the expected value of the

likelihood of the ARG G given the data D, with respect to the distribution of G given s:

L(s) � EG|s[P(D | G , s)] (2.15)

At this stage, we introduce G, the discrete-time approximation of G (discussed inmore

detail by [115]), and we assume

L(s) � EG |s[P(D | G, s)] (2.16)

By importance sampling, we are able to express the expectation over an alternative

distribution q(G), as long as P(G,D | s) > 0 ⇒ q(G) > 0. Notice that this implies we

can conduct sampling under q(G) once, and reweight these samples for arbitrary values

of s without having to conduct additional sampling. In other words, approximating L(s)
using importance sampling does not require sampling under each value of s at which you

want to approximate L(s).
In this paper we specifically consider the estimator given by q(G) � P(G | D , s � 0);

i.e., the posterior ARG under selective neutrality. Later, we evaluate the performance of

the estimator using the Markov chain Monte Carlo method ARGweaver, which samples

from the posterior [115]. One can obtain the importance sampling estimate of the full

likelihood L(s) by expressing Eq. 2.16 as an expectation over a different distribution, i.e.

the posterior distribution of the ARG (assuming selective neutrality):

L(s) � EG |s[P(D | G, s)] � EG |D ,s�0

[
P(D | G, s)P(G | s)
P(G | D , s � 0)

]
(2.17)
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We can express Eq. 2.17 using the Monte Carlo approximation

L̂(s) �
1

M

M∑
m�1

P(D | G(m) , s)
P(G(m)

| s)
P(G(m) | D , s � 0)

→ L(s) (2.18)

whereG(m)
∼ P(G | D , s � 0), m � 1, 2, . . . ,M, and“→”, here and in the following,means

that the left-hand side converges almost surely to the right-hand side as M goes to infinity,

assuming that a Lawof LargeNumbers for ergodic processes holds (the Birkhoff–Khinchin

theorem).

Hence, if we sample genealogies from the posterior under selective neutrality, that is,

G(m)
∼ P(G | D , s � 0), m � 1, 2, . . . ,M, then the right-hand side of Eq. 2.18 can be used

as a Monte Carlo estimator of the likelihood function. However, in practice this estimator

is highly unstable. However, a more stable estimator of the likelihood ratio
L(s)

L(s�0) can be

derived. We can divide through Eq.2.17 by L(s � 0) � P(D | s � 0) to get

L(s)
L(s � 0)

� EG |D ,s�0

[
P(D ,G | s)
P(D ,G | s � 0)

]
(2.19)

Becausewe assume the data are conditionally independent of selection given the full ARG,

we can simplify this as

L(s)
L(s � 0)

� EG |D ,s�0

[
P(D | G)P(G | s)
P(D | G)P(G | s � 0)

]
� EG |D ,s�0

[
P(G | s)
P(G | s � 0)

]
(2.20)

A key development in our method is that although we sample the ARG of the entire

sequence, we only calculate likelihoods using the marginal tree at the selected site, which

wewill call Gk . In doing so, wemake a key approximation: for differing sweep parameters

s and s′, we assume that

P(G\k | Gk , s) ≈ P(G\k | Gk , s′) (2.21)

That is, we assume that the rest of theARG is approximately conditionally independent

of s given the marginal tree at the selected site, Gk . Thus, we can reduce Eq. 2.20 to

L(s)
L(s � 0)

� EG |D ,s�0

[
P(G | s)
P(G | s � 0)

]

� EG |D ,s�0

[ P(G\k | Gk , s)
P(G\k | Gk , s � 0)

P(Gk | s)
P(Gk | s � 0)

]

≈ EG |D ,s�0

[
P(Gk | s)
P(Gk | s � 0)

]
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which suggests the following importance sampling estimator using genealogies sampled

from ARGweaver will converge almost surely to a close approximation to the likelihood

ratio:

L̂R(s) �
1

M

M∑
m�1

P(G(m)
k | s)

P(G(m)
k | s � 0)

→ EG |D ,s�0

[
P(Gk | s)
P(Gk | s � 0)

]
≈

L(s)
L(s � 0)

(2.22)

where G(m)
∼ P(G |D , s � 0) for m � 1, 2, . . . ,M.

Finally, due to exchangeability of lineages within the derived and ancestral allelic

classes, we can assume

P(Gk | s) ∝ P(Ck | s) ⇒ L̂R(s) �
1

M

M∑
m�1

Ω(m) (s) (2.23)

where

Ω(m) (s) :�
P(C(m)

k | s)

P(C(m)
k | s � 0)

(2.24)

denotes the summand of the importance sampling estimator. That is, the topology within

allelic classes is not important, and instead we need only the lines of descent process

within each class.

We canmaximize the likelihood ratio over different values of s to obtain themaximum-

likelihood estimate of s

ŝ � argmaxsL̂R(s) (2.25)

Finally, we can obtain an importance sampling estimate of π(xi | D , s), the posterior

marginal of the allele frequency at timepoint i, Xi :

π(Xi | D , s) � EG |D ,s[P(Xi | G,D , s)] (2.26)

� EG |D ,s�0

[
P(Xi | G,D , s)

P(G | D , s)
P(G | D , s � 0)

]
(2.27)

� EG |D ,s�0

[
P(Xi | G,D , s)

P(G | s)
P(G | s � 0)

]
×

L(s)
L(s � 0)

(2.28)

∝ EG |D ,s�0

[
P(Xi | G,D , s)

P(G | s)
P(G | s � 0)

]
(2.29)

≈ EG |D ,s�0

[
P(Xi | Gk ,G\k ,D , s)

P(Gk | s)
P(Gk | s � 0)

]
(2.30)

≈ EG |D ,s�0

[
P(Xi | Gk , s)

P(Gk | s)
P(Gk | s � 0)

]
(2.31)

� EG |D ,s�0

[
P(Xi | Ck , s)

P(Ck | s)
P(Ck | s � 0)

]
(2.32)
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Hence,

1

M

M∑
m�1

P(Xi | C
(m)
k , s)Ω(m) (s) → EG |D ,s�0

[
P(Xi | Ck , s)

P(Ck | s)
P(Ck | s � 0)

]
≈ κπ(Xi | D , s)

(2.33)

where κ is the constant

[
L(s)/L(s � 0)

]−1

. Thus, our importance sampling estimate of the

posterior marginal given s is

π̂(xi | D , s) :�

∑M
m�1
P(Xi | C

(m)
k , s)Ω(m) (s)∑M

m�1
Ω(m) (s)

(2.34)

where in the summand we use the posterior marginal established in Eq. 2.14. In practice,

we fix s � ŝ. A concern is, therefore, that this estimator does not take uncertainty in the

estimate of s into account. This problem can be addressed by using a Bayesian approach

and allowing a prior distribution on s, π(s), the posterior of the selection coefficient

π(s | D) follows

π(s | D) ∝
L(s)

L(s � 0)
π(s) ≈ L̂R(s) π(s). (2.35)

Then the estimate of the posterior marginal is given by

π̂(xi | D) �
∫
∞

−∞

π̂(xi | D , s)π(s |D)ds (2.36)

which can be approximated by a sum over d discretized values of s, S � {s1, . . . , sd } as

π̂(xi | D) :�

∑
s∈S

π̂(xi | D , s)π̃(s |D) (2.37)

where π̃ represents a probability mass function over s. In this this paper we assume

positive directional selection with a dominance coefficient of h � 1/2, but our method can

be extended easily to general values of h as well as negative selection.

The method is implemented in a computer package, CLUES, available for download at

https://github.com/35ajstern/clues.

Simulations
To evaluate the power of CLUES to determine whether a site has been subject to selection,

we simulated a dataset of n � 25 diploid individuals under two different demographic

models; (1) a model of constant effective population size (N � 10
4
), and (2) a model of

European (CEU) demography [129]. We performed both sets of simulations using the

https://github.com/35ajstern/clues
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program discoal [130]. We set µ � 2r � 2.5 × 10
−8

mut/bp/gen, L � 1 × 10
5
bp or

2 × 10
5
bp for the constant-size and CEU models, respectively, and simulated conditional

on a variety of present-day frequencies and selection coefficients, the latter of which we

ranged fromweak to strong values. Under each condition, we simulated 100 independent

iterations. We also sampled 1 ancient haplotype; because ARGweaver, which we used

subsequently to sample the posterior ARG, does not incorporate any information about

ancestral/derived states, it is best practice to add an ancient individual or outgroup to

help polarize the the alleles. For the constant-size and CEU models, we used ancient

sampling dates of 2 × 10
4
and 1.6 × 10

4
generations before present, respectively. Because

discoal can only simulate piecewise-constant population sizes, we specified population

sizes to take on the value of their harmonic mean over the epoch, calculated from the

original CEU model.

Importantly, we conditioned simulations on the site of interest segregating at a partic-

ular frequency in the present day. Hence, when we considered the power to discriminate

between neutral and selected alleles, we controlled the present-day frequency to be equal

in both of these cases. Avoiding this step would otherwise upwardly bias estimates of

the statistical power, due simply to the tendency for selected alleles to segregate at higher

frequencies than neutral alleles [23]. (If the allele frequency in itself is also of interest, this

part of the likelihood could trivially be added at a later stage, by simply using the sta-

tionary distribution of the allele frequency; see “Allele frequency transition probabilities”

under Materials and Methods.) We then simulate the allele frequency backwards in time,

from the present-day frequency, until the allele reaches a frequency of 0. Simulators such

as discoal achieve this by using the conditional Wright-Fisher diffusion (see e.g. [131]).

In the case where effective population size changes over time, running conditional simu-

lations requires additional considerations because the probability of a mutation entering

the population scales approximately linearly with population size. Naively sampling

the trajectory backwards in time will therefore produce a bias, unless trajectories where

the mutation occurs while Ne is low are somehow penalized. Thus, approaches such

as reweighting sample trajectories using importance sampling have been used to correct

this bias [132]. The program discoal implements a similar bias-correcting scheme using

rejection sampling that rejects trajectories where the mutation occurs while Ne is lowwith

higher probability than trajectories where the mutation occurs while Ne is high.

Next, we inferred the posterior ARG given the sequence data we simulated using

ARGweaver [115]. This method works by proposing adjustments to an initial ARG,

and randomly accepting or rejecting these proposals based on calculations of the prior

probability of the proposedARG, aswell as its likelihoodgiven the sequence data. Because

the prior probability is based on the effective population size, we specified the same

effective population size in the prior as we used to generate the sequence data. We found

it important to adjust the proposal mechanism of ARGweaver; specifically, we adjusted

resample window size and the number of resamples per window to achieve an acceptance

rate of about 30-70%. In total, we sampled 3 × 10
3
ARGs for each simulation, discarding
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the first 1 × 10
3
as a burn-in period, and subsequently thinning the remaining samples

to reduce the computational burden of downstream analyses; we used a thinning rate

of 100 samples, resulting in M � 20 approximately independent samples. Reducing the

thinning ratewould increase accuracyof the inference at the cost of additional computation

to calculate the likelihood of each additional sample tree.

Using utilities in the ARGweaver package, we extracted local trees at the selected site

(at the center of the locus) from these sample ARGs. We then analyze this final set of trees

using CLUES . We also analyzed the same sequence data using nSL, H12, and Tajima’s

D [79, 81, 62]. The nSL method is essentially equivalent to iHS [78], except nSL does not

require specifying a genetic map; despite this, these methods have been shown to have

very similar statistical power with a slight advantage of nSL under some conditions. H12

is a method to calculate haplotype homozygosity merging the two most common hap-

logroups; thus, it is a test for selection that is robust to the origin of a sweep, i.e. whether it

is hard or soft. Tajima’s D is a site frequency spectrum-based statistic which is sensitive to

skews in the frequency distribution of linked alleles caused by hitchhiking on the partially

swept selected allele. We used scripts provided by [106] to calculate D and H12, using

a window size of 100kb centered on the selected site. We compare testing for selection

under these methods by comparing their power curves under both the constant Ne and

CEU demography models (Figs. 2.3,2.4).

We also conducted a similar simulation study for detecting recent selection starting 100

generations ago. We simulated under the same CEU demographic model as previously

described, but instead sample n � 50diploids. We conductedARG sampling and thinning

aspreviouslydescribed, but in our analysis of the sample treesusingCLUES ,we calculated

the likelihood for models of selection where s � 0 up until 100 generations ago, and s ≥ 0

from that point until the present day. This sweep from standing variation (SSV) model

differs from the hard sweep model we used previously, which assumes s is constant

throughout history. Instead of optimizing the likelihood function just for s, we optimized

jointly over two parameters, s and the onset of selection ts , the latter of which represents

the time of the onset of selection.

2.3 Results

Testing for selection
We found that across all scenarios, CLUES matches or exceeds the statistical power of the

othermethods evaluated (Figs. 2.3,2.4). As expected, allmethods hadhighest power under

large values of both the selection coefficient and the derived allele frequency (Fig 2.3I).

Under these conditions, CLUES had 100% power at the 1% significance threshhold; the

next most powerful method, nSL, had 68% power at the same significance level. CLUES

also demonstrated improvement in power underweak selection; as the selection coefficient
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was decreased, nSL retained about 20% power when s � 0.003 and <5% power when

s � 0.001, and Tajima’s D and H12 retained <5% power under both s � 0.001, 0.003

(Fig 2.3G,H). By contrast, CLUES retained approximately 45% and 90% power under

s � 0.001, 0.003, respectively. We conclude that CLUES has high power across a wide

regime of selection strengths, and has notably improved power over standard methods

under weaker values of s.
We also considered the effect of present-day allele frequency on statistical power.

Previous studies have shown a strong dependence of power on current allele frequency,

withmethods such as nSl and iHs having highest power at allele frequencies in the 70-90%

range (see e.g. [78]). We tested for selection at alleles ranging in present day frequency

from 25% to 75%, andwhile CLUES showed the expected pattern of increasing powerwith

frequency, it also improved on the performance of other methods at lower frequencies.

For example, under strong selection (s � 0.01), the power of CLUES changed from 100%

to 90% to 85% as the frequency is decreased from 75% to 50% to 25% (Fig. 2.3C,F,I). By

contrast, the power of the next most powerful method, H12, dropped from approximately

65% to 45% to 15% (Fig. 2.3C,F,I). Under moderate selection (s � 0.003), these effects were

even more drastic, with the power of CLUES and nSL (the next most powerful method in

this regime) changing from 90% to 60% to 50% and 20% to 5% to <5%, respectively. We

conclude that CLUES has high power compared to standard methods across a wide range

of allele frequencies, with the most major improvements in performance occurring when

the derived allele is at lower frequencies (<50%). We found that using the approximation

due to Griffiths (Eq. 2.4, [125]) decreased power of CLUES by increasing variability of

the null distribution of the likelihood ratios. Hence, for testing under nonequilibrium

demography we used the exact lines-of-descent probabilities (Eq. 2.8). By contrast, as we

will later show, we found the approximation given by Eq. 2.4 for t ∈ [0, 1000] to improve

estimation of allele frequency trajectories under this demographic model.

We also considered the same testing procedure under non-equilibrium demography,

simulating under the previously described model of CEU demography (Fig. 2.32.4). We

found in general reduced power to detect selection under this regime relative to the

constant population size regime (Fig. 2.4I, cf. Fig. 2.3I), consistent with the well-known

confounding of expanding population size with selection [41]. Nonetheless, CLUES

demonstrated improved power relative to the competing methods across a wide range

of selection coefficients (Fig. 2.4C,F,I), as well as across a wide range of derived allele

frequencies (Fig. 2.4G,H,I).

Estimating selection coefficients
Using the simulations from the previous section to study statistical power in testing for

selection, we used our estimate of the likelihood surface for s to estimate the value of the

selection coefficient via maximum likelihood. We obtained selection coefficient estimates

under importance sampling using ARGweaver (Fig. 2.5), as well as selection coefficient

estimates based on the true local tree observed directly (Fig. A.1). Generally, the estimates
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Figure 2.3: ROC curves illustrating performance of tests between selection and

neutrality. Rows correspond to simulations conditioned on the same present-

day allele frequency, and columns correspond to simulations with the same

value of s. Simulations were performed under a model of constant effective

population size (Ne � 10
4
) using a locus of 100kb, n � 25 diploid individuals

and µ � 2.5 × 10
−8

mut/bp/gen, r � 1.25 × 10
−8

recombinations/bp/gen.
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Figure 2.4: ROC curves illustrating performance of tests between selection and

neutrality. Rows correspond to simulations conditioned on the same present-

day allele frequency, and columns correspond to simulations with the same

value of s. Simulations were performed under a model of European demog-

raphy using a locus of 200kb, n � 25 diploid individuals and µ � 2.5 × 10
−8

mut/bp/gen, r � 1.25 × 10
−8

recombinations/bp/gen.
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Figure 2.5: Inference of selection coefficients of varying strength using impor-

tance sampling method based on ARGweaver local trees. A: Constant popu-

lation size. B: Tennessen CEU model. Marker shape denotes the present-day

frequency conditioned upon in the simulation: +, 25%; ◦, 50%; ^, 75%.

are approximately unbiased. For example, the mean estimates of s � 0, 1 × 10
−3, 3 ×

10
−3, 1 × 10

−2
were approximately ŝ � 1.9 × 10

−4, 9.6 × 10
−4, 3.2 × 10

−3, 1.3 × 10
−2

when

the present day frequency was fixed to 75% (Fig. 2.5A). Relative to inference when the

true tree is observed, we found that the importance sampling estimates had increased

variance, reflecting uncertainty in the tree. For example, we saw increased variability in

the importance sampling vs. true tree estimates under constant population size (Fig. 2.5A

vs. Fig A.1A), as well as under CEU demography (Fig. 2.5B vs. Fig. A.1B). This pattern is

consistent with the additional uncertainty in s when the local tree is not observed directly.

Notably, we found that importance sampling under a model of CEU demography yields

estimates with a slight bias towards lower values of s, especially under strong selection

(e.g. s � 0.01).

Inferring allele frequency trajectories
Using the same simulations and importance sampling estimates we obtained in the pre-

vious sections, we decoded the hidden Markov model (HMM) described in the section

Materials & Methods. Specifically, we take ŝ, the maximum likelihood estimate of s, and
plug it into the posterior marginal (Eq. 2.14) to obtain a probabilistic estimate of the allele

frequency during a particular epoch; we do this independently for each epoch in our

discrete-time model. To get a point estimate, we choose to use the posterior marginal

mean; i.e., for each epoch, we choose the mean of the posterior marginal distribution.

We illustrate the accuracy of these allele frequency trajectory estimates assuming the true

local tree is observed and under importance sampling when the true tree is unknown in

Fig. 2.6. We find that estimates of the allele frequency trajectory are generally unbiased

for both true trees (Fig. 2.6 A,B) and importance sampling (Fig. 2.6 C,D), with increased
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variance in the trajectory estimates in the importance sampling setting. We also illustrated

variability in true vs. inferred trajectories controlling for s (Fig. A.6, here setting s � 0).

Whereas inference tended to be relatively accurate for high-frequency alleles (Fig. 2.6

B,D), when the derived allele was simulated conditioned on lower frequencies (e.g. 25%,

Fig. 2.6 A,C), estimates tend to be downwardly biased. We tracked this bias to a lack of

convergence in ARGweaver; specifically, we found that across different demographic sce-

narios and selection coefficients, ARGweaver can drastically overestimate the occurrence

of very recent coalescences (in our case, in the last 100 generations; see Fig. A.5). Under

constant population size, we see a nearly 7-fold excess in the number of recent coalescences

inferred by ARGweaver. Naturally, this bias will affect estimates for low-frequency alleles

more strongly, as fewer lineages subtend the derived allele, and thus a larger proportion

of them are susceptible to this bias.

