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Diurnal and eating-associated microbial patterns
revealed via high-frequency saliva sampling

Yichen Hu,1,10 Amnon Amir,2,3,10 Xiaochang Huang,1 Yan Li,1 Shi Huang,2

Elaine Wolfe,2 Sophie Weiss,4 Rob Knight,2,5,6,7 and Zhenjiang Zech Xu1,8,9
1State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, PR China; 2Department of
Pediatrics, University of California San Diego, La Jolla, California 92093, USA; 3Sheba Medical Center, Ramat Gan 52621, Israel;
4Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, USA; 5Center for
Microbiome Innovation, University of California San Diego, La Jolla, California 92093, USA; 6Department of Computer Science and
Engineering, 7Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA; 8Shenzhen
Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen 518001, China; 9Microbiome Medicine Center,
Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China

The oral microbiome is linked to oral and systemic health, but its fluctuation under frequent daily activities remains elusive.

Here, we sampled saliva at 10- to 60-min intervals to track the high-resolution microbiome dynamics during the course of

human activities. This dense time series data showed that eating activity markedly perturbed the salivary microbiota, with

tongue-specific Campylobacter concisus andOribacterium sinus and dental plaque-specific Lautropia mirabilis, Rothia aeria, andNeisseria

oralis increased after every meal in a temporal order. The observation was reproducible in multiple subjects and across an

11-mo period. The microbiome composition showed significant diurnal oscillation patterns at different taxonomy levels with

Prevotella/Alloprevotella increased at night and Bergeyella HMT 206/Haemophilus slowly increased during the daytime. We also

identified microbial co-occurring patterns in saliva that are associated with the intricate biogeography of the oral micro-

biome. Microbial source tracking analysis showed that the contributions of distinct oral niches to the salivary microbiome

were dynamically affected by daily activities, reflecting the role of saliva in exchanging microbes with other oral sites.

Collectively, our study provides insights into the temporal microbiome variation in saliva and highlights the need to con-

sider daily activities and diurnal factors in design of oral microbiome studies.

[Supplemental material is available for this article.]

The oral cavity, the primary gateway to the digestive tract, harbors
one of the most diverse and abundant microbial communities
within the human body. Usually, the oral microbiome stays in a
balanced immunoinflammatory state with the host. Dysbiosis of
the microbial ecosystem is closely linked to various oral diseases,
including dental caries (Teng et al. 2015; Kim et al. 2020), gingivi-
tis (Nowicki et al. 2018; Kahharova et al. 2020), and periodontitis
(Shi et al. 2015). Notably, longitudinal studies reveal that changes
in oral microbiota preceded clinical symptoms of early childhood
caries (Teng et al. 2015) and gingivitis (Kahharova et al. 2020),
implying the potential formicrobiome-based diagnosis andmicro-
biome-targeting treatment for oral diseases. Further, oral microbes
are found substantially disseminated from oral cavity to distal gas-
trointestinal tract, and significantly contribute to systemic diseases
like gastric cancer (Sung et al. 2020), pancreatic cancer (Fan et al.
2018), inflammatory bowel disease (Gevers et al. 2014), and colo-
rectal cancer (Flemer et al. 2018). Recent studies consistently re-
ported that the proportion of oral bacteria was higher in
cancerous samples compared to precancerous samples (Nakatsu
et al. 2015; Coker et al. 2018; Gaiser et al. 2019). Besides gastroin-
testinal diseases, oral microbiota is also associated with other sys-

temic diseases, such as rheumatoid arthritis (Zhang et al. 2015),
Alzheimer’s disease (Dominy et al. 2019), and coronary artery dis-
ease (Chhibber-Goel et al. 2016). Despite the crucial role of oralmi-
crobes in human health, its fundamental dynamic nature remains
unclear. Elucidating the basic microbial behavior may provide in-
sight into the connections between oral microbes and human
diseases.

The oral microbiome can be highly dynamic and show fast
growth. The doubling time for oral microbes in an edentulous
mouth is estimated to be 1.38 h on average (Dawes 2003). Oral res-
ident Streptococcus mitis can divide in 40min (Wei et al. 2021). The
opposing forces of adherence and shedding imposed by flowing
saliva further complicates the dynamic changes of oral micro-
biome: Saliva flow sweeps away shed or weakly binding bacteria
from other oral sites and transmits microbes to other sites for colo-
nization (MarkWelch et al. 2020). The oral cavity is also frequently
perturbed by daily activities including food intake, dental hygiene,
exercise, and sleep. The exact effects of humanactivities on the oral
microbiome remain elusive to our knowledge. Therefore, high-fre-
quency sampling is required to reveal the precise dynamic changes
of microbial communities under daily perturbations.
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Here, we used the salivary microbiome as a noninvasive and
easily accessible model to characterize its dense time series dy-
namics. We tracked healthy adults for 6 d continuously (except
sleep). Saliva samples were collected every 10–60 min from mul-
tiple subjects, with detailed records of daily activities, including
diet, teeth brushing, sleep, and exercise. We found significant
microbial dynamic patterns in saliva that were consistent in
multiple hosts and reproducible over an 11-mo period. This
high-frequency time series data unveils the profound dynamics
of human salivary microbiota and helps us better understand
the complex interactions of the microbiome among different
oral sites.

