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Abstract

Exactly Solvable Stochastic Models in Elastic Structures and Scalar Conservation Laws

by

David Christopher Kaspar

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Fraydoun Rezakhanlou, Chair

This dissertation presents new results concerning two models with deterministic dynamics
but involving a stochastic initial condition or environment. The first concerns a well-known
family of PDE called scalar conservation laws, where, given a random initial condition, we
provide a statistical description of the solution as a stochastic process in the spatial variable
at later time. This confirms a special case related to a conjecture by Menon and Srinivasan
[78]. The second involves a model from condensed matter physics for a one-dimensional
elastic structure driven through a periodic environment with quenched phase disorder. In
collaboration with M. Mungan [67, 68] the author obtained some basic results for this model
and a more detailed description for an approximation to it which is a nonstandard sandpile
system. We report some of these results here, with some additional introductory material
targeted at a mathematical, rather than physical, audience. In each case some questions for
future inquiry are identified, and it is argued that rigorous analysis of toy models such as
those considered here is productive in the continued development of the field of statistical
mechanics.
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Chapter 1

Introduction

A fundamental goal of statistical mechanics is to rigorously describe the macroscopic be-
havior of a system from its microscopic details, which might be discrete or continuous, and
deterministic or random [26, 36]. Inasmuch as this requires thinking about very small and
very large scales and the relationship between them, the difficulties involved can be as con-
siderable as the those faced by physicists trying to build a bridge between quantum and
relativistic models of reality. To make progress we frequently consider idealized and simpli-
fied systems, sometimes called toy models. We gain a better understanding of complicated
phenomena in finding simple models which exhibit them.

Consider as an example the Kardar-Parisi-Zhang [66] model for randomly growing in-
terfaces. (For a relatively recent survey in this rapidly moving area of research, see [30].)
The KPZ equation is expected to describe the rescaled limiting behavior for a variety of
probabilistic growth models. As an early indicator of the difficulties involved, recall that
the equation itself is ill-posed, as space-time white noise must be interpreted in the sense
of distributions, and the PDE involves the square of a spatial derivative. As the Cole-Hopf
transform relates Burgers’ equation with viscosity to the heat equation, the KPZ equation is
formally transformed to the stochastic heat equation, which is linear and whose terms have
standard distributional interpretations. The evidence that this is the right way to make sense
of the KPZ equation comes from the corner growth model/simple exclusion process, which
must be considered a toy model within the (conjectured) KPZ universality class. Specifically,
[12] gives a discrete analogue of the Cole-Hopf transform which is then shown to converge
weakly to a solution of the stochastic heat equation.

This dissertation concerns two stochastic models which have a statistical mechanics flavor,
but which are not among the “standard” objects of study in this field, particularly on the
mathematics side. The models, which we describe briefly1 below, are in some sense related,
but the most important common element is our approach. In both cases we are presently
unable to address these problems in the generality we would like; the difficulties involved
appear to be genuine, especially as one involves nonequilibrium statistical mechanics, which

1More complete introductions are given in later chapters.
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is widely acknowledged to be more challenging than its equilibrium sibling [26]. With hopes
of gaining intuition that will later translate to the original problems, we consider instead toy
models—one a special case, the other an approximation—for which some of our questions are
exactly solvable. We present these results and then offer some speculative ideas for future
work which might narrow the gap between the toy versions we understand and the originals.

Scalar conservation laws are first-order, nonlinear PDE which describe the changes in
time of a spatially varying quantity which is transported according to a specified flux, but
neither created nor destroyed. The general form is ρ(x, t) which satisfies

ρt +H(ρ)x = 0, (1.1)

interpreted in a suitable weak sense; classical solutions typically do not exist [39]. In the
case where H is convex with superlinear growth at infinity, the theory associated with this
equation is very complete. A particularly interesting special case is H(p) = 1

2
p2, for which

the above becomes
ρt + ρρx = 0, (1.2)

known as the inviscid Burgers’ equation. The latter has frequently been studied with random
initial conditions, and a key achievement in this area is the observation that if ρ(x, 0) is taken
to be a Lévy process without positive jumps, that for fixed t > 0 the process ρ(x, t) remains
Lévy [15, 24].

It is natural to wonder whether this is a miracle particular to Burgers’ equation, or a
manifestation of a more general property of scalar conservation laws. The Lévy property
does not survive if H is not quadratic, but [78] conjectures that certain Feller processes
without negative jumps should be preserved, their generators (for a stochastic process in
the x-variable) evolving in time t according to a kinetic equation with a collision term that
is analogous to the coagulation described by the Smoluchowski equation. We confirm this
for some monotone piecewise-constant Feller processes ρ(x, 0). The methods used are very
direct: an unbounded system is replaced by a bounded interval in x with a boundary condi-
tion evolving randomly in time. The evolution of ρ(x, t) in this case can be described by an
unbounded, but almost surely finite, random number of particles moving at constant veloci-
ties between totally inelastic collisions. We construct a time-dependent family of probability
measures on the space of particle configurations using the solution to a Smoluchowski-like
kinetic equation, and then use some hard analysis to verify that the dynamics of the PDE
flow through this family.

The other system we discuss is the Fukuyama-Lee-Rice [49, 71] model. Originally con-
ceived as a phase-only model for charge density waves in certain exotic materials, the system
is now considered a model problem for an elastic structure driven through a random medium.
Imagine a bi-infinite chain of particles connected by springs, where each particle rests on a
substrate of periodically varying height. The deterministic version of this is the better known
Frenkel-Kontorova model [48]; the randomness involved here is phase disorder, where all par-
ticles experience the effects of potentials of identical shape, but which have been translated
by some independent random variables. The questions one is led to ask by the physics are
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somewhat different from the Frenkel-Kontorova case. We are interested not in energy mini-
mization, but rather optimal resistance to an external driving force acting uniformly on all
the particles.

As we detail later, the previous investigations of this system have been exclusively done
by physicists, using numerics or nonrigorous calculations. In a joint work with M. Mungan
[67, 68], the author developed some basic (and unsurprising, but rigorous) results for the
spatially periodic version of this system. For a toy version of this, which approximates by re-
ducing the range of immediate interactions to nearest neighbors, the problem of determining
the threshold configuration, the arrangement of particles which can withstand the greatest
driving force, is exactly solvable. The explicit characterization leads to a particularly clean
Brownian scaling limit, raising (for the first time, as far as the author is aware) the question
of existence of a Gaussian scaling limit for the original model. Portions of [67] have been
included in this dissertation, with an introduction intended to provide background for the
mathematical reader who might not be aware of charge density wave models.

Though the two investigations reported in this manuscript have proceeded along inde-
pendent lines, the problems are not completely unrelated. It has been known for some time
[61] that configurations of the Frenkel-Kontorova model naturally embed as characteristics
in the flow for Burgers’ equation with impulsive forcing (adding the derivative of a suitably
translated potential) at integer times. See also [83] for some numerical work along these
lines. There is then some hope that the two research efforts in this dissertation, having
moved separately, may converge in future work.

We close the introduction with a guide to the organization of this document. For each of
the two projects discussed, we have divided our text into three chapters, corresponding to
the past, the present, and the future:

Chapter 2
This surveys the relevant prior developments involving Burgers’ equation with Lévy
initial data, and the conjecture for more general scalar conservation laws.

Chapter 3
We present new results for the scalar conservation law when the initial data is monotone
and piecewise constant, confirming the conjecture in a special case.2

Chapter 4
Here we pose a different problem, stated more naturally for Hamilton-Jacobi PDE, as
an alternative to the conjecture of [78]. This question has a natural generalization to
multiple spatial dimensions.

Chapter 5
After a quick review of the Frenkel-Kontorova model, the Fukuyama-Lee-Rice model

2To be completely precise, the conjecture is formulated for stationary processes, and monotonicity pre-
cludes stationarity. Nonetheless, the flavor of the result is very similar, and until the problem is solved, the
role played by stationary will remain uncertain.
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is introduced. Some specialization in the form of the potential, having been used as
early as [5], yields formulas which render things almost linear.

Chapter 6
Adapted from [67], this presents basic results for the periodic FLR model and a detailed
description of the threshold state for a toy version, which is really a nonstandard one-
dimensional sandpile.

Chapter 7
Some goals are stated for a return to the full FLR model, and some numerical evidence
(not found in [67]) is presented concerning the possibility of a Gaussian scaling limit
for the original problem.

Note that we have not attempted to match notation between Chapters 2–4 and Chapters
5–7. Our approach—identifying tractable toy models and solving them—is common to both
parts, but these should otherwise be read separately.
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Chapter 2

Burgers’ equation

The family of partial differential equations known as conservation laws model situations
where the sum of a quantity on a given spatial region changes according to some prescribed
rate of flux across the boundary of that region, and thus arise naturally in the consideration of
continuous physical systems [32]. The theory in the general case, where several quantities are
tracked on a spatial domain of more than one dimension, remains somewhat underdeveloped,
but scalar conservation laws are well-understood [39]. The initial value problem takes the
form {

ρt +H(ρ)x = 0 for (x, t) ∈ R× (0,∞)

ρ = ρ for (x, t) ∈ R× {0}, (2.1)

where H = H(p) and ρ = ρ(x) are given functions. It is well known [39] that this nonlinear
PDE typically does not have classical solutions, even when ρ is C∞. It is usual to consider
integral solutions to (2.1), defined by multiplying the equation by an arbitrary test function
in J ∈ C∞c (R× [0,∞)) and formally integrating by parts:∫∫

ρJt +H(ρ)Jx dx dt+

∫
ρJ |t=0 dx = 0. (2.2)

Observe that the above is meaningful if ρ ∈ L∞loc(R × (0,∞)). Uniqueness is achieved
by imposing additional entropy conditions, which are satisfied by the limit as ν → 0+
of solutions1 ρν to

ρνt +H(ρν)x = νρνxx, (2.3)

which has been regularized by the addition of the viscosity term νρνxx. This solution is
preferred over others which may have undesirable properties such as characteristics flowing
out of shocks [39].

The nicest statements can be made when the flux functionH(p) is convex with superlinear
growth as |p| → ∞. The most famous case is H(p) = 1

2
p2, for which (2.1) becomes the

inviscid Burgers’ equation
ρt + ρρx = 0. (2.4)

1Here ν is a parameter, not an exponent.
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As is usual in mathematics, this is not named for the first person to consider the equation;
the earliest reference located by [32] is due to Bateman [11]. The PDE (2.4) was popularized
in several papers by J.M. Burgers [20–22], who wanted to use this to understand turbulence
without dealing with the complexity of the full-blown Euler equations. As a model for turbu-
lence it has fallen out of favor because, in light of the Cole-Hopf transform [39], the viscous
counterpart of (2.4) can be related to the heat equation, ruling out extreme sensitivity to
small perturbations. Nonetheless (2.4) has been the subject of an extensive body of litera-
ture, because it is a nonlinear PDE which is rather tractable, and has arisen in unexpected
settings quite different from its original motivation [76].

2.1 The stochastic setting

From its earliest appearance, Burgers’ equation has been associated with stochastic initial
conditions. Burgers himself was interested in statistical properties of solutions starting from
white noise [20]; this is best understood in the integral sense. Note that an x-antiderivative
u(x, t) of ρ(x, t) formally solves ut + 1

2
(ux)

2 = 0, and the white noise initial condition ρ
becomes a Brownian motion initial condition u. The solution u(x, t) to this problem is given
by the Hopf-Lax formula [59]:

u(x, t) = inf
y

{
u(y) +

(x− y)2

2t

}
. (2.5)

Write y(x, t) for the rightmost minimizer, and note that the solution u(x, t) is completely de-
termined by this function and the initial data. Characterizing y(x, t) for this initial condition
is, up to sign and normalization, a problem solved by Groeneboom [54], who was interested
not in Burgers’ equation but asymptotics of certain isotonic2 estimators. In statistics, the
nonparametric maximum likelihood estimator of a decreasing probability density f(x) on
[0,+∞), given an f -distributed i.i.d. sample X1, . . . , Xn, is given by the left-continuous
derivative f̂n of the concave majorant F̂n of the empirical distribution function Fn. Groene-
boom’s motivation was asymptotic comparison of f̂n and f in various metrics.

To see the connection between these problems, first recall that Donsker’s Theorem [65]
relates the rescaled difference √

n(Fn(x)− F (x)) (2.6)

between the empirical distribution function and the true distribution function to Brownian
bridge, and we see how the Brownian aspect of this problem arises. Second, note that (2.5)
can be rewritten as

u(x, t) = inf
y

{
u(y) +

y2

2t
− xy

2t

}
+
x2

2t
= − sup

y

{
x

2t
y −

[
u(y) +

y2

2t

]}
+
x2

2t
. (2.7)

We can therefore recognize u(x, t) in terms of the Legendre transform of u(y) + y2/(2t), that
is, u with an added parabolic drift. It is well known [94] that:

2i.e. respecting order restrictions



CHAPTER 2. BURGERS’ EQUATION 7

• the Legendre transforms of a function and its convex minorant are equal, and

• the Legendre transform is an involution on lower semicontinuous convex functions.

We see that some of the information in u is thrown away as we determine u(·, t) for t > 0, and
computing the convex minorant of u with parabolic drift retains exactly what is needed to
determine the solution. The strong connection between these problems, apparently observed
originally by [98], is clear.

Among the results of [54] is a density for

sup{x ∈ R : B(x)− cx2 is maximal} (2.8)

where B(x) is a two-sided standard Brownian motion and c is a positive constant. Namely,
this has density:

1

2
gc(x)gc(−x) (2.9)

where gc(x) has Fourier transform given by

ĝc(s) =
(2/c)1/3

Ai(i(2c2)−1/3s)
. (2.10)

Ai is the Airy function [40] defined for real arguments by

Ai(x) =
1

π

∫ ∞
0

cos

(
y3

3
+ xy

)
dy (2.11)

and for complex arguments by

Ai(z) =
1

2π

∫
γ

exp

(
zw − w3

3

)
dw, (2.12)

where γ is the contour (∞e−2πi/3, 0] ∪ [0,+∞). The Airy function has emerged in consider-
ation of many mathematical problems, notably in the edge-scaling limit for eigenvalues for
random matrices [93]. In fact, there are other connections between forced Burgers’ equation
and random matrices [76]. The deeper meaning of this, if any, is not yet understood, and
this mystery is strong motivation for continued inquiry into Burgers’ equation in a stochastic
setting.

The 1990s saw considerable progress in this area; we rely on the introduction of [25]
which recounts, with sources, some of this history, and discuss those portions most relevant
for this dissertation. After Sinai [98] connected Burgers’ equation with white noise initial
data to convex minorants in 1992, Avellaneda and E [7] showed in 1995 the solution ρ(x, t)
is a Markov process in x for each fixed t for the same initial data. A year earlier, Carraro
and Duchon [24] defined a notion of statistical solution to Burgers’ equation in terms of the
characteristic functional

v 7→
∫

exp

{
i

∫
ρ(x)v(x) dx

}
µt(dρ) =: µ̂t(v). (2.13)
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A family of measures {µt} is a statistical solution if µ̂t(v) satisfies a differential equation
obtained by formally differentiating µ̂t(v) under the assumption that ρ(x, t) solves the PDE.
This approach was further developed in 1998 by the same authors [23] and by Chabanol and
Duchon [25]. It does have a drawback: given a (random) Cole-Hopf solution ρ(x, t) to the
inviscid Burgers’ equation, the law of ρ(·, t) is a statistical solution, but it is not clear that
a statistical solution yields a Cole-Hopf solution, and at least one example is known [15]
when these notions differ. Nonetheless, [23, 24] realized that it was natural to consider Lévy
process initial data, which set the stage for the next development.

In 1998, Bertoin [15] proved a remarkable closure theorem for Lévy initial data. Before
stating this, let us review some terminology and build an intuitive case for the hypotheses.
Recall [65] that a Lévy process is a real-valued càdlàg stochastic process starting at zero
with stationary independent increments, and all such processes have Lévy-Itô representation

bx+ σB(x) +

∫ x

0

∫
|z|≤1

z(η − Eη)(dy, dz) +

∫ x

0

∫
|z|>1

zη(dy, dz) (2.14)

where b, σ ∈ R, B(x) is a standard Brownian motion, and η is an independent Poisson point
process on R2 with intensity Eη = Lebesgue ⊗ ν, with ν a measure on R \ {0} satisfying∫

(z2∧1) ν(dz) <∞. Note that x plays the role of what is usually consider the time variable
for the stochastic process; we reserve t for the time associated with the PDE.

Taking Burgers’ equation with initial condition ρ(x) given by (2.14), we ask whether,
for fixed t > 0, the solution ρ(x, t) could have a similar form. Standard facts about the
PDE quickly narrow things down. Using the Hopf-Lax formula (2.5) for the corresponding
Hamilton-Jacobi PDE,

u(x, t) = u(y(x, t)) +
(x− y(x, t))2

2t
, (2.15)

we differentiate formally and use the fact that y(x, t) is a minimizer to obtain

ρ(x, t) =
x− y(x, t)

t
. (2.16)

This formula can be verified rigorously [39], and it is easy to use the form of (2.5) to show
that the backward Lagrangian function y(x, t) is nondecreasing as a function of x for each
fixed t. In particular, ρ(x, t) is a difference of increasing functions of x, and therefore has
bounded variation on every compact interval. So, if ρ(x, t) is Lévy then the diffusion term
must be zero, since Brownian motion has a.s. unbounded (linear) variation on every open
interval.

In light of the above, let us imagine the situation where we have only linear drift and
jumps according to a Poisson process. The behavior of the entropy solution to the PDE
differs depending on the sign of the jump. A negative jump gives rise to a shock, a jump
discontinuity that propagates forward in time. A positive jump, on the other hand, becomes
a rarefaction wave. For the sake of illustration, consider the case where the initial condition
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t

x

x

ρ

0

1

0 1

t0

x0

x0 x1 x2

Figure 2.1: A rarefaction wave for Burgers’ equation

The initial condition ρ(x) has a single jump from state 0 to 1 at x =
x0. The characteristics for the intervals [0, x0) and (x0,+∞) propagate
forward in time with x-velocities 0 and 1, respectively. The region not
determined by these characteristics is filled, for the entropy solution, by
a rarefaction wave (x − x0)/t. Given ρ(x2, t0), the value ρ(x1, t0) would
help predict ρ(x, t0) for x > x2.
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has zero linear drift, a jump at x0 from height 0 to 1, and no other jumps in the immediate
vicinity. Referring to Figure 2.1, we see that the solution for t > 0 is continuous, with

ρ(x, t) =


0 x < x0

x− x0

t
x0 ≤ x < x0 + t

1 x0 + t ≤ x.

(2.17)

Noting that a Lévy process satisfies the strong Markov property, we see a problem. Fixing
some t0 > 0, observe that one can better predict ρ(x, t0) for x > x2 given ρ(x1, t0) and
ρ(x2, t0) than with ρ(x2, t0) alone. Assuming that the factor ν of the jump intensity is
absolutely continuous with respect to Lebesgue measure, given the value of ρ at both points
the probability is one that these sit in the middle of a rarefaction wave. Since positive jumps
can spoil the Markov property, we will restrict our attention to spectrally negative Lévy
processes, which have negative jumps only.

Theorem 2.1 ([15, Thm. 2]). Consider Burgers’ equation with initial data ρ(x) which is
a Lévy process without positive jumps for x ≥ 0, and ρ(x) = 0 for x < 0. Assume that
Eρ(1) ≥ 0. Then, for each fixed t > 0,

y(x, t)− y(0, t) (2.18)

is independent of y(0, t) and is in the parameter x a subordinator, i.e. a nondecreasing Lévy
process. Its distribution is the same as that of the first passage process

x 7→ inf{z ≥ 0 : tρ(z) + z > x}. (2.19)

Further, denoting by ψ(q) and Θ(t, q) (q ≥ 0) the Laplace exponents of ρ(x) and y(x, t) −
y(0, t),

E exp(qρ(x)) = exp(xψ(q))

E exp[q(y(x, t)− y(0, t))] = exp(xΘ(t, q)),
(2.20)

we have the functional identity

ψ(tΘ(t, q)) + Θ(t, q) = q. (2.21)

Remark. Note that the requirement that Eρ(1) ≥ 0 can be eliminated with minor modifica-
tions to the theorem, and that understanding the case Eρ(1) = k for any k ∈ R is sufficient,
in light of the following elementary fact. Suppose that we have two initial conditions ρ(x)
and ρ̂(x) which are related by ρ̂(x) = ρ(x) + cx. Then it is easy to check using the Hopf-Lax
formula (2.5) that the solutions are related for t > 0 by

ρ̂(x, t) =
1

1 + ct

[
ρ

(
x

1 + ct
,

t

1 + ct

)
+ cx

]
. (2.22)
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This observation is found in [77], and was likely known previously to others, though we are
unable to determine a definitive attribution. From this it follows that changes to the drift
component of our Lévy initial conditions affect the results only through simple rescalings
which might blow up in finite time, but not instantaneously, and the statistical description
of the solutions survives with straightforward adjustments.

