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MRI quantification of cartilage of the knee
Julio Carballido Gamio

Abstract

Osteoarthritis (OA) of the knee is a chronic disease that is characterized by

degeneration of articular cartilage. Magnetic resonance imaging (MRI) allows the

visualization and quantification of this degeneration in vivo. In this dissertation the

development of new image processing techniques and application of existing ones to

perform inter-subject comparison of knee cartilage thickness are presented. The main

characteristic of the proposed method is the registration of cartilage surfaces based on the

registration of the corresponding bones. The process is semi-automatic since steps

involving segmentation require interaction. Cartilage is segmented using Bezier splines

and edge detection, and its shape is then interpolated using a morphing technique to

create isotropic voxels. The bones corresponding to the segmented cartilage are

segmented with a similar approach and registered based on landmarks. The registration

can be rigid-body for intra-subject or elastic for inter-subject comparisons. Landmarks

are automatically selected based on shape matching using 3D shape- contexts.

Visualization of cartilage thickness maps in three dimensions or overlaid on the MR

images is also demonstrated. The cartilage segmentation and the morphing technique

were validated visually and based on volumetric measurements of images of porcine

knees which cartilage volumes were directly measured using a water displacement

method. The registration techniques were validated visually and using manual landmark
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registration. Results showed a good agreement between the digital volumetric

measurement from the morphed cartilage and the water displacement method with

correlation values of 8.3 (p<0.001) and 7.5 (p<0.001) for 3T and 1.5T, respectively.

Registration results also were satisfactory with minimum distances between the registered

surfaces of less than the slice thickness. The conclusion was that the proposed image

processing techniques were accurate and robust to perform intra-subject and inter-subject

comparisons of cartilage thickness of the knee as well as digital volumetric and thickness

measurementS.
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Chapter 1
Introduction

1.1 Motivation

Osteoarthritis (OA) is a chronic disease causing deterioration of the joint cartilage.

The National Institutes of Health (NIH) in USA estimated that in 2002 more than 20

million people in the United States had OA, and that more than half the population age 65

or older would show x-ray evidence of it in at least one joint. OA affects both men and

women, however is more common in men before age 45, and more common in women

after age 45. A common manifestation of OA of the knee is the morphological

degeneration of articular cartilage. Magnetic resonance imaging (MRI) offers the

potential to visualize and analyze quantitatively those changes in vivo [1]. However this

quantification and analysis is not straightforward if true 3D analysis is desired. The

complications increase when we want to compare the knee cartilage of the same patient at

different times, or when we want to compare common regions or points between different

patients at any time. These difficulties are the result of anatomical differences, different

positioning of patients in the MR scanners, movement of patients during the scans, MR

distortions, etc. However, it is important to monitor properly the progression of the

cartilage degeneration as well as related treatments. It would also be important to create a

reference knee and normalized all other knees to this common framework so comparisons

of different properties such as thickness, MR T1 or T2 relaxation times could be

performed for different populations in the search of a valid biomarker for OA. In order to

accomplish this goal, robust image processing techniques are required.



1.2 Scope of the dissertation

The purpose of this work is to present image processing techniques to perform intra

and inter-subject quantification and comparison of knee cartilage morphology. The

proposed methodology allows point to point intra and inter-subject comparison of knee

cartilage thickness based on the registration of bone structures. After MR image

acquisition the process consists of net image processing: cartilage segmentation,

interpolation of cartilage based on shape to create isotropic voxels, bone segmentation,

image registration based on bone structures, quantification of cartilage thickness and

volume, and visualization. This is the evolution of material presented in [2-5].

The developed techniques are demonstrated with examples focused on comparisons

of cartilage thickness maps. In order to compare these maps, cartilage is segmented from

sagittal MR images of the knee using a semi-automatic segmentation technique based on

edge detection and Bezier splines. Because images have highly anisotropic voxels and 3D

analysis is desired, shape-based interpolation using a morphing technique is computed to

create isotropic voxels representing cartilage. Cartilage volume and thickness is then

computed followed by the segmentation of the corresponding bone structures (e.g. femurs

for femoral cartilage) by using a similar technique than the employed for cartilage

segmentation. This process is applied to the images being compared, and corresponding

landmarks are automatically identified in the “source” and “target” segmented bones

using 3D shape-contexts. By using rigid-body or non-linear registration algorithms a

spatial transformation is then computed based on the identified sets of landmarks and

applied to the “source” bone and cartilage surface to align the corresponding structures.



Finally, the registered “source” cartilage is matched to the “target” based on minimum

Euclidean distances to establish a point to point correspondence.

It is important to clarify that the objective of this work was the application and

development of image processing techniques to perform intra and inter-subject

comparison of knee cartilage morphology rather than deduce any characteristics of

cartilage changes during arthritic disease progression.

1.3 Dissertation overview

The organization of this dissertation is in the order of the steps just mentioned above.

Chapter 2, Background, contains theoretical concepts relevant to understand the contents

of the dissertation. Reading of this chapter is suggested for people with no background in

MRI or image processing. Although the intention is not to give a full comprehensive

review on these topics, it contains enough information to understand the principles

behind MRI, image segmentation, interpolation, and image registration. Specific

information describing image processing techniques used in following chapters is also

included. Chapter 3, Cartilage segmentation, describes the different steps to perform

cartilage segmentation. In this chapter the image acquisition parameters are also included

together with a brief introduction describing different approaches that have been done to

compute segmentation of MRI cartilage of the knee. After cartilage segmentation and

before any 3D cartilage quantification and analysis, cartilage shape is interpolated to

obtain isotropic voxels. Chapter 4 describes the morphing technique proposed in this

dissertation to accomplish this task, as well as a technique to automatically label cartilage

surfaces as bone-cartilage interface or articular surface, which is essential to compute 3D



cartilage thickness measurements. A description of the different steps to accomplish

shape-based interpolation of cartilage using only distance fields (DFs) and linear

interpolation is also presented in Chapter 4. With the creation of cartilage structures

represented by isotropic voxels proper 3D analysis can be performed. In Chapter 5

cartilage thickness measurements are introduced as well as different ways to display this

information as cartilage thickness maps. Chapter 6 describes two different digital

techniques to compute cartilage volume as well as a direct methodology. Chapter 7 is

probably the most relevant chapter in this dissertation, since it describes the techniques to

accomplish intra and inter-subject registration of cartilage surfaces. So this chapter

describes the segmentation of the bone structures to be registered, as well as the

automatic landmark identification. Based on the corresponding landmarks affine

(rotation, translation, and scaling) and nonlinear transformations are computed and

applied to the bone structures as well as to the corresponding cartilage surfaces to

perform point to point cartilage thickness comparisons. Chapter 8, Results, presents

quantitative and qualitative results validating the segmentation, morphing, and

registration techniques. Chapter 9, Discussion, is the last chapter of this dissertation and

carefully discusses the advantages and drawbacks of the proposed methodology to

perform intra and inter-subject cartilage thickness comparisons. In this chapter future

improvements are also proposed to further automate the whole process.

References.
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Chapter 2
Background

2.1 Osteoarthritis of the knee

According to the National Institutes of Health (NIH) of the United States,

osteoarthritis (OA) is a chronic disease causing deterioration of the joint cartilage and the

formation of new bone (bone spurs) at the margins of the joints. OA is also known as

degenerative joint disease or osteoarthrosis, and is the most common type of arthritis,

especially among older people. NIH estimated that in 2002 more than 20 million people

in the United States had the disease, and that more than half the population age 65 or

older would show radiographic evidence of OA in at least one joint. OA affects both men

and women, however in men it starts at an earlier age than in woman.

According to the American Academy of Orthopaedic Surgeons, OA of the knee is one

of the five leading causes of disability among elderly men and women. The risk for

disability from OA of the knee is as great as that from cardiovascular disease. Although

OA can affect any joint, the knee is the most common affected site. Fig. 2.1 is a pictorial

representation of a normal knee and a knee with OA.

The exact cause of OA is still unknown; however there are some known possible

factors such as injury, age, congenital predisposition, and obesity. OA of the knee usually

occurs in knees that have experienced trauma, infection or injury.

Articular cartilage is composed of fibrous connective tissue, and has a smooth surface

that covers the end of bones to act as a protective cushion or shock absorber in the

articulation. When OA of the knee progresses the cartilage thins and the surrounding

bones react by becoming thicker. In severe OA cases the cartilage breaks down and its



functionality is lost causing the bones to rub each other and the deformation of the joint.

These effects are commonly seen on radiographs as a narrowing of the joint space and

osteophytes. Patients with OA of the knee have symptoms such as pain, swelling, and

decreased motion.

Normal Joint Osteoarthritis

Muscle

Synovial
rnernbrane

Bursa

Synovial
fluid

| *Joint capsule
--

i Thinned
Tendon cartilage

-- Cartilage /
Eone ends

(£ Medicine Met, Inc. rub together

Fig. 2.1 Pictorial representation of a normal knee and a knee with severe OA.
Image was taken from http://www.medicinenet.com/osteoarthritis/page2.htm

OA of the knee can be diagnosed based on patient symptoms or based on medical

imaging. Patient symptoms include pain and limited functionality in the corresponding

knee. The standard medical imaging technique to diagnose OA of the knee is

radiography; however MRI has started to play an important role in the characterization of

this pathology. MRI allows high spatial resolution images to visualize and quantify

cartilage degeneration [1-3], soft tissue abnormalities, and changes in the trabecular bone

structure [4-5]. Fig. 2.2 shows an example of a healthy knee joint and one with OA as

shown on radiographs, while Fig. 2.3 shows them for a different subject with MRI. As

seen in these figures, radiographs offer a good visualization of bone structures, but



cartilage delineation is not possible, while in MRI both cartilage degeneration and

internal arrangement of the knee joint are visualized.

Fig. 2.2 Radiographs of a normal knee (a) and a knee with OA (b). (a) and (b) were taken from:
http://www.emedz.com/emedk/diagnosis information/knee disorders/knee osteoarthritis_xrays.htm

Fig. 2.3 Sagittal 3D fat-suppressed spoiled gradient recalled (SPGR) MR images of a normal knee (a) and a knee
with OA (b), where the femoral cartilage has substantially thinned. There is also thinning of the tibial cartilage.

The severity of OA of the knee is usually evaluated using the radiograph based

Kellgren-Lawrence (KL) scale [6]: KL scores of 1 and 2 are commonly considered mild

OA and classified as OA1; KL scores of 3 and 4 are considered severe OA and classified

as OA2; and subjects with no radiographic evidence of OA are classified as OAO.