Because recombination rates vary substantially throughout the genomes of humans

and other organisms, we also evaluated the accuracy of the estimates assuming µ � r,
larger than the µ � 2ρ setting we used in the other simulations, and estimation accuracy

to be robust to this increase in recombination rate (Fig. A.2).

We also examined trajectory inference under non-equilibrium demography; i.e., the

aforementioned model of CEU demography (Fig. A.3). Under the CEU model, we found

trajectory estimates to have increased variance under importance sampling vs. true trees,

but also a slight downward bias in estimating the selection coefficient under strong se-

lection (i.e. s � 0.01; see Fig. 2.5B, Fig. A.3 D). As this bias does not occur under the

true trees (Fig. A.1 B, Fig. A.3 B), we inspected the posterior trees sampled by ARGweaver

for patterns consistent with this bias. We found that under this demographic model in

particular, ARGweaver tends to under-sample trees with short times to most recent com-

mon ancestor (TMRCAs; see Fig. A.4). For reference, nearly 60% of runs under constant

Ne contained even a single sample tree that had a TMRCA less than or equal to that of

the true TMRCA (Fig. A.4 A). By comparison, under s � 0.01 and CEU demography,

only 11% of ARGweaver runs met this criterion (Fig. A.4 B). Some bias is to be expected,

as trees were sampled under a posterior distribution that assumes selective neutrality;

however, these results suggest that, if ARGweaver is sampling from the true posterior

assuming selective neutrality, then importance sampling estimates (of the selection coef-

ficient, for example) will at least have much higher variance under the CEU model than

under constant population size.

We further investigated whether uncertainty in s due to importance sampling variance

drove the downward bias when estimating strong selection (Fig. 2.5B and Fig. A.3 D).

First, we obtained importance sampling estimates of the trajectory fixing s to its true value

(Fig. A.7 A). If uncertainty in s were the cause of the bias, then fixing the true value of s
ought to correct for bias due to uncertainty. While we observe less bias in the estimates

when fixing the true value of s, the bias is not totally eliminated. We observe a similar

reduction in the bias of estimates under neutralitywhenwefix s � 0 (see Fig. A.6 B,E,H, vs.

Fig. A.6 C,F,I). Thus, we conclude the bias is due to a lack of convergence in ARGweaver,

which appears to be exacerbated in settings where strong selection is combined with
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Figure 2.6: Allele frequency trajectories inferred from true trees (top row) and

ARGweaver local trees (bottom row). Colored trajectories are inferred, black

trajectories are the ground truth. Columns correspond to different initial allele

frequencies (left: 25%, center: 50%, right: 75%), and rows/colors correspond

to different selection coefficients. For each condition we show 25 randomly

selected simulations and their corresponding inferences. All data are simulated

under a model of constant effective population size (Ne � 10
4
).

non-equilibrium demography.

We also investigated whether incorporating uncertainty in the estimate of s, rather
than fixing s � ŝ, would improve the accuracy of trajectory inference. One strategy for

modeling uncertainty in s is to apply a prior distribution to s. We found thatmarginalizing

out s with respect to its posterior distribution (assuming a uniformprior on s) did not have

a noticeable effect on inference for large values of s (Fig. A.7 B). This result is concordant

with our observation that for large values of s, the likelihood surface peaks so strongly

that the posterior remains tightly concentrated around the MLE ŝ. Hence, applying a

prior distribution to s does not appear to be an adequate strategy to model uncertainty in

s.
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Inferring extremely recent selection
We applied our likelihood model of a sweep from a standing variant (SSV) to two types

of datasets: selection from a standing variant starting 100 generations ago and selection

with constant s (including s � 0), both described in ‘Simulations’ under Materials and

Methods. We inferred trajectories under the best case scenario where the true trees are

observed (Fig. 2.7A,B). We found that overall the method inferred the trajectory, as well

as the strength and timing of selection, with highest accuracy when selection is strong

(e.g. s � 0.03 in Fig. 2.7A,B). However, we found that as s took on smaller values

(s � 0.01), many combinations of s and ts had very similar likelihood (Fig. 2.7B), and thus

estimates of s, ts , and the allele frequency trajectory tended to be noisier than under very

strong selection (Figs. 2.7A,B). Adding the extra parameter ts did not cause overfitting

when inferring the trajectories of hard sweeps (Fig. 2.7A). We also found good power

to distinguish between hard vs. soft sweeps (i.e. sweeps from a standing variant), as

apparent in the trajectories inferred in Fig. 2.7A. We calculated statistical power to test for

a hard sweep using the statistic max

s ,ts
{L(s , ts )}

/
max

s
{L(s , ts � ∞)}; intuitively, this statistic

is the ratio of the highest likelihood under any model with a SSV (ts , ∞) to the highest

likelihood of any hard sweep (ts � ∞). At the 1% significance level we found 60% and

100% power to distinguish soft vs. hard sweeps with s � 0.01, 0.03, respectively.

We also performed importance sampling using ARGweaver and evaluated the power

of the importance sampling estimates to detect recent selection vs. neutrality (Fig. 2.7C).

Instead of comparing our method to nSL, which is not designed to detect signals of ex-

tremely recent selection, we compared to Singleton Density Score (SDS; [80]), as well as

H12 and Tajima’s D. We found that for lower values of s, all methods had generally low

power. Although CLUES exhibited fairly high power (44%) to detect very strong recent

selection (s � 0.03) —even outperforming SDS—we found that H12 has about the same

power (45%) in this particular case. The lower power (<5%) of SDS is consistent with

the fact that the method was explicitly designed to have high power for large datasets

(n > 1000 for selection coefficients of this magnitude). Although we demonstrate that

CLUES has substantial power to detect extremely recent selection, we found that impor-

tance sampling point estimates of s, ts , and the trajectory were highly vulnerable to biases

in the distribution sampled by ARGweaver (Fig. A.5). Specifically, we found that across

various demographic and selection conditions, ARGweaver samples trees with substan-

tiallymore recent coalescent events than in the true trees. Specifically, under the European

demographic model with the settings used here to study recent selection, we find ARG-

weaver samples about a 4-fold excess of recent coalescent events (Fig. A.5 B). Clearly, this

bias would produce a false signature of recent selection under neutral conditions. Thus,

we did not further explore importance sampling estimates of s and the trajectory under

the recent selectionmodel. We conclude that potential ARG-samplingmethods that avoid

this bias will improve upon power to detect recent selection, as well as point estimates of

the strength, timing of selection, and the allele frequency trajectory.
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Figure 2.7: (A) Trajectories inferred from true trees under both hard sweeps

and recent selection on a standing variant (i.e. soft sweeps) when both s and

time of selection onset are unknown. (B) The log-likelihood surface for joint

inference of s and onset of selection, averaged over 100 simulations, taking

the true tree as observed. (C) ROC curves illustrating performance of tests

between selection from a standing variant where onset of selection occurs 100

generations ago. We condition on a present day frequency of 50%.
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Figure 2.8: Comparison of inferred allele frequency trajectories for a sweep

at rs4988235 (MCM6) in GBR under an ancient DNA (aDNA) based method

vs. CLUES , which only uses contemporary modern data. Black curve is

the posterior median allele frequency, whereas gray areas are a 95% posterior

interval. The red surface is posterior of the frequency trajectory within Steppe

ancestry conditioned on an ancient DNA time series, adapted from [136].

Analysis of a lactase persistence SNP
To assess performance of CLUES on empirical data, we applied our method to study

selection acting on the SNP rs4988235 in the MCM6 gene, known to regulate the neigh-

boring LCT gene and affect the lactase persistence trait. The derived allele (A) current

segregates at approximately 72% in the 1000 Genomes Phase 3 reference panel (British in

England and Scotland, henceforth GBR). We conducted sampling in ARGweaver assum-

ing a model of European demography [129], using a 300kbp region centered around the

focal SNP and polarizing alleles using the genomes of three ancient individuals (Altai Ne-

andertal, Denisova, and Vindĳa Neandertal [133, 134, 135]). We sampled M � 200 ARGs,

extracted local trees using tools in the ARGweaver package, and conducted importance

sampling to estimate likelihood surfaces and trajectories using CLUES .

We found very strong evidence for selection on rs4988235 (s � 0.0161, logLR � 131.82).

The trajectory as well as the value of the selection coefficient inferred by CLUES are

consistent with previous estimates of the trajectory and s � 0.018 due to Mathieson and

Mathieson (2018), illustrated in Fig. 2.8 [136]. Their method incorporates genomic times

series spanning thousands of generations using an HMM-based approach, where hidden

states are population-wide allele frequencies, observed states are genotypes of sampled

ancient individuals, and transition probabilities are governed by the selection coefficient.

Our approach, by contrast, does not utilize any ancient/timecourse data except for the

3 aforementioned ancient individuals, which we use to simply polarize the derived and

ancestral states of each allele.
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Analysis of pigmentation alleles
Using the same GBR panel from 1000 Genomes Phase 3, we analyzed a set of SNPs

associated with pigmentation-related traits, some of which were previously identified as

likely targets of recent selection [80]. We conducted sampling in ARGweaver assuming a

model of European demography, using a 300kbp region centered around the focal SNP

and sampling M � 200 approximately iid ARGs. We ran CLUES and estimated likelihood

surfaces and allele frequency trajectories for these SNPs (Fig. 2.9). We found significant

concordance between the SDSvalues and our likelihood ratio statistics paired for each SNP

(p = 1.7×10
−3
, Spearman one-sided) [80]. We also illustrated the geographical distribution

of these SNPs among diverse populations (Fig. A.8) using GGV [137].

We found several signals of very strong selection acting on rs619865 (ASIP, s ≈ 0.10,

Fig. 2.9I), rs12821256 (KITLG, s ≈ 0.016, Fig. 2.9H), and rs1393350 (TYR, s ≈ 0.011, Fig. 2.9J);

these SNPs are significantly associatedwith freckling, blonde hair color, and freckling and

blue/green eye color, respectively [138, 139, 140]. Interestingly, these SNPs all demon-

strated a signal of selection mostly concentrated in the last ∼5 kya. The geographical

distribution of the frequency of these SNPs shows that the derived version of these

variants are mostly concentrated in European populations, with minimal sharing with

populations located in Africa and Asia (Fig. A.8 I,H,J). For example, TYR and KITLG
segregate at a frequency ∼20% in several European populations and have a frequency

close to 0% in African and East Asian populations (Fig. A.8 J). These three SNPs are the

only ones in this set of SNPs which have a frequency of nearly 0% across the African

populations surveyed, with the exception of OCA2/HERC2 (Fig. A.8 A,H,I,J), consistent

with our evidence for recent selection at these loci. The frequencies of these variants in

GBR ranges from ∼10-20%; by contrast, the only other variant in this set with comparable

frequency in GBR (13%), rs35264875 (TPCN2), we find inconclusive evidence of selection

(Fig. 2.9F), consistent with its comparably even geographical distribution relative to the

aforementioned SNPs at ASIP, KITLG, and TYR (Fig. A.8 F).

At rs12896399 (SLC24A4, Fig. 2.9B), a SNP identified to be significantly associated with

hair color [139], we found strong evidence for moderate selection (s ≈ 0.005). This result

is consistent with a previous analysis that suggested positive selection acted on this allele

in Out-of-Africa (OoA) populations, based on its high allele differentiation relative to a

YRI panel, and low haplotype diversity within CEU individuals [140]. Our results, paired

with the apparent low levels of differentiation between European and Asian populations

relative to differentiation between OoA populations and African populations at this locus

(Fig. A.8 B) are consistent with our estimate that selection acted on SLC24A4 as early as

∼30 kya, during the OoA bottleneck as inferred by [141, 129].

Notably, we findmoderate evidence for selection on rs12913832 (OCA2/HERC2, Fig. 2.9
A, Fig. A.9), a SNPpreviously shown to be causal for blue-brown eye color [142] and signif-

icantly associated with hair color [139]. This gene exhibits abberantly high differentiation

across populations [143], consistent with a model of local adaptation of eye color. Com-

pared toprevious estimates basedonancientDNAsamples [144],we estimate substantially
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Figure 2.9: Allele frequencies trajectories inferred for 11 pigmentation-

associated SNPs in GBR.

weaker selection acting on this gene (s ≈ 0.002 vs. s ≈ 0.04), and we find no evidence to

support a recent increase in selection acting on this SNP (i.e., our method found a hard

sweep to have higher likelihood than a SSV). Our estimate of moderate selection and lack

of a recent change in the selection coefficient imply that selection on OCA2/HERC2 began

at least ∼50 kya, roughly the time of the start of the OoA bottleneck estimated by [141,

129]. Our analysis suggests that selection on OCA2/HERC2may have begun much earlier

than previously suggested [144].

One surprising result is that we found no signal of selection acting at rs13289810

(TYRP1, s ≈ 0, Fig. 2.9E). In Europeans, TYRP1 is associated with hair and eye pigmenta-

tion [145, 146, 147, 148]. Some analyses of European populations have indicated evidence

for positive selection on TYRP1 [140, 146, 148]. Our results temper these claims, and

appear consistent with the fairly even geographical distribution of rs13289810 frequency

across European, African, and Middle Eastern populations (Fig. A.8 E).

2.4 Discussion
We have developed an approach to use modern population genomic data to approximate

the full likelihood of selection acting on a locus. We use this approach to test for and
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estimate the strength and timing of selection, as well as estimate the full allele frequency

trajectory. The method is effective across a span of selection coefficients (s � 0 − 0.01),

derived allele frequencies ( f � 25% − 75%), and under multiple demographic models.

Our method draws on previously published methods to estimate the ancestral re-

combination graph (ARG). We chose to use ARGweaver because it is the only currently

available method for sampling the posterior of the ARG; as shown in our derivation of the

importance sampling estimates, we rely on sampling from the posterior in order to make

rigorous guarantees regarding convergence and consistency of our estimators. Intuitively,

it is important to model the uncertainty in the local tree in order to marginalize out this

latent variable. We showed that estimates of the selection coefficient and the trajectory

are generally accurate, barring scenarios where importance sampling is inefficient, or

ARGweaver produces a bias in the inferred trees. In light of these biases, under certain

conditions—primarily when the derived allele is at low frequencies (≤ 25%)—importance

sampling using ARGweaver trees has limited power to detect selection.

Another important limitation of ARGweaver is its computational cost; in order to

study selection on short timescales, large sample sizes are necessary, often on the order

of thousands of individuals [80]. The runtime of ARGweaver grows dramatically with

increasing sample size; not only does the cost of the individual sampling steps increase

with sample size, but also so does the size of the state space, necessitating more samples

be taken in order to achieve convergence to the stationary distribution.

However, we see potential to make use of recent advances in inference of local trees in

order to further advance approximate full-likelihood methods to infer selection (see e.g.,

[149, 150, 151, 152]; it isworth noting that some of thesemethods, such as [152], do not infer

the ARG in a strict sense, but rather the sequence of local trees along a recombining locus).

A major benefit of these methods is that they are far more scalable than ARGweaver, and

hence offer more potential to study selection on short, punctuated timescales. However,

they also possess several limitations: Firstly, several of thesemethods only infer topologies,

rather than branch lengths [150, 151]. While it is possible to infer branch lengths condition

on topology estimates, it is unclear how accurate these estimates would be. By contrast,

methods that infer branch lengths along with topology entail a slight tradeoff in their

scalability [149, 152]. Another limitation of these methods it that they only yield a point

estimate of the local tree, rather than estimating uncertainty in the tree. Nonetheless, it

may be feasible to quantify uncertainty in the local tree using a jackknife approach where

the local tree is inferred over random subsets of the individuals.

It may also possible to make use of recent advances in inferring pairwise coalescence

times (e.g., [153]) to build an approximation to the full likelihood. Recently, Albers &

McVean proposed a composite likelihoodmethod to estimate allele age by “sandwiching”

the age using identity-by-descent tracts at the site of interest [154]. However, their method

does not extend to inferring how the allele frequency changed over time, and does not

explicitly model selection.

Currently our method assumes correct knowledge of the demographic history. The

effects of latent or mis-specified population structure on inference of selection are well



CHAPTER 2. FULL-LIKELIHOOD INFERENCE OF SELECTION 53

known (e.g., [43]), but in future work one might try to determine the exact effects of

mis-specification of effective population size on both inferring the local tree, and inferring

selection conditional on the local tree. One approach to dealing with this is to extend

the importance sampling approach we use to correct for selection to additionally correct

for demography, when ARG sampling is performed under a mis-specified demographic

model.

Furthermore, many aspects of ourmodel of selection (e.g. coalescence, allele frequency

transitions) assume a panmictic population. To extend our model to more complex demo-

graphic models would entail drastically increased computational cost (e.g., marginalizing

allele frequencies corresponding to each population, rather than the allele frequency in a

single population). Using a deterministic approximation of the allele frequency trajectory

would circumvent this issue, but it would also raise new issues, such as how to model

allele frequencies when s � 0.

Despite its limitations, the method presented here provides the first close approxima-

tion to a full likelihood function for the selection coefficient under simple models. As

demonstrated by our simulations, full likelihood methods have the potential to greatly

improve power to detect selection and estimate the strength of selection under a vari-

ety of conditions. It also provides a rigorous and accurate method for estimating allele

frequency trajectories, and is the first to achieve so using modern data. As methods for

inferring ARGs improve in the future, so too will the derived methods for detecting and

quantifying selection and inferring allele frequency changes.
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Chapter 3

Quantifying & disentangling selection
on complex traits using whole-genome
genealogies

This is work co-authored by Leo Speidel, Noah Zaitlen, and Rasmus Nielsen. It is in press at
American Journal of Human Genetics, and currently posted on bioRxiv [155].

Abstract
We present a full-likelihood method to estimate and quantify polygenic adaptation from

contemporary DNA sequence data. The method combines population genetic DNA se-

quence data and GWAS summary statistics from up to thousands of nucleotide sites in a

joint likelihood function to estimate the strength of transient directional selection acting on

a polygenic trait. Through population genetic simulations of polygenic trait architectures

and GWAS, we show that the method substantially improves power over current meth-

ods. We examine the robustness of the method under uncorrected GWAS stratification,

uncertainty and ascertainment bias in the GWAS estimates of SNP effects, uncertainty in

the identification of causal SNPs, allelic heterogeneity, negative selection, and low GWAS

sample size. The method can quantify selection acting on correlated traits, fully con-

trolling for pleiotropy even among traits with strong genetic correlation (|rg | � 80%; c.f.

schizophrenia and bipolar disorder) while retaining high power to attribute selection to

the causal trait. We apply themethod to study 56 humanpolygenic traits for signs of recent

adaptation. We find signals of directional selection on pigmentation (tanning, sunburn,

hair, P=5.5e-15, 1.1e-11, 2.2e-6, respectively), life history traits (age at first birth, EduYears,

P=2.5e-4, 2.6e-4, respectively), glycated hemoglobin (HbA1c, P=1.2e-3), bonemineral den-

sity (P=1.1e-3), and neuroticism (P=5.5e-3). We also conduct joint testing of 137 pairs of

genetically correlated traits. We find evidence of widespread correlated response acting

on these traits (2.6-fold enrichment over the null expectation, P=1.5e-7). We find that for
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several traits previously reported as adaptive, such as educational attainment and hair

color, a significant proportion of the signal of selection on these traits can be attributed

to correlated response, vs direct selection (P=2.9e-6, 1.7e-4, respectively). Lastly, our joint
test uncovers antagonistic selection that has acted to increase type 2 diabetes (T2D) risk

and decrease HbA1c (P=1.5e-5).