We find this result striking for several reasons. First, in light of (2.16), it follows immedi-
ately that the solution ρ(x, t)− ρ(0, t) is for each fixed t a Lévy process in the parameter x,
and we have an example of an infinite-dimensional, nonlinear dynamical system (the PDE,
Burgers’ equation) which preserves the independence and homogeneity properties of its ran-
dom initial configuration. Second, the distributional characterization of y(x, t) is that of a
first passage process, where the definition of y(x, t) following (2.5) is that of a last passage
process. Third, (2.21) can be used to show [76] that if ψ(t, q) is the Laplace exponent of
ρ(x, t)− ρ(0, t), then

ψt + ψψq = 0 (2.23)

for t > 0 and q ∈ C with <q ≥ 0. This shows for Cole-Hopf solutions what had previously
been observed by Carraro and Duchon for statistical solutions [23], namely that the Laplace
exponent’s evolution is described by Burgers’ equation!

Menon and Pego [77] describe a correspondence between (2.23) and the Smoluchowski
coagulation equation [99], studied on the level of an additive coalescent process in the Brown-
ian case by Bertoin [13]. The Laplace exponent ψ(t, q) has a Lévy-Khintchine representation
in the form

ψ(t, q) = b(t)q +

∫ ∞
0

(e−qs − 1 + qs) Λ(t, ds), (2.24)

and for the case where Eρ(1) = 0 we have b(t) = 0 for all t. Writing M(t) =
∫∞

0
sΛ(t, ds),

one finds that using the time rescaling τ = − logM(t) and ν(τ, dm) = Λ(t,M(t) dm) that we
obtain a solution ν(t, ds) to the Smoluchowksi coagulation equation with additive collision
kernel. This may be written formally (assuming that ν(τ, dm) = ν(τ,m) dm has a density,
say) as

ντ (τ,m) =

∫ m

0

m

2
ν(τ,m−m′)ν(τ,m′) dm′ −

∫ ∞
0

(m+m′)ν(τ,m)ν(τ,m′) dm′ (2.25)

or in a standard [87] weak formulation: ντ = Lsν where Lsν acts on test functions J
according to∫

J(m)(Lsν)(τ, dm) =

∫
{J(m+m′)−J(m)−J(m′)}

(
m+m′

2

)
ν(τ, dm)ν(τ, dm′). (2.26)

It is possible to give a more intuitive explanation suggesting this kinetic equation might be
relevant.

Figure 2.2 shows a typical initial condition ρ(x) for Burgers’ equation with Lévy ini-
tial data, which we will subsequently call the Burgers-Lévy case for short. As time begins
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x

ρ

x1a0 a1 a2 a3x2 x3

Figure 2.2: A typical profile ρ(x, t) in the Burgers-Lévy case.

We have positive linear drift and downward jumps. The jumps are shocks
for the PDE, and their positions have been marked xi. The graph consists
of a number of line segments, and the x-intercepts of the corresponding
lines have been marked ai.

to advance, the (common) slope of the line segments decreases, and the shocks move ac-
cording to their Rankine-Hugoniot velocities [39]. Straightforward algebra shows that the
shocks xi move at constant velocities between collisions, a fact that has been observed many
times [46, 47, 77]. Furthermore, while the slopes decrease and the endpoints move, the lines
whose segments make up ρ(·, t) have x-intercepts ai that are unchanging, except for simple
disappearance when two shocks collide. To a given shock xi we can associate a “mass”
mi = ai − ai−1; an equivalent measurement could be obtained from the difference of the
left- and right-limits of ρ at the shock, but this difference is not constant in time and a
time-dependent rescaling (albeit a simple one) would need to be applied.

Fix some time t and suppose that c(t) is the current slope. Then ẋi is the average of the
left- and right-limits of ρ at xi, namely

ẋi(t) =
c(t)(xi(t)− ai−1) + c(t)(xi(t)− ai)

2
= c(t)

(
xi(t)−

ai−1 + ai
2

)
= c(t)(xi(t)− (m0 + · · ·+mi−1 +mi/2)).

(2.27)

Recalling that the velocities are constant between collisions, we can evaluate this at time 0
and then look at the relative velocity between two neighboring particles:

ẋi(t)− ẋi−1(t) = c(0)

[
(xi(0)− xi−1(0))− mi +mi−1

2

]
. (2.28)

We see that the position independent portion of the relative velocity is proportional to the
sum of the masses. If the dynamics have a mean field description (and they do), the collision
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rate should depend only on this sum and some sort of average of the distances between
shocks. When collisions occur, the particles stick together, forming a new particle with mass
mi−1 +mi. The surprise, then, is that there is a mean field description, not which mean field
description would apply.

Remark. Though not necessarily relevant for the moment, we note for later use (as have
many others, including [77]) an additional feature of the particle system above, because it
further builds the case that this is a natural object of study: momentum is conserved across
collisions.

2.2 Beyond 1
2
p2

It is natural to wonder whether this evolution through Markov processes with simple sta-
tistical descriptions is a miracle confined to the Burgers-Lévy case, or a more general phe-
nomenon. Extending the results of [15] beyond the Burgers case H(p) = 1

2
p2 is a challenge.

A different particular case, corresponding to L(q) = H∗(q) = |q|, is a problem of determining
Lipschitz minorants, and has been investigated by Abramson and Evans [1]. From the PDE
perspective this is not as natural, since H∗(q) = |q| corresponds to

H(p) = +∞1(|p| > 1), (2.29)

i.e. H(p) takes the value 0 on [−1,+1] and is equal to +∞ elsewhere. So [1], while very
interesting from a convex analysis and stochastic processes perspective, has a specialized
structure which is rather different from those cases we will consider.

The biggest step toward understanding the problem for a wide class of H is found in a
paper of Menon and Srinivasan [78]. Here it is shown that when the initial condition ρ(·, 0) is
a spectrally negative Markov process, the process y(·, t), and hence ρ(·, t), remain Markovian
for fixed t > 0, the latter again being spectrally negative. The argument is adapted from
that of [15] and both use the notion of splitting times due to Getoor [50] to verify the
Markov property according to its definition. In the Burgers-Lévy case, the independence and
homogeneity of the increments can be shown to survive, from which additional regularity is
immediate using standard results about Lévy processes [65]. As the authors of [78] point out,
without these properties it is not clear whether a Feller process initial condition leads to a
Feller process in x at later times. Nonetheless, [78] presents a very interesting conjecture
for the evolution of the generator of ρ(·, t), which has a remarkably nice form and follows
from multiple (nonrigorous, but persuasive) calculations. The generator A of a stationary,
spectrally negative Feller process acts on test functions J ∈ C1

c (R) by

(AJ)(y) = b(y)J ′(y) +

∫ y

−∞
(J(z)− J(y)) f(y, dz) (2.30)

where b(y) characterizes the drift and f(y, ·) describes the law of the jumps. If we allow b
and f to depend on t, we have a family of generators. The conjecture of [78] is that the
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evolution of the generator A for ρ(·, t) is given by the Lax equation

Ȧ = [A,B] = AB − BA (2.31)

for B which acts on test functions J by

(BJ)(y) = −H ′(y)b(y)J ′(y)−
∫ y

−∞
H[y, z](J(z)− J(y)) f(y, dz). (2.32)

Again we have suppressed the time dependence of b and f in the notation, and H[y, z] =
(y − z)−1(H(y)−H(z)) is the divided difference of the flux H through y and z.

Establishing this result rigorously in the generality conjectured [78] remains an open
problem. Menon has been working on the problem from an integrable systems perspective
[75], and has most recently in 2012 published an analysis of what he calls the Markov N-
wave model, which corresponds to an exact3 discretization where ρ is monotone and takes
only finitely many values. In this case, the generators A and B can be written in terms
of matrices and have nice algebraic properties. In the next chapter, we discuss the present
author’s efforts, which like [75] considers the piecewise-constant, monotone case, but the
requirement that ρ takes only finitely many values is relaxed, and the approach is somewhat
different.

3Here ‘exact’ means that, though discrete, the model concerns an exact (rather than approximate)
solution to the scalar conservation law.
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Chapter 3

Scalar conservation laws and random
monotone initial data

3.1 Preliminaries

We begin an investigation of the scalar conservation law with an initial condition ρ(x) which
is a monotone pure-jump Markov process, with rate kernel f(ρ−; dρ+), started at 0 when
x = 0. We consider the one-sided process, extending ρ(x) = 0 for x < 0, though the
two-sided case should be substantially similar. To ease a notational burden and work with
primarily positive quantities, we deviate slightly from the PDE of the previous chapter, and
consider the initial value problem{

ρt = H(ρ)x (x, t) ∈ R× (0,∞)

ρ = ρ (x, t) ∈ R× {0} (3.1)

where the flux H(·) is smooth, convex, and has H ′(0) ≥ 0. (Positivity of H ′(0) permits a
clean statistical description for x ≥ 0 by preventing the zero initial condition for x < 0 from
“entering” at the left. This requirement could be relaxed, at the expense of switching to a
moving frame of reference.) With this sign convention, ρ(x) should be nondecreasing to have
only shocks (possibly including contact discontinuities). Any results derived in this scenario
will translate to the other equation ρ̂t+Ĥ(ρ̂)x = 0 if Ĥ is the reflection of H, Ĥ(p) = H(−p),
and ρ̂ = −ρ.

A realization of ρ(x) has jumps at locations 0 < x1 < x2 < · · · , and assumes values
0 = ρ0 < ρ1 < ρ2 < · · · , according to

ρ(x) =

{
ρ0 x < x1

ρi xi ≤ x < xi+1.
(3.2)

As is usual in continuous-time stochastic processes, we take the right-continuous version
of ρ(x). Figure 3.1 illustrates the situation we have in mind. From the PDE perspective,
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what we have for an initial condition is precisely the gluing together of several cases of the
Riemann problem for this scalar conservation law. Each of the jumps xi of ρ(x) produces
a shock xi(t) in the solution ρ(x, t) for small t > 0. The Rankine-Hugoniot condition gives
their velocities:

ẋi = −H[ρi−1, ρi] = −H(ρi)−H(ρi−1)

ρi − ρi−1

. (3.3)

Here we have used the notation H[ρi−1, ρi] for the first divided difference of H through the
points ρi−1 and ρi. Due to the convexity of H, the sequence {ẋi} is nonincreasing, and the
shocks collide with each other as time advances; when xi(t) = xi+1(t), the two shocks merge
to form a single shock connecting state ρi−1 on the left with ρi+1 on the right. Since ρ(x, t)
is completely determined by (i) the locations of the shocks at time t and (ii) the (constant)
values between them, the evolution described by (3.1) is equivalent to a particle system with
completely inelastic conditions. Our investigation of ρ(x, t) will proceed along these lines.
We seek a description of the law of the stochastic process ρ(·, t) for t > 0.

Our main result, Theorem 3.14, is that under certain hypotheses the solution ρ(x, t)
remains remains a nondecreasing pure-jump Feller process in the x variable, and the evolution
of the jump kernel f(t, ρ−; dρ+) is described by a Smoluchowski-like kinetic equation. The
remainder of this chapter is organized as follows: In Section 3.2 we describe the kinetic
equation and its essential properties. Next, in Section 3.3, we study the evolution under the
scalar conservation law on a bounded spatial interval with an appropriately selected random
boundary condition. Here we deal with an unbounded, but a.s. finite number of particles, and
a dynamics which is smooth except at a discrete set of times makes the analysis tractable.
We continue in Section 3.4 by controlling the speed of propagation for the PDE, and thereby
extend our results to the unbounded system.

3.2 The kinetic equation

Our statistical description of the solution ρ(x, t) will involve a time evolution f(t, ρ−; dρ+)
of the initial rate kernel f(ρ−; dρ+) and the law of ρ(0, t). This evolution is described by
integro-differential equations whose basic properties we investigate in the present section,
beginning with the rate kernel. The relevance of (3.4) (and later (3.28)) will be apparent
from its use in Section 3.3, but compare with [78, eq. (30)] for additional motivation.

Consider first the initial value problem
ft(t, ρ−; dρ+) =

∫
f(t, ρ−; dρ∗)f(t, ρ∗; dρ+)(H[ρ∗, ρ+]−H[ρ−, ρ∗])

− f(t, ρ−; dρ+)

∫
(f(t, ρ+; dρ∗)H[ρ+, ρ∗]− f(t, ρ−; dρ∗)H[ρ−, ρ∗])

f(0, ρ−; dρ+) = f(ρ−; dρ+),

(3.4)

where the absence of ρ∗ and presence of ρ± on the left-hand side should be taken to mean
that the integration on the right-hand side is over ρ∗. The primary goal for this section
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Figure 3.1: A monotone pure-jump initial condition for SCL.

The initial conditions ρ(x) generated by the sort of Markov process we
consider can be parametrized by sequences of heights (ρi) and shock po-
sitions (xi). A similar picture persists for the solution ρ(x, t) at later
times.

is to show that we have existence and uniqueness for this problem, suitably interpreted,
under various assumptions on f and H. We have been guided by the treatment [87] of more
standard Smoluchowski equations. Our present results concern the case where the range
heights ρ we see are trapped in a bounded interval [0, P ]. We might equivalently restrict
ourselves to Hamiltonians H which have H ′ bounded, but we have selected the former, in
hopes that this can be used as a stepping stone to the unbounded case in future work.

Definition 3.1. For T > 0 and P > 0, write MP for the class of finite signed regular
Borel measures on [0, P ], and M+

P for its nonnegative subset. Let KP and KTP denote the
class of increasing, uniformly bounded, regular signed kernels from [0, P ] and [0, T ]× [0, P ],
respectively, to [0, P ]. That is, f(t, ρ−; dρ+) ∈ KTP if
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(i) the mapping
[0, T ]× [0, P ]→MP

(t, ρ−) 7→ f(t, ρ−; ·) (3.5)

is measurable,

(ii) for all (t, ρ−) with ρ− < P , the measure f(t, ρ−; dρ+) is supported1 on [ρ−, P ] with

f(t, ρ−; {ρ−, P}) = 0 (3.6)

so that f describes only genuine changes while avoiding the absorbing state P , and

(iii) the total variation of the measures are uniformly bounded over the parameters of the
kernel:

‖f‖ = sup
t∈[0,T ]
ρ−∈[0,P ]

‖f(t, ρ−; dρ+)‖TV <∞. (3.7)

Likewise let K+
P and K+

TP denote the subsets of these respective spaces of kernels taking
values exclusively in M+

P . Note that KP and KTP are Banach spaces when equipped with
the norm (3.7).

To characterize the time evolution of f(t, ρ−; dρ+), we define an operator Lκ mapping
kernels g ∈ K+

P to Lκg ∈ KP defined by:

(Lκg)(ρ−; dρ+) =

∫
g(ρ−; dρ∗)g(ρ∗; dρ+)(H[ρ∗, ρ+]−H[ρ−, ρ∗])

− g(ρ−; dρ+)

∫
(g(ρ+; dρ∗)H[ρ+, ρ∗]− g(ρ−; dρ∗)H[ρ−, ρ∗]). (3.8)

More precisely, in the first line the kernels g(ρ−; dρ∗) and g(ρ∗; dρ+) are combined2 to give a
kernel from ρ− to (ρ∗, ρ+), which is multiplied by a continuous function of (ρ−, ρ∗, ρ+), and
then ρ∗ is integrated out. In the second line, the integral yields a measurable function of
(ρ−, ρ+), and the kernel is multiplied by this function. The map extends to send K+

TP → KTP
acting according to (3.8) for each time t.

Definition 3.2. We say that f(t, ρ−; dρ+) ∈ K+
TP is a local solution of (3.4) with initial

condition f ∈ K+
P if for all bounded measurable test functions J defined on [0, P ] we have∫

f(t, ρ−; dρ+)J(ρ+) =

∫
f(ρ−; dρ+)J(ρ+) +

∫ t

0

ds

∫
(Lκf)(s, ρ−; dρ+)J(ρ+) (3.9)

for all (ρ−, t) ∈ [0, P )× [0, T ). If we can extend to T = +∞, we call f a solution.

1We might say that the measure is supported on (ρ−, P ), at the cost of violating the common convention
that the support of a measure is a closed set.

2See [65], which discusses this in the context of probability kernels, denoting the operation by ⊗. Since
we are dealing with finite nonnegative kernels, the same results apply.
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Note first that Lκ produces kernels which could be negative, and that we intend to find
a fixed point of the mapping

f 7→ f +

∫ t

0

ds (Lκf)(s, ·; ·). (3.10)

Since Lκf is signed, such analysis would have to occur in KTP . We might prove signed
versions of the elementary facts about nonnegative kernels (found in [65] in the case of prob-
ability kernels) to make sense of (3.8), but following [87] we need to introduce an auxiliary
problem to show nonnegativity of the solution f in any case. So we introduce the auxil-
iary problem, show that we have existence and uniqueness for this, and use it to produce
a solution to (3.9) in such a way that nonnegativity is immediate. For g+ ∈ K+

P and θ a
nonnegative bounded measurable function on [0, P ], define Lκ+(g+, θ) by

Lκ+(g+, θ)(ρ−; dρ+) =

∫
g+(ρ−; dρ∗)g

+(ρ∗; dρ+)e−θ(ρ∗)(H[ρ∗, ρ+]−H[ρ−, ρ∗])

+ g+(ρ−; dρ+)

∫
g+(ρ−; dρ∗)e

−θ(ρ∗)H[ρ−, ρ∗]. (3.11)

As before, this extends naturally to K+
TP and functions θ of both time and ρ. Consider now

the system 
f+(t, ρ−; dρ+) = f(ρ−; dρ+) +

∫ t

0

dsLκ+(f+, θ)(s, ρ−; dρ+)

θ(t, ρ+) =

∫ t

0

ds f+(s, ρ+; dρ∗)e
−θ(t,ρ∗)H[ρ+, ρ∗]

(3.12)

One observes formally that if (f+, θ) solves (3.12) then f = e−θf+ solves (3.4). We study
first (3.12), and then demonstrate rigorously that f = e−θf+ is a solution to the original
problem.

Lemma 3.3. Suppose that f(ρ−; dρ+) ∈ K+
P . Then there exists T > 0 such that (3.12) has

a unique local solution (f+, θ) with f+ ∈ K+
TP and θ bounded, measurable, and nonnegative.

The proof is exactly the Picard-Lindelöf Theorem [27]; we include the details in part to
see explicitly the dependence of T on f .

Proof. Let T > 0 be finite, whose value we set later. We use contraction mapping with
distance determined by the norm

‖(f+, θ)‖ = ‖f+‖+ ‖θ‖∞. (3.13)

Note that K+
TP and the space of bounded measurable nonpositive functions are both complete

under their respective norms, hence the Cartesian product remains complete with the metric
induced by (3.13). Also, the mapping

Ψ(f+, θ) =

(
f +

∫ t

0

dsLκ+(f+, θ) ,

∫ t

0

ds f+e−θH[·]
)

(3.14)
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determined by the right-hand side of (3.12) maps this space to itself. In particular, there is
no question about positivity since Lκ+ only adds positive measures.

Fix pairs (f 1, θ1) and (f 2, θ2). A straightforward computation bounds the difference
‖Ψ(f 1, θ1)−Ψ(f 2, θ2)‖ by

2TH ′(P )‖f 1 − f 2‖(‖f 1‖+ ‖f 2‖)︸ ︷︷ ︸
(I)

+TH ′(P )(‖f 1‖ ‖θ1 − θ2‖∞ + ‖f 1 − f 2‖)︸ ︷︷ ︸
(II)

= TH ′(P )
[
‖f 1 − f 2‖(1 + 2‖f 1‖+ 2‖f 2‖) + ‖f 1‖ ‖θ1 − θ2‖∞

]
≤ TH ′(P )‖(f 1, θ1)− (f 2, θ2)‖(1 + 2‖f 1‖+ 2‖f 2‖).

(3.15)

To give the reader some idea about the details of the computation we have labeled the
portions of the above bound that come from (I) the difference in the f -component and (II)
the θ-component. Note in particular that since θ1, θ2 are nonnegative the exponentials are
quite harmless. Similarly,

‖Ψ(f, θ)− (f, 0)‖ ≤ TH ′(P )‖f‖(1 + 2‖f‖). (3.16)

Restricting to the ball of radius 1 around (f, 0) we see that the range of Ψ is contained
within this same ball so long as

T < T1 = [H ′(P )(‖f‖+ 1)(2‖f‖+ 3)]−1, (3.17)

and Ψ is a strict contraction here if

T < T2 = [H ′(P )(4‖f‖+ 5)]−1. (3.18)

Take T = 1
2

min(T1, T2) > 0 and apply the Banach fixed point theorem to get a local solution
(f+, θ) to (3.12).

Note that we have neglected for the moment to check the properties that f+ is increasing
with no mass at P for ρ− < P ; we return to this in Corollary 3.5.

