
UC Davis
UC Davis Previously Published Works

Title
Low-overhead fault-tolerant quantum computing using long-range connectivity.

Permalink
https://escholarship.org/uc/item/78t1j5w8

Journal
Science Advances, 8(20)

Authors
Cohen, Lawrence
Kim, Isaac
Bartlett, Stephen
et al.

Publication Date
2022-05-20

DOI
10.1126/sciadv.abn1717

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/78t1j5w8
https://escholarship.org/uc/item/78t1j5w8#author
https://escholarship.org
http://www.cdlib.org/

Cohen et al., Sci. Adv. 8, eabn1717 (2022) 20 May 2022

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

1 of 12

P H Y S I C S

Low-overhead fault-tolerant quantum computing using
long-range connectivity
Lawrence Z. Cohen1, Isaac H. Kim1,2, Stephen D. Bartlett1, Benjamin J. Brown1*

Vast numbers of qubits will be needed for large-scale quantum computing because of the overheads associated
with error correction. We present a scheme for low-overhead fault-tolerant quantum computation based on
quantum low-density parity-check (LDPC) codes, where long-range interactions enable many logical qubits to be
encoded with a modest number of physical qubits. In our approach, logic gates operate via logical Pauli measure-
ments that preserve both the protection of the LDPC codes and the low overheads in terms of the required number
of additional qubits. Compared with surface codes with the same code distance, we estimate order-of-magnitude
improvements in the overheads for processing around 100 logical qubits using this approach. Given the high thresholds
demonstrated by LDPC codes, our estimates suggest that fault-tolerant quantum computation at this scale may be
achievable with a few thousand physical qubits at comparable error rates to what is needed for current approaches.

INTRODUCTION
Quantum computing devices are now capable of outperforming even
the fastest conventional supercomputers at certain tasks (1). How-
ever, to execute many quantum algorithms of practical interest, it is
widely believed that a fault-tolerant architecture will be required to
identify and correct errors in noisy quantum hardware. Fault-tolerant
architectures come with a substantial overhead cost, using a large
number of low-noise physical qubits to encode and process quan-
tum information with even a small number of protected qubits.
Specifically, it has been estimated that millions of qubits will be
needed to solve relevant problems in quantum chemistry (2–4), to
break cryptosystems (5, 6), or to get an advantage over classical
algorithms using polynomial speedups (7, 8). These large overheads
provide a daunting challenge for scaling up from today’s noisy de-
vices to large-scale fault-tolerant quantum computers.

The enormous resource estimates mentioned above are all ob-
tained using fault-tolerant architectures based on quantum error-
correcting codes with local check operators (9–12). These codes have
a number of highly desirable features for quantum computation,
including high thresholds and fast decoders (5, 13). The locality of
these codes means that quantum error correction can proceed using
only entangling gates between neighboring qubits arranged in a
two-dimensional layout, i.e., on a chip. Thus, while local codes pro-
vide a clear pathway to demonstrate the principles of fault tolerance
using existing quantum technology, these overheads mean that useful
fault-tolerant quantum computing with this approach will likely re-
main out of reach in the near term.

Locality of gate operations is a physically well-motivated con-
straint. Recently, however, there has been substantial progress in
developing long-ranged entangling gate operations in a variety of
quantum processing systems, including those based on supercon-
ductors (14), semiconductors (15–17), and trapped ions (18, 19).
Optical photons provide an approach that is not naturally con-
strained to a local two-dimensional layout (20, 21) and can also
allow for other qubit systems to be connected into complex quantum

networks (22–25). Recent work has also considered emulating long-
range interactions using a local quantum architecture and classical
communication (26), and architectures have been proposed where
long-range interactions are constrained on interconnected planar
arrays of matter-based qubits (27). The possibility of long-range
connectivity opens the door to a new class of quantum codes and
fault-tolerant architectures that can harness this connectivity to
our advantage.

Here, we show how to perform fault-tolerant quantum compu-
tation with an architecture that exploits long-range connectiv-
ity to greatly reduce the overhead, compared with local approaches.
Rather than focusing on asymptotic behavior, we consider the over-
head savings that may be possible in the scale of devices expected in
the near term, where, for example, fault-tolerant quantum comput-
ing on 50 logical qubits may be possible with only a few thousand
physical qubits while maintaining a code distance of d = 14 to 16.
For comparison, a surface code–based architecture requires at least
10,000 qubits to attain a similar number of logical qubits and code
distances. Provided that long-range coupling becomes sufficiently
reliable to go below the fault tolerance threshold of our scheme, we
anticipate that such an architecture will be capable of performing
nontrivial quantum algorithms at a scale compatible with current
roadmaps for quantum devices under development during the next
few years.

Our approach uses quantum low-density parity-check (LDPC)
codes, which efficiently encode a large amount of logical informa-
tion for a given number of physical qubits. There has been a recent
surge of interest in this subject [see (28) for a recent review], spurred
by Gottesman’s remarkable observation (29) that quantum LDPC
codes meeting certain criteria can be used to achieve fault-tolerant
quantum computing with constant overhead. While research into
quantum LDPC codes is still in its infancy, they are showing promise.
Codes that fulfill Gottesman’s criteria are now known (30). More-
over, recent numerical studies indicate that LDPC codes can
achieve reasonably high thresholds (31–33). Recent breakthroughs
in achieving high code distances indicate that there is room for
further development (34–36).

To use these LDPC codes for quantum computation, one must
be able to fault-tolerantly implement a universal set of protected
logic gates. While Gottesman (29) establishes a method to perform

1Centre for Engineered Quantum Systems, School of Physics, University of Sydney,
Sydney, New South Wales 2006, Australia. 2Department of Computer Science, UC
Davis, Davis, CA 95616, USA.
*Corresponding author. Email: b.brown@sydney.edu.au

Copyright © 2022
The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim to
original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
License 4.0 (CC BY).

mailto:b.brown@sydney.edu.au

Cohen et al., Sci. Adv. 8, eabn1717 (2022) 20 May 2022

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

2 of 12

quantum computation using fault-tolerant gate teleportation (37),
the cost associated with the distillation of the requisite resource state
(38) is not understood well in the practical regime of interest.

Here, we introduce a flexible method to perform low-overhead
quantum logic gates for a general class of quantum LDPC codes.
Our work can be thought as a generalization of lattice surgery (39),
where an ancillary system is coupled to a quantum error-correcting
code to measure logical Pauli operators in a fault-tolerant way. Our
approach to low-overhead quantum logic builds on an extensive lit-
erature into the use of code deformations to perform Clifford gates
via measurement that have been well studied for topological codes
(5, 13, 39–42), and which have recently been generalized to certain
classes of quantum LDPC codes (43–46). To use this approach for
quantum LDPC codes in a way that maintains the desirable low
overheads, we construct the required ancillary system by adapting
weight reduction methods proposed in (47, 48) to measure the
desired logical operators of a given quantum LDPC code. These
logical operations then yield a universal gate set for fault-tolerant
quantum computing when supplemented with noisy ancilla state
injection via magic state distillation (49). Thus, our scheme provides
an explicit way of performing low-overhead fault-tolerant quantum
computing using quantum LDPC codes, which is applicable to codes
of even modest size.

Before presenting our detailed results, we briefly illustrate the
potential overhead improvements that our construction enables.
We will make use of existing quantum LDPC codes with explicit
constructions and efficient decoders, together with our fault-tolerant
approach to performing logic gates on these codes. Table 1 shows
the overhead required to complete a round of logical operations with
error correction for a given number of logical qubits k and code
distance d for a number of quantum LDPC codes, specifically,
hyperbicycle and hypergraph product codes explicitly constructed
in (31, 50). By one round of logical operations, we mean a set of
logical Pauli measurements such that each logical qubit is acted on
nontrivially by at most one measurement. We directly compare the
qubit resources for our construction against the use of surface codes

encoding the same number of logical qubits and with the same code
distance, with the latter serving as a proxy for how well the codes
protect logical quantum information. The surface code is currently
the predominant candidate for a quantum architecture, and consid-
erable effort has been spent optimizing its overhead for fault-tolerant
computation. Our analysis thus shows the potential overhead im-
provement that can be achieved using a nonlocal architecture as
compared to a local architecture.

All codes we have used, and their fault-tolerant operations, use
check operators involving no more than 13 qubits for the largest code
in Table 1. (However, it is not the case that all stabilizer generators
will have this weight, and most generators will have lower weight.)
This weight is larger than that of the surface code, but not by a sub-
stantial margin. Because this number is fixed at a small constant
value, errors do not spread substantially during measurement of these
check operators, which would otherwise affect the threshold of the
scheme. However, we emphasize that the stabilizer weights and the
circuits used to measure the stabilizer generators will still affect
the performance of this scheme. In particular, higher weight stabi-
lizers will increase the failure rate under circuit-level noise, and this
should be taken into account when considering the estimates in
Table 1. Efficient decoders for the codes in Table 1 have also
been designed that perform comparably to minimum weight perfect
matching decoding on surface codes of similar distance (31).