3.1 Introduction
Genome-wide association studies (GWAS) have shown that many human complex traits,

spanning anthropometric, behavioral, metabolic, and many other domains, are highly

polygenic [156, 157, 158]. GWAS findings have strongly indicated the action of purifying

and/or stabilizing selection acting pervasively on complex traits [159, 160, 161]. Some

work has also utilized biobank data to measure the fitness effects of phenotypes using di-

rect measurements of reproductive success [162]. However, there are few, if any, validated

genomic signals of directional polygenic adaptation in humans.

Several factors have contributed to this uncertainty. Chief among them, polygenicity

can allow adaptation to occur rapidly with extremely subtle changes in allele frequencies

[163]. Classic population genetics-based methods to detect adaptation using nucleotide

data have historically been designed to detect selective sweeps with strong selection

coefficients, unlikely to occur under polygenic architecture [1]. Polygenic adaptation,

after a shift in the fitness optimum, can occur rapidly while causal variants only undergo

subtle changes in allele frequency [40]. After a transient period during which the mean of

the trait changes directionally, a new optimum is reached and the effect of selection will

then largely be to reduce the variance around the mean [164]. However, identifying the

genomic footprints of the transient period of directional selection is of substantial interest

because it provides evidence of adaptation.

To this end, the advent of GWAS has ushered in a series of methods which take advan-

tage of the availability of allele effect estimates by aggregating subtle signals of selection

across association-tested loci. For example, some methods (e.g., the QX test) compare

differences in population-specific polygenic scores – an aggregate of allele frequencies

and allele effect estimates – across populations, and tests whether they deviate from a null

model of genetic drift [165]. Other methods have generalized this test, e.g. to identify

and map polygenic adaptations to branches of an admixture graph [166]. Whereas the

aforementioned methods exploit between-population differentiation to detect polygenic

adaptation, another class of methods is based on within-population variation. For exam-

ple, selection scans based on singleton density score (SDS) have demonstrated utility in

detecting polygenic adaptation via the correlation of SNPs’ effect estimates and their SDSs

[167]. Another test looks for dependence of derived allele frequencies (DAF) on SNP effect

estimates [168].

Several powerful tests for selection were developed to take advantage of recent ad-

vances in ancestral recombination graph (ARG [169]) and whole-genome genealogy in-
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ference. Such methods enjoy better power in detecting selection as the ARG, if observed

directly, fully summarizes the effects of selection on linked nucleotide data. We note that

several methods, notably ARGweaver [170] infer the strictly-defined ARG; by contrast,

methods such as Relate [171] infer a series of trees summarizing ancestral histories span-

ning chunks of the genome. For example, the TX test estimates changes in the population

meanpolygenic score over timebyusing the coalescent tree at a polymorphic site as aproxy

for its allele frequency trajectory; the sum of these trajectories weighted by corresponding

allelic effect estimates forms an estimate of the polygenic score’s trajectory [172]. Speidel,

et al. (2019) also designed non-parametric test for selection based on coalescence rates of

derived- and ancestral-allele-carrying lineages calculated empirically from the coalescent

tree inferred by Relate.19 However, these methods ultimately treat the coalescent tree as a

fixed, observed variable, where it is actually hidden and highly uncertain. Furthermore,

most methods infer the tree under a neutral model, and thus provide biased estimates of

the genealogy under selection.

To address these issues, we recently developed a full-likelihood method, CLUES, to

test for selection and estimate allele frequency trajectories [116]. The method works by

stochastically integrating over both the latent ARG usingMarkov ChainMonte Carlo, and

the latent allele frequency trajectory using a dynamic programming algorithm, and then

using importance sampling to estimate the likelihood function of a focal SNP’s selection

coefficient, correcting for biases in the ARG due to sampling under a neutral model.

Beyond the issue of statistical power, tests for polygenic adaptation can in general

be biased when they rely on GWAS containing uncorrected stratification. For example,

several groups found strong signals of height adaptation in Europe [165, 166, 80, 173,

174, 175]; later, it was shown that summary statistics from the underlying meta-analysis

(GIANT, a.k.a. Genetic InvestigationofANthropometric Traits)were systematically biased

due to uncorrected stratification, and subsequent tests for selection on height failed to

be reproduced using properly corrected summary statistics 20,25,26. However, beyond

this case, the extent to which other signals of polygenic selection may be inflated by

uncorrected stratification is an open question. Here, we investigate the robustness of the

new likelihood method to uncorrected stratification and compare it to another state-of-

the-art method (tSDS), showing that our likelihood method is less prone to bias but has

substantially improved power.

Another issue faced by current methods to detect polygenic adaptation is confounding

due to pleiotropy. For example, direct selection on one trait may cause a false signal

of selection on another, genetically-correlated trait. While a variant of the QX test has

been proposed for the purpose of controls for pleiotropy, this method relies of signals of

between-population differentiation to test for selection, and is not directly applicable to

test multiple traits jointly [175].

Here, we present a full-likelihood method (Polygenic Adaptation Likelihood Method,

PALM) that uses populationDNAsequencedata andGWASsummary statistics to estimate

direct selection acting on a polygenic trait. We demonstrate robustness by exploring

potential sources of bias, including uncorrected GWAS stratification. We also introduce
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a variant on our method which controls for pleiotropy by testing ≥2 traits for selection

jointly. We show our method not only fully controls for this bias, but retains high power

to distinguish direct selection from correlated response even in traits with strong genetic

correlation (up to 80%), and has unique power to detect cases of antagonistic selection

on genetically correlated traits. We explore the behavior of the test when traits with

causal fitness effects are excluded to illustrate limitations and proper interpretation of

these selection and correlated response estimates.

3.2 Model

Linking SNP effects to selection coefficients
Let β be the effect of a SNP on a trait. Wemodel the selection coefficient acting on this SNP

using the Lande approximation s ≈ βω, where ω is the selection gradient, the derivative

of fitness with respect to trait value. If β is measured in phenotypic standard deviations,

then ω is the so-called selection intensity. Chevin and Hospital (2008) showed that for

a neutral ‘tag’ SNP with frequency u � 1 − v and genotypic correlation r to a SNP with

selection coefficient s, and allele frequencies p and q � 1 − p, to a first approximation the

linked neutral SNP effectively undergoes selection with sta g ≈ rs
√

pq/uv [176]. Applying

this principle to the multivariate Lande approximation, we find that sta g ≈ βta gω, where

βta g � r
√

pq/uv is the marginal effect of the tag SNP, assuming no linkage disequilibrium

between the tag SNP and any other causal SNP other.

Inferring the seleciton gradient using a full-likelihood model
Our likelihood model builds heavily on Stern, et al. (2019), which developed importance

sampling approaches for estimating the likelihood function of the selection coefficient

acting on a SNP, LSNP (s) [116]. Let β(i) be the effect of SNP i on the trait. Based on

these SNP-level selection likelihoods, we model the likelihood function for the selection

differential acting on a trait as the product of the SNP likelihoods evaluated at selection

coefficients under the Lande approximation:

L(ω) �
M∏

i�1

LSNP
i (β(i)ω) (3.1)

We provide details for calculating this likelihood function using an importance sam-

pling approach in Appendix B. Given this likelihood function, we estimate ω using its

maximum-likelihood estimate. This model is used by our so-called marginal test PALM.
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Fitness effects of multiple traits
To model fitness effects of multiple traits jointly, here we propose a multivariate extension

of the Lande approximationwhich links pleiotropic SNP effects to the selection coefficient.

Let β be a vector of a particular SNP’s effects on d distinct traits. We assume the selection

coefficient acting on this SNP follows a multivariate version of the Lande approximation,

s ≈ βTω (3.2)

where ω now is a vector of selection gradients for each of the d traits. The results

of Chevin and Hospital (2008) apply directly given this approximation for the selection

coefficient, and we now express the likelihood of the selection gradient as

L(ω) �
M∏

i�1

LSNP
i (βT

(i)ω) (3.3)

We can solve for the maximum-likelihood estimate of ω jointly using standard opti-

mization. This model is used by our joint test J-PALM.

Simulations
Pleiotropic polygenic trait architecture

We sample effect sizes jointly for d � 23 polygenic traits with previously estimated SNP

heritability andgenetic correlations [177, 178]. We consider different values of polygenicity

(M, the number of causal SNPs) and degrees of pleiotropy (%, the probability that a causal

SNP is pleiotropic). Let G be the additive genetic covariance matrix (diagonal entries are

the SNP heritabilities gii � h2

i for each trait i). Then the genetic correlation of traits i , j

is rg ,i j � gi j/
√

h2

i h2

j . Under our simulation model, we assume that if a SNP is pleiotropic,

then β ∼ MVN (0,G∗/ (Mν)), where g∗ ii � gii · (1 − (1 − %)/d)/% ,g∗ i, j � gi, j/%. If a SNP

is non-pleiotropic and is causal for trait j, then β j ∼ N
(
0, h2

j / (Mν)
)
where h2

j � g j j , and

β, j � 0. We assume that if a SNP is non-pleiotropic, it is causal for a particular trait j with

uniform probability 1/d. Under this model, we can see that averaging over pleiotropic

and non-pleiotropic loci, we recover the overall genetic covariance G:

σ2

β j
� (1 − %)/d · h2

j + % · (1 − (1 − %)/d)/% · h2

j � h2

j � g j j , (3.4)

σβi ,β j � 0 + % · 1/% · gi, j � gi, j (3.5)

Note that here β is standardized by the phenotypic variance, but not the genotypic

variance. Thus we normalize the variance by a factor of ν � 2 · E
[
pq

]
, assuming some
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stationary distribution for the allele frequency p � 1− q. Assuming the neutral stationary

distribution f
(
p
)
∝ 1/p, which yields ν � 4logNe , where Ne is the diploid effective

population size. This choice of ν ensures E
[∑M

k�1
2β2

k pk qk

]
� h2

under the nominal allele

frequency spectrum. The equation holds because we assume independence of effects and

allele frequencies; we also performed simulations where β and p are allowed to depend

strongly on each other due to purifying selection.

Simulation of confounding due to population structure and uncorrected GWAS
stratification

Previous estimates of selection to increase height in Europe have been biased by a combi-

nation of uncorrected stratification andGWAS and systematic differences in the coalescent

rate at SNPs that depended on their allele frequency difference in 1000 Genomes (1KG)

British (GBR) vs. Southern Italy (TSI) populations [179, 180]. We developed a simulation

model based on empirical data from the 1KG data in order to assess the robustness of

our method compared to tSDS-based tests for polygenic selection [167]. We model uncor-

rected stratification in summary statistics for a simulated polygenic trait architecture by

drawing random SNP effects

β ∼ N
(
0, h2/ (Mν) · I

)
(3.6)

where I is the identity matrix. We assume that the phenotype follows the form

φ � Xβ + S + ε (3.7)

where S is some environmentally determined stratified effect experienced by an in-

dividual based on whether they belong to a subpopulation. If N1, N2 individuals

(N1 + N2 � N) belong to subpopulations 1 and 2 (e.g., GBR and TSI) respectively, then

Si � +σs/
√

N1/N2 if i � 1, Si � −σs /
√

N2/N1 if i � 2. (It can be shown then that

phenotypic mean remains 0, and variance due to stratification is σ2

s .) Under this form

of stratification, assuming random mating of genotypes, the expected effect estimate is

biased:

E
[

ˆβ | X
]
� β + XTS/

(
2Npq

)
(3.8)

� β + 2σs
(√

N1N2 f1 −

√
N1N2 ·

(
N/N2 · p − N1/N2 · f1

))
/
(
2Npq

)
(3.9)

� β +
√

N1/N2σs
(

f1 − p
)
/
(
pq

)
(3.10)

where p � 1 − q � (N1 f1 + N2 f2)/N is the overall frequency of the SNP, and f1 is the

frequency of the SNP in subpopulation 1. The nominal standard error of
ˆβ is the usual

se

(
ˆβ
)
� 1/

√
2Npq.
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Hence, we can simulate GWAS-estimated SNP effects with uncorrected stratification

using

β ∼ MVN (0, h2/ (Mν) · I) (3.11)

ˆβ | β ∼ N (β +
√

N1/N2σs
(

f1 − p
)
/
(
pq

)
, σ2

e/N · I) (3.12)

where Z �
√

2Npq ˆβ and σe
2

:� 1− h2
− σS

2
. Although in this simple model of GWAS

with uncorrected stratification, we assume no LD between causal sites, the bias in the

effect estimates does not depend on LD. We note that this is equivalent to the model of

Bulik-Sullivan, et al. (2015ab), generalized to uneven sample sizes from subpopulations.

Population genetic model of selection and ascertainment bias via GWAS

Given β, we simulate selection following the multivariate Lande approximation (see

Model). Because we simulate polygenic architectures of M ≥ 100 without assuming

no linkage betweened causal loci, outr assumption of infinitesimal genetic architecture is

appropriate. (We also explore the performance of our model when we allow LD between

causal SNPs; see Fig. B.4). We then simulate the trajectory of the allele forward in time

using a normal approximation to the Wright-Fisher model with selection, i.e.

pt+1 ∼ N
(
pt + spt

(
1 − pt

)
, pt

(
1 − pt

)
/4Ne

)
, (3.13)

where s is calculated using the multivariate Lande approximation. For most of our

simulations, we simulate forward for 50 generations (i.e., we assume selection began 50

generations before the present), unless otherwise stated. Let p be the present-day allele

frequency. We simulate the ascertainment of this SNP in aGWASby simulating the SNPZ-

scores Z ∼ MVN
(√

2Npqβ, E
)
, whereEii � 1, Ei, j � ρe , where ρe is a term that allows for

cross-trait correlations in environmental noise. (Note that here Z is the usual Z-score of
ˆβ,

not to be confused with the selection Z-score we introduce later.) Unless stated otherwise,

we set N � 10
5, ρe � 0.1 in all simulations. We use a p-value threshold of 5 × 10

−8
to

ascertain a SNP; this must be surpassed by at least one trait. If a SNP is ascertained, we

simulate its trajectory backwards in time using the normal approximation to the neutral

Wright-Fisher diffusion conditional on loss, pt−1 ∼ N
(
pt (1 − 1/4Ne ), pt

(
1 − pt

)
/4Ne

)
.

We use the coalescent simulator mssel to simulate a sample of haplotypes conditional on

this allele frequency trajectory [172]. Weuse n � 400haplotypes and µ � r � 10
−8
/bp/gen

and simulate regions of 1Mbp, centered on the causal SNP at the position 5 × 10
5
.

To simulate ascertainment of non-causal SNPs in a GWAS, we take the trait with the

top Z-score at the causal SNP and jointly simulate Z-scores for that trait for all linked SNPs

within a 200kbp window centered on the causal SNP and surpassing a MAF threshold

(MAF ≥ 0.01). We ascertain the SNP with the top Z-score (sometimes the causal SNP),
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and then simulate the Z-scores for all traits, conditioned on the Z-score for the one

aforementioned trait. We simulate this way rather than jointly simulating Z-scores for all

traits at all SNPs because for two reasons; the top SNP will typically have the same top

trait association as the causal, and jointly simulating all trait-by-SNP Z-scores increases

computational time by >400 for the parameters we used.

To further reduce computational burden, we simulated libraries of 10 ×M causal loci

and resampled sets of M loci without replacement (some proportion of which meet the

ascertainment criteria), in order to model sampling variation in the test statistics.

Inference of local genealogies

Given a set of simulated haplotypes, we use the software package Relate19 to infer local

genealogies along the sequence. Using positions of the SNPs ascertained through GWAS,

we use the add-on module SampleBranchLengths to draw m � 5, 000 MCMC samples of

the branch lengths of the local tree at the ascertained sites. We then extract coalescence

times from these MCMC samples (thinned down to m=500 approximately independent

samples), and partition the coalescence times for each sample tree based on whether they

occur between lineages subtending the derived/ancestral alleles. We note that Relate,

unlike ARGweaver, does not sample over different ARG or tree topologies, and it samples

branch lengths for two distinct local trees independently, conditional on the observed

data.

Comparisons to tSDS in simulations

In order to calculate tSDS values for our simulated polygenic traits, we computed the

Gamma shape parameters for a model with constant Ne � 10
4
using 250 simulations at

a range of DAFs from 1% to 99%, with 2% steps between frequencies, and a sample size

of n � 400 haplotypes. We randomly paired haplotypes in the sample to form diploid

individuals and found singletons carried by each diploid. We then calculate raw SDS

using the compute_SDS.R script with our custom Gamma-shapes file. To calculate SDS

we find the Z-score of a SNP’s raw SDS value, where the mean and standard deviation are

estimated from an aggregated set of 29,478 completely unlinked SNPs from our neutral

trait simulations. To calculate tSDS we calculate the P-value of the Spearman correlation

of (si gn( ˆβ), SDS).
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3.3 Results

Simulations
Overview of simulations

We conducted evolutionary simulations of polygenic adaptation acting on a wide range of

multi-trait polygenic architectures. Our simulated traits are based on SNP heritability and

genetic correlation estimates for 23 real human traits [177, 178]; unless otherwise stated, we

simulate positive selection on/test for selection on a trait modeled after the heritability of

schizophrenia (h2
=0.45), and inmost of our pleiotropy analyseswe used parameters based

on schizophrenia and its genetic correlation with 3 other traits: bipolar disorder, major

depression, and anorexia. Inmost of our analysiswe refer to these traits as Trait I/II/III/IV

(corresponding to models of schizophrenia/bipolar/depression/anorexia, respectively).

As our method is based on aggregating population genetic signals of selection with

GWASsummary statistics,wealso simulatedGWAS in samples ofmodern-day individuals

(N � 10
5
). Our simulated summary statistics incorporate all of the following sources

of bias found in GWAS, unless stated otherwise: random noise in the effect estimates;

Winner’s Curse bias in the effect estimates (unless stated otherwise, we ascertain SNPs

with associations P < 5 × 10
−8

for at least 1 trait analyzed); uncertainty in the location

of the causal SNP (we ascertain the top GWAS hit throughout the linked region); and

environmentally correlated noise across traits (only relevant to simulations of pleiotropic

architectures). Furthermore, we also simulate a number of scenarios which violate our

model assumptions, to assess our method’s robustness: these include uncorrected GWAS

stratification; purifying/stabilizing selection; underpowered/unevenGWASsample sizes;

and allelic heterogeneity (i.e., multiple linked causal SNPs).

For each causal locus, we simulate haplotype data for a sample of n � 400 1Mbp-long

chromosomes (mutation and recombination rates µ � r � 10
−8

and effective population

size Ne � 10
4
unless stated otherwise), on which we applied Relate, a state-of-the-art

method for tree inference, to infer the coalescent tree at SNPs ascertained in this GWAS

[171]. However, we point out that our approach can be applied to any pre-existingmethod

for estimating/sampling these trees (e.g. ARGweaver [170]). We then conduct importance

sampling to estimate the likelihood function of the selection gradient – i.e., the effect of

a unit increase in phenotypic values on fitness – for individual traits (i.e., estimated

marginally), as well as sets of genetically correlated traits (i.e., estimated jointly). Our

method, Polygenic Adaptation Likelihood Method (PALM), can be used to estimate ω for

polygenic traits.