To produce the solution to (3.4) from f+ and θ, we need to justify differentiation of f+

paired with a differentiable function of t. The following is adapted from [87].

Lemma 3.4. Suppose that J(t, ρ+) is a bounded measurable function having bounded partial
derivative Jt for 0 ≤ t ≤ T , where a local solution (f+, θ) to (3.12) exists up to time T .
Then

∂t

∫
f+(t, ρ−; dρ+)J(t, ρ+) =

∫
Lκ+(f+, θ)(t, ρ−; dρ+)J(t, ρ+) +

∫
f+(t, ρ−; dρ+)Jt(t, ρ+).

(3.19)

Proof. The argument is identical to that of [87]. Namely, choose t ∈ (0, T ), and for positive
integers n and times s ∈ [0, t] write

bscn =
t

n

⌊ns
t

⌋
and dsen =

t

n

⌈ns
t

⌉
. (3.20)
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Note that the discretization has been chosen so that btcn = dten = t. Then, since (f+, θ)

solve (3.12) on each time interval [ t(k−1)
n

, tk
n

], we have:∫
f+(t, ρ−; dρ+)J(t, ρ+)−

∫
f(ρ−; dρ+)J(0, ρ+)

=

∫ t

0

ds
(
f+(bscn, ρ−; dρ+)Jt(s, ρ+) + Lκ+(f+, θ)(s, ρ−; dρ+)J(dsen, ρ+)

)
. (3.21)

Letting n→∞ and using bounded convergence, the result follows.

Corollary 3.5. The kinetic equation (3.4) has a unique solution, globally in time, in the
sense of Definition 3.2, given by f = e−θf+. Also, if

λ(ρ−) =

∫
f(ρ−; dρ+) (3.22)

is a constant λ(ρ−) = λ that does not depend on ρ− ∈ [0, P ), then

λ(t, ρ−) =

∫
f(t, ρ−; dρ+) = λ (3.23)

for all t ∈ [0, T ], ρ− ∈ [0, P ).

Proof. Note first that if we define f to be e−θf+, then f ∈ K+
TP . In light of Lemma 3.4, for

any test function J(ρ+) we find that

∂t

∫
f+(t, ρ−; dρ+)e−θ(t,ρ+)J(ρ+)

=

∫
Lκ+(f+, θ)(t, ρ−; dρ+)e−θ(t,ρ+)J(ρ+)−

∫
f+(t, ρ−; dρ+)e−θ(t,ρ+)θt(t, ρ+)J(ρ+). (3.24)

The above is in differential form for brevity, but is to be understood in the integral sense.
Writing f for e−θf+ everywhere it appears above and recalling θt from (3.12), it follows that
f is a local solution of (3.4) according to Definition 3.2 up to the time T of existence for
(f+, θ).

For uniqueness, let f̂ be any solution of (3.4). For this, define

θ̂(t, ρ+) =

∫
f̂(t, ρ+; dρ∗)H[ρ+, ρ∗]. (3.25)

Then, using Lemma 3.4, we see that (eθ̂f̂ , θ̂) solves (3.12), but here we have uniqueness, and

eθ̂f̂ = f+. It follows immediately that f̂ = f .
For any fixed ρ− < P , we can choose J(ρ+) = 1(ρ+ ≤ ρ−) + 1(ρ+ = P ). By assump-

tion we have
∫
f(ρ−; dρ+)J(ρ+) = 0 for the initial condition f , and for any g ∈ K+

P with
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∫
g(ρ−; dρ+)J(ρ+) = 0 it follows

∫
(Lκg)(ρ−; dρ+)J(ρ+) = 0. A fairly obvious Gronwall

argument, like that which follows, establishes that
∫
f(t, ρ−; dρ+)J(ρ+) = 0.

To get the global existence in time, we first prove the second claim: pair the solution f
with the test function J(ρ+) identically equal to 1 for ρ+ ∈ [0, P ]. Then, since f is a solution,
for all t ∈ [0, T ] we find that

λ(t, ρ−)− λ =

∫ t

0

ds

∫
(Lκf)(s, ρ−; dρ+)

=

∫ t

0

ds

∫
f(s, ρ−; dρ∗)H[ρ−, ρ∗](λ(s, ρ−)− λ(s, ρ∗)).

(3.26)

Note that when integrated out over ρ+, portions of (3.8) cancel. Clearly λ(t, ρ−) = λ is a
solution; the question is uniqueness. Given another solution λ̂, we find that

sup
ρ−

|λ̂(t, ρ−)− λ| ≤
∫ t

0

ds 2‖f‖H ′(P ) sup
ρ−

|λ̂(s, ρ−)− λ|. (3.27)

Appealing to Gronwall’s inequality, (3.26) has a unique solution.
We now extend our local solution to all positive times. In the case where λ(ρ−) is

constant, we have also ‖f(T, ·; ·)‖ = ‖f‖. Recalling that in Lemma 3.3 that T depends on
H ′(P ) and ‖f‖ only, we see that taking f(T, ·; ·) as a new initial condition gives a solution
for times t ∈ [T, 2T ], and extending in this matter gives a solution for all t ≥ 0.

We now turn to h(t; dρ0), the probability kernel from t→ ρ0 we will later find describes
the law of ρ(0, t). For f a local solution to (3.4), considerht(t; dρ0) =

∫
h(t; dρ∗)f(t, ρ∗; dρ0)H[ρ∗, ρ0]− h(t; dρ0)

∫
f(t, ρ0; dρ∗)H[ρ0, ρ∗]

h(0; dρ0) = δ0(dρ0),

(3.28)

where, following the same convention as (3.4), the integration is implicitly over ρ∗ only,
and δ0(·) denotes the point-mass at the origin. Our treatment of h similar to that of f ,
but is simplified somewhat because (3.28) is linear and the parameter space for the kernel
h consists only of the time variable. The evolution specified above corresponds to a time-
inhomogeneous generator L0 acting on nonnegative measures g(dρ0), namely L0g ∈ MP is
given by

(L0g)(t; dρ0) =

∫
g(dρ∗)f(t, ρ∗; dρ0)H[ρ∗, ρ0]− g(dρ0)

∫
f(t, ρ0; dρ∗)H[ρ∗, ρ0]. (3.29)

In the first term the measure g and the kernel f are combined to give a kernel from t →
(ρ∗, ρ0), this is multiplied by a continuous function, and then ρ∗ is integrated out. In the
second, the measure g is multiplied by a bounded measurable function of (t, ρ0). Following
Definition 3.1, let us write KT for the class of uniformly bounded, regular signed kernels
from [0, T ] to [0, P ]. (We have no monotonicity requirements here, as the parameter space
includes only time, not heights ρ.) We extend L0 to act on kernels K+

T in the obvious way.



CHAPTER 3. SCL AND RANDOM MONOTONE INITIAL DATA 23

Definition 3.6. We say that h(t; dρ0) ∈ K+
T is a local solution of (3.28) with initial condition

δ0 if for all bounded measurable test functions J defined on [0, P ] we have∫
h(t; dρ0)J(ρ0) = J(0) +

∫ t

0

ds

∫
(L0h)(t; dρ0)J(ρ0) (3.30)

for all t ∈ [0, T ). If T = +∞, we call h a solution.

As before we require nonnegativity of the solution, and obtain it in the same manner,
switching to an auxiliary problem. Define a generator L0+ acting on g(dρ0) ∈M+

P according
to

(L0+g)(t; dρ0) =

∫
g(dρ∗)f(t, ρ∗; dρ0)H[ρ∗, ρ0] (3.31)

and a function

ζ(t, ρ0) =

∫ t

0

ds

∫
f(s, ρ0; dρ∗)H[ρ0, ρ∗]. (3.32)

Proposition 3.7. Suppose f satisfies the hypotheses stated earlier, and as such (3.4) has a
solution f defined globally in time.

(i) For each T > 0, the equation

h+(t, dρ0) = δ0(dρ0) +

∫ t

0

ds (L0+h+)(s; dρ0) (3.33)

has a unique solution h+ ∈ K+
T .

(ii) h(t, dρ0) = e−ζ(t,ρ0)h+(t, dρ+) is the unique solution in K+
T to (3.28).

(iii) For all 0 ≤ t ≤ T , h(t, ·) is a probability measure.

(iv) The solution h exists globally in time.

We sketch the proof for completeness, but it is substantially similar (and easier) than the
case of f described earlier, and the reader will find no surprises here.

Proof. Define Ψ on K+
T to be the right-hand side of (3.33), and note that for h1, h2 ∈ K+

T we
have

‖Ψ(h1)−Ψ(h2)‖ ≤ TλH ′(P ). (3.34)

In particular this holds with h2 = δ0. Choosing T = 1/(2λH ′(P )) > 0, we find that Ψ is
a strict contraction the unit ball in K+

T around δ0(dρ0), and thus has a unique fixed point
h+ ∈ K+

T .
Using the same technique as Lemma 3.4, differentiation of e−ζh+ with respect to t is

justified, and h = e−ζh+ ∈ K+
T is the unique solution of (3.28) on [0, T ]. To see that the

total mass is conserved, integrate against J(ρ0) = 1 to find ∂t
∫
h(t; dρ0) = 0. Repeating the

contraction argument starting from h(T ; dρ0), we can extend to [T, 2T ], and so on.
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Figure 3.2: Alternative bounded approximations for f .

Our restriction that all values of ρ lie in [0, P ], (a) above, has the advantage
that it persists in time for the evolution of f . An exact analogue of [87] in
the Smoluchowski case would restrict the mass, corresponding to ρ+− ρ−
in our case, to a bounded interval, as pictured above (b), which would not
persist.

Having constructed kernels f and h solving the above problems, we are positioned to
describe a candidate measure for the solution to the scalar conservation law on a bounded
x-interval with random boundary; this is the subject of the next section. Before moving
on, we pause to give some indication of the manner in which the above results might in
future work be extended to unbounded intervals of ρ. Note first that the natural bounded
approximation for f may not be the same as the Smoluchowski case, where we would bound
the mass, analogous to ρ+ − ρ− here; Figure 3.2 displays the alternatives.

For the sake of discussion, let us suppose that we know the rate at which H grows at
infinity; say H ′′ ≤ c+ for some c+ > 0. Essentially what we would need to handle the
unbounded case, and what are missing presently, are a priori bounds which would allow us
to send P → ∞ and retain control over moments of the increments ρ+ − ρ−. Assuming
quadratic growth of H, we have

H[ρ∗, ρ+]−H[ρ−, ρ∗] = H[ρ−, ρ∗, ρ+](ρ+ − ρ−) =
H ′′(ξ)

2
(ρ+ − ρ−) (3.35)

for some ξ ∈ (ρ−, ρ+) using a standard property of divided differences [58], and first moment
control would bound this expression for the collision rate. Such bounds are easily obtained,
up to some bounded positive time, for the Smoluchowski equation with additive rate, but
this is because the particular algebraic structure allows one to bound the derivative of the
first moment in terms of its square. It is not yet clear how to proceed without this fortuitous
cancellation.
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3.3 Bounded systems

To study the flow of ρt = H(ρ)x for x ∈ [0,+∞) using a particle system approach would
involve infinitely many particles, with potentially infinitely many collisions in any open
interval of times. We prefer to study dynamical systems in finitely many dimensions or,
barring that, something infinite dimensional in a much milder sense. To this end, we consider
in this section a version of our problem for x restricted to the bounded interval [0, L]. The
number of particles we see is random and unbounded, but almost surely finite. A carefully
selected random boundary at x = L mimics the expected effects of the remaining particles,
and we are able to rigorously describe the law of the particle configurations.

Definition 3.8. For L > 0, write ρL and ρL+ for the solutions to{
ρt = H(ρ)x (x, t) ∈ (0, L)× (0,∞)

ρ = ρ (x, t) ∈ (0, L)× {t = 0} (3.36)

with respective boundary conditions ρL(L, t) = ρ(L) for all t and ρL+(L, t) a real-valued
stochastic process with initial state ρ(L) and evolving according to the time-dependent gen-
erator

(LeJ)(t, ρ) =

∫
f(t, ρ; dρ+)H[ρ, ρ+](J(ρ+)− J(ρ)) (3.37)

independently of ρ conditionally given ρ(L).

Intuitively the random boundary should be regarded as a particle source: when ρL+(L, t)
makes a jump, a new particle enters the interval [0, L] at x = L, moving with negative
velocity.

Remark. Above we do not specify a boundary condition at x = 0, and we understand the
value ρ(0, t) to be the right-limit ρ(0+, t). In our situation, all the characteristics and shocks
have nonpositive velocity and flow out of the interval [0, L] through 0. A boundary condition
at x = 0 would thus only be relevant if it were chosen to produce a positive velocity, and we
will not consider that case here.

For any fixed L > 0 and t > 0 our solutions are functions of x which are piecewise
constant with finitely many positive jumps. The profile ρL+(·, t) can be reconstructed from
the value ρ0 of ρL+(0, t), the particles (i.e. jump locations) xi in the interval (0, L], and the
values ρi = ρL+(xi, t) = ρL+(xi+, t). Alternately, we can write ρL+(x, t) as the integral in x
over [0, x] of the measure

ρ0δ0 +
∑
i

(ρi − ρi−1)δxi . (3.38)

Let us write
∆C
n = {(x1, . . . , xn) : 0 < x1 < · · · < xn < C} ⊂ Rn (3.39)
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for C > 0, so that the particle system has configuration space Q =
⊔∞
n=0 ∆L

n ×∆P
n+1. Then

(3.38) gives a mapping
Π : Q→M+

L , (3.40)

and the image of the particle system under Π is all that is required to reconstruct the solution
ρL+(x, t).

Note that in (3.38) particles at position x = 0 can be forgotten if we suitably adjust ρ0; if
two or more particles exist in a single location they may be replaced by a single particle (or
vice versa); and “massless” particles which have the same value ρ on their left and right may
be omitted. The mapping Π therefore induces an equivalence relation ∼ on Q according to

(x1 = 0, x2, . . . , xn; ρ0, . . . , ρn) ∼ (x2, . . . , xn; ρ1, . . . , ρn)

(x1, . . . , xi−1, xi = xi+1, xi+1, . . . , xn; ρ0, . . . , ρn)

∼ (x1, . . . , xi−1, xi+1, . . . , xn; ρ0, . . . , ρi−1, ρi+1, . . . , ρn).

(x1, . . . , xn; ρ0, . . . , ρi−1, ρi−1 = ρi, ρi+1, . . . ρn)

∼ (x1, . . . , xi−1, xi+1, . . . , xn; ρ0, . . . , ρi−1, ρi+1, . . . , ρn).

(3.41)

We begin by translating the PDE dynamics into a flow on a particle configuration space.
For q ∈ Q, write n = n(q) for the nonnegative integer n for which q ∈ ∆L

n ×∆P
n+1, so that

q = (x1, . . . , xn; ρ0, ρ1, . . . , ρn), (3.42)

and define vi = vi(q) for i = 1, . . . , n by

vi =

{
0 if xi = 0

−H[ρ`(i), ρr(i)] if xi > 0,
(3.43)

where l(i), r(i) ∈ {1, . . . , n} are functions of q given by

l(i) = max{j < i : xj < xi} (3.44a)

r(i) = max{j ≥ i : xj = xi}. (3.44b)

Lemma 3.9. Using the notation above, we have the following:

(i) The solution ρL(·, t) of Definition 3.8 is given by

ρL(x, t) =

∫ x

0

Π(qL(t))(dx), (3.45)

where qL(0) = q is the particle representation of the portion of ρ on [0, L], the compo-

nents ρ0, . . . , ρn of qL remain constant in time, and for i = 1, . . . , n, ẋi(t) = vi(q).
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(ii) The evolution of ρL+(·, t) of Definition 3.8 is given by

ρL+(x, t) =

∫ x

0

Π(qL+(t))(dx) (3.46)

where qL+(t) ∈ Q evolves according the same dynamics as qL, but with jumps driven
by the boundary process ρL+(L, t). More precisely, given qL+(0) = q, ρn serves as an
initial condition for the boundary process which jumps at some random times

0 < τ1 < τ2 < · · · (3.47)

to states
ρn < ρn+1 < ρn+2 < · · · . (3.48)

The process qL+(t) evolves according to the dynamics given above for 0 ≤ t < τ1, then

qL+(τ1) = qL+(τ1−) / ρn+1. (3.49)

Here q /ρ+ is the element of ∆L
n+1×∆P

n+2 obtained by adjoining and additional particle
at x = L with height ρ+:

q / ρ+ = (x1, . . . , xn, L; ρ0, ρ1, . . . , ρn, ρ+). (3.50)

We then continue to define qL+(t) for t < τ2, and extend in the same way.

Proof. (i) The dynamics described are the same sticky particle dynamics described in [19,
Prop. 2.2]. Writing mi = ρi − ρi−1, our situation is nearly an exact match for that which
appears in this paper. We briefly sketch the argument.

First, as ρ has a.s. finitely many shocks in the interval [0, L], we have only finitely many
particles initially. When the particles collide their velocities (3.43) change such that these
particles coincide for all later times: on the set of q for which 0 < xi−1 < xi = · · · = xj < xj+1,
we have

vi = · · · = vj = −H[ρi−1, ρj]. (3.51)

Thus the number of collisions is finite, and the dynamics are smooth at all but finitely many
times. Since the solution ρL(·, t) is piecewise constant and nondecreasing, we need only
check that these finitely many shocks have the appropriate Rankine-Hugoniot velocities. As
(3.51) gives the correct speed for shocks consisting of some number of particles inside (0, L),
what remains is particles at x = 0. By our convention we take the solution ρL(x, t) to be
right-continuous in x; as we do not care about the solution for x < 0, the “incorrect” velocity
for particles sitting at x = 0 is irrelevant.

(ii) Follows immediately from (i), since the rate of the boundary process is bounded and
we have up to any time T > 0 a.s. finitely many times τi ≤ T . Between these finitely many
times, the dynamics from (i) correctly describe the time evolution of the solution. At each
τi, add the new particle at x = L, and treat this as a new initial condition.
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We come now to our core result, relating the random dynamical system described above
for the solution to the scalar conservation law to a family of measures defined in terms of
the solutions to the kinetic equations described in the previous section.

Theorem 3.10. The probability kernel µ(t; dq) from times t ∈ [0,+∞) to Q given by

µ(t; dq) =
∞∑
n=0

µL+
n (t; dq) =

∞∑
n=0

e−λL1
∆L

n
(dx)h(t; dρ0)

N∏
j=1

f(t, ρj−1; dρj), (3.52)

where h and f are the solutions to the system (3.4), pushes forward under Π and integration
over [0, x] to give the law of ρL+(x, t).

The proof is conceptually straightforward, but requires some hard analysis; to outline
the argument, we first require some notation.

Definition 3.11. For times s < t, we write φts,Φ
t
s : Q→ Q for the respective deterministic

and random flows on Q indicated by Lemma 3.9, starting at time s and finishing at time
t. So that things are well-defined, for these we follow the convention that given some initial
state q, the particles stick together but do not disappear, i.e. we do not jump from one
representative of q in Q/ ∼ to another.

We note the following properties from Lemma 3.9:

(i) φts = φt−s0 , as the deterministic flow given by the PDE is time-homogeneous, and

(ii) given q = (x1, . . . , xn; ρ0, ρ1, . . . , ρn), there are random times τi with s < τ1 < τ2 < · · ·
and random heights ρn+1 < ρn+2 < · · · depending only on ρn and s so that, if τk ≤ t <
τk+1,

Φt
sq = φtτk(· · · (φτ2τ1((φτ1s q) / ρn+1) / ρn+2) · · · ). (3.53)

In other words, the random flow Φ is a composition of the deterministic flow φ over
several time intervals, punctuated by random particle entries at the boundary x = L.

We now describe the structure of the proof of Theorem 3.10. Fix some time T > 0 and
consider F (t, q) = EG(ΦT

t q) where G takes the form of a Laplace functional

G(q) = exp

(
−
∫

Π(q)(dx)JG(x)

)
= exp

(
−ρ0JG(0)−

n∑
i=1

(ρi − ρi−1)JG(xi)

)
(3.54)

for JG ≥ 0 a bounded, continuous function on [0, L]. We aim to show that∫
µ(t; dq)F (t, q) (3.55)

is constant for 0 ≤ t ≤ T , from which it will follow that∫
µ(0; dq)EG(ΦT

0 q) =

∫
µ(T ; dq)G(q) (3.56)
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for all G of the form in (3.54). Using the standard fact that Laplace functionals completely
determine the law of any random measure [65], this will suffice to show that law of Π(ΦT

0 q)
for q distributed as µ(0; dq) is the pushforward of µ(T ; dq) through Π, and obtain the result.

We might attempt to verify (3.55) by establishing regularity for F (t, q) in t and the
x-components of q. We speculate that it should be possible to do so if J is smooth with
J ′(0) = 0 and we content ourselves to divide n-component of the configuration space into
finitely many regions, each of which corresponds to a definite order of deterministic collisions
in φ. On the other hand, the measures µ(t; dq) enjoy considerable regularity (uniformity, in
fact) in x, and we pursue instead an argument along these lines. Here continuity of F (t, q)
in t will suffice.

