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Moving a missing hand: children born 
with below elbow deficiency can enact hand 
grasp patterns with their residual muscles
Justin J. Fitzgerald1,2,3, Marcus A. Battraw4, Michelle A. James5,6, Anita M. Bagley5,6, Jonathon S. Schofield4 and 
Wilsaan M. Joiner2,7* 

Abstract 

Children with a unilateral congenital below elbow deficiency (UCBED) have one typical upper limb and one that lacks 
a hand, ending below the elbow at the proximal/mid forearm. UCBED is an isolated condition, and affected chil-
dren otherwise develop normal sensorimotor control. Unlike adults with upper limb absence, the majority of whom 
have an acquired loss, children with UCBED never developed a hand, so their residual muscles have never actuated 
an intact limb. Their ability to purposefully modulate affected muscle activity is often assumed to be limited, and this 
assumption has influenced prosthetic design and prescription practices for this population as many modern devices 
derive control signals from affected muscle activity. To better understand the motor capabilities of the affected mus-
cles, we used ultrasound imaging to study 6 children with UCBED. We examined the extent to which subjects activate 
their affected muscles when performing mirrored movements with their typical and missing hands. We demonstrate 
that all subjects could intentionally and consistently enact at least five distinct muscle patterns when attempting 
different missing hand movements (e.g., power grasp) and found similar performance across affected and typi-
cally developed limbs. These results suggest that although participants had never actuated the missing hand they 
could distinctively and consistently activate the residual muscle patterns associated with actions on the unaffected 
side. These findings indicate that motor control still develops in the absence of the normal effector, and can serve 
as a guide for developing prostheses that leverage the full extent of these children’s motor control capabilities.
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Introduction
It is commonly believed that children born without a 
hand (unilateral congenital below elbow deficiency, 
UCBED) have diminished or absent cerebral sensorimo-
tor representations of their missing limb. Imaging of the 
cerebral cortex has provided evidence that the missing 
hand’s territory is utilized by adjacent regions represent-
ing the residual arm, and this phenomenon is dependent 
on the use of the residual arm in compensating during 
activities of daily living [1, 2]. Furthermore, it has been 
shown that cortical representations of missing digits 
may be diminished in this population and cortical acti-
vation patterns bear little resemblance to those observed 
in individuals with acquired hand loss and able-bodied 
control cohorts [3]. Although genetics likely support the 
preliminary formation of a hand representation [4], it is 
suggested that early-life experiences and the accompany-
ing sensorimotor input from the hand are critical to the 
maturation of its typical and functional organization [3].

In many ways, the prosthetic options and the stand-
ard of clinical care for children with UCBED have been 
shaped by the assumption that a child’s diminished rep-
resentation of the missing hand is detrimental to their 
perceptions of prostheses, as well as their willingness and 
ability to use them. Children with UCBED learn com-
pensatory strategies to perform activities of daily living 
from an early age and it is often observed that they do 
not feel a sense of loss, although they may feel different 
from their peers [5, 6]. Even though cosmetic factors 
associated with wearing a prosthesis may help with social 
integration, functionally, for children with UCBED these 
devices seldom provide an improved quality of life [7]. In 
contrast, older children who lose a limb later in life will 
more readily use a prosthesis, presumably because they 
have experienced the loss of function and have a more 
mature sensorimotor representation of their now miss-
ing limb [8]. Considering these assumptions, prevailing 
opinion suggests that if a child with UCBED learns to 
handle a prosthesis at a young age, the prosthesis might 
be better incorporated into the body scheme [9] and thus 
the age at which a prosthesis is first used is viewed as a 
critical factor in life-long prosthesis acceptance [10, 11]. 
Consequently, device prescription can occur as young 
as 2  months of age [9] with the intention of promoting 
the development of motor programs in the sensorimotor 
cortices that include prosthesis use [12, 13].

However, regardless of current best practices shap-
ing the age of first prescription, an estimated 35–45% 
of pediatric prostheses will be abandoned [14] as many 
conventional devices offer limited functional benefit and 
may even hinder during the performance of daily activi-
ties [7]. Encouragingly, in recent years there has been 
an acceleration in prosthetic mechatronic technologies 

resulting in child sized devices that more closely resem-
ble the form and function of intact hands [15]. However, 
control of these hands relies on the ability of children to 
skillfully contract their affected muscles which is then 
mapped to the device opening, closing, and/or toggling 
between grasping movements, using surface electromyo-
graphy (sEMG). For adults, advanced commercially avail-
able sEMG systems use pattern recognition algorithms 
to decode affected muscle electrical-activity and can link 
the users intended missing limb movements to prosthetic 
movements [16–19]. Both in the laboratory and in real-
world prostheses, this control technique has largely been 
shown to improve adult-user function and control over 
mechatronic prostheses [20–22].