Improved power to detect selection and estimates of the selection gradient

We ran PALM to test for selection on our simulations of polygenic trait architectures,

described above (and in more detail in Appendix B). We estimate the selection gradient
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ω ¯ω̂ sd(ω̂) MSE(ω̂) Mean se(ω̂)
0 0.0053 0.0226 0.0232 0.0246

0.025 0.0306 0.0225 0.0232 0.0243

0.05 0.0465 0.0243 0.0245 0.0266

0.075 0.0931 0.0211 0.0278 0.023

0.1 0.1223 0.0236 0.0325 0.0255

Table 3.1: Summary statistics for the accuracy and calibration of selection

gradient estimates. Mean s.e. is the mean nominal standard error. Simulations

are the same as used in Fig 3.1.

and standardize this quantity by its standard error, estimated through block-bootstrap, to

conduct a Wald test on whether the selection gradient is non-zero.

First, we conducted simulations at different values of the selection gradient, ranging

from neutral (ω � 0) to strong(ω � 0.1, average change of mean phenotype of ∼2 standard

deviations), and compared the statistical power of PALM to that of tSDS (Fig 3.1). We

simulate 5Mb haplotypes for a trait with polygenicity (i.e., number of causal SNPs) M �

1, 000; we sample n � 178 haplotypes for PALM and n � 6, 390 for tSDS, corresponding

to the sample sizes we used in our application to 1000 Genomes British (GBR) individuals

vs the sample used by Field, et al. (2016) from the UK10K. Here we ascertain only causal

SNPs, but SNP effects are still estimated through an association test (unless otherwise

stated, all other simulations incorporate uncertainty in the causal SNP). Both methods

are well calibrated under the null (ω � 0, Fig 3.1A). But we find that despite having a

much smaller sample size, PALM has substantially improved power to detect selection

at all levels (Fig 3.1A), especially at weaker values of the selection gradient, where tSDS

has essentially no power (ω ≤ 0.05). PALM is also capable of estimating the selection

gradient (Fig 3.1A, Tab 3.1). These estimates are well-calibrated, with empirical standard

errors closely matching estimated standard errors, except when the selection gradient is

exceptionally strong (ω � 0.1) (Tab 3.1).

We also examined the calibration and power of the marginal test in simulations of a

polygenic trait with varying polygenicity (Fig. 1D). Across a wide range of polygenicities,

PALM is well-powered to detect selection (> 90% for 100 ≤ M ≤ 1000), with slightly lower

power for extremely polygenic architectures (∼ 65% for M � 10
4
) and the false positive

rate (FPR) was well-calibrated in all circumstances (Fig. 3.1D). In comparisons to tSDS,

we found substantially improved statistical power across this range of polygenicity values

(Fig.3.1D). We also conducted similar tests for a short pulse of selection (ω � 0.05 for 35

generations, or ∼1000 years assuming 29 years/generation) under a model of British

demography [152]; we found that overall power was comparable to that of constant

population size simulations with ω � 0.025, consistent with previous work showing

that the product of selection strength and timespan largely determines statistical power
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Figure 3.1: (A) Left: Power/false positive rate (FPR) of PALM and tSDS.

Right: PALM selection gradient estimates. Error bars denote 25-75th per-

centiles (thick) and 5-95th percentiles (thin) of estimates; see Tab 3.1 for more

details of moments and error. Markers and colors in (A) also apply to (B,D).

(B) False positive rate of PALM and tSDS applied to neutral simulations with

uncorrected population stratification, simulated using 1000 Genomes data. We

used baseline values of σS � 0.1,NTSI/NGBR � 1%,M � 10
3, h2 � 50%,using

SNPs ascertained at P < 5 × 10
−8
. (C) Comparison of PALM using true vs

Relate-inferred trees; causal vs GWAS-ascertained tag SNPs; and true marginal

SNP effects (solid) vs GWAS-estimated SNP effects (hatched). (D) Varying

polygenicity (M) of the polygenic trait. Baseline parameters for all simulations

except (C) were our constant-size model with M � 10
3
, with Scz under positive

selection and testing Scz for selection. In (A,B) we use Relate-inferred trees

and estimated SNP effects at the causal SNPs; in D we use Relate-inferred trees

and estimated effects at tag SNPs. In all panels, we use a 5% nominal FPR

(dashed horizontal line) and simulated 10
3
replicates. Error bars denote 95%

Bonferroni-corrected confidence intervals.
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(Fig. B.2).

Robustness to uncorrected GWAS stratification

We compared the power curve to the false positive rate (FPR) of both methods under a

model of uncorrected GWAS stratification (Fig 1B). We simulated polygenic trait architec-

tures and GWAS such that estimated SNP effects (
ˆβ) were both systematically biased and

correlated with differences in the coalescence rate, stratified by DAF (e.g., SDS), matching

the findings of [179, 180] that allele frequency differentiation between British (GBR) and

Toscani in Italia (TSI) individuals was positively correlated with both
ˆβ and SDS (Fig B.3).

To model this scenario, we ascertained a set of 40,320 SNPs with MAF > 0.5% in

the UKBB and SDS calculated by Field et al. (2016) using the UK10K cohort [167]. We

then sampled coalescence times at these SNPs in 1KG Phase 3 British (GBR) individuals

using Relate. For each SNP, we simulated GWAS summary statistics by assuming that the

GWAS cohort is comprised of some ratio, NTSI/NGBR, of TSI to GBR individuals, where

population identity determines an individual’s stratified effect. This induces a correlation

between SNP effects and the difference in allele frequency between TSI and GBR. Baseline

parameter values were σS � 0.1, NTSI/NGBR � 1%, M � 1, 000, and P � 5 × 10
−8
. We

varied the strength of the stratified effect (σS, in phenotypic standard deviations) and

found that both methods are well-calibrated when σS is sufficiently small, but as σS grows

past 0.1 the FPR of tSDS was inflated over 100% more than that of PALM (Fig 3.1B).

We stress that this disparity is most likely not caused by higher sensitivity of tSDS,

as we simulated polygenic adaptation under similar parameters and found PALM was

better-powered to detect selection, with up to 8x improvement in power for smaller values

of the selection gradient (Fig. 1A). We also found that for highly polygenic traits (e.g.

M � 2 × 10
3
), the tSDS test is overconfident (> 10% at 5% nominal), while PALM remains

well-calibrated (Fig. 3.1B). We observe the same pattern as we increase the size of the

cohort subgroup receiving the stratified effect (NTSI/NGBR); at NTSI/NGBR � 2.5% the

tSDS test is overconfident (> 10% at 5% nominal), while PALM remains well-calibrated

(Fig. 3.1B).

Lastly, we tested the sensitivity of these methods to the stringency of the P-value

threshold used, and found that the tSDS test was increasingly overconfident as the thresh-

old was relaxed, whereas, PALM was well-calibrated regardless of P-value threshold

(Fig. 3.1B).These results suggest that PALM is more robust to uncorrected stratification

than the tSDS test, while obtaining superior statistical power even at lower sample sizes.

However, we emphasize that PALM, like any other available test, is not fully robust to the

effects of uncontrolled population stratification. Sufficiently strong uncorrected popula-

tion stratification can lead to false inferences of polygenic selection when there is none.
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Robustness to ascertainment bias and uncertainty in GWAS estimates

Next, we considered the effects of different levels of uncertainty and ascertainment on

performance of PALM (Fig. 3.1C). We considered the effects of conditioning on the true

local tree vs usingRelate-inferred trees combinedwith importance sampling, conditioning

on the true marginal SNP effect vs estimating this effect with noise in a GWAS; and

conditioning on the causal SNP vs taking the top tag SNP in a local GWAS on linked SNPs.

PALM was well-calibrated both using true trees and importance sampling, with highest

statistical power (100%) using true trees and a slight drop in power under importance

sampling (90-92%) (Fig. 3.1C). Our test was well-calibrated despite bias (from Winner’s

Curse) and noise in the estimated SNP effects, with no discernible difference from using

the true SNP effects (Fig 3.1C); however, for smaller sample sizes (N << 10
5
) this may not

be the case. Lastly, using the causal SNPs vs GWAS-ascertained tag SNPs did not diminish

test power, and FPR remained well-calibrated (Fig 3.1C). We also explored the effects of

GWAS sample size, which will affect the ascertainment process, and hence the degree of

bias and uncertainty in ascertained SNP effect estimates (Tab. B2). We considered two

different GWAS sizes; N � 10
4
and 10

5
. We found that under lower sample size, the test

was slightly inflated (e.g. empirical FPR of 3.1% (±1.4%) and 7.0% (±1.6%) at N � 10
5
, 10

4

for Trait II respectively, where parentheses denote 95% CIs; Tab. B2). In terms of power,

the test is still well-powered at lower sample sizes, but there is a noticeable drop (94.1%

(±1.4%) and 69.0% (±3.0%) at at N � 10
5
, 10

4
respectively; Tab. B2).

Robustness to model violations

We also conducted simulations of polygenic trait architectures under purifying selection,

based on the model proposed by Schoech (2019) (Fig. B.3). Under such a scenario, an

inverse relationship between effect size magnitude and derived allele frequency (DAF) is

expected, in contrast to our baseline simulation model in which effect size is independent

of frequency prior to the onset of selection. We found that across a range of polygenicities

(M � 3 × 10
3, 10

4, 3 × 10
4
) and selection strengths (2Ns � 3, 10, 30, where s denotes mean

selection coefficient of causal SNPs), PALM is not confounded by purifying selection and

is well-calibrated to a nominal FPR of 5% (Fig. B.3); in fact, under very strong selection

and/or low polygenicities, PALM is slightly conservative (Fig. B.3).

As our model and baseline simulations assume a single causal SNP per linked locus,

we conducted simulations of allelic heterogeneity (Supp. Fig 4) using forward simulations

in SLiM 31. We simulated a trait architecture with h2 � 50% and a mutational target of

100 × 1 Mbp linked loci, considering two cases: (1) 5% of incoming mutations are causal,

and (2) 50% of incoming mutations are causal. In each of these scenarios we conducted

simulations with neutral evolution and adaptation. We found that in each case, the test is

well-calibrated under the null, and well-powered to detect selection (Fig. B.4).

Lastly, we explored the time specificity of PALM’s test for selection. Testing under

a nominal model of selection in the last 50 generations, we consider the rate at which
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PALM’s estimate of selection timing can be biased by older selection (Fig. B.5). We found

that as selection recedes into the past, the FPR decays towards the nominal rate, with

limited confounding when the pulse of selection occurred 200-250 generations ago.

Pleiotropy can cause bias in tests for polygenic adaptation

Traits with no fitness effect can undergo correlated response due to direct selection on

pleiotropically related traits. Without accounting for pleiotropy, standard tests for poly-

genic adaptation cannot be interpreted as statements regarding direct selection. To illus-

trate how pleiotropy can affect tests for polygenic adaptation, we simulated pleiotropic

trait architectures for 23 traits based on estimates of SNP heritability and genetic corre-

lation for real human traits [177]. This builds largely off our aforementioned simulation

approach, with the introduction of a parameter %, the degree of pleiotropy, i.e. the

probability that a causal SNP is pleiotropic. As a brief illustration of how pleiotropy

causes bias in polygenic selection estimates, we used our pleiotropic traits simulations

to estimate maximum-likelihood selection coefficients for SNPs ascertained for associa-

tions to two genetically correlated traits, Trait I and II, modeled after schizophrenia and

bipolar disorder (rg ≈ 80%; Fig. B.6). We simulate a pulse of selection to increase Trait I

(ω � 0.05, approximately +1 SD change in populationmean over 50 generations, Tab. B1);

Trait 2 has no causal effect on fitness. Selection coefficients were estimated by taking the

maximum-likelihood estimate of s for each SNP independently, where the likelihood is es-

timated using our importance sampling approach. Here we show results for polygenicity

M � 1000 and degree of pleiotropy % � 60% (Fig. B.6).

Under the Lande approximation s ≈ βTω, we expect a non-constant linear relationship

between
ˆβ and ŝ for traits under selection. But due to the strong correlation between these

two traits, it is difficult to disentangle which of the traits has a causal effect on fitness

(Fig. B.6A). We performed an ad-hoc test for a systematic relationship between
ˆβ and ŝ

(Spearman test) to detect polygenic adaptation; while this test is well-powered to detect

selection on Trait I, it is prone to spurious hits for selection on Trait II, which has no effect

on fitness (Fig. B.6B). Thus, marginal tests for selection on traits can be significantly biased

due to pleiotropy (in this case, genetic correlation).

Joint test for polygenic adaptation controls for pleiotropy

We also introduce a variant on our method, J-PALM, which is designed to disentangle

correlated traits under selection and control for confounding due to pleiotropy. Briefly,

J-PALM uses the same likelihood approach as PALM, but we jointly infer the selection

gradient ω on a set of dtraits jointly, rather than inferring the selection gradient on a

single trait marginally (see Model and Appendix for details). Under the joint model, the

likelihood is still a function of the selection coefficient of each SNP, but we allow that these

selection coefficients depend on the fitness effects of d traits jointly (see Model).
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Figure 3.2: Joint testing for polygenic adaptation controls for pleiotropy We

simulated a cluster of four traits (I-IV)modeled after (A) real humanheritability

and genetic correlation estimates for schizophrenia (I), bipolar disorder (II),

major depression (III), and anorexia (IV), with selection to increase Trait I in

the last 50 generations. (B,C) We ran marginal and joint tests for selection on

these four traits. While marginal selection tests were well-powered, they were

strongly biased by even fairly low genetic correlations. (B,C) Conducting a joint

test fully controls for genetic correlations while retaining high power to detect

and isolate selection on Trait I. Simulations (1,000 replicates) were done under

our constant effective population size model with % � 60%, M � 1, 000, with

Trait I under positive selection.

We applied both our marginal test PALM and our joint test J-PALM to our cluster of

four simulated traits, Traits I-IV, modeled after SNP heritabilities and genetic correlations

for four psychiatric traits: schizophrenia, bipolar disorder, major depression and anorexia

(Fig 3.2A). All traits have significantly positive genetic correlation to one another; here we

highlight their genetic correlations to the selected trait, Trait I (Fig 3.2A; genetic correlations

and SNP heritabilities directly from [177]). We assume a pulse of recent selection for

increased Trait I prevalence, with all other traits selectively neutral. We tested traits

marginally and jointly (i.e., all four simultaneously) for selection (Fig 3.2B,C). We found

that marginal estimates are biased and cause inflation of the false positive rate (FPR) when

testing for selection (Fig 3.2B,C). This bias largely follows the genetic correlation of the

estimand trait to the selected trait (Fig 3.2A,B). Here we show results for polygenicity

M=1000 and degree of pleiotropy % � 100% (Fig 3.2), but the results are similar for

differing degrees of pleiotropy (holding rg constant), such as % � 60% (Fig B.7). This

highlights that genetic correlation, regardless of the degree of pleiotropy, is the main

cause of bias in marginal estimates of the selection gradient.

Furthermore, our results show that if any trait in a genetically correlated cluster is under

selection, marginal estimates of the selection gradient for the other traits is typically highly

inflated. For example, a genetic correlation as low as rg � 19% is sufficient to inflate the
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FPR for a neutral trait by nearly 150% (Fig 3.2A,C). Most traits studied in GWAS have large

genetic correlations; Watanabe, et al. (2019) found an average
���rg

��� � 16% across 155,403

human trait pairs, with 15.5% of trait pairs significant (average
���rg

��� � 38%) [181]. The

extent of strong genetic correlation suggests that if any single heritable trait has evolved

under selection, it is likely to cause substantial ripple effects in terms of bias of selection

estimates on other heritable traits. By contrast, estimates of selection obtained via our joint

test, fully correct for these biases, if the relevant selected trait is included in the analysis

(Fig 2B,C). We applied the joint test to the same set of simulations and find it can reliably

detect and attribute selection to Trait I (Fig 3.2B,C). The joint test preserved ∼80% power

even with the leading genetic correlate, Trait II, having rg=79.4% to Trait I, and produces

well-calibrated FPR regardless of rg (Fig 3.2C).

We explored performance of J-PALM under a wide array of simulation scenarios of

different polygenic architectures and types of selection (Fig. 3.3), varying the degree of

pleiotropy % (Fig 3.2A), rg to the selected trait (Fig 3.2B), polygenicity M (Fig 3.2C),

and antagonistic selection (Fig 3.2D). Baseline values of parameters used were positive

selection on Scz with other traits neutral, jointly testing Trait I and Trait III (rg � 51%),

% � 60%, and M � 1, 000. All of our pleiotropic simulations include an environmental

noise correlation across traits of ρe � 10%. Across this range of pleiotropic and polygenic

architectures, we established that the joint test is well calibrated when no traits are under

selection (Fig. B.8). Across different degrees of pleiotropy (40% ≤ % ≤ 100%), we found

J-PALMwas well-calibrated and had good power to detect and attribute selection to Trait

I (Fig 3.3A).

Across a range of levels of polygenicity (100 ≤ M ≤ 10, 000), PALMwas well calibrated

and had good power to detect and attribute selection to Trait I (> 75% for M ≤ 3, 000),

although the power is somewhat attenuated for extremely polygenic architectures (∼ 40%

for M � 10, 000) (Fig 3.3B). This pattern is also found in the marginal tests on the same

data, and there is only a modest reduction in power when switching to the joint test

(Fig 3.1C, Fig 3.3B). We note that the reduction in power is sensitive to the strength of

genetic correlation; joint test of Trait I vs Trait II (rg � 79%) had greater reduction in power

from the marginal test than that of Trait I vs Trait III (Fig 3.1C, Fig 3.3B,C, Fig B.9). Our

method fully corrects the biases suffered bymarginal tests for polygenic adaptation, while

retaining good power to detect adaptation even when genetic correlation is strong.

We also examinedwhat happenedwhen selection acted ondifferent traits in the cluster,

jointly testing each selected traitwithTrait II (Fig 3C). The test iswell-calibrated for all traits,

but has less power to attribute selection to traits with a high genetic correlation to Trait

II (e.g. Trait I, h2 � 45%, r g � 7%), or low heritability (e.g. Trait III, h2 � 17%, r g � 4%)

(Fig 3.1E, Fig 3.3C). By contrast, traits with high heritability and/or low genetic correlation

to Trait II (e.g. Trait IV, h2 � 49%, r g � 11%) have little loss in power in the joint test

(Fig 3.1E, Fig 3.3C).
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Figure 3.3: Simulations of joint testing power and calibration (A) Differing

the degree of pleiotropy %, (B) the trait truly under selection, (C) the polygenic-

ity M of the traits, (D) antagonistic selection on two traits with positive genetic

correlation, (E) pairwise tests for selection (Trait I under selection), (F) pairwise

tests for correlated response (Trait I under selection). (A-D) Red/pink/blue

bars indicate estimates of selection for traits under positive selection/neutral-

ity/negative selection, (E-F) Heatmap is colored by positive rate (also text in

boxes; standard errors in parentheses). Dashed horizontal lines indicate 5%

nominal significance level and black lines indicate 95% Bonferroni-corrected

confidence intervals. Baseline parameters for all simulations (1,000 replicates

under each scenario) were our constant-size model with % � 60%, M � 1, 000,
with Trait I under positive selection. In panels (A,B) and (D) joint tests are

performed on Trait I/Trait III and Trait I/Trait II, respectively. (E) Diagonal

elements correspond to marginal test for selection.
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Detecting antagonistic selection

We also considered the possibility of antagonistic selection (i.e., selection to both increase

Trait I and decrease Trait II, Fig. 3.3D). We hypothesized that marginal tests would be

underpowered to detect this mode of selection acting on traits with strong genetic corre-

lation, and that joint testing might uncover this signal. Indeed, power to detect selection

in this regime is quite low using marginal testing, with 3-13% power at a 5% threshold

(Fig 3.3D). However, the joint testing boosts power significantly, with 40-51% power at a

5% threshold (Fig

reffig:Ch3Fig3D). We also tested the opposite scenario, where Trait I and Trait II are both

under positive (complementary) selection; we found the joint test iswell-powered to detect

that multiple genetically correlated traits are under selection (Fig. B.10). Thus, J-PALM

provides several gains in power over the marginal test, such as uncovering antagonistic

selection that is ‘cancelled out’ by genetic correlation, or confirming multiple traits are

under selection.