A wide range of treatments for OA knee are available. Although treatment is tailored

to the individual, initial treatment is generally focused to alleviate the pain; however



arthroscopy might be performed to clean bone-cartilage fragments that might cause

inflammation and pain. On the other side, total knee replacement (TKR) with insertion of

prosthetic devices is considered and end-stage treatment [7]. Intermediate treatments

include cartilage repair techniques which have been a subject of intense research over the

past few years. A number of new surgical techniques are now available and have

revolutionized the therapy of focal cartilage lesions [8–10]. The evolution of

osteochondral autograft transplantation has pointed it as one of the most promising

techniques [11-17]. A number of synonyms have been used for this technique including

mosaicplasty, OATS (osteochondral autograft transfer system) and AOT (autologous

osteochondral transplantation). This method is currently considered as the only surgical

technique that provides and retains proper hyaline articular cartilage [18]. Cylindrical

osteochondral grafts are harvested from the non-weight-bearing area of the proximal

femoral condyle and are implanted into joints areas with defective cartilage. This

technique is used most frequently at the knee and ankle joints, but has also been

advocated in other joints such as the elbow [11]. The main clinical indications for

autologous osteochondral transplantation are (i) focal cartilage defects, (ii)

osteochondritis dissecans and (iii) osteonecroses.

2.2 Magnetic resonance imaging

Magnetic resonance imaging is a noninvasive imaging modality that involves no

ionizing radiation and allows the visualization of soft tissue structures with high contrast

and high spatial resolution.

Magnetic resonance originates from the interaction between an atom and an external

magnetic field. Atoms with an odd number of protons and/or odd number of neutrons



posses a nuclear spin angular momentum, which make them candidates for MR imaging.

These atoms are usually known in the MR community as spins.

The nature of MR is based on the interaction of spins with three types of magnetic

fields: 1) main magnetic field known as Bo, 2) radiofrequency field B, and 3) linear

gradient fields G.

When spins are placed in a magnetic field, they create a net magnetic moment in the

direction parallel to the direction of the magnetic field, which is known as the

longitudinal direction, and they oscillate at a frequency proportional to its strength, which

is known as the Lamor frequency and is given by (2.1):

a)0 = y Bo. (2.1)

In (2.1) a)0 is the Lamor frequency; Y is the gyromagnetic ratio, which is a unique

constant for each type of atom; and B0 is the main magnetic field strength. In the presence

of a magnetic field spins become capable of absorbing energy if they are exposed to

electromagnetic energy at the proper frequency of oscillation, in this case the Lamor

frequency. The magnetic field Bj, which is thousands of times weaker than B0, is applied

to the spins at the Lamor frequency in a direction perpendicular to the main magnetic

field B0, promoting an energy absorption as well as a change in the direction of the

longitudinal magnetization to the transverse plane to create the transverse magnetization.

When spins properly interact with a superposition of linear and perpendicular

gradient fields G, G, G, and the B field, each point in space has a unique radio

frequency at which the absorbed energy is transmitted as they return to the initial state of

equilibrium. Based on the spatial encoding of frequency an image can be created. The

strength of the transmitted energy is proportional to the number of spins in the tissue. In
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biological imaging, hydrogen ('H) is the most abundant spin, the most sensitive, and the

most studied [19]. The amount of transmitted signal also depends on the local

environment of the spins. Factors such as mobility and magnetic field homogeneity have

a big impact on the final image.

The return of the net magnetization to its original longitudinal orientation is mandated

by two relaxation processes:

1) The relaxation back to equilibrium of the component of the nuclear

magnetization parallel to Bo which last time T1.

2) The relaxation back to equilibrium of the component of the nuclear

magnetization perpendicular to Bo, which last time T2.

By proper manipulation of MRI acquisition parameters, images can be “weighted” to

accentuate different physical parameters such as proton density, T1, T2, diffusion, etc.

2.3 Segmentation of MR images.

Image segmentation is the division of an image or volume (stack or sequence of

images) into regions that are made up of pixels that have something in common [20].

MRI has become the image modality of interest in the past few years. The large numbers

of variables that can be manipulated make MRI a powerful medical imaging device. As

other imaging techniques, segmentation of MR images is required to identify anatomic

structures, perform intra and inter-modality image registration, and classify functional or

pathological areas.
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A common segmentation procedure in medical imaging consists of 4 steps as is

depicted in Fig. 2.4, where image pre-processing is considered essential in MRI due to

the magnetic field inhomogeneities.

Image Segmented image

!
Pre-processing Classification and

labeling
Feature Extraction H-. Segmentation P

Fig. 2.4. Flow diagram showing the different steps to accomplish successful image segmentation.

a) Image pre-processing: Pre-processing is a crucial step in the segmentation

procedure. The main goal in this step is the enhancement of those features that will be

used to differentiate the different regions of interest from the rest of the image content.

Common enhancement techniques are focused on noise suppression and contrast

enhancement. Different methods have been proposed and applied in the MRI community

such as linear low pass filtering, wavelet theory, maximum entropy (MEM), expectation

maximization (EM), adaptive nonlinear filtering, etc. In this section we will describe

three image pre-processing techniques that will be mentioned in Chapter 3 and 7 where

cartilage and bone segmentations will be described.

i) Anisotropic diffusion: The primary objective of anisotropic diffusion is to smooth

images with no distortion of their edges such that at all scales, intra-region smoothing

occurs preferentially over inter-region smoothing [21-22], and to satisfy the causality and

immediate localization criteria. In the anisotropic diffusion equation:

1, = c(x,y, ovºi i ve vi, (2.2)
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where c (x, y, t) is the conduction coefficient, t is the scale variable, V and V 2 represent

the gradient and Laplacian operators with respect to the space variables, the objective is

to assign a value of 1 to the conduction coefficient inside of each region, and 0 at the

boundaries.

Setting the conduction coefficient as a function of the magnitude of the gradient of

brightness function as suggested by Perona and Malik in [21], provides a good estimate

of the edge positions:

), (2.3)c(x,y,1) = g(V1(x,y,1)

where g should be smooth and g() is restricted to a subclass of the monotonically

decreasing functions. Fig 2.5 shows the function g() that was used in this dissertation:

vil
e K . (2.4)

The anisotropic diffusion algorithm with adiabatic boundary conditions and

exponential non-linearity given in [22] was used in this study to increase the brightness

homogeneity within the cartilage and bone, while preserving and enhancing the edges. In

this function three parameters can be manipulated to control the degree of smoothing and

preservation of edges: A, K, and number of iterations. The parameter A controls speed of

diffusion, and the maximum suggested value is 0.25. The parameter K controls

conduction as a function of gradient. Small intensity gradients are able to block

conduction and hence diffusion across step edges if K is low. A large value of K reduces

the influence of intensity gradients on conduction; and as the number of iterations

increases the scale becomes coarser.
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ii) Median filtering: The median filter replaces the value of a pixel by the median of

the gray levels in the neighborhood of that pixel [23]. The original value of the pixel is

included in the computation of the median. The median filter belongs to the class of order

statistics filters, that is, filters based on the ordering of the input samples. The median

filter is widely known because of its ability to suppress impulse noise while preserving

relatively well edge information. It is very efficient in the removal of long-tailed (e.g.

Laplacian) noise. However, it is of limited effectiveness in the case of Gaussian noise

[24].

;

1 300

Magnitude of the gradient of brightness function

Fig. 2.5. Anisotropic diffusion. Shape of g (...) employed in this
dissertation for different values of K.

iii) Power-law transformations: Power-law transformations have the basic form:

s = cr' (2.5)

where c and y are positive constants. Power-law transformations with fractional values of

y map a narrow range of dark input values into a wider range of output values, with the

opposite being true for higher values of input levels. Power-law transformations with
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values of y-1 have the opposite effect as those generated with values of yº1. Fig. 2.6

shows some plots of equation (2.5) for various values of y and c=1.

º

g y = 02
30 0.6 y = 067

an 15= 04 y =
S- y = 5
■ / Y = 25

0.2 - /
r

0 0.2 0.4 0.6 0.8 1
Input gray level r

Fig. 2.6. Power-law transformations for
different values of Y (c=l in all cases).

b) Feature extraction: Once the image features of interest have been enhanced with

image pre-processing techniques they are extracted either automatically or semi

automatically to perform image segmentation. The most common features employed in

segmentation of MR images are pixel intensities and edges, however texture and more

recently shape have also been utilized.

c) Segmentation: Based on the extracted features the pixels/voxels are grouped

together according to different rules of similarity or dissimilarity, shape constraints,

statistical models, linguistic rules, etc. Common segmentation algorithms are threshold,

edge detection, region growing, clustering, artificial neural networks, snakes, shape

models, statistical shape models, geodesic contours, etc. Some segmentation algorithms

do not know anything in advance about the object(s) to be segmented, some have a priori

knowledge of the object such as shape or position, other techniques require training, and
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some are performed in 2D or 3D, so segmentation and classification many times are

performed together.

Because the main applications of segmented MR images are related with clinical

situations, the ideal segmentation techniques are those that are automatic so subjectivity

is decreased and reproducibility increased.

There are different segmentation techniques that have been applied to MR images and

their applications are strongly related to the image characteristics and the desired region

to be segmented. In the following paragraphs a brief description of four common image

segmentation techniques is presented:

i) Threshold. This is the simplest method where pixels above certain intensity level

are considered the region of interest, and pixels below it are not, or vice versa. There are

many different versions of automatic and semi-automatic methods to set proper

thresholds based on either global or local information.

ii) Edge detection: Edge detection algorithms usually search for abrupt changes of

brightness across the pixel intensity levels. Approximations of derivatives of brightness

are commonly used to identify these transitions. Special care has to be taken in the pre

processing step to avoid edge removal or changes of their positions.

iii) Clustering techniques: Segmentation algorithms based on clustering usually group

different image features into vectors, that is why they are sometimes called multi-feature

or multi-spectral techniques. Then feature vectors are classified based on rules of

similarity such as Euclidean distances minimizing iteratively a cost function. K-means

clustering and fuzzy c-means are probably the more important segmentation techniques

of this type.
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iv) Statistical shape-models: The use of shape information to perform segmentation of

anatomic structures has become a powerful feature. Segmentation based on shape uses a

priori knowledge about the expected shape in the image. Usually a set of images are

manually segmented to create an average shape of the structure to be segmented. This

average shape is represented by a set of eigenvectors and eigenvalues to create what is

called the statistical shape model. The average shape is then manually or automatically

placed on the image to be segmented, and a deformation process is started guided by the

eigenvectors, eigenvalues, and by edge information. The eigenvectors and eigenvalues in

the deformation process are commonly called the internal forces, while the edge

information is known as the external force.

d) Classification and labeling: This is the final step in an image segmentation

procedure and it consists in the recognition of the anatomical structure or functional

region that resulted from the corresponding segmentation.