Similar control systems have yet to be translated for 
children with UCBED. This is due, at least in part, to 
the common assumption that since these children have 
never had an intact limb on the affected side and have 
diminished cortical representation, this limits the func-
tion and movement repertoires of their affected muscles 
[23]. Thus, the perception is that the user cannot gener-
ate the requisite diversity in muscle responses to activate 
advanced prosthetic control systems that are designed to 
decode a variety of motor intentions [24, 25]. Yet these 
assumptions have yet to be rigorously investigated. In 
small cohorts of adults with UCBED (N = 1–2), com-
mercially available pattern recognition control systems 
show that 3–4 missing hand movements could be reliably 
detected and classified for prosthetic control. However, 
studies of the motor capabilities of affected muscles in 
larger cohorts of people with UCBED (especially in com-
parison to the unaffected limb), or cohorts including chil-
dren, have not been performed.

Despite the evidence of diminished cortical represen-
tations in children with UCBED, it is known that some 
degree of control over the affected muscles remains. For 
example, to operate conventional mechatronic (myoe-
lectric) prosthesis, these children learn to isolate and 
contract groups of residual muscles (typically the volar 
flexor muscle mass and the dorsal extensor muscle mass). 
Furthermore, although cortical activity may differ in this 
population, this data does not necessarily imply that neu-
ral sensorimotor mechanisms of the missing hand are 
wholly absent. In fact, more than 20% of children born 
without limbs experience phantom sensations of their 
missing appendage, and this phenomenon can remain 
throughout adulthood [26, 27]. Furthermore, studies 
pairing fMRI and transcranial magnetic stimulation with 
perceptual and behavioral data suggest that body parts 
that have never developed can still be represented in sen-
sory and motor cortical areas [26]. It has been proposed 
that both genetic and epigenetic factors, such as the 
habitual observation of other people moving their limbs, 
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may contribute to the conscious experience of moving a 
phantom limb [26]. However, the connections between 
the perceptions of moving a physically absent hand 
(motor imagery) and the resulting muscle responses in 
the residual limb remain poorly understood.

Here, we employed an emerging technique known as 
sonomyography [26, 27], to examine the motor capabili-
ties of the affected muscle in children with UCBED. Son-
omyography combines ultrasound imaging and machine 
learning, to interpret motor intent of the hand and wrist 
from spatiotemporal motion patterns of forearm mus-
cles. We used this approach to investigate the extent to 
which affected forearm musculature responds and repre-
sents distinct missing hand motions when children with 
UCBED attempt to move their missing limbs. In addi-
tion, due to the unique characteristics of this participant 
population, we also compared performance across the 
affected and typically developed limbs.

Materials and methods
Study design
We recruited six pediatric participants (age range 
6–20) at Shriners Hospitals for Children—Northern 
California (Sacramento, CA, USA). Subject-specific 
details are available in Tables 1 and 2. All participants 
had previously been clinically diagnosed with a unilat-
eral congenital transverse below-elbow limb deficiency. 
Unilateral congenital below elbow deficiency is also 
called transradial deficiency. Children with this condi-
tion typically have failure of formation at the proximal 
1/3, distal 2/3 junction of the forearm. They do not have 
carpal, metacarpal, or phalangeal bones. All subjects 
met these inclusion and exclusion criteria, in addition 
to the inclusion criteria that their residual limb is long 
enough to support a prosthesis. All subject recruitment 
and experimental procedures were approved by the 
Shiners Hospitals for Children Western Institutional 
Review Board (WIRB). Written, informed consent 
was obtained from participants prior to participating 
in the study. For participants who were too young to 

provide informed consent, written informed consent 
was obtained from parents/guardians and participant 
assent was obtained.

The testing procedure was similar for both arms 
(affected and unaffected). Participants were seated 
upright with their forearms resting on a table with 
their upper arm near parallel to the sagittal plane. A 
clinical ultrasound imaging system (Terason uSmart 
3200  T, Terason, Tetratech Corporation) via a linear 
array transducer (16HL7 transducer, Terason, Tetratech 
Corporation) was applied to their arm and stabilized 
with a 3D printed support and Coban self-adherent 
tape (Fig.  1A). The ultrasound imaging depth was ini-
tially set to 4 cm without focusing. Imaging depth was 
adjusted based on the anatomy of each participant. The 
transducer was oriented over the ventral aspect of the 
forearm or residuum below the elbow. The transducer 
was adjusted to qualitatively maximize tissue deforma-
tion observed in the field of view while participants 
opened and closed their hand and attempted to open 
and close their missing hand. Ultrasound image data 
was transferred to a secondary PC (Intel i7-10750H, 
32 GB RAM, 6GM VRAM NVIDIA GeForce RTX 2060) 
in real-time via a commercial video capture card (DVI-
2USB 3.0, Epiphan Systems, Incorporated) at 30 frames 
per second. The captured screen was then cropped 
to include only the relevant ultrasound image before 

Table 1 Subject information

Subject ID Age Sex Limb classification Affected Side History of previously 
prescribed myoelectric 
prosthesis

A 10 M UCBED Left No

B 6 F UCBED Right No

C 17 M UCBED Right No

D 18 M UCBED Left No

E 20 M UCBED Left No

F 8 M UCBED Left No

Table 2 Participant limb dimensions

Subject 
ID

Affected limb Unaffected limb

Length 
(cm)

Circumference 
(cm)

Length 
(cm)

Circumference 
(cm)

A 9 8.5 20 8.75

B 3 5 7 7.5

C 5 7 11 9

D 4.5 7 10 8.5

E 5.5 6 10 9.5

F 6.5 8.5 8 8.5
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being processed in MATLAB (MathWorks, Incorpo-
rated) using custom algorithms as described below (see 
Additional file 2: Movie S1 for exemplar trials showing 
synced real world and ultrasound videos). The de-iden-
tified aggregate data sets will be made available upon 
reasonable request to the corresponding author.