Interpretation and limitations of the joint test

We also considered how our joint test performs when the causal trait (i.e., a trait with a

causal effect on fitness) is excluded from the model. We conducted pairwise joint tests

on each pair of Traits I-IV in simulations with Trait I under selection and all other traits

neutral (Fig. 3.3E). Rows correspond to the trait for which the selection test is performed

(the focal trait), and columns correspond to the other trait included in the joint model

(the conditional trait). We also considered other scenarios, such as all traits neutral,

complementary selection, and antagonistic selection (Fig. B.11).

Aswe demonstrated previously, when the causal trait (Trait I) is included, the selection

test is well-calibrated for neutral traits (Fig. 3.3E). However, we find that when Trait I is

excluded, the selection test has high positive rates for traits that have no causal fitness

effect, but are strongly genetically correlated with the causal trait (e.g. Trait II). In general,

our results demonstrate that selection tends to be attributed to the trait with the strongest

genetic correlation to the causal trait (e.g., Trait II); other traits with genetic correlation to

the causal trait (e.g. Trait III) have someminor inflation of the positive rate, but selection is

predominantly attributed to the closest proxy for the causal trait. These results highlight

an important limitation of our model: Namely,the selection gradient estimates are not to

be interpreted as causal fitness effects. As our simulated results show, this proposition

is generally false when a trait with causal fitness effect and nonzero genetic correlation is

excluded.

Testing for correlated response

Our method can also test for correlated response to selection, i.e., whether a trait has

evolved (at least in part) due to selection on some other genetically correlated trait. We
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introduce the notion of an effective selection gradient (ωtrait ,model), which measures at-

tributable amounts of selection to each trait included in a model. Consider two traits, A

and B. Suppose Trait A is under selection and Trait B is neutral. If rg � 0, the effective

selection gradient of B is 0, regardless of selection on Trait A orwhether we include Trait A

in the model, because no selection on A is attributable to B. Hence, ωB,mar ginal � ωB, joint .

By contrast, if |rg | > 0, marginally Trait B has a nonzero effective selection gradient; how-

ever, in a joint model with Trait I, the effective selection gradient of Trait II is 0, since all

direct selection can be attributed to Trait I. Hence, due to correlated response, there is a

difference in the effective selection gradient in the two models: ωB,mar ginal , ωB, joint .

However, the converse is not true for Trait I; both marginally and jointly with Trait II, all

selection can be attributed to Trait I, and so ωA,mar ginal , ωA, joint . We developed a test

statistic R (see Appendix B) which tests for correlated response under the null hypothesis

H0 : ω j,mar ginal � ω j, joint , i.e. that the marginal and joint effective selection gradients are

equal.

We conducted tests of correlated response on each pair of traits I-V (we introduce Trait

V, which has rg � 0% to Trait I) (Fig. 3.3F). We found that the test for correlated response

of Trait I is null, concordant with all other traits in the simulation being neutral (Fig. 3.3F).

We also saw that Trait V, which has no genetic correlation to the directly selected trait,

the test is null, concordant with the necessity of genetic correlation to drive correlated

response (Fig. 3.3F). We saw that tests for correlated response generally grew in their

power as rg to Trait I increased. However, power is slightly lower for rg � 80% than

rg � 50% (i.e., testing Trait II vs. Trait III for correlated response to Trait I) (Fig. 3.3F).

This may indicate that for strongly genetically correlated traits, it is often ambiguous

which one of the traits is evolving in correlated response. The test is also well-calibrated

under neutral simulations (Fig. B.12A), andwell-powered to detectmore complex forms of

correlated response such as antagonistic and complementary selection (Fig. B.12B,C). We

also explored the performance of the correlated response test, along with the joint test for

selection, in a K-way model with Traits I-IV tested jointly (Fig. B.13). Our results indicate

that our test statistic R can be used to detect whether a trait has been under correlated

response; however, it is incorrect to make strongly causal interpretations of the test (e.g.,

“Trait III is under correlated response to Trait II”).

Effect of small of uneven GWAS sample size

We tested the effect of GWAS sample size on the joint test, considering not only lower

sample size, but also uneven sample sizes (Tab. B2). Similar to the effect of lower sample

size on themarginal test, we found that lower sample size for both traits reducedpower and

slightly inflated the FPR; e.g., testing for selection jointly on Trait I vs Trait II (simulating

selection to increase Trait I), we found that at N � 10
4
for Trait I and Trait II, the FPR for

Trait II reached 8.0% (±1.8%) (Tab. B2). However, this was not always the case; e.g., for

NI � 10
5
, NII � 10

4
, the FPR for Trait II was calibrated properly (4.6% ±1.4%) (Tab. B2).

Power to assign selection to the causal trait was reduced when that trait’s GWAS was
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underpowered; e.g., 51.6% (±1.6%) to 45.7% (±1.6%) when NI was dropped from 10
5
to

10
4 (N II � 10

5) (Tab. B2). Interestingly, we found an even bigger drop in power associated

with reduced sample size for the correlated trait (Trait II); when NII was reduced from

10
5
to 10

4 (N I � 10
4), power to detect selection on Trait I dropped from 45.7% (±1.6%) to

27.7% (±1.4%) (Tab. B2). These results indicate that as long as sample size is reasonably

large, estimates are well-calibrated; furthermore, by increasing sample size of GWAS for

one trait, the joint test is able to leverage that towards improving power to detect selection

on other traits that have overlapping genetic architecture.

Empirical analysis of trait evolution in individuals of British ancestry
Weanalyzed56GWASsofmetabolic, anthropometric, life history, behavioral, pigmentation-

and immune response-related traits in humans (54 from the UKBB; see Tab. B3 for details)

for signs of polygenic adaptation. We used GWAS summary statistics that were nominally

corrected for population structure using either a linear mixed model [182] or fixed PCs

(K=20 PCs) [183], and in some cases a family history-based approach [184] to boost power

for under-powered UKBB traits, such as type 2 diabetes. All traits used had at least 25

genome-wide significant (GWS) loci(P < 5× 10
−8
) in independent LD blocks [185]. For all

of our empirical analyses, we used coalescent trees sampled using Relate for a sample of

British ancestry (GBR, n � 89) from the 1000 Genomes Project, assuming pre-established

estimates of GBR demographic history [152, 186]. We specifically tested for selection in

the last 2000 years (i.e., 68.95 generations, assuming a generation time of 29 years). The

selection gradient (ω) was estimated using maximum-likelihood, with standard errors es-

timated by block-bootstrapping. We first tested traits marginally for polygenic adaptation

(Fig. 3.4). We include SNPs by pruning for LD using independent LD blocks, choosing

the SNP with the lowest p-value in each independent block, and excluding blocks that do

not have a SNP exceeding this threshold [185].

Marginal tests for selection

We report our estimates of the selection gradient (Fig. 3.4) normalized by their standard

errors, highlighting significant traits (FDR = 0.05) and other traits of interest, with results

also presented in Tab. B4. In the marginal tests with PALM, we found strong signals

of selection acting to decrease pigmentation (Fig. 3.4, Tab. B4). We reported traits with

selection gradient p-value exceeding a multiple testing-corrected threshold (FDR = 0.05,

Benjamini-Hochberg). Tanning showed the strongest signal of directional (in this case,

negative) selection among all tested traits (ω � −0.357 (±0.046) , P � 5.5 × 10
−15

; stan-

dard errors in parentheses). Sunburn

(
ω � +0.356 (±0.052) , P � 1.1 × 10

−11

)
and hair

color (ω � +0.128 (±0.027) , P � 2.2 × 10
−6
) also showed significant positive selection.

Several life history traits also showed significant selection; e.g. age at first birth (ω �

+0.0546 (±0.0149) , P � 2.5 × 10
−4) and EduYears (ω � +0.389 (±0.0107) , P � 2.6 × 10

−4).
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Figure 3.4: Estimates of the selection gradient on 56 human traits The se-

lection gradient (ω̂) was estimated using 1000 Genomes Great British (GBR)

individuals and summary statistics from various GWASs, with standard er-

rors (ŝ eω) estimated via block-bootstrap (Z � ω̂/ŝ eω). Starred traits indicate

significance at FDR = 0.05.

We also found significant selection acting on an anthropometric trait, bone mineral den-

sity heel-T Z-score (BMD, ω � +0.0728 (±0.0222),P � 1.1 × 10
−3
), and negative selection

acting on glycated hemoglobin levels (HbA1c, ω � −0.0167 (±0.00518) , P � 1.2 × 10
−3
) as

well as neuroticism (ω � −0.0706 (±0.0254) , P � 5.5 × 10
−3
).

Several traits of interest to have no or inconclusive evidence of directional selection.

We found no evidence for any recent directional selection on height (ω � −0.00148 ×

10
−3 (±0.0190), P � 0.938). We also find inconclusive evidence for selection on body

mass index (BMI, (ω � −0.0585 (±0.0331), P � 0.077), in contrast to previous findings

that BMI has been under significant selection to decrease [168].

Joint tests for selection

We analyzed 137 trait pairs (Bonferroni Prg < 0.005 and |rg | > 0.2)[181] using J-PALM

to examine if marginal signals of selection were due to a correlated response to selection

on another trait (Table 3.2, Tab. B5). To aid clarity, we introduce the notion of focal vs

conditional traits in a joint test. For example, if we estimate the selection gradient of

Trait 1 and Trait 2, (ω1, ω2), then ω1 is the estimate for Trait 1 (the focal trait), jointly

tested estimated with Trait 2 (the conditional trait); similarly ω2 is the estimate for Trait 2

(the focal trait), jointly tested estimated with Trait 1 (the conditional trait). We establish

significance of correlated response using a Wald test on the statistic R, the difference

in the joint and marginal selection estimates for a focal trait, where the joint analysis is

performed with some other conditional trait (see “Testing for correlated response” and
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Traits Marginal test Joint test

Focal Conditional Z PZ Z PZ R PR
Hair Tanning 4.74 2.2e-06 1.91 0.056 -3.77 1.7e-04*

EduYears Sunburn 3.65 2.7e-04 2.33 0.020 -4.68 2.9e-06*

HbA1c T2D -3.23 1.2e-03 -4.41 1.0e-05 -3.17 1.6e-03*

HbA1c BP (Diastolic) -3.23 1.2e-03 -1.95 0.051 2.36 0.019

T2D HbA1c -0.32 0.75 2.75 6.0e-03 4.34 1.5e-05*

T2D BP (Diastolic) -0.32 0.75 0.28 0.78 2.10 0.036

Table 3.2: Selected trait pairs under correlated response in Great British
ancestry Selection on the focal trait is estimated jointly with the conditional

trait. We report the Z-scores under both the marginal and joint tests, as well as

the R statistic of the difference in joint vs marginal selection gradient estimates,

and their P-values. T2D = Type 2 diabetes, HbA1c = glycated hemoglobin, BP =

bloodpressure. Asterisk (*) denotes significance at FDR=0.05 (n � 2×137 � 274

tests on 137 trait pairs with Bonferroni-significant Prg < 0.005/56·55

2
and |rg >

0.20|).

Appendix B for more details). Selected results are presented in Table 3.2, and results for

the full analysis of all 137 trait pairs are available in Tab. B5.

We found several significant signals (FDR = 0.05) of correlated response (Table 3.2, full

results in Tab. B5). For example, although EduYears had strong evidence for selection

in the marginal test (Pmar ginal � 2.6 × 10
−4
), we found after conditioning on sunburn

ability (r g � 0.24, P � 2.3 × 10
−4)[181] a significant attenuation of this estimate (P joint �

0.020, PR � 2.6 × 10
−6). These results suggest that a large part of the signal of selection

on EduYears is likely due to indirect selection via correlated response, vs direct selection.

However, we stress that these results do not provide evidence of direct selection on the

conditional trait, here e.g. childhood sunburn occasions (sunburn) (see e.g. Fig. 3.3E).

We also find significant attenuation of selection signals for pigmentation traits in our

joint analyses (Table 3.2). In our joint analysis of hair color and tanning (r g � −0.17, P �

3.6×10
−3) [181], we found that after conditioning on tanning, there is no residual evidence

for direct selection on hair color (Pmar ginal � 2.2 × 10
−6
; P joint � 0.056; PR � 1.7 × 10

−4).
(The same caveat above regarding the interpretation of correlated response applies here

to tanning ability).

We identified one case in which the joint analysis uncovers selection acting on a

trait that did not show significant selection marginally; we found that type 2 diabetes

(T2D), conditioning on HbA1c (rg � 0.69)[187], shows significant selection to increase in

prevalence (Pmar ginal � 0.75; P joint � 0.0060; PR � 1.5 × 10
−5
; see Table 3.2). Estimates of

negative selection onHbA1c are also enhanced after accounting for T2D (Pmar ginal � 1.2×

10
−3

; P joint � 1.0×10
−5

; PR � 0.0016; see Table 3.2). This ‘cancelling-out’ effect of opposing
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selection on T2D and HbA1c, two traits with strong (but not perfect) positive genetic

correlation, is the second-strongest signal of correlated response in our joint analyses.

We confirmed that the separability of these two phenotypes is not due to phenotype

mis-specification; T2D status was confirmed by doctor’s diagnosis strictly after 30 years

of age, in order to avoid the possibility that T1D individuals mistakenly self-report as

T2D-diagnosed [184].

We also illustrate our estimates of selection coefficients for ascertained T2D/HbA1c

SNPs, found independently of one another, and their fit to our inferred model of antag-

onistic selection on T2D/HbA1c (Fig. 3.5A). In general, T2D-increasing and/or HbA1c-

decreasing SNPs are under positive selection, and vise versa; however, a subset of HbA1c-

increasing SNPs show extremely strong signs of positive selection (s > 0.03); these SNPs

tend to have visibly higher positive effects on T2D than other SNPs with comparable

HbA1c effect. In a joint analysis of HbA1c and diastolic blood pressure (as a proxy for

hypertension), our estimate of direct selection on HbA1c was significantly attenuated at

a nominal level(P � 0.019, Table 3.2), although it did not meet our FDR cutoff. We also

did a joint analysis of T2D and diastolic blood pressure, finding a significant boost in the

estimate of direct selection on T2D (P � 0.036, Table 3.2), although it did not meet our

FDR cutoff.

Lastly, we tested our set of R statistics among the pairs of genetically correlated traits

for enrichment in the tail over the null (Fig. 3.5B). At the nominal 5% FPR level, we

found significant (2.6-fold) enrichment for correlated response acting on these traits (P �

1.5× 10
−7
, one-sided binomial test), suggesting that many additional traits in this analysis

have evolved under indirect selection due to correlated response.

3.4 Discussion
We have presented a method, PALM, for estimating the directional selection gradient

acting on a polygenic trait. Our method works by estimating likelihood functions for the

selection coefficients of a set of GWAS SNPs, and then aggregating these functions along

withGWAS-estimated SNP effects to find the likelihood of the selection gradient. Through

simulations, we showed that PALM offers improved power over current methods across a

range of selection gradients(ω � 0.025−0.10) and polygenicities (M � 10
2
−10

4
), and is the

first method to our knowledge that can estimate ω from nucleotide data. We conducted

robustness checks and showed that PALM is robust to typical sources of uncertainty and

bias in GWAS summary statistics (e.g. sampling variation, ascertainment bias/Winner’s

Curse) allelic heterogeneity, purifying selection, and underpowered GWAS.

We also introduced a method, J-PALM, to jointly estimate the selection gradient on

multiple traits in order to control for pleiotropy. We showed that, across a wide range of

polygenic architectures (M � 10
2
− 10

4, % � 40% − 100%), J-PALM can reliably detect and

assign selection to the causal trait when it is considered in the analysis, and can be used

to uncover genetically correlated traits under antagonistic selection where the marginal
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A B

Figure 3.5: Correlated response in real traits (A) Expanded view of antag-

onistic selection on glycated hemoglobin (HbA1c) vs type 2 diabetes (T2D).

We estimate individual SNP selection coefficients by taking the maximum-

likelihood estimate ŝ for each SNP. We plot this value against the joint SNP

effect estimates for HbA1c and T2D. Colored lines represent isocontours of

s(β) � βHbA1c ω̂HbA1c + βT2D ω̂T2D , the estimate of the Lande transformation

from SNP effects to selection coefficients, where ω̂ is inferred jointly for the

two traits (Tab. 3.2). Purple-green color gradient illustrates expected selection

coefficients under ω̂ (background) vs. individual SNP selection coefficient es-

timates (rings). Ring diameter is proportional to SNP selection log-likelihood

ratio. (B) Enrichment of correlated response in analysis of genetically-correlated

traits. Enrichment in the tails of the distribution of our test statistic for corre-

lated response R (P � 1.5 × 10
−7
, binomial test) which had 2.6-fold enrichment

at the nominal 5% level. We assessed n � 2 × 137 � 274 estimates of corre-

lated response on 137 trait pairs with Bonferroni-significant Prg < 0.005/56

2
and

|rg > 0.20|. Red area indicates pointwise 95% CI of the survival curve.

approach (e.g. PALM) is underpowered. We considered several additional sources of

bias unique to multi-trait analyses (i.e. uneven GWAS sample sizes, correlation in trait

environmental noise) and found J-PALM robust to these as well.

We note several areas inwhich the study of polygenic adaptation can be advanced. Our

operativemodel of polygenic adaptation is based on the Lande approximation, which over

long time-courseswill overestimate the efficiency of adaptation under stabilizing selection

with a shift in the optimum [164, 188]. A model that incorporates these dynamics will

potentially be better suited to detecting polygenic adaptation over longer time-courses,

such as analyses of ancient DNA samples. Furthermore, under stabilizing selection more

SNP heritability is expected to be sequestered to low-frequency alleles, and so common

SNPs are expected to change less under adaptation than in our simulation model [159,
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164].

Advances might also be made through more nuanced models that make fuller use of

GWASsummary statistics andLDamongGWASmarker. We showedour thresholding and

pruning scheme for selecting sites did not substantially decrease ourmethod’s power. Pre-

existing methods for fine-mapping or ascertaining pleiotropic loci might increase power

even further [189]. It is also possible that for traits with extremely high polygenicity

and/or low heritability, it will be necessary to utilize summary statistics that are sub-

significant, and account for uncertainty in the location of the causal site. While in this

paperwe explored a thresholding andpruning scheme, which previouswork and our own

simulations show to be robust for stringent thresholding [179, 180], wehavenot established

how results would differ for an LD clumping approach, or howmisspecification of the LD

reference panel (vs. the GWAS and/or population genetic cohort) affects our results.