Lemma 3.12. With G in the form of (3.54), F (t, q) = EG(ΦT
t q) is a bounded function

which is uniformly continuous in t uniformly in q.

Proof. Boundedness of G is obvious from its definition as a Laplace functional. We first
show continuity of G(φt0q) at t = 0: if Qn 3 q = (x1, . . . , xn; ρ0, . . . , ρn), then flowing from
time 0 to time t, the values ρi are unchanged and the xi change by an amount bounded by
tH ′(P ). Since JG ∈ C([0, L]), JG is uniformly continuous, and so

w(δ) = sup{|JG(x)− JG(y)| : x, y ∈ [0, L], |x− y| ≤ δ} (3.57)

has the property that w(δ)→ 0 as δ → 0+. We have

| logG(φt0q)− logG(q)| ≤
n∑
i=1

(ρi − ρi−1)w(tH ′(P )) ≤ Pw(tH ′(P )). (3.58)

Since the exponential is uniformly continuous for nonpositive arguments, we find that G(φt0q)
is continuous at t = 0 uniformly in q. Write

W (δ) = sup{|G(φt0q)−G(q)| : q ∈ Q, 0 ≤ t ≤ δ}, (3.59)

and observe that W (δ)→ 0 and δ → 0+.
Suppose now that 0 ≤ s < t ≤ T ; we compare EG(ΦT

s q) and EG(φTt q). Write θ = t− s.
We have G(ΦT

s q) = G(ΦT
T−θΦ

T−θ
s q) a.s., coupling the random entry processes on matching

intervals, and
E|G(ΦT

T−θΦ
T−θ
s q)−G(φTT−θΦ

T−θ
s q)| ≤ C1(λ,H ′(P ))θ (3.60)

since the random entries occur at a rate bounded by λH ′(P ), and |G| ≤ 1. Using the time
homogeneity and continuity for the deterministic flow,

E|G(φTT−θΦ
T−θ
s q)−G(ΦT−θ

s q)| ≤ W (θ). (3.61)

So, at the cost of an error bounded by C1(λ,H ′(P ))θ + W (θ), we compare EG(ΦT
t q) with

EG(ΦT−θ
s q) instead. Now the configuration q is flowed on intervals of equal length, with

random entry rates that have been shifted in time.



CHAPTER 3. SCL AND RANDOM MONOTONE INITIAL DATA 30

The random entry rate is given by f(r, ρn; dρ+)H[ρn, ρ+] and f is TV-continuous in r;
we have

‖f(r, ρn; dρ+)− f(r − θ, ρn; dρ+)‖ =

∥∥∥∥∫ r

r−θ
dτ (Lκf)(τ, ρn; dρ+)

∥∥∥∥
≤ C2(λ,H ′(P ))θ.

(3.62)

Let us define three kernels for r ∈ [0, T − t] according to

f̂(r, ρ−; dρ+) = f(s+ r, ρ−; dρ+) ∧ f(t+ r, ρ−; dρ+)

f s(r, ρ−; dρ+) = f(s+ r, ρ−; dρ+)− f̂(r, ρ−; dρ+)

f t(r, ρ−; dρ+) = f(t+ r, ρ−; dρ+)− f̂(r, ρ−; dρ+),

(3.63)

where the minimum (∧) of two measures is defined as usual by choosing a third measure with
which the former two are absolutely continuous, and taking the pointwise minimum of their
Radon-Nikodym derivatives. That this extends measurably to the parametric case (i.e. in-
volving kernels) is immediate from a parametric version of the Radon-Nikodym theorem [88,
Thm. 2.3].

Using the above we construct a coupled random entry process for times r ∈ [0, T − t],
namely let (es, et)(r) be the pure-jump Markov process started at (ρn, ρn) from q and evolving
according to the generator Lce acting on bounded measurable functions J(y, z) defined on
[0, P ]2 according to

(LceJ)(r, y, z) = 1(y = z)

∫
f̂(r, y; dρ+)H[y, ρ+]{J(ρ+, ρ+)− J(y, z)}

+1(y = z)

∫
f s(r, y; dρ+)H[y, ρ+]{J(ρ+, z)− J(y, z)}

+1(y = z)

∫
f t(r, z; dρ+)H[z, ρ+]{J(y, ρ+)− J(y, z)}

+1(y 6= z)

∫
(f̂ + f s)(r, y; dρ+)H[y, ρ+]{J(ρ+, z)− J(y, z)}

+1(y 6= z)

∫
(f̂ + f t)(r, z; dρ+)H[z, ρ+]{J(y, ρ+)− J(y, z)}.

(3.64)

Taking J(y, z) which does not depend on z we find that es(r) for r ∈ [0, T − t] has the same
law as the random boundary for ΦT−θ

s q, and likewise taking J which does not depend on y
we find the et(r) has the same law as the random boundary for ΦT

t q, verifying the coupling.
On the diagonal y = z, the rate at which Lce causes jumps that leave the diagonal (the
second and third lines of (3.64)) is bounded by

C3(λ,H ′(P ))θ, (3.65)

and the probability that such a transition never occurs in a time interval of length T − t is
bounded below by

exp[−C3(λ,H ′(P ))(T − t)θ] ≥ exp[−C3(λ,H ′(P ))Tθ]. (3.66)
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So, coupling the random entry dynamics, we find that ΦT−θ
s q = ΦT

t q with probability at least
exp[−C3(λ,H ′(P ))Tθ]. Putting the above pieces together, we find

|EG(ΦT
s q)− EG(ΦT

t q)|
≤ C4(λ,H ′(P ))(t− s) +W (t− s) + (1− exp(C3(λ,H ′(P ))T (t− s))), (3.67)

and the proof is complete.

Lemma 3.13. For any n ≥ 0 and any 0 ≤ s < t we have

‖µn(t; dq)− µn(s; dq)− (t− s)(L∗µn)(t; dq)‖ = o(t− s) (3.68)

where the norm is total variation and (L∗µn)(t; dq) is defined to be the signed kernel

e−λL1∆L
n
(dx)

[
(L0h)(t; dρ0)

h(t; dρ0)
+

n∑
i=1

(Lκf)(t, ρi−1; dρi)

f(t, ρi−1; dρi)

]
h(t; dρ0)

n∏
j=1

f(t, ρj−1; dρj). (3.69)

The expression for the measure above is to be understood formally; the correct inter-
pretation involves replacement, not division. All of the “divisors” above are present as
factors of h(t; dρ0)

∏n
j=1 f(t, ρj−1; dρj), and the fractions indicate that the appearance of the

denominator in this portion is to be replaced with the indicated numerator.

Proof. Essentially we are verifying the Leibniz rule, but we are unable to find a version of
this to cite for kernels. We first obtain quantitative control over our linear approximations
of f and h. Namely, fix any measurable |J | ≤ 1. We have∫

[f(t, ρ−; dρ+)− f(s, ρ−; dρ+)− (t− s)(Lκf)(t, ρ−; dρ+)]J(ρ+)

=

∫ t

s

dθ [(Lκf)(θ, ρ−; dρ+)− (Lκf)(t, ρ−; dρ+)]J(ρ+). (3.70)

The difference of Lκf at different times can be expressed in terms of f and H again,

(Lκf)(θ, ρ−; dρ+)− (Lκf)(t, ρ−; dρ+)

=

∫ ∫ θ

t

dζ(Lκf)(ζ, ρ−; dρ+)f(θ, ρ∗; dρ+)(H[ρ∗, ρ+]−H[ρ−, ρ∗])

+

∫
f(t, ρ−; dρ∗)

∫ θ

t

dζ(Lκf)(ζ, ρ∗; dρ+)(H[ρ∗, ρ+]−H[ρ−, ρ∗])

−
∫ θ

t

dζ(Lκf)(ζ, ρ−; dρ+)

∫
(f(θ, ρ+; dρ∗)H[ρ+, ρ∗]− f(θ, ρ−; dρ∗)H[ρ−, ρ∗])

− f(t, ρ−; dρ∗)

∫ ∫ θ

t

dζ((Lκf)(ζ, ρ+; dρ∗)H[ρ+, ρ∗]− (Lκf)(ζ, ρ−; dρ∗)H[ρ−, ρ∗]).

(3.71)
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Noting that ‖Lκf‖ ≤ 3λ2H ′(P ), we integrate over ρ+, then ρ∗, and find that (3.70) is
bounded by

9H ′(P )2λ3(t− s)2. (3.72)

Next, for any |J | ≤ 1,∫
[h(t; dρ0)− h(s; dρ0)− (t− s)(L0h)(t; dρ0)]J(ρ0)

=

∫ t

s

dθ[(L0h)(θ; dρ0)− (L0h)(t; dρ0)]J(ρ0), (3.73)

and

(L0h)(θ; dρ0)− (L0h)(t; dρ0) =

∫ ∫ θ

t

dζ(L0h)(ζ, dρ∗)f(θ, ρ∗; dρ0)H[ρ∗, ρ0]

+

∫
h(t; dρ∗)

∫ θ

t

dζ(Lκf)(ζ, ρ∗; dρ0)H[ρ∗, ρ0]

−
∫ θ

t

dζ(L0h)(ζ, dρ0)

∫
f(θ, ρ0; dρ∗)H[ρ0, ρ∗]

− h(t, dρ0)

∫ ∫ θ

t

dζ(Lκf)(ζ, ρ0; dρ∗)H[ρ0, ρ∗].

(3.74)

We have ‖L0h‖ ≤ 2λH ′(P ), so by integrating over ρ0 and then ρ∗ we find (3.73) is bounded
by

5H ′(P )2λ2(t− s)2. (3.75)

Returning to the problem of establishing our Leibniz rule, note that e−λL1∆L
n
(dx) factors

from both µn and L∗µn. It will therefore suffice to obtain a bound on the (ρ0, . . . , ρn)
portion.

We argue by induction. In the case n = 0, we have only the difference in (3.73), and the
result holds. Now suppose that the result holds for case n, and consider n+ 1. Choose as a
test function J(ρ0, . . . , ρn+1), which is measurable and has |J | ≤ 1, and integrate it against∫ [

h(t; dρ0)
n+1∏
j=1

f(t, ρj−1; dρj)− h(s; dρ0)
n+1∏
i=1

f(s, ρj−1; dρj)

]

=

∫
h(t; dρ0)

n∏
j=1

f(t, ρj−1; dρj)[f(t, ρn; dρn+1)− f(s, ρn; dρn+1)]

+

∫ [
h(t; dρ0)

n∏
j=1

f(t, ρj−1; dρj)− h(s; dρ0)
n∏
j=1

f(s, ρj−1; dρj)

]
f(s, ρn; dρn+1).

(3.76)

For each ρ0, . . . , ρn, J(ρ0, . . . , ρn+1) is bounded and measurable in ρn+1, so f(t, ρn; dρn+1)−
f(s, ρn; dρn+1) can be replaced with (t− s)

∫
(Lκf)(t, ρn; dρn+1)J(ρ0, . . . , ρn+1) plus an error
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no larger than 9H ′(P )2λ3(t− s)2, which when integrated over the remaining variables grows
by a factor λn.

In the third line of (3.76), noting that
∫
f(s, ρn; dρn+1)J(ρ0, . . . , ρn+1) is bounded and

measurable in (ρ0, . . . , ρn), we apply the inductive hypothesis, replacing the bracketed dif-
ference by

(t− s)
[

(L0h)(t; dρ0)

h(t; dρ0)
+

n∑
i=1

(Lκf)(t, ρi−1; dρi)

f(t, ρi−1; dρi)

]
h(t; dρ0)

n∏
j=1

f(t, ρj−1; dρj) (3.77)

plus an o(t−s) error. After doing this, again noting J(ρ0, . . . , ρn+1) is measurable in ρn+1 for
each fixed ρ0, . . . , ρn, we replace f(s, ρn; dρn+1) with f(t, ρn; dρn+1) at a cost of 3λ2H ′(P )(t−
s), which gets multiplied by the other factor (t− s).

Adding the modified versions of these two lines of (3.76), we find exactly the ρ0, . . . , ρn+1

portion of L∗µn+1 plus an o(t− s) error.

So that we know what to expect, before proceeding we note that when we sum over i in
(3.69), some of the terms arising from L0 and Lκ cancel. Namely, the bracketed portion of
(3.69) expands as∫

h(t; dρ∗)f(t, ρ∗; dρ0)H[ρ∗, ρ0]

h(t; dρ0)
−
∫
f(t, ρ0; dρ∗)H[ρ0, ρ∗]

+
n∑
i=1

[∫
f(t, ρi−1; dρ∗)f(t, ρ∗; dρi)(H[ρ∗, ρi]−H[ρi−1, ρ∗])

f(t, ρi−1; dρi)

−
∫

(f(t, ρi; dρ∗)H[ρi, ρ∗]− f(t, ρi−1; dρ∗)H[ρi−1, ρ∗])

] (3.78)

The “gain” terms associated with the kinetic equations we leave as they are, but note that
the “loss” terms3 telescope, and the above may be shortened to∫

h(t; dρ∗)f(t, ρ∗; dρ0)H[ρ∗, ρ0]

h(t; dρ0)
−
∫
f(t, ρn; dρ∗)H[ρn, ρ∗]

+
n∑
i=1

∫
f(t, ρi−1; dρ∗)f(t, ρ∗; dρi)(H[ρ∗, ρi]−H[ρi−1, ρ∗])

f(t, ρi−1; dρi)
. (3.79)

Intuitively, when we differentiate the µ(t; dq) part of
∫
µ(t; dq)F (t, q) with respect to t, we

expect to obtain measures like that displayed above. Obtaining something approximating
the negative of this expression from (t− s)−1

∫
µ(t; dq)[F (t, q)−F (s, q)] constitutes the bulk

of the following argument.

3Note that there is no a priori reason that the loss term of Lκf must be negative, so our terminology is
a bit loose here.
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Proof of Theorem 3.10. Consider
∫
µ(t; dq)F (t, q)−

∫
µ(s; dq)F (s, q) for times s and t with

0 < s < t ≤ T :∫
µ(t; dq)[F (t, q)− F (s, q)]︸ ︷︷ ︸

(I)

+

∫
[µ(t; dq)− µ(s; dq)]F (t, q)︸ ︷︷ ︸

(II)

,

−
∫

[µ(t; dq)− µ(s; dq)][F (t, q)− F (s, q)]︸ ︷︷ ︸
(III)

(3.80)

Since F (t, q) is uniformly continuous in t uniformly in q by Lemma 3.12 and µ is a probability
measure, (I) → 0 as t − s → 0. Using Lemma 3.13 and the fact that |F | ≤ 1, (II) → 0 as
t− s→ 0, and in fact∫

µ(t; dq)− µ(s; dq)

t− s F (t, q)→
∫

(L∗µ)(t; dq)F (t, q) (3.81)

as s → t− with t fixed. Using both lemmas, (III) is O((t − s)2). Thus
∫
µ(t; dq)F (t, q)

is continuous in t; we will show additionally that it is differentiable from below in t with
one-sided derivative equal to 0 for all 0 < t < T . In light of (3.81), our task is to show that
−
∫

(L∗µ)(t; dq)F (t, q) approximates (I) up to an o(t− s) error.
Using the Markov property of the random flow Φ, we have a functional identity:

F (s, q) = EG(ΦT
s q) = EG(ΦT

t Φt
sq) = EF (t,Φt

sq). (3.82)

Let q be fixed, and consider the following events, whose union is of full measure for computing
the expectation above:

E0 = {no entry at x = L in (s, t)}
E1 = {at least one entry at x = L in (s, t)} (3.83)

Observe that on E0 we see only the deterministic flow φ over the time interval (s, t):

F (t,Φt
sq)1E0 = F (t, φtsq)1E0 , (3.84)

and this occurs with probability

P(E0) = exp

(
−
∫ t

s

dr

∫
f(r, ρn; dρ+)H[ρn, ρ+]

)
. (3.85)

We prefer an expression evaluating f at only a single time, and Taylor expand the exponential
around zero.∣∣∣∣∫ t

s

dr

∫
f(r, ρn; dρ+)H[ρn, ρ+]− (t− s)

∫
f(t, ρn; dρ+)H[ρn, ρ+]

∣∣∣∣
=

∣∣∣∣∫ t

s

dr

∫ r

t

dr′
∫

(Lκf)(r′, ρn; dρ+)H[ρn, ρ+]

∣∣∣∣ ≤ C1(λ,H ′(P ))(t− s)2, (3.86)
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so that

P(E0) = 1− (t− s)
∫
f(t, ρn; dρ+)H[ρn, ρ+] +O((t− s)2) (3.87)

and by exhaustion

P(E1) = (t− s)
∫
f(t, ρn; dρ+)H[ρn, ρ+] +O((t− s)2), (3.88)

with both errors bounded uniformly over Q. On E1 write τ for the first time a random
entry occurs for Φt

s, and ρn+1 for the new boundary value, noting that the distribution of τ
depends only on q through ρn and that the law of ρn+1 is determined by f(τ, ρn; ·). We have
τ ∈ (s, t) so that

F (t,Φt
sq)1E1 = F (t,Φt

τ ((φ
τ
sq) / ρn+1))1E1 . (3.89)

Since P(E1) = O(t− s), we can afford to make o(1) modifications to this. Using the strong
Markov property for the random boundary at the stopping time τ ,

EF (t,Φt
τ ((φ

τ
sq) / ρn+1))1E1 = E[F (τ, (φτsq) / ρn+1) | E1]1E1 . (3.90)

Write w(δ) for the modulus of continuity of F (t, q) in time, according to Lemma 3.12. Now
τ ∈ (s, t) a.s. on E1, so

|E[F (τ, (φτsq) / ρn+1) | E1]− E[F (t, (φτsq) / ρn+1) | E1]| ≤ w(t− s). (3.91)

Next we modify the distribution from which ρn+1 is selected; at present, ρn+1 is selected
according to the random measure

f(τ, ρn; dρ+)H[ρn, ρ+]∫
f(τ, ρn; dρ+)H[ρn, ρ+]

. (3.92)

Since τ ∈ (s, t) a.s. on E1, the total variation difference

‖f(τ, ρn; dρ+)− f(t, ρn; dρ+)‖ ≤ C2(λ,H ′(P ))(t− s) a.s. (3.93)

Let us write ρ̂n+1 for an independent random variable distributed as f(t, ρn; dρ+)H[ρn, ρ+],
normalized to have unit mass. Then

|E[F (t, (φτsq) / ρn+1) | E1]− E[F (t, (φτsq) / ρ̂n+1) | E1]| ≤ C3(λ,H ′(P ))(t− s). (3.94)

Note that P(E1) cancels with the normalization, up to an O(t − s) error, and that ρ̂n+1 is
independent of E1. So far we have

EF (t,Φt
sq) ≈

(
1− (t− s)

∫
f(t, ρn; dρ+)H[ρn, ρ+]

)
F (t, φtsq)

+ (t− s)
∫
f(t, ρn; dρ∗)H[ρn, ρ∗]E[F (t, (φτsq) / ρ∗) | E1] (3.95)
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x1

x2

L

L

A0

A1

B
velocity

Figure 3.3: Particle flow on the simplex.

The deterministic flow φ is translation by a constant velocity unless this
translation crosses a boundary of ∆L

n . In the case n = 2 pictured above,
points in A0 and A1 hit the boundary faces x1 = 0 and x1 = x2, respec-
tively. The remaining portion of the simplex is mapped to the simplex
minus the set B. Note that we are picturing the projections of A0, A1, B to
the x-variables for some (ρ0, ρ1, ρ2), not the 5-dimensional sets themselves,
and that the sizes of the shaded and hatched sets have been exaggerated
for clarity. As s→ t−, these become very thin sets bordering the faces.

with an error bounded uniformly over q by C4(λ,H ′(P ))[(t − s)2 + (t − s)w(t − s)]. The
only remaining random object in the expectation above is τ , and as we will see shortly, its
distributional properties will be entirely irrelevant, save one: τ ∈ (s, t) a.s. on E1. We
are essentially finished with the random and pointwise aspects of problem; the remaining
analysis concerns the deterministic flow φ and the measure µ.

Fix n, and consider the component Qn = ∆L
n ×∆P

n+1 of Q. The action of φ on elements
q ∈ Qn leaves the ρ-components fixed, and translates the x-components at a constant velocity
until the trajectory reaches the boundary. Let us define some subsets of Qn, using the
notation vi = −H[ρi−1, ρi]:

A0 =
{

(−θv1, x2 − θv2, . . . , xn − θvn; ρ0, . . . , ρn)

: (x2, . . . , xn) ∈ ∆L
n−1, (ρ0, . . . , ρn) ∈ ∆P

n+1, 0 ≤ θ ≤ (t− s) ∧ [−(L− xn)/vn]
}
,
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Ai = {(x1 − θv1, . . . , xi−1 − θvi−1, x̂− θvi, x̂− θvi+1, xi+2 − θvi+2, . . . , xn − θvn; ρ0, . . . , ρn)

: (x1, . . . , xi−1, x̂, xi+2, . . . , xn) ∈ ∆L
n−1, (ρ0, . . . , ρn) ∈ ∆P

n+1,

0 ≤ θ ≤ (t− s) ∧ [−(L− xn)/vn]}
for i = 1, . . . , n− 1, and

B = {q ∈ Qn : xn > L+ (t− s)vn}, U = Qn \
n−1⋃
i=0

Ai, V = Qn \B.