Experimental protocol
We applied ultrasound imaging to predict hand and 
wrist motion intent in children with UCBED by meas-
uring distinct spatiotemporal deformations of the 
forearm muscles associated with attempts to achieve 
specific hand grasps or wrist positions. The resulting 
final deformed configuration of the muscles as captured 

in the ultrasound imaging data (termed the end muscle 
state) can be identified by machine learning algorithms 
and used to predict hand and wrist motion intent [28, 
29].

Participants were instructed to perform hand and 
wrist motions (power grasp, key grasp, point, pinch, 
wrist flexion, wrist pronation) simultaneously with 
both limbs, while recording ultrasound data from each 
limb (Fig.  1A). Since only one ultrasound system was 
used during testing, separate testing blocks were con-
ducted while recording from each limb. The affected 
limb was always imaged during the first block to pre-
vent any potential bias by practicing the movement 
while recording from the unaffected limb. During each 
trial, movements were self-paced but were required to 
be performed within a four second window. Between 
5–10 trials were obtained for each motion. Partici-
pants were instructed and shown a motion by the 
experimenter after which the participant would per-
form a set of 5 trials before moving on to the next 
motion. If participants did not show mental or physical 
fatigue after 5 trials of each motion were completed, a 
second set of 1–5 trials was completed. As the full pro-
tocol took over an hour, the experimenter continually 
monitored for signs of mental or physical fatigue and 
selected the number of trials in the second set based 
on each child’s behavior. Previous work has shown 
that ultrasound imaging data in adults with limb dif-
ferences can successfully train a KNN algorithm with 
as few as 5 repetitions per motion [29]. Therefore, 
motions were collected in sets of 5 trials to ensure that 
sufficient data for analysis was collected on the first 
pass of each performed motion in case the experiment 
had to be ended early for participant fatigue or if the 
child no longer wished to continue the experiment. For 
each trial, participants were asked to relax both limbs 
prior to imaging. The first image frame of each trial 
was considered the initial muscle state. We calculated 
a dissimilarity measure between each image frame to 
the initial muscle state, using the Pearson correlation 
coefficient (see Similarity Analysis below). Participants 
were instructed to maintain their hand state until the 
trial ended, after which participants were instructed to 
relax. The end muscle state was defined as the aver-
age muscle state for the five frames prior to the end 
of the trial. Image frames were downsampled from the 
raw image size of 1024 × 1024 pixels, to a 128 × 128 
image. Pixels which did not deviate from their initial 
value across all trials were filtered prior to classifica-
tion. These pixels primarily consisted of areas of the 
ultrasound system screen that did not contain ultra-
sound imaging data. Thus, the feature vectors used for 
our analyses were approximately 1000 pixels. While 

Fig. 1 Representative placement of ultrasound transducer 
and visualization of machine learning algorithm. A Ultrasound 
transducers were attached to each limb of the participant 
with a 3D printed cuff and secured with self-adhesive Coban wrap. 
Ultrasound data was streamed directly from the Terason ultrasound 
system to a secondary computer for storage and offline analysis. 
B Spatiotemporal tissue deformations of each tested motion were 
filtered and scaled to create a feature set for the KNN algorithm. This 
supervised algorithm uses the known labels of the nearest known 
samples to classify an unknown sample
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the data remain high dimensional, similar methods for 
ultrasound data have shown success in adults for both 
offline classification and real time control of a virtual 
device [28, 29].

Classification analysis
A K-nearest neighbor (KNN) algorithm was used to clas-
sify the end muscle states of the six movement patterns. 
The only the end muscle states of the downsampled 

ultrasound images (Fig.  1B) were used for classifica-
tion (Fig. 2). The Pearson dissimilarity measure between 
respective end muscle states was used as the distance 
metric in nearest neighbor classification. We used leave-
one-out cross validation to calculate the classification 
accuracy and assess the performance of our classifier. 
Therefore, the KNN algorithm had between 4–9 known 
examples of each movement pattern, depending on the 
number of trials performed for each participant, during 

Fig. 2 Confusion matrices and comparison of classification accuracy between limbs. Each column represents one of the three example participants 
(ages 8, 10, and 20, respectively). For most movements, performance between the affected limb (A, B, C) and unaffected limb (D, E, F) were 
comparable. Some participants had one poorly performing movement in their affected limb (e.g., the first example participant showed poor 
classification of pinch in their affected limb). The difference in classification accuracy between limbs is shown in G-I. The blue polygon represents 
the classification accuracy of the unaffected limb, while the red polygon represents the classification accuracy of the affected limb
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classification. As some participants had only 5 trials for 
individual motions, to maintain a consistent metric of 
performance, we considered 80% (4/5 trials correctly 
classified, see Table  3) classification accuracy (CA) the 
minimum acceptable threshold for reliable performance. 
This is slightly lower than the 85% CA threshold com-
monly used when evaluating machine learning classifi-
cation accuracy in pattern recognition EMG system for 
adults [30].

