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P H Y S I C S

Low-overhead fault-tolerant quantum computing using 
long-range connectivity
Lawrence Z. Cohen1, Isaac H. Kim1,2, Stephen D. Bartlett1, Benjamin J. Brown1*

Vast numbers of qubits will be needed for large-scale quantum computing because of the overheads associated 
with error correction. We present a scheme for low-overhead fault-tolerant quantum computation based on 
quantum low-density parity-check (LDPC) codes, where long-range interactions enable many logical qubits to be 
encoded with a modest number of physical qubits. In our approach, logic gates operate via logical Pauli measure-
ments that preserve both the protection of the LDPC codes and the low overheads in terms of the required number 
of additional qubits. Compared with surface codes with the same code distance, we estimate order-of-magnitude 
improvements in the overheads for processing around 100 logical qubits using this approach. Given the high thresholds 
demonstrated by LDPC codes, our estimates suggest that fault-tolerant quantum computation at this scale may be 
achievable with a few thousand physical qubits at comparable error rates to what is needed for current approaches.

INTRODUCTION
Quantum computing devices are now capable of outperforming even 
the fastest conventional supercomputers at certain tasks (1). How-
ever, to execute many quantum algorithms of practical interest, it is 
widely believed that a fault-tolerant architecture will be required to 
identify and correct errors in noisy quantum hardware. Fault-tolerant 
architectures come with a substantial overhead cost, using a large 
number of low-noise physical qubits to encode and process quan-
tum information with even a small number of protected qubits. 
Specifically, it has been estimated that millions of qubits will be 
needed to solve relevant problems in quantum chemistry (2–4), to 
break cryptosystems (5, 6), or to get an advantage over classical 
algorithms using polynomial speedups (7, 8). These large overheads 
provide a daunting challenge for scaling up from today’s noisy de-
vices to large-scale fault-tolerant quantum computers.

The enormous resource estimates mentioned above are all ob-
tained using fault-tolerant architectures based on quantum error-
correcting codes with local check operators (9–12). These codes have 
a number of highly desirable features for quantum computation, 
including high thresholds and fast decoders (5, 13). The locality of 
these codes means that quantum error correction can proceed using 
only entangling gates between neighboring qubits arranged in a 
two-dimensional layout, i.e., on a chip. Thus, while local codes pro-
vide a clear pathway to demonstrate the principles of fault tolerance 
using existing quantum technology, these overheads mean that useful 
fault-tolerant quantum computing with this approach will likely re-
main out of reach in the near term.

Locality of gate operations is a physically well-motivated con-
straint. Recently, however, there has been substantial progress in 
developing long-ranged entangling gate operations in a variety of 
quantum processing systems, including those based on supercon-
ductors (14), semiconductors (15–17), and trapped ions (18, 19). 
Optical photons provide an approach that is not naturally con-
strained to a local two-dimensional layout (20, 21) and can also 
allow for other qubit systems to be connected into complex quantum 

networks (22–25). Recent work has also considered emulating long-
range interactions using a local quantum architecture and classical 
communication (26), and architectures have been proposed where 
long-range interactions are constrained on interconnected planar 
arrays of matter-based qubits (27). The possibility of long-range 
connectivity opens the door to a new class of quantum codes and 
fault-tolerant architectures that can harness this connectivity to 
our advantage.

Here, we show how to perform fault-tolerant quantum compu-
tation with an architecture that exploits long-range connectiv-
ity to greatly reduce the overhead, compared with local approaches. 
Rather than focusing on asymptotic behavior, we consider the over-
head savings that may be possible in the scale of devices expected in 
the near term, where, for example, fault-tolerant quantum comput-
ing on 50 logical qubits may be possible with only a few thousand 
physical qubits while maintaining a code distance of d = 14 to 16. 
For comparison, a surface code–based architecture requires at least 
10,000 qubits to attain a similar number of logical qubits and code 
distances. Provided that long-range coupling becomes sufficiently 
reliable to go below the fault tolerance threshold of our scheme, we 
anticipate that such an architecture will be capable of performing 
nontrivial quantum algorithms at a scale compatible with current 
roadmaps for quantum devices under development during the next 
few years.

Our approach uses quantum low-density parity-check (LDPC) 
codes, which efficiently encode a large amount of logical informa-
tion for a given number of physical qubits. There has been a recent 
surge of interest in this subject [see (28) for a recent review], spurred 
by Gottesman’s remarkable observation (29) that quantum LDPC 
codes meeting certain criteria can be used to achieve fault-tolerant 
quantum computing with constant overhead. While research into 
quantum LDPC codes is still in its infancy, they are showing promise. 
Codes that fulfill Gottesman’s criteria are now known (30). More-
over, recent numerical studies indicate that LDPC codes can 
achieve reasonably high thresholds (31–33). Recent breakthroughs 
in achieving high code distances indicate that there is room for 
further development (34–36).

To use these LDPC codes for quantum computation, one must 
be able to fault-tolerantly implement a universal set of protected 
logic gates. While Gottesman (29) establishes a method to perform 
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quantum computation using fault-tolerant gate teleportation (37), 
the cost associated with the distillation of the requisite resource state 
(38) is not understood well in the practical regime of interest.

Here, we introduce a flexible method to perform low-overhead 
quantum logic gates for a general class of quantum LDPC codes. 
Our work can be thought as a generalization of lattice surgery (39), 
where an ancillary system is coupled to a quantum error-correcting 
code to measure logical Pauli operators in a fault-tolerant way. Our 
approach to low-overhead quantum logic builds on an extensive lit-
erature into the use of code deformations to perform Clifford gates 
via measurement that have been well studied for topological codes 
(5, 13, 39–42), and which have recently been generalized to certain 
classes of quantum LDPC codes (43–46). To use this approach for 
quantum LDPC codes in a way that maintains the desirable low 
overheads, we construct the required ancillary system by adapting 
weight reduction methods proposed in (47, 48) to measure the 
desired logical operators of a given quantum LDPC code. These 
logical operations then yield a universal gate set for fault-tolerant 
quantum computing when supplemented with noisy ancilla state 
injection via magic state distillation (49). Thus, our scheme provides 
an explicit way of performing low-overhead fault-tolerant quantum 
computing using quantum LDPC codes, which is applicable to codes 
of even modest size.

Before presenting our detailed results, we briefly illustrate the 
potential overhead improvements that our construction enables. 
We will make use of existing quantum LDPC codes with explicit 
constructions and efficient decoders, together with our fault-tolerant 
approach to performing logic gates on these codes. Table 1 shows 
the overhead required to complete a round of logical operations with 
error correction for a given number of logical qubits k and code 
distance d for a number of quantum LDPC codes, specifically, 
hyperbicycle and hypergraph product codes explicitly constructed 
in (31, 50). By one round of logical operations, we mean a set of 
logical Pauli measurements such that each logical qubit is acted on 
nontrivially by at most one measurement. We directly compare the 
qubit resources for our construction against the use of surface codes 

encoding the same number of logical qubits and with the same code 
distance, with the latter serving as a proxy for how well the codes 
protect logical quantum information. The surface code is currently 
the predominant candidate for a quantum architecture, and consid-
erable effort has been spent optimizing its overhead for fault-tolerant 
computation. Our analysis thus shows the potential overhead im-
provement that can be achieved using a nonlocal architecture as 
compared to a local architecture.

All codes we have used, and their fault-tolerant operations, use 
check operators involving no more than 13 qubits for the largest code 
in Table 1. (However, it is not the case that all stabilizer generators 
will have this weight, and most generators will have lower weight.) 
This weight is larger than that of the surface code, but not by a sub-
stantial margin. Because this number is fixed at a small constant 
value, errors do not spread substantially during measurement of these 
check operators, which would otherwise affect the threshold of the 
scheme. However, we emphasize that the stabilizer weights and the 
circuits used to measure the stabilizer generators will still affect 
the performance of this scheme. In particular, higher weight stabi-
lizers will increase the failure rate under circuit-level noise, and this 
should be taken into account when considering the estimates in 
Table 1. Efficient decoders for the codes in Table 1 have also 
been designed that perform comparably to minimum weight perfect 
matching decoding on surface codes of similar distance (31).

We implement Clifford gates through parity measurement of 
logical qubits in the Pauli basis. To keep the overhead low, we 
restrict the number of logical qubits that can participate in a single 
measurement round, and we call this number the parallelism of the 
scheme (see Fig. 1). For a given level of parallelism and given error 
correcting code, we require nanc physical qubits to create the ancilla 
systems used in logical measurement, and ndata is the size of the code 
used to store the logical information. Our analysis shows that at very 
small code sizes, quantum LDPC codes give only a modest overhead 
improvement when compared to surface code architectures. How-
ever, as the size of the system increases, we see that the improvement 
in overhead for the quantum LDPC codes becomes very substantial, 

Table 1. Overhead estimates. Estimates of the overhead required to perform a round of logic, including those qubits needed to encode the data as well as 
additional ancilla qubits required to perform fault-tolerant gates. We use LDPC codes constructed in (31, 50), which all have initial check weights of no more 
than 10. We denote the number of logical qubits as k and the distance of the code as d. Comparisons are made against the surface code with the same distance. 
Here, “parallelism” denotes the number of logical qubits that can be acted upon nontrivially in one round of error correction, and which determines the number 
of required ancilla qubits. The number of data, ancillary, and total physical qubits needed to perform one round of logical measurements with error correction is 
denoted ndata, nanc, and ntot, respectively. We do not include any ancilla qubits that may be used for error syndrome extraction. Estimates for the surface code 
were obtained using the compact block scheme from (40). 

k d Parallelism Code family ndata nanc ntot

18 8 2
Hyperbicycle 294 500 800

Surface 1,152 128 1,300

50

14 2
Hyperbicycle 900 1,400 2,300

Surface 9,800 300 10,000

16 20
Hypergraph 1,922 5,000 7,000

Surface 12,800 2,000 15,000

578 16
578

Hypergraph 7,938 120,000 130,000

Surface 150,000 75,000 225,000

68 Hypergraph 7,938 15,000 23,000

Surface 150,000 10,000 160,000
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offering an order of magnitude improvement at several hundred 
logical qubits. Current algorithms for minimal nontrivial quantum 
chemistry calculations (51) require around 100 to 200 logical qubits, 
and so, even at this regime, it may be beneficial to use quantum 
LDPC codes. We expect that for larger algorithms, such as more 
complex quantum chemistry algorithms (2–4) or Shor’s algorithm 
(6, 52), where several thousand logical qubits are required, the over-
head gains will be substantial.