In the literature we can find that many times the segmentation methods are divided as

supervised and non-supervised methods. Supervised techniques mean that the operator

sets the initial values of the algorithm or simply that there is an interaction of the user

with the algorithm performance. Non-supervised algorithms mean that the interaction of

the user is minimized, and the final result is almost/or operator independent.

2.4 Interpolation

According to [25] interpolation is “model-based recovery of continuous data from

discrete data within a known range of abscissas”. Interpolation is almost never the goal in

itself; however its applications in medical imaging are numerous. Probably the most
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common application in MRI is related to the creation of isotropic images. In MRI there is

a trade-off between SNR and image resolution, and with current technology good quality

isotropic MR images of the knee are not possible yet. So the in-plane resolution is many

times higher than the through plane resolution resulting in highly anisotropic voxels. If

proper visualization or 3D analysis of anatomic structures is desired, then isotropic

voxels should be created. Gray-level and shape-based interpolation are the two main

interpolation categories and different papers have been published to approach this

common problem in image analysis and display [26-36].

2.4.1 Gray level interpolation

Nearest neighbor, linear, and cubic interpolation are the three most known gray-level

interpolation methods. The simplest and most efficient method from the implementation

point of view is nearest neighbor. This method, which is also called zero-order

interpolation, assigns to the interpolated voxel the gray-level of the closest non

interpolated one. This technique often produces undesirable artifacts such as distortion of

straight edges in high-resolution images [23]. Smoother results can be obtained with

cubic convolution interpolation, which is an interpolation technique that fits a surface of

the sin(z)/z type through a much larger number of neighbors in order to obtain a smooth

estimate of the gray level at any desired point [23]. However this technique is considered

computational expensive and usually is replaced by linear interpolation techniques (bi

linear and tri-linear for 2D and 3D images, respectively) which give satisfactory results at

a lower computational cost. Linear interpolation of gray levels consists in linearly

interpolating points within a square (2D) or box (3D) given the values at the vertices.
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2.4.2 Shape-based interpolation

Many times the extraction of the shape of a 3D structure from the MR image is

required for its subsequent quantification and analysis. When working with images with

anisotropic voxels there are two possible approaches to deal with these cases and perform

proper 3D analysis: 1) perform gray-level interpolation to obtain a new gray-level image

with isotropic voxels and then segment the volume of interest, or 2) segment the structure

of interest and interpolate the shape of this structure to obtain isotropic voxels. Both

methods are valid, however when totally automatic segmentation approaches cannot be

implemented, the first approach has the drawback of increasing the number of slices that

the user has to interact with to segment the structure of interest. This factor could be up to

ten times the initial number of slices. So a segmentation of a structure which originally

was contained in 40-60 slices has increased to a segmentation of 400-600 slices. When

dealing with manual segmentation techniques, this makes the gray-level approach

undesirable.

There are different approaches to interpolate shape. However, there are probably

three main categories: 1) those based on distance fields (DFs) [26-28]; 2) those based on

morphological operations [29-34]; and 3) those based on morphing [35-39].

Morphological techniques represent the shapes of the images to be interpolated as

binary structures. Then with a combination of erosion and dilation operations the new

shapes are interpolated. The disadvantage of these techniques is that they have difficulty

in interpolating shapes which are represented by few pixels since the erosion operations,

which are not reversible, sometimes eliminate structures of interest.
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Distance field interpolation has become the shape-based interpolation of choice. This

technique represents the shapes to be interpolated as DFs. The pixel values of the images

to be interpolated are replaced by their distances to the closest object contour. Distance

values inside or on the contour have different sign than those outside. Then by using

linear or cubic interpolation, DFs are interpolated and the new object is extracted from

the interpolated DF based on pixel signs.

Morphing interpolates shape based on DFs and warping. Morphing or image

metamorphosis is a well known tool in the animation and visual effects community.

Morphing is commonly used to create smooth transitions between digital images giving a

blending sensation. Morphing of two images into an intermediate one is commonly

accomplished with a three step process:

1) Feature Correspondence: Feature correspondence between the images is

performed based on pairs of feature primitives such as points or lines. In animation this

step, which is considered crucial to generate satisfactory results, is commonly done

manually although automatic techniques are available.

2) Warping: Intermediate features are generated and a mapping function which is

generally non-linear is computed to map the sets of features of both images onto the

intermediate set. The mapping function, also know as warping is then applied to all points

in both images.

3) Image interpolation: Color blending also known as cross-dissolve is performed on

the warped images to create the morphed in between one. In our application these images

were the corresponding warped DFs as done in [35].
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The current technique that is considered the standard for cartilage interpolation is that

proposed in [41]. This technique interpolates shape based only on DFs, can handle

branching, and its robustness has been demonstrated. The interpolation technique that

will be presented in Chapter 4 is a morphing technique. The main reason behind this

election was that morphing is better at handling situations of objects with invaginations

[35] that can occur in cases such as cartilage lesions. A comparison of both

methodologies will also be presented.

2.5 Shape matching

Point matching between two shapes is a common problem in medical image

processing techniques such as registration. “Image registration is the problem of finding a

spatial transformation mapping an object in one image to a similar object in another

image. When this problem is solved using shape information from the two objects, it is

referred to as shape matching” [42]. Point-based shape matching refers when the shape is

represented by points. These points could be points of high curvature, edges, specific

patterns such as endpoints, etc. In [43] Belongie et al suggested to extract shape features

along the edges of each object, determine pairs of corresponding shape features, and then

by using the correspondence information find an optimal aligning transformation. They

also suggested performing the second and third steps iteratively.

2.5.1 Shape-contexts

In [44] we presented and validated a 3D automatic point matching technique applied

to medical imaging. The technique was an extension to 3D of the work presented in [43]
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and it was also independently developed in [45]. Point matching is accomplished based

on 3D descriptors called shape-contexts that characterize the shape of each point based

on histograms of the distribution of points around them. Corresponding points on similar

shapes will have similar shape-contexts. In comparison to other point matching

techniques, shape-contexts do not require equal number of points for the shapes to be

compared or segments with high curvature. 3D shape-contexts are histograms computed

in 3D log-polar spaces (r, 6, and p) on points defining the shape surface, are invariant to

translation, and can be invariant to scale and rotation. An example of a bin in a 3D shape

context is shown in red in Fig. 2.7a. An image representation of a 3D shape-context for a

control point of a spline representing the shape of a tibia is shown in Fig. 2.7b with a total

of 1183 bins (7 values for r, 13 values for 6, and 13 values for p). For this example only

the control points of the splines defining the bone shape were considered. Fig. 2.7c shows

the shape-descriptor in 2D for reference purposes, which could be considered the cross

section at the equator of a shape-context in 3D.

Fig. 2.7. (a) 3D shape-context with a bin highlighted in red. This shape-context is only representing the 2
most inner radial sections of the 3D polar histogram structure. (b) Image representation of a 3D polar
histogram obtained using a 3D shape-context for a control point of a spline defining the shape of a tibia.
The vertical axis corresponds to the radial sections (7 for this example); while the horizontal axis represent
the bins at different angles (169 angles for this example; 13 values for 6, and 13 values for p). (c) 2D shape
context with a total of 91 bins (7 values for r, and 13 values for 6).

:
;
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2.5.2 Point matching

In order to match two shapes their corresponding 3D shape-contexts are compared to

each other based on the Y’ test statistic (2.6), a simple and effective measure of histogram

similarity:

P (h, (v) — h . 2zºn)-;". , (v)) (2.6)

where V is the total number of bins in the histograms (shape-contexts), hi(v) the number

of points inside the vth bin of the ith local histogram, and same idea for h;(v). The output

of this statistic could be considered as the cost of matching the points of the shape

contexts under evaluation [43].

Once all the pair-wise costs are computed, a 1-to-1 point matching that minimizes the

total cost is required. The optimal point matching in [44] was solved by using the

Hungarian method [46]. However in this work we used the robust contour matching

technique via the order preserving assignment problem (COPAP) [42], which minimizes

the total cost of this assignment, satisfies the criterion of 1-to-1 matching, allows the

matching of only a fraction of points to increase robustness with respect to shape

irregularity, and avoids the crossing of landmarks which is physically implausible.

Although the latter characteristic was intended for 2D contour matching, its extension to

3D was straightforward for our application since we had an ordered set of points in 3D.

2.6 Image registration

“The goal of image registration is to determine a spatial transformation that will bring

homologous points in images being registered into correspondence” [47]. There are two

main categories of image registration techniques: feature-based and direct. Feature-based

:
;
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methods use manually or automatically selected features and minimize a cost function

which objective is to align them. Direct methods used the pixel intensities themselves to

perform this alignment.

Based on the minimization of cost functions there are different transformations that

manipulate the coordinates of the “source” image to match those of the “target”. It is

common to classify these transformations according to their degrees of freedom (DOF),

which are the number of independent ways that the transformation can be changed.

Rigid-body transformations refer to those transformations that could be applied to a solid

structure: rotations and translations. Rigid body transformations have 6 DOF. The next

level of transformation is affine which incorporates scaling and shear giving us 12 DOF.

Elastic or non-linear transformations have from 12 to millions DOF.