Results

The microbiome overview of densely sampled saliva samples

To collect oral samples with high frequency, we adapted a nonde-
structive saliva sampling protocol by gently touching the saliva on
the tongue with a clean, sterile swab. To validate that this frequent
sampling has negligible impact on salivary microbiome, we com-
puted the beta-diversity distances between all sample pairs from
the same individual. The intra-individual sample–sample beta dis-
tances and differences in alpha-diversity (Faith’s phylogenetic
diversity [PD]) index were stable, regardless of the length of the
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Figure 1. Themicrobiome overview of densely sampled saliva samples in subject MA. (A,B) The Canberra distance and delta in Faith’s PD index between
every two salivary samples (measured by time interval in A or sampling efforts in B) showed that our dense sampling protocol does not systematically chan-
gemicrobiome composition. (C) The PCoA plot of three subjects along the sampling time of more than 6 d. Samples were clustered by individuals. (D) The
PCoA plot colored by daily activities in MA. (E) Phylum-level taxonomy composition of MA samples along time. (F) Trace plot of alpha diversity in MA.
Activity windows are marked in different background colors. Red, blue, green, and purple represent eat, brush, sleep, and exercise activities, respectively.

Dense time series reveals novel microbial patterns

Genome Research 1113
www.genome.org



sampling time interval (Fig. 1A; Supplemental Fig. S1A) or the
number of sampling efforts between two samples (Fig. 1B; Supple-
mental Fig. S1B), indicating that our high-frequency sampling
protocol did not systematically change salivary microbiome
composition. The three participants harbored a distinct and rela-
tively stable salivary microbiome along the experiment period of
6 d (Fig. 1C), in line with previous studies (Caporaso et al. 2011;
Hall et al. 2017; Johnson et al. 2019). The salivarymicrobiome com-
position was dominated by Firmicutes phylum, followed by Proteo-
bacteria, Bacteroidetes, Fusobacteria, Actinobacteria, and others
(Fig. 1E; Supplemental Fig. S1E), in agreement with previous re-
search (Segata et al. 2012; David et al. 2014). Within each partici-
pant, daily activities, especially eating and sleeping, contribute
considerably to the overall composition variation (PERMANOVA
for both eat and sleep: P<0.01) (Fig. 1D; Supplemental Fig. S1D),
with the relative abundances of various taxadisplaying rapid chang-
es owing todaily activities (Fig. 1E; Supplemental Fig. S1E).We com-
puted the effect size over the covariates that contribute to
microbiota variation, showing that host factor explained the largest
amount of variation (∼37.93%), followed by eating activity
(∼7.75%) (Supplemental Fig. S1C). The effects of other activities
like brushing and exercise were marginal, perhaps because of the
small sample size for these activities.

Eating-responsive microbes

We detected chloroplast, mitochondrial, and other rare non-oral
amplicon sequence variants (ASVs) in the salivary samples, which
appeared immediately during eating, followed by a rapid mono-
tonic decrease (Supplemental Fig. S2A). These sequences are pre-
sumably relic DNA from food sources and were removed from
downstream analyses. Yogurt- or cheese-introduced probiotics
(e.g., Lactobacillus species) can also be detected. The sudden ap-
pearance in the first sample during eating, together with the rapid
monotonic decrease and their absence between meals, indicate
that these bacteria are also from the consumed food and transient
in the oral cavity (Supplemental Fig. S2B).

Food eating activities considerably affected microbial alpha
diversity. Faith’s PD index increased sharply during eating and de-
creased soon afterward (Fig. 1F; Supplemental Fig. S1F). To identify
the microbes that were associated with eating activity, we devel-
oped a Z-score method to evaluate how strongly each ASV reacts
to food intake. The Z-score is computed to measure how much
the abundance change induced by eating deviates from normal
fluctuations for a given ASV (for details, see Methods). Notably,
bacteria with the highest Z-scores, including Campylobacter conci-
sus, Lautropia mirabilis, and Neisseria oralis, consistently increased
after every meal in all individuals. They maintained at a relatively
low baseline abundance in saliva and peaked around eating. Their
increases were not associated with diet types or individuality (Fig.
2A). The delayed change of these bacteria compared to chloroplast
suggested that their increases were unlikely due to food (Supple-
mental Fig. S2D). Meanwhile, bacteria with the lowest Z-scores,
including Prevotella nanceiensis, SR1 HMT 875, and Prevotella
melaninogenica, decreased during eating (Fig. 2B).

To investigate whether these observations are reproducible in
a large cohort, we performed a separate experiment in which we
collected saliva samples from 19 subjects before and while they
ate lunch (lunch data set). We observed similar changes in these
eating-increased and eating-decreased bacteria in most subjects,
suggesting consistent microbial dynamics associated with eating
in populations (Fig. 2C).

The rise of the eating-increased microbes displayed a specific
temporal order. Campylobacter concisus, Leptotrichia HMT 221, Ori-
bacterium sinus, andActinomyces HMT 172 increased earlier, where-
as Lautropia mirabilis, Neisseria oralis, and Rothia aeria rose and
peaked later (Fig. 2D; Supplemental Fig. S2D). This temporal order
was also observed in the lunch data set (Fig. 2C). Additionally, for
the lunch data set, the microbiome composition variation in-
creased immediately after lunch (∼0.5 h) and slightly increased
again around 76 min, which roughly coincides with the peak
time of early- and late-increased bacteria (Supplemental Fig. S2E).