Similarity analysis
While classification accuracy is an excellent indicator of 
the extent the muscle end states of each missing hand 
movement can be distinguished from one another, it does 
not tell us how distinct a specific movement is from the 
others (e.g., pinch grasp compared to all other move-
ments), nor does it tell us whether a movement is more 
or less distinct from the others when comparing between 
affected and unaffected limbs. Thus, we then applied a 
similarity analysis to the muscle end-states to comple-
ment our classification analysis findings. Similarity anal-
ysis, here termed Representational Similarity Analysis 
(RSA), has been used previously to examine fMRI and 
EEG activity patterns between brain regions and between 
species, where the underlying topology is not equivalent 
[31]. RSA uses the pairwise similarities between data-
points for comparison, rather than the datapoints them-
selves; thus, for two sources we can ask whether they 

represent a common set of stimuli in similar manners. 
This flexibility is critical for comparison between the 
unaffected and affected limb of children with UCBED; 
it cannot and should not be assumed that the musculo-
skeletal structures of the affected limb are equivalent to 
those of the unaffected limb. We constructed dissimilar-
ity matrices for each limb to examine the informational 
structure of the muscle end-states. From these dissimilar-
ity matrices, we calculated the exemplar discriminability 
index (EDI) of each limb of every subject to quantitatively 
assess the extent to which the tested movements are rep-
resented by distinct muscle states.

It is critical to note that the pairwise dissimilarity val-
ues for any particular set of motions (e.g., power vs. 
point) cannot simply be compared between the affected 
and unaffected limbs, nor across participants, in isolation 
to assess whether the relation between the two motions 
is the same across limbs or across participants. It is the 
overall structure that is of interest here. It is not uncom-
mon for dissimilarities to be transformed into a non-par-
ametric measure (e.g., spearman’s rank) or converted first 
into percentile dissimilarity before visualization [32–34]. 
However, the experiment described here has only 6 cat-
egories (i.e., motions) and transforming to percentile dis-
similarity would not be appropriate. As such, colors bars 
are shown on a participant by participant and limb by 
limb basis. All panels in Fig. 3 show their respective color 
bar to the right.

Table 3 Subject trial information

Subject ID Affected limb

Power Point Pinch Key Wrist
Flexion

Wrist
Rotation

A 5 5 5 6 6 6

B 7 7 6 7 7 7

C 9 9 9 9 8 9

D 10 10 10 10 10 10

E 10 10 10 10 10 10

F 10 10 10 10 10 10

Subject ID Unaffected limb

Power Point Pinch Key Wrist
Flexion

Wrist
Rotation

A 6 6 6 6 6 6

B 7 7 7 7 7 7

C 6 9 9 9 9 9

D 10 10 10 10 10 10

E 10 10 10 10 10 10

F 10 10 10 10 10 10
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Finally, we used the temporal nature of our ultrasound 
imaging methodology to assess whether children were 
using a compensatory strategy to elicit multiple unique 
missing hand movement patterns. We compared the clas-
sification accuracy of our algorithm at trial start (initial 
muscle state) and trial end (end muscle state) to examine 
whether children might have biased their limb position 
between different hand and wrist motions. This would 
result in high classification accuracy even at the trial 
onset and obscure whether the children were volition-
ally performing distinct muscle patterns. Additionally, 
we applied multi-dimensional scaling on the full trials to 
examine the trajectories of each movement in ultrasound 
space. For each participant, within each limb, we took the 
pairwise distance between every frame of all trials and 
applied multi-dimensional scaling to visualize the mus-
cle-state trajectories across all tested movements (i.e., 

power, point, pinch, key, wrist flexion, and wrist rota-
tion). We qualitatively examined whether these trajec-
tories shared a common path (e.g., the start of all power 
trials was the same position in the lower dimensional 
space as the end of point) which would be indicative of 
participants potentially using a compensatory strategy to 
elicit distinct muscle states.

Statistical analysis
All statistical analyses were performed using MATLAB 
and Rstudio. All trials were manually checked by refer-
encing the video recording of the unaffected limb of par-
ticipants. Trials were removed if the participant did not 
perform the correct movement with their unaffected limb. 
On average, one trial was removed per movement per 
limb. Condition label randomization tests for each partici-
pant compared EDI measures across limbs with an alpha 

Fig. 3 Split-data representational dissimilarity matrices. Results are for the same participants shown in Fig. 2 (separated by column), ages 8, 
10, and 20, respectively. The top row (A, B and C) shows the results for the affected limb, and the bottom row (D, E and F) shows the results 
for the unaffected limb. In each panel the diagonal represents within-movement dissimilarity between the data-splits. The off-diagonals 
represent between-movement dissimilarities. As expected, most between-movement dissimilarity values are larger (lighter shading) 
than the within-movement dissimilarity values (darker shading). Our observation from Fig. 2, that the first example participant had poor 
classification of pinch in their affected limb is supported here; the within-pinch dissimilarity for their affected limb (A) is larger than the dissimilarity 
between pinch and key, as well as between pinch and point. We can also observe that poor dissimilarities between-movements are not restricted 
to the affected limb. The unaffected limb of the second example participant (E) shows fairly high within-pinch dissimilarity values, relative 
to the dissimilarities between pinch and all other movements.
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level of 0.05. The Pearson dissimilarity measure was used 
to calculate dissimilarity matrices of muscle end states.