We implement Clifford gates through parity measurement of
logical qubits in the Pauli basis. To keep the overhead low, we
restrict the number of logical qubits that can participate in a single
measurement round, and we call this number the parallelism of the
scheme (see Fig. 1). For a given level of parallelism and given error
correcting code, we require nanc physical qubits to create the ancilla
systems used in logical measurement, and ndata is the size of the code
used to store the logical information. Our analysis shows that at very
small code sizes, quantum LDPC codes give only a modest overhead
improvement when compared to surface code architectures. How-
ever, as the size of the system increases, we see that the improvement
in overhead for the quantum LDPC codes becomes very substantial,

Table 1. Overhead estimates. Estimates of the overhead required to perform a round of logic, including those qubits needed to encode the data as well as
additional ancilla qubits required to perform fault-tolerant gates. We use LDPC codes constructed in (31, 50), which all have initial check weights of no more
than 10. We denote the number of logical qubits as k and the distance of the code as d. Comparisons are made against the surface code with the same distance.
Here, “parallelism” denotes the number of logical qubits that can be acted upon nontrivially in one round of error correction, and which determines the number
of required ancilla qubits. The number of data, ancillary, and total physical qubits needed to perform one round of logical measurements with error correction is
denoted ndata, nanc, and ntot, respectively. We do not include any ancilla qubits that may be used for error syndrome extraction. Estimates for the surface code
were obtained using the compact block scheme from (40).

k d Parallelism Code family ndata nanc ntot

18 8 2
Hyperbicycle 294 500 800

Surface 1,152 128 1,300

50

14 2
Hyperbicycle 900 1,400 2,300

Surface 9,800 300 10,000

16 20
Hypergraph 1,922 5,000 7,000

Surface 12,800 2,000 15,000

578 16
578

Hypergraph 7,938 120,000 130,000

Surface 150,000 75,000 225,000

68 Hypergraph 7,938 15,000 23,000

Surface 150,000 10,000 160,000

Cohen et al., Sci. Adv. 8, eabn1717 (2022) 20 May 2022

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

3 of 12

offering an order of magnitude improvement at several hundred
logical qubits. Current algorithms for minimal nontrivial quantum
chemistry calculations (51) require around 100 to 200 logical qubits,
and so, even at this regime, it may be beneficial to use quantum
LDPC codes. We expect that for larger algorithms, such as more
complex quantum chemistry algorithms (2–4) or Shor’s algorithm
(6, 52), where several thousand logical qubits are required, the over-
head gains will be substantial.

These encouraging reductions in overhead motivate experimen-
tal work toward the design and realization of quantum LDPC codes
in the laboratory. At the physical level, it remains to find efficient
ways to measure check operators extending over distant qubits with
high fidelity. With long-range coupling now demonstrated using a
number of very different approaches (14–19), as well as proposals
allowing all-to-all coupling (53), there is substantial room for inno-
vation here. It is also critical that we identify check operator readout
circuits that maintain the fault tolerance of the scheme, as well as ac-
count for cross-talk that may be present in long-range interactions,
and this will require the development of quantum LDPC codes at
the level of the circuit error model (27, 54).

Last, further study into compilation of quantum algorithms will
allow us to determine what level of parallelism is required to effi-
ciently execute a quantum computation. A commonly used elemen-
tary fault-tolerant gate set consists of nondestructive measurements
of arbitrary Pauli strings (4, 40, 55). If the parallelism is strictly less
than the number of logical qubits, clearly, not all the Pauli strings
can be measured directly. In particular, if the weight of the Pauli
string exceeds the parallelism, one would need to break that mea-
surement down into a sequence of (lower-weight) Pauli measure-
ments, leading to a reduced speed. However, if most of the Pauli
strings have small weights, the speed of the two approaches will not
differ substantially. We anticipate this to be the case if the goal is to
simulate a locally interacting many-body quantum spin Hamiltonian
using the Trotter-Suzuki method (56), but it is unclear how the two
approaches will differ for methods such as qubitization (57).

RESULTS
We now present our main result: a procedure to implement fault-
tolerant logic gates in quantum LDPC codes via a generalization of
lattice surgery, in a way that preserves the low overheads. We pro-
pose a method for implementing fault-tolerant gates on quantum
LDPC codes by using multilogical Pauli measurements (40). Our

result expands on a set of techniques originally devised to reduce
the weight of stabilizer generators of quantum codes (47, 48). We
extend these results to include measurement of all logical Pauli
operators, allowing for implementation of the full logical Clifford
group. Our method is a form of code deformation, in which we
transform our code into a new code and in doing so obtain logical
information about our original code (5, 13, 39–42).

Our construction enables us to perform single-qubit Pauli
mea surements, as well as parity measurements between logical
qubits on one or multiple LDPC blocks in an arbitrary choice of
Pauli basis. This capability gives us a measurement-based ap-
proach for realizing the full Clifford gate set (40). This gate set
can be supplemented with magic state distillation and state in-
jection to achieve universal quantum computing (49). We will
discuss universal quantum computing in more detail in the “Low-
overhead fault-tolerant quantum computation” section. Our con-
struction also guarantees that the distance of the code is preserved
during the code deformation, and so, we retain the error-correcting
capabilities of our code.

We begin by setting some basic notation and terminology in the
next section. The “Code deformation” section presents our con-
struction for measuring logical multi-qubit Pauli operators. We then
prove that our construction preserves the distance of the code
throughout the process in the “Fault tolerance” section.

Notation and terminology
We describe quantum error-correcting codes with the stabilizer
formalism. Let 𝒫 = 〈I, X, Y, Z〉 be the Pauli group and 𝒫n = 𝒫⊗n the
Pauli group acting on n qubits. A stabilizer code is defined by an
Abelian group 𝒮 ⊂ 𝒫n such that − I ∉ S . The code 𝒞 is a subspace
spanned by the common +1 eigenvalue eigenstates of the operators
in 𝒮. The logical Pauli operators are operators in 𝒫n that commute
with every operator in 𝒮 but are not themselves in 𝒮. If 𝒮 is generated
by an independent set of generators {g1, …, gm}, the number of log-
ical qubits of the code is k = n − m. The distance of the code is equal
to the weight of the least-weight nontrivial logical operator where
the weight of an operator in 𝒫n is the number of qubits on which it
acts nontrivially, i.e., with nonidentity support. Of particular inter-
est is a class of stabilizer codes known as Calderbank-Shor-Steane
(CSS) codes. These are codes with a stabilizer group that can be gen-
erated by a set that includes only two types of elements: those that
are the product of Pauli-X operators only and those that are the
product of only Pauli-Z operators.

We consider families of stabilizer codes 𝒮n such that each mem-
ber of family is indexed by the number of qubits n. Let wn be the
maximum weight of a stabilizer of a generating set of 𝒮n, and let qn
be the maximum number of stabilizer generators that act on any
given qubit for a specified generating set. A family of LDPC codes
then is a sequence 𝒮n that can be generated by a set of stabilizer
generators such that wn = O(1) and qn = O(1). For the remainder of
the paper, we will drop the explicit dependence on n and assume
that these quantities are constants.

We can describe LDPC codes using the Tanner graph. Let 𝒯 =
(V, C, E) be a bipartite graph. Each node in V corresponds to a phys-
ical qubit in the code, and each node in C corresponds to a genera-
tor of the stabilizer group of the code. We draw an edge between c ∈
C and v ∈ V if the generator corresponding to c acts nontrivially on
the qubit corresponding to v. We label each edge with either an X,
Z, or Y depending on how the generator acts on the qubit. For the

Fig. 1. Parallelism. An example circuit consisting of Pauli measurements on an
architecture with a parallelism of six. This circuit contains four rounds of error-
corrected logical measurements. In each round, at most, six logical qubits in total
can be involved in logical measurements.

Cohen et al., Sci. Adv. 8, eabn1717 (2022) 20 May 2022

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

4 of 12

case of CSS codes, we can instead label the nodes in C with X or Z,
as opposed to labeling the edges. We will often abuse notation and
use the labels for variable and check nodes of a Tanner graph to re-
fer to their respective physical qubits and stabilizer generators
directly.

Code deformation
We now present our main technical contribution, starting with an
outline of the basic idea behind implementing measurements using
code deformation. Suppose we have a stabilizer code 𝒮 = 〈g1, …, gm〉
along with a logical operator ~ L that we wish to measure. We can
interpret our procedure as adding ~ L to the generating set of a new
code that includes this operator and then removing it again once we
have reliably obtained the measurement outcome. Note, however,
that simply adding ~ L to 𝒮 will not yield an LDPC code because, in
general, ~ L is a high-weight operator. To maintain the key properties
of an LDPC code, we need a stabilizer code that includes ~ L in its
stabilizer group whereby ~ L can be generated with constant- and
ideally low-weight generators. This can be achieved by creating an
extended system with additional qubits that include a set of low-
weight stabilizer generators S1, …, Sl whose product gives ~ L . The
product of the measurement results for each stabilizer generator
gives us the measurement result of ~ L . It is also important that the
stabilizers of the new code do not generate any other logical opera-
tors of 𝒮 so that we do not make any unwanted logical measure-
ments that may affect our computation.
Logical CSS measurement
Here, we describe our construction for the fault-tolerant measure-
ment of logical Pauli operators in CSS codes, illustrated with an ex-
ample in Fig. 2 for concreteness. We concentrate on the case for
measuring X logical operators but remark that an analogous proce-
dure will hold for measuring Z logical operators by reversing the X
and Z terms in the following discussion. Let 𝒞 be a CSS stabilizer
code described by Tanner graph 𝒢 = (V, C, E). We show how to
measure a specific instance of an X logical operator ~ X . To do so, we
deform code 𝒞 onto a new code 𝒞merged described by the Tanner graph that
includes 𝒢 as a subgraph, 𝒢merged ⊃ 𝒢.

Our goal is to define a new LDPC code whose stabilizer group
includes ~ X . We can use this new code to infer the measurement
result of ~ X by measuring its stabilizer generators. The construction
of 𝒢merged is expressed in terms of 𝒢 and a subgraph of 𝒢 specified
by ~ X that we call G ~ X = (V ~ X , C ~ X , E ~ X) , together with a dual graph
G ~ X

T = (V ~ X
T , C ~ X

T , E ~ X
T) . The variable nodes V ~ X of the subgraph G ~ X are

the qubits that support ~ X , checks CeX are Z type stabilizers that
share an edge of the Tanner graph with variable nodes V ~ X , and edges
 E ~ X ⊆ E are those of E that are incident to nodes included in both
V ~ X and C ~ X (see Fig. 2A). The dual graph G ~ X

T is such that for each
v ∈ V ~ X , we have a corresponding node v T ∈ C ~ X

T , and likewise for
each c ∈ C ~ X , we have a corresponding vertex c T ∈ V ~ X T . For each
edge e ∈ E ~ X with e = (v, c), we have e T ∈ E ~ X

T with eT = (vT, cT) such
that the nodes v T ∈ C ~ X

T and c T ∈ V ~ X
T are those that correspond to

the nodes of the original subgraph (see Fig. 2B). For now, we as-
sume that there is no strict subset of qubits V′ ⊂ V such that V′
supports a distinct X logical operator, before explaining the differ-
ences with the more general case.