To further test the reproducibility of the microbial patterns
from a large time scale, we additionally collected saliva samples
from subject MA for another 1.5 d, 11 mo apart (MA validation
data set). The microbial eating-increased, eating-decreased, and
temporal patterns were all repeated in this time series data set
(Supplemental Fig. S2F–H).

Diurnal patterns of the salivary microbiome

Two reports have studied the diurnal oscillations of salivarymicro-
biome. They both sampled every 4 h. Belstrøm et al. (2016) found
that the salivary microbiome showed little diurnal variation;
another study pointed out that the majority of genera oscillated
with the rhythm of 24 h (Takayasu et al. 2017). We also noticed
a periodicity pattern in beta distances between intra-individual
samples collected 24 h apart (Lomb–Scargle test: false discovery
rate [FDR] < 0.01 for MA, ME, and MO), indicating the diurnal os-
cillation of overall salivarymicrobiome composition (Fig. 1A; Sup-
plemental Fig. S1A). We therefore performed a statistic test using
Lomb–Scargle analysis (Glynn et al. 2006; Wu et al. 2016) on our
data set to evaluate periodicity of the salivary microbiome at phy-
lum, genus, and ASV levels.

At the phylum level, the five most abundant phyla in the MA
saliva underwent diurnal oscillations (FDR≤0.01 for Bacteroidetes,
Firmicutes, Fusobacteria, Actinobacteria, and SR1). The relative
abundances of Bacteroidetes and SR1 were higher in the evening
(before waking up in the morning), whereas the abundances of
Fusobacteria and Actinobacteria were higher in the daytime (Fig.
3A; Supplemental Fig. S3). All oscillation patternswere not homoge-
neous among individuals. For example, only Bacteroidetes showed
statistically significant rhythmicity in subject ME (FDR<0.01) and
none in MO at phylum level (Supplemental Fig. S3).

At the genus level, there were more genera that oscillated sig-
nificantly in the salivary microbiome of MA than that of ME or
MO. In line with the study by Takayasu et al. (2017), genus
Streptococcus, Granulicatella, Gemella, Veillonella, Prevotella, and
Porphyromonas showed diurnal oscillation in the saliva of one or
multiple individuals. In addition, Bergeyella, which has not been
reported before, showed strong periodicity in all three individuals
(Supplemental Fig. S4).

At ASV level, despite diurnal variations among different sub-
jects (Supplemental Fig. S5), several ASVs showed similar oscilla-
tion patterns in multiple subjects (Fig. 3B). Haemophilus and
Bergeyella HMT 206 slowly increased in the daytime, remained at
high abundance at night, but decreased upon waking. Notably,
multiple ASVs within the Prevotella/Alloprevotella genus increased
at night. This increasing trend apparently lasts beyondwaking, un-
til breakfast when there was a drastic reduction, likely indicating a
different reason for the decrease compared to Haemophilus and
Bergeyella HMT 206.

The statistically significant oscillating phyla, genera, and
ASVs displayed similar oscillation patterns in the MA validation
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data set (Supplemental Fig. S6), which showed that the diurnal
rhythm of the salivary microbiome may not be temporary but a
lasting phenomenon.

Microbial co-occurrence network

Bioinformatics algorithms like Deblur (Amir et al. 2017), DADA2
(Callahan et al. 2016), and oligotyping (Eren et al. 2013) can dis-
tinguish sequences differing in only one single nucleotide. Oral
microbiome analyses with these methods infer high-resolution
amplicon sequences and reveal that closely related ASVs prefer dif-
ferent habitats in the oral cavity (The Human Microbiome Project
Consortium2012; Eren et al. 2014;MarkWelch et al. 2019; Proctor
et al. 2020; Wilbert et al. 2020). To infer the site preference of mi-
crobes detected in saliva, we additionally collected samples from
tongue dorsum and dental plaque from subject MA—two of the

most typical habitats within the oral cavity representing mucosal
and nonmucosal surfaces. A permutation-based nonparametric
test was applied to identify differential ASVs between these two
sites (Xu et al. 2019). Specifically, species within Granulicatella,
Haemophilus, Neisseria, and Streptococcus genera were found to be
negatively correlated in multiple individuals and tended to be en-
riched on different oral surfaces (Fig. 4).

We next explored the longitudinal co-occurring relationships
between microbes with multiple correlation methods, including
CCLasso, which is robust for compositional microbiome data
(Fang et al. 2015), and Spearman’s, which measures rank relation-
ships (Hirano and Takemoto 2019). Bothmethods identified sever-
al strongly associated pairs in all of the three subjects (Fig. 5;
Supplemental Fig. S7): eating early-increased ASVs (Campylobacter
concisus and Oribacterium sinus, red box) and late-increased ASVs
(two strains of Lautropia mirabilis, Rothia aeria, and Neisseria oralis,