Results
KNN machine learning can predict intended missing hand 
position from sonomyography data in children with UCBED
Figure 2A–C shows three representative subjects (ages 
8, 10, and 20, respectively). In all figures where repre-
sentative data is presented, complete data sets for all 
N = 6 participants with UCBED are provided in the 
supplementary materials. The results in Fig. 2A–C sug-
gest that although they did not develop a hand, chil-
dren with UCBED have robust motor control over the 
muscles of their residuum. For all six subjects, Leave 
One Out Cross-Validation (LOOCV) of our k-near-
est neighbors (KNN) algorithm performed well above 
chance (chance accuracy = 16.7%) when simultaneously 
classifying all six missing hand movement patterns on 
data from participants’ affected limb. We then exam-
ined how many missing hand movements could be 
simultaneously classified with high accuracy, such that 
performance if implemented in a prosthesis would be 
reliable. As mentioned in the methods, we considered 
80% classification accuracy (CA) the minimum accept-
able threshold for reliable performance to maintain a 
stable metric across participants, due to our low and 
varying trial sample size (Table 3). All participants were 
able to achieve five simultaneously classifiable missing 
hand movement patterns with this high CA restric-
tion. Two of our six participants were able to achieve 
80% CA when simultaneously classifying all six missing 
hand movement patterns. Two of the subjects who were 
unable to achieve 80% CA in all six grasp patterns had 
Key grip as the worst performing movement pattern. 
This was not unexpected, as the primary differences 
between Power and Key grasps are thumb flexion and 
thumb palmar adduction vs. abduction. These thumb 
motions rely on intrinsic hand muscles and differences 
may be subtle when only imaging residual forearm 
muscles.

To put the results from participants’ affected limb into 
context, we also performed a LOOCV of our KNN algo-
rithm on data from participants’ unaffected limb. Fig-
ure  2D–F shows KNN performance on the unaffected 
limb data from the three representative participants. 
Similar to the affected limb, our algorithm performed 
well above chance (chance accuracy = 16.7%) when 
simultaneously classifying all six missing hand movement 
patterns. KNN performance was well above 80% CA in 
all six participants.

Next, we compared performance between the affected 
and unaffected limb of each participant. To visualize 
this, we plotted the true positive rate of each limb as a 

polygon (Fig.  2G–I) with each vertex corresponding to 
a missing hand movement pattern and equally distrib-
uted angularly. For example, if a participant had 100% 
CA on all tested missing hand movements for their unaf-
fected limb, the blue polygon would appear as a hexagon 
bounded at 1. Although performance of individual grasps 
is lower for some participants (e.g., participant A: pinch; 
participant B: key), overall performance is largely compa-
rable between limbs in most participants.

Missing hand movements are distinctly represented 
in the affected and unaffected limbs
We constructed split-data representational dissimilarity 
matrices (sdRDM) for each limb of every subject using 
the Pearson correlation distance as our similarity meas-
ure (Fig.  3A–F). Each dataset is equally divided, and an 
average muscle state is calculated as the average across 
trials in the respective half. We then calculate the pair-
wise distance between the estimated average muscle state 
of the two data splits. By converting these pairwise dis-
tances into matrix form, with the movements ordered the 
same direction along the vertical and horizontal axes, we 
obtain the sdRDM [32]. Thus, the diagonal entries pro-
vide the estimated dissimilarity between the same move-
ments across the two halves and an estimate of the noise 
inherent to the data. The off diagonals reflect the dissimi-
larity between all other movement pairs. It is apparent 
that noise exists in the data, albeit less in the unaffected 
limb, as seen by the well above zero values of the diago-
nals, representing the within-movement dissimilarity. 
This suggests that there may be more motor variability in 
the muscle activations in the affected limb.

Quantitatively, we determined the extent to which 
the set of tested movements are represented by dis-
tinct muscle states, within each limb of each subject by 
calculating the exemplar discriminability index (EDI) 
from each sdDRM. This is a common summary statistic 
applied to RDMs in fMRI research, defined as the aver-
age between-exemplar dissimilarity minus the average 
within-exemplar dissimilarity [32, 35–42]. Within the 
context of single subject sdRDMs, we take the differ-
ence between the RDMs of the two data splits and sum 
along the diagonal to determine the within-exemplar 
dissimilarity, and across the off-diagonals to obtain the 
between-exemplar dissimilarity (see Additional file  1: 
Fig. S2). We performed an exhaustive enumeration 
label randomization test on the sdRDMs of each sub-
ject. Typically, this non-parametric test is performed 
over a specific number of iterations (e.g., 1000, 10,000); 
however, with only 6 movements in our experiment, 
there are only 720 possible permutations of the rows 
of our sdRMDs. Thus, we performed all possible label 
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Table 4 Exemplar discriminability indices and p-values for 
condition-label randomization test for all participants