We define the Tanner graph 𝒢merged in terms of 𝒢 and our new
graphs G ~ X and G ~ X

T . Specifically, we combine the Tanner graph 𝒢
with r copies of G ~ X

T and r − 1 copies of G ~ X using additional edges
Eextra ⊂ Emerged. We layer the copies of G ~ X and G ~ X

T in an alternating
fashion (see Fig. 2C). The additional edges Eextra connect adjacent
layers of G ~ X

T and G ~ X as shown in Fig. 2C. To explicitly describe the
edges of Eextra, we index copies of these graphs and their corre-
sponding objects G ~ X

T [j] with 1 ≤ j ≤ r and G ~ X [j] with 2 ≤ j ≤ r. We
can regard G ~ X ⊆ G as G ~ X [1] . In later sections, we will refer to the
layers corresponding to G ~ X

T [j] as dual layers, and the layers corre-
sponding to G ~ X [j] as primal layers. We will also refer to the final
layer G ~ X

T [r] as the boundary layer.
Let us also append indices to the objects of G ~ X [j] = (V [j] , C [j] , E [j])

and G ~ X
T [j] = (V T [j] , C T [j] , E T [j]) to define Eextra. Recall that for

each variable and check in G ~ X , we have a corresponding check or
variable, respectively, in G ~ X

T . Thus, we also have that each v[j] ∈ V[j]
has a corresponding vertex vT[k] ∈ CT[k], and likewise for each
c[j] ∈ C[j], we have cT[k] ∈ VT[k]. The appending edges Eextra then
include all edges (v[j], vT[j]) and (c[j], cT[j]) for all v, c, and 1 ≤ j ≤ r,

A

B

C

Fig. 2. Measurement of a logical  ~ X operator of the code 𝓒 . (A) Bipartite subgraph G    ~ X  of the Tanner graph of 𝒞 on the support of  ~ X  . Black nodes are the variable nodes
corresponding to qubits in the support of  ~ X  . Red nodes are the check nodes corresponding to Z-type stabilizers in 𝒞 that act on qubits in the support of  ~ X  . (B) Dual graph
 G  T = (V  ~ X   

T  , C  ~ X   
T  , E  ~ X   

T ) of the logical  ~ X  in (A). There is a one-to-one mapping between the X-type generators and the qubits in (A), and the qubits and the Z-type generators in
(A). (C) Measurement of  ~ X  using the ancilla system 𝒢anc = 𝒢merged\𝒢. The Tanner graph 𝒢anc is constructed by taking alternating layers of the subgraph G  ~ X   

T  in (B) and the
subgraph G    ~ X  in (A). The vertical edges are the set Eextra, which connect adjacent layers. The product of the X generators gives the logical  ~ X  , and hence, the product of the
measurement results for each X generator gives the measurement result of the logical  ~ X  . After merging the codes and measuring  ~ X  , we then split the codes by measuring
the stabilizers for 𝒞 and measuring the qubits in 𝒞anc in the Z basis, returning us to the original code space.

Cohen et al., Sci. Adv. 8, eabn1717 (2022) 20 May 2022

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

5 of 12

and edges (v[j + 1], vT[j]) and (c[j + 1], cT[j]) for all v, c, and 2 ≤
j ≤ r − 1.

To summarize, with Eextra ⊂ Emerged defined, we have now
specified all of the objects of 𝒢merged. We have that 𝒢 is a subgraph of
𝒢merged. Likewise, the variables of G ~ X

T [j] and G ~ X [j] are variables of
𝒢merged. The checks of subgraphs G ~ X [j] are Z stabilizers for 𝒢merged
and the checks of dual graphs G ~ X

T [j] are X stabilizers of the merged
Tanner graph. Edges Eextra fix graphs 𝒢, G ~ X [j] , and G ~ X

T [j] together.
It will sometimes be helpful to refer to 𝒢anc = 𝒢merged\𝒢 as the ancilla
system—the resource used to make parity measurements.

Having constructed our new code defined by the Tanner graph
𝒢merged, we now present the following lemma demonstrating that ~ X
is an element of the stabilizer group of this new code.

Lemma 1. Let 𝒞 be a CSS LDPC code and ~ X an X logical opera-
tor in 𝒞 such that there is no other X logical operator supported on
a strict subset of the qubits in ~ X . Then, the construction for
𝒢merged above gives a code 𝒞merged that contains ~ X in its stabilizer
group whereby

 ∏

j=1,…,r

 v T [j]∈ C T [j]

 v T [j] = ̃ X (1)

We recall that we have used the notation where vT[j] is the stabi-
lizer generator represented by this check node.

Proof. We prove this lemma by showing that the support of
∏j, CT[j]vT[j] on the qubits of 𝒢anc is trivial, and is nontrivial on V[1],
which is the support of ~ X . By definition, stabilizers vT[j] are sup ported
on variables v[j] ∈ V[j] and cT[j] ∈ VT[j]. We therefore concentrate
on these qubits.

Observe that each Z generator c ∈ C[1] must be connected to an
even number of qubits in V[1] in order for the stabilizers to com-
mute with ~ X . Consequently, each physical qubit cT[k] ∈ VT[k] must
be connected to an even number qX of X generators in CT[k]. Hence,
each qubit cT[k] supports the term (X c T [k]) q x = 1 for the operator
∏j, CT[j]vT[j].

Furthermore, each physical qubit v[k] ∈ V[k] for k ≥ 2 is con-
nected to exactly two X generators, vT[k − 1] and vT[k]. It follows
that each qubit v[k] ∈ V[k] supports the term (X c T [j]) 2 = 1 for the
operator ∏j,CT[j]vT[j].

Last, each physical qubit v[1] ∈ V[1] is connected to exactly one
X generator in 𝒢anc, specifically vT[1]. Consequently, the product of
all the X generators in 𝒞anc gives precisely the logical operator ~ X ,
thus completing the proof of Lemma 1.

To make a measurement of ~ X in a practical way, we first deter-
mine 𝒢merged and prepare each physical qubit in 𝒢anc in the 0 state.
We then measure all the stabilizer generators in 𝒢merged and perform
a round of error correction. To ensure that this procedure is fault
tolerant in the presence of noisy measurements, we can repeat this
step d times (42). Once we have fault tolerantly obtained the result
of the measurement of ~ X , we can return to the original code space 𝒞
by measuring each physical qubit in 𝒢anc in the Pauli-Z basis.

Lemma 1 provides a mechanism to perform a measurement of
an X logical operator ~ X ; however, it is restricted to the special case
where there is no other X logical operator within its support. In the
general case, we may have another X logical operator ~ X ′ supported
entirely on a strict subset V′ of physical qubits in V[1]. Following
the construction as given above, we will make an unwanted mea-
surement of ~ X ′ , which will result in an entirely different computa-
tion. As an example of this situation, consider the measurement of

a two-logical-qubit operator ~ X 1 ~ X 2 , where ~ X 1 and ~ X 2 are canonical
logical operators that do not intersect at any physical qubits. Fol-
lowing the procedure outlined above will give us separate measure-
ments of ~ X 1 and ~ X 2 .

We now generalize our construction of 𝒢merged to address this
general situation, which we illustrate in Fig. 3. To measure ~ X 1 ~ X 2
without measuring the value of ~ X 1 or ~ X 2 individually, we must con-
struct 𝒢merged such that the separate logical operators are connected.
First, we must construct the separate ancilla systems, 𝒢anc. 1 and 𝒢anc. ,2,
for ~ X 1 and ~ X 2 . Let c 1 [k] ∈ C 1 T [k] and c 2 [k] ∈ C 2 T [k] be two arbi-
trary X generators for 1 ≤ k ≤ r. We introduce a new physical qubit
a[k] for 1 ≤ k ≤ r and a new Z generator z[j] for 1 ≤ j ≤ r. There are
the variable and check nodes in the highlighted region of Fig. 3. The
nodes of 𝒢merged will consist of all the nodes in 𝒢 ∪ 𝒢anc. ,1 ∪ 𝒢anc. ,2 as
well as the nodes a[k] and z[j]. The edge set of 𝒢merged will also con-
tain all the edges in 𝒢 ∪ 𝒢anc. ,1 ∪ 𝒢anc. ,2 as well as the edges connect-
ing G ~ X 1

T [2] and G ~ X 2
T [2] to G ~ X 1 [1] and G ~ X 2 [1] , respectively. We then

add the following edges, which are the edges in the highlighted re-
gion of Fig. 3: (a[j − 1], z[j]) and (z[j], a[j]) for 2 ≤ j ≤ r, (c1[k], a[k])
and (a[k], c2[k]) for 1 ≤ k ≤ r, and (c 1 T [j] , z [j]) and (z [j] , c 2 T [j]) for
2 ≤ j ≤ r. Then, the product of all X checks in 𝒢\𝒢merged gives the
measurement of ~ X 1 ~ X 2 and the product of the X checks exclusively
in 𝒢anc,1 or 𝒢anc,2 does not give measurements of ~ X 1 or ~ X 2 since they
will have support on the physical qubits a[k].