A B

C D

Figure 2. Eating-responsive bacteria. (A) The top three bacteria that increased during eating in the three subjects of MA, ME, and MO. (B) The top three
bacteria that decreased during eating. Certain ASVs are missing in some subjects because their prevalences were lower than 10% in those subjects. (C) The
bacterial increases can be reproduced in the lunch data set. Lines of distinct colors represent different individuals. (D) Eating-increased bacteria displayed a
temporal order after averaging over all the eating time windows, smoothing with moving average, and scaling to the same level. Tongue-specific
Campylobacter concisus, Leptotrichia HMT 221, Oribacterium sinus, and Actinomyces HMT 172 increased earlier; teeth-specific Lautropia mirabilis, Neisseria
oralis, and Rothia aeria increased later. Blue lines indicate ASVs that were more abundant on tongue dorsum; orange lines indicate ASVs that were more
abundant on dental plaque.
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orange box) visually clustered separately in the co-occurrence net-
works. The colors of the nodes in the network represent the oral-
site information based on tongue and plaque samples. Notably,
early- and late-increased ASVs were enriched in tongue dorsum
(blue colored) and dental plaque samples (red colored), respective-
ly. Diurnal oscillating bacteria that increased at night and reduced
at breakfast, namely, SR1 HMT 875 and multiple Prevotella/Allopre-
votella species (including Prevotella nanceiensis, Prevotella melanino-
genica, Prevotella pallens), were correlated together (cyan box), and
were found enriched on the tongue surface. In contrast, Bergeyella
sp. HMT 206,Haemophilus,Granulicatella elegans, and Streptococcus,
displaying an increasing trend in the daytime, were tightly associ-
ated with each other (green box) and were found enriched in
plaque samples. Porphyrobacter tepidarius, Acidovorax temperans,
and Delfia acidovorans were also strongly correlated in multiple
subjects.

Temporal changes of microbiome functional capacity

The functional capacity of the salivarymicrobiome in each subject
was predicted using PICRUSt2 (Douglas et al. 2020). There was a
clear separation among individuals on the principal coordinates
analysis (PCoA) plot of predicted functional profile, similar to
composition profile, but with a much smaller effect size (Supple-

mental Fig. S8A; cf. Fig. 1C; Supplemental Fig. S1C). Host factor
(∼18.81%)was still themost important variable affecting the func-
tional profile variation, followed by food intake (∼1.74%). We fur-
ther detected the eating-responsive KEGG pathways using the
Z-score method. Pathways changed consistently among individu-
als upon eating (Supplemental Fig. S8B). Specifically, the propor-
tions of bacterial chemotaxis, biosynthesis of unsaturated fatty
acids, flagellar assembly, and chlorocyclohexane and chloroben-
zene degradation increased most profoundly in the three subjects
(Supplemental Fig. S8C). Twenty-five KEGG pathways showed
statistically significant diurnal oscillation in two or more individ-
uals, including apoptosis, glycosaminoglycan degradation, sphin-
golipid metabolism, steroid biosynthesis, and fatty acid
biosynthesis (Supplemental Fig. S8D).

Dynamic site sources of saliva microbiota

Salivarymicrobiota is often regarded as a sink of bacteria shed from
distinct oral surfaces. The intricate topology of the oral cavity cre-
ates profoundly different ecological niches (Proctor et al. 2020).
Microbiota harbored in separate niches are very dissimilar.
Certain microbes primarily localize in only one oral site (Segata
et al. 2012; Mark Welch et al. 2019). To understand the dynamic
contribution of other oral sites to the saliva microbiome, we

A

B

Figure 3. Diurnal patterns of the salivary microbiome. (A) The phylum that oscillated diurnally in two or more individuals. (B) The ASVs that oscillated
diurnally in two or more individuals. (Left) Trace plots. (Right) Abundances of these bacteria averaged over every 24-h window with wake-up time point set
as the 0 h for reference. The black line shows the average abundance, with the band depicting the 95% confidence intervals and green shade representing
the average sleep window over the experimental period. Microbes of MA are plotted here; the others are in Supplemental Figures S3–S5.
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estimated the source proportions of our densely sampled saliva
microbiome with SourceTracker2 (Knights et al. 2011) by integrat-
ing the Human Microbiome Project (HMP) data with the closed-
reference OTU picking strategy, because the HMP data set, which
includes the comprehensive profiling of oral sites, is not directly
compatible on the ASV analysis with our sequencing data.

The buccal mucosa and tongue dorsum were the predomi-
nant contributing sources, accounting for half of the total origins,
followed by attached keratinized gingiva, supragingival plaque,
palatine tonsils, subgingival plaque, hard palate, and throat
(Supplemental Fig. S9A). The composition of these sources was
similar among the three subjects. On average, 12%–17% of reads
came from unknown sources, which may arise from the fact that
the source (our samples) and the sink (HMP data) were from differ-
ent individuals. Alternatively, it might be ascribable to other het-
erogeneous niches besides the nine oral sites that were studied in
HMP (Segata et al. 2012).

Daily activities affected the temporal source contributions
(Fig. 6; Supplemental Fig. S9B,C). Both supragingival and subgin-
gival plaque sources surged after eating, and they were usually
low proportion at baseline level. The proportion of buccal mucosa
source accumulated during the daytime and reached its lowest
point in the morning. The attached keratinized gingiva source
showed a similar trend with buccal mucosa, while it also seemed

to increase during sleep. The proportion of tongue dorsum source
rose immediately after waking up; throat, palatine tonsils, and un-
known sources primarily increased at eating time points. Collec-
tively, the source tracking analysis suggests that the microbes
dislodged from various oral surfaces may significantly change
the composition of the salivarymicrobiota. Daily activitiesmay af-
fect the extent and timing of this dislodging, thus probably con-
tributing to the salivary microbiome patterns observed in the
previous sections.