2.6.1 Affine Registration

The affine transformation in this paper was accomplished by using [48]. In [48] Horn

et al solve what they call in photogrammetry the absolute orientation problem of two 3D

point sets. Given a set of corresponding landmarks for the source and target shapes, Horn

gives a closed form solution to find the optimal rotation (R), translation (ro), and scale (s)

that maps the set of Nsource landmarks (ls) onto the target set (17):

l; = S R l; + r. (2.7)

The solution proposed by Horn minimizes the sum of the squared distances between

the set of landmarks:

X|e■ , (2.8)
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where e, is given by (2.9):

e, - ly, - s R(ls,) – r, . (2.9)

2.6.2 Elastic registration

Elastic registration in this work was accomplished by using Wendland’s radial basis

functions (RBFs) [49] as proposed by Fornefett et al. in [50]. These RBFs have compact

support, are positive definite, constructed from piecewise polynomials, and of the

following general form:

p(r) 0 < r < 1 2.10
0 r > 1 ( )wo

where p(r) is a univariate polynomial. For a specified space dimension d > 0 and

smoothness parameter k20 there exists a unique Wendland function yak(r) e C*(R)

which is positive definite on R* and has a polynomial of minimal degree floor(d/2) + 3k +

1, where floor(x) returns the largest integers x. In this work the selected function was:

vs. (r) = (1 – r); (4r + 1), (2.11)

where

o-o:-".” 0< r < 1. (2.12)0 else

The selection was based on [50] where Fornefett chose the pair (d, k) = (3, 1) as it gave

the smallest degree polynomial that was still smooth and differentiable when evaluated at

r = 0. The mathematical properties also hold for different spatial supports a beyond unity:

y, (r) = y(r/a). (2.13)

For (2.11) Fornefett et al. suggested in [50] a minimum value of a equal to 2.98 the

;
;

-

* ,
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maximum landmark displacement for 2D, and 3.66 the maximum landmark displacement

for 3D.
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Chapter 3
Cartilage segmentation

Automatic [1] and semi-automatic [2-7] approaches to segment cartilage of the knee

from MR images have been published after the generation of high resolution and high

contrast images obtained with 3D spoiled gradient recalled (SPGR) fat suppressed pulse

sequences. Because these images offer good contrast at the bone-cartilage interface

(bone=dark, cartilage=bright), many methods based on edge detection have been

explored and validated [3-5, 7]. However, the segmentation task is still time consuming

and the amount of human interaction is considerable due to the common noisy

characteristics of MR images of patients with osteoarthritis (OA). So with the aim of

reducing the time and effort of manual segmentation while preserving accuracy, a semi

automatic, interactive segmentation technique that is based on edge-detection and Bezier

spline interpolation was developed. The segmentation technique is the evolution of

material presented in [6-7].

3.1 Image acquisition

3. I. I. In vitro

Sagittal MR images of 12 and 16 fresh porcine knees were obtained at 1.5T and 3T

(Signa, General Electric, Milwaukee, WI), respectively, using a quadrature knee coil. The

porcine knees were stored at -80°C between the measurements, and thawed to room

temperature in a water quench for imaging. At 1.5 T images were acquired with a 3D

SPGR pulse sequence. At 3T images were acquired with a 3D water excitation spoiled

gradient echo sequence (WE). All porcine images were acquired with fat suppression and

in-plane resolution of 0.195mm x 0.195mm after reconstruction. Table 3.1 and Table 3.2

;
;

º

( " '

28



show the image acquisition parameters [8], while. Fig. 3.1 and Fig. 3.2 show

representative images for the porcine knees at 1.5T and 3T, respectively.

Table 3.1. MR image acquisition
parameters for porcine knees at 1.5T.

Pulse sequence 3D SPGR
TR (ms) 27.5
TE (ms) 7.5

Flip angle (°) 20
BW (kHz) 31.25

Imaging time (min) 5:38
Matrix 512 X 512
NEX 1

Slice thickness (mm) 1.5
Number of slices 48

Fig. 3.1. Representative SPGR image of a
porcine knee at 1.5T.

The rationale behind the images of porcine knees was the idea of validating the

current cartilage manual segmentation technique [9] used in our OA studies [10-12],

comparing the digital volume measurements to those obtained directly from scrapped

cartilage using a water displacement method [8] (see Chapter 6 for more details). This

idea was then extended to validate the semi-automatic segmentation technique proposed

in Section 3.2.

3.1.2. In vivo

In vivo sagittal MR images of 5 human knees of subjects with different levels of OA

(2 OA0, 2 OA1, 1 OA2) were also acquired at 1.5T (Signa, General Electric, Milwaukee,

WI) using a 3D fat-suppressed SPGR sequence and a bilateral dual-phased array coil

(USA Instruments, Cleveland, OH). Subjects were positioned supine in the scanner, and

the knee to be imaged was secured using a knee-holder (constructed in-house) that

:
;
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allowed the knee to flex 30° it 1°. The receiver coils were secured to and centered at the

knee joint, so that signal to noise ratio was maximized. Images were acquired with fat

suppression and in-plane resolution of 0.234mm x 0.234mm after reconstruction. Table

3.3 shows a list of the image acquisition parameters while Fig. 3.3 shows a representative

image.

To correct for non-uniform signal intensity 3D low pass filtering was applied to all in

vivo acquisitions [13].

Table 3.2. MR image acquisition
parameters for porcine knees at 3T.

Pulse sequence 3D WE
TR (ms) 27.5
TE (ms) 13.12

Flip angle (°) 12
BW (kHz) 15.63

Imaging time (min) 5:38
Matrix 512 x 512
NEX 1

Slice thickness (mm) 1.5
Number of slices 48

Fig. 3.2. Representative WE image of a
porcine knee at 3T.

Table 3.3. MR image acquisition
parameters for human knees at 1.5T.

Pulse sequence 3D SPGR
TR (ms) 30
TE (ms) 3.3
TI(ms) 8

Flip angle (9) 30
Imaging time (min) 9:31

Matrix 512 x 512
NEX 1

Slice thickness (mm) 2
Number of slices 60

Fig. 3.3. Representative fat-suppressed SPGR
image of a human knee at 1.5T.

:
:
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3.2 Sagittal semi-automatic segmentation of cartilage

Cartilage was segmented from Sagittal MR images of porcine and human knees by

using a semi-automatic segmentation technique based on Bezier splines and edge

detection. The user placed control points inside the cartilage (e.g. femoral cartilage) 2.

following its shape to create a Bezier spline as is shown in Fig. 3.4a. All splines were

placed counter-clockwise (with the center of the clock in the corresponding bone) and the

end points remained in their original positions during the segmentation process. Then,

based on the maximum and minimum x and y coordinates of the splines, a bounding box

with an extra frame of 30 pixels was created to speed up the segmentation process, and
-

the new sub-image was normalized against its maximum gray level value. : º,
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Fig. 3.4. (a) Initial spline defining the shape of the femoral cartilage to be segmented is shown in green with its
corresponding control points for a human knee. (b) Line profiles used to find the bone-cartilage interface are .
shown with blue arrows. (c) Green points representing the bone-cartilage interface at the line profiles. (d) New * .

line profiles are shown with blue arrows, and tentative positions for the articular surface at the line profiles are |
shown with red points. Note the different image pre-processing in (c) and (d). -
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In order to find the bone-cartilage interface, which was considered to be detected with

more confidence than the articular surface because of the high contrast offered by the fat

suppressed images (bone=dark, cartilage=bright), the image edges were enhanced using

an anisotropic diffusion algorithm [14] (A=0.25, number of iterations=5, K=90) and a

median filter (7 pixels x 7 pixels), followed by a contrast enhancement technique based

on a power law transformation [15] (c=1, y=1/3). Then rays perpendicular to the splines

on the control points were traced towards the bone-cartilage interface to a distance equal

to a width of 15 pixels. From these positions, line profiles were computed back to the

cartilage using bicubic interpolation with an average of two points per pixel (Fig. 3.4b)

for a total of 60 points (~30 pixels). After computing the first derivative of brightness of

the line profiles, the maximum value of the first 30 points was taken as the bone-cartilage

interface for each point (Fig. 3.4c).

The original sub-image was taken again, smoothed with an anisotropic diffusion

algorithm (A=0.25, number of iterations=20, K=9), and contrast enhanced by a power law

transformation (c-1, y=3) to find the articular surface. No median filtering was applied

this time. Starting from the bone-cartilage interface, line profiles were computed using

bicubic interpolation with an average of two points per pixel for a total of 60 points (~30

pixels). The minimums of the first derivatives of brightness of the line profiles were

considered as tentative positions for the articular surface (Fig. 3.4d).

New line profiles were computed in opposite direction of those shown in Fig. 3.4b

using the new pre-processed sub-image as is shown in Fig. 3.5a. Using the maximums of

the first derivatives of brightness of the first 30 points, different tentative positions for the

:
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articular surface were found (Fig. 3.5b). Using the minimums of the first derivatives of

brightness, new points for the bone-cartilage interface were found (Fig. 3.5c).

Fig. 3.5. (a) Line profiles used to find the articular surface are shown with magenta arrows. (b) Red points
representing the articular surface at the line profiles. (c) Green points representing the bone-cartilage interface
at the line profiles. (d) Cyan point gives an alternative position for the red point which was considered to be
far away from the bone-cartilage interface. Note the different image pre-processing in (c) and (d).

The rationale of finding two possible positions for each edge was the implementation

of an automatic technique that tried to detect and correct thick cartilage sections as those

that could occur in the patello-femoral and tibio-femoral articulations where the edges are

not always well defined. This correction was focused on the articular surface since

computed edges at the bone- cartilage interface were considered more reliable. So the

mean distance between all corresponding articular and bone edge points was found, and

any pair of points under the process described in the previous paragraph (Fig. 3.5c) that

was above this value was flagged. So, with more pairs of points contributing to create the

average thickness threshold, the technique was more robust.

:
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Then for each articular point of a flagged pair, a new edge was searched in the first half

of the line profile towards the bone. This edge was the last peak of the first derivative of

brightness of the line profile. Fig. 3.5d shows with a cyan point the new articular position

for the red point, which for this example was the only found to be fixed. If no peaks were

found, the points were not displaced from their current articular edges. For this thickness

correction step, the original sub-image was taken again and processed with an anisotropic

diffusion algorithm (A=0.25, number of iterations=10, K=5) followed by contrast

enhancement with a power law transformation (c-1, y=2).

Fig. 3.6. (a) Points in green and red showing the final bone-cartilage interface and articular surfaces for the
corresponding initial control points of the spline in Fig. 3.4a. (b) Final Bezier splines defining the bone-cartilage
interface (green) and articular surface (red) were created based on control points of (a).

So the first bone-cartilage interface points that were detected remained as the final

bone-cartilage points. And the last articular surface points that were detected, were

corrected if necessary, and selected as the final articular surface points (Fig. 3.6a). Based

on the found edges, new Bezier splines were created to represent the bone-cartilage

interface and the articular surface (Fig. 3.6b), giving also an automatic labeling for

posterior use in the thickness calculation.