These encouraging reductions in overhead motivate experimen-
tal work toward the design and realization of quantum LDPC codes 
in the laboratory. At the physical level, it remains to find efficient 
ways to measure check operators extending over distant qubits with 
high fidelity. With long-range coupling now demonstrated using a 
number of very different approaches (14–19), as well as proposals 
allowing all-to-all coupling (53), there is substantial room for inno-
vation here. It is also critical that we identify check operator readout 
circuits that maintain the fault tolerance of the scheme, as well as ac-
count for cross-talk that may be present in long-range interactions, 
and this will require the development of quantum LDPC codes at 
the level of the circuit error model (27, 54).

Last, further study into compilation of quantum algorithms will 
allow us to determine what level of parallelism is required to effi-
ciently execute a quantum computation. A commonly used elemen-
tary fault-tolerant gate set consists of nondestructive measurements 
of arbitrary Pauli strings (4, 40, 55). If the parallelism is strictly less 
than the number of logical qubits, clearly, not all the Pauli strings 
can be measured directly. In particular, if the weight of the Pauli 
string exceeds the parallelism, one would need to break that mea-
surement down into a sequence of (lower-weight) Pauli measure-
ments, leading to a reduced speed. However, if most of the Pauli 
strings have small weights, the speed of the two approaches will not 
differ substantially. We anticipate this to be the case if the goal is to 
simulate a locally interacting many-body quantum spin Hamiltonian 
using the Trotter-Suzuki method (56), but it is unclear how the two 
approaches will differ for methods such as qubitization (57).

RESULTS
We now present our main result: a procedure to implement fault-
tolerant logic gates in quantum LDPC codes via a generalization of 
lattice surgery, in a way that preserves the low overheads. We pro-
pose a method for implementing fault-tolerant gates on quantum 
LDPC codes by using multilogical Pauli measurements (40). Our 

result expands on a set of techniques originally devised to reduce 
the weight of stabilizer generators of quantum codes (47, 48). We 
extend these results to include measurement of all logical Pauli 
operators, allowing for implementation of the full logical Clifford 
group. Our method is a form of code deformation, in which we 
transform our code into a new code and in doing so obtain logical 
information about our original code (5, 13, 39–42).

Our construction enables us to perform single-qubit Pauli 
measurements, as well as parity measurements between logical 
qubits on one or multiple LDPC blocks in an arbitrary choice of 
Pauli basis. This capability gives us a measurement-based ap
proach for realizing the full Clifford gate set (40). This gate set 
can be supplemented with magic state distillation and state in-
jection to achieve universal quantum computing (49). We will 
discuss universal quantum computing in more detail in the “Low-
overhead fault-tolerant quantum computation” section. Our con
struction also guarantees that the distance of the code is preserved 
during the code deformation, and so, we retain the error-correcting 
capabilities of our code.

We begin by setting some basic notation and terminology in the 
next section. The “Code deformation” section presents our con-
struction for measuring logical multi-qubit Pauli operators. We then 
prove that our construction preserves the distance of the code 
throughout the process in the “Fault tolerance” section.

Notation and terminology
We describe quantum error-correcting codes with the stabilizer 
formalism. Let 𝒫 = 〈I, X, Y, Z〉 be the Pauli group and 𝒫n = 𝒫⊗n the 
Pauli group acting on n qubits. A stabilizer code is defined by an 
Abelian group 𝒮 ⊂ 𝒫n such that ​− I  ∉  S​. The code 𝒞 is a subspace 
spanned by the common +1 eigenvalue eigenstates of the operators 
in 𝒮. The logical Pauli operators are operators in 𝒫n that commute 
with every operator in 𝒮 but are not themselves in 𝒮. If 𝒮 is generated 
by an independent set of generators {g1, …, gm}, the number of log-
ical qubits of the code is k = n − m. The distance of the code is equal 
to the weight of the least-weight nontrivial logical operator where 
the weight of an operator in 𝒫n is the number of qubits on which it 
acts nontrivially, i.e., with nonidentity support. Of particular inter-
est is a class of stabilizer codes known as Calderbank-Shor-Steane 
(CSS) codes. These are codes with a stabilizer group that can be gen-
erated by a set that includes only two types of elements: those that 
are the product of Pauli-X operators only and those that are the 
product of only Pauli-Z operators.

We consider families of stabilizer codes 𝒮n such that each mem-
ber of family is indexed by the number of qubits n. Let wn be the 
maximum weight of a stabilizer of a generating set of 𝒮n, and let qn 
be the maximum number of stabilizer generators that act on any 
given qubit for a specified generating set. A family of LDPC codes 
then is a sequence 𝒮n that can be generated by a set of stabilizer 
generators such that wn = O(1) and qn = O(1). For the remainder of 
the paper, we will drop the explicit dependence on n and assume 
that these quantities are constants.

We can describe LDPC codes using the Tanner graph. Let 𝒯 = 
(V, C, E) be a bipartite graph. Each node in V corresponds to a phys-
ical qubit in the code, and each node in C corresponds to a genera-
tor of the stabilizer group of the code. We draw an edge between c ∈ 
C and v ∈ V if the generator corresponding to c acts nontrivially on 
the qubit corresponding to v. We label each edge with either an X, 
Z, or Y depending on how the generator acts on the qubit. For the 

Fig. 1. Parallelism. An example circuit consisting of Pauli measurements on an 
architecture with a parallelism of six. This circuit contains four rounds of error-
corrected logical measurements. In each round, at most, six logical qubits in total 
can be involved in logical measurements.
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case of CSS codes, we can instead label the nodes in C with X or Z, 
as opposed to labeling the edges. We will often abuse notation and 
use the labels for variable and check nodes of a Tanner graph to re-
fer to their respective physical qubits and stabilizer generators 
directly.

Code deformation
We now present our main technical contribution, starting with an 
outline of the basic idea behind implementing measurements using 
code deformation. Suppose we have a stabilizer code 𝒮 = 〈g1, …, gm〉 
along with a logical operator ​​ ~ L ​​ that we wish to measure. We can 
interpret our procedure as adding ​​ ~ L ​​ to the generating set of a new 
code that includes this operator and then removing it again once we 
have reliably obtained the measurement outcome. Note, however, 
that simply adding ​​ ~ L ​​ to 𝒮 will not yield an LDPC code because, in 
general, ​​ ~ L ​​ is a high-weight operator. To maintain the key properties 
of an LDPC code, we need a stabilizer code that includes ​​ ~ L ​​ in its 
stabilizer group whereby ​​ ~ L ​​ can be generated with constant- and 
ideally low-weight generators. This can be achieved by creating an 
extended system with additional qubits that include a set of low-
weight stabilizer generators S1, …, Sl whose product gives ​​ ~ L ​​. The 
product of the measurement results for each stabilizer generator 
gives us the measurement result of ​​ ~ L ​​. It is also important that the 
stabilizers of the new code do not generate any other logical opera-
tors of 𝒮 so that we do not make any unwanted logical measure-
ments that may affect our computation.
Logical CSS measurement
Here, we describe our construction for the fault-tolerant measure-
ment of logical Pauli operators in CSS codes, illustrated with an ex-
ample in Fig. 2 for concreteness. We concentrate on the case for 
measuring X logical operators but remark that an analogous proce-
dure will hold for measuring Z logical operators by reversing the X 
and Z terms in the following discussion. Let 𝒞 be a CSS stabilizer 
code described by Tanner graph 𝒢 = (V, C, E). We show how to 
measure a specific instance of an X logical operator ​​ ~ X ​​. To do so, we 
deform code 𝒞 onto a new code 𝒞merged described by the Tanner graph that 
includes 𝒢 as a subgraph, 𝒢merged ⊃ 𝒢.