Discussion

In this study, we tracked dynamic changes of the human salivary
microbiome with nondestructive high-frequency sampling. Our
dense time series data set revealed that, despite the relative stability
within each individual over time, the salivarymicrobiome is high-
ly dynamic and affected by daily activities. Preeminently, eating
and sleep drive the microbial variability. We identified that specif-
ic microbes increased after every meal in a temporal order, which
was reproducible in multiple subjects. Diurnal patterns of the sali-
vary microbiome were unveiled at phylum, genus, and ASV levels.
We also observed interesting microbial co-occurrences shared
across three individuals, with inverse correlation existing between
species within the same genus. Notably, similar results of these

A

B

C

D

Figure 4. Reverse correlation of ASVs within the same genus. (A) Granulicatella adiacens versusGranulicatella elegans. (B) Haemophilus parainfluenzae ver-
sus Haemophilus. (C) Neisseria versus Neisseria. (D) Streptococcus versus Streptococcus. (Left) Trace plots. The relative abundance of each ASV was scaled to
[0,1]. (Middle) Scatter plots. The Spearman’s correlation coefficient and P-value were shown in the upper right corner. (Right) Box plots displaying the rel-
ative abundance of negatively correlated ASV pairs in different oral sites. Tongue-specific ASVs are blue-colored and plaque-specific ASVs are orange-col-
ored in trace and box plots.
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microbes were also identifiedwhen using the normalizationmeth-
od in the study by David et al. (2014) to account for the composi-
tional effect in microbiome data, indicating the robustness of the
results (Supplemental Fig. S10).

Longitudinal microbiome studies to date are sampled in
months, days, or most frequently, hours (Caporaso et al. 2011;
David et al. 2014;Hall et al. 2017;Marotz et al. 2021). These studies
reported that the oral microbiota was relatively stable within indi-
viduals in the short-term (within days) or long-term (within years)
(Caporaso et al. 2011; David et al. 2014; Hall et al. 2017; Marotz
et al. 2021). Despite the stability in the overall structure, only a
small fraction of operational taxonomic units (OTUs) were present
across all the sampling time points (Caporaso et al. 2011; Hall et al.
2017), suggesting that the exact microorganisms in the communi-
ty can fluctuate over time. Themost intensive humanmicrobiome
research before this study took samples every 2 h (Marotz et al.
2021), in which they discovered that the oral microbiome compo-
sition was disturbed after an acute intervention trial using mouth-
wash and returned back to normal level within 2 h. These studies
indicate that high-frequency sampling strategies are necessary to
explore the precise dynamic changes of the oral microbiome.

We found that eating activity profoundly changed salivary
microbiome composition. Alpha diversity increased during eating
time windows, and several bacteria changed consistently upon ev-
ery meal in multiple subjects. We could think of two potential ex-
planations for these dynamic patterns: (1) mastication causes the
microbes on other surfaces within the oral cavity to drop into
the saliva; and (2) food-introduced nutrients promote the growth
of the bacteria. The data in the soda intervention experiment con-
ducted byMarotz et al. (2021) may provide some insights into this
question. In that experiment, saliva samples were collected from
seven individuals before each of them consumed a 12-ounce can
of Coca-Cola soda as well as 15 min and 2 h afterward (Marotz
et al. 2021). We reanalyzed this data set and found that drinking
soda, which presumably provided carbohydrate without chewing
movement, did not affect the abundance of those eating-respon-
sive bacteria (Supplemental Fig. S11), indicating that mastication,
rather than carbohydrate, gave rise to these microbial changes.
However, it is worth noting that the increase of these bacteria in
saliva lagged after meal in a temporal order, suggesting that these
bacteria were not passively shed from other oral sites to saliva.

Additionally, KEGG pathways associated with cell motility (e.g.,
bacterial chemotaxis and flagella assembly) congruently increased
during eating. There could exist other mechanisms yet to be dis-
covered by which oral bacteria dislodge themselves from biofilms.
It warrants further investigation to mechanistically understand
the contributions of all the factors to the rapid dynamics of these
bacteria.

The eating-increasedmicrobes rose in abundance in a tempo-
ral order. The early-increased bacteria were enriched on the tongue
dorsum, and the late-increased bacteria were enriched on dental
plaque. This site preference results are consistent with literature:
Campylobacter concisus, Oribacterium spp., and Leptotrichia sp.HMT
221 are regarded as tongue specialists (Segata et al. 2012; Mark
Welch et al. 2019), and Lautropia mirabilis and Rothia aeria are
supragingival plaque specialists (Mark Welch et al. 2016, 2019;
Utter et al. 2020). The source tracking analysis also showed that
the proportional contributions of bacteria from supragingival
plaque and subgingival plaque sources increased after each meal.
Campylobacter concisus normally grows under anaerobic condi-
tions (Lee et al. 2014). Ovesen et al. (2019) revealed that its motil-
ity, which was negatively correlated with biofilm forming
capacity, was significantly increased under microaerophilic condi-
tions compared to anaerobic environments. Speculatively, the in-
crease of Campylobacter concisus in saliva might be related to
fluctuations in oxygen exposure during eating, leading to its
high motility and dislodging from oral surfaces. Besides,
Campylobacter concisus is reported to be associated with inflamma-
tory bowel disease (Zhang et al. 2014; Liu et al. 2018) and detected
active in gastric fluid samples (von Rosenvinge et al. 2013). It
would be interesting to study ifCampylobacter concisus could trans-
mit to the gastrointestinal tract and contribute to inflammatory
bowel disease. Rothia aeria and Lautropia mirabilis were abundant
in dental plaque and were reported as health-associated bacteria,
as they were depleted in gingivitis and periodontitis populations
(Huang et al. 2021). Their dynamics in saliva might reflect their
shedding from dental plaque.