We showed that PALM is substantially less prone to bias due to uncorrected GWAS

stratification than comparable methods such as tSDS. However, we stress that PALM can

nonetheless be biased under sufficiently strong uncorrected stratification. Other forms of

stratification that we did not explore, such as gene-by-environment (G × E) interactions,
may be more difficult to account for via standard kinship-based approaches; however,

new methods have recently arisen to this particular end [190].

Another limitation of our model is the interpretation of the estimates of the selection

gradient and correlated response. We showed through simulations thatwhen a genetically

correlated trait with causal fitness effect is excluded from the analysis, estimates of direct

selection have no causal interpretation. To address this, we introduced the notion of

an effective selection gradient, which depends on which traits are modeled together.

Estimates of the effective selection gradient allow us to determine whether a focal trait has

evolved under correlated response another trait; however, this does not have the causal

interpretation that the focal trait is under correlation response to a particular conditional

trait.

Applying PALM to study evolution of 56 human traits in British ancestry, we found

8 traits under significant directional selection, recovering several previously-reported

targets, such as pigmentation traits, educational attainment, and glycated hemoglobin

(HbA1c), in agreement with previous findings of selection on these traits in Europe [167,

168, 144]. We also report several novel targets of directional selection, such as increased

bone mineral density and decreased neuroticism. Despite historical claims of selection to

increase height in Europe [173], we found no evidence for selection to increase height, con-

sistent with recent analyses which showed that signals of directional selection on height

have been drastically inflated by uncorrected population structure in GWAS summary

statistics [179, 180].

We applied our joint test J-PALM to study 137 pairs of genetically correlated traits for

signatures of correlated response. We found a highly significant enrichment of correlated

response acting on these traits. Particularly, we found significant correlated response

acting on pigmentation and life history traits (hair color, educational attainment). We

showed that signal of selection on traits such as hair color and educational attainment,
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which have been widely reported to date [167, 168, 144, 191], are due in significant part to

correlated response to selection on other traits, vs direct selection acting on these traits.

One proposed theory for the diversification and increase of blonde hair color in Europe

is sexual selection [192, 193]. However, our results do not support this, as we show that

evidence for selection on hair color is attributable mostly to correlated response, beyond

which there is little evidence for direct selection on this trait. This echos previous analysis

showing selection at individual hair color loci may be indirect, via their pleiotropic effects

(e.g. blonde hair gene KITLG responding to selection for tolerance to climate and UV

radiation [194]), and conflict with arguments that hair color has been under direct sexual

selection.

In our marginal test for selection, we detected significant selection to increase educa-

tional attainment, consistent with some previous work [168]. However, in a joint test with

sunburn (i.e., “childhood sunburn occasions,” the number of times the individual was

sunburned as a child), strong signals of selection to increase educational attainment were

significantly obviated. We conclude that signals of selection on educational attainment

are driven significantly by correlated response. We caution that “childhood sunburn oc-

casions” is a survey question, and is likely affected by many exogeneous factors beyond

skin pigmentation (e.g., opportunity to visit the beach or use sunscreen). We propose

that gene-by-environment (G × E) interactions may be driving these signals of correlated

response. Lewontin (1970), responding to Jensen (1969), pointed out that then-current es-

timates of intelligence quotient (IQ) heritability were inflated by G × E [195, 196]. Indeed,

in modern-day GWAS, we see that educational attainment polygenic scores in the UKBB

are only 50% as predictive in adoptees as in non-adoptees, indicating a significant role of

G × E in the expression of educational attainment, as well as estimates of its heritability

and genetic correlations [197]. The role of G×E or indirect genetic effects has been further

illustrated by the discrepancy of sibling-based vs standard GWAS estimates of SNP ef-

fects on educational attainment50. Hence, genetic correlation of sunburn and educational

attainment may be overestimated (e.g., r̂g � 0.24 using UKBB GWAS [181]). We do not

have data to elucidate the mechanism of this proposed G × E interaction, but hypothe-

size that educational opportunities and other environmental influences could be affected

by skin pigmentation. Even in the absence of G × E, we stress that our results are not

interpretable as evidence of direct selection on “childhood sunburn occasions”–let alone

skin pigmentation–following from our simulation study. Lastly, the inferred correlation

between the traits and/or the signals of selection could be affected by uncorrected GWAS

stratification [179, 180].

We found one case of significant antagonistic selection: T2D shows significant selec-

tion to increase, but this signal was initially occluded by the positive genetic correlation

of T2D with negatively-selected glycated hemoglobin (HbA1c). Our joint analysis with

J-PALM disentangles this antagonism between T2D and HbA1c, revealing latent adap-

tation of T2D. T2D is a complex disease with a complex etiology, involving obesity and

various metabolic risk factors. Selection may have favored some of these factors under

previous environmental conditions where both obesity and diets rich in simple sugars
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were uncommon (also known as the thrifty gene hypothesis) [198]. HbA1c is a biomarker

commonly used to not only diagnose pre-diabetes/diabetes, but also to monitor chronic

hyperglycemia as a risk factor for vascular damage [199]. T2D and HbA1c are strongly,

although imperfectly genetically correlated (r g � 69%). Although this may seem peculiar

as HbA1c is a diagnostic criterion for T2D,we speculate the distinction between these phe-

notypes could be driven by variation inHbA1c above and/or belowdiagnostic thresholds,

or variation of other molecular traits (e.g. fasting glucose) that are also used as diagnostic

criteria. , and HbA1c is also associated with hypertension and other cardiovascular dis-

ease independently of T2D incidence [187]. It is therefore possible that selection might

have favored some of the traits underlying increased T2D risk, but acted against some of

the more specific negative effects of T2D which now are measured by HbA1c [187, 199,

200]. These results provide evidence in support of the thrifty gene hypothesis [198].
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Chapter 4

Finding polygenic gradients through
ancestry disequilibrium regression

This work was co-advised by Noah Zaitlen and Rasmus Nielsen. It is unpublished.

Abstract
Differences in phenotypes between populations/ancestry groups can be caused by either

environmental effects or genetic ‘gradients’. Here, we present a method which detects

genetic gradients (and distinguishes them from environmental effects) in a GWAS cohort.

The method works by regressing uncorrected GWAS summary statistics on ancestry dise-

quilibrium scores, a variation on the familiar LD score which we introduce here. Through

simulations of complex trait architectures, we show our method is well-calibrated and

well-powered to detect genetic gradients along major principal components. We also ap-

ply our method to 46 GWAS of human traits, finding evidence for polygenic adaptation

along major genetic gradients in Europe, including behavior (e.g. anorexia), metabolic

phenotypes (HbA1c, LDL cholesterol), and autoimmune diseases (celiac, lupus, Crohn’s

disease); our results that geographical variation of these traits in Europe is significantly

driven by causal genetic factors.

4.1 Introduction
Stratification in association studies can be caused by dependence between ancestry and

phenotype. However, themechanismof this dependence canvarymeaningfully. One such

mechanism is environmental stratification (henceforth ES): when ancestry is correlated

with exposure to an environmental variable that affects the phenotype, variants that are

ancestry-specific will have inflated associations [201]. In light of this, many methods have

been successfully deployed to control for stratification in genome-wide association study

(GWAS) summary statistics (e.g., [202, 203, 204].
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Another potential cause of stratification is correlation of causal genetic factors with

ancestry (genetic stratification, henceforth GS). Techniques such as admixture mapping

have established that certain complex traits are caused by ancestry-specific genetic vari-

ation [205, 206, 207]. However, admixture mapping detects locus-specific associations;

many traits may have complex architectures with ancestry-phenotype associations that

are too subtle to detect marginally. Furthermore, under both ES and GS, we expect similar

inflation of associations for all ancestry-specific SNPs, whether or not they are causal, and

thus it has been unclear how to distinguish these sources of stratification from GWAS

summary statistics [177].

To this end,wepresent amethod thatusesGWASsummary statistics todetect polygenic

gradients with respect to principal components, as a proxy for ancestry. Our method

regresses summary statistics on a variation on the familiar LD score, which we term

ancestry disequilibrium scores (AD scores) [177]. Our AD scores measure the cumulative

ancestry tagged by a SNP. Conditional on the SNP’s frequency, AD scores are dependent

on GS, but not ES, allowing us to distinguish the two scenarios. Similar approaches

defining a so-called signed LD profile have been used to estimate directional effects of

functional annotations on polygenic risk (e.g. SLDP [208]). In fact, our proposed method

reduces to a straightforward application of SLDP. Liu et al. 2018 proposed anothermethod

to estimate polygenic gradients, but their method is based on joint (vs marginal) GWAS

estimates obtained via the inverse LD matrix, and assumes that population stratification

is corrected for in the GWAS [209].

4.2 Model
Under our model, phenotypic variance can be partitioned into 4 sources:

1. Genetic variance (isotropic, i.e., irrespective of ancestry)

2. Genetic variance (due to ancestry)

3. Random noise (isotropic, i.e., irrespective of ancestry)

4. Environmental stratification (due to ancestry)

As a note: ourmodel is very closely related to that described byReshef, et al. (2018). We

refer the reader to the Supplemental Texts of Reshef, et al. (2018) as well as Bulik-Sullivan

et al. (2015) to round out the understanding of the random-effects models, and how

their parameters are identifiable via the relationship between summary statistics (here, Z
scores; in LDSC, χ2

statistics) and LD patterns (here, linear combinations of signed LD R;

in LDSC, linear combinations of R2
).

Our model assumes an additive phenotype with SNP heritability h2
and a specified

number of causal SNPs M (heretofore ‘polygenicity’). We model phenotypes as a linear



CHAPTER 4. FINDING POLYGENIC GRADIENTS 83

function of mean-centered/variance-standardized genotypes X ∈ RN×M
and covariates

U (K)
∈ RN×K

,where K < min(M,N):

φ � Xβ + U (K)η + ε (4.1)

Parameters that control the phenotype conditional on X and U (K)
are β and η, which

are random causal genetic effects and environmental (covariate) effects, respectively.

SNP effects model
Under our model, we assume that genetic variance is decomposed into two contributions:

(1) Variance in mean effect, which depends on SNP loadings; and (2) isotropic variance,

i.e. residual variance in effects, irrespective of SNP loadings.

To model this, we introduce a parameter γ, a length-K vector that specifies the degree

to which causal genetic variation loads onto each principal component; and a statistic W ,

the so-called SNP ‘loadings’ onto covariates 1 through K. (See the subsequent section ‘SNP

loadings’ for how these are calculated, e.g. when using principal component loadings.)

We assume

E[β | W] � Wγ/M, Cov(β | W ) � ν/M · I (4.2)

where ν � h2
− h2

γ.

Proposition: The total heritability (in the merger of all the ancestry groups) is h2
if we

set h2

γ � | |Λγ | |2.
Proof: (Provided Var(φ) � 1,) The heritability h2

under additivity follows

h2

� Var (Xβ) (4.3)

Since E[X] � 0,

� E[βT XT Xβ] (4.4)

� E[E[βT XT Xβ | X]] (4.5)

Notice that β | X has the same distribution as β̃ + XTUγ, where β̃ ∼ MVN (0, ν/M · I).
Thus

h2

g � E[γTUT XXT XXTUγ + E[β̃T XT X β̃ | X]] (4.6)
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Let R � XT X, the LD matrix. Then

E[β̃T XT X β̃ | X]] � trace(E[ββT
]E[XT X]) (4.7)

� (ν/M)trace(IR) � ν (4.8)

h2

g � E[γTUT XXT XXTUγ] + ν (4.9)

�

K∑
p�1

E[λ2

p]γ2

p + ν (4.10)

And

∑K
p�1

E[λ2

p]γ2

p → ||Λγ | |2 as n → ∞, where Λ is the realized diagonal matrix of

eigenvalues of XXT
. Then choosing h2

γ � | |Λγ | |2 we recover the desired total heritability

h2
.

SNP loadings
Let X � UΣVT

be the singular value decomposition (SVD) of X, where U, Σ, VT
have

dimensions N×N, N×M, and M×M, respectively. ThematricesU andV are orthonormal

and Σ is diagonal matrix; note that since M > N (usually the number of genotyped SNPs

is much greater than the sample size), the trailing M−N diagonal elements of Σ are zeros.

The so-called SNP loadings of are given by W , a M ×K matrix of SNP loadings on PCs

1 through K:

W :� XTU � VΣ
T

ΣUTU � VΣ
T

(4.11)

Accounting for practical settings of PCA
In practice, PCA covariates are calculated using approximately independent SNPs, pruned

for LD and filtered by MAF. Hence, here we reserve X to refer to the full genotype matrix,

and here Z ∈ RN×M′
, where M′ � M) are genotypes filtered and used to calculate

covariates. Now we redefine U, Σ, VT
accordingly: Z � UΣVT

. Let W � XTU be the

loadings of the full genotypes onto covariates U.

Proposition 2: For general SNP loadings W (fixed/non-random), the total heritability

is h2
if we choose h2

γ � γWT RWγ.
Proof: The heritability h2

under additivity follows

h2

g � E[γTWT XT XWγ] + ν (4.12)

Since we assume W is fixed,

h2

g � γTWT E[XT X]Wγ + ν (4.13)

� γTWT RWγ + ν. (4.14)
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Loading genetic correlations (random loadings, no filtering)
First we consider the case where X � UΣVT

and thus loadings W are random. We proved

the amount of phenotypic variance due to genetic stratification is | |Λγ | |2. Further, the

genetic correlation of phenotypes φ and SNP loading scores onto PC p, XXTUp (the latter

is the contribution of genetic stratification to the polygenic score) is

rp � corr(Xβ,XXTUp) (4.15)

Cov(Xβ,XXTUp) � E[β]
T XT XXTUp (4.16)

� γT
Λ

2Up (4.17)

Var(Xβ) � h2, Var((XXTUp) � λp
2

(4.18)

Thus,

rp �
γT

Λ
2Up

λp
√

h2

(4.19)

And the proportion of the genetic variance explained by PC p is

h2

γ,p

h2 g
�

(λγ)2

h2

(4.20)

(4.21)

Loading genetic correlations (fixed loadings, with filtering)
Next, we consider the case where Z � UΣVT

and Z is a filtered genotype matrix (say,

obtained by filtering X by MAF and pruning for LD). We assume annotations (loadings

W) are fixed/nonrandom, consistent with the approach of LD score approaches (e.g.,

Reshef 2018). Let rp � corr(Xβ,XWp). Since E[X] � 0,

Cov(Xβ,XWp) � E[β]
TE[XT X]Wp (4.22)

� (Wγ)T RWp (4.23)

Var(Xβ) � h2, Var(XWp) � Wp
T RWp (4.24)

Thus,

rp �

K∑
k�1

γk ·
Wk

T RWp√
h2 ·Wp

T RWp

(4.25)
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And the proportion of heritability explained by PC p is

h2

γ,p

h2

� γ2

·
Wp

T RWp

h2

(4.26)

Identifiability of ES vs. GS
Note that under a model where β ∼ MVN (µ, ν), then this reduces to a model where

η, γ are unidentifiable (hat tip to Andy Dahl and Po-Ru Loh for pointing out this issue);

β � γ + µ, where γ ∼ MVN (0, ν):

φ � X(µ + γ) + Uη + ε (4.27)

� UΛγ + Xγ + Uη + ε (4.28)

� Xγ + U (Λγ + η) + ε (4.29)

� Xγ + Uη′ + ε (4.30)

Hence a model with (γ, η) is unidentifiable from one with (0,Λγ + η). However, if we

allow for sparsity,

β ∼ MVN (
1√
Mq

Wγ,
1

Mq
ν · I) w.p. q , β � 0 otherwise (4.31)

then

φ � X(
1√
Mq

Wγ + δ) + Uη + ε (4.32)

where δ ∼ MVN (0, 1

Mq ν · I), and

φ � X(δ · Y) + U (
1√
Mq

Λγ · Y + η) + ε (4.33)

Where Yi ∼ Bern(Mq) for i � 1, 2, . . . ,M. Thus, if we assume sparsity of β, then γ, η are

identifiable.

4.3 Estimating genetic gradients
Now, we describe the behavior of the SNP effect estimates in a GWAS. Note that we

do not assume the inclusion of any covariates in the GWAS. The Z-score for the SNP is

Z j�X j
>φ/
√

N . This has expectation
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E[ Z j | X] � E[XT
j (Xβ + Uη + ε)/N |X] (4.34)

� E[

M∑
k�1

Nr jkβk + W jη)/
√

N | X] (4.35)

Because E[βk | Xk] � Wkγ/Mq,

�
1

√
N

(
N√
Mq

M∑
k�1

r jkW kγ + W jη) (4.36)

Where r jk �
1

N XT
j Xk is the genotypic correlation coefficient for SNPs j, k. Finally, we get

�

√
N

Mq

K∑
p�1

γp s jp +
1

√
N

K∑
p�1

ηp w jp (4.37)

Where

s jp :�

M∑
k�1

wkpr jk (4.38)

is similar to an annotation-weighted LD score (see Gazal, et al. (2017)), where instead of

squared LD r jk
2
, we sum over signed LD r jk , and the annotations are SNP loadings onto

PCs 1 through K. We call s jp the ancestry disequilibrium (AD) score of SNP j on principal

component p.
The equation above shows that bias in the Z-scores can be driven by an LD-dependent

term that captures genetic stratification, and a term independent of LD that captures

environmental stratification. We can estimate γ and η jointly in a standard multiple linear

regression, and estimate standard errors through block-jackknife.

From Reshef, et al. (2018) we know that

Cov(Z | γ) ≈ σe
2R2

+R/N (4.39)

where R is the LD matrix, σe
2
is the proportion of phenotypic variance due to random

noise, and N is the sample size. This covariance follows from a model with random

genotypes and causal genetic effects. Similar to Reshef, et al. (2018), we use the covariance

matrix to account for dependence and heteroscedasticity in the residuals of Z regressed

onto AD scores.
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Figure 4.1: Performance of ADR in simulations Testing for genetic stratifica-

tion on simulations under the null (no stratification; leftmost column), purely

environmental stratification (leftmost box), purely genetic stratification (mid-

dle box), andgenetic + environmental stratification (rightmost box) simulations.

Stars indicate positive rate significantly >0.005. For each simulation scenario

(row), all PCs are tested jointly for a genetic stratification effect. Marginal es-

timates used in simulation are estimated using K=40 top PCs as covariates.

Simulations were performed using 1000 Genomes European individuals (re-

sampled up to cohort size N � 300, 000), simulating trait architectures on

chromosome 3 and PC covariates estimated LD-pruned SNPs genomewide.

We assume 10,000 causal SNPs.

4.4 Results

Simulations
To validate the ADR method, we conducted simulations of a heritable phenotype with

h2 � 50% under 4 conditions: null simulations, environmental stratification (ES), genetic

stratification (GS), and a mix of the two sources of variation (Fig. 4.1, Fig. 4.2). When

included in the simulations, we assume that 10% of complex trait variation is driven by

each form of stratification. Each simulation imposes ES and/or GS on a single PC at a

time (e.g., PC1), but tests all PCs 1-20 jointly (columns of Fig. 4.1). Across all PCs, ADR

has > 50% power (nominal α � 5%) to detect genetic differentiation in GS simulations,

with or without ES imposed on top of that (Fig. 4.1) while being well-calibrated under the

null (Fig. 4.1, Fig. 4.2).
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Figure 4.2: QQplot from simulationsNull simulations are aggregate χ2
statis-

tics from all null tests (i.e. any test where GS is not occurring on the tested PC).

GS simulations are aggregate χ2
statistics from all where GS is occurring on

the tested PC.

Analysis of human GWAS
Weapplied ourmethod using the sameAD scores derived for our simulation experiments.