Our goal is to define a new LDPC code whose stabilizer group 
includes ​​ ~ X ​​. We can use this new code to infer the measurement 
result of ​​ ~ X ​​ by measuring its stabilizer generators. The construction 
of 𝒢merged is expressed in terms of 𝒢 and a subgraph of 𝒢 specified 
by ​​ ~ X ​​ that we call ​​G​ ​ ~ X ​​​  =  (​V​ ​ ~ X ​​​, ​C​ ​ ~ X ​​​, ​E​ ​ ~ X ​​​)​, together with a dual graph ​​
G​​ ~ X ​​ 

T ​  =  (​V​​ ~ X ​​ 
T ​, ​C​​ ~ X ​​ 

T ​, ​E​​ ~ X ​​ 
T ​)​. The variable nodes ​​V​ ​ ~ X ​​​​ of the subgraph ​​G​ ​ ~ X ​​​​ are 

the qubits that support ​​ ~ X ​​, checks CeX are Z type stabilizers that 
share an edge of the Tanner graph with variable nodes ​​V​ ​ ~ X ​​​​, and edges 
​​E​ ​ ~ X ​​​  ⊆  E​ are those of E that are incident to nodes included in both ​​
V​ ​ ~ X ​​​​ and ​​C​ ​ ~ X ​​​​ (see Fig. 2A). The dual graph ​​G​​ ~ X ​​ 

T ​​ is such that for each ​
v  ∈ ​ V​ ​ ~ X ​​​​, we have a corresponding node ​​v​​ T​  ∈ ​ C​​ ~ X ​​ 

T ​​, and likewise for 
each ​c  ∈ ​ C​ ​ ~ X ​​​​, we have a corresponding vertex ​​c​​ T​  ∈ ​ V​​ ~ X ​​ T ​​. For each 
edge ​e  ∈ ​ E​ ​ ~ X ​​​​ with e = (v, c), we have ​​e​​ T​  ∈ ​ E​​ ~ X ​​ 

T ​​ with eT = (vT, cT) such 
that the nodes ​​v​​ T​  ∈ ​ C​​ ~ X ​​ 

T ​​ and ​​c​​ T​  ∈ ​ V​​ ~ X ​​ 
T ​​ are those that correspond to 

the nodes of the original subgraph (see Fig. 2B). For now, we as-
sume that there is no strict subset of qubits V′ ⊂ V such that V′ 
supports a distinct X logical operator, before explaining the differ-
ences with the more general case.

We define the Tanner graph 𝒢merged in terms of 𝒢 and our new 
graphs ​​G​ ​ ~ X ​​​​ and ​​G​​ ~ X ​​ 

T ​​. Specifically, we combine the Tanner graph 𝒢 
with r copies of ​​G​​ ~ X ​​ 

T ​​ and r − 1 copies of ​​G​ ​ ~ X ​​​​ using additional edges 
Eextra ⊂ Emerged. We layer the copies of ​​G​ ​ ~ X ​​​​ and ​​G​​ ~ X ​​ 

T ​​ in an alternating 
fashion (see Fig. 2C). The additional edges Eextra connect adjacent 
layers of ​​G​​ ~ X ​​ 

T ​​ and ​​G​ ​ ~ X ​​​​ as shown in Fig. 2C. To explicitly describe the 
edges of Eextra, we index copies of these graphs and their corre-
sponding objects ​​G​​ ~ X ​​ 

T ​ [ j]​ with 1 ≤ j ≤ r and ​​G​ ​ ~ X ​​​ [ j]​ with 2 ≤ j ≤ r. We 
can regard ​​G​ ​ ~ X ​​​  ⊆  G​ as ​​G​ ​ ~ X ​​​ [ 1]​. In later sections, we will refer to the 
layers corresponding to ​​G​​ ~ X ​​ 

T ​ [ j]​ as dual layers, and the layers corre-
sponding to ​​G​ ​ ~ X ​​​ [ j]​ as primal layers. We will also refer to the final 
layer ​​G​​ ~ X ​​ 

T ​ [ r]​ as the boundary layer.
Let us also append indices to the objects of ​​G​ ​ ~ X ​​​ [ j ] = (V [ j ] , C [ j ] , E [ j ] )​ 

and ​​G​​ ~ X ​​ 
T ​ [ j ] = (​V​​ T​ [ j ] , ​C​​ T​ [ j ] , ​E​​ T​ [ j ] )​ to define Eextra. Recall that for 

each variable and check in ​​G​ ​ ~ X ​​​​, we have a corresponding check or 
variable, respectively, in ​​G​​ ~ X ​​ 

T ​​. Thus, we also have that each v[j] ∈ V[j] 
has a corresponding vertex vT[k] ∈ CT[k], and likewise for each 
c[j] ∈ C[j], we have cT[k] ∈ VT[k]. The appending edges Eextra then 
include all edges (v[j], vT[j]) and (c[j], cT[j]) for all v, c, and 1 ≤ j ≤ r, 

A

B

C

Fig. 2. Measurement of a logical ​​ ~ X​​ operator of the code ​𝓒​. (A) Bipartite subgraph ​​G​ ​ ~ X ​​​​ of the Tanner graph of 𝒞 on the support of ​​ ~ X ​​. Black nodes are the variable nodes 
corresponding to qubits in the support of ​​ ~ X ​​. Red nodes are the check nodes corresponding to Z-type stabilizers in 𝒞 that act on qubits in the support of ​​ ~ X ​​. (B) Dual graph 
​​G​​ T​  =  (​V​​ ~ X ​​ 

T ​, ​C​​ ~ X ​​ 
T ​, ​E​​ ~ X ​​ 

T ​)​ of the logical ​​ ~ X ​​ in (A). There is a one-to-one mapping between the X-type generators and the qubits in (A), and the qubits and the Z-type generators in 
(A). (C) Measurement of ​​ ~ X ​​ using the ancilla system 𝒢anc = 𝒢merged\𝒢. The Tanner graph 𝒢anc is constructed by taking alternating layers of the subgraph ​ ​G​​ ~ X ​​ 

T ​​ in (B) and the 
subgraph ​​G​ ​ ~ X ​​​​ in (A). The vertical edges are the set Eextra, which connect adjacent layers. The product of the X generators gives the logical ​​ ~ X ​​, and hence, the product of the 
measurement results for each X generator gives the measurement result of the logical ​​ ~ X ​​. After merging the codes and measuring ​​ ~ X ​​, we then split the codes by measuring 
the stabilizers for 𝒞 and measuring the qubits in 𝒞anc in the Z basis, returning us to the original code space.
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and edges (v[j + 1], vT[j]) and (c[j + 1], cT[j]) for all v, c, and 2 ≤ 
j ≤ r − 1.

To summarize, with Eextra ⊂ Emerged defined, we have now 
specified all of the objects of 𝒢merged. We have that 𝒢 is a subgraph of 
𝒢merged. Likewise, the variables of ​​G​​ ~ X ​​ 

T ​ [ j]​ and ​​G​ ​ ~ X ​​​ [ j]​ are variables of 
𝒢merged. The checks of subgraphs ​​G​ ​ ~ X ​​​ [ j]​ are Z stabilizers for 𝒢merged 
and the checks of dual graphs ​​G​​ ~ X ​​ 

T ​ [ j]​ are X stabilizers of the merged 
Tanner graph. Edges Eextra fix graphs 𝒢, ​​G​ ​ ~ X ​​​ [ j]​, and ​​G​​ ~ X ​​ 

T ​ [ j]​ together. 
It will sometimes be helpful to refer to 𝒢anc = 𝒢merged\𝒢 as the ancilla 
system—the resource used to make parity measurements.

Having constructed our new code defined by the Tanner graph 
𝒢merged, we now present the following lemma demonstrating that ​​ ~ X ​​ 
is an element of the stabilizer group of this new code.

Lemma 1. Let 𝒞 be a CSS LDPC code and ​​ ~ X ​​ an X logical opera-
tor in 𝒞 such that there is no other X logical operator supported on 
a strict subset of the qubits in ​​ ~ X ​​. Then, the construction for 
𝒢merged above gives a code 𝒞merged that contains ​​ ~ X ​​ in its stabilizer 
group whereby

	​​   ∏ 
​
j=1,…,r

​ 
​v​​ T​[j]∈​C​​ T​[j]

​

​​​ ​v​​ T​ [ j ] = ​   X ​​	 (1)

We recall that we have used the notation where vT[j] is the stabi-
lizer generator represented by this check node.

Proof. We prove this lemma by showing that the support of 
∏j, CT[j]vT[j] on the qubits of 𝒢anc is trivial, and is nontrivial on V[1], 
which is the support of ​​ ~ X ​​. By definition, stabilizers vT[j] are supported 
on variables v[j] ∈ V[j] and cT[j] ∈ VT[j]. We therefore concentrate 
on these qubits.

Observe that each Z generator c ∈ C[1] must be connected to an 
even number of qubits in V[1] in order for the stabilizers to com-
mute with ​​ ~ X ​​. Consequently, each physical qubit cT[k] ∈ VT[k] must 
be connected to an even number qX of X generators in CT[k]. Hence, 
each qubit cT[k] supports the term ​​(​X​ ​c​​ T​[k]​​)​​ ​q​ x​​​  =  1​ for the operator 
∏j, CT[j]vT[j].

Furthermore, each physical qubit v[k] ∈ V[k] for k ≥ 2 is con-
nected to exactly two X generators, vT[k − 1] and vT[k]. It follows 
that each qubit v[k] ∈ V[k] supports the term ​​(​X​ ​c​​ T​[j]​​)​​ 2​  =  1​ for the 
operator ∏j,CT[j]vT[j].

Last, each physical qubit v[1] ∈ V[1] is connected to exactly one 
X generator in 𝒢anc, specifically vT[1]. Consequently, the product of 
all the X generators in 𝒞anc gives precisely the logical operator ​​ ~ X ​​, 
thus completing the proof of Lemma 1.