Participant Affected Unaffected

EDI p-value EDI p-value

A 0.121  < 0.01 0.263  < 0.01

B 0.140  < 0.01 0.293  < 0.01

C 0.081  < 0.01 0.242  < 0.01

D 0.069  < 0.01 0.413  < 0.01

E 0.228  < 0.01 0.282  < 0.01

F 0.196  < 0.01 0.328  < 0.01

permutations. Under the null hypothesis of this test, 
we assume that the inter-movement and intra-move-
ment average dissimilarities of the sdRDM are not sig-
nificantly different and thus interchangeable (e.g., across 
the two data splits the average dissimilarity between 
power grasp in one half and power grasp in the other is 
the same as between power grasp in one half and point 
in the other). Therefore, under the null hypothesis the 
rows and columns of the sdRDM should be interchange-
able. We calculated an EDI value for each permutation 
to obtain a null distribution of EDI values. The propor-
tion of null EDI values that are greater than the actual 
EDI value can be considered the p-value for the test [32]. 
Due to the extreme heterogeneity of our participants, 
we performed this test on each subject and each limb 
separately to examine the representation of the move-
ments. While this does allow for more isolated exami-
nations in the case that any given subject has a unique 
result, it also does not allow for group level inference. 
We found that in all subjects, in each limb, the tested 
movements had distinct muscle state representations 
(Table  4). This supports our previous findings that our 
KNN algorithm was able to classify the tested move-
ments in all subjects with well above chance accuracy. 
Additionally, we observe that while this is true, each 
subject had unique differences in the structure of their 
movement similarities. For example, Fig. 3B shows that 
for one subject, despite being able to classify key and 
pinch well above chance, their dissimilarity from each 
other is almost identical to their within-movement dis-
similarity. That is, the muscle states of two split-halves 
for Pinch are as similar to each other as either is to the 
muscle state of Key from the other split-half. This sug-
gests that despite being classifiable, key and pinch may 
not be as distinct, or well separated, as other movements 
for that subject. We can also observe certain commonal-
ities across participants. As expected, wrist rotation was 
very dissimilar from every other tested movement in all 
participants. 

The similarity structures of the affected and unaffected 
limbs preserve many of the same limb movement muscle 
state relationships
To expand our findings that both limbs have distin-
guishable representations of hand, or missing hand, 
movements, we next compared the structure of how 
these movements are represented in each limb. Specifi-
cally, we examined whether the structure of how these 
limb movements are represented, within the given mus-
cle architecture of each limb, is similar between limbs. 
That is, we quantified to what extent the set of relation-
ships between pairs of muscle states (i.e., for each pair 
of limb movements) preserve similar patterns across 
limbs. Here, we constructed RDMs for each limb using 
the average muscle state across all trials of a given limb 
movement to calculate the similarity between pairs of 
limb movements. Thus, the RDM is symmetric around 
a diagonal of zeroes (Fig.  4). Similar to our previous 
analysis, we used an exhaustive enumeration condi-
tion label randomization test to compare the structure 
of the tested limb movements between limbs, within 
each individual participant. We calculated the Pearson 
correlation between the affected and unaffected limb 
RDMs as our measure of relatedness. Under the null 
hypothesis, we assume there is no relatedness of the 
structures of the tested movements between limbs. The 
rows or columns of one could be randomly permuted 
and the correlation between the two RDMs would not 
differ. Thus, to determine our null distribution, we cal-
culated the correlation between every permutation of 
the labels of the unaffected limb and the unpermuted 
affected limb. The proportion of correlation values 
that are greater than the correlation between the true 
affected and unaffected RDMs can be considered the 
p-value for the test [32]. We found that in all subjects, 
there exists a statistically significant relationship of the 
structure of the limb movements between the affected 
and unaffected limb (Table  5). Critically, this suggests 
that despite the large differences in musculoskeletal 
architecture and experience using the muscles of each 
limb, both limbs represent motor intent of moving a 
hand in similar ways, within the topology of the given 
limb. Further, this suggests that the information related 
to motor intent present in the muscles of the affected 
limb may be much more robust than we have shown 
here. For example, we have shown that point and power 
(which differ by extension of the index finger in the 
unaffected limb) are highly dissimilar in the affected 
limb. Thus, it is possible that motor intent of moving 
the index finger itself may be derived from sonomyo-
graphic data of the affected limb.
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Purposeful modulation versus strategy
One major concern in the interpretation of the results 
was the potential for participants to utilize compensa-
tory strategies to elicit unique muscle states for each 
movement pattern rather than attempting to move the 

missing hand into the prompted configurations. That 
is, while we expected participants to perform wholly 
distinct muscle contractions that resulted in unique 
muscle end states for each movement, it is possible to 
elicit unique muscle end states without requiring the 
preceding muscle contractions to be distinct. For exam-
ple, a participant could have unintentionally altered 
their limb position between hand and wrist motions 
that could have biased the muscle states we used in our 
KNN algorithm. We observe a considerable increase 
in classification accuracy during the muscle activation 
across all tested hand and wrist motions in the affected 
limb (Fig.  5). This suggests that participants did not 
considerably bias the position of their affected limb 
between tested motions, and that the high classification 
accuracy seen in the end muscle states of the affected 
limb are due to volitional muscle movement.