Many microbes in saliva showed diurnal oscillation. We de-
tected more oscillating taxa in subject MA than in ME or MO,
which is probably because more samples were collected during
sleep from MA than ME and MO, leading to higher statistical
power. Despite the diurnal variations among different individuals,

Figure 5. Microbial co-occurrence networks computed with CCLasso in the three individuals. Red and green lines represent positive and negative cor-
relations, respectively. A solid line indicates that the correlation of this pair exists in two or more individuals; a dashed line indicates that the significant
correlation is only present in this subject. The size of the node is proportional to the average relative abundance. The shape of the node represents different
phyla. The color of the node represents the site preference, in which the blue indicates that the ASV is tongue-specific, and the red indicates the ASV is dental
plaque-specific. Gray color means that its site information is not available based on our data. The bold fluorescent green–circled nodes indicate diurnal
oscillating ASVs. Gray-colored taxonomy labels indicate that the ASVs do not exist in the current subject.
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some bacteria were found to be universally rhythmic.We observed
an increase in the abundance of Prevotella and Alloprevotella at
night, and they decreased sharply at breakfast. Prevotella and
Alloprevotellawere found positively correlated with the concentra-
tions of volatile sulfur compound gases, such as H2S and CH3SH
(Ye et al. 2020), and were enriched in individuals with halitosis
(Takeshita et al. 2012; Yang et al. 2013; Ye et al. 2020). The increase
of Prevotella and Alloprevotella at night might be linked to bad
breath in the morning. These bacteria were more abundant in
tongue samples compared to dental plaque samples, agreeing
with the study by Mark Welch et al. (2019). Wilbert et al. (2020)
visualized microbial spatial structure lining on the tongue surface
using fluorescence spectral imaging, showing that Prevotella was
more often observed as free floating or sparsely epithelial-bound
bacteria than embedded in the densely structured microbial con-
sortia that were organized around the keratinized epithelial cells.
The result implies that Prevotellamight attach loosely to the tongue
surface. Hence, their dynamics may be closely associated with sal-
iva flow. Their decrease during every meal, especially at breakfast,
may result from the washing effects of saliva secretion. The low

salivary flow at night in turn favors their increase (Pedersen et al.
2018).

Other diurnal oscillating bacteria include Bergeyella sp. HMT
206,Haemophilus,Granulicatella elegans, and Streptococcus. They in-
creased from the late afternoon, stayed abundant in the evening,
and decreased after waking up. Theyweremore abundant in dental
plaque samples compared to tongue dorsum samples, but our data
only includes two oral sites, which may obscure the precise site
preference. An oral microbiome research involving nine HMP
oral sites suggested that Granulicatella elegans was enriched in
keratinized gingiva/buccal mucosa (KG/BM); Streptococcus and
Haemophilus are generalists that are abundant at most oral sites
(Mark Welch et al. 2019). Our source tracking results showed
that the proportion of KG and BM source showed a similar diurnal
oscillation pattern as the dynamics of Granulicatella elegans.
Research showed that the concentration of secretory immuno-
globulin A (sIgA), which protects mucosal tissue and teeth from
opportunistic pathogens, oscillates diurnally and was elevated at
night (Shirakawa et al. 2004). Streptococcus and Haemophilus spe-
cies possess the IgA1 protease activity (Cole et al. 1994; Spahich

Figure 6. Source tracker analysis in MA. The trace plots showing the proportional contributions from different oral sites at each time point.
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and St. Geme 2011; Huus et al. 2021), which might have connec-
tion to their high abundances at night.

Common co-occurring patterns were observed among differ-
ent individuals. The positive correlations were mostly between the
microbes from the same oral site, whereas the ASVs that tended to
be enriched in different oral surfaces were largely negatively corre-
lated in the networks. In our data set, two ASVs of Lautropia mira-
bilis were closely associated in all of three subjects. Only one
species of Lautropia, L. mirabilis, has been identified, until recent
research isolated a novel species named Lautropia dentalis from
the subgingival dental plaque of a gingivitis patient (Lim et al.
2019). One Lautropia mirabilisASV is 100% identical to this Lautro-
pia dentalis strain KCOM 2505 16S ribosomal RNA; the other ASV
sequence, with two bases differing from the first one, is 100% iden-
tical to L. mirabilis genome. The relative abundance of these two
sequences did not shadow each other (Supplemental Fig. S12);
thus, we believe that they are not different copies from the same
strain but rather represent two unique strains present in the
samples.