Before continuing, we offer some orienting remarks. First, if we
choose to measure a logical operator supported at the boundary of
the planar code defined using the lattice geometry presented in (9),
we recover the lattice surgery construction given in the original work (39).
The gates we obtain are also similar in spirit to those proposed in
(43), where a surface code embedded on a torus is used as a resource
to measure logical CSS operators of constant rate hyperbolic surface
codes. We expect that the additional resources that will be need-
ed to perform these logical operations will scale similarly with code

Fig. 3. Measurement of the logical operator  ~ X  1  ~ X  2 . First, ancilla systems for the
logical operators  ~ X   1 and  ~ X   2 are constructed as in Fig. 2. These ancilla systems are
connected together as highlighted (green box). This ancilla system is then con-
nected to the logical  ~ X   1  ~ X   2 as described previously. Observe that the product of the
X stabilizer generators in the ancilla system gives the logical X1X2. Furthermore, if
we take the product of the X stabilizers on the left ancilla system, we do not obtain
X1, since this product will include qubits in the highlighted (green) region. The
same holds for the stabilizers in the right ancilla system. Hence, the product of the
measurement results for these generators gives the measurement result for X1X2.
After obtaining the measurement result, we can again measure the original stabi-
lizers to return to the code space.

Cohen et al., Sci. Adv. 8, eabn1717 (2022) 20 May 2022

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

6 of 12

distance to our scheme, up to constant factors. Our techniques,
however, do not require the logical operators to have a specific
structure, and are thus more broadly applicable to quantum LDPC
codes. Second, the reader familiar with hypergraph product codes
(58) can check that 𝒢anc is the hypergraph product of G ~ X and the
Tanner graph of a repetition code with r variables. From this obser-
vation, it is easy to verify that the stabilizers supported on the vari-
ables of Ganc commute.
Logical non-CSS measurement
To implement the entire logical Clifford group using logical Pauli
measurements, we must also be able to measure non-CSS logical
operators that are the product of Pauli-X and Pauli-Z measure-
ments (40, 41, 55). We now demonstrate how our construction can
be adapted to such measurements.

First, we demonstrate how to measure the logical operator ~ Y ,
which we illustrate in Fig. 4. Let ~ X be a logical operator in 𝒞 and
let ~ Z be the corresponding Z logical operator. The corresponding Y
logical operator is given by ~ Y = i ~ X ~ Z , since ~ X and ~ Z must anti-
commute, any support of ~ X , and any support of ~ Z must intersect at
an odd number of qubits.

To measure ~ Y , we prepare an ancilla system by combining two
ancilla systems, G anc ~ X and G anc ~ Z , used to measure the CSS measure-
ments ~ X and ~ Z , respectively, using a fusion procedure as follows.
We denote A = V ~ X [1] ∩ V ~ Z [1] as the set of qubits in the intersec-
tion of ~ X and ~ Z . Their check operators are denoted C ~ X [k] and
C ~ Z [k] , respectively.

For each physical qubit v ∈ A, there are corresponding X gener-
ators v ~ X

T [k] ∈ C ~ X
T [k] and Z generators v ~ Z

T [k] ∈ C ~ Z
T [k] for 1 ≤ k ≤ r.

Furthermore, each v[1] has corresponding qubits v ~ X [j] and v ~ Z [j] ,
for 2 ≤ j ≤ r, in G anc ~ X and G anc ~ Z , respectively. We then form 𝒢merged
using all the nodes and edges in G anc ~ X and G anc ~ Z , except for the gen-
erators v ~ X

T [k] and v ~ Z
T [k] for all vertices in A, which we replace

with y [k] = i v ~ X
T [k] v ~ Z

T [k] . Merging the generators v ~ X
T [k] and v ~ Z

T [k]
creates an extra degree of freedom, which we fix by introducing
check nodes g[j] for 2 ≤ j ≤ r and adding a Z edge (v ~ X [j] , g [j]) and
an X edge (v ~ Z [j] , g [j]) . The product of the X generators in G anc ~ X ,
the Z generators in G anc ~ Z , and the generators y[k] allows us to infer
the measurement of ~ Y . To check that these stabilizer generators
commute, note that all the generators in G anc ~ X and G anc ~ Z commute

since they act on different qubits, except v ~ X
T [1] and v ~ Z

T [1] , which we
rectified by combining them. This procedure can also be straight-
forwardly adapted to measure a logical operator of the form ~ X 1 ~ Z 2
when the intersection of the supports of ~ X 1 and ~ Z 2 is not empty.

Last, we require measurement of non-CSS product operators
such as ~ X 1 ~ Z 2 when ~ X 1 and ~ Z 2 do not intersect at any physical
qubits, as illustrated in Fig. 5. As in the general case for CSS mea-
surements, we must first connect the logical operators to make a
parity measurement. We calculate the ancilla systems 𝒢anc1 and
𝒢anc2 for ~ X 1 and ~ Z 2 . Let c 1 [k] ∈ C 1 T [k] and c 2 [k] ∈ C 2 T [k] be X and
Z generators, respectively, for 1 ≤ k ≤ r. As we did for the measure-
ment of ~ X 1 ~ X 2 , we extend out each ancilla system so that 𝒢anc1 has a
boundary of X generators coming out of the column defined by
c1[k] and 𝒢anc2 has a boundary of X generators coming out of the
column defined by c2[k]. As for the Y measurement, we then merge
these boundaries by merging the corresponding X and Z generators
at these boundaries and creating weight-two XZ generators between
corresponding physical qubits at these boundaries. Then, if we take
the product of the X generators in 𝒢anc1, the Z generators in 𝒢anc2,
and the merged stabilizers, we obtain a measurement of ~ X 1 ~ Z 2 with-
out measuring ~ X 1 and ~ Z 2 separately.
Simultaneous measurement of commuting logical operators
Suppose we wish to simultaneously measure two commuting logical
operators. If the supports of the logical operators do not intersect,
then it is easy to see that we can make each measurement inde-
pendently at the same time. If the supports do intersect but both
logical operators are of the same type (all X or all Z), then we can
still independently measure each logical operator using our con-
struction. Last, if the two commuting logical operators are not of
the same type (say a Pauli-X–type measurement ~ X 1 and a Pauli-Z–
type measurement ~ Z 2) and intersect, then they must intersect at an
even number of qubits. Let ~ L 1 and ~ L 2 be the two commuting Pauli
operators and let a and b be two physical qubits in the intersection
V1[1] ∩ V2[1] such that ~ L 1 and ~ L 2 act with different Pauli operators
on a and similarly on b. Then, the generators a T [1] ∈ C 1 T [1] and
a ′T [1] ∈ C 2 T [1] will not commute. Similarly, the generators b T [1] ∈
C 1 T [1] and b ′T [1] ∈ C 2 T [1] will not commute. To rectify this situa-
tion, we replace the generators aT[k] and bT[k] with aT[k]bT[k] for
1 ≤ k ≤ r and create weight-two Z stabilizer generators acting on

Fig. 4. Measurement of a logical  ~ Y = i  ~ X  ~ Z operator. This measurement closely
follows that of logical  ~ X   1  ~ X   2 shown in Fig. 3, with the key difference being that
ancilla systems for the logical operators X1 and Z2 are connected using non-CSS
generators. Observe that the product of the X stabilizer generators on the left, the
Z stabilizer generators on the right, and the mixed stabilizer generators in the dual
layers gives the logical  ~ Y  .

Fig. 5. Measurement of the logical operator  ~ X  1  ~ Z  2 . This measurement closely
follows that of logical  ~ X   1  ~ X   2 shown in Fig. 3, with the key difference being that
ancilla systems for the logical operators X1 and Z2 are connected using non-CSS
generators (highlighted green box). Observe that the product of the X stabilizer
generators on the left, the Z stabilizer generators on the right, and the mixed stabilizer
generators in the highlighted region gives the logical  ~ X   1  ~ Z   2 .

Cohen et al., Sci. Adv. 8, eabn1717 (2022) 20 May 2022

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

7 of 12

a[j] and b[j] for 2 ≤ j ≤ r to fix the degrees of freedom created from
merging the stabilizer generators. Similarly, we replace the generators
a′T[k] and b′T[k] with a′T[k]b′T[k] and create weight-two X stabilizer
generators acting on a′[j] and b′[j]. Since there are always an even
number of intersections, noncommuting stabilizers can always be
paired up.

Fault tolerance
Having presented our construction to perform logical Clifford gates
via logical Pauli measurement, we now show that the merged code
still has error-correcting capabilities and therefore retains its fault
tolerance. First of all, it follows straightforwardly from our con-
struction that the LDPC nature of the code remains intact through-
out the deformation from 𝒞 to 𝒞merged.

Lemma 2. Let ~ L be a logical operator on a CSS quantum LDPC
code 𝒞. Let w be the maximum weight of a stabilizer generator in 𝒞
and let q be the maximum number of stabilizer generators acting on
a physical qubit in 𝒞. Let w′ and q′ be the equivalent quantities for
the code 𝒞merged obtained after making a measurement of ~ L in
𝒞. Then, w′, q′ ≤ max (w + 3, q + 3).

This fact is important for reducing complexity of the stabilizer
measurement and for limiting the spread of errors throughout the
deformation procedure.
Distance of 𝓒 merged
To preserve error-correcting capabilities, it is important that our
code maintains a nontrivial distance throughout the code deforma-
tion. We show that the code distance of 𝒞merged is no less than that
of 𝒞. There are two main concerns regarding the distance of our
construction. The first is whether the construction can reduce the
weight of the logical operators. Through consideration of the struc-
ture of logical operators on the ancilla system, we demonstrate that
logical operators terminating at the boundary layers of the ancilla
systems must necessarily maintain their weight because these
boundaries are kept well separated. Second, our construction can
add new logical degrees of freedom to the code. As we are not inter-
ested in the state of these additional qubits, we refer to them as
gauge qubits. This is consistent with terminology used in the con-
text of subsystem codes [see (59) for an introduction]. We demon-
strate that the logical operators associated to the gauge qubits (that
we refer to as gauge operators) do not decrease the distance of the
logical operators of interest. We call an operator that acts simulta-
neously on logical qubits and gauge qubits as a dressed logical oper-
ator. It is important to check that there are no dressed logical
operators with weight smaller than d, as the existence of such an
operator will mean that the code distance is decreased.