Fig. 4 Representational dissimilarity matrices of the affected and unaffected limbs. Results are for the same participants as shown in Fig. 2 
(separated by column), ages 8, 10, and 20, respectively. The top row (A, B and C) shows the results for the affected limb, and the bottom row (D, 
E and F) shows the results for the unaffected limb. In each panel the diagonal represents the similarity of the average muscle state for each limb 
movement to itself. The off-diagonals represent the pairwise similarity between each pair of average muscle states. As expected, wrist movements 
are very dissimilar from hand movements (lighter shading). Additionally, power and key showed low dissimilarity in the unaffected limb. 
Surprisingly, participant A showed low dissimilarity between point and key in their unaffected limb (darker shading). Post-hoc viewing of video 
recordings revealed unique thumb placement during point (palmar adduction) which resulted in a hand position more similar to key than other 
participants

Table 5 Correlation between the affected and unaffected limb 
RDMs and p-values for condition-label randomization test for all 
participants

Participant Pearson correlation p-value

A 0.77  < 0.01

B 0.63  < 0.01

C 0.68  < 0.01

D 0.68  < 0.01

E 0.78  < 0.01

F 0.85  < 0.01
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Alternatively, a participant could hypothetically 
achieve multiple classifiable muscle states by skillfully 
using the same movement but activated to various inter-
mediate positions. To examine whether such a compen-
satory strategy was used, we used multi-dimensional 
scaling to visualize the relative locations of each pat-
tern. If such a compensatory strategy were to be utilized, 
a high degree of overlap in the muscle state trajectories 

would be expected. Figure 6 shows the pairwise distances 
of all tested movements, mapped onto 3 dimensions via 
multidimensional scaling, in the three representative par-
ticipants shown in Fig. 2 (see Additional file 3: Movie S2 
for rotating view of Fig.  6 for additional visualization). 
While power, point, pinch, and key grasps follow similar 
trajectories in the resulting low dimensional space, they 
remain spatially separate. This suggests that the previ-
ously hypothesized compensatory strategy was not used 
by participants, and they indeed performed distinct mus-
cle contractions for each pattern.

Discussion
Effective design of advanced prostheses requires a clear 
understanding of the motor control abilities of the 
user, and effective use requires a system that can reli-
ably utilize information that spans the domain of the 
user’s motor control. This study demonstrates that chil-
dren with UCBED have robust control of the muscles of 
their residuum and that this control can be accurately 
measured through ultrasound imaging (sonomyogra-
phy) and machine learning. All participants were able 
to elicit simultaneously classifiable muscle states for at 
least five of the six tested movements in their affected 
limbs, and six of six in their unaffected limbs. We 
used a split-data RSA approach to quantitatively con-
firm that a statistically significant representation of the 
movements exists in both limbs of all subjects. Through 
these results, we show that there is an exciting oppor-
tunity to leverage children’s inherent motor abilities for 
prosthetic device control. This work lays the foundation 
to expand the functional repertoire of their devices, 

Fig. 5 Classification accuracy at the start and end of trials. We 
observe a consistent trend of increasing classification accuracy 
between the start of every trial (Initial State) and the end of every 
trial (End State). The ultrasound images used in our KNN algorithm 
are again used here as our measure of the end muscle state for each 
hand and wrist motion. Shown classification accuracies for each 
hand and wrist motion are averaged across subject. Error bars denote 
the standard error of the mean for each hand and wrist motion. 
Overall Mean shows the classification accuracy of the initial and end 
muscle states averaged across both subject and motion

Fig. 6 Multidimensional scaling of the pairwise distances of all tested movements. Results are for the same participants shown in Fig. 2 (separated 
by column), ages 8, 10, and 20, respectively. We used multi-dimensional scaling to visualize the trajectories of each missing limb movement in three 
dimensions. We observe that while movements often follow similar curvatures, they remain spatially separate. Furthermore, they do not align 
sequentially along a single curved path. The relative positions of each missing hand movement in this low dimensional space are highly subject 
dependent
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enhance the ability to maintain reliable performance, 
and ultimately impact the quality of life for this partici-
pant population.

Implications for more intuitive prostheses
Understanding the extent to which children with UCBED 
can perform unique patterns of muscle activation is 
essential to inform the development of next generation 
upper limb prosthetic devices. The results presented 
here have shown that without any prior training, children 
with UCBED were able to consistently elicit distinct spa-
tiotemporal muscle patterns for multiple hand and wrist 
motions both in the affected and unaffected limbs. Fur-
thermore, we have shown that ultrasound imaging, cou-
pled with machine learning, is able to reliably interpret 
motor intent from the activation of residual muscles, 
producing classification accuracies that could provide 
reliable control of multi-dexterous prosthetic devices. 
These results contrast previous work in sEMG systems 
for congenital limb difference populations, which have 
shown mixed success. For example, Kryger et  al. which 
found classification accuracies of 52.1%± 15.0% when 
using standard sEMG for classification of multiple hand 
configurations in adults with congenital upper limb defi-
ciencies [24]. Additionally, Kaluf et  al. which included 
four pediatric participants in their cohort while examin-
ing the abilities of persons with UCBED to use a pattern 
recognition sEMG system. The authors observed moder-
ate success in calibrating their pattern recognition algo-
rithm; 2/4 pediatric participants showed classification 
accuracy greater than 85% for 3 degrees of freedom [25]. 
While sEMG has served as a useful proxy for interpret-
ing motor intent (i.e., muscle electrical activity), and has 
had great success in some populations, sonomyography 
provides an alternate measure of motor intent by observ-
ing the actual motor actions of the muscles (i.e., mus-
cle displacements and deformations). We do not intend 
to suggest that ultrasound may supersede sEMG as a 
measurement modality for dexterous prosthetic con-
trol. However, our results support that ultrasound may 
be a promising modality that captures separate and rel-
evant aspects of muscle motor control. As our ultrasound 
measurements showed a higher capacity for children to 
actuate their affected muscles than previously thought, 
we hypothesize that ultrasound-based control techniques 
may compliment established sEMG approaches. That 
is, a prosthesis control system that fuses both modali-
ties may prove more reliable than either in isolation as 
together muscle activity and the driving motor intentions 
of individuals with UCBED can be more comprehensively 
characterized.