If cartilage happened to be disconnected, a Bezier spline was positioned inside of

each cartilage component as is shown in Fig. 3.7a. In order to segment a contiguous slice,

only the corresponding end points for each Bezier spline were needed (Fig. 3.7c) doing
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the segmentation based on information from the previously segmented slice (Fig. 3.7b

and Fig. 3.7c). At any moment the user was able to manually adjust not satisfactory point

positions.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Fig. 3.7. Segmentation of porcine femoral cartilage at 3T. (a) Initial segmentation splines. One spline per
cartilage segment is required. (b) Final segmentation of (a) after manual adjustment in the thick region of the
patello-femoral articulation. (c) Initial segmentation splines of contiguous slice. Only the end points of each
spline are required (splines of 2 points). (d) Final segmentation of (c) based on initial guess from (b), and after
manual adjustment in the thick region of the patello-femoral articulation.
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Chapter 4
Cartilage interpolation

Because the spatial through-plane resolution (i.e. slice thickness) is commonly

coarser than the in-plane resolution in MR acquisitions of the knee, proper interpolation

should be performed before 3D analysis of the segmented cartilage. Gray-level and

shape-based interpolation are the two main interpolation categories and different papers

have been published to approach this common problem in image analysis and display [1-

11]. The current technique that is considered the standard for cartilage interpolation is

that proposed in [12]. This technique interpolates shape based only on distance fields

(DFs), can handle branching, and its robustness has been demonstrated. The interpolation

technique presented in this work is a morphing technique, which is a shape-based

interpolation method based on DFs and warping [11, 13-16]. The main reason behind this

election was that morphing is better to handle situations of objects with heavy

invaginations [11] that can occur in cases such as cartilage lesions.

After cartilage was segmented using the semi-automatic technique described in

Chapter 3, the labeled contours were used to interpolate its shape to create isotropic

voxels. This interpolation was computed using morphing with DFs and warping.

However, for the porcine knees at 3T the interpolation was also computed with the

standard method based on DFs for comparison purposes. Since in the interpolation

process the labeling of the surfaces as bone-cartilage and articular is lost for the

interpolated slices, and the labeling is required to compute the 3D cartilage thickness,

interpolated surfaces were labeled automatically based on the end points of the splines

defining the cartilage segments.
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Fig. 4.1. (a) Segmentation of femoral cartilage of a pig knee at slice n. (b) Distance map corresponding to
the segmentation in (a). (c) Segmentation of femoral cartilage of the same pig knee in (a) at slice n+1. (d)
Distance map corresponding to the segmentation in (c). Scales in the distance maps are in pixels.

4.1 Distance field shape-based interpolation.

Since the idea was to create a volume with isotropic voxels (or quasi-isotropic)

representing the shape of the cartilage, the highest in plane resolution in mm (in the event

of non-square pixels) was taken as the desired increment in z, which was called delta z:

delta z = min(resolution in x in mm, resolution in y in mm), (4.1)

where min is the minimum function.

For each segmented slice the Bezier splines representing the bone-cartilage and

articular surfaces were evaluated and then discretized. For each contour representing a

cartilage segment (disconnected cartilage segments can appear on patients with

osteoarthritis (OA) or porcine knees in the same slice) the corresponding minimum and

maximum x and y coordinates of the splines were used to create a bounding box with an
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extra frame of 50 pixels (for future interpolation purposes) to speed up the interpolation

process. Then for each sub-image Im (i.e. for each cartilage segment) a distance field DFm

was computed using [17], where the value of each pixel p was computed according to

(4.2):

Fig. 4.2. Shape interpolation based on distance
fields and linear interpolation. (a) Binary mask
representing the cartilage pixels of slice n. (b)-
(h) Binary masks representing the cartilage
pixels of interpolated slices n+0.13, n+0.26,
n+0.39, n+0.52, n+0.65, n+0.78, and n+0.91.
(i) Binary mask representing the cartilage pixels
of slice n+1. The red contours correspond to the
cartilage of slice n, while the green contours to
that of n+1.
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DF (p) = – dist(p,C...) if p e C, (4.2)
frt dist(p,C...) otherwise,

-

where Cn represents the contour of the cartilage segment m (i.e. the cartilage contour in

the sub-image Im) and dist is the Euclidean distance function. After the computation of all

the DFs, they were put together in an image of the original size using a minimum

operation in case of overlapping of the individual bounding boxes, and a new global

bounding box with an extra frame of 20 pixels was created based on the minimum and

maximum x and y coordinates of all the splines. Fig. 4.1 shows two examples of femoral

cartilage distance maps of porcine knees together with their corresponding cartilage

contours overlayed on the original MR image. The examples shown in Fig. 4.1

correspond to contiguous slices: Fig.4.1a is slice n and Fig. 4.1c is slice n+1.

So starting from the first segmented slice, the corresponding distance maps of

consecutive slices were taken to create new ones at steps of delta z mm. The interpolated

DFs were created using linear interpolation:

DF, , = (1-t) * DF, + t * DF, , , (4.3)

where DF, represents the DF at slice n, DF, , , the DF at slice n+1, DF, the DF at slice

n+t, and t is a variable that can take values in the range of [0, 1]. Then, the new

interpolated shapes of cartilage were obtained by using (4.4):

cart... ={p|PF.(p) < 0}, (4.4)

º

.* º
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3D thickness map [0 45216 mm 3D thickness map [0 4,376 mm

--

Fig. 4.3. (a) Femoral cartilage thickness map of a porcine knee computed using the interpolated volume based on
distance fields. (b) Femoral cartilage thickness map of the same porcine knee in (a) computed using the
interpolated volume based on morphing. (c) Zoom of lateral compartment of (a). (d) Zoom of lateral
compartment of (b). Note in (b) the slight improvement of removing slice discontinuities with respect to (a). For
a more drastic example in a human knee please refer to Fig. 5.1.

where cartn., represents the set of pixels p inside or in the border of the interpolated

cartilage at slice n+t. Fig. 4.2 shows the interpolation results accomplished with shape

based interpolation using DFs and linear interpolation for the images shown in Fig.4.1.

Fig. 4.3a shows an example of a femoral cartilage thickness map of a porcine knee

computed using the interpolated volume based on distance fields and linear interpolation.

4.2 Morphing

The interpolation of cartilage shape based on a morphing technique also required the

computation of DFs. This computation was done exactly in the same way as described in

section 4.1 by using (4.1) and (4.2).
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All the splines representing the cartilage contours were modified so that the number

of points at the evaluation time was proportional to the perimeter of the cartilage. From

the pair of contiguous segmented slices under evaluation, the slice with more

disconnected cartilage segments was selected, and each modified contour was matched to

a cartilage segment of the other slice based on minimum Euclidean distances. Then based

on the relative positions to the end points, an artificial matching of at least 20 points was

done as shown in Fig. 4.4 to obtain corresponding landmarks at slices n and n+1. In order

to find the interpolated cartilage at slice n+t, linear interpolation was applied to the

landmarks by using (4.5):

Ln-
-

(1-t) :: Ln + t :: Ln+1, (4.5)

where Ln represents the set of landmarks at slice n, Ln+1 the set of landmarks at slice n+1,

Ln+, the set of landmarks at slice n+t, and t is a variable that can take values in the range

of [0, 1].

Fig. 4.4. (a) Artificial point matching of slice n (red) and slice n+1 (green). Corresponding points are
indicated with small circles and connected with blue vectors. (b) Zoom of right segment of (a).

Using the radial basis functions with compact support described in [18] and [19], the

warping parameters were computed to elastically register the set of landmarks Ln+1
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(source) to the set of landmarks La (target 0) and Ln. I (target 1). The computed

registration parameters were then applied to the coordinates of the image containing the

landmarks Lal, and by using bilinear interpolation two new DFs were obtained: DFo' (for

target 0) and DF1 (for target 1). Using linear interpolation the interpolated distance field

DF, , , was computed by using (4.6) and the pixels representing the interpolated shape of

cartilage were obtained by using (4.4):

DF, , = (1-t) * DF,' + t * DF, '. (4.6)

Fig. 4.5 shows the interpolation results accomplished with shape-based interpolation

using the morphing technique for the images shown in Fig. 4.1. Fig. 4.3b shows an

example of a femoral cartilage thickness map of a pig knee computed using the

interpolated volume based on the technique just described.

4.3 Labeling of cartilage surfaces

Labeling of the cartilage surfaces as bone-cartilage interface and articular surface is

required for the computation of 3D cartilage thickness measurements using either 3D

minimum Euclidean distances or a normal vector approach. Unfortunately this

information is lost for the interpolated slices in the two shape-based interpolation

techniques just described. So, an automatic labeling technique was developed.

Since the splines defining the segmented cartilage were drawn in a predefined order

(see Chapter 3 for more details), the first point of the first spline, and the last point of the

last spline were taken for both contiguous slices under evaluation. Using linear

interpolation the positions of these points for the slice n+t were computed to obtain:

f;1, = (1-t) *f, *t *f;11 (4.7)

lnit - (1-t) × ln + tº ln-1. (4.8)
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In (4.7) fºrt represents the first point of the first spline in slice n+t, and same idea

applies to f. and f.y. In (4.8) lar, represents the last point of the last spline in slice n+t,

and same idea applies to ln and ln-1.

Fig. 4.5. Shape interpolation based on
morphing. (a) Binary mask representing the
cartilage pixels of slice n. (b)-(h) Binary masks
representing the cartilage pixels of interpolated
slices n+0.13, n+0.26, n+0.39, n+0.52, n+0.65,
n+0.78, and n+0.91 (i) Binary mask
representing the cartilage pixels of slice n+1.
The red contours correspond to the cartilage of
slice n, while the green contours to that of n+1.
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For f..., the closest pixel in cartn-, was found and assigned as the starting point for

both the bone-cartilage and articular surfaces (Fig. 4.6a). For lar, the closest pixel in

cart, it was found and assigned as the last point for both the bone-cartilage and articular

surfaces (Fig. 4.6b). If cartn-, contained disconnected cartilage segments, the closest pixel

to the first cartilage segment was assigned as the starting point of the second cartilage

segment. Using the same rationale, the remaining first points of the cartilage segments

were found. The remaining last points of cartilage segments were found in a similar way

starting from the last cartilage segment. Fig. 4.6 shows two labeling examples for new

interpolated slices, as well as pictorial representation of what is called first cartilage

segment, last cartilage segment, first point, last point, etc.

First point of first cartilage segment
Last point of last cartilage segment

First cartilage segment Last cartilage segment

First point of last
Last point of first cartilage segment cartilage segment

Fig. 4.6. (a) Labeling of interpolated femoral cartilage of a pig knee at slice n+0. 13. (b) Labeling of
interpolated femoral cartilage of same pig knee as in (a) at slice n+0.91. Cyan lines represent the bone
cartilage interface, while the magenta ones represent the articular surface.
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Chapter 5
Cartilage thickness

Different morphological, molecular, and biochemical biomarkers for predicting or

evaluating the degree of osteoarthritis (OA) of the knee have been investigated [1].