To make a measurement of ​​ ~ X ​​ in a practical way, we first deter-
mine 𝒢merged and prepare each physical qubit in 𝒢anc in the 0 state. 
We then measure all the stabilizer generators in 𝒢merged and perform 
a round of error correction. To ensure that this procedure is fault 
tolerant in the presence of noisy measurements, we can repeat this 
step d times (42). Once we have fault tolerantly obtained the result 
of the measurement of ​​ ~ X ​​, we can return to the original code space 𝒞 
by measuring each physical qubit in 𝒢anc in the Pauli-Z basis.

Lemma 1 provides a mechanism to perform a measurement of 
an X logical operator ​​ ~ X ​​; however, it is restricted to the special case 
where there is no other X logical operator within its support. In the 
general case, we may have another X logical operator ​​ ~ X ​′​ supported 
entirely on a strict subset V′ of physical qubits in V[1]. Following 
the construction as given above, we will make an unwanted mea-
surement of ​​ ~ X ​′​, which will result in an entirely different computa-
tion. As an example of this situation, consider the measurement of 

a two-logical-qubit operator ​​​ ~ X ​​ 1​​ ​​ ~ X ​​ 2​​​, where ​​​ ~ X ​​ 1​​​ and ​​​ ~ X ​​ 2​​​ are canonical 
logical operators that do not intersect at any physical qubits. Fol-
lowing the procedure outlined above will give us separate measure-
ments of ​​​ ~ X ​​ 1​​​ and ​​​ ~ X ​​ 2​​​.

We now generalize our construction of 𝒢merged to address this 
general situation, which we illustrate in Fig. 3. To measure ​​​ ~ X ​​ 1​​ ​​ ~ X ​​ 2​​​ 
without measuring the value of ​​​ ~ X ​​ 1​​​ or ​​​ ~ X ​​ 2​​​ individually, we must con-
struct 𝒢merged such that the separate logical operators are connected. 
First, we must construct the separate ancilla systems, 𝒢anc. 1 and 𝒢anc. ,2, 
for ​​​ ~ X ​​ 1​​​ and ​​​ ~ X ​​ 2​​​. Let ​​c​ 1​​ [ k ] ∈ ​ C​1​ T​ [ k]​ and ​​c​ 2​​ [ k ] ∈ ​ C​2​ T​ [ k]​ be two arbi-
trary X generators for 1 ≤ k ≤ r. We introduce a new physical qubit 
a[k] for 1 ≤ k ≤ r and a new Z generator z[j] for 1 ≤ j ≤ r. There are 
the variable and check nodes in the highlighted region of Fig. 3. The 
nodes of 𝒢merged will consist of all the nodes in 𝒢 ∪ 𝒢anc. ,1 ∪ 𝒢anc. ,2 as 
well as the nodes a[k] and z[j]. The edge set of 𝒢merged will also con-
tain all the edges in 𝒢 ∪ 𝒢anc. ,1 ∪ 𝒢anc. ,2 as well as the edges connect-
ing ​​G​​​ ~ X ​​ 1​​​ 

T  ​ [ 2]​ and ​​G​​​ ~ X ​​ 2​​​ 
T  ​ [ 2]​ to ​​G​ ​​ ~ X ​​ 1​​​​ [ 1]​ and ​​G​ ​​ ~ X ​​ 2​​​​ [ 1]​, respectively. We then 

add the following edges, which are the edges in the highlighted re-
gion of Fig. 3: (a[j − 1], z[j]) and (z[j], a[j]) for 2 ≤ j ≤ r, (c1[k], a[k]) 
and (a[k], c2[k]) for 1 ≤ k ≤ r, and ​(​c​1​ T​ [ j ] , z [ j ] )​ and ​(z [ j ] , ​c​2​ T​ [ j ] )​ for 
2 ≤ j ≤ r. Then, the product of all X checks in 𝒢\𝒢merged gives the 
measurement of ​​​ ~ X ​​ 1​​ ​​ ~ X ​​ 2​​​ and the product of the X checks exclusively 
in 𝒢anc,1 or 𝒢anc,2 does not give measurements of ​​​ ~ X ​​ 1​​​ or ​​​ ~ X ​​ 2​​​ since they 
will have support on the physical qubits a[k].

Before continuing, we offer some orienting remarks. First, if we 
choose to measure a logical operator supported at the boundary of 
the planar code defined using the lattice geometry presented in (9), 
we recover the lattice surgery construction given in the original work (39). 
The gates we obtain are also similar in spirit to those proposed in 
(43), where a surface code embedded on a torus is used as a resource 
to measure logical CSS operators of constant rate hyperbolic surface 
codes. We expect that the additional resources that will be need-
ed to perform these logical operations will scale similarly with code 

Fig. 3. Measurement of the logical operator ​​​ ~ X​​ 1​​ ​​ ~ X​​ 2​​​. First, ancilla systems for the 
logical operators ​​​ ~ X ​​ 1​​​ and ​​​ ~ X ​​ 2​​​ are constructed as in Fig. 2. These ancilla systems are 
connected together as highlighted (green box). This ancilla system is then con-
nected to the logical ​​​ ~ X ​​ 1​​ ​​ ~ X ​​ 2​​​ as described previously. Observe that the product of the 
X stabilizer generators in the ancilla system gives the logical X1X2. Furthermore, if 
we take the product of the X stabilizers on the left ancilla system, we do not obtain 
X1, since this product will include qubits in the highlighted (green) region. The 
same holds for the stabilizers in the right ancilla system. Hence, the product of the 
measurement results for these generators gives the measurement result for X1X2. 
After obtaining the measurement result, we can again measure the original stabi-
lizers to return to the code space.
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distance to our scheme, up to constant factors. Our techniques, 
however, do not require the logical operators to have a specific 
structure, and are thus more broadly applicable to quantum LDPC 
codes. Second, the reader familiar with hypergraph product codes 
(58) can check that 𝒢anc is the hypergraph product of ​​G​ ​ ~ X ​​​​ and the 
Tanner graph of a repetition code with r variables. From this obser-
vation, it is easy to verify that the stabilizers supported on the vari-
ables of Ganc commute.
Logical non-CSS measurement
To implement the entire logical Clifford group using logical Pauli 
measurements, we must also be able to measure non-CSS logical 
operators that are the product of Pauli-X and Pauli-Z measure-
ments (40, 41, 55). We now demonstrate how our construction can 
be adapted to such measurements.

First, we demonstrate how to measure the logical operator ​​ ~ Y ​​, 
which we illustrate in Fig. 4. Let ​​ ~ X ​​ be a logical operator in 𝒞 and 
let ​​ ~ Z ​​ be the corresponding Z logical operator. The corresponding Y 
logical operator is given by ​​ ~ Y ​  =  i​ ~ X ​​ ~ Z ​​, since ​​ ~ X ​​ and ​​ ~ Z ​​ must anti-
commute, any support of ​​ ~ X ​​, and any support of ​​ ~ Z ​​ must intersect at 
an odd number of qubits.

To measure ​​ ~ Y ​​, we prepare an ancilla system by combining two 
ancilla systems, ​​G​ anc​ ~ X ​​​​ and ​​G​ anc​ ~ Z ​​​​, used to measure the CSS measure-
ments ​​ ~ X ​​ and ​​ ~ Z ​​, respectively, using a fusion procedure as follows. 
We denote ​A  = ​ V​ ​ ~ X ​​​ [ 1 ] ∩ ​V​ ​ ~ Z ​​​ [ 1]​ as the set of qubits in the intersec-
tion of ​​ ~ X ​​ and ​​ ~ Z ​​. Their check operators are denoted ​​C​ ​ ~ X ​​​ [ k]​ and ​​
C​ ​ ~ Z ​​​ [ k]​, respectively.

For each physical qubit v ∈ A, there are corresponding X gener-
ators ​​v​​ ~ X ​​ 

T ​ [ k ] ∈ ​ C​​ ~ X ​​ 
T ​ [ k]​ and Z generators ​​v​​ ~ Z ​​ 

T ​ [ k ] ∈ ​ C​​ ~ Z ​​ 
T ​ [ k]​ for 1 ≤ k ≤ r. 

Furthermore, each v[1] has corresponding qubits ​​v​ ​ ~ X ​​​ [ j]​ and ​​v​ ​ ~ Z ​​​ [ j]​, 
for 2 ≤ j ≤ r, in ​​G​ anc​ ~ X ​​​​ and ​​G​ anc​ ~ Z ​​​​, respectively. We then form 𝒢merged 
using all the nodes and edges in ​​G​ anc​ ~ X ​​​​ and ​​G​ anc​ ~ Z ​​​​, except for the gen-
erators ​​v​​ ~ X ​​ 

T ​ [ k]​ and ​​v​​ ~ Z ​​ 
T ​ [ k]​ for all vertices in A, which we replace 

with ​y [ k ] = i ​v​​ ~ X ​​ 
T ​ [ k ] ​v​​ ~ Z ​​ 

T ​ [ k]​. Merging the generators ​​v​​ ~ X ​​ 
T ​ [ k]​ and ​​v​​ ~ Z ​​ 

T ​ [ k]​ 
creates an extra degree of freedom, which we fix by introducing 
check nodes g[j] for 2 ≤ j ≤ r and adding a Z edge ​(​v​ ​ ~ X ​​​ [ j ] , g [ j ] )​ and 
an X edge ​(​v​ ​ ~ Z ​​​ [ j ] , g [ j ] )​. The product of the X generators in ​​G​ anc​ ~ X ​​​​, 
the Z generators in ​​G​ anc​ ~ Z ​​​​, and the generators y[k] allows us to infer 
the measurement of ​​ ~ Y ​​. To check that these stabilizer generators 
commute, note that all the generators in ​​G​ anc​ ~ X ​​​​ and ​​G​ anc​ ~ Z ​​​​ commute 

since they act on different qubits, except ​​v​​ ~ X ​​ 
T ​ [ 1]​ and ​​v​​ ~ Z ​​ 

T ​ [ 1]​, which we 
rectified by combining them. This procedure can also be straight-
forwardly adapted to measure a logical operator of the form ​​​ ~ X ​​ 1​​ ​​ ~ Z ​​ 2​​​ 
when the intersection of the supports of ​​​ ~ X ​​ 1​​​ and ​​​ ~ Z ​​ 2​​​ is not empty.