Figure 3.3 illustrates the situation n = 2. Intuitively, we have ∆L
n , an n-dimensional simplex

which has n+ 1 faces. The velocity points outward at n of the faces and inward at the face
xn = L. While flowing over a time interval of length (t − s), all the q in A0, . . . , An−1 will
hit their respective faces and the region B will be emptied. All but O(t− s) of the x-volume
is found in the sets U and V , and in fact

φts(U) = V. (3.96)

The volumes of the x-projections of the sets Ai are easily evaluated, up to O((t − s)2)
error: for A0 we get

(t− s)H[ρ0, ρ1]
Ln−1

(n− 1)!
(3.97)

and for Ai, i = 1, . . . , n− 1,

(t− s)(H[ρi, ρi+1]−H[ρi−1, ρi])
Ln−1

(n− 1)!
. (3.98)

For B we have

(t− s)H[ρn−1, ρn]
Ln−1

(n− 1)!
, (3.99)

and all the errors above are bounded by C5(L, n,H ′(P ))(t − s)2 uniformly over the ρ-
components of q. (To obtain these for Ai, note that the restriction θ ≤ −(L − xn)/vn
is effective for only an O(t− s) fraction of volume of ∆L

n−1, and can thus can be dropped at
the cost of an O((t− s)2) error. Then we are merely calculating the volume of prisms.)

Using (3.95), we compute∫
µn(t; dq)[F (t, q)− EF (t,Φt

sq)]

≈
∫
µn(t; dq)F (t, q)(1B + 1V )(q)

−
∫
µn(t; dq)

(
1− (t− s)

∫
f(t, ρn; dρ+)H[ρn, ρ+]

)
F (t, φtsq)(

∑n−1
i=0 1Ai

+ 1U)(q)

−
∫
µn(t; dq)(t− s)

∫
f(t, ρn; dρ∗)H[ρn, ρ∗]E[F (t, (φτsq) / ρ∗) | E1](

∑n−1
i=0 1Ai

+ 1U)(q)

(3.100)
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with error no greater than C4(λ,H ′(P ))[(t−s)2 +(t−s)w(t−s)] times the mass of µn, which
is e−λL(λL)n/n!. We have

∫
µn(t; dq)F (t, q)1V (q) =

∫
µn(t; dq)F (t, φtsq)1U(q), so these terms

cancel, and everything remaining is O(t− s), either due to an explicit (t− s) factor or due
to O(t − s) volume of sets Ai, B. We identify the leading order behavior of what remains,
term by term.

We can set up an integral over the x-projection of B according to∫ L

L+(t−s)vn
dxn

∫
∆L−xn

n−1

dx1 · · · dxn−1. (3.101)

For any fixed xn in the interval indicated above, let θ = (L− xn)/H[ρn−1, ρn], and note that
for (x1, . . . , xn−1) ∈ ∆L−xn

n−1 we have

(x1, . . . , xn; ρ0, . . . , ρn) = q = φtt−θq̂ = φtt−θ(x1−θv1, . . . , xn−1−θvn−1, L; ρ0, . . . , ρn). (3.102)

Using Lemma 3.12 and the bounded rate of entry, F (t, q) may be replaced with F (t− θ, q̂)
and then with F (t, q̂) at the cost of an error bounded by C6(λ,H ′(P ))(t− s) +w(t− s). For
any fixed (ρ0, . . . , ρn), we then have∫ L

L+(t−s)vn
dxn

∫
∆L−xn

n−1

dx1 · · · dxn−1F (t, q)

≈
∫ L

L+(t−s)vn
dxn

∫
∆L−xn

n−1 −θv
F (t, (x1, . . . , xn−1, L; ρ0, . . . , ρn)) (3.103)

with error bounded by C7(L, n, λ,H ′(P ))[(t−s)2+(t−s)w(t−s)]. Note that the containment
∆L−xn
n−1 − θv ⊆ ∆L

n−1 holds, the former occupying all but an O(t− s) fraction, depending on
L, n, and H ′(P ), of the latter. Thus∫

µn(t; dq)F (t, q)1B(q) ≈ (t−s)
∫
µn−1(t; dq)f(t, ρn−1; dρ∗)H[ρn−1, ρ∗]F (t, q/ρ∗) (3.104)

with error bounded by

C8(L, n, λ,H ′(P ))[(t− s)2 + (t− s)w(t− s)]. (3.105)

Remark. That we obtain from the integral on B something which can be approximated an
integral over (x1, . . . , xn−1, L; ρ0, . . . , ρn−1, ρ∗) as in (3.104) is essential. We know that L∗µ
consists of measures which are absolutely continuous in x, and in particular do not have
singular factors like δ(xn = L). This term is destined to cancel with that which arises from
the random entries.

The next terms in (3.100) are

−
∫
µn(t; dq)

(
1− (t− s)

∫
f(t, ρn; dρ+)H[ρn, ρ+]

)
F (t, φtsq)

∑n−1
i=0 1Ai

(q) (3.106)



CHAPTER 3. SCL AND RANDOM MONOTONE INITIAL DATA 39

Since
⋃n−1
i=0 Ai projects to a portion of ∆L

n with volume only O(t− s), we can drop the term
(t− s)

∫
f(t, ρn; dρ+)H[ρn, ρ+] at a cost C9(L, n, λ,H ′(P ))(t− s)2.

We integrate over A0 using the mapping (θ, x2, . . . , xn) 7→ (−θv1, x2− θv2, . . . , xn− θvn),
which is given by a lower-triangular matrix with determinant −v1 = H[ρ0, ρ1]. Here θ
indicates how much time elapses before q with these x-coordinates hits the boundary A0. As
before, using Lemma 3.12 we have

F (t, φtsq) = F (t, φts+θφ
s+θ
s q) ≈ F (s+ θ, φs+θs q) ≈ F (t, φs+θs q), (3.107)

with error bounded by C10(λ,H ′(P ))(t−s)+w(t−s). Our approximation for the A0 portion
of (3.106) is

−
∫
h(t; dρ0)

n∏
i=1

f(t, ρi−1; dρi)H[ρ0, ρ1]

∫
∆L

n−1

dx2 · · · dxn∫ (t−s)∧[−(L−xn)/vn]

0

dθ F (t, φs+θs (−θv1, x2 − θv2, . . . , xn − θvn; ρ0, . . . , ρn)), (3.108)

using our usual velocity shorthand, and by construction φs+θs of the indicted configuration is
(0, x2, . . . , xn; ρ0, . . . , ρn) ∼ (x2, . . . , xn; ρ1, . . . , ρn), so that the integrand above is constant

in θ. On ∆
L+(t−s)vn
n−1 , which occupies all but O(t − s) of the (n − 1)-dimensional volume of

∆L
n−1, the upper limit for θ is t− s. Increasing the “weight” of the ∆L

n−1 \∆
L+(t−s)vn
n−1 portion

to (t − s) results in an O((t − s)2) error depending only on n, L,H ′(P ). The result, after
renaming the variates to write q = (x1, . . . , xn−1; ρ0, . . . , ρn−1), is

−(t− s)e−λL
∫

1∆L
n−1

(dx)h(t; dρ∗)H[ρ∗, ρ0]f(t, ρ∗; dρ0)
n−1∏
i=1

f(t, ρi−1; dρi)F (t, q), (3.109)

and the error in this approximation is bounded by C11(L, n, λ,H ′(P ))[(t−s)2+(t−s)w(t−s)].
The computations for Ai, i = 1, . . . , n − 1, are similar. We use the mapping from

∆
L−(t−s)vn
n−1 × (t− s) given by

(x1, . . . , xi−1, x̂, xi+2, . . . , xn, θ)

7→ (x1 − θv1, . . . , xi−1 − θvi−1, x̂− θvi, x̂− θvi+1, xi+2 − θvi+2, . . . , xn − θvn), (3.110)

which, when flowed by φs+θs , yields the configuration

(x1, . . . , xi−1, x̂, x̂, xi+2, . . . , xn; ρ0, . . . , ρn)

∼ (x1, . . . , xi−1, x̂, xi+2, . . . , xn; ρ0, . . . , ρi−1, ρi+1, . . . , ρn). (3.111)

To transform the integral, observe that the mapping (3.110) is given by a matrix which
breaks into blocks as indicated below, writing Ik for the k × k identity matrix and 0k×` for
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the zero matrix sized k × `: −v
Ii 0i×(n−i−1)

0(n−i)×(i−1) In−i

 . (3.112)

Subtracting row i from row i+1 we obtain a row containing a single nonzero entry, vi−vi+1 =
H[ρi, ρi+1]−H[ρi−1, ρi], and removing the (i+1)st row and nth column of the resulting matrix
leaves In−1. The determinant thus has absolute value H[ρi, ρi+1]−H[ρi−1, ρi]. We therefore
approximate −

∫
µn(t; dq)F (t, φtsq)1Ai

(q) with

− (t− s)e−λL
∫

1∆L
n−1

(dx)h(t; dρ0)
n−1∏
j=1
j 6=i

f(t, ρj−1; dρj)

f(t, ρi−1; dρ∗)f(t, ρ∗; dρi)(H[ρ∗, ρi]−H[ρi−1, ρ∗])F (t, q), (3.113)

again with q = (x1, . . . , xn−1; ρ0, . . . , ρn−1), at an error bounded uniformly over i = 1, . . . , n−
1 by C12(L, n, λ,H ′(P ))[(t− s)2 + (t− s)w(t− s)].

We have already noted that the term involving U from the third line of (3.100) cancels,
but this did not account for the factor (t−s)

∫
F (t, ρn; dρ+)H[ρn, ρ+]. Under the flow φts the

integral over U becomes an integral over V , and the latter has all but an O(t − s) portion
of the volume of Qn. We add

(t− s)
∫
µn(t; dq)f(t, ρn; dρ+)H[ρn, ρ+]F (t, q) (3.114)

to our running total, committing an error bounded by C13(L, n, λ,H ′(P ))(t− s)2.
What remains is the final line of (3.100),

−
∫
µn(t; dq)(t−s)

∫
f(t, ρn; dρ∗)H[ρn, ρ∗]E[F (t, (φτsq)/ρ∗) | E1](

∑n−1
i=0 1Ai

+1U)(q) (3.115)

For any 0 ≤ θ ≤ t − s we might select, φs+θs (U) occupies a portion of Qn which has x-
projected volume which is all but O(t − s) of ∆L

n . Averaging over several possibilities for
θ, as we would in computing the expectation involving τ , does not change this. We thus
approximate (3.115) with

−(t− s)
∫
µn(t; dq)f(t, ρn; dρ∗)H[ρn, ρ∗]F (t, q / ρ∗) (3.116)

at the cost of an error bounded by C14(L, n, λ,H ′(P ))(t− s)2.
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Totaling, we have the following approximation of (t− s)−1
∫
µn(t; dq)[F (t, q)− F (s, q)]:∫

µn−1(t; dq)f(t, ρn−1; dρ∗)H[ρn−1, ρ∗]F (t, q / ρ∗)

− e−λL
∫

1∆L
n−1

(dx)h(t; dρ∗)f(t, ρ∗; dρ0)H[ρ∗, ρ0]
n−1∏
i=1

f(t, ρi−1; dρi)F (t, q)

− e−λL
n−1∑
i=1

1∆L
n−1

(dx)h(t; dρ0)
n−1∏
j=1
j 6=i

f(t, ρj−1; dρj)

× f(t, ρi−1; dρ∗)f(t, ρ∗; dρi)(H[ρ∗, ρi]−H[ρi−1, ρ∗])F (t, q)

+

∫
µn(t; dq)f(t, ρn; dρ+)H[ρn, ρ+]F (t, q)

−
∫
µn(t; dq)f(t, ρn; dρ∗)H[ρn, ρ∗]F (t, q / ρ∗),

(3.117)

with error dominated by C15(L, n, λ,H ′(P ))[(t − s) + w(t − s)]. The above holds for any
n ≥ 1; in the n = 0 case, there are no x-components unless an entry occurs, so F (t,Φt

sq)1E0 =
F (t, q)1E0 . The case of a random entry can be handled very similarly as it is for the general
case above, and (t− s)−1

∫
µ0(t; dq)[F (t, q)− F (s, q)] is approximated by∫

µ0(t; dq)H[ρ0, ρ∗]F (t, q / ρ∗)−
∫
µ0(t; dq)H[ρ0, ρ∗]F (t, q). (3.118)

Fix some N > 0, and add to (3.118) each of (3.117) for n = 1, . . . , N . The entry terms,
involving q / ρ∗, telescope, and only the last survives. Some of the terms involve n par-
ticle configurations and others involve n − 1; we organize the terms to put all n particle
configurations together, obtaining

e−λL
N−1∑
n=0

{∫
1∆L

n
(dx)h(t; dρ0)

n∏
j=1

f(t, ρj−1; dρj)f(t, ρn; dρ+)H[ρn, ρ+]F (t, q)

−
∫

1∆L
n
(dx)h(t; dρ∗)f(t, ρ∗; dρ0)H[ρ∗, ρ0]

n∏
j=1

f(t, ρj−1; dρj)F (t, q)

−
n−1∑
i=1

∫
1∆L

n
(dx)h(t; dρ0)

n∏
j=1
j 6=i

f(t, ρj−1; dρj)

× f(t, ρi−1; dρ∗)f(t, ρ∗; dρi)(H[ρ∗, ρi]−H[ρi−1, ρ∗])F (t, q)

}
−
∫
µN(t; dq)f(t, ρN ; dρ∗)H[ρN , ρ∗]{F (t, q / ρ∗)− F (t, q)}

(3.119)
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We have shown that lims→t−(t− s)−1
∫ ∑N

n=0 µn(t; dq)[F (t, q)− F (s, q)] exists, and is given
by the above expression, for each 0 < t ≤ T . Using Lemma 3.13, we find that the function
of t

ΓN(t) =

∫ N∑
n=0

µn(t; dq)F (t, q) (3.120)

is left-differentiable in t over (0, T ] with one-sided derivative given by γN(t) equal to

e−λL
{∫

1∆L
N

(dx)h(t; dρ0)
N∏
j=1
j 6=i

f(t, ρj−1; dρj)

× f(t, ρi−1; dρ∗)f(t, ρ∗; dρi)(H[ρ∗, ρi]−H[ρi−1, ρ∗])F (t, q)

+

∫
1∆L

N
(dx)h(t; dρ∗)f(t, ρ∗; dρ0)H[ρ∗, ρ0]

N∏
j=1

f(t, ρj−1; dρj)F (t, q)

}

−
∫
µN(t; dq)f(t, ρN ; dρ∗)H[ρN , ρ∗]F (t, q / ρ∗).

(3.121)

We have ΓN(t) and γN(t) both continuous in t, in light of the continuity properties of F (t, q),
h(t; dρ0), and f(t, ρ−; dρ+) in t, so the one-sided differentiability suffices to deduce

ΓN(T )− ΓN(0) =

∫ T

0

dt γN(t). (3.122)

But γN(t) is bounded uniformly in t by

3H ′(P )LNλN+1

(N − 1)!
(3.123)

hence converges uniformly to 0. Thus ΓN(T )− ΓN(0) → 0 as N → ∞. Recalling F (t, q) =
EG(ΦT

t q), we have achieved the goal stated on page 28,∫
µ(0; dq)EG(ΦT

0 (q)) =

∫
µ(T ; dq)G(q), (3.124)

finally completing the proof.

3.4 Comparing ρL+ and ρ

In the last section, we verified the probability distribution µ describes the law of a solution
ρL+(x, t) to ρt = H(ρx) for x ∈ [0, L] with a random boundary at x = L. This result is more
interesting if it can be used to deduce something about the unbounded system which was
the original motivation.
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Theorem 3.14. Let P > 0 be fixed and consider the following situation:

(i) H : [0, P ]→ R is smooth, convex, has nonnegative one-sided derivative at 0 and finite
one-sided derivative at P .

(ii) ρ(x), x ∈ [0,∞), is a nondecreasing, pure-jump Markov process started at 0 and as-
sumes values in [0, P ) according to a rate kernel f(ρ−; dρ+) which has constant jump
rate λ =

∫
f(ρ−; dρ+).

(iii) ρ(x, t) for x ≥ 0, t > 0 is defined to be the unique entropy solution of ρt = H(ρ)x with
initial condition ρ(x, 0) = ρ.

Then for each t > 0, ρ(x, t) is for x ≥ 0 a pure-jump Markov process in x with ρ(0, t)
distributed according to h(t; dρ0) and rate kernel f(t, ρ−; dρ+), where h and f are solutions
to (3.28) and (3.4), respectively.

The proof is now quite short, using only a standard property of this family of PDE and
the result of the previous section.

Proof. Fix any t > 0. The solution ρ(x, t) given by the PDE can be taken to be right-
continuous in x, and we need only verify that ρ(x, t) has the correct finite-dimensional
distributions. To this end, fix any x1, . . . , xk ∈ [0,+∞), and let ` = max{x1, . . . , xk}.
Choose L > ` + tH ′(P ). The process ρ(x) can be restricted to x ∈ [0, L] to give an initial
condition compatible with the system examined in the previous section. Couple ρ(x, t) and
ρL+(x, t) by choosing ρL+(·, 0) = ρ |[0,L], but allow the random boundary ρL+(L, t) to evolve
independently of ρ(x) given ρ(L).

Recall [39] that the scalar conservation law has finite speed of propagation. Our solutions
are bounded in [0, P ], so the speed is bounded by H ′(P ). Since ρ(x, 0) and ρL+(x, 0) are
a.s. equal on [0, L], ρ(x, t) = ρL+(x, t) a.s. for x ∈ [0, L− tH ′(P )] ⊃ [0, `]. Thus

(ρ(x1, t), . . . , ρ(xk, t))
d
= (ρL+(x1, t), . . . , ρ

L+(xk, t)). (3.125)

By Theorem 3.10, the latter distribution is of exactly the sort of process described in the
statement above, only killed deterministically at x = L, which does not alter finite dimen-
sional distributions in locations prior to x = L. The result follows.

We emphasize how the random boundary dynamics have made things considerably easier:
by constructing a bounded system which has exactly the right law, we are relieved of the
burden of determining precisely how wrong the law would be with deterministic boundary.
(In fact, we get some information about this using the above, in that the error does not
propagate immediately throughout the domain.)

Clearly our result is less desirable than a full resolution to the conjecture of [78], but
the techniques involved may admit some generalization beyond the result above, and in the
course of our investigation we have identified other potentially interesting questions. We
discuss this in the next short chapter.
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Chapter 4

More general profiles,
Hamilton-Jacobi PDE

The results of the previous chapter solve a problem in a case which departs from the safety
of the Burgers-Lévy situation, but there remains a considerable gap between Theorem 3.14
and the conjecture of [78]. Here we record some ideas for future work extending this theorem,
and also pose an alternate problem, natural from the Hamilton-Jacobi perspective, which
should have a similar flavor. Note that the impressions given here are largely speculative,
and existence of proofs should not be inferred where none are explicitly presented.

4.1 General profiles

The drawback of Theorem 3.14 which is likely to be addressed soonest is restriction to a
bounded interval of ρ. As indicated earlier in Section 3.2, the missing piece is adequate
control on the kinetic equation. For the unbounded situation, generically we expect to have
blowup in finite time. Consider as an example the Burgers-Lévy case with −c = Eρ(1) < 0.
Applying the law of large numbers [14], we see that ρ(x) is decreasing linearly on average as
x→∞. We integrate this to get u(x) which decreases like − c

2
x2, and consider the Hopf-Lax

formula:

u(x, t) = inf
y

{
u(y) +

(x− y)2

2t

}
. (4.1)

When t > c−1, this infimum fails to exist, but the solution to Burgers’ equation does not
blow up immediately. Nor does the solution to the corresponding (Lévy) kinetic equation:
here we have f(t, dm) where m plays the role of ρ+ − ρ−, which evolves as

ft(t,m) =

∫
m

2
f(t,m′)f(t,m−m′) dm′ − λmf(t,m). (4.2)

(We have switched back to density notation, which expresses the convolution most clearly.)
This is, up to a change in time scale, the usual Smoluchowski coagulation equation with
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additive collision kernel. The time rescaling is nonlinear, and explodes to +∞ in finite time.
Prior to this explosion, moments can be controlled. For example,

∂t

∫
mf(t,m) dm =

(∫
mf(t,m) dm

)2

. (4.3)

This is because the terms involving m2 cancel; this need not be the case when the increments
of the jump measure are not homogeneous, and a näıve attempt to mimic the above gives a
bound for the first moment in terms of second moments, and so on. If suitable conditions
can be identified which guarantee control, we expect that Theorem 3.14 can be extended.
The occurrence of H ′(P ) in the estimates would be replaced by H ′(ρn) or H ′(ρn+1) (the
latter when dealing with random entries), which should cause no disruption provided that
the tails of these distributions are not too fat.