Thickness and volume are the morphological biomarkers that have received more

attention since thinning of cartilage is a common manifestation of this pathology.

Quantification of cartilage thickness based on MR images of the knee requires proper

3D image processing techniques. The limited slice resolution compared to the in-plane

resolution results in highly anisotropic voxels that make the depicted cartilage dependent

on patient positioning and slice orientation among other factors. After cartilage

segmentation has been performed (see Chapter 3 for more details) the common approach

to perform 3D cartilage thickness measurements has consisted of a two step process:

1. Computation of isotropic voxels (see Chapter 4 for more details).

2. Computation of 3D cartilage thickness.

The objective of the first step is to obtain cartilage surfaces that are independent of

patient positioning or slice orientation.

To complete the second step different techniques have been proposed in the literature

to perform cartilage thickness measurements [2-4]. However there are only two real 3D

techniques that are equivalent although their approaches are different: normal vector

approach and minimum Euclidean distance method.

The normal vector approach consists in computing distances normal to the articular

surface or to the bone-cartilage interface. The distance normal to the articular surface

refers to the length of the vector normal to the articular surface and ending at the bone
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cartilage interface, and same reasoning for the distance normal to the bone-cartilage

interface.

The minimum Euclidean distance approach consists in finding for each point in a

surface the closest one in the opposite.

In this work after cartilage segmentation, shape-based interpolation to create isotropic

voxels, and corresponding labeling of cartilage surfaces as bone-cartilage interface and

articular surfaces, for each point on the articular surface the closest point on the bone

cartilage interface was found and the corresponding distance was assigned as its thickness

value. This technique is equivalent to find the distances normal to the bone-cartilage

interface but avoids the explicit calculation of normal vectors [3]. The directionality of

this computation was chosen based on [5] where Lösh et al demonstrated that this method

is superior for the delineation of focal cartilage lesions.

For validation purposes thickness measurements were done for three different cases

for the porcine knees at 3T.

1. Cartilage with no shape interpolation (anisotropic resolution).

2. Cartilage with shape interpolation using only DFs (isotropic resolution).

3. Cartilage with shape interpolation using the morphing technique (isotropic

resolution).

Fig. 5.1a, 5.1b, and 5.1c show examples of 3D femoral cartilage thickness maps of a

human knee for these 3 different cases, respectively.

Visualization of quantitative data offers additional advantages to characterize the

cartilage morphology. Using MATLAB image processing toolbox rendering of the

common 3D color coded thickness maps was possible as is shown in Fig. 5.1. However, a
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new way to visualize 3D cartilage thickness in a slice by slice basis with color coding

overlaid on the MR images was also developed as is shown in Fig. 5.1d.

[1]

[2]

[3]

[4]

[5]

Fig. 5.1. Visualization of cartilage thickness maps. (a) Femoral cartilage thickness map of a human knee with no
prior shape interpolation. (b) Femoral cartilage thickness map of the same human knee of (a) with prior shape
interpolation using distance fields. (c) Femoral cartilage thickness map of the same human knee of (a) with prior
shape interpolation using the morphing technique. (c) Visualization of 3D cartilage thickness information
overlaid on the MR image. Scale bars are in mm.

References

M. L. Gray, F. Eckstein, C. Peterfy, L. Dahlberg, Y-J Kim, and A.G. Sorensen, “Toward Imaging Biomarkers for
Osteoarthritis,” Clinical Orthopaedics and Related Research, 2004, Number 427S, pp. S175–S181.
Z. A. Cohen, D. M. McCarthy, S. D. Kwak, P. Legrand, F. Fogarasi, E. J. Ciaccio, and G. A. Ateshian, “Knee cartilage
topography, thickness, and contact areas from MRI: in vitro calibration and in-vivo measurement,” Osteoarthritis and Cartilage,
(1999) 7, 95-109.
T. Stammberger, F. Eckstein, K. Englmeier, M. Reiser, “Determination of 3D Cartilage Thickness Data From MR Imaging:
Computational Method and Reproducibility in the Living,” Magnetic Resonance in Medicine, 41:529-536(1999).
A.A. Kshirsagar, P.J. Watson, J.A. Tyler, L.D. Hall, “Measurement of Localized Cartilage Volume and Thickness of Human
Knee Joints by Computer Analysis of 3D MRImages,” Invest. Radiol., vol. 33, no. 5, pp. 288-99, 1999.
A. Lösch, F. Eckstein, M. Haubner, K-H Englmeier. “A non-invasive technique for 3-dimensional assessment of articular
cartilage thickness based on MRI-Part I: Development of a computational method,”.Magn Reson Imaging 1997:15:795–804.

49



Chapter 6
Cartilage volume

As was mentioned in Chapter 5, cartilage volume and thickness are the morphological

properties of knee cartilage that have been more investigated in the search of a biomarker

for characterization of osteoarthritis (OA) of the knee [1]. Computation of cartilage

volume is more straightforward than thickness; however the requirement of isotropic

voxels should still be valid. As for cartilage thickness, volume measurements were done

for three different cases for the porcine knees at 3T for validation purposes:

1. Cartilage with no shape interpolation (anisotropic resolution).

2. Cartilage with shape interpolation using DFs (isotropic resolution).

3. Cartilage with shape interpolation using the morphing technique (isotropic

resolution).

Also for validation purposes for the porcine knees at 3T the volume was digitally

computed with two different methods:

1. Counting the number of voxels inside and on the cartilage contours.

2. Counting the number of voxels inside and on the cartilage contours with different

weightings according to predefined patterns of voxels [2] (see Appendix A).

For the porcine knees at 1.5T the volume was only digitally computed for the

cartilage interpolated with the morphing technique (see Chapter 4 for more details) and

by using the first digital volumetric method.

To validate the segmentation and morphing techniques, the femoral cartilage of

all porcine knees was scraped off and its volume was measured using a water

displacement method after image acquisition [3].
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Fig. 6.1. (a) Femoral cartilage segmentation of a human knee. (b) Binary image representing only cartilage
voxels of (a). These voxels are then used to compute cartilage volume.

Fig. 6.2 Renderings of femoral human cartilage.
(a) No shape interpolation.
(b) Shape interpolation based on DFs.
(c) Shape interpolation based on morphing.
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Fig. 6.1 shows representative images used in the digital process of computing

cartilage volume, while Fig. 6.2 shows corresponding renderings of knee cartilage of a

human knee with no shape interpolation (a), shape interpolation based on DFs (b), and

shape interpolation based on morphing (c).
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Chapter 7
Registration of cartilage surfaces

In follow-up studies where MR images of the knee of the same subject are obtained at

different time points, image registration is necessary for comparisons of corresponding

cartilage points. Different intra-subject registration techniques have been proposed for

this purpose [1-5]. However, if a comparison involves two different subjects at any time,

inter-subject registration should be addressed. Few publications have approached the

inter-subject registration for comparisons of cartilage of the knee [6-8]. In [6] Dardzinski

et al proposed a 2D technique for inter-subject comparison of MRT2 relaxation times. In

[7] Slavinsky et al proposed a 3D affine transformation which was followed by a set of

2D elastic registrations using manually identified landmarks to compare maps of cartilage

thickness. And in [8], which is the only 3D technique, the authors used a bone statistical

shape model to obtain corresponding regions of knee articular cartilage. In this work

semi-automatic (since segmentation requires interaction) rigid-body (intra-subject) and

elastic (inter-subject) registration techniques are proposed, where the alignment of

cartilage surfaces is based on the registration of the corresponding bone structures instead

of using the cartilage surfaces themselves, which gives robustness to the technique

especially with patients affected by osteoarthritis (OA) where cartilage shapes can

drastically change from subject to subject. These registrations allow the comparison of

cartilage characteristics point to point. The technique uses shape matching based on 3D

shape-contexts [9-11] (see Chapter 2 for additional information) to establish

corresponding landmarks between the segmented bones to be registered. By using these

landmarks the solution to the absolute orientation problem proposed in [12] is used for

the rigid-body/affine transformation followed by the elastic registration using
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Wendland's radial basis functions (RBFs) with compact support [13-14] if inter-subject

registration is required. Once the registration parameters are computed, these are applied

to the corresponding source cartilage surface (e.g. femoral cartilage if femoral

registration is performed) and then a point to point correspondence to the target cartilage

surface is done using minimum Euclidean distances.

7.1 Segmentation of bone structures

Bones were segmented from MR images using a semi-automatic technique as in the

cartilage segmentation. This technique was based on Bezier splines and edge detection as

was described in Chapter 3. The user placed control points close to the bone-cartilage

interface following its shape to create a Bezier spline (Fig. 7.1 a). The spline was placed

counter-clockwise (with the center of the clock in the corresponding bone). Then, based

on the minimum and maximum x and y coordinates of the splines, a bounding box with

an extra frame of 30 pixels was created to speed up the segmentation process, and the

new sub-image was normalized against its maximum gray level value. The bone edges

were then enhanced using an anisotropic diffusion algorithm [15] (A=0.25, number of

iterations=5, K=90) and a median filter (7 pixels x 7 pixels), followed by a contrast

enhancement technique based on a power law transformation [16] (c=1, y=1/3). Then

rays perpendicular to the spline on the control points were traced towards the bone to a

distance equal to a width of 15 pixels. From these positions, line profiles were computed

back to the edge of the bone using bicubic interpolation with an average of two points

per pixel (Fig. 7.1b) for a total of 60 points (~30 pixels). After computing the first

derivative of brightness of the line profiles, the maximum value was taken as the edge of

the bone for each point (Fig. 7.1b and Fig. 7.1c). Based on the found edges, a new Bezier
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spline was created to represent the bone shape as is shown in Fig. 7.1d. The control

points of this spline were then copied to the next slice to perform the corresponding

segmentation assuming a smooth transition of shape from slice to slice. At any moment

the user had the opportunity to manually adjust no satisfactory end positions.

-

Fig. 7.1. (a) Initial spline defining the shape of a human femur is shown in green with its corresponding
control points for a human knee. (b) Line profiles used to find the bone edges are shown with red arrows,
while green points represent the bone edges at the line profiles on a pre-processed image. (c) Same green
points as in (b) overlaid on the original image. (d) Bezier spline created with the control points in (c)
representing the final bone segmentation.