Our following arguments will also use the notion of “cleaning” (60).
We say that a logical operator ~ L is cleaned from some set of physical
qubits A to some set of physical qubits B, if we can multiply ~ L by an
element S of the stabilizer group such that the equivalent logical opera-
tor ~ L ′= S ~ L has trivial support on A and nontrivial support on B.

The distance of 𝒞merged will depend upon the value of r, where r
was defined as the number of copies of G ~ L

T in the ancilla system.
Let d be the distance of 𝒞. Consider the example of measuring the
logical operator X1X2 of the surface code that encodes two logical
qubits shown in Fig. 6. Then, letting r = 1 will substantially reduce
the distance of the code, whereas letting r = d will preserve the dis-
tance. In general, we will show that if we let r = d, where d is the
distance of 𝒞, then we can guarantee that the distance of the code
during deformation does not drop below d.

Measuring a logical operator in 𝒞 may introduce gauge degrees
of freedom for which we must account. Suppose we measure a logi-
cal operator ~ L in our code. We construct the ancilla system using
the primal and dual graphs, G ~ L [j] and G ~ L

T [j] , and merge them together
with 𝒞 to create 𝒞merged. If the number of independent check nodes
in G ~ L

T is less than or equal to the number of variable nodes, then G ~ L
T

will have nontrivial degrees of freedom and making the measure-
ment of ~ L will add extra gauge qubits to our code. In the case of
an ~ X measurement, we can choose a canonical set of Z gauge oper-
ators that are entirely contained in any dual layer of the ancilla sys-
tem. Suppose that r = 1 and G ~ L

T [1] contains n′ variable nodes and m′
check nodes. Then, if we interpret G ~ L

T [1] as a classical code, it con-
tains at least n′ − m′ logical bits. This is a lower bound since some of
the checks in G ~ L

T [1] may be a linear combination of other checks.
However, in our case, there are exactly n′ − m′ + 1 logical bits in
G ~ L

T [1] . This is due to the fact that if there were a subset of check
nodes in G ~ L

T [1] whose product gives the identity, then the equiva-
lent qubits in ~ L would be a logical operator, and we have enforced
the requirement that ~ L contains no subsets that support a logical
operator. We will call the logical operators of G ~ L

T [1] cycle operators.
However, we stress that the exact structure of these operators will
not be important. Now, when we create 𝒢merged with r = 1, we add n′
qubits and m′ stabilizer generators, and remove one logical qubit,
thus adding at least n′ − m′ + 1 new gauge qubits. However, the
same constraint for G ~ L

T [1] carries to 𝒢merged, and hence, there are
exactly n′ − m′ + 1 new gauge qubits, and we can choose the canon-
ical set of Z gauge operators to be the logical operators of G ~ L

T [1] .
These define all of the gauge degrees of freedom.

The cycle operators on G ~ L
T are independent of the original logical

operators on 𝒞 and correspond to stabilizers of 𝒞. Each qubit in a
cycle in G ~ L

T [1] has a corresponding stabilizer generator in G ~ L [1] . By
applying these generators, we can clean the cycle operator so that it
is supported entirely on 𝒞. In this case, we can see that the cycle
operator is thus equivalent to a product of old stabilizers in G ~ L [1] .

A cycle gauge operator in the bottom layer G ~ L
T [1] can be cleaned

to other layers G ~ L
T [k] through the application of stabilizer generators

B

CA

Fig. 6. Distance of 𝓒  merged . (A) Suppose we have a code created by adjoining two
surface code patches at the corner and we wish to measure the logical operator
X1X2 along the top boundary. In (B), the ancilla system used for the measurement
only has one layer, creating a low-weight logical between the top and bottom
smooth boundaries. To mitigate this, we must use an ancilla with d layers, as in
(C). This ensures that the distance of the code is preserved during the merge. It is
worth noting that it may not always be the case that d layers are needed to
preserve the distance, and for certain codes, it may suffice to only use one layer.

Cohen et al., Sci. Adv. 8, eabn1717 (2022) 20 May 2022

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

8 of 12

in G ~ L [k] , and so, equivalent cycles in different layers of G ~ L
T [k] cor-

respond to the same gauge qubit. We illustrate this in Fig. 7, where
we show the measurement of an X logical operator. Here, we can
construct a canonical set of logical operators of G ~ L

T [1] with two
cycles, and so, there are two gauge qubits. In this case, the cycles
correspond to Z gauge operators. The following lemma tells us about
the nature of the X gauge operators.

Lemma 3. Let 𝒞merged be the code obtained after measuring an ~ X
logical operator. Let ~ Z g be a Z gauge operator in 𝒞merged. If a logical or
gauge operator ̃ O anti-commutes with ~ Z g , then it has weight at least r.

Proof. If ̃ O anti-commutes with ~ Z g , then it must intersect every
possible support of ~ Z g . There are equivalent cycles all representing ~ Z g
on each dual layer of 𝒢anc. These equivalent cycles are disjoint and
so the X gauge operator must have support on every dual layer.
Since there are r dual layers, ̃ O must have weight at least r, and fur-
thermore must have weight at least one on each dual layer of 𝒢anc.

We can thus think of the ~ X gauge operators as “strings” that
travel from the top boundary G ~ L

T [r] to the bottom of G ~ L
T [1] and ter-

minate in 𝒞. We now show that 𝒞merged, when treated as a sub-
system code, has distance at least d.

Theorem 1. Let 𝒞 = ⟦n, k, d⟧ be a quantum CSS LDPC code and
let ~ L be a logical operator in 𝒞. Let 𝒞merged be the code obtained after
making a measurement of ~ L in 𝒞 using an ancilla system 𝒞anc. Then,
𝒞merged, when treated as a subsystem code, has distance ≥d as long
as the ancilla system has at least 2d − 1 layers.

Proof. See “Materials and Methods.”

Low-overhead fault-tolerant quantum computation
The previous section presents our construction for fault-tolerant
measurements of logical Pauli operators. These measurements allow
for logical Clifford gates as well as initialization and measurement
in the logical Pauli basis.

Here, we consider what this construction means for performing
low-overhead fault-tolerant quantum computing. We first consider

the space and time overheads associated with our approach to fault
tolerance, with the parallelism arising as a key quantity in determin-
ing these overheads. We then discuss the overheads associated with
non-Clifford gates implemented via magic states and the decoders
available for quantum LDPC codes.
Ancilla system size
We now analyze the space overhead associated with making Pauli
measurements using ancilla systems. Let ~ L be a logical of weight wL
in a code 𝒞 with distance d. Again, let q be the maximum number of
stabilizer generators connected to a physical qubit in 𝒞. Then, there
are at most qwL/2 check nodes in the graph G ~ L and to leading order
the number of physical qubits in the ancilla system used to mea-
sure ~ L is

 n a = (1 + q / 2) w L r (2)

In particular, when r = d, as in Theorem 1, this means that the
ancilla system is proportional to wLd. This makes our scheme par-
ticularly applicable to codes such as the hypergraph product code,
with distance scaling of O(√

_
 n) . Note that for the codes considered

in Table 1, which are constructed from cyclic classical codes, we can
choose a canonical set of logical operators so that wL = d for all of
the logical operators in this set.
Parallelism
Let us now look at how the space and time overheads of our
fault-tolerant scheme depend upon the weight of the logical parity
measurements. We will see that there is a trade-off between the
space and the time overheads and that certain codes allow us to
improve these overheads when compared to a general LDPC code.

First, note that the techniques for making parity measurements
between two logical qubits can easily be generalized to make parity
measurements between multiple logical qubits. For instance, sup-
pose we wish to measure ~ X 1 ~ X 2 ~ Z 3 . This can be accomplished by
first constructing the ancilla systems to measure ~ X 1 ~ X 2 and ~ Z 3 sep-
arately. We can then connect these ancilla systems to create the
ancilla system to measure ~ X 1 ~ X 2 ~ Z 3 . We can then continue this con-
struction to implement Pauli measurements of an arbitrary number
of logical qubits. It is important that when we implement this con-
struction, we do not connect all the ancilla systems at the same qubit,
as otherwise there can potentially be a qubit that is in the support of
many stabilizer generators, and 𝒞merged will not be an LDPC code.

There is, however, a limit to how many logical qubits we can
include in a parity measurement if we want the code rate to remain
constant during the deformation. Suppose the code has (n) logical
qubits. Then, if we want to make a parity measurement of all X logi-
cal operators in the code, we would require (nd) ancilla qubits. If
d > (1), then the number of ancillas we must add is >(n), and
hence, the resource cost of computation will diminish the savings
made by choosing a finite rate code. From an asymptotic standpoint,
this means that the number of logical qubits measured in a single
parity measurement should be kept at a constant. This restriction
will limit the number of logic gates that can be performed in parallel,
and consequently, the time overhead of the computation is in-
creased. In general, there is a trade-off between space and time
overhead. If we increase the space overhead by adding many ancilla
systems, then we can decrease the time overhead by allowing very
large multilogical measurements.

We encapsulate these notions in the parallelism of our fault-
tolerant quantum computing scheme, which we defined in the

Fig. 7. Gauge operators of 𝓒  merged . The red and orange cycles in the first layer of
the ancilla system give a canonical set for the Z gauge operators. All red cycles
correspond to the same gauge operator up to stabilizers. We can see that the
Z gauge operators can be deformed so that they lie entirely in 𝒞 and are equivalent
to the product of the original Z stabilizers that are in G    ~ X  . The blue string is the X
gauge operator corresponding to the red cycles. It must anti-commute with any
representation of the conjugate Z gauge operator, and so, it must intersect with
every red gauge operator in the graph. Since the red gauge operator can be
cleaned to any dual layer of the ancilla system, the blue X logical must have support
at least on every dual layer of the ancilla system. Since we use an ancilla system with
d dual layers, this means that an X gauge operator must have weight at least d.