Another potential direction for generalization is to drop the restriction that ρ(x) is piece-
wise constant, while still requiring this to be monotone. One possible approach would ap-
proximate a continuous increase of ρ(x) with many small jumps occurring at a high rate.
Since the PDE enjoys L1-stability properties, we would at later time obtain an approximation
of ρ(x, t); indeed, this is the basis for common numerical techniques (see e.g. [19]).

Finally, it is quite desirable to extend beyond the monotone case. As indicated in Chapter
2, jumps of the wrong sign (positive for ρt + H(ρ)x = 0, negative for ρt = H(ρ)x) destroy
the Markov property, so piecewise constant approximation is likely to run into obstacles. On
the other hand, if a jump with the wrong sign is small, the x-width of the rarefaction wave
grows slowly as t increases. We might therefore seek to verify a weakened Markov property,
where ρ(x, t) is independent of ρ(y, t) for y < x0 conditionally given ρ(x0, t) so long as x−x0

is greater than some lower bound depending on t.
We note that, unfortunately, the Burgers-Lévy case cannot shed much light on this

question. The piecewise linear case with downward jumps is equivalent to the piecewise
constant case with downward jumps by (2.22). If we have concerns about the tractability of
the general problem, it may be useful have another model to study.

4.2 An alternative problem

We may, by integration and differentiation, move back and forth between scalar conserva-
tion laws and Hamilton-Jacobi PDE in one spatial dimension. A piecewise linear profile
with constant slope and downward jumps in the Burgers-Lévy case becomes a continuous,
piecewise parabolic profile for ut + 1

2
u2
x = 0; see Figure 4.1. As we noted briefly in Chapter

2, the x-intercepts of the line segments for Burgers’ equation are unchanging in time. For
Hamilton-Jacobi, this translates to immobile minima for the parabolas. In fact, given such
an initial a profile u(x), we can extract points (ai, ui) so that ai and ui are the abscissa and
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ordinate, respectively, of the ith parabola1, and reconstruct the solution as

u(x, t) = inf
i

{
ui +

(x− ai)2

2(t+ t0)

}
, (4.4)

where t0 > 0 is chosen so that u(x, 0) = u(x) (which amounts to matching second derivatives).
We might even regard −t0 as the initial time, as

u(x, t)→
{
ui if x = ai for some i

+∞ otherwise
(4.5)

as t→ −t0 from above.
The dynamics of the PDE can be translated to a dynamics on the set of points (ai, ui);

these are in one way drastically simpler than the description in terms of shocks, and in
another way more complicated. Let us take t0 = 0 for the situation described above, and
we have initially some collection of points (ai, ui). As time advances, these do not move!
However, after a time, the parabolic pieces flatten so that the parabola corresponding to
(aj, uj), say, is no longer needed to determine the pointwise minimum of all the parabolas.

To have something explicit, we might define thinnings ξ(t) of the point process ξ =
ξ(0) = (ai, ui) which delete from the original set of points those which no longer achieve the
minimum over i of (4.5) for any x. If we begin with a Poisson process ξ(0), unfortunately
ξ(t) will not be Poisson for t > 0. Suppose that ξ is indexed by i so that ai is increasing,
let i < j < k be indices, and assume that (aj, uj) does give the minimum on some segment.
Then, in particular the parabolas i and k would not alone eliminate point j; let us suppose
for a moment that we have only these three. The locations of the shocks (for the derivative)
initially between ai, aj and aj, ak, respectively, are given by

ai + aj
2

+
uj − ui
aj − ai

t and
aj + ak

2
+
uk − uj
ak − aj

t. (4.6)

These collide at time

t =
−1

2u[ai, aj, ak]
(4.7)

if this quantity is positive, and do not collide if this is negative. Here u[ai, aj, ak] is the
second divided difference for the three points,

u[ai, aj, ak] =

uk−uj
ak−aj −

uj−ui
aj−ai

ak − ai
. (4.8)

Consider the case where (4.7) is positive, so that point (aj, uj) is eliminated at time t; this
occurs if and only if (aj, uj) lies above the line connecting (ai, ui) and (ak, uk). Returning to

1Here we mean the minimum of the parabola, and not just the parabolic segment that may appear in
the graph of u.
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x

u

(a1, u1)
(a2, u2)

(a3, u3) (a4, u4)

Figure 4.1: Piecewise parabolic profile for Hamilton-Jacobi.

This is the sort of profile we have for ut + 1
2
u2
x = 0 after integrating a

piecewise linear solution to ρt + ρρx = 0. The locations where the left-
and right-derivatives differ correspond to shocks of ρt + ρρx = 0. As time
progresses the parabolas flatten and some of the pieces disappear, as that
corresponding to (a3, u3) would in the situation depicted above.

the general situation, there may be multiple points between (ai, ui) and (aj, uj), so that there
is no shock determined by the two of these, but nonetheless points i and k would necessarily
eliminate j.

Not wanting to use the word conjecture lightly, we state our hope for the point process
ξ(t): that this is distributed according to a time-dependent Gibbs measure for a grand
canonical ensemble [96] on R2 given by one-particle2 and three-particle potentials only, and
that the three particle potential is a pure exclusion. That is, the potential takes the form
W = W1 + W3 where W1 = W1(t, (a, u)) evolves from W1(0, (a, u)) (which gives the initial
Poisson process) and

W3(t, (a1, u1), (a2, u2), (a3, u3)) = +∞1

(
u[a1, a2, a3] >

−1

2t

)
. (4.9)

2A one-particle potential gives a Poisson point process.
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Note that as t→ 0+, the excluded region recedes to infinity, so that no restriction is imposed,
and that there are no problems associated with ordering because divided differences are
symmetric functions on the points involved.

Note also that there is a natural corresponding question beyond one spatial dimension.
Consider ut + 1

2
|Du|2 = 0, Du representing the gradient in the spatial variables, where now

x ∈ Rn. Parabolas are replaced with paraboloids, and regions where different paraboloids
achieve the minimum are separated by lines. As time approaches zero from above, the regions
where various points achieve the minimum form the Voronoi tessellation [89] of space with
the Euclidean metric and the given set of points (ai). The analogue of a shock collision was
a three-particle event for n = 1; generally we expect that it should involve n + 2, a single
particle to be eliminated and n + 1 others which determine a simplex around the first that
shrinks to zero volume.

The above has all been stated with ut+
1
2
u2
x = 0 in mind, but with some adjustments, we

might ask some of the same questions for ut +H(ux) = 0 or ut +H(Du) = 0. The geometry
may in the end not be as nice as Voronoi diagrams, but one is led to ask the same statistical
questions about the point process determining the solution. For all of the above, is having
a static situation where the points are not moving in time (except for disappearance) worth
dealing with interactions involving three or more points instead of two? This remains to be
seen in future projects.

Lastly, we remark that there may be a class of interesting dynamical systems which
hitherto remains little explored. Using the theorem of [78] or Theorem 3.14, we have a
dynamical system which preserves the family of measures with a Markov property (and the
Feller property, in the second case). If the above suggestion should turn out to be true,
we would have a flow of Gibbs measures (which themselves have a Markov property). Is
there a class of dynamical systems which flow through time-dependent Gibbs measures prior
to equilibrium? That this does not seem to exist as a field of study is likely an indication
that this hypothetical class is not large, but—the hypothetical property being so nice—some
general thought about this seems warranted.
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Chapter 5

The Fukuyama-Lee-Rice model for
mathematicians

Charge density waves are named for a phenomenon observed in certain unusual materials at
low temperature. One usually pictures a metallic object as consisting of atomic nuclei in a
“sea of electrons” [41]. As the electrons move about, the number of electrons in a particular
portion of the object may fluctuate, but these fluctuations are very small relative to the
number of electrons present and do not occur in any regular pattern. On the other hand
a sufficiently cooled sample of niobium triselenide will spontaneously develop observable
periodic spatial variation in electron density due to quantum effects [55, 90].

In an ideal material, these charge density waves would have no preferred phase, but
in reality randomly located impurities tend to pin the waves at particular phases. In the
presence of an external electric field, these phases might change before relaxing to a static
arrangement, or—if the field is strong—continue to move at a nonzero average velocity.
The transition from the pinned regime to the sliding regime is of considerable interest in
condensed matter physics [18, 42, 45, 51].

In this chapter we discuss the Fukuyama-Lee-Rice model [49, 71] for charge density waves.
As Burgers’ equation was discovered to be a poor model for the topic, namely turbulence,
that it was intended to illuminate, it was discovered that this phase-only model for charge
density waves cannot accurately model the physical behavior for which it is named [29].
Nevertheless, the nature of the depinning transition for this model has remained a subject of
interest in theoretical physics, and though it is not particularly well-known in mathematics
circles, the author believes that there are interesting mathematical questions associated with
it.

Before describing the charge density wave model we consider, it is useful to begin with
the Frenkel-Kontorova model, which is better known among mathematicians. We review the
essential features of this to illustrate similarities in the forms of the FLR and FK models,
and also to see the considerable difference in the questions we ask about them. For a more
complete survey on FK, see [17].
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y

yi
yi+1

yi+2

yi−1

yi−2

Figure 5.1: The classic Frenkel-Kontorova model.

The particles (points) are connected by springs (dotted lines) and rest
upon a sinusoidal substrate. The coordinates recorded are the abscissæ of
the particles.

5.1 The Frenkel-Kontorova model

The Frenkel-Kontorova model, in its classic form, dates to the late 1930s with the work of
the Soviet physicists for which it is named [48]. This one-dimensional model can be imagined
as an infinite chain of particles connected by springs and resting on a substrate of varying
height. Figure 5.1 illustrates a finite segment of the situation we have in mind. Despite the
second dimension pictured for conceptual purposes, this is really a one-dimensional model.
A configuration is described completely by the bi-infinite sequence of real numbers y = (yi)
which indicate the positions of the particles along a line. The Hamiltonian for such a system
is

H(y) =
∑
i

W (yi−1, yi) + V (yi), (5.1)

where W and V are potentials which describe the interaction between neighboring particles
and between particles and the substrate, respectively. For generic configurations this sum is
divergent, and so (5.1) must be understood formally. If we are interested in static configu-
rations, namely y such that ∂yiH(y) = 0 for all i ∈ Z, we need only consider two terms at a
time.

The case considered originally by Frenkel and Kontorova involves a Hookean spring with
some equilibrium length µ,

W (y1, y2) =
1

2
(y2 − y1 − µ)2, (5.2)

and a sinusoidal substrate,

V (y) =
K

4π2
(1− cos(2πy)). (5.3)

The parameter K reflects the intensity of the interaction with the substrate, and since all
that matters is the relative strength of W and V , a single parameter is sufficient. The vertical
translation in the definition (5.3) reflects a psychological preference that energy should be a
nonnegative quantity, but nothing more.
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We have at hand a nonlinear system with two competing forms of interaction, and it is
not surprising that interesting structure emerges. Let us fix W in the form of (5.2), and
suppose that we have a static configuration y. For particle i to experience zero net force,
we must have

−∆yi + V ′(yi) = −yi−1 + 2yi − yi+1 + V ′(yi) = 0. (5.4)

We will write ∆yi for the result in position i of applying the discrete Laplace operator,
∆yi = yi−1 − 2yi + yi+1. Introducing discrete momenta p = (pi) defined by pi = yi − yi−1,
we see that if (5.4) is satisfied for all i, then we also have for all i:

yi+1 = yi + pi + V ′(yi) = yi + pi+1

pi+1 = pi + V ′(yi).
(5.5)

Given the values of any two consecutive coordinates of a static configuration y, we can use
this mapping (yi, pi) 7→ (yi+1, pi+1) to construct all remaining coordinates. Mathematically,
understanding the Frenkel-Kontorova model amounts to characterizing the orbits under this
mapping.

For the classic case where W is sinusoidal as in (5.3), the mapping R2 → R2 according
to

yi+1 = yi + pi+1

pi+1 = pi +
K

2π
sin 2πyi

(5.6)

is known1 as the standard map. It descends, modulo 1 in the y variable, to a mapping on the
cylinder S1×R which is an area preserving twist map, an object studied first by Poincaré [91]
in his work on celestial mechanics. For a survey with far greater depth than we will pursue
here and more generalize results, see [53]. The “area preserving” portion of the terminology
is readily verified from (5.6), and the “twist” indicates that yi+1 is a function of yi and pi
which depends in a monotone way on pi.

In the degenerate case where K = 0 the mapping has the nicest properties, but only
because this case is completely boring. For any p ∈ R, the circle S1 × {p} is invariant, and
the restriction of the standard map to each such circle is a simple rotation. But when K > 0,
the structure is far more interesting. For very small K KAM theory [4, 69, 81] guarantees
that there remain uncountably many invariant (topological) circles. On the other hand,
when K > 4

3
, it is known that no invariant circles can survive [53, 74]. Nontrivial invariant

sets do remain, however: this is the theory of Aubry and Mather [6, 73], recounted with
additional references in [10]. Under certain assumptions on the potentials V and W of (5.1),
one can show, as in [10] and the references contained within, that

(i) The lifted twist map on R2 has orbits of all rotation numbers ρ ∈ R, the latter defined
by

ρ = ρ(y) = lim
m→+∞
n→−∞

ym − yn
m− n (5.7)

1in the most arrogant case of mathematical nomenclature known to the author
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when this limit exists.

(ii) For every irrational rotation number ρ there is an invariant set contained in the graph
of a Lipschitz function p = f(y). Call this a Mather set.

(iii) The recurrent subset of a Mather set, the smallest (nonempty) closed invariant subset,
when projected onto its y-coordinate modulo 1 gives either a Cantor set or the full
circle S1.

In the present context these results are less important than the techniques which produce
them.

Call a configuration y a global minimizer if it minimizes the energy H(·) over all con-
figurations y′ which differ from y in only finitely many indices. More precisely, for any
configuration y′ such that there exist indices i1 < i2 so that y′i = yi for all i ≤ i1 and all
i ≥ i2, we have

i2∑
i=i1

W (yi−1, yi) + V (yi) ≤
i2∑
i=i1

W (y′i−1, y
′
i) + V (y′i). (5.8)

It is apparent immediately that all global minimizers are static (i.e. the particles experience
zero net force), and therefore are the y-coordinates of orbits under the corresponding twist
map. Mathematically and physically, one would expect that this extra variational structure—
minimizing the energy—should produce configurations with nicer properties, such as the
following. One learns [10] that the set of global minimizers with given irrational rotation
number is totally ordered, i.e. if y1 6= y2 are two such configurations, then y1

i < y2
i for all i

or y1
i > y2

i for all i. Such considerations lead to the results listed above.
Particularly on the physics side, there are other relevant questions related to energy

minimization. Given values for K and µ one can characterize the ground states, which are
global minimizers which achieve the smallest possible average energy per particle given the
aforementioned parameters. See [5, 6] for results along these lines.

5.2 Charge density waves

We now introduce the Fukuyama-Lee-Rice [49, 71] model for charge density waves. Rather
than carrying the burden of the quantum phenomenon which was the original motivation,
we switch now to a description both idealized and classical. Namely, consider a system
consisting of a one-dimensional bi-infinite chain of particles connected by springs. As in
the FK model, each particle will feel the influence of a periodic potential, but now these
potentials differ by random phase shifts. Finally, we assume that there is an external force
which acts uniformly on all the particles. The Hamiltonian for such a system might take the
form

H(y) = H(y;α) =
∑
i∈Z

1

2
(yi − yi−1)2 + V (yi − αi)− Fyi. (5.9)
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Again the (yi) are the coordinates of the particles, and V is some periodic potential, but
now the (αi) introduce a quenched phase disorder, and F is the force parameter.

One might ask some of the same questions here as in the FK case, but the origins of this
model in physics motivate a different line of inquiry. Suppose that while the disorder α is
selected initially and held fixed (quenched disorder), that the force F might be a function
of time. A given initial configuration y(0), even if it is static at force F (0), will move under
the influence of a time-varying force F (t). It is usual [45] to assume that the particles have
negligible mass, and react to changes in F according to a relaxational dynamics:

ẏ(t) = −∇H(y(t);α;F (t)). (5.10)

The advantage of such dynamics is a monotonicity property known as Middleton’s no pass-
ing rule [45, 79]. Namely, consider two initial configurations y1(0) and y2(0) in the same
environment α, driven by forcing F 1(t) and F 2(t) such that

y1(0) ≤ y2(0) and F 1(t) ≤ F 2(t) for all t, (5.11)

where the vector inequality is understood componentwise. Then, evolving according to
(5.10), we have y1(t) ≤ y2(t) for all t > 0, because at any time t0 and index i for which
y1
i (t0) = y2

i (t0) and y1
j (t0) ≤ y2

j (t0) for all j,

ẏ2
i − ẏ1

i = (y2
i−1 − y1

i−1)− 2(y2
i − y1

i ) + (y2
i+1 − y1

i+1) + (F 2 − F 1) ≥ 0. (5.12)

One might expect that this monotonicity, like that discussed following (5.8), should be useful
theoretically.

Suppose that we drive an initial configuration y1(0) with force F 1(t) such that F 1(t) ≤ F 2

for all t, and that y2 is a static configuration at (constant) force F2. As a consequence of
the above, if y1(0) ≤ y2 then y1(t) ≤ y2. In other words, a static configuration at a certain
force acts as a barrier preventing the advance of another configuration driven by smaller
forces. On the other hand, if the driving force is sufficiently strong that there are no static
configurations, the chain can slide forward indefinitely. We refer to values of F for which
there exist static configurations as the static regime, and values of F for which no static
configurations exist as the sliding regime. Using the no passing rule we can deduce that for
the critical values F− < 0 < F+ corresponding to the most negative and most positive forces
for which there exist static configurations, the sliding and static regimes are as follows:

(−∞, F−) [F−, F+] (F+,+∞)
sliding static sliding

(5.13)

The values F± are known as the positive and negative threshold forces ; these depend on the
form of the potential V and the environment α.

It has been argued in the physics community [43, 44] that the depinning transition, when
the force is increased across F+ or decreased across F−, is a phase transition controlled by the
parameter F . Such transitions are known broadly by the name dynamic critical phenomena,
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and are characterized by properties such as scaling relationships between various quantities,
and power-law divergence of correlation length as a function of (F+ − F ). To show this
rigorously remains an open problem; prior efforts have relied on numerics [38, 62, 72, 79, 84,
86, 95], nonrigorous renormalization group techniques [37, 70, 85], or pertain to significantly
simplified models [28, 29, 80]. The work of M. Mungan and the present author [67, 68] belongs
to the latter category, but arguably retain greater similarity to the original model.

We state now, in general terms, the questions we wish to answer about the Fukuyama-
Lee-Rice model:

(Q1) What are the threshold forces F±? How do they depend on the underlying disorder?

(Q2) How do various quantities associated with the model depend on (F−F+) as F increases
to F+?

(Q3) Does the configuration assume a definite shape just before the depinning threshold,
and, if so, what does it look like?

For the toy model introduced in the next chapter, some information is available for each
of the above questions; see [67] for a slightly more complete development, including some
results concerning (Q2). In the present manuscript the most important of these is (Q3),
which we explore in a manner emphasizing the mathematical over the physical.

5.3 Piecewise parabolic potential

A number of simplifications will be required before we can present rigorous results. The
first is described here; more follow in the subsequent chapter. We specialize to a particular
potential V , but unlike the traditional sinusoid, M. Mungan and the author [67, 68] have
elected to follow [5, 85] and take

V (x) =
λ

2
(x− JxK)2, (5.14)

using JxK to denote the integer nearest to x. Then V is 1-periodic, consisting of parabolas
with minima on Z and (nondifferentiable) local maxima at 1

2
+Z. The parameter λ controls

its strength relative to that of the interaction between the particles. With a 1-periodic
potential we may as well assume that the disorder α has all its components in (−1

2
,+1

2
].

The advantage of (5.14) is that the nonlinearity takes a particularly manageable form.
The zero-force equation satisfied by static configurations, ∂yiH(y;α) = 0, becomes

−∆yi + λ[(yi − αi)− Jyi − αiK]− F = 0. (5.15)

To simplify the above, we define well numbers m and well coordinates ỹ according to

mi = Jyi − αiK
ỹi = yi − αi −mi,

(5.16)
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so that mi indicates which parabolic well contains particle i and ỹi gives the displacement
of the particle from this well’s center. Using this, (5.15) becomes

(λ−∆)y = λ(m+α+ F/λ). (5.17)

As observed in [5], we can treat m and α as given and solve this linear equation using
standard techniques for constant-coefficient, linear recurrences. Define

η =
2

2 + λ+
√
λ2 + 4λ

, (5.18)

which satisfies η2 − (2 + λ)η + 1 = 0 and has η ∈ (0, 1). Then

yi =
1− η
1 + η

∑
j∈Z

η|i−j|(mj + αj) +
F

λ

ỹi =
η

1− η2

∑
j∈Z

η|i−j|(∆mj + ∆αj).
(5.19)

The expression for ỹi is obtained using λỹ = ∆y + F from the zero-force equation, noting
that ∆ commutes with (λ−∆) and the inverse we have chosen2 for it.