7.2 Point matching using three dimensional shape-contexts

After the segmentation of the source and target bones was accomplished,

corresponding points in the two shapes were automatically detected using 3D shape

shape-contexts [9-11]. Splines representing the source and target bone shapes were

evaluated then discretized and uniformly sampled (every 13 pixels). For each pixel in

55



these sampled contours a histogram representing the point distribution of the relative

remaining points was computed. The bins were uniform in a 3D log-polar space (r, 6 [0,

21) and p [0, 1]) to make the 3D shape-contexts more sensitive to nearby points than to

those far away.

All shape-contexts were made scale invariant by normalizing the radial distances by

the mean distance of all the pair-wise distances in the shape [9].

Since shape-contexts are not rotational invariant when computed using an absolute

frame, further processing had to be completed. The solution suggested in [9] to satisfy

this criterion in 2D was to find the tangent vector at each point and use it as the positive

x-axis to compute the shape-contexts. Instead of computing 3D normals at each point, our

approach took advantage of the valid assumptions that the bones to be registered were

similar in shape especially at their mid-slices, that rotation is minimal due to the knee

holder used during MRI acquisition, and that shape-contexts are insensitive to small

perturbations [9]. So the discretized edges of the mid-slices of the segmented bones were

taken, and 2D rotational invariant shape-contexts were computed for both mid-slices (7

values for r starting at 1/8, and 18 values for 6 equally distributed in the range [0.2it))

followed by the corresponding point matching (at least 70% of the target points were

matched) as is shown in Fig. 7.2a. Based on this matching the source slice was rigidly

aligned in 3D to the target slice with a rotation matrix calculated by using the closed form

solution presented in [12]. This 3D rotation matrix was then applied to all the slices of the

Source shape to have approximately the same initial orientation for the two bones before

3D shape-context computation.

56



Fig. 7.2. Human femoral inter-subject registration. (a) Matching of mid-source (red) and mid-target (green)
slices. The magenta line represents the source slice after rotation, scaling, and translation based on the 2D
rotational invariant matching. (b) Original source (red) and target (green) femurs. (c) Source (red) and target
(green) femurs after affine registration (rotation, scaling, and translation).

In order to match two shapes (2D or 3D) their corresponding shape-contexts were

compared to each other based on the x test statistic (7.1), a simple and effective measure

of histogram similarity [17-18]:

K. (h(k)—h.(k))”zºn)-; (k)—h,(k)) > 7.1
fºr h(k)+h,(k) (7.1)

Once all the pair-wise costs were computed, the optimal point matching was solved

by using COPAP [19].

In order to match only a fraction of points, equation (7.2) was followed:

min landmarks = f° min (ns, nt), (7.2)

where f is a constant in the range [0, 1], ns is the number of points representing the source

shape, nt the number of points representing the target shape, and min is the minimum

function. For the initial 2D matching, f was 0.7, ns was the number of points representing

the source mid-slice, and nt was the number of points representing the target mid-slice.
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7.3 Intra-subject registration

Intra-subject registration was accomplished through affine registration. After the

initial rough alignment proposed in Section 7.2 based on the mid-slices of the source and

target bones, 3D shape-contexts were computed for both source and target shapes. The

histogram bins were uniform in 3D log-polar space: r [1/8, rmax], 6 [0, 27t) and p [0, It);

and seven values for each variable were used in this work for a total of 7° (343) bins. A

total of 30 shape-contexts were uniformly selected from the first to the last point defining

the edges of the target shape, the cost matrix was then computed by using (7.1), and the

3D point matching by using COPAP. For (7.2) f was 0.8, nr was 30, and ns was equal to

the number of points representing the 3D source shape. By using the set of corresponding

points given by COPAP, the closed-form solution presented in [11] was used to obtain

the 3D rotation matrix, scaling, and translation parameters to map the source bone to the

target.

After this 3D initial registration, the 3D process described above was repeated with

no initial alignment based on the mid-slices and the same 30 uniformly selected target

shape-contexts. If only rigid-body registration was required for intra-subject alignment,

the cumulative rotations were applied to the source articular cartilage surface. If affine

registration was needed, the cumulative rotations were applied together with the scale and

translation parameters corresponding to the last alignment. Fig. 7.2b represents an

example of a source (red) and target (green) femurs before any registration, while Fig.

7.2c represents the same bones after affine registration.
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Fig. 7.3. Human femoral inter-subject registration. (a) Source (red) and target (green) femurs after affine
(rotation, scaling, and translation) and elastic registration. (b) Target femur is shown in green with the last set of
landmarks used for the elastic registration in red. (c) Source femur is shown in red after rigid-body and elastic
registration with the last set of landmarks used for the elastic registration in green.

7.4 Inter-subject registration.

Elastic registration was computed after the corresponding affine transformation.

Shape-contexts in 3D were computed for both source and target shapes with seven values

for each variable r, 6, and ■ p. A total of 60 shape-contexts were then uniformly selected

from the first to the last point defining the edges of the target shape, the cost matrix was

computed by using (7.1), and COPAP was again used for the 3D point matching using

the following values for (7.2): f_0.8, nr =60, and ns was equal to the total number of

points representing the 3D source shape. By using the set of corresponding landmarks

given by COPAP, the coefficients to perform elastic registration using Wendland's RBFs

with compact support were computed and applied to the source bone. This elastic

registration step was repeated a second time where the number of shape-contexts of the

target shape was increased to 90 (i.e. nt-90). For both elastic registration steps equation

(7.3) was used to calculate the support parameter a as suggested in [14]:
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= 1.25*3.66*max(abs(Sland-Tland)), (7.3)

where Sland is a 3 column array where each row contains the x, y, and z coordinates of a

source landmark; Tland is also a 3 column array with the corresponding coordinates for

the target landmarks; abs is the absolute function; and max is the maximum function.

Figure 7.3a shows an overlaid of the source and target femurs after rigid-body and

elastic registration. The last set of landmarks for the elastic-registration is shown overlaid

on the target (Fig. 7.4b) and source bones (Fig. 7.4c).

Fig. 7.4. Human femoral inter-subject cartilage registration. (a) Original source (red) and target (green)
femoral cartilage surfaces. (b) Source (red) and target (green) femoral cartilage surfaces after affine
(rotation, scaling, and translation) and elastic registration. Randomly selected blue vectors are connecting
corresponding points of the source and target femoral cartilage surfaces. (c) A different view of (b) with no
Vectors.

7.5 Cartilage surface matching.

As was previously described in the introduction of this chapter, the registration of

cartilage surfaces was accomplished based on the registration of the corresponding bones

(e.g. registration of femoral cartilage surfaces, based on the registration of the

corresponding femurs) giving robustness to the technique. So the registration parameters
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found for the intra- and inter-subject registration of bones were applied to the source

cartilage surface as is shown in Fig. 7.4.

3D thickness map [0 3.4606 mm 3D thickness map [0 4.922 mm

2

Fig. 7.5. (a) Source femoral cartilage thickness map of subject 1. (b) Target femoral cartilage thickness map of
subject 2. (c) Thickness map of (a) after warping to match (b). (d) The result of subtracting (b) from (c) and
unwarping. Scale bars are in mm.

Finally, in order to find a one to one point correspondence between the source and

target surfaces of cartilage, the surfaces were matched using minimum Euclidean

distances.

An example of a possible application of the registration technique just proposed is

shown in Fig. 7.5. This example demonstrates the feasibility of comparing femoral
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cartilage thickness maps of two subjects point by point. Figure 7.5d is the resulting

thickness map after subtracting the target map from the warped map and unwarping the

coordinates. In this image regions tending to a blue color (e.g. anterior section of right

epicondyle) mean that the source cartilage surface is thinner than the target. And regions

tending to a red color mean that the source cartilage surface is thicker than the target

(small region between the epicondyles).

It is important to clarify that the cartilage thicknesses were calculated prior to the

registration, so their values remained unchanged during the transformation.
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Chapter 8
Results

8.1 Cartilage volume at 3T

Pearson correlation coefficients of r = 0.83 (p<0.001) were found for the cartilage

volume of 16 porcine knees measured through the water displacement method and the

volume obtained with no shape interpolation, shape interpolation of cartilage with

distance fields, and shape interpolation of cartilage with morphing. Since no method was

perfect, the data was also statistically analyzed using the Bland-Altman method to check

for any deviation. The four methods showed good agreement since all data samples were

inside of the band of two standard deviations of the difference of the measurements that

were compared. The same type of analysis was applied to compare the different digital

methodologies to measure cartilage volume yielding correlation coefficients above 0.95

and at most one sample out of the two standard deviations band for the Bland-Altman

method. Fig. 8.1 shows a scatter plot of the volumetric measurements computed by the

water displacement method and based on the morphed cartilage at 3T, together with the

corresponding least squares regression line; Fig. 8.2 shows a Bland-Altman plot

demonstrating that the digital volumetric measurement based on the morphed cartilage at

3T is as good as the water displacement method; and Table 8.1 shows the corresponding

volumetric measurements for the first digital volumetric methodology described in

Chapter 6.
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Fig. 8.1 Scatter plot of
volumetric measurements

(mm') computed by the water
displacement method and
based on the morphed
cartilage at 3T. The solid line
represents the least squares
regression line.

Fig. 8.2 Bland-Altman plot
demonstrating that the digital
volumetric measurement

based on the morphed
cartilage at 3T is as good as
the water displacement
method.

Table 8.1 Results of volumetric measurements (mm.') of cartilage at 3T.
Water displacement Morphed cartilage Interpolated cartilage using DFs

61 50 6048.7 6025.6
5590 5802.3 5830. 1
8350 7 132.8 7162.8
6 120 5271.4 5329.4
7870 7| 18.2 7164.2
8080 7056.8 7100.8
7000 64 15.2 6439.8
7440 6406.9 6431.3
55.30 5033.2 504.1.8
7040 7273.3 73.15.3
7800 76.11.0 7650.9
6370 6754.0 6793. 1
9030 7868.3 7898.5
84.10 84.14.9 8437.4
6470 69 10.8 6947.]
6760 7032.4 7081.0
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8.2 Cartilage volume at 1.5T

A Pearson correlation coefficient r = 0.75 (p<0.001) was found for the cartilage

volume of 12 porcine knees measured through the water displacement method and the

volume obtained with shape interpolation of cartilage with morphing. Since no method

was perfect, the data was also statistically analyzed using the Bland-Altman method to

check for any deviation. The two methods showed good agreement since all data samples

were inside of the band of two standard deviations of the difference of the measurements

that were compared. Fig. 8.3 shows a scatter plot of the volumetric measurements

computed by the water displacement method and based on the morphed cartilage at 3T,

together with the corresponding least squares regression line; Fig. 8.4 shows a Bland

Altman plot demonstrating that the digital volumetric measurement based on the

morphed cartilage at 1.5 T is as good as the water displacement method; and Table 8.2

shows the corresponding volumetric measurements.