Cohen et al., Sci. Adv. 8, eabn1717 (2022) 20 May 2022

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

9 of 12

summary of results. The parallelism is not inherent to a code and is
instead chosen depending on the available space and time overhead.
For instance, imagine a quantum computing platform for which the
space overhead, i.e., required number of qubits, is the primary con-
straint. In this case, it will be advantageous to reduce the parallelism
at the expense of time. In this space-constrained regime, the most
natural choice is to use a parallelism of two, performing a sequence
of weight-two logical Pauli measurements, which can be easily
converted to an entangling gate.

However, certain codes, e.g., hypergraph product codes con-
structed from good classical LDPC codes, have an extra structure
that allows us to achieve the same parallelism with a more modest
resource. We can lay out a hypergraph product code on a two-
dimensional grid so that the support of a canonical logical operator
is contained entirely in one row or one column (50). Each row and
column can support multiple logical qubits, and so, we can configure
an ancilla system for an entire row or column that can measure
multiple logical qubits. In the asymptotic limit, each row or column
contains (√

_
 n) physical qubits and O(√

_
 n) logical operators, and so,

for a d = O(√
_

 n) hypergraph product code, a single ancilla system
of size O(n) can be used to measure Pauli operators with logical
weight O(√

_
 n) . A naive scheme would have yielded an ancilla system

of size O(wd2) = O(n3/2). As an explicit example, the ⟦7938,578,16⟧
code from Table 1 can be arranged on a two-dimensional grid such
that each row or column contains 63 physical qubits and 17 logical
operators of the same type. Each qubit is in the support of at most
five stabilizer generators, and the code has distance 16. Hence, using
Eq. 2, we find that we can construct an ancilla system for an entire
row or column, and measure up to 17 logical operators, using
around 3528 physical qubits. Furthermore, in such a layout, logical
operators of different type only intersect if they correspond to the
same logical qubit, and hence, if we assume that each logical qubit is
only acted upon nontrivially by one logical operator in each round
of error correction, then we can keep the stabilizer generator weight
low by avoiding the construction for the simultaneous measure-
ment of commuting logical operators.

If we wish to be able to measure all the logical operators on the
hypergraph product code, then we require O(n3/2) ancilla qubits.
This reduces the rate and distance of the scheme to O(n2/3) and
O(n

1 _ 3) , respectively. Note that these code parameters cannot be
achieved by a strictly local code in two dimensions because such
codes necessarily obey the constraint kd2 = O(n) (61).
Magic states
With a scheme to perform Pauli measurements on quantum LDPC
codes, we consider how this approach can be integrated into a
broader scheme for performing universal fault-tolerant quantum
computing with low overhead. There is one main requirement that
we still need in addition to Pauli measurement, which is the distilla-
tion of magic states (49).

As we have already mentioned, Clifford gates alone are not suf-
ficient to perform universal quantum computing, and in addition, we
require a non-Clifford gate such as a T gate. A standard approach to
fault-tolerant non-Clifford gates is through injection of magic states.
For example, the T gate can be implemented using the magic state ∣T〉
and Clifford gates. Unless the code being used has transversal T gates, it
is generally difficult to prepare these magic states in a fault-tolerant way.
For this reason, magic state distillation, which prepares a small num-
ber of low error magic states from a larger number of noisy magic states, is
often required for fault-tolerant architectures.

Here, we assume that all the data qubits are stored on one LDPC
code block, such as a hypergraph product code, along with ancilla
systems to make Pauli measurements on the data block. To distill
magic states, we use a separate magic state factory and then inject
the distilled magic states into our data block using the ancilla
systems. We will consider previously designed magic state factories
that use surface codes. As an example computation, suppose we
want to perform 1010 T gates, the number required in (6), with a
tolerance of 1%, and each noisy ∣T〉 has an error of 10−3. Then, we
require a distillation scheme with an output error rate of 10−12. Such
a magic state distillation scheme can be implemented using ∼15,000
physical qubits where we do not count the qubits needed for stabi-
lizer measurements. Such a distillation scheme in conjunction with
the ⟦7938,578,16⟧ data block would still render a favorable over-
head when compared to a full surface code scheme. Of course, this
would render a fairly slow scheme, since we would only be producing
one magic state at a time. In Discussion, we consider the possibility
of further reducing the overhead required for magic state distilla-
tion by using LDPC codes, allowing us to increase the frequency of
magic state production while maintaining low overhead.
Decoders
There has been extensive work in designing efficient algorithms for
decoding quantum LDPC codes. Many of these adapt known algo-
rithms for classical LDPC codes, modifying them to deal with the
nuances of quantum codes. One simple decoding algorithm for
classical LDPC codes is the bit-flip algorithm. Leverrier et al. (62)
adapted this decoder for quantum LDPC codes and designed the
small-set flip decoder, which was then shown to be able to correct a
linear number of errors on quantum LDPC codes with sufficient
expansion properties (30). The predominant algorithm for classical
LDPC codes is belief propagation (BP) decoding. BP works by envi-
sioning the code as a graph and transmitting likelihoods between
the nodes. While BP works well on classical codes, its performance
is not as consistent on quantum codes due the degeneracy present
in quantum LDPC codes, which results in split beliefs, where the
decoder is not able to choose between two equivalent corrections.
As a result, several modifications have been proposed to adapt BP
decoding for quantum LDPC codes. In particular, Panteleev and
Kalachev (31) combined BP with ordered statistic decoding to design
a decoder that appears to perform well on a variety of quantum
LDPC codes. Hastings (63) created an efficient greedy decoding
algorithm that is able to correct a constant number of errors on the
hyperbolic surface codes. There is thus a sufficient body of work
showing that efficient decoding of quantum LDPC codes is possi-
ble. See also (43, 64, 65). For decoding, we will assume the use of one
of the decoders outlined above. Given a good choice of code, these
decoders appear to have performance comparable or even superior
to that of the surface code.

DISCUSSION
We have shown that it is possible to use LDPC codes to achieve
fault-tolerant quantum computing with overheads favorable to sur-
face code schemes, even at reasonable scales. Our scheme uses a
generalized form of lattice surgery, which when coupled with magic
state distillation can implement universal quantum computing.

Our construction highlights parallelism as a key constraint in
maintaining low overheads, and we note that this role of parallelism
has also been identified in other schemes for quantum computing

Cohen et al., Sci. Adv. 8, eabn1717 (2022) 20 May 2022

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

10 of 12

using LDPC codes, in particular, the scheme by Gottesman (29). In
(29), quantum computation proceeds by preparing encoded re-
source states and then using teleportation to execute quantum
gates. A concatenation scheme is used to prepare arbitrary resource
states into the LDPC code blocks, which has a nonnegligible
overhead, and thus requires a fixed value of the parallelism to main-
tain a constant overhead. In contrast, our proposal allows for
parallelism to increase with distance for certain code families, such
as the hypergraph product codes. Furthermore, while the scheme in
(29) has the required asymptotic behavior, concatenation often
suffers from poor error thresholds as well as undesirable overheads
in the practical regimes of interest. For our proposal, based on code
deformation, we can expect similar thresholds to those obtained for
LDPC codes used as quantum memories (27).

There are two main bottlenecks, in terms of overhead, in our
scheme, and we now address how these may be overcome. One of
the main contributions to the overhead in our scheme is magic state
distillation. Although we argued that it is possible to use surface
code schemes while still maintaining an overhead advantage, it is
generally necessary to use several magic state factories to achieve a
high enough rate of magic state production. There is a potential for
LDPC codes to be used to improve the overhead of magic state
distillation schemes. We can look to some ideas from surface codes.
Litinski (40) presents several surface code distillation schemes that
achieve low overheads using the following idea. Circuits for magic
state distillation using codes with transversal T gates can be rewritten
to use only Z measurements. This means that Z logical errors are far
less destructive than X logical errors, and hence, it is sufficient to
use surface codes with low dz. It is very straightforward to generalize
this to LDPC codes such as the hypergraph product code. By taking
the product of a high-rate, low-distance classical LDPC code and a
high-distance repetition code, we can construct LDPC codes with
low dz, high dx, and higher encoding rates than the surface code.
While this will not improve the overhead for constructing a single
magic state factory, it may allow us to fit several identical factories
in the same space as one surface code factory.

One advantage that such a magic state scheme would offer is that
the hypergraph product code used is only nonlocal in one dimen-
sion. This may be a desirable simplification in some quantum
systems. In general, a promising line of research is to consider how
much we can gain from LDPC codes while restricting the level of
nonlocality allowed. It has been shown that there is a connection
between the distance of the code and the connectivity (26, 46), and
that limiting the nonlocality will limit the attainable distances (66).
This may, however, be a sacrifice that is necessary to see quantum
LDPC codes physically implemented.

The other main contribution to the overhead comes from the
ancilla systems used to make logical measurements. As we estab-
lished, to maintain the distance of our code during the code defor-
mation, we require that the ancilla systems have a height of at least
d. Lowering this overhead while maintaining the required distance
may be achieved using a technique established in (48). In this refer-
ence, Hastings proposes increasing the expansion of the graph G ~ L ,
and as a result, the number of layers in the ancilla system would
only need to be constant in size, as opposed to scaling with d. To
implement this approach, we would require a deterministic method
for creating graphs with sufficient expansion. While constructions
for Ramanujan graphs with high expansion exist, further work is
needed to see how these can be integrated into our scheme. We also

note that it is unclear that this proposal will offer a substantial
overhead improvement at the scales that we have considered, and
instead give improvements to the resource cost of quantum com-
puting at larger scales. Furthermore, it will be worthwhile to in-
vestigate the time overhead of fault-tolerant gates. The discovery of
ancilla systems that enable code deformations by single-shot error
correction (30, 67, 68) would permit measurement-based gates
in constant time, leaving open the tantalizing prospect of fault-
tolerant quantum computing with constant-space and constant-time
overhead.