Our study provides insight into the baseline dynamics of the
human salivarymicrobiome in healthy adults and deepens our un-
derstanding of the general rules governing themicrobial variation.
Our findings highlight the need to consider the influence of daily
activities and diurnal oscillations in oral microbiome studies.

Methods

Recruitment criteria and participant demographics

Volunteers were laboratory researchers recruited from the
University of Colorado at Boulder. Inclusion criteria included the
following: healthy adults without usage of antibiotics or other
medications in the last 3 mo and no oral diseases in the last 3
mo. Participant demographics are summarized in Supplemental
Table S1. The time series experiment included three volunteers:
one female and twomales, aged 20–45 yr old; and the lunch exper-
iment included 19 volunteers: 6 females and 13males, aged 20–45
yr old.

Saliva sampling and metadata

Time series data set

Three healthy subjects were tracked for 6 consecutive days. Their
saliva samples were collected every 10–60min, except when sleep-
ing, by gently touching saliva on tongue surfaces (without scrap-
ing) using sterile swabs (BD BBL CultureSwab 220145). The first
sample within a day was taken right after waking up, and the last
sample was taken before sleep. Self-reported daily activities, in-
cluding sleep, food intake, physical exercise, and tooth brushing,
were recorded at the sampling time. Samples were collected and
frozen at −20°C. After 6 d of experiments, samples were transport-
ed collectively to the laboratory on ice and stored at −20°C until
further processing. In total, 614 samples were collected (subject
MA: 212 samples; subject ME: 221 samples; subject MO: 181
samples).

Lunch data set

Nineteen volunteers were recruited to have lunch together. Saliva
samples were collected at 12 fixed time points for all the volun-
teers: −46, −36, −24, 25, 37, 47, 65, 76, 87, 98, 109, and 121
min, with time of 0 min indicating the start of a meal. All the in-
dividuals had finished eating at time of 25 min. In total, 222 sam-
ples were collected.

MA validation data set

MA was sampled for another 1.5 d, 11 mo apart from the time
series data set mentioned above. Additionally, an extra 13 dental
plaque samples and six tongue dorsum samples were scraped
from subject MA. Dental plaque samples were collected by repeat-
ed swabbing (30 sec) of the facial supragingival surfaces of the up-
per and lower incisors, canines, and premolars. Tongue dorsum
samples were collected by repeated swabbing (30 sec) of the entire
dorsal tongue surface, as described in Costello et al. (2009).

16S rRNA gene amplicon sequencing

DNA purification and 16S rRNA amplicon sequencing was per-
formed using Earth Microbiome Project standard protocols
(https://earthmicrobiome.org/protocols-and-standards/). In brief,
DNA was extracted using the MoBio PowerSoil DNA Isolation kit
(Qiagen) as described in Marotz et al. (2017). Amplicon library
was constructed using universal primers (F515/R806) targeted
across the V4 region of the 16S rRNA (Caporaso et al. 2012) and se-
quenced on the Illumina HiSeq 4000 sequencing platform. Blank
negative controls were used and went through all the sample pro-
cessing steps together with the saliva samples (Supplemental Fig.
S13A). During processing, all samples were randomized across
the 96-well plates to reduce systematic bias in contaminations
and well-to-well effects (Minich et al. 2019).

Microbial data analysis

We used Quantitative Insights Into Microbial Ecology version 2
(QIIME2, version 2019.4) tool to process raw sequencing data
into an ASV table (Bolyen et al. 2019). Raw reads were first filtered
based on sequence quality scores using qiime quality-filter q-score
command with default settings (Bokulich et al. 2013), and next
processed using the Deblur algorithm, resulting in high-quality
150-bp sequence variant data with single-nucleotide resolution.
Deblur pipeline did sequence quality control by removing single-
ton and artifactual reads, followed by de novo chimera removal
(Amir et al. 2017). Amedianwas obtained of 8484 reads per sample
(Supplemental Fig. S13B). Samples were next rarefied to 2533 reads
according to the rarefaction curve (Supplemental Fig. S13C).

The taxonomy assignment for the oral ASVs was improved by
matching against the Human Oral Microbiome Database (HOMD,
16S rRNA RefSeq V15.2) (Chen et al. 2010) compared to Green-
genes (Supplemental Fig. S1G). The ASVs with <97% similarity
against HOMD were defined as non-oral ASVs, which includes
19 chloroplast, 23 mitochondrial, and 538 other non-oral ASVs.
Their abundances in all samples were very low (on average
0.849%, 0.135%, and 0.560%, respectively). These sequences
were mostly from food and discarded from downstream analyses.
One sample in MO contained high abundant non-oral bacteria,
which was likely contaminated, and was also discarded (Supple-
mental Fig. S2B).

Alpha and beta diversity metrics were computed by q2-diver-
sity plugin. PCoA plots were generated using Emperor (Vázquez-
Baeza et al. 2013). Effect sizes of variables on microbiome compo-
sition were calculated as previously described (Dimitriu et al.
2019).

Besides rarefaction, we also used another normalization
method as described previously (David et al. 2014) to mitigate
the compositionality problem in microbiome analysis.