Last, we require measurement of non-CSS product operators 
such as ​​​ ~ X ​​ 1​​ ​​ ~ Z ​​ 2​​​ when ​​​ ~ X ​​ 1​​​ and ​​​ ~ Z ​​ 2​​​ do not intersect at any physical 
qubits, as illustrated in Fig. 5. As in the general case for CSS mea-
surements, we must first connect the logical operators to make a 
parity measurement. We calculate the ancilla systems 𝒢anc1 and 
𝒢anc2 for ​​​ ~ X ​​ 1​​​ and ​​​ ~ Z ​​ 2​​​. Let ​​c​ 1​​ [ k ] ∈ ​ C​1​ T​ [ k]​ and ​​c​ 2​​ [ k ] ∈ ​ C​2​ T​ [ k]​ be X and 
Z generators, respectively, for 1 ≤ k ≤ r. As we did for the measure-
ment of ​​​ ~ X ​​ 1​​ ​​ ~ X ​​ 2​​​, we extend out each ancilla system so that 𝒢anc1 has a 
boundary of X generators coming out of the column defined by 
c1[k] and 𝒢anc2 has a boundary of X generators coming out of the 
column defined by c2[k]. As for the Y measurement, we then merge 
these boundaries by merging the corresponding X and Z generators 
at these boundaries and creating weight-two XZ generators between 
corresponding physical qubits at these boundaries. Then, if we take 
the product of the X generators in 𝒢anc1, the Z generators in 𝒢anc2, 
and the merged stabilizers, we obtain a measurement of ​​​ ~ X ​​ 1​​ ​​ ~ Z ​​ 2​​​ with-
out measuring ​​​ ~ X ​​ 1​​​ and ​​​ ~ Z ​​ 2​​​ separately.
Simultaneous measurement of commuting logical operators
Suppose we wish to simultaneously measure two commuting logical 
operators. If the supports of the logical operators do not intersect, 
then it is easy to see that we can make each measurement inde-
pendently at the same time. If the supports do intersect but both 
logical operators are of the same type (all X or all Z), then we can 
still independently measure each logical operator using our con-
struction. Last, if the two commuting logical operators are not of 
the same type (say a Pauli-X–type measurement ​​​ ~ X ​​ 1​​​ and a Pauli-Z–
type measurement ​​​ ~ Z ​​ 2​​​) and intersect, then they must intersect at an 
even number of qubits. Let ​​​ ~ L ​​ 1​​​ and ​​​ ~ L ​​ 2​​​ be the two commuting Pauli 
operators and let a and b be two physical qubits in the intersection 
V1[1] ∩ V2[1] such that ​​​ ~ L ​​ 1​​​ and ​​​ ~ L ​​ 2​​​ act with different Pauli operators 
on a and similarly on b. Then, the generators ​​a​​ T​ [ 1 ] ∈ ​ C​1​ T​ [ 1]​ and ​​
a​​ ′T​ [ 1 ] ∈ ​ C​2​ T​ [ 1]​ will not commute. Similarly, the generators ​​b​​ T​ [ 1 ] ∈ ​
C​1​ T​ [ 1]​ and ​​b​​ ′T​ [ 1 ] ∈ ​ C​2​ T​ [ 1]​ will not commute. To rectify this situa-
tion, we replace the generators aT[k] and bT[k] with aT[k]bT[k] for 
1 ≤ k ≤ r and create weight-two Z stabilizer generators acting on 

Fig. 4. Measurement of a logical ​​ ~ Y​  =  i​ ~ X​​ ~ Z​​ operator. This measurement closely 
follows that of logical ​​​ ~ X ​​ 1​​ ​​ ~ X ​​ 2​​​ shown in Fig. 3, with the key difference being that 
ancilla systems for the logical operators X1 and Z2 are connected using non-CSS 
generators. Observe that the product of the X stabilizer generators on the left, the 
Z stabilizer generators on the right, and the mixed stabilizer generators in the dual 
layers gives the logical ​​ ~ Y ​​.

Fig. 5. Measurement of the logical operator ​​​ ~ X​​ 1​​ ​​ ~ Z​​ 2​​​. This measurement closely 
follows that of logical ​​​ ~ X ​​ 1​​ ​​ ~ X ​​ 2​​​ shown in Fig. 3, with the key difference being that 
ancilla systems for the logical operators X1 and Z2 are connected using non-CSS 
generators (highlighted green box). Observe that the product of the X stabilizer 
generators on the left, the Z stabilizer generators on the right, and the mixed stabilizer 
generators in the highlighted region gives the logical ​​​ ~ X ​​ 1​​ ​​ ~ Z ​​ 2​​​.
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a[j] and b[j] for 2 ≤ j ≤ r to fix the degrees of freedom created from 
merging the stabilizer generators. Similarly, we replace the generators 
a′T[k] and b′T[k] with a′T[k]b′T[k] and create weight-two X stabilizer 
generators acting on a′[j] and b′[j]. Since there are always an even 
number of intersections, noncommuting stabilizers can always be 
paired up.

Fault tolerance
Having presented our construction to perform logical Clifford gates 
via logical Pauli measurement, we now show that the merged code 
still has error-correcting capabilities and therefore retains its fault 
tolerance. First of all, it follows straightforwardly from our con-
struction that the LDPC nature of the code remains intact through-
out the deformation from 𝒞 to 𝒞merged.

Lemma 2. Let ​​ ~ L ​​ be a logical operator on a CSS quantum LDPC 
code 𝒞. Let w be the maximum weight of a stabilizer generator in 𝒞 
and let q be the maximum number of stabilizer generators acting on 
a physical qubit in 𝒞. Let w′ and q′ be the equivalent quantities for 
the code 𝒞merged obtained after making a measurement of ​​ ~ L ​​ in 
𝒞. Then, w′, q′ ≤ max (w + 3, q + 3).

This fact is important for reducing complexity of the stabilizer 
measurement and for limiting the spread of errors throughout the 
deformation procedure.
Distance of ​​𝓒​ merged​​​
To preserve error-correcting capabilities, it is important that our 
code maintains a nontrivial distance throughout the code deforma-
tion. We show that the code distance of 𝒞merged is no less than that 
of 𝒞. There are two main concerns regarding the distance of our 
construction. The first is whether the construction can reduce the 
weight of the logical operators. Through consideration of the struc-
ture of logical operators on the ancilla system, we demonstrate that 
logical operators terminating at the boundary layers of the ancilla 
systems must necessarily maintain their weight because these 
boundaries are kept well separated. Second, our construction can 
add new logical degrees of freedom to the code. As we are not inter-
ested in the state of these additional qubits, we refer to them as 
gauge qubits. This is consistent with terminology used in the con-
text of subsystem codes [see (59) for an introduction]. We demon-
strate that the logical operators associated to the gauge qubits (that 
we refer to as gauge operators) do not decrease the distance of the 
logical operators of interest. We call an operator that acts simulta-
neously on logical qubits and gauge qubits as a dressed logical oper-
ator. It is important to check that there are no dressed logical 
operators with weight smaller than d, as the existence of such an 
operator will mean that the code distance is decreased.

Our following arguments will also use the notion of “cleaning” (60). 
We say that a logical operator ​​ ~ L ​​ is cleaned from some set of physical 
qubits A to some set of physical qubits B, if we can multiply ​​ ~ L ​​ by an 
element S of the stabilizer group such that the equivalent logical opera-
tor ​​ ~ L ​′= S​ ~ L ​​ has trivial support on A and nontrivial support on B.

The distance of 𝒞merged will depend upon the value of r, where r 
was defined as the number of copies of ​​G​​ ~ L ​​ 

T ​​ in the ancilla system. 
Let d be the distance of 𝒞. Consider the example of measuring the 
logical operator X1X2 of the surface code that encodes two logical 
qubits shown in Fig. 6. Then, letting r = 1 will substantially reduce 
the distance of the code, whereas letting r = d will preserve the dis-
tance. In general, we will show that if we let r = d, where d is the 
distance of 𝒞, then we can guarantee that the distance of the code 
during deformation does not drop below d.