MATERIALS AND METHODS
We now restate and prove Theorem 1.

Theorem 1. Let 𝒞 = ⟦n, k, d⟧ be a quantum CSS LDPC code and
let ~ L be a logical operator in 𝒞. Let 𝒞merged be the code obtained after
making a measurement of ~ L in 𝒞 using an ancilla system 𝒞anc. Then,
𝒞merged, when treated as a subsystem code, has distance ≥d as long
as the ancilla system has at least 2d − 1 layers.

Proof. We prove the theorem for the simple case where ~ L is an X
logical operator. Let us also assume without loss of generality that ~ L
does not contain any X-type stabilizers as a subset of V ~ L [1] . The
proof of more general logical parity measurements can be obtained
with the methods we develop here with the most simple case.

Let ~ Z be a Z logical operator contained entirely in 𝒞. First, note
that the X stabilizers in 𝒞 are left unchanged in 𝒞merged and so ~ Z
must still have weight at least d on the physical qubits in 𝒢merged\
𝒢anc. We now need to show that the application of a gauge operator
and an arbitrary stabilizer does not reduce the weight of ~ Z below d.
We are only interested in Z-type stabilizers and gauge operators, as
X-type stabilizers and gauge operators will not reduce the weight of
a Z logical operator. Let us consider what happens when we apply
the Z generators C [1] ⊂ G ~ L [1] . These generators are identical to
the original generators from 𝒞 with the addition of one extra physi-
cal qubit from V T [1] ⊂ G ~ L

T [1] in each generator. Hence, after
applying these generators, ~ Z will still have weight at least d on the
physical qubits of 𝒢merged\𝒢anc. Stabilizer generators C[k] for k ≥ 2

Fig. 8. Equivalent logical operators. The three curves here all represent equivalent
X logical operators. The dark curve is an X logical operator on the original code
𝒞. The other two logical operators are obtained by successive application of X stabilizer
generators in the dual layers of the ancilla system. In particular, after each
application of X stabilizer generators in a dual layer, the logical operator has
support on the same dual layer since any subset of X stabilizer generators in a dual
layer is independent.

Cohen et al., Sci. Adv. 8, eabn1717 (2022) 20 May 2022

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

11 of 12

can only increase the weight of the logical operator beyond d, as
they have no common support with 𝒢merged\𝒢anc.

The Z gauge operators when we measure an X logical operator
are cycles in G ~ Z

T [1] . As discussed above, these cycles can be cleaned
entirely into 𝒞. These gauge operators are stabilizers of 𝒞, and since
the support of ~ Z in 𝒞 remains the same in 𝒞merged, the application of
a stabilizer of 𝒞 will not reduce the weight of ~ Z below d since the
weight of a logical operator is lower bounded by d even with arbi-
trary stabilizer generators applied.

Let us now check that we do not change the weight of any X logical
operators by adding the ancilla system. Let ̃ X ≠ ̃ L be an X logical
operator contained entirely in 𝒞. We must show that the weight of ~ X
remains above d with arbitrary application of X-type stabilizers and
gauge operators. Let ~ X g be an arbitrary, nontrivial X gauge opera-
tor and let ~ Z g be any Z gauge operator that anti-commutes with ~ X g .
Then, ~ X ~ X g anti-commutes with Zg and so, by Lemma 3, ~ X ~ X g has
weight at least d, even with application of arbitrary stabilizers.

The last case to consider is when no gauge operators are applied,
and we apply arbitrary stabilizers. This is only relevant if ~ X inter-
sects with ~ L at some physical qubits. In this case, we can apply an X
generator in the dual-layer G ~ L

T [1] , which will clean ~ L from the
qubits at the intersection of ~ L and ~ X onto the equivalent qubits in
the first primal layer of the ancilla system G ~ L [2] .

Doing this will also create nontrivial support on the first dual
layer G ~ L

T [1] (see Fig. 8). To see why this is the case, suppose there is
a subset of X generators in C ~ L

T [1] such that their product gives trivial
support on V ~ L

T [1] . That is, there is a subset AT of C ~ L
T [1] such that

each qubit in V ~ L
T [1] is connected to an even number of generators in

AT. This implies that there is a subset A of V ~ L [1] such that each
check node in C ~ L [1] is connected to an even number qubits in
A. This means that if we apply X to each physical qubit in A to form
the operator ~ X A , then ~ X a commutes with each Z generator in C ~ L [1] ,
and hence, ~ X A is an X logical operator in 𝒞, but we have assumed
that ~ L contains no logical operators as a subset, and hence, there is
no such set AT that gives trivial support on V ~ L

T [1] . Note that in the
general case we can have subsets of V ~ L [1] that support a logical
operator; however, applying all the equivalent stabilizers in the first
dual layer of lGanc will create support on the qubit connecting the
two ancilla systems.

The above argument tells us that we can clean ~ L from qubits in
V ~ L [1] , replacing them with qubits in V ~ L [2] while creating nontrivial
support on V ~ L

T [1] . Now, we can continue this process to clean ~ L
from qubits in V ~ L [2] to qubits in V ~ L [3] in the support of ~ L while
creating nontrivial support on VT[2] and so on. For each qubit in
the intersection of ~ X and ~ L that we cleaned from ~ L , there will al-
ways be an equivalent qubit in the primal layer G ~ L [j] , until we reach
the top boundary, at which point there will be support on at least
one physical qubit in V ~ L [j] , and so, the weight of ~ X will always be
at least d.

REFERENCES AND NOTES
 1. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo,

F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins,
W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff,
K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov,
S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh,
S. Mandrà, J. R. McClean, M. M. Ewen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni,
J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt,
C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy,

K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh,
A. Zalcman, H. Neven, J. M. Martinis, Quantum supremacy using a programmable
superconducting processor. Nature 574, 505–510 (2019).

 2. V. von Burg, G. H. Low, T. Häner, D. S. Steiger, M. Reiher, M. Roetteler, M. Troyer, Quantum
computing enhanced computational catalysis. Phys. Rev. Res. 3, 033055 (2021).

 3. J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean, N. Wiebe, R. Babbush, Even
more efficient quantum computations of chemistry through tensor hypercontraction.
PRX Quantum 2, 030305 (2021).

 4. I. H. Kim, Y.-H. Liu, S. Pallister, W. Pol, S. Roberts, E. Lee, Fault-tolerant resource estimate
for quantum chemical simulations: Case study on Li-ion battery electrolyte molecules.
Phys. Rev. Res. 4, 023019 (2022).

 5. A. G. Fowler, M. Mariantoni, J. M. Martinis, A. N. Cleland, Surface codes: Towards practical
large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

 6. C. Gidney, M. Ekerå, How to factor 2048 bit RSA integers in 8 hours using 20 million noisy
qubits. Quantum 5, 433 (2021).

 7. E. Campbell, A. Khurana, A. Montanaro, Applying quantum algorithms to constraint
satisfaction problems. Quantum 3, 167 (2019).

 8. Y. R. Sanders, D. W. Berry, P. C. S. Costa, L. W. Tessler, N. Wiebe, C. Gidney, H. Neven,
R. Babbush, Compilation of fault-tolerant quantum heuristics for combinatorial
optimization. PRX Quantum 1, 020312 (2020).

 9. E. Dennis, A. Kitaev, A. Landahl, J. Preskill, Topological quantum memory. J. Math. Phys.
43, 4452–4505 (2002).

 10. H. Bombin, M. A. Martin-Delgado, Topological quantum distillation. Phys. Rev. Lett. 97,
180501 (2006).

 11. D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum
memories. Phys. Rev. A 73, 012340 (2006).

 12. J. P. Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T. Flammia, B. J. Brown, The XZZX
surface code. Nat. Commun. 12, 2172 (2021).

 13. R. Raussendorf, J. Harrington, Fault-tolerant quantum computation with high threshold
in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

 14. P. Magnard, S. Storz, P. Kurpiers, J. Schär, F. Marxer, J. Lütolf, T. Walter, J.-C. Besse,
M. Gabureac, K. Reuer, A. Akin, B. Royer, A. Blais, A. Wallraff, Microwave quantum link
between superconducting circuits housed in spatially separated cryogenic systems.
Phys. Rev. Lett. 125, 260502 (2020).

 15. A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M. Hazard, J. R. Petta, Shuttling
a single charge across a one-dimensional array of silicon quantum dots. Nat. Commun.
10, 1063 (2019).

 16. F. Borjans, X. G. Croot, X. Mi, M. J. Gullans, J. R. Petta, Resonant microwave-mediated
interactions between distant electron spins. Nature 577, 195–198 (2020).

 17. J. Yoneda, W. Huang, M. Feng, C. H. Yang, K. W. Chan, T. Tanttu, W. Gilbert, R. C. C. Leon,
F. E. Hudson, K. M. Itoh, A. Morello, S. D. Bartlett, A. Laucht, A. Saraiva, A. S. Dzurak,
Coherent spin qubit transport in silicon. Nat. Commun. 12, 4114 (2021).

 18. S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, C. Monroe, Demonstration
of a small programmable quantum computer with atomic qubits. Nature 536, 63–66
(2016).

 19. J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin,
M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, B. Neyenhuis, Demonstration
of the trapped-ion quantum ccd computer architecture. Nature 592, 209–213 (2021).

 20. H. Bombin, I. H. Kim, D. Litinski, N. Nickerson, M. Pant, F. Pastawski, S. Roberts, T. Rudolph,
Interleaving: Modular architectures for fault-tolerant photonic quantum computing.
arXiv:2103.08612 [quant-ph] (15 March 2021).

 21. S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C. Dawson, M. Gimeno-Segovia, E. Johnston,
K. Kieling, N. Nickerson, M. Pant, F. Pastawski, T. Rudolph, C. Sparrow, Fusion-based
quantum computation. arXiv:2101.09310 [quant-ph] (22 January 2021).