Eating-responsive bacteria analysis

We developed a Z-score method to measure how much the abun-
dance change induced by eating deviates fromnormal fluctuations
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for a given ASV. Z-score is frequently used in bioinformatic analy-
sis to quantify the deviation of the observed value from the ran-
dom expected distribution (Rouskin et al. 2014; Mathys et al.
2019). Specifically, for a givenASV in a subject, we computed a vec-
tor D consisting of the abundance differences between every two
samples that were collected within 1 h. The vector D represents
the distribution of normal fluctuations for this ASV. For each eat-

ing time window, we computed the Z-score as z = d − �D
s (D)

, where d

is the abundance fluctuation induced by eating, �D is the mean of
D, and σ (D) is the standard deviation of D. The mean of the Z-
scores of all the eating windows was the final measure on how
much this ASV responded to eating.

A rooted phylogenetic tree was generated by aligning se-
quences with MAFFT (Katoh and Standley 2013) and building a
tree with FastTree (using the QIIME2 phylogeny plugin) (Price
et al. 2010). The heatmap of Z-scores of ASVs was created using
an online tool, Interactive Tree of Life (iTOL) (Ciccarelli et al.
2006; Letunic and Bork 2019).

Eight ASVswith the highest Z-scores were further analyzed by
integrating and averaging all the eating timewindows to reveal the
temporal order of these bacteria. These ASVs were further scaled to
the same numeric scale and smoothed with moving average for
visualization.

Diurnal oscillation detection

We applied the Lomb–Scargle (LS) method in the R MetaCycle
package to detect the rhythmic pattern of 24 h (±2 h) in our 6-d
longitudinal study (Glynn et al. 2006; Wu et al. 2016). The
Meta3d function, which integrates analysis results from multiple
individuals, was used to detect the periodic signal from the time se-
ries data. FDR≤0.01 was considered statistically significant.
Statistically significant phyla, genera, and ASVs in the salivary
microbiome were plotted in Supplemental Figures S3–S5.

Microbial co-occurrence network

We applied CCLasso and Spearman’s correlation to estimate mi-
crobial co-occurrence. Benchmark showed that they performed
well in inferring relationships based on the compositional micro-
biome data (Hirano and Takemoto 2019). CCLasso was run with
default settings.

The network was visualized via Cytoscape (version 3.7.2) for
each subject (Shannon et al. 2003). To identify the general co-oc-
curring relationships among multiple individuals, an identical
subset of nodes was included. The nodes were selected if they
were strongly associated (|correlation| ≥0.6 and FDR≤0.01) in
any of the three individuals. Significant associations with FDR≤
0.01 were displayed in the visualized networks.

An extra set of 12 samples fromdental plaque and six samples
from tongue dorsum were collected from subject MA. A permuta-
tion-based nonparametric test followed by FDR correction
(calour.analysis.diff_abundance) was applied to detect bacterial
site preference (Xu et al. 2019).

Prediction of metagenomic functions

Potential metagenome functions were predicted using PICRUSt2
(Douglas et al. 2020). Kyoto Encyclopedia of Gene and Genomes
(KEGG) pathways abundances were inferred by mapping file of
KEGG orthologs to pathways. The distribution of the NSTI scores
for ASVs in the time series data set was shown in Supplemental
Figure S14. Only 0.02% ASVs scored greater than 2, which is the
default maximum NSTI cutoff in PICRUSt2. The mean value of

the NSTI scores was 0.05. These results indicate a reasonable reli-
ability of the PICRUSt2 prediction. Downstream analyses were per-
formed as same as microbiome data.

SourceTracker analysis

We downloaded the 16S v3-v5 OTU table from HMP (https://
hmpdacc.org/hmp/HMQCP/). To match up HMP sequences and
our time series data, we used closed-reference clustering on both
sets of the sequences using q2-vsearch plugin (Rognes et al.
2016) against HOMD (16S rRNARefSeq V15.2) based on 97% iden-
tity. We then applied SourceTracker (v2) to estimate the potential
sources of oral microbial community (Knights et al. 2011). HMP
samples covering eight oral sites (supragingival plaque, subgingi-
val plaque, buccal mucosa, keratinized gingiva, hard palate,
tongue dorsum, throat, and palatine tonsils) were used as sources;
our saliva samples were used as sinks.

Soda intervention data set

A previous study investigated the effect of four acute treatments
(including soda) on saliva microbial composition (Marotz et al.
2021). The data set was downloaded from Qiita (Gonzalez et al.
2018) under study ID 11899. Non-oral ASVs were removed as de-
scribed previously. Our discovered top eating-responsive ASVs in
the time series experiment were visualized before and after the
soda intervention with Matplotlib.

Ethics approval and consent to participate

Volunteers were recruited under IRB number 150275 approved by
the UCSD Human Research Protections Program.

Data access

The raw sequencing data and metadata from this study have been
submitted to Qiita (https://qiita.ucsd.edu) under study IDs 14062
(time series), 14057 (lunch), 14058 (MA validation), and 14059
(tongue and plaque samples), and the European Nucleotide
Archive (https://www.ebi.ac.uk/ena/browser/home) under acces-
sion numbers ERP133012 (time series), ERP133010 (lunch),
ERP133009 (MA validation), and ERP133011 (tongue and plaque
samples). The ASV table obtained after removing non-oral se-
quences is available as Supplemental Table S2. The code is avail-
able as Supplemental Code and at GitHub (https://github.com/
maque4004/saliva-time-series-analyses).
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