7500 +
r =0.75218 • Fig. 8.3 Scatter plot of

volumetric measurements

(mm’) computed by the water
displacement method and
based on the morphed
cartilage at 1.5T. The solid
line represents the least
squares regression line.

7000 H.

B 5 O O;
6000 H.

5500 + ->

l l I l I l

5000 5500 5000 6500 7000 7500 8000 8500
Water displacement
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Fig. 8.4 Bland-Altman plot
demonstrating that the digital
volumetric measurements

based on the morphed
cartilage at 1.5T is as good as
the water displacement
method.

Table 8.2 Results of volumetric measurements (mm) of cartilage at 1.5T.
Water displacement method Morphed cartilage

5590 6081.8
8350 6926.7
6 120 5467.3
7870 6973.8
8080 74.17.7
7000 603 1.8
7440 6189.2
5220 5724.9
7040 6886.7
7800 6876.8
6370 6106.6
8360 6370.9

8.3 Cartilage thickness at 3T

The digital analysis for cartilage thickness at 3T was done as the analysis for cartilage

volume at 3T (cartilage with no shape interpolation, cartilage with shape interpolation

based on DFs, and cartilage with shape interpolation based on morphing) and similar

results were found. Correlation values were above 0.95 (p<0.001) and all methods

showed good agreement according to the Bland-Altman method. Examples of femoral 3D

cartilage thickness maps based on morphed cartilages (see Chapter 4 for more details) are

shown in Fig. 8.5a and Fig. 8.5b for a porcine and human knee, respectively.
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– ;
0.5

Fig. 8.5 Femoral 3D cartilage thickness maps of a porcine (a) and human (b) knees based on morphed
cartilages.

8.4 Shape matching

Tibias manually segmented from sagittal fast spin-echo (FSE)' images were borrowed

from a parallel study at our institution. In that study the right tibias of the same subjects

were registered to the left ones using manual landmarks (approximately 11 landmarks)

and Horn's affine approach. Also with the same technique tibias at extension and flexion

were registered. Since the registration techniques used in this paper are based on

landmarks, and we proposed an automatic technique to establish corresponding

landmarks between the source and target shapes, we quantitatively validated the point

matching technique using manual registration. The manual approach was statistically

compared to the semi-automatic using the Bland-Altman method. The values to be

compared were mean Euclidean distances of source and target landmarks after affine

registration.

I Sagittal fast spin-echo (FSE) images at 1.5T of both knees of 6 different subjects were obtained with in-plane
resolution of 0.3125 mm x 0.3125 mm and slice thickness of 1.5 mm. An extra subject was imaged at flexion and
extension. Representative images are not shown since they were manually segmented.
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The Pearson correlation coefficient for the mean distances of the registered source

and target landmarks between the manual and semi-automatic registrations was 0.75

(p<0.05, n =7) with good agreement according to the Bland-Altman method (Fig. 8.6),

and a maximum mean difference of 2.1 mm. However r was 0.9287 for the mean

distances of the registered source and target bones, also showing a good agreement with

the Bland-Altman method, and a maximum mean difference of 0.45 mm, which is less

than the slice thickness (1.5 mm) or 2 pixels (2x0.3125 mm).

g
T

É 0.5 + m-2sd

É Fig. 8.6 Bland-Altman
# 0 H

-
plot demonstrating that

#
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# 0.5 ° mºss registration of tibias is as
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# -1 H • -

--> mean (m)
5

# -15 •
co
E

‘s m-1 sq
Co. - - - •: *

•

§
G -25 H
§ m-2sd

a cº-H
Average of manual and automatic landmark matching

8.5 Inter-subject registration

In addition to the validations previously mentioned, 6 human inter-subject femoral

registrations were computed to create difference thickness maps of the source and target

femoral cartilage surfaces. The bone segmentations were done with the semi-automatic

segmentation technique as described in Chapter 7.

Fig. 8.8 and Fig. 8.9 show two examples (out of 6) of femoral inter-subject cartilage

registrations as well as the corresponding difference thickness maps (source minus target)
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demonstrating the feasibility of the technique. In the difference maps it is clear that

anatomic points are properly being compared (as is also shown in Fig. 7.3 of Chapter 7)

between the source and target maps with blue areas representing source thinner cartilage

points, while red areas showing thicker points.

Although the difference thickness maps can be displayed in the warped version (Fig.

8.8c and Fig. 8.9c), Fig. 8.8d and Fig. 8.9q show the feasibility of displaying them in the

original source coordinates. This is possible because the cartilage thickness maps are

calculated before the elastic registration and each point of the articular surface has a

thickness value assigned to it.

Fig. 8.7 Human femoral 3D cartilage thickness
map of a subject with no signs of osteoarthritis
(OAO). Scale bar is in mm. Please see Chapter 2
for nomenclature details.
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Fig. 8.8 (a) Human femoral 3D cartilage thickness map of an OAl patient. (b) Thickness map of (a) after elastic
registration to Fig. 8.7 based on the corresponding femurs. (c) Difference thickness map after elastic registration
and matching; (b) minus Fig. 8.7. (d) Thickness map in (c) after coordinates unwarping. Scale bars are in mm.
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Fig. 8.9 (a) Human femoral 3D cartilage thickness map of an OA2 patient. (b) Thickness map of (a) after
elastic registration to Fig. 8.7 based on the corresponding femurs. (c) Difference thickness map after elastic
registration and matching; (b) minus Fig. 8.7. (d) Thickness map in (c) after coordinates unwarping. Scale
hars are in mm
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Chapter 9
Discussion

Osteoarthritis (OA) is the most common form of arthritis in the world and it is a

major cause of morbidity in the US and Europe. It is expected that in 2020 59.4 million

of Americans will be affected by some form of arthritis [1].

Different morphological, molecular, and biochemical biomarkers for predicting or

evaluating the degree of OA of the knee have been investigated [2], being thickness and

volume the morphological biomarkers that have received more attention, since thinning

of cartilage is a common manifestation of this pathology. MRI in contrast to x-ray

imaging allows the visualization and quantification of cartilage morphology. It is

important to asses the quantification of knee cartilage morphology to monitor the

progression of joint diseases or related treatments, and when this assessment is based on

medical images such as MRI, accurate and robust image processing tools are required to

perform 3D cartilage quantification and analysis. We have presented and validated a set

of techniques to accomplish this goal for the intra and inter-subject analysis.

The segmentation technique proposed in this paper allows the segmentation of

about 40 slices in 12 or 15 min with no significant loss of accuracy as it was

quantitatively validated with the Bland-Altman method based on volumetric

measurements of porcine knees at 1.5T and 3T. With the increase in SNR and contrast

between bone and soft tissue structures in MR images of the knee, further or full

automation of the segmentation process is still possible. A good candidate technique is

Level Set Methods which is a numerical technique that can follow the evolution of

interfaces. These interfaces can develop sharp corners, break apart, and merge together [3]
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which are essential characteristics to perform cartilage segmentation specially for patients

with severe OA.

Volumetric and thickness results could suggest at first glance that there is no need

for shape interpolation of cartilage. However, there are certain applications such as

analysis and follow-up of focal cartilage lesions where shape interpolation plays a central

role. Visual inspection showed that the quality of the cartilage thickness maps was

enhanced using the morphing technique for shape interpolation compared to the distance

fields (DFs) approach, which in some occasions introduced small artifacts. This

improvement however also came with a major computational cost to perform the

corresponding point matching and non-elastic registrations (warpings). If shape

interpolation based only on DFs is desired, then cubic interpolation instead of linear

would be a better choice.

In follow-up studies, or studies involving different patient populations, proper

image processing methods are required to compare common regions or points of cartilage.

We have presented and validated a semi-automatic registration technique (since

segmentation requires interaction) to accomplish such a goal. The alignment of cartilage

surfaces is based on the registration of the corresponding bone structures instead of using

the cartilage surfaces themselves, which gives robustness to the technique especially with

OA patients where cartilage shapes can drastically change from subject to subject. Since

the technique requires the shapes of the bones to perform the alignment, it is still

dependent on the segmentations; however the 3D shape-contexts are robust enough to

capture corresponding points on the structures of interest as it was statistically

demonstrated by the Bland-Altman method using registration based on manual
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positioning of landmarks as reference. Using the same reasoning than for cartilage

segmentation, the segmentation of bone structures could be automated. The technique of

choice for this task would be Statistical Shape Models (see Chapter 2 for more details).

Although the proposed techniques have been applied for comparison of cartilage

thicknesses maps, they can also be used to compare other important parameters derived

from MRI images such as T1 and T2 relaxation times. Currently it is also in the

evaluation process to reduce the manual interaction in a Biomechanics study of the

articulation of the knee. If only comparison of anatomic regions is desired (not point to

point), 3D shape-contexts could be employed to establish correspondence of common

areas with no necessity of elastic registration.

As it was mentioned in Chapter 1, it is important to clarify that the objective of this

work was the application and development of image processing techniques to perform

intra and inter-subject comparison of knee cartilage morphology rather than deduce any

characteristics of cartilage changes during arthritic disease progression.
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Appendix A
Digital cartilage volume measurement.
Technique 2.

The following is a description of the bwarea MATLAB function of the image

processing toolbox which was used for the digital computation of cartilage volume (see

Chapter 6 for more details).

“bwarea estimates the area of all of the on pixels in an image by summing the areas

of each pixel in the image. The area of an individual pixel is determined by looking at its

2-by-2 neighborhood. There are six different patterns distinguished, each representing a

different area:

3.

4.

7.

8.

Patterns with zero on pixels (area = 0)

Patterns with one on pixel (area = 1/4)

Patterns with two adjacent on pixels (area = 1/2)

Patterns with two diagonal on pixels (area = 3/4)

Patterns with three on pixels (area = 7/8)

Patterns with all four on pixels (area = 1)

Keep in mind that each pixel is part of four different 2-by-2 neighborhoods. This

means, for example, that a single on pixel surrounded by off pixels has a total area of 1

[1].”

References

[1] http://www-ccs.ucsd.edu/matlab/toolbox/images/bwarea.html
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