 22. S. D. Barrett, P. Kok, Efficient high-fidelity quantum computation using matter qubits
and linear optics. Phys. Rev. A 71, 060310 (2005).

 23. N. H. Nickerson, Y. Li, S. C. Benjamin, Topological quantum computing with a very noisy
network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013).

 24. N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W. Bakermans, S. J. Kamerling,
N. H. Nickerson, S. C. Benjamin, D. J. Twitchen, M. Markham, R. Hanson, Entanglement
distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

 25. L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An, P. Drmota, T. G. Ballance,
K. Thirumalai, J. F. Goodwin, D. M. Lucas, C. J. Ballance, High-rate, high-fidelity
entanglement of qubits across an elementary quantum network. Phys. Rev. Lett. 124,
110501 (2020).

 26. N. Delfosse, M. E. Beverland, M. A. Tremblay, Bounds on stabilizer measurement circuits
and obstructions to local implementations of quantum LDPC codes. arXiv:2109.14599
[quant-ph] (29 September 2021).

 27. M. A. Tremblay, N. Delfosse, M. E. Beverland, Constant-overhead quantum error
correction with thin planar connectivity. arXiv:2109.14609 [quant-ph] (29 September
2021).

https://arxiv.org/abs/2103.08612
https://arxiv.org/abs/2101.09310
https://arxiv.org/abs/2109.14599
https://arxiv.org/abs/2109.14609

Cohen et al., Sci. Adv. 8, eabn1717 (2022) 20 May 2022

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

12 of 12

 28. N. P. Breuckmann, J. N. Eberhardt, Quantum low-density parity-check codes. Quantum 2,
040101 (2021a).

 29. D. Gottesman, Fault-tolerant quantum computation with constant overhead. Quantum
Inf. Comput. 14, 1338–1372 (2014).

 30. O. Fawzi, A. Grospellier, A. Leverrier, Constant overhead quantum fault tolerance
with quantum expander codes. Commun. ACM 64, 106–114 (2021).

 31. P. Panteleev, G. Kalachev, Degenerate quantum LDPC codes with good finite length
performance. Quantum 5, 585 (2021).

 32. J. Roffe, D. R. White, S. Burton, E. Campbell, Decoding across the quantum low-density
parity-check code landscape. Phys. Rev. Res. 2, 043423 (2020).

 33. A. Grospellier, L. Grouès, A. Krishna, A. Leverrier, Combining hard and soft decoders
for hypergraph product codes. Quantum 5, 432 (2021).

 34. M. B. Hastings, J. Haah, R. O’Donnell, Fiber bundle codes: Breaking the n1/2 polylog(n)
barrier for quantum LDPC codes, in Proceedings of the 53rd Annual ACM SIGACT
symposium on theory of computing. Association for computing machinery, New York, NY,
USA, 2021, pp. 1276–1288; https://doi.org/10.1145/3406325.3451005.

 35. P. Panteleev, G. Kalachev, Quantum ldpc codes with almost linear minimum distance.
IEEE Trans. Info. Theory 68, 213–229 (2022).

 36. N. P. Breuckmann, J. N. Eberhardt, Balanced product quantum codes. IEEE Trans. Info.
Theory 67, 6653–6674 (2021b).

 37. E. Knill, Scalable quantum computation in the presence of large detected-error rates.
arXiv:quant-ph/0312190 (23 December 2003).

 38. Y.-C. Zheng, C.-Y. Lai, T. A. Brun, L.-C. Kwek, Constant depth fault-tolerant
clifford circuits for multi-qubit large block codes. Quantum Sci. Technol. 5, 045007
(2020).

 39. C. Horsman, A. G. Fowler, S. Devitt, R. Van Meter, Surface code quantum computing by
lattice surgery. New J. Phys. 14, 123011 (2012).

 40. D. Litinski, A game of surface codes: Large-scale quantum computing with lattice surgery.
Quantum 3, 128 (2019).

 41. B. J. Brown, K. Laubscher, M. S. Kesselring, J. R. Wootton, Poking holes and cutting
corners to achieve clifford gates with the surface code. Phys. Rev. X 7, 021029
(2017).

 42. C. Vuillot, L. Lao, B. Criger, C. G. Almudéver, K. Bertels, B. M. Terhal, Code deformation
and lattice surgery are gauge fixing. New J. Phys. 21, 033028 (2019).

 43. N. P. Breuckmann, C. Vuillot, E. Campbell, A. Krishna, B. M. Terhal, Hyperbolic and
semi-hyperbolic surface codes for quantum storage. Quantum Sci. Technol. 2, 035007
(2017).

 44. A. Lavasani, M. Barkeshli, Low overhead clifford gates from joint measurements
in surface, color, and hyperbolic codes. Phys. Rev. A 98, 052319 (2018).

 45. A. Krishna, D. Poulin, Topological wormholes: Nonlocal defects on the toric code. Phys.
Rev. Res. 2, 023116 (2020).

 46. A. Krishna, D. Poulin, Fault-tolerant gates on hypergraph product codes. Phys. Rev. X 11,
011023 (2021).

 47. M. B. Hastings, Weight reduction for quantum codes. arXiv:1611.03790 [quant-ph]
(11 November 2016).

 48. M. B. Hastings, On quantum weight reduction. arXiv:2102.10030 [quant-ph]
(19 February 2021).

 49. S. Bravyi, A. Kitaev, Universal quantum computation with ideal clifford gates and noisy
ancillas. Phys. Rev. A 71, 022316 (2005).

 50. A. A. Kovalev, L. P. Pryadko, Quantum kronecker sum-product low-density parity-check
codes with finite rate. Phys. Rev. A 88, 012311 (2013).

 51. R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, H. Neven, Encoding
electronic spectra in quantum circuits with linear T complexity. Phys. Rev. X 8, 041015 (2018).

 52. É. Gouzien, N. Sangouard, Factoring 2048-bit rsa integers in 177 days with 13 436 qubits
and a multimode memory. Phys. Rev. Lett. 127, 140503 (2021).

 53. J. Ramette, J. Sinclair, Z. Vendeiro, A. Rudelis, M. Cetina, V. Vuletić, Any-to-any connected
cavity-mediated architecture for quantum computing with trapped ions or rydberg
arrays. PRX Quantum 3, 010344 (2022).

 54. O. Higgott, N. P. Breuckmann, Subsystem codes with high thresholds by gauge fixing
and reduced qubit overhead. Phys. Rev. X 11, 031039 (2021).

 55. C. Chamberland, E. T. Campbell, Universal quantum computing with twist-free
and temporally encoded lattice surgery. PRX Quantum 3, 010331 (2022).

 56. D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, M. Troyer, Gate-count estimates for performing
quantum chemistry on small quantum computers. Phys. Rev. A 90, 022305 (2014).

 57. G. H. Low, I. L. Chuang, Hamiltonian simulation by qubitization. Quantum 3, 163 (2019).
 58. J.-P. Tillich, G. Zémor, Quantum LDPC codes with positive rate and minimum distance

proportional to the square root of the blocklength. IEEE Trans. Info. Theory 60, 1193–1202
(2014).

 59. D. Poulin, Stabilizer formalism for operator quantum error correction. Phys. Rev. Lett. 95,
230504 (2005).

 60. S. Bravyi, B. Terhal, A no-go theorem for a two-dimensional self-correcting quantum
memory based on stabilizer codes. New J. Phys. 11, 043029 (2009).

 61. S. Bravyi, D. Poulin, B. Terhal, Tradeoffs for reliable quantum information storage in 2d
systems. Phys. Rev. Lett. 104, 050503 (2010).

 62. A. Leverrier, J.-P. Tillich, G. Zémor, Quantum expander codes, in 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science (IEEE, 2015) pp. 810–824.

 63. M. B. Hastings, Decoding in hyperbolic spaces: Quantum ldpc codes with linear rate
and efficient error correction. Quantum Inf. Comput. 14, 1187–1202 (2014).

 64. N. P. Breuckmann, B. M. Terhal, Constructions and noise threshold of hyperbolic surface
codes. IEEE Trans. Inf. Theory 62, 3731–3744 (2016).

 65. N. P. Breuckmann, V. Londe, Single-shot decoding of linear rate ldpc quantum codes
with high performance. IEEE Trans. Inf. Theory 68, 272–286 (2022).

 66. N. Baspin, A. Krishna, Connectivity constrains quantum codes. arXiv:2106.00765
[quant-ph] (1 June 2021).

 67. H. Bombín, Single-shot fault-tolerant quantum error correction. Phys. Rev. X 5, 031043 (2015).
 68. N. Delfosse, B. W. Reichardt, Short Shor-style syndrome sequences. arXiv:2008.05051

[quant-ph] (12 August 2020).

Acknowledgments: We acknowledge D. Poulin for discussions on using quantum LDPC codes
for computation. We thank A. Saraiva, M. Vasmer, and P. Webster for discussions and
comments on the manuscript. Funding: This work was supported by the Australian Research
Council via the Centre of Excellence in Engineered Quantum Systems (EQUS) project number
CE170100009 and by the ARO under grant number W911NF-21-1-0007. Author contributions:
All authors conceived the methodology, derived the main results, and contributed to the
writing of the manuscript. Competing interests: The authors declare that they have no
competing interests. Data and materials availability: All data needed to evaluate the
conclusions in the paper are present in the paper and/or the Supplementary Materials.

Submitted 8 November 2021
Accepted 6 April 2022
Published 20 May 2022
10.1126/sciadv.abn1717

https://doi.org/10.1145/3406325.3451005
https://arxiv.org/abs/quant-ph/0312190
https://arxiv.org/abs/1611.03790
https://arxiv.org/abs/2102.10030
https://arxiv.org/abs/2106.00765
https://arxiv.org/abs/2008.05051