Measuring a logical operator in 𝒞 may introduce gauge degrees 
of freedom for which we must account. Suppose we measure a logi-
cal operator ​​ ~ L ​​ in our code. We construct the ancilla system using 
the primal and dual graphs, ​​G​ ​ ~ L ​​​ [ j]​ and ​​G​​ ~ L ​​ 

T ​ [ j]​, and merge them together 
with 𝒞 to create 𝒞merged. If the number of independent check nodes 
in ​​G​​ ~ L ​​ 

T ​​ is less than or equal to the number of variable nodes, then ​​G​​ ~ L ​​ 
T ​​ 

will have nontrivial degrees of freedom and making the measure-
ment of ​​ ~ L ​​ will add extra gauge qubits to our code. In the case of 
an ​​ ~ X ​​ measurement, we can choose a canonical set of Z gauge oper-
ators that are entirely contained in any dual layer of the ancilla sys-
tem. Suppose that r = 1 and ​​G​​ ~ L ​​ 

T ​ [ 1]​ contains n′ variable nodes and m′ 
check nodes. Then, if we interpret ​​G​​ ~ L ​​ 

T ​ [ 1]​ as a classical code, it con-
tains at least n′ − m′ logical bits. This is a lower bound since some of 
the checks in ​​G​​ ~ L ​​ 

T ​ [ 1]​ may be a linear combination of other checks. 
However, in our case, there are exactly n′ − m′ + 1 logical bits in ​​
G​​ ~ L ​​ 

T ​ [ 1]​. This is due to the fact that if there were a subset of check 
nodes in ​​G​​ ~ L ​​ 

T ​ [ 1]​ whose product gives the identity, then the equiva-
lent qubits in ​​ ~ L ​​ would be a logical operator, and we have enforced 
the requirement that ​​ ~ L ​​ contains no subsets that support a logical 
operator. We will call the logical operators of ​​G​​ ~ L ​​ 

T ​ [ 1]​ cycle operators. 
However, we stress that the exact structure of these operators will 
not be important. Now, when we create 𝒢merged with r = 1, we add n′ 
qubits and m′ stabilizer generators, and remove one logical qubit, 
thus adding at least n′ − m′ + 1 new gauge qubits. However, the 
same constraint for ​​G​​ ~ L ​​ 

T ​ [ 1]​ carries to 𝒢merged, and hence, there are 
exactly n′ − m′ + 1 new gauge qubits, and we can choose the canon-
ical set of Z gauge operators to be the logical operators of ​​G​​ ~ L ​​ 

T ​ [ 1]​. 
These define all of the gauge degrees of freedom.

The cycle operators on ​​G​​ ~ L ​​ 
T ​​ are independent of the original logical 

operators on 𝒞 and correspond to stabilizers of 𝒞. Each qubit in a 
cycle in ​​G​​ ~ L ​​ 

T ​ [ 1]​ has a corresponding stabilizer generator in ​​G​ ​ ~ L ​​​ [ 1]​. By 
applying these generators, we can clean the cycle operator so that it 
is supported entirely on 𝒞. In this case, we can see that the cycle 
operator is thus equivalent to a product of old stabilizers in ​​G​ ​ ~ L ​​​ [ 1]​.

A cycle gauge operator in the bottom layer ​​G​​ ~ L ​​ 
T ​ [ 1]​ can be cleaned 

to other layers ​​G​​ ~ L ​​ 
T ​ [ k]​ through the application of stabilizer generators 

B

CA

Fig. 6. Distance of ​​𝓒​ merged​​​. (A) Suppose we have a code created by adjoining two 
surface code patches at the corner and we wish to measure the logical operator 
X1X2 along the top boundary. In (B), the ancilla system used for the measurement 
only has one layer, creating a low-weight logical between the top and bottom 
smooth boundaries. To mitigate this, we must use an ancilla with d layers, as in 
(C). This ensures that the distance of the code is preserved during the merge. It is 
worth noting that it may not always be the case that d layers are needed to 
preserve the distance, and for certain codes, it may suffice to only use one layer.
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in ​​G​ ​ ~ L ​​​ [ k]​, and so, equivalent cycles in different layers of ​​G​​ ~ L ​​ 
T ​ [ k]​ cor-

respond to the same gauge qubit. We illustrate this in Fig. 7, where 
we show the measurement of an X logical operator. Here, we can 
construct a canonical set of logical operators of ​​G​​ ~ L ​​ 

T ​ [ 1]​ with two 
cycles, and so, there are two gauge qubits. In this case, the cycles 
correspond to Z gauge operators. The following lemma tells us about 
the nature of the X gauge operators.

Lemma 3. Let 𝒞merged be the code obtained after measuring an ​​ ~ X ​​ 
logical operator. Let ​​​ ~ Z ​​ g​​​ be a Z gauge operator in 𝒞merged. If a logical or 
gauge operator ​​   O ​​ anti-commutes with ​​​ ~ Z ​​ g​​​, then it has weight at least r.

Proof. If ​​   O ​​ anti-commutes with ​​​ ~ Z ​​ g​​​, then it must intersect every 
possible support of ​​​ ~ Z ​​ g​​​. There are equivalent cycles all representing ​​​ ~ Z ​​ g​​​ 
on each dual layer of 𝒢anc. These equivalent cycles are disjoint and 
so the X gauge operator must have support on every dual layer. 
Since there are r dual layers, ​​   O ​​ must have weight at least r, and fur-
thermore must have weight at least one on each dual layer of 𝒢anc.

We can thus think of the ​​ ~ X ​​ gauge operators as “strings” that 
travel from the top boundary ​​G​​ ~ L ​​ 

T ​ [ r]​ to the bottom of ​​G​​ ~ L ​​ 
T ​ [ 1]​ and ter-

minate in 𝒞. We now show that 𝒞merged, when treated as a sub-
system code, has distance at least d.

Theorem 1. Let 𝒞 = ⟦n, k, d⟧ be a quantum CSS LDPC code and 
let ​​ ~ L ​​ be a logical operator in 𝒞. Let 𝒞merged be the code obtained after 
making a measurement of ​​ ~ L ​​ in 𝒞 using an ancilla system 𝒞anc. Then, 
𝒞merged, when treated as a subsystem code, has distance ≥d as long 
as the ancilla system has at least 2d − 1 layers.

Proof. See “Materials and Methods.”

Low-overhead fault-tolerant quantum computation
The previous section presents our construction for fault-tolerant 
measurements of logical Pauli operators. These measurements allow 
for logical Clifford gates as well as initialization and measurement 
in the logical Pauli basis.

Here, we consider what this construction means for performing 
low-overhead fault-tolerant quantum computing. We first consider 

the space and time overheads associated with our approach to fault 
tolerance, with the parallelism arising as a key quantity in determin-
ing these overheads. We then discuss the overheads associated with 
non-Clifford gates implemented via magic states and the decoders 
available for quantum LDPC codes.
Ancilla system size
We now analyze the space overhead associated with making Pauli 
measurements using ancilla systems. Let ​​ ~ L ​​ be a logical of weight wL 
in a code 𝒞 with distance d. Again, let q be the maximum number of 
stabilizer generators connected to a physical qubit in 𝒞. Then, there 
are at most qwL/2 check nodes in the graph ​​G​ ​ ~ L ​​​​ and to leading order 
the number of physical qubits in the ancilla system used to mea-
sure ​​ ~ L ​​ is

	​​ n​ a​​  =  (1 + q / 2 ) ​w​ L​​ r​	 (2)

In particular, when r = d, as in Theorem 1, this means that the 
ancilla system is proportional to wLd. This makes our scheme par-
ticularly applicable to codes such as the hypergraph product code, 
with distance scaling of ​O(​√ 

_
 n ​)​. Note that for the codes considered 

in Table 1, which are constructed from cyclic classical codes, we can 
choose a canonical set of logical operators so that wL = d for all of 
the logical operators in this set.
Parallelism
Let us now look at how the space and time overheads of our 
fault-tolerant scheme depend upon the weight of the logical parity 
measurements. We will see that there is a trade-off between the 
space and the time overheads and that certain codes allow us to 
improve these overheads when compared to a general LDPC code.

First, note that the techniques for making parity measurements 
between two logical qubits can easily be generalized to make parity 
measurements between multiple logical qubits. For instance, sup-
pose we wish to measure ​​​ ~ X ​​ 1​​ ​​ ~ X ​​ 2​​ ​​ ~ Z ​​ 3​​​. This can be accomplished by 
first constructing the ancilla systems to measure ​​​ ~ X ​​ 1​​ ​​ ~ X ​​ 2​​​ and ​​​ ~ Z ​​ 3​​​ sep-
arately. We can then connect these ancilla systems to create the 
ancilla system to measure ​​​ ~ X ​​ 1​​ ​​ ~ X ​​ 2​​ ​​ ~ Z ​​ 3​​​. We can then continue this con-
struction to implement Pauli measurements of an arbitrary number 
of logical qubits. It is important that when we implement this con-
struction, we do not connect all the ancilla systems at the same qubit, 
as otherwise there can potentially be a qubit that is in the support of 
many stabilizer generators, and 𝒞merged will not be an LDPC code.

There is, however, a limit to how many logical qubits we can 
include in a parity measurement if we want the code rate to remain 
constant during the deformation. Suppose the code has (n) logical 
qubits. Then, if we want to make a parity measurement of all X logi-
cal operators in the code, we would require (nd) ancilla qubits. If 
d > (1), then the number of ancillas we must add is >(n), and 
hence, the resource cost of computation will diminish the savings 
made by choosing a finite rate code. From an asymptotic standpoint, 
this means that the number of logical qubits measured in a single 
parity measurement should be kept at a constant. This restriction 
will limit the number of logic gates that can be performed in parallel, 
and consequently, the time overhead of the computation is in-
creased. In general, there is a trade-off between space and time 
overhead. If we increase the space overhead by adding many ancilla 
systems, then we can decrease the time overhead by allowing very 
large multilogical measurements.