We used SLDP [208] to estimate directional effects of ancestry on 46 complex traits in

humans. We computed ancestry disequilibrium scores using SLDP, with annotations

corresponding to SNP loadings on each PC independently. Along PCs 1-4 (illustrated

in Fig. 4.3), we tested for genetic gradients by estimating these directional effects and

computing two-sided permutation-based P-values using SLDP (Fig. 4.4, Fig. 4.5, Table 4.1).

In total, we find 8 traits that are significantly genetically differentiated with P < 0.05

(Bonferroni) (Table 4.1).

Stratified analysis using functional annotations
One way to validate the significant genetic gradients identified in the previous section is

to demonstrate that they are enriched in regions of the genomic with penetrant biological

effects. To investigate this, I re-estimated genetic gradients, but this time I stratified the

estimates by using binary functional annotation (e.g. ‘repressed’, ‘non-synonymous’)

(Fig. 4.6). To calculate the AD scores for covariate p, stratified on annotation a, I simply

take
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Figure 4.3: (A-C) PCA of European 1000 Genomes individuals used in simu-

lations & AD score calculations. (D) Simulated phenotypes (represented by

red-blue colors) vs. PC1 & 2; here η � 0.2 (i.e., there is an environmental effect).

Linear regression of the phenotypes on PC1 is highly significant (P � 10
−17

).
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Trait PC1 PC2 PC3 PC4

Anorexia 9.17* 16.37* 6.26* 7.15*

ENIGMA2_MeanPutamen 8.63* 5.45* 4.43* 2.45

Lupus 6.95* 3.67* 2.51 1.92

LDL 3.09 6.71* 3.20 4.74*

HbA1C 2.81 5.30* 1.84 1.96

Celiac 1.08 3.01 4.77* -4.04*

cov_EDU_YEARS -5.90* 4.25* 4.47* -8.17*

Primary_biliary_cirrhosis 0.34 1.17 1.21 2.30

CD 0.07 1.71 2.08 -0.32

Rheumatoid_Arthritis 0.37 0.50 1.89 0.66

pigment_HAIR -0.21 1.85 -0.51 0.82

blood_EOSINOPHIL_COUNT 1.11 1.24 1.82 1.17

body_HEIGHTz 0.01 1.79 -0.97 0.17

disease_RESPIRATORY_ENT 1.57 1.09 0.18 0.02

disease_DERMATOLOGY -2.03 1.54 -0.13 -1.02

disease_ALLERGY_ECZEMA_DIAGNOSED -0.63 -0.74 -1.44 1.53

blood_HIGH_LIGHT_SCATTER_RETICULOCYTE_COUNT -0.57 1.47 0.76 -0.79

disease_HI_CHOL_SELF_REP 1.07 0.48 1.39 1.46

cov_SMOKING_STATUS 1.29 -0.19 0.20 1.42

Autism -0.15 -0.53 -0.56 1.05

ALZ 1.02 0.79 0.01 -0.34

disease_T2D 1.02 0.63 0.47 -0.90

body_BALDING1 0.96 -0.16 -0.05 -1.53

disease_AID_SURE -1.45 0.81 0.93 -1.75

UC -1.09 0.46 0.93 -0.22

bp_SYSTOLICadjMEDz -1.34 -0.32 0.90 -0.06

mental_NEUROTICISM -5.19* -1.43 0.87 -0.53

body_WHRadjBMIz 0.78 -1.04 -2.50 -0.85

repro_MENOPAUSE_AGE -1.23 0.74 -0.28 -1.29

blood_WHITE_COUNT -2.26 -2.62 -1.25 0.71

pigment_SUNBURN 0.60 0.42 -0.52 0.71

lung_FEV1FVCzSMOKE 0.54 -0.32 -1.09 0.23

blood_RBC_DISTRIB_WIDTH -1.54 0.49 0.29 -1.55

blood_RED_COUNT -0.64 -1.56 0.43 0.19

blood_PLATELET_COUNT -0.14 -1.37 0.22 -0.22

lung_FVCzSMOKE -1.60 0.17 0.12 -1.10

bmd_HEEL_TSCOREz -2.67 -3.58 -2.29 0.15

Coronary_Artery_Disease -1.86 -1.50 0.08 -1.73

Schizophrenia -0.37 -0.76 -0.42 0.04

disease_HYPOTHYROIDISM_SELF_REP -3.09 -2.10 -1.73 -0.41

body_BMIz -1.03 -2.47 -0.55 -0.73

blood_LYMPHOCYTE_COUNT -0.64 -3.15 -1.31 -2.67

repro_MENARCHE_AGE -2.63 -2.47 -1.08 -0.81

blood_MONOCYTE_COUNT -2.38 -1.70 -1.55 -0.94

Table 4.1: Testing for adaptation in genetic stratification of 46 human traits
Z-scores of trait genetic stratification estimates along PCs 1-4. Stars indicate

tests with Bonferroni P < 0.05.
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Figure 4.4: Genetic stratification effect estimates for 46 human traits (PC1 vs.
PC2). Estimates for PC1 vs. PC2. Colored dots are significant at P < 0.05,

Bonferroni-corrected. Gray lines are 95% CIs. Colors represent the angle of

(µx , µy). P-values computed used permutation test (see e.g., Reshef 2018)

s jp ,a �

M∑
k�1

w jpr jk · I(Ak � a), (4.40)

where I(Ak � a) is simply an indicator that SNP k has the annotation a. Using SLDP, I

computed rp (see Reshef et al 2018 for detailed explanation of r f , their analogous quantity);

rp is essentially a measure of how correlated effect sizes are with SNP PC loadings. Let

rp (a) be the functional correlation for PC p, stratified on annotation a. In this work, I used

annotations used by Weissbrod, et al. (2020).
I then calculated a statistic D, which is basically just a comparison between rp for a

particular annotation a and a baseline annotation (I use ‘Repressed’):
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Figure 4.5: Genetic stratification effect estimates for 46 human traits (PC2 vs.
PC4). Estimates for PC2 vs. PC4. Colored dots are significant at P < 0.05,

Bonferroni-corrected. Gray lines are 95% CIs. Colors represent the angle of

(µx , µy). P-values computed used permutation test (see e.g., Reshef 2018)

D :� sign

(
rp (Repressed)(rp (a) − rp (Repressed)

)
(4.41)

Under the null that there is no enrichment of genetic gradients in particular functional

annotations, we should expect E[D] � 0. By contrast, we see that for many axes of popu-

lation variation (e.g., PC1 & 2), there are significant enrichments for genetic gradients in

non-synonymous, synonymous, and other functional annotations (e.g. methylation sites)

(Fig. 4.6). For other regions of less penetrant effect (e.g. intron), we see smaller/insignifi-

cant enrichment signal (Fig. 4.6).
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Figure 4.6: Meta-analysis of functional annotation-stratified analyses for 46
human traits. SLDP (Reshef, et al 2018) results across 46 complex traits, esti-

mating directional effects of ancestry (PCs 1-4 in Europe), stratified by binary

functional annotations. Dots indicate sample mean D across traits, whereas

black lines show a 95% CI on mean D, and thick/thin colored lines indicate

IQR/5-95 percentile on D. Starred dots indicate P < 0.05 after Bonferroni

correction with N � 4 × 46 × 11 � 2024.

4.5 Conclusion & future work
Here we have developed a method to infer genetic gradients (and distinguish them from

environmental effects) causing complex trait differences amongst ancestry groups. We

validate this via bespoke simulations of complex trait variation based on empirical genetic

data from Europeans in the 1000 Genomes Project. We then applied our approach to an

analysis of GWAS of 46 human traits (summary statistics from Reshef et al, 2018) and find

a number of traits whose genetic basis significantly differentiated along axes of population

structure (i.e. major PCs) within Europe. We validate our findings through an analysis

stratified on functional annotations, which show enrichment of this genetic differentiation

particularly in functional regions (e.g. protein-coding, promoter-flanking).
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Looking forward, many analyses should be considered, including:

• Simulations

– Redo simulations using SLDP (Reshef et al 2018) rather than bespoke method,

for consistency with empirical analysis.

– MAF and LD-dependent architectures with different levels of sparsity (SLDP

does control for MAF, but not levels of LD a la Gazal, et al. 2017)

– Environmental variance effects
– Genetic correlations and genetic causality (see below, special case of G × E)
– G × E simulations of the form G → φ1, φ1 × E → φ2, and φ1 has genetic

differences between populations.

– Binary annotation effects under simulation with known enrichments.

– Compare to Xuanyao Liu’s method (PopDiff)

– What happens if you don’t use PCs in your gwas, or if the PCs are chosen badly?

In general what if pop structure is not 100% corrected for?

– Choice of population structure correction (e.g.LMMs, fixed PCs) (we only

looked at the latter so far)

• Additional analyses

– Indirect effects: Re-analyse traits (especially EA!) using sib-based or other

GWAS to control for indirect effects

– Extend the number of phenotypes and populations examined

– Extend ancestry factors considered (e.g. use measures of local ancestry based

on ancient genomes, e.g. genetic effect of Steppe ancestry)

– Use these to consider timing/age of selection?

– Measure PC loading (and Fst) differences under annotations

– Once we have a set of phenotypes we believe have changed due to genetic

differences, is there another test we can perform to validate without using the

effect size estimates from the GWAS? E.g., is Fst at non-synonymous variants

that are robustly GWAS significant (and fine-mapped?) different than Fst at

general non-synonymous variants?

4.6 Methods

Principal components analysis (PCA)
We use genotype calls for European 1000 Genomes Phase 3 individuals. We prune LD in

PLINKwith -indep-pairwise 100 5 0.15. We also exclude regions of high LD (https:

https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)
https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)


CHAPTER 4. FINDING POLYGENIC GRADIENTS 96

//genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)) and
theMHCregion (https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37).
We run PCA on these data using PLINK:

./plink2 --bed 1000G_merged \
--maf 0.05 \
--hwe 1e-5 \
--pca 40 \
--out 1000G_merged

Then, we run the following to obtain SNP loadings on PCs 1-40:

./plink2 --bed 1000G_merged \
--variant-score 1000G_merged.covar \
--out loadings

Ancestry disequilibrium scores
Wecalculate ancestry disequilibrium (AD) scores using SLDP [208]with loadings from the

previous step applied as the annotations of interest. We use 1000 Genomes Phase 3 Euro-

pean indivudals (https://data.broadinstitute.org/alkesgroup/LDSCORE/1kg_eur.
tar.bz2) and a window size of 1cM around the focal SNP. Analysis is restricted to ∼ 10

7

HapMap3 SNPs [177].

LD matrix calculation and approximation
To improve efficiency of the regression of our AD score regression, we account for het-

eroscedasticity and off-diagonal covariances by performing a generalize least squares

(GLS) regression. Following Reshef, et al. (2018), the covariance matrix follows

Cov(Z | γ) ≈ σ2

e R2

+ R/N (4.42)

where σe
2 � 1−h2

andR is the signedLDmatrix. Wemakeablock-diagonal approximation

to R following Berisa & Pickrell (2016), assuming that SNPs between LD blocks are in

linkage equilibrium. Additionally, we make a low-rank approximation to the blockwise

LD matrices, storing just enough of the top principal components such that the >95% of

the variance is accounted for. This captures the vast majority of LD patterns in each block,

and significantly improves computational efficiency, since by this criterion the requisite

number of PCs is usually ∼2 orders of magnitude lower than the number of SNPs in the

block.

https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)
https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37
https://data.broadinstitute.org/alkesgroup/LDSCORE/1kg_eur.tar.bz2
https://data.broadinstitute.org/alkesgroup/LDSCORE/1kg_eur.tar.bz2
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Simulation of genetic architecture and GWAS
We use genotypes X and PCs U obtained from 1000 Genomes (1KG) Phase 3 Europeans

and simulate polygenic trait architectures atop this data. (See Methods: PCA). Assume L
total polymorphisms in this data. We assume a polygenic trait with M � Y1 + Y2 + ... + YL
sparsely causal sites with normally-distributed effects, where Yi ∼ Bern(q) i.i.d. for

i � 1, 2, .., L:

βi ∼ N
(Wi g√

Lq
,

h2
− ||g | |2

Lq

)
if Yi � 1, otherwise βi � 0 (4.43)

where g is a vector of K parameters specifying genetic gradients along the top K principal

components, such that 0 ≤ ||Λg| |
2
≤ h2

≤ 1 − ||η| |2, where η is a parameter specifying

ancestry-dependent environmental effects. The vector Wi is the SNP loading of i onto PCs

1 through K.

Since it is not feasible to simulate genetic architectures in extremely large cohorts, we

simulate GWAS in this smaller cohort (N1KG � 489) but modify the sampling noise to

yield summary statistics with the desired noise level (e.g., N � 10
5
). Since the standard

error of scales with 1/
√

N , we reduce the standard deviation of isotropic random noise ε
by a factor of c �

√
N1KG/N .

We simulate phenotypes as

φ ∼ MVN (Xβ + Uη, cI) (4.44)

where Xβ is a vector of polygenic scores and the scalar c is chosen to standardize Var(φ) �
1. We compute polygenic scores using PLINK 2:

./plink2 --bed 1000G_merged \
--score betas.txt \
--out scores

We then run association testing in PLINK 2:

./plink2 --bed 1000G_merged \
--glm hide-covar \
--covar 1000G_merged.eigenvec \
--pheno phenos.txt \
--out sumstats \

Note that we include covariates when we run association testing! This is because in

preliminary work, we attempted to estimate not only γ (the genetic gradient), but also

η (the environmental gradient), and when the totally uncorrected GWAS is used, this

resulted in very overdispersed estimates of η.
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Calculating AD scores
Using theSLDPpackage (https://github.com/yakirr/sldp), weperformedpreprocessannot
to produce AD scores for all of our traits along major PCs, whose SNP loadings we calcu-

lated in the aforementioned section:

preprocessannot --sannot-chr pc<p>/ \
--bfile-chr refpanel/plink_files/1000G.EUR.QC. \
--print-snps refpanel/1000G_hm3_noMHC.rsid \
--ld-blocks refpanel/pickrell_ldblocks.hg19.eur.bed \
--chroms <n>

for n � 1, 2, . . . , 22 and p � 1, 2, 3, 4. The folder pc<p>/ must contain <n>.sannot.gz, a
file with the SNP loading of each SNP on chromosome n.

We did this again for the stratified analysis, setting the weighting to be 0 at SNPs that

do not have the specified functional annotation.

See SLDP wiki and data page (https://data.broadinstitute.org/alkesgroup/
SLDP/) for more details and refpanel downloads.

Estimating genetic gradients
Again using the SLDP package, we performed sldp:

sldp --pss-chr sumstats/complex/ALZ.KG3.95/ \
--sannot-chr ../ADR/annot/pc<p>/ \
--background-sannot-chr background/maf5/ \
--outfile-stem sumstats/complex/ALZ.KG3.95.pc<p> \
--ld-blocks refpanel/pickrell_ldblocks.hg19.eur.bed \
--svd-stem svd/svds_95percent \
--bfile-reg-chr refpanel/plink_files/1000G.EUR.QC.hm3_noMHC. \
--seed 0

where ALZ.KG3.95/ is an example folder containing pre-processed summary statistics

(for Alzheimer’s disease) for SLDP, available on the SLDP data page. Here p again is the

desired PC.

Note: I forget what happened, but there was an issue with the downloadable SVDs (of

the LDmatrix R) from the SLDP data page. I think I had to recompute these from scratch.

Send me an email if you need them.

https://github.com/yakirr/sldp
https://data.broadinstitute.org/alkesgroup/SLDP/
https://data.broadinstitute.org/alkesgroup/SLDP/
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Figure A.1: Selection coefficients inferred directly from the true local trees.
Left: constant population size (Ne � 10

4
). Right: Tennessen CEU demographic

model. Shape of marker denotes the terminal frequency conditioned upon in

the simulation: ◦, 25%; ^, 50%; ×, 75%.
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Figure A.2: Allele frequency trajectories inferred from ARGweaver local
trees when µ � r. We set µ � 2.5 × 10

−8
mut/bp/gen, r � 2.5 × 10

−8
recombi-

nations/bp/gen and fix the present day allele frequency to X0 � 50% Stepwise

trajectories are inferred, dashed trajectories are the ground truth. Vertical bars

denote the 25-75th percentile range of estimates. For each condition we show

20 randomly selected simulations and their corresponding inferences. All data

simulated under a demographic model with constant size N � 10
4
.
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Figure A.3: Inferring allele frequency trajectories under CEU demography.
Trajectories were inferred from true local trees (top row) and importance sam-

pling onARGweaver local trees (bottom row). Columns correspond to different

present-day allele frequencies (left: 50%, right: 75%). For each condition we

show 20 randomly selected simulations (dashed, translucent lines) and their

corresponding inferences (piecewise constant curves; dots and vertical bars

indicate the median and 25-75 percentiles of estimates, respectively). The gray

box indicates the timing of the bottleneck, occurring approximately 920-2040

generations ago. Simulations were done under the European demographic

model described in Methods and Materials using a locus of 200kb, n � 25

diploid individuals and µ � 2.5 × 10
−8

mut/bp/gen, r � 1.25 × 10
−8

recombi-

nations/bp/gen.
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Figure A.4: ARGweaver proposes less accurate trees under non-equilibrium
demography. Left: constant Ne � 10

4
. Right: Tennessen CEU demographic

model. We found in Fig. Fig. A.2 that importance sampling using ARGweaver

tends to underestimate the selection coefficient under a model of CEU demog-

raphy. To demonstrate that the proposal distribution for sampling the local

tree is the source of this bias, we use TMRCA of the local tree as a heuristic

the locus’s selection coefficient. For the sake of argument, we postulate that as

one decreases the TMRCA of a local tree, the maximum-likelihood estimate of

the selection coefficient strictly descreases. If so, then if the minimum value

of the sampled TMRCAs is greater than the true TMRCA, then this instance of

the importance sampling estimate will underestimate the selection coefficient.