Implications for the development of motor control
The size of our study sample limits the power to exam-
ine age-related changes in motor control of residual 
muscles in children with UCBED. However, our find-
ing that children and adolescents aged 6–20 years have 
robust control of their residuum muscles is an encour-
aging indicator that examining age-related changes is 
possible. It has been well documented that motor con-
trol and multisensory integration during early child-
hood are not equivalent to that of adults [43–47]. Study 
of upper limb motor control in typically developing 
children has primarily focused on reaching tasks. For 
example, Wilson and Hyde observed that rapid online 
control improves, non-linearly, in children between 
ages 6–12 [45]. Similarly, others have shown that non-
visually guided measures of motor control (e.g., force 
output and postural control) also change with age [48–
50]. Therefore, it would be interesting to examine the 
extent such age-related changes in motor control also 
occur for residual muscles which have never actuated 
a hand.

It is important to emphasize that although some 
children in our sample have previous, although lim-
ited, experience with a myoelectric prosthetic device, 
they had no prior training in trying to explicitly mimic 
hand and wrist motions with their affected limb. Thus, 
the results presented here serve as a baseline assess-
ment of the motor abilities of children with UCBED. 
It is likely that with training and practice there exists 
the potential for these children to improve the control 
of their residual muscles. Our findings that children 
with UCBED have robust peripheral motor control of 
their residual muscles and can elicit distinct muscle 
states when mimicking hand grasps may be surprising 
given recent fMRI work by Wesselink et al. This study 
found that adults with UCBED have no distinct corti-
cal representation of the fingers of their affected limb 
[3]. The authors asked adults with UCBED to perform 
individual digit flexions or piano chord-like multi-digit 
flexions while recording from the primary motor and 
primary sensory cortices. It is possible that the corti-
cal representation of residual muscles for persons with 
UCBED may not look similar to that of an unaffected 
hand or limb. Although we asked children to mimic 
the hand motions with their affected limb, it is also fair 
to argue that we are ascribing meaning to the muscle 
motions. It may be that the full set of possible muscle 
states a child can achieve with their affected limb is 
not analogous to the full set of muscle states for their 
unaffected limb. It is exciting to speculate on what the 
cortical representation exists for these unique residual 
muscle movements.
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Implications for other disease and injury conditions
The ability to study the control of the individual mus-
cles, including deep muscles of the forearm, through 
sonomyography may be applied to additional clini-
cal populations, and assessment of improvements in 
post-clinical intervention. For example, cerebral palsy 
is characterized by a combination of motor impair-
ments, including excessive muscle co-activation [51–
53]. However, it remains unclear whether the effect of 
excessive muscle co-activation is negative, or if it may 
aid in joint stability for participants who also exhibit 
muscle weakness. While surface EMG measurements 
have provided insight in characterizing muscle activity 
during movement in participants with cerebral palsy, 
sonomyography may prove a useful complementary 
tool for examining the spatiotemporal characteristics of 
motor control during grasping, particularly in the case 
of hemiplegic cerebral palsy. Our work here has dem-
onstrated that sonomyography can serve as a useful 
tool in comparing the control of deep forearm muscles 
between limbs, even when the musculature does not 
necessarily behave typically. A combination of sonomy-
ography and RSA could be used in comparing limbs pre 
and post intervention and could provide quantitative 
support on the extent spatiotemporal muscle patterns in 
the affected limb shifted towards those seen in the unaf-
fected limb.

Conclusions
In this study, we show that children with UCBED have 
robust control over the muscles of their residuum. 
When a child attempts to mimic movements with their 
missing hand, their muscles move in consistent and 
unique patterns for each motion. These spatiotempo-
ral patterns carry information about their motor intent 
and can be classified by a machine learning algorithm. 
Critically, these motions did not need to be learned; 
participants were able to perform distinct patterns 
without any prior training or feedback on their per-
formance. Furthermore, participants were able to per-
form distinct patterns regardless of their age or prior 
prosthesis history. Combined, these results are highly 
encouraging for the future of pediatric prosthetics. 
As more advanced prostheses become available, mul-
timodal measurement technologies (including future 
ultrasound technologies) may provide clinically feasi-
ble control options that leverage the full capabilities of 
children’s affected muscles for more functional dexter-
ous prostheses that provide significant improvement to 
participants’ quality of life.
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