We encapsulate these notions in the parallelism of our fault-
tolerant quantum computing scheme, which we defined in the 

Fig. 7. Gauge operators of ​​𝓒​ merged​​​. The red and orange cycles in the first layer of 
the ancilla system give a canonical set for the Z gauge operators. All red cycles 
correspond to the same gauge operator up to stabilizers. We can see that the 
Z gauge operators can be deformed so that they lie entirely in 𝒞 and are equivalent 
to the product of the original Z stabilizers that are in ​​G​ ​ ~ X ​​​​. The blue string is the X 
gauge operator corresponding to the red cycles. It must anti-commute with any 
representation of the conjugate Z gauge operator, and so, it must intersect with 
every red gauge operator in the graph. Since the red gauge operator can be 
cleaned to any dual layer of the ancilla system, the blue X logical must have support 
at least on every dual layer of the ancilla system. Since we use an ancilla system with 
d dual layers, this means that an X gauge operator must have weight at least d.
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summary of results. The parallelism is not inherent to a code and is 
instead chosen depending on the available space and time overhead. 
For instance, imagine a quantum computing platform for which the 
space overhead, i.e., required number of qubits, is the primary con-
straint. In this case, it will be advantageous to reduce the parallelism 
at the expense of time. In this space-constrained regime, the most 
natural choice is to use a parallelism of two, performing a sequence 
of weight-two logical Pauli measurements, which can be easily 
converted to an entangling gate.

However, certain codes, e.g., hypergraph product codes con-
structed from good classical LDPC codes, have an extra structure 
that allows us to achieve the same parallelism with a more modest 
resource. We can lay out a hypergraph product code on a two-
dimensional grid so that the support of a canonical logical operator 
is contained entirely in one row or one column (50). Each row and 
column can support multiple logical qubits, and so, we can configure 
an ancilla system for an entire row or column that can measure 
multiple logical qubits. In the asymptotic limit, each row or column 
contains ​(​√ 

_
 n ​)​ physical qubits and ​O(​√ 

_
 n ​)​ logical operators, and so, 

for a ​d  =  O(​√ 
_

 n ​)​ hypergraph product code, a single ancilla system 
of size O(n) can be used to measure Pauli operators with logical 
weight ​O(​√ 

_
 n ​)​. A naive scheme would have yielded an ancilla system 

of size O(wd2) = O(n3/2). As an explicit example, the ⟦7938,578,16⟧ 
code from Table 1 can be arranged on a two-dimensional grid such 
that each row or column contains 63 physical qubits and 17 logical 
operators of the same type. Each qubit is in the support of at most 
five stabilizer generators, and the code has distance 16. Hence, using 
Eq. 2, we find that we can construct an ancilla system for an entire 
row or column, and measure up to 17 logical operators, using 
around 3528 physical qubits. Furthermore, in such a layout, logical 
operators of different type only intersect if they correspond to the 
same logical qubit, and hence, if we assume that each logical qubit is 
only acted upon nontrivially by one logical operator in each round 
of error correction, then we can keep the stabilizer generator weight 
low by avoiding the construction for the simultaneous measure-
ment of commuting logical operators.

If we wish to be able to measure all the logical operators on the 
hypergraph product code, then we require O(n3/2) ancilla qubits. 
This reduces the rate and distance of the scheme to O(n2/3) and ​
O(​n​​ ​

1 _ 3​​)​, respectively. Note that these code parameters cannot be 
achieved by a strictly local code in two dimensions because such 
codes necessarily obey the constraint kd2 = O(n) (61).
Magic states
With a scheme to perform Pauli measurements on quantum LDPC 
codes, we consider how this approach can be integrated into a 
broader scheme for performing universal fault-tolerant quantum 
computing with low overhead. There is one main requirement that 
we still need in addition to Pauli measurement, which is the distilla-
tion of magic states (49).

As we have already mentioned, Clifford gates alone are not suf-
ficient to perform universal quantum computing, and in addition, we 
require a non-Clifford gate such as a T gate. A standard approach to 
fault-tolerant non-Clifford gates is through injection of magic states. 
For example, the T gate can be implemented using the magic state ∣T〉 
and Clifford gates. Unless the code being used has transversal T gates, it 
is generally difficult to prepare these magic states in a fault-tolerant way. 
For this reason, magic state distillation, which prepares a small num-
ber of low error magic states from a larger number of noisy magic states, is 
often required for fault-tolerant architectures.

Here, we assume that all the data qubits are stored on one LDPC 
code block, such as a hypergraph product code, along with ancilla 
systems to make Pauli measurements on the data block. To distill 
magic states, we use a separate magic state factory and then inject 
the distilled magic states into our data block using the ancilla 
systems. We will consider previously designed magic state factories 
that use surface codes. As an example computation, suppose we 
want to perform 1010 T gates, the number required in (6), with a 
tolerance of 1%, and each noisy ∣T〉 has an error of 10−3. Then, we 
require a distillation scheme with an output error rate of 10−12. Such 
a magic state distillation scheme can be implemented using ∼15,000 
physical qubits where we do not count the qubits needed for stabi-
lizer measurements. Such a distillation scheme in conjunction with 
the ⟦7938,578,16⟧ data block would still render a favorable over-
head when compared to a full surface code scheme. Of course, this 
would render a fairly slow scheme, since we would only be producing 
one magic state at a time. In Discussion, we consider the possibility 
of further reducing the overhead required for magic state distilla-
tion by using LDPC codes, allowing us to increase the frequency of 
magic state production while maintaining low overhead.
Decoders
There has been extensive work in designing efficient algorithms for 
decoding quantum LDPC codes. Many of these adapt known algo-
rithms for classical LDPC codes, modifying them to deal with the 
nuances of quantum codes. One simple decoding algorithm for 
classical LDPC codes is the bit-flip algorithm. Leverrier et al. (62) 
adapted this decoder for quantum LDPC codes and designed the 
small-set flip decoder, which was then shown to be able to correct a 
linear number of errors on quantum LDPC codes with sufficient 
expansion properties (30). The predominant algorithm for classical 
LDPC codes is belief propagation (BP) decoding. BP works by envi-
sioning the code as a graph and transmitting likelihoods between 
the nodes. While BP works well on classical codes, its performance 
is not as consistent on quantum codes due the degeneracy present 
in quantum LDPC codes, which results in split beliefs, where the 
decoder is not able to choose between two equivalent corrections. 
As a result, several modifications have been proposed to adapt BP 
decoding for quantum LDPC codes. In particular, Panteleev and 
Kalachev (31) combined BP with ordered statistic decoding to design 
a decoder that appears to perform well on a variety of quantum 
LDPC codes. Hastings (63) created an efficient greedy decoding 
algorithm that is able to correct a constant number of errors on the 
hyperbolic surface codes. There is thus a sufficient body of work 
showing that efficient decoding of quantum LDPC codes is possi-
ble. See also (43, 64, 65). For decoding, we will assume the use of one 
of the decoders outlined above. Given a good choice of code, these 
decoders appear to have performance comparable or even superior 
to that of the surface code.

DISCUSSION
We have shown that it is possible to use LDPC codes to achieve 
fault-tolerant quantum computing with overheads favorable to sur-
face code schemes, even at reasonable scales. Our scheme uses a 
generalized form of lattice surgery, which when coupled with magic 
state distillation can implement universal quantum computing.

Our construction highlights parallelism as a key constraint in 
maintaining low overheads, and we note that this role of parallelism 
has also been identified in other schemes for quantum computing 
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using LDPC codes, in particular, the scheme by Gottesman (29). In 
(29), quantum computation proceeds by preparing encoded re-
source states and then using teleportation to execute quantum 
gates. A concatenation scheme is used to prepare arbitrary resource 
states into the LDPC code blocks, which has a nonnegligible 
overhead, and thus requires a fixed value of the parallelism to main-
tain a constant overhead. In contrast, our proposal allows for 
parallelism to increase with distance for certain code families, such 
as the hypergraph product codes. Furthermore, while the scheme in 
(29) has the required asymptotic behavior, concatenation often 
suffers from poor error thresholds as well as undesirable overheads 
in the practical regimes of interest. For our proposal, based on code 
deformation, we can expect similar thresholds to those obtained for 
LDPC codes used as quantum memories (27).

There are two main bottlenecks, in terms of overhead, in our 
scheme, and we now address how these may be overcome. One of 
the main contributions to the overhead in our scheme is magic state 
distillation. Although we argued that it is possible to use surface 
code schemes while still maintaining an overhead advantage, it is 
generally necessary to use several magic state factories to achieve a 
high enough rate of magic state production. There is a potential for 
LDPC codes to be used to improve the overhead of magic state 
distillation schemes. We can look to some ideas from surface codes. 
Litinski (40) presents several surface code distillation schemes that 
achieve low overheads using the following idea. Circuits for magic 
state distillation using codes with transversal T gates can be rewritten 
to use only Z measurements. This means that Z logical errors are far 
less destructive than X logical errors, and hence, it is sufficient to 
use surface codes with low dz. It is very straightforward to generalize 
this to LDPC codes such as the hypergraph product code. By taking 
the product of a high-rate, low-distance classical LDPC code and a 
high-distance repetition code, we can construct LDPC codes with 
low dz, high dx, and higher encoding rates than the surface code. 
While this will not improve the overhead for constructing a single 
magic state factory, it may allow us to fit several identical factories 
in the same space as one surface code factory.