Hence, one canmeasure importance sampling efficiency by looking at the prob-

ability that the minimum value of the sampled TMRCAs is less than the true

TMRCA. This is shown graphically by the proportion of points that fall in the

red upper triangle. The selection coefficients s � 0, 0.001, 0.003, 0.01 are indi-

cated by purple, blue, green, and orange, respectively. Simulations were done

under the European demographic model described in Methods and Materials

using a locus of 200kb, n � 25 diploid individuals and µ � 2.5×10
−8

mut/bp/-

gen, r � 1.25 × 10
−8

recombinations/bp/gen. We fixed the present-day allele

frequency to be 75%.
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Figure A.5: ARGweaver infers an excess of recent coalescences. As a di-

agnostic for the trees outputted by ARGweaver, we compared the amount of

coalescence in the sample trees vs. the local trees. Let ai ,s be the number of

coalescent events during epoch i in the sth replicate of the simulation. We cal-

culate ei �
1

M
∑S

s�1

∑M
m�1

a (m)
i ,s∑S

s�1
ai ,s

as an estimate of the fold excess of coalescence, where

a (m)
i ,s denotes the mth ARGweaver sample of ai ,s . Notice that if the sample trees

closely approximate the true tree, then ei ≈ 0. The dashed line indicates no

excess, i.e., no bias in the estimates. We find that ARGweaver can have a nearly

4× excess of inferred coalescence events in the most recent epochs (e.g. [0,100]

generations ago). Here we simulated recent selection starting 100 generations

ago under a model of European demography with n � 50 diploid individuals,

a physical length of 200kb, and µ � 2.5 × 10
−8

mut/bp/gen, r � 1.25 × 10
−8

mut/bp/gen. We condition on the variant having a present-day frequency of

0.50.
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Figure A.6: Performance of trajectory inference across replicates. We illus-

trated inferred vs. true trajectories, holding selection coefficient constant across

the replicates. In this case, we chose s � 0 in order to maximize the amount

of variability in the trajectories of the replicates. Rows correspond to simula-

tions conditioned on different present-day allele frequencies (0.25: A-C,0.50:

D-F,0.75: G-I). Left column (A,D,G): trajectories inferred using the true local

tree. Middle column (B,E,H): trajectories inferred using importance sampling,

fixing the selection coefficient to the ground truth (s � 0). Right column (C,F,I):

trajectories inferred under importance sampling and estimating s. Simulations

were done under the constant size model described in Methods and Mate-

rials using a locus of 100kb, n � 25 diploid individuals and µ � 2.5 × 10
−8

mut/bp/gen, r � 1.25 × 10
−8

recombinations/bp/gen.
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Figure A.7: Effect of uncertainty in s on trajectory inference. A: trajectories

inferred using importance sampling (i.e. Eq. 2.34), fixing ŝ � s. B: trajectories
inferred using importance sampling and integrating over a uniform prior on s
(i.e. Eq. 2.37). Simulations were done under the European demographic model

described in Methods and Materials using a locus of 200kb, n � 25 diploid

individuals and µ � 2.5 × 10
−8

mut/bp/gen, r � 1.25 × 10
−8

recombination-

s/bp/gen.
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chr15:28365618 G /A

rs12913832  OCA2/HERC2

chr14:92773663 T /G

rs12896399  SLC24A4
chr13:78381146 T /G

rs985739  EDNRB

chr21:38491095 G /A

rs1003719  TTC3
chr9:12396731 G /A

rs13289810  TYRP1 rs35264875  TPCN2
chr11:68846399 T /A

rs2153271  BNC2
chr9:16864521 T /C

rs12821256  KITLG

chr12:89328335 C /T

rs619865  ASIP

chr20:33867697 A /G

chr11:89011046 A /G

rs1393350 TYR

chr20:32738612 T /C

rs1015362  ASIP
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Figure A.8: Geographical distribution of pigmentation SNPs. Population-

wide allele frequencies of pigmentation SNPs from Fig. 2.9 plotted geographi-

cally using GGV.
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Figure A.9: Allele frequency trajectory estimate of rs12913832
(OCA2/HERC2). The same trajectory estimate as in Fig. 2.9A with x-axis limits

extended to illustrate earlier history of the allele.
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Appendix B

Supplementary materials to Ch. 3

B.1 Inference of selection gradient

Importance sampling estiamtion of the likelihood function of selection
Our likelihood model builds heavily on our previous work, which developed importance

sampling approaches to estimating the likelihood function of the selection coefficient

acting on a SNP, LSNP (s) [116]. Here, we briefly explain the importance samplingmethod

used to estimate L(ω), the likelihood of the multivariate selection gradient:

L (ω) �
M∏

i�1

LSNP
i

(
βT

(i)ω
)

(B.1)

where β(i) is the vector of trait effects for SNP i. In the following, we omit the subscript

i for brevity. We can model the relationship between SNP selection s and the haplotype

data D from a window around the SNP via the latent ancestral recombination graph

(ARG) G,

LSNP (s) � Ep [P (D | G, s)] � Eq

[
P (D | G, s)

p (G | s)
q (G)

]
(B.2)

for any appropriate choice of q such that p (s) > 0⇒ q (G) > 0, which generally will

hold in our case. Thus, we can approximate the SNP likelihood function as

ˆLSNP (s) �
1

m

m∑
l�1

Eq

[
P(D | G, s)

P(G | s)
q(G)

]
(B.3)

Where the convergence is almost surely as m →∞.
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We are interested in the particular choice of q (G) � p (G | D , s � 0), the posterior

under selective neutrality, because programs such as ARGweaver and Relate can be used

to approximately sample the posterior ARG, or aspects of it (e.g. a local tree). We showed

previously that the approximation

L̂R
SNP

(s) �
1

m

m∑
l�1

p
(
Gi

(l)
| s

)
p
(
Gi

(l)
| s � 0

) (B.4)

is a tractable and accurate estimate of the likelihood ratio of s, where Gi denotes the

local tree at SNP i, extracted from the ARG G. Here, we introduce and use a slightly

different estimator,

L̂R
SNP

(s) �
m∑

l�1

p(Gi
(l)
|s)

π(Gi
(l)

)
/ m∑

l�1

p(Gi
(l)
|s � 0)

π(Gi
(l))

(B.5)

where π(·) is a neutral prior on coalescence trees. While p (·) is calculated using

the structured coalescent, with lineages subtending the same allele with frequency X (t)
coalescing at rate λ (t) � N (0) / [N (t) X (t)], the prior π (·) is calculated using the un-

structured coalescent with rate λ (t) � N (0) /N (t). Note that we do not explicitly model

population structure (e.g. gene flow). We also note that we have made several addi-

tional modifications to the importance sampling approximation of the likelihood ratio:

first, we assume that the allele frequency trajectory is a deterministic, logistic function

of time, when previously we modeled stochasticity in the allele frequency trajectory (see

the next section for more details). Because we focus on applying our method to detect-

ing adaptation in the recent past, this approximation is appropriate when drift has had

little opportunity to distort allele frequencies. Second, we make a functional approxima-

tion to log L̂R
SNP

(s). We do a grid search for the optimal value of s∗, and then we fit

a quadratic function to points (s , log L̂R
SNP

(s)) : |s − s∗ | < δ. Optimizing log L̂R (ω)
then becomes a simple process of solving a linear system of equations:

log L̂R (ω) �
∑

i

(ai
(
βT

(i)ω
)

2

+ bi
(
βT

(i)ω
)
+ ci) (B.6)

Where (ai , bi , ci) are the fitting coefficients of the quadratic approximation for SNP i,

in descending order of degree. Thus

ω̂ �


2

∑
i

aiβ(i)β
T
(i)



−1

*
,

∑
i

biβ(i)+
-
. (B.7)
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This approximation has two benefits: (1) solving for the selection gradient estimate is

extremely simple and fast, and (2) it makes it feasible to calculate standard errors using

resampling approaches.

Accounting for multiple SNPs in LD
In our analyses we assume independence of local LD blocks (see e.g. Berisa & Pickrell,

2016). Generally we choose to ascertain a single SNP for each LD block and include its

SNP likelihood in the product (Eq. B1). However, in joint analyses it may be necessary to

ascertain multiple SNPs per LD block, each corresponding to a GWAS hit for a different

trait. Let B(i) denote the set of ascertained SNPs in the same LD block as i. If only 1 SNP

from each LD block is included, then B(i) � 1 for each ascertained SNP i. If multiple SNPs

from the same LD block are included, we exponentiate each of these SNPs’ likelihoods by

a factor 1/|B i |:

L (ω) �
M∏

i�1

LSNP
i

(
βT

(i)ω
)

1/|Bi |
(B.8)

This can be considered a conservative method for dealing with SNPs in LD. For ex-

ample, let A be our set of ascertained SNPs. If two nearby SNPs i1, i2 are in perfect LD

(r2

� 1), then we expect LSNP
i1

(s) � LSNP
i2

(s) and β(i1) � β(i2). Suppose all other SNPs in

A are independent (i.e. ascertained from distinct LD blocks). Then the exponentiation

factor recovers the original likelihood

L (ω) �
M∏

i�1

LSNP
i

(
βT

(i)ω
)

1/|Bi |
(B.9)

� K(ω)
∏

i∈S : i,i1 ,i2

LSNP
i

(
βT

(i)ω
)

(B.10)

Where K(ω) � LSNP
i1

(βT
(i1)ω) � LSNP

i2

(βT
(i2)ω). In the other limiting case r2 � 0, this cor-

rection factor is conservative, as it discounts the contribution of i1, i2 to the log likelihood

by a factor of 1/2.

Selection gradient and correlated response standard errors
Weuse a block-bootstrap approach to calculating the standard errors of ω̂. Specifically, we

identify LD blocks and bootstrap loci ascertained in distinct blocks. Given the standard

errors, we assess significance using a Wald test on the Z statistic ω̂/ŝ eω.
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We also compute a statistic we call R to assess whether a trait j has evolved under

correlated response to selection on some disjoint set of traits T. To do this, we can estimate

selection gradients for two sets of traits, T and T ∪ j, and calculate

R � ω(T∪ j) − ω( j)
(B.11)

where ω(U)
is the selection gradient of the trait estimated with respect to a set of

traits U, calculate ŝ eR through block-bootstrap, and assess significant using aWald test on

R/ ŝ eR.

B.2 Coalescent likelihood models

Relate prior
The prior π(T) is the standard coalescent with changing effective population size. First,

let Ube the vector of n − 1 coalescent times of T, ordered most to least recently. Due to

exchangeability of lineages, the density only depends on T via these coalescent times U.

Specifically,

π(T) �
n−1∏
i�1

p(Ui � ui | Ui−1 � ui−1) (B.12)

p(Ui � ui | Ui−1 � ui−1) �
n − i + 1

2

· N (0)/N (ui) · exp(−
n − i + 1

2

(Λ(ui) −Λ(ui−1)))

(B.13)

Λ(u) �
∫ u

0

N (0)/N (t) · dtN (0)/N (t) · dt (B.14)

We assume that N (t) is piecewise constant and can be expressed using τ � (τ
0
, τ1, . . .)

and N � (N0,N1, . . .) such as the required models for ARGweaver and Relate; hence,

finding Λ(u) is a simple sum over integrals defined over constant functions:

Λi �

b(ui )∑
k�1

N0τk/Nk + N0(ui − τb(ui ))/Nb(ui ) (B.15)

where b(u) :� max{k ∈ (0, 1, 2 . . .) : u > τk }.
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Coalescent selection likelihood under deterministic model
Unlike in our previous work [116], in which we treated the allele frequency as a latent

random variable, here we use a deterministic approximation of the allele frequency tra-

jectory. Under the standard ‘hard sweep’ model, an appropriate approximation would

be X(t | s) � (1 + (1 − x0)/x0 · e st )−1
. Technically, if we want to express the trajectory

conditional on the present-day derived allele frequency (DAF) x0, it would be more ap-

propriate to use a closer approximation of the backwards Wright-Fisher diffusion with

selection. However, since we are mostly interested in modeling the recent past for com-

mon alleles ascertained in aGWAS (usually DAF > 1%), this approximation is appropriate,

especially in populations of large recent Ne such as humans, where drift is negligible on

short timescales.

We assume a pulse of selection over some time interval (a , b), outside of which the

allele is effectively neutral (and, we assume, at constant frequency):

X(t , s , x0) � x0, t < a (B.16)

� (1 + (1 − x0)/x0 · e s(t−a))
−1

, a ≤ t < b (B.17)

� (1 + (1 − x0)/x0 · e sb)
−1
,

t > b (B.18)

To calculate p(T | s), we split the tree into two subtrees (imagine ‘deleting’ the branch

on which the mutant allele arose). Note that we implicitly assume the site is biallelic, such

as under the infinite sites assumption. Let us label these alleles A1 and A2; these labels

must be consistent with the polarization of the GWAS summary statistics; we assume

that those are polarized w.r.t the A1 allele. Within each of these subtrees, we find the

coalescent times UA1
and UA2

. Then

p(T | s) �
n1−1∏
i�1

p(Un−i � uA1

i | Un−i+1 � uA1

i−1
, s , x0) (B.19)

×

n2−1∏
i�1

p(Un−i � uA2

i | Un−i+1 � uA2

i−1
,−s , 1 − x0) (B.20)

p(Uk−1
� t | Uk � t′, s , f ) �

k
2

·
N (0)

N (t)X(t)
· exp(−

k
2

(Λ(t , s , f ) −Λ(t′, s , f ))) (B.21)

Λ(t , s , f ) � N (0)/[N (τ)X(τ, s , f )] · dτ (B.22)

where UA1
and UA2

are measured in units of 2N (0) generations.

B.3 Supplementary Figures
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Figure B.1: Distribution of frequencies and SDS in 1000 Genomes SNP set.
(A) mean SDS score with respect to joint derived allele frequency (DAF) in TSI

vs GBR.We selected a set of 40,320 autosomal SNPswithMAF >0.5% in the UK

Biobank and MACGBR+TSI ≥ 4, HWE P > 10
−6

in the 1000 Genomes Phase 3

data, which we used in our simulations of uncorrected stratification. We found

that this SNP set recapitulates the pattern demonstrated in Sohail, et al. (2019);

namely, that SNPs with higher frequency in GBR tend to have higher SDS, and

vise versa for TSI. DAF was calculated from 1000 Genomes phase 3 data for all

autosomes and SDS was obtained from previous analysis of the UK10K cohort.

To limit noise, we show DAF bins with ≥30 SNPs. (B) An example simulation

of uncorrected stratification in Z-scores of the aforementioned SNP set. Here

we set h2 � 50%, M � 10
3, N � 10

5, NTSI/NGBR � 5%, σS � 0.1. Causal SNPs

are circled in blue. Dashed lines indicate genome-wide significance thresholds

(P < 5 × 10
−8
).
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Figure B.2: Calibration and power under GBR demography We simulated

polygenic adaptation under amodel of changing population size based onGBR

1000 Genomes individuals with ω � 0.05, and a pulse of recent selection over

the last 35 generations. Red denotes simulations with selection, pink denotes

neutral simulations. Dashed lines indicate nominal FPR (5%) and black lines

denote 95% Bonferroni-corrected CIs. We simulate a trait with h2 � 50% and

N � 10
5
. To estimate treesweused a sample size of n � 400haplotypes of length

1Mb and assume mutation and recombination rates of µ � r � 10
−8
/bp/gen.

We simulate 1000 replicates in each case.
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Figure B.3: Robustness to purifying selection. We simulated traits under

purifying selection using the model of Schoech, et al. (2019). That is, we model

the joint distributionof allele frequency and selection coefficient of a causal SNP.

We assume that SNPs are always deleterious and themagnitude of the selection

coefficient has an exponential distribution, withmean s. Given s for a particular

SNP, the allele frequency is drawn randomly from its stationary distribution.

We assume that |β | � c · s1/2
– the constant of proportionality is chosen post-

hoc to normalize SNP heritabillity to 50% – so our results also approximate for

the dynamics of Gaussian stabilizing selection, modulo underdominance and

epistatic effects. Dashed lines indicate nominal FPR (5%) and black lines denote

95% Bonferroni-corrected CIs. We simulate GWAS with N � 10
5
. To estimate

trees we used a sample size of n � 400 haplotypes of length 1Mb and assume

mutation and recombination rates of µ � r � 10
−8
/bp/gen. We simulate 1000

replicates in each case.
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Figure B.4: Calibration and power under allelic heterogeneity We simulated

polygenic adaptation of a trait with multiple linked causal SNPs in LD (i.e.,

allelic heterogeneity) in SLiM. We assume h2 � 50% and a mutational target

of 100 × 100kb regions with µ � r � 10
−8
. We assume a constant population

size of Ne � 10
3
and burn in simulations for 9990 generations, and then for

the next 10 generations, we simulate a directional selection gradient of ω �

0.2 (we chose this value because it resulted in ∼1SD increase in the mean

phenotype). We simulated two levels of allelic heterogeneity; (left) 5% and

(right) 50% of mutations in the target are causal. Red bar indicate power

to detect simulations with selection; pink bars (which are too short to see

this color) indicate FPR under the null, ω � 0. SNPs were ascertained by

taking one at each independent regions with the maximum value of 2pqβ2

within the region. We tested for selection using the true local trees at these

sites. Dashed lines indicate nominal FPR (5%) and black lines denote 95%

Bonferroni-corrected CIs. We simulated 1000 replicates in each case.
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Figure B.5: Time specificity of test for recent selection We simulated under

models of different timings of selection, assuming a 50-generation pulse with

start time ranging from50 to 250 generations ago, aswell as neutral simulations,

and run PALM under a nominal model of selection in the last 50 generations.

Dashed lines indicate nominal FPR (5%) and black lines denote 95%Bonferroni-

corrected CIs. We simulate GWAS with N � 10
5
. To estimate trees we used

a sample size of n � 400 haplotypes of length 1Mb and assume mutation and

recombination rates of µ � r � 10
−8
/bp/gen. We simulate 1000 replicates in

each case.



APPENDIX B. SUPPLEMENTARY MATERIALS TO CH. 3 133

Figure B.6: Pleiotropy causes bias in tests for polygenic adaptation We sim-

ulated a bivariate trait (modeled after h2
and rg of schizophrenia [Scz], and

bipolar disorder [Bip]). We simulated a pulse of selection acting to increase Scz

prevalence over the last 50 generations. (A) Estimates of directional selection

on SNPs (ŝ) are positively correlated with both SNP effects for Scz and Bip.

We estimated selection using our importance sampling method and included

SNPs ascertained in our simulated GWAS. (B) Testing for selection on a neutral

correlated trait (here, Bip) yields massive inflation of the false positive rate. We

evaluated p-values by computing significance of the Spearman correlation of
ˆβ

and ŝ.

Figure B.7: Marginal vs. joint test comparison, lower pleiotropy Here we

recreate Figure 3 (main text) but setting the level of pleiotropy used to simulate

the polygenic trait architectures to be lower (% � 60%). See Fig. 4.3 for all

simulation details.
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Figure B.8: Calibration of joint test Simulations under neutrality, testing Trait

I and Trait III jointly. Here we show calibration of J-PALM when neither of

the two traits is under selection (i.e., both are neutral). We consider the effects

of degree of pleiotropy (A) and polygenicity (B). Other simulation details are

identical to Fig. 4.3.
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Figure B.9: Joint test power and calibration for other trait pairs Simulations

under neutrality, using J-PALM to test Trait I vs Trait II (A,B) and Trait I vs Trait

IV (C,D) jointly. We varied degree of pleiotropy % (A,C) and polygenicity M
(B,D). In all simulations we simulated selection to increase Trait I, with all other

traits neutral. Other simulation details are identical to Fig. 4.3.
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Figure B.10: Joint estimates under complementary selection Positive selection

(ω � 0.05) simulated on both of two traits, Trait I & II, modeled after SNP

heritability and genetic correlation of bipolar (Bip) and schizophrenia (Scz).

Selectionwas estimatedmarginally (left) and jointly (right). Simulations follow

the approach demonstrated in Fig. 4.3.
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Figure B.11: Joint test, including/excluding the causal trait We conducted

joint tests over all pairs of Traits I/II/III/IV under 3 scenarios: (A) neutral (all

traits neutral), (B) Traits I & II under positive selection, (C) Trait I under positive

selection, Trait II under negative selection. Text and color show positive rate.

Parentheses indicate standard errors.
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Figure B.12: Correlated response test, including/excluding the causal traitWe

conducted tests for correlated response over all pairs of Traits I/II/III/IV under

3 simulation scenarios: (A) neutral (all traits neutral), (B) Traits I & II under

positive selection, (C) Trait I under positive selection, Trait II under negative

selection. Text and color show positive rate. Parentheses indicate standard

errors.
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Figure B.13: K-way tests for selection and correlated response. Top: including
all traits. Bottom: excluding trait I. Solid bars: test positive rate for selection

test. Dotted bars: test positive rate for correlated response test. Trait I is under

positive selection, with all other traits neutral.
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