Given the environment α and a choice of well numbers m, we can recover y and ỹ. The
nonlinearity is a consistency requirement that the ỹ we compute has the property

−1

2
< ỹi ≤ +

1

2
(5.20)

for all i ∈ Z. If this is satisfied, then m specifies a valid static configuration.
In addition to making things almost linear and admitting explicit algebraic formulæ, the

parabolic potential dramatically simplifies the dependence on F . Given a static configuration
at a particular force F such that supi ỹi <

1
2
, we might increase F by any amount less than

λ

(
1

2
− sup

i
ỹi

)
(5.21)

and obtain another static configuration with the same well numbers, whose well coordinates
differ from that of the original by a uniform translation only.

It is believed [85], but certainly not known, that the nature of the depinning transition
should not depend greatly on the particular structure of V . As very little is known rigorously
in any case, we are justified in specializing on the above. It seems hopeless to work toward
showing any kind of universality before the nicest case is well understood. In the next
chapter, we proceed to investigate the behavior for this special case of V .

2Other solutions to the recurrence grow geometrically even if m is bounded.
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Chapter 6

An exactly solvable toy model for
charge density waves

In this chapter we discuss results of a joint work with M. Mungan, with this collaborator’s
permission, that have been reported in the physics literature [68] and a recently submitted
manuscript [67]. The text of the present chapter is adapted from [67].

We will begin by using the simplified dependence of the well coordinates ỹ on F in
(5.19) to move away from the steepest descent dynamics of (5.10). This leads to questions
more like standard Frenkel-Kontorova: we will be dealing with static configurations only,
and in particular are interested in the solution to a variational problem. In the end, our
understanding of this problem remains incomplete. This is not surprising: essentially what
is needed is an analogue of Aubry-Mather theory for a more difficult variational problem,
and this seems to be a long-term project.

In light of the apparent difficulty associated with rigorous analysis of the Fukuyama-
Lee-Rice model, one might hope to find a simpler model with some of the same features.
Behavior of a delicate nature might well be destroyed by changing the model, but we expect
that any universal behavior is likely to persist. We will introduce a toy version1 which
truncates the range of immediate interactions to nearest neighbors only, and obtain a kind
of sandpile model [8, 9, 35, 92]. For this the threshold configuration, the final shape observed
before the system depins, can be expressed explicitly in terms of the environment α. Here
some rigorous statements can be made, and we are led to ask some seemingly new questions
about the full FLR model.

6.1 A variational problem

Given an environment α and external force F , let us writeM(α, F ) for the set of all vectors
m of well numbers which specify a valid static configuration, i.e. the well coordinates ỹ

1As the FLR model for CDWs is already a toy, this might be more properly called a toy toy model, but
anything rigorous in this area is progress.
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computed from m,α, F all sit in the interval (−1
2
,+1

2
]. Fix, for the moment, the external

force F = 0 and consider the following variational problem:

inf
m∈M(α,0)

sup
i∈Z

ỹi (6.1)

The infimum is taken over all vectors of well numbers m which give a valid static configu-
ration, and ỹi = ỹi(m,α, F = 0) is the ith well coordinate in this configuration. Let us call
this infimum ỹ+

max, and suppose that it is attained2 at m+.
From (5.19) it follows that m+ ∈M(α, F+) for

F+ = λ

(
1

2
− ỹ+

max

)
. (6.2)

As we will see shortly, this notation does not conflict with that for the (+)-threshold force.
According to the no passing rule described in the previous chapter, a configuration y1(t)
with y1(0) ≤ y+ driven by force F 1(t) ≤ F+ cannot cross y+ at later times t. Suppose that
y1(0) is static at F = 0, say, and that we drive it according to F 1(t) = F+. Then y1(t) is
trapped for all positive times between y1(0) and y+. Let us assume that it has a limit as
t→∞. Then y1(∞) is a static configuration at force F+, we can read off its well numbers
m1(∞), and m1(∞) ∈ M(α, F+). Suppose that we can show (essential) uniqueness: that
M(α, F+) consists of

m+ + Z1 (6.3)

with 1 denoting the vector of all ones. Then, choosing the appropriate integer, we have
m1(∞) = m+. The above is riddled with assumptions, but makes a reasonable heuristic
argument that driving a general configuration with force F+ will lead to (a version of) m+.

Now, to be precise without introducing technical burdens, let us consider the periodic
case. Namely, we will assume that the disorder α is an L-periodic sequence for some posi-
tive integer L, and require that all the configurations m we consider are L-periodic. Write
ML(α, F ) for the L-periodic integer sequences m that give valid configuration in environ-
ment α at force F . We will define the (+)-threshold force F+ according to (6.2) when ỹ+

max

is the optimal value of
min

m∈ML(α,0)
max
i∈Z

ỹi, (6.4)

and call any m+ ∈ ML(α, 0) achieving it a (+)-threshold configuration. By analogy we
might define also a negative threshold force F− and configurations m− according to

F− = λ

(
−1

2
− ỹ−min

)
(6.5)

2As we will soon move to a setting where this is guaranteed, and the purpose of the present discussion is
motivational, we will not consider the existence and uniqueness questions here. Note that some conditions
are required, for example assuming that the configurations y have “bounded width” around a line, meaning
that there exists a number ρ so that |yi− yj − (i− j)ρ| is bounded uniformly over i and j [45], which implies
that y has a rotation number and that the convergence in (5.7) occurs at a certain rate.
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where ỹ−min is the optimal value, achieved by m−, in

max
m∈ML(α,0)

min
i∈Z

ỹi. (6.6)

The restriction to the periodic setting will make basic results straightforward, and we hope
that as L→∞ we will see indications of the behavior for the infinite system.

Though we are at present unable to precisely describe the threshold configuration for
the model of the previous section, which we will call the full model, very precise results are
available for a toy model approximation introduced by M. Mungan and the author in [68].
One source of difficulty in the full model is that the interactions are global: any particle jump
affects well coordinates over the entire system. It is easy to construct a scenario in which
ỹj = ỹmax and for some i a half-period distant from j, ỹi is close enough to ỹmax that the
jump at j causes i to jump also, but no others. However, this situation will be increasingly
difficult to achieve (requiring ỹi to be closer and closer to the maximum) for large λ, i.e. when
the substrate potential is considerably stronger than the particle interactions. Here η � 1
for η of (5.18), and powers of η are far smaller than the quantity itself.

If, as in the end of the previous section, we hold F = 0, and now observe that our explicit
formulas (5.19) yield

ỹi = η(∆mi + ∆αi) +O(η2). (6.7)

The toy model simply drops the O(η2) portion of the above. Expressing well coordinates in
units of η, we define rescaled well coordinates z by

zi = ∆mi + ∆αi (6.8)

for all i. We consider the problem
min
m

max
i
zi (6.9)

over all L-periodic integer sequences m. Note that for η � 1, the admissibility condition
ỹi ∈ (−1

2
,+1

2
] is relatively easy to satisfy, and we simply drop this requirement. We will see

later that the optimal configuration has unrescaled well coordinates in (−2η,+η).

6.2 The avalanche algorithm

Our basic tool for both simulation and the derivation of rigorous results is the avalanche
algorithm. This takes as input a static configuration, and produces a new static configuration
which is stable at higher force, if possible, in a manner intended to mimic the result of
increasing the force and finding the long time limiting arrangement of the particles with an
inertialess dynamics. For the L-periodic chain in both the toy model and the model with
long-range interaction, we describe this procedure in terms of the well numbers m and well
coordinates ỹ from (5.16).

Algorithm 6.1 ([67, Alg. 3.1]). The avalanche algorithm with force:
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Input – an L-periodic environment α and m ∈ML(α, F )

Output – a new force F ∗ ≥ F and m∗ ∈ ML(α, F∗) which satisfies m ≤ m∗ ≤ m + 1,
the inequality holding componentwise and 1 denoting the vector of all ones

Process – Let m∗ = m initially, and compute the corresponding well-coordinates ỹ∗ = ỹ.

(A1) Record the maximum well coordinate ỹmax = maxi ỹi.

(A2) Increase the force to F ∗ = F + λ(1
2
− ỹmax), and correspondingly adjust the well

coordinates ỹ∗i → ỹ∗i + (1
2
− ỹmax), bringing exactly one particle (in each period)

to the cusp of the next well.

(A3) Let j = arg maxi ỹ
∗
i and jump particle j (and its periodic equivalents) by incre-

menting m∗j → m∗j + 1 and suitably adjusting ỹ∗: for the full model,

ỹ∗i → ỹ∗i +


−2η

1 + η
+

1− η
1 + η

2ηL

1− ηL for i = j

1− η
1 + η

η|i−j| + ηL−|i−j|

1− ηL for j < i < j + L

(6.10)

and for the toy model,

ỹ∗i → ỹ∗i +

{
+1η for i = j ± 1

−2η for i = j,
(6.11)

and extending these periodically.

(A4) If ỹ∗i > 1/2 for any i, goto (A3).

Remark. The formula (6.10) for updating ỹ has been adapted from (5.19) to respect the
periodicity.

For this algorithm to be well-defined, we must verify that it does, in fact, terminate. The
following result indicates that it does, and gives the maximum number of jumps (A4) we
might expect. It also establishes a useful property which will allow us to give a centered
version of the algorithm, which is better numerically, requiring fewer floating point opera-
tions, and better theoretically, allowing us to recast the evolution in terms of the variational
problem at which we hinted earlier.

Proposition 6.2 ([67, Prop. 3.2]). Algorithm 6.1 has the following properties:

(i) It terminates after finitely many steps.

(ii) All particles jump at most once: m∗ ≤m+ 1, the inequality holding componentwise.
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(iii) If F ≥ 0 and η < 1/3, then for all i the resulting configuration has

ỹ∗i > −
1

2
+
F ∗ − F

λ
. (6.12)

Proof. That (i) the number of jumps is finite, and in fact bounded by L, is immediate from
(ii) m∗ ≤m+1, so we proceed to the latter. We argue inductively: suppose that after some
execution of (A3) we have well numbers m′ and well coordinates ỹ′, and that m′ ≤m+1. If
maxi ỹ

′
i ≤ 1/2 we are done, so suppose that ỹ′k > 1/2 for some index k. We claim m′k = mk,

i.e. site k has not yet jumped. For the full model, observe that the jump response (6.10) has[ −2η

1 + η
+

1− η
1 + η

· 2ηL

1− ηL
]

+
L−1∑
i=1

[
1− η
1 + η

· η
i + ηL−i

1− ηL
]

= 0. (6.13)

It follows that any particle which has jumped has well coordinate at most what it was after
(A2), namely 1/2. For the toy model, a site which has jumped once with neighbors which
have each jumped at most once has no increase beyond its value after (A2). In either case,
m′k = mk follows, and m′ + δk ≤m+ 1.

For (iii), if a given site i has not jumped, then ỹ∗i is obtained from ỹi > −1/2 by translating
upward (F ∗ − F )/λ and then adding the (positive) effects of jumps at the other sites. So
there is nothing to check unless the site i has jumped. In this case,

ỹi +
F ∗ − F

λ
+ p > +

1

2
(6.14)

with p the (positive) effect of the jumps at other sites which have preceded the jump at i,
and

ỹ∗i = ỹi +
F ∗ − F

λ
+ p−

(
2η

1 + η
−O(ηL)

)
>

1

2
− 2η

1 + η
=
F ∗ − F

λ
+

1

2
− F ∗ − F

λ
− 2η

1 + η
.

So we require
F ∗ − F

λ
+

2η

1 + η
< 1. (6.15)

Since F ≥ 0, one can easily verify from (5.19) that the sum of the well coordinates ỹi is
nonnegative regardless of m. Thus values of F ∗ with (F ∗−F )/λ > 1/2 can correspond only
to the sliding state, and (as the avalanche algorithm produces only static configurations) we
may restrict ourselves to (F ∗ − F )/λ ≤ 1/2. The choice η < 1/3 makes 2η/(1 + η) < 1/2.
The desired inequality follows.

Note that property (iii) tells us that the configuration m∗ ∈ML(α, F ′) for F ′ ∈ [F, F ∗].
This illustrates that the models under consideration exhibit both reversible and irreversible
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behavior : increasing the force from 0 to some F > 0 may cause jumps, which are not undone
if we reduce the force back to 0; on the other hand, the new configuration we obtain reacts
to values of the force in [0, F ] moving by rigid translation only, i.e. reversibly. It also allows
us to write a simpler, centered algorithm which will, if iterated, produce the exact same
iterates of m as the original.

Algorithm 6.3 ([67, Alg. 3.3]). The zero-force avalanche (ZFA) algorithm:

Input – an L-periodic environment α and m ∈ML(α, 0)

Output – m∗ ∈ML(α, 0) which satisfies the following properties:

(i) m ≤m∗ ≤m+ 1,

(ii) ỹ∗max ≤ ỹmax, and

(iii) for all m′ with m ≤ m′ ≤ m∗, the corresponding well numbers ỹ′max > ỹmax

unless m′ = m or m′ = m∗.

Process – Let m∗ = m initially, and compute the corresponding well-coordinates ỹ∗ = ỹ.

(ZFA1) Find j = arg maxi ỹ
∗
i .

(ZFA2) Increment m∗ by 1 in position j and its mod-L equivalents, and adjust the well
coordinates ỹ∗ according to (6.10).

(ZFA3) If ỹ∗i > ỹmax for any index i, goto (ZFA1).

Using point (iii) of Proposition 6.2, we can view the zero-force avalanche algorithm as
a composition of two maps, the first given by the original Algorithm 6.1, and the second
simply resetting F = 0 and translating the well coordinates appropriately. In light of this,
properties (i) and (ii) from Proposition 6.2 hold for the ZFA as well.

The third stated property of the output—that no configuration between m and m∗ can
match or best the maximum well coordinates ỹmax and ỹ∗max—will follow immediately from
the next result. Recalling Middleton’s no passing rule [45, 79] stated in the previous section,
we might hope that our evolution through static configurations comes with some useful
monotonicity properties.

Lemma 6.4 (ZFA noncrossing, [67, Lem. 3.4]). Let m1 ≤ m2 be two configurations for
either the full or toy model sharing the same environment α, and let m1∗ and m2∗ be the
results of applying the ZFA to each of these.

(i) If maxi ỹ
1
i > maxi ỹ

2
i , then m1∗ ≤m2.

(ii) If maxi ỹ
1
i = maxi ỹ

2
i and m1

j < m2
j for j = arg maxi ỹ

1
i , then m1∗ ≤m2.

(iii) If maxi ỹ
1 ≥ maxi ỹ

2
i , then m1∗ ≤m2∗.
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Proof. Briefly, in each case above, the stated conditions give a bound on the well coordinate
of any particle i for which m1

i = m2
i , which prevents particle i from jumping in cases (i) and

(ii), or (iii) shows that particle i jumps for configuration 1 only if it jumps for configuration
2. The argument is very much the same as for the dynamic version [79], and the details
follow.

Suppose we are applying ZFA tom1 and thatm′ is either equal tom1 or an intermediate
configuration obtained after some execution of (ZFA3) for which m1 ≤ m′ ≤ m2. For any
j such that m′j = m2

j ,

ỹ′j =
1− η
1 + η

∑
i∈Z

η|i−j|(m′i −m′j + αi − αj)

≤ 1− η
1 + η

∑
i∈Z

η|i−j|(m2
i −m2

j + αi − αj) = ỹ2
j

in the case of the full model, and

ỹ′j = η(m′j−1 − 2m′j +m′j+1)

≤ η(m2
j−1 − 2m2

j +m2
j+1) = ỹ2

j

for the toy model.
If (i) maxi ỹ

1
i > maxi ỹ

2
i , then ỹ′j < maxi ỹ

1
i , and site j will not jump. Thus the next

iteration of (ZFA3), if any, will produce m′′ which still has m′′ ≤m2.
If (ii) maxi ỹ

1
i = maxi ỹ

2
i , then ỹ′j ≤ max ỹ1

i and site j will only jump if m′ = m1, i.e. in
(ZFA1), and j = arg maxi ỹ

1
i . If m1

j < m2
j , this jump does not cause a crossing.

Since m2 ≤m2∗ and maxi ỹ
2
i ≥ maxi ỹ

2∗
i trivially, and having established (i) and (ii), for

(iii) we need only consider the case where

max
i
ỹ1
i = max

i
ỹ2∗
i = max

i
ỹ2
i (6.16)

and m1
j = m2

j for j = arg maxi ỹ
1
i . As in the proof of (i), we find ỹ1

j ≤ ỹ2
j , so j = arg maxi ỹ

2
i

as well, so that m2∗
j = m2

j + 1 > m1
j . Invoking (ii), we are done.

We now state a definition for the threshold states, alluded to earlier in the case of the
full model.

Definition 6.5. In either the full model or the toy model, for a given environment α, a
(+)-threshold configuration is specified by well numbers m+ ∈ML(α, 0) achieving

min
m

max
i
ỹi (6.17)

where ỹ is the vector of well coordinates corresponding to m at F = 0. The threshold force
is

F+ = λ

(
1

2
−min

m
max
i
ỹi

)
. (6.18)
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Note that F+ is exactly the force required to bring one particle in the threshold configuration
to the upper edge of its well. We can, in an analogous manner, define a (−)-threshold
configuration as m− achieving maxm mini ỹi, and a negative threshold force F−.

From this point forward, we follow the convention that all well coordinates are computed
using F = 0.

Remark. With standard Frenkel-Kontorova, one is interested in configurations which mini-
mize energy, which consists (in the case of Hookean springs) of an `2-difference of y and its
translate in i by one, and the terms coming from the substrate potential. Here, when consid-
ering a similar system in the presence of an increasing driving force, the relevant functional
is of a one-sided3, `∞-type.

We first verify the existence and (essential) uniqueness of the threshold configuration,
and, using the monotonicity properties of the ZFA, show that this algorithm can be used to
obtain and characterize it.

Proposition 6.6 ([67, Prop. 3.6]). Assume that the law of α is absolutely continuous. For
both the full model and the toy model:

(i) The threshold configuration m+ exists and is almost surely unique, up to translation
of all components of m+ by the same integer.

(ii) Starting from m = 0, the ZFA finds m+ in finitely many steps.

(iii) The ZFA applied to m+ produces m+ + 1, and this property is unique to the family
m+ + Z1. (Here 1 denotes the vector with all components equal to one.)

Proof. (i) We show existence by reducing those configurations we must consider to a finite
set, modulo translation of all components of m by a common integer. Recall from (5.19)
that the well coordinates can be expressed in terms of the Laplacians ∆m and ∆α. We
know that

∑L−1
i=0 ∆mi = 0, so large negative values of ∆mi will require also large positive

values elsewhere. The equation (5.15) (at F = 0) can be rewritten as

λỹi = ∆mi + ∆αi + ∆ỹi. (6.19)

Noting that |∆αi| and |∆ỹi| are bounded by 2, we see that large positive values of ∆mi will
cause large positive values of ỹi. We may therefore optimize over ∆m uniformly bounded
above by 8 (since anything above this is guaranteed to be worse than taking m = 0) and
thus below by 8L, and there are only finitely many possibilities.

Uniqueness requires separate arguments for the full model and the toy model; in both
cases the ZFA reduces the possibilities we must consider. For the full model, suppose we
have m1 and m2 threshold configurations which do not differ by simple translation. Since
overall translation does not affect Laplacians, it doesn’t affect well coordinates, so we may
as well assume mini(m

2
i −m1

i ) = 0 and m1 6= m2.

3i.e. concerning only the positive part
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We first argue that it suffices to consider m2 ≤m1 +1. Apply the ZFA to m1, producing
m1∗, also a threshold configuration, and m1∗ ≤m1 +1. Write j1 = arg maxi ỹ

1
i . If m1

j < m2
j ,

we have m1∗ ≤m2 by Lemma 6.4. We rule out m1
j = m2

j because it forces

ỹ2
j > ỹ1

j = max
i
ỹ1
i , (6.20)

in which case m2 is not a threshold configuration. Thus m1∗ is a threshold configuration
which has m1 ≤m1∗ ≤m1 + 1 and m1

j1
< m1∗

j1
. We may as well assume that m2 has these

properties.
Let j2 = arg maxi ỹ

2
i . Since m1

j1
< m2

j1
and m2 ≤m1 + 1, we have ỹ1

j1
> ỹ2

j1
, so j2 6= j1.