One advantage that such a magic state scheme would offer is that 
the hypergraph product code used is only nonlocal in one dimen-
sion. This may be a desirable simplification in some quantum 
systems. In general, a promising line of research is to consider how 
much we can gain from LDPC codes while restricting the level of 
nonlocality allowed. It has been shown that there is a connection 
between the distance of the code and the connectivity (26, 46), and 
that limiting the nonlocality will limit the attainable distances (66). 
This may, however, be a sacrifice that is necessary to see quantum 
LDPC codes physically implemented.

The other main contribution to the overhead comes from the 
ancilla systems used to make logical measurements. As we estab-
lished, to maintain the distance of our code during the code defor-
mation, we require that the ancilla systems have a height of at least 
d. Lowering this overhead while maintaining the required distance 
may be achieved using a technique established in (48). In this refer-
ence, Hastings proposes increasing the expansion of the graph ​​G​ ​ ~ L ​​​​, 
and as a result, the number of layers in the ancilla system would 
only need to be constant in size, as opposed to scaling with d. To 
implement this approach, we would require a deterministic method 
for creating graphs with sufficient expansion. While constructions 
for Ramanujan graphs with high expansion exist, further work is 
needed to see how these can be integrated into our scheme. We also 

note that it is unclear that this proposal will offer a substantial 
overhead improvement at the scales that we have considered, and 
instead give improvements to the resource cost of quantum com-
puting at larger scales. Furthermore, it will be worthwhile to in-
vestigate the time overhead of fault-tolerant gates. The discovery of 
ancilla systems that enable code deformations by single-shot error 
correction (30, 67, 68) would permit measurement-based gates 
in constant time, leaving open the tantalizing prospect of fault-
tolerant quantum computing with constant-space and constant-time 
overhead.

MATERIALS AND METHODS
We now restate and prove Theorem 1.

Theorem 1. Let 𝒞 = ⟦n, k, d⟧ be a quantum CSS LDPC code and 
let ​​ ~ L ​​ be a logical operator in 𝒞. Let 𝒞merged be the code obtained after 
making a measurement of ​​ ~ L ​​ in 𝒞 using an ancilla system 𝒞anc. Then, 
𝒞merged, when treated as a subsystem code, has distance ≥d as long 
as the ancilla system has at least 2d − 1 layers.

Proof. We prove the theorem for the simple case where ​​ ~ L ​​ is an X 
logical operator. Let us also assume without loss of generality that ​​ ~ L ​​ 
does not contain any X-type stabilizers as a subset of ​​V​ ​ ~ L ​​​ [ 1]​. The 
proof of more general logical parity measurements can be obtained 
with the methods we develop here with the most simple case.

Let ​​ ~ Z ​​ be a Z logical operator contained entirely in 𝒞. First, note 
that the X stabilizers in 𝒞 are left unchanged in 𝒞merged and so ​​ ~ Z ​​ 
must still have weight at least d on the physical qubits in 𝒢merged\
𝒢anc. We now need to show that the application of a gauge operator 
and an arbitrary stabilizer does not reduce the weight of ​​ ~ Z ​​ below d. 
We are only interested in Z-type stabilizers and gauge operators, as 
X-type stabilizers and gauge operators will not reduce the weight of 
a Z logical operator. Let us consider what happens when we apply 
the Z generators ​C [ 1 ] ⊂ ​ G​ ​ ~ L ​​​ [ 1]​. These generators are identical to 
the original generators from 𝒞 with the addition of one extra physi-
cal qubit from ​​V​​ T​ [ 1 ] ⊂ ​ G​​ ~ L ​​ 

T ​ [ 1]​ in each generator. Hence, after 
applying these generators, ​​ ~ Z ​​ will still have weight at least d on the 
physical qubits of 𝒢merged\𝒢anc. Stabilizer generators C[k] for k ≥ 2 

Fig. 8. Equivalent logical operators. The three curves here all represent equivalent 
X logical operators. The dark curve is an X logical operator on the original code 
𝒞. The other two logical operators are obtained by successive application of X stabilizer 
generators in the dual layers of the ancilla system. In particular, after each 
application of X stabilizer generators in a dual layer, the logical operator has 
support on the same dual layer since any subset of X stabilizer generators in a dual 
layer is independent.
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can only increase the weight of the logical operator beyond d, as 
they have no common support with 𝒢merged\𝒢anc.

The Z gauge operators when we measure an X logical operator 
are cycles in ​​G​​ ~ Z ​​ 

T ​ [ 1]​. As discussed above, these cycles can be cleaned 
entirely into 𝒞. These gauge operators are stabilizers of 𝒞, and since 
the support of ​​ ~ Z ​​ in 𝒞 remains the same in 𝒞merged, the application of 
a stabilizer of 𝒞 will not reduce the weight of ​​ ~ Z ​​ below d since the 
weight of a logical operator is lower bounded by d even with arbi-
trary stabilizer generators applied.

Let us now check that we do not change the weight of any X logical 
operators by adding the ancilla system. Let ​​   X ​ ≠ ​   L ​​ be an X logical 
operator contained entirely in 𝒞. We must show that the weight of ​​ ~ X ​​ 
remains above d with arbitrary application of X-type stabilizers and 
gauge operators. Let ​​​ ~ X ​​ g​​​ be an arbitrary, nontrivial X gauge opera-
tor and let ​​​ ~ Z ​​ g​​​ be any Z gauge operator that anti-commutes with ​​​ ~ X ​​ g​​​. 
Then, ​​ ~ X ​ ​​ ~ X ​​ g​​​ anti-commutes with Zg and so, by Lemma 3, ​​ ~ X ​ ​​ ~ X ​​ g​​​ has 
weight at least d, even with application of arbitrary stabilizers.

The last case to consider is when no gauge operators are applied, 
and we apply arbitrary stabilizers. This is only relevant if ​​ ~ X ​​ inter-
sects with ​​ ~ L ​​ at some physical qubits. In this case, we can apply an X 
generator in the dual-layer ​​G​​ ~ L ​​ 

T ​ [ 1]​, which will clean ​​ ~ L ​​ from the 
qubits at the intersection of ​​ ~ L ​​ and ​​ ~ X ​​ onto the equivalent qubits in 
the first primal layer of the ancilla system ​​G​ ​ ~ L ​​​ [ 2]​.

Doing this will also create nontrivial support on the first dual 
layer ​​G​​ ~ L ​​ 

T ​ [ 1]​ (see Fig. 8). To see why this is the case, suppose there is 
a subset of X generators in ​​C​​ ~ L ​​ 

T ​ [ 1]​ such that their product gives trivial 
support on ​​V​​ ~ L ​​ 

T ​ [ 1]​. That is, there is a subset AT of ​​C​​ ~ L ​​ 
T ​ [ 1]​ such that 

each qubit in ​​V​​ ~ L ​​ 
T ​ [ 1]​ is connected to an even number of generators in 

AT. This implies that there is a subset A of ​​V​ ​ ~ L ​​​ [ 1]​ such that each 
check node in ​​C​ ​ ~ L ​​​ [ 1]​ is connected to an even number qubits in 
A. This means that if we apply X to each physical qubit in A to form 
the operator ​​​ ~ X ​​ A​​​, then ​​​ ~ X ​​ a​​​ commutes with each Z generator in ​​C​ ​ ~ L ​​​ [ 1]​, 
and hence, ​​​ ~ X ​​ A​​​ is an X logical operator in 𝒞, but we have assumed 
that ​​ ~ L ​​ contains no logical operators as a subset, and hence, there is 
no such set AT that gives trivial support on ​​V​​ ~ L ​​ 

T ​ [ 1]​. Note that in the 
general case we can have subsets of ​​V​ ​ ~ L ​​​ [ 1]​ that support a logical 
operator; however, applying all the equivalent stabilizers in the first 
dual layer of lGanc will create support on the qubit connecting the 
two ancilla systems.

The above argument tells us that we can clean ​​ ~ L ​​ from qubits in ​​
V​ ​ ~ L ​​​ [ 1]​, replacing them with qubits in ​​V​ ​ ~ L ​​​ [ 2]​ while creating nontrivial 
support on ​​V​​ ~ L ​​ 

T ​ [ 1]​. Now, we can continue this process to clean ​​ ~ L ​​ 
from qubits in ​​V​ ​ ~ L ​​​ [ 2]​ to qubits in ​​V​ ​ ~ L ​​​ [ 3]​ in the support of ​​ ~ L ​​ while 
creating nontrivial support on VT[2] and so on. For each qubit in 
the intersection of ​​ ~ X ​​ and ​​ ~ L ​​ that we cleaned from ​​ ~ L ​​, there will al-
ways be an equivalent qubit in the primal layer ​​G​ ​ ~ L ​​​ [ j]​, until we reach 
the top boundary, at which point there will be support on at least 
one physical qubit in ​​V​ ​ ~ L ​​​ [ j]​, and so, the weight of ​​ ~ X ​​ will always be 
at least d.
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