Now consider the underlying randomness α: for ỹ1
j1

= ỹ2
j2

we must have, using (5.19),∑
i∈Z

(η|i−j2| − η|i−j1|)∆αi =
∑
i∈Z

η|i−j1|∆m1
i − η|i−j2|∆m2

i . (6.21)

Recalling that we’re dealing with a periodic system, so that the above may be replaced with
a finite sum, and that for threshold configurations the number of possible values for ∆m is
finite, we see that ỹ1

j1
= ỹ2

j2
requires that a nondegenerate linear functional of α takes one of

finitely many values, which happens with probability zero if α has law which is absolutely
continuous with respect to Lebesgue measure.

We turn to uniqueness for the toy model. Again take threshold configurations m1 and
m2 withm1 6= m2 and minim

2
i−m1

i = 0. As we did for the full model, we begin by reducing
the class of m2 we must consider. Write m1∗ for the result of the ZFA applied to m1. If
m1
j < m2

j , then m1∗ ≤m2, as desired. On the other hand, m1
j = m2

j leads to a contradiction:
let ` and r be the first indices to the left and right, respectively, of j for which m2

` > m1
` and

m2
r > m1

r. Using the formula zi = ∆mi + ∆αi, we see that

z2
`+1 ≥ z1

`+1 + 1 and z2
r−1 ≥ z1

r−1 + 1, (6.22)

and it follows that z1
`+1 + 1 and z1

r−1 + 1 are both less than maxi z
1
i . For reasons as in the

uniqueness argument for the full model, this inequality is almost surely strict. Define m′ by

m′i = m1
i + (i− `− 1)+ − (i− j)+ − (i− j + r − `)+ + (i− r − 1)+. (6.23)

Then z′ differs from z1 in only four locations, `+1, j, j+r−`, and r−1, with z′i−z1
i having

values +1, −1, −1, and +1, respectively. Then maxi z
′
i < maxi z

1
i follows from (6.22), which

is a contradiction.
Thus it suffices to take m2 = m1∗, and show that the assumption minim

1∗
i − m1

i = 0
leads to a contradiction. When we apply the ZFA to m1, the site j = arg maxim

1
i will jump.

If minim
1∗
i −m1

i = 0, not all sites jump. Letting ` and r be as above, we can again construct
m′ with maxi z

′
i < maxi z

1
i , contradicting optimality and finishing the proof of uniqueness.

For (ii), take a threshold configurationm+ and translate it so that minim
+
i = 0. Starting

withm = 0, repeatedly apply ZFA. By Lemma 6.4, the sequence ofm produced cannot cross
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m+ unless we obtain m so that maxi ỹi = maxi ỹ
+
i , that is, another threshold configuration.

On the other hand, we must jump at least once with each ZFA application, so crossing m+

after finitely many steps is unavoidable.
Part (iii) is immediate from (i) and Proposition 6.2, since applying the ZFA cannot

increase the maximum well coordinate.

We thus have a tool, the ZFA, for both the full and toy models, which produces the
threshold configuration that precedes the depinning transition. It achieves this by way of a
sequence of physically meaningful intermediate states, according to an algorithm which is
straightforward to implement and apply to generate numerical results. This is good news,
but is unfortunately the extent of our rigorous results for the full model. In the next section
we specialize to the toy model, where more can be said.

6.3 The toy model: explicit formulas

In the case of the toy model we find it convenient to introduce rescaled well coordinates z
defined by

ηzi = ỹi. (6.24)

As in the previous section, we fix the external force F = 0. In this case, a jump at site j as
in step (iii) of Algorithm 6.3 results in

mj → mj + 1, zj → zj − 2, zj±1 → zj±1 + 1. (6.25)

Here we find a strong similarity between the toy model and sandpile models (see [92] for
an introduction), as already noted by other authors working on similar CDW systems [84,
86, 100]. Indeed, for one-dimensional sandpile models, the change to z in (6.25) is precisely
the result of toppling at site j. The existing literature on sandpiles is extensive; see [101]
for a survey, and note that models with continuous heights have been considered previously
[103]. However, the authors are unable to find an exact match for the toy model in prior
work. As noted in [68], the toy model has periodic boundary, conserves the sum of z,
evolves deterministically, changes by integers only, and preserves the fractional parts of the
components of ∆α. For now, the similarity between the two is a sign to expect that the toy
model will permit exact results: the set of recurrent states of a standard one-dimensional
sandpile is rather trivial, and one might hope that the toy model’s persistent disorder does
not introduce so much complexity that things become intractable. The primary result of
this section confirms this: the solution of the optimization problem posed in Definition 6.5
can be expressed explicitly.

Theorem 6.7 ([67, Thm. 4.1]). Assume that the law of α is absolutely continuous. Let
S =

∑L−1
i=0 J∆αiK. The a.s. unique threshold configuration for the toy model m+ satisfies

∆m+
i = −J∆αiK + Ji − δik+ (6.26)

where J is an integer vector selected as follows:
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• Case S ≥ 0. Ji = 1 for the S + 1 positions i which have smallest ∆αi − J∆αiK and
Ji = 0 otherwise.

• Case S < 0. Ji = −1 for the |S| − 1 positions i which have largest ∆αi − J∆αiK and
Ji = 0 otherwise.

and k+ is an index defined by

k+ =
L−1∑
i=0

i(−J∆αiK + Ji) (mod L). (6.27)

To verify that the description of the threshold configuration given by (6.26) gives a
legitimate vector m+ of well numbers, we require the following lemma. This elementary
criterion for integral invertibility of the Laplacian has likely been known to others, though
we are unable to locate a reference.

Lemma 6.8. A vector f ∈ ZL is equal to ∆m for some m ∈ ZL if and only if both of the
following hold:

(i)
∑L−1

i=0 fi = 0

(ii)
∑L−1

i=0 ifi ≡ 0 (mod L)

Proof. That ∆ on QL with periodic boundary is self-adjoint, together with standard linear
algebra (namely the identification of the kernel of the adjoint with the orthogonal complement
of the range) shows that condition (i) is necessary and sufficient for ∆m = f to have a
solution m ∈ QL. The only question is whether there is a solution with integer entries. For
this it is necessary and sufficient that a solution m ∈ QL have m1 − m0 ∈ Z. Necessity
is obvious and sufficiency follows if we set m0 = 0, m1 according to the known difference
m1 −m0, and repeatedly use mi+1 = −mi−1 + 2mi + fi to obtain the other entries, which
will be integers.

An easy induction shows that for k ≥ 2,

mk = −(k − 1)m0 + km1 +
k∑
i=1

(k − i)fi. (6.28)

Setting k = L in the above, recalling m0 = mL, and rearranging we find

L(m0 −m1) =
L∑
i=1

(L− i)`i. (6.29)

From this, we see m0−m1 ∈ Z if and only if
∑L

i=1(L− i)fi is a multiple of L, which is easily
shown to be equivalent to (ii).
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Before proving the theorem, we introduce some notation. Let us write

ωi = ∆αi − J∆αiK (6.30)

for the fractional part of ∆αi, and let σ be the permutation of {0, 1, . . . , L− 1} which orders
ω:

ωσ(0) < ωσ(1) < · · · < ωσ(L−1). (6.31)

Proof of Theorem 6.7. Lemma 6.8 guarantees that the specification given for ∆m+ is ad-
missible, i.e. can be inverted to obtain m+ ∈ ZL. To verify the optimality of m+, we invoke
Proposition 6.6, claiming that the ZFA applied to m+ produces m+ + 1.

We claim that z+
i + 1 > z+

max for all i 6= k+ and z+
k+ + 2 > z+

max. Since a jump at site i
increases zi±1 by 1, each jump that occurs, starting at arg maxi z

+
i , causes both its neighbors

to jump except possibly if one of those neighbors is site k+. Due to periodicity, both k+± 1
will jump, increasing z+

k+ by 2, and it must jump as well. Verifying the claim will prove the
theorem.

Using the notation of (6.30),

z+
i = ωi +


∑S

j=0 δiσ(j) − δik+ if S ≥ 0

−∑|S|−1
j=1 δiσ(L−j) − δik+ if S < 0

(6.32)

with all ωi ∈ (−1
2
,+1

2
). Suppose S > 0. If i ∈ {σ(0), . . . , σ(S)} \ {k+}, then

z+
i + 1 = (ωi + 1) + 1 > z+

max, (6.33)

and if i ∈ {σ(S + 1), . . . , σ(L− 1)} \ {k+}, then

z+
i + 1 = ωi + 1 > z+

σ(S−1) ∨ z+
σ(S) = z+

max. (6.34)

If k+ ∈ {σ(0), . . . , σ(S)} then

z+
k+ + 2 = ωk+ + 2 > z+

σ(S−1) ∨ z+
σ(S) = z+

max, (6.35)

but if k+ ∈ {σ(S + 1), . . . , σ(L− 1)} then

z+
k+ + 2 = ωk+ + 1 > z+

σ(S−1) ∨ z+
σ(S) = z+

max. (6.36)

We omit the verification in the cases S = 0 and S < 0, these being similar exercises in
checking cases.

Theorem 6.7 gives the threshold force explicitly as a function of the underlying disorder.
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Corollary 6.9. For the toy model, the maximum z+
max of the rescaled well coordinates (see

(6.24)) of the threshold configuration is

z+
max =



ωσ(S) + 1 if S ≥ 0 and k+ 6= σ(S)

ωσ(S−1) + 1 if S > 0 and k+ = σ(S)

ωσ(L−1) if S = 0 and k+ = σ(0)

ωσ(L−|S|) if S < 0 and k+ 6= σ(L− |S|)
ωσ(L−|S|−1) if S < 0 and k+ = σ(L− |S|),

(6.37)

and the corresponding threshold force F+ is

F+ = λ

(
1

2
− ηz+

max

)
. (6.38)

Remark. As we will see in Section 6.4, the cases k+ ∈ {σ(S), σ(L − |S|)} have probability
tending to 0 as the system size L→∞.

Several physically motivated questions concern not only the threshold configuration and
force, which we can now characterize, but also the evolution of certain quantities as we
approach it. A particularly important observable is the polarization, which is the average
change in well number as we evolve an essentially arbitrary initial condition to (+)-threshold,
and has been the subject of several previous studies of CDW systems [84–86]. Two initial
conditions are particularly natural: the (−)-threshold configuration and the flat configuration
withm = 0. The article [67] discusses both of these, with a characterization of the threshold-
to-threshold evolution in terms of record sequences [3, 52]. Here we focus on the flat-to-
threshold case, for which the polarization P = P (α) takes the form

P =
1

L

L−1∑
i=0

m+
i (6.39)

where m+ is the unique threshold configuration which has minim
+
i = 0. In the next section

we turn to statistics for a particularly natural choice for the law of α, which leads to an
interesting description of the law of P asymptotically as L→∞.

6.4 Statistical results

Due to the 1-periodicity of the substrate potential, we have assumed already that the com-
ponents of α are in the interval between −1

2
and +1

2
. These are effectively random variables

on the circle, whose most natural4 distribution is the uniform measure. We henceforth as-
sume that the components of α are all uniform (−1

2
,+1

2
), and independent aside from the

L-periodicity.
4The author considers the Haar measure, when this is available and can be normalized to have unit mass,

as the most natural special case one might consider.
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We begin by characterizing the variates ωi = ∆αi − J∆αiK introduced previously, as the
(±)-threshold configurations are explicit functions of these. The following proposition is not
interesting itself, but gives some indication how the choice we have made for the disorder
enables the subsequent results.

Proposition 6.10. Assume that the components of α are i.i.d. uniform (−1
2
,+1

2
) up to

L-periodicity. The variates ωi = ∆αi − J∆αiK, i = 0, . . . , L − 1, have the joint distribution
that results from taking i.i.d. uniform (−1

2
,+1

2
) variates and conditioning them to sum to an

integer; by this we mean ω is distributed according to the (normalized) surface measure on
the intersection of the cube (−1

2
,+1

2
)L with the family of planes x0 + x1 + · · ·+ xL−1 ∈ Z.

Proof. We begin by describing the distribution claimed for ω in greater detail. For the
uniform surface measure on the intersection of the cube (−1

2
,+1

2
)L with the planes

∑L−1
n=0 bn ∈

Z, a consequence of |bn| < 1
2

is that this surface can be recognized as the graph of a function:

bL−1 = g(b0, . . . , bL−2) ≡
r∑L−2

n=0 bn

z
−∑L−2

n=0 bn (6.40)

is immediate from bL−1 +
∑L−2

n=0 bn =
r∑L−2

n=0 bn

z
, which is forced since the left-hand side

is exactly an integer, and since |bL−1| < 1
2
, it must be the integer nearest

∑L−2
n=0 bn. The

function g has constant gradient (−1, . . . ,−1) where the gradient exists, and it fails to exist
only on the (L− 2)-dimensional set{

(b0, . . . , bL−2) :
L−2∑
n=0

bn ∈
1

2
+ Z

}
.

We therefore recognize the law of {βn}L−1
n=0 as the result of taking {βn}L−2

n=0 to be i.i.d. uni-
form and pushing this measure forward onto the graph of g. This facilitates the following
calculation, for trigonometric polynomials fn(t) =

∑
|k|≤K f̂n(k) exp(2πikt), K an arbitrary

positive integer:

E
L−1∏
n=0

fn(βn) =
∑
|k|≤K

(
L−1∏
n=0

f̂n(kn)

)
E exp[2πik · β], (6.41)

the sum over all integer vectors k with maxn |kn| ≤ K. We see E exp[2πik · β] is given by∫
exp

{
2πi

[
L−2∑
n=0

knbn + kL−1

(t
L−2∑
n=0

bn

|

−
L−2∑
n=0

bn

)]}
db

=

∫
exp

{
2πi

[
L−2∑
n=0

(kn − kL−1)bn + kL−1

t
L−2∑
n=0

bn

|]}
db

=

∫
exp

{
2πi

[
L−2∑
n=0

(kn − kL−1)bn

]}
db

= 1(k0 = · · · = kL−1),
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the integration occurring over the cube (−1
2
,+1

2
)L−1 and writing db for db0 · · · dbL−2.

Recall that ωi is the representative in
(
−1

2
,+1

2

)
of the equivalence class of ∆αi (mod 1),

so it will suffice to understand the law of 1-periodic functions of {∆αi}. With trigonometric
polynomials fn as before, we compute

E
L−1∏
n=0

fn(∆αn) =
∑
|k|≤K

(
L−1∏
n=0

f̂n(kn)

)
E exp[2πik ·∆α], (6.42)

the summation over integer vectors k with all components bounded by K, and

E exp[2πik ·∆α] = E exp[2πi∆k ·α] =
L−1∏
n=0

E exp[2πi∆knαn]

= 1(∆k = 0) = 1(k0 = · · · = kL−1),

since the kernel of the periodic Laplacian consists of constant vectors. Then (6.42) simplifies
as

E
L−1∏
n=0

fn(∆αn) =
∑
|k|≤K

L−1∏
n=0

f̂n(k) (6.43)

where k is now a single integer (corresponding to a vector with components kn which are
identical).

Thus

E
L−1∏
n=0

fn(βn) =
∑
|k|≤K

L−1∏
n=0

f̂n(k) = E
L−1∏
n=0

fn(∆αn), (6.44)

and by Stone-Weierstrass we extend to general 1-periodic functions fn as needed to verify
the proposition.

Using the above it is easy to check that the one-dimensional marginals are uniform
(−1

2
,+1

2
), and while {ωi}L−1

i=0 are dependent, removing just one of these is enough to restore
independence. We apply the central limit theorem for L − 1 of these, and note that the
variate omitted can alter the sum by at most 1

2
. It follows that as L→∞,

L−1/2S = L−1/2

L−1∑
i=0

J∆αiK = −L−1/2

L−1∑
i=0

ωi (6.45)

converges in distribution to a normal random variable with mean 0 and variance 1/12. Hence
the number of sites where ∆m+

i + J∆αiK 6= 0 is a very small fraction of L as L→∞. This,
together with the following theorem, lead to a scaling limit for m+.

The rescaled well coordinates z+ at threshold are obtained by the modification of ω
described in (6.26) and (6.27). This modification does not preserve all the properties of ω,
but a particularly important one is left intact.
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Theorem 6.11 ([67, Thm. 5.3]). The components z+
i of the vector z+ of centered, rescaled

well-coordinates at threshold are exchangeable.

The proof will require a more detailed examination of the threshold configuration. We
begin by noting the formula for ∆m at (±)-threshold (6.26) can be viewed as a result of
applying two corrections to the −J∆αK sequence:

∆mi = −J∆αiK + J ′i + (δi`+ − δi`−), (6.46)

where

J ′i =


−1(i ∈ σ{L− |S|, . . . , L− 1}) if S < 0

0 if S = 0

1(i ∈ σ{0, . . . , S − 1}) if S > 0

(6.47)

and `± are selected as follows: for the (+)-threshold configuration, we set

`+ =


σ(L− |S|) if S < 0

σ(0) if S = 0

σ(S) if S > 0

(6.48)

and for the (−)-threshold configuration, we set

`− =


σ(L− |S| − 1) if S < 0

σ(L− 1) if S = 0

σ(S − 1) if S > 0.

(6.49)

In both cases, the choice of `± dictates `∓ via the L-divisibility condition of Lemma 6.8.
We thus view the (±)-threshold configurations as “one up, one down” perturbations of
−J∆αK + J ′, with the same spacing

d ≡ `+ − `− ≡
L−1∑
i=0

i(J∆αiK− J ′i) (mod L) (6.50)

between the ±1, and we insist on choosing `± for the (±)-threshold, respectively. To prove
Theorem 6.11, we need to understand the relationship between d and ω. Fortunately these
interact as nicely as one could hope.

Lemma 6.12 ([67, Lem. 7.2]). The difference d between `± defined by (6.50) is uniform on
{0, . . . , L− 1} and independent of ω.

Proof. We begin with the part of d which depends on J∆αK, claiming that

L−1∑
i=0

iJ∆αiK (mod L) (6.51)
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is uniform on {0, . . . , L− 1} and independent of ω. For independence from ω, it is sufficient
to consider {ωi}L−1

i=1 , since ω0 is a function of these. We have

L−1∑
i=0

iJ∆αiK =
L−1∑
i=0

i(∆αi − ωi) = L(α0 − αL−1)−
L−1∑
i=0

iωi, (6.52)

and claim that {α0 − αL−1 mod 1, ω1, . . . , ωL−1} are distributed as i.i.d. uniform (mod 1)
variates conditioned to have

L(α0 − αL−1)−
L−1∑
i=1

iωi ∈ Z. (6.53)

As in Proposition 6.10, let fn(t) =
∑
|k|≤K f̂n(k) exp(2πikt) be some trigonometric polyno-

mials and consider Ef0(α0 − αL−1)
∏L−1

n=1 fn(∆αn):

∑
|k|≤K

L−1∏
n=0

f̂n(kn)E exp[2πik · (α0 − αL−1,∆α1, . . . ,∆αL−1)]. (6.54)

Write A for the matrix mapping

(α0, . . . , αL−1) 7→ (α0 − αL−1,∆α1, . . . ,∆αL−1). (6.55)

We need to evaluate

E exp[2πik · Aα] = E exp[2πiATk ·α] = 1(ATk = 0), (6.56)

and therefore require a description of kerAT . We have

A =



1 0 0 · · · 0 −1
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −2 1
1 0 0 · · · 1 −2


, (6.57)

and see that AT has rows 2 through L− 2 (indexing 0 through L− 1) in common with the
Laplacian; that (∆k2, . . . ,∆kL−2) = 0 means (k1, . . . , kL−1) is flat, so that

(k1, . . . , kL−1) = (an+ b)L−1
n=1 (6.58)

for some constants a and b. The second row then gives

0 = −2(1a+ b) + 1(2a+ b) = −b. (6.59)
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The first row gives
0 = k0 + 1a+ (L− 1)a = k0 + La, (6.60)

and the last
0 = −(−La) + (L− 2)a− 2(L− 1)a = 0 (6.61)

imposes no additional constraint. Thus ATk = 0 if and only if

k = (k0, . . . , kL−1) = (−La, 1a, 2a, . . . , (L− 1)a) (6.62)

for some constant a.
Compare this with the following: let β1, . . . , βL−1 be i.i.d. uniform on (−1

2
,+1

2
), let

θ ∈ {0, . . . , L− 1} be uniform and independent of the βi, and

γ =
1

L

(
θ +

L−1∑
n=1

nβn

)
(mod 1). (6.63)

For f0, . . . , fL−1 as before, we compute

Ef0(γ)
L−1∏
n=1

fn(βn) =
∑
|k|≤K

L−1∏
n=0

f̂n(kn)E exp[2πik · (γ, β1, . . . , βL−1)]. (6.64)

Here

E exp[2πik · (γ, β1, . . . , βL−1)]

= E exp

{
2πi

[
k0

L

(
θ +

L−1∑
n=1

nβn

)
+

L−1∑
n=1

knβn

]}

= E exp

{
2πi

[
k0θ

L
+

L−1∑
n=1

(
nk0

L
+ kn

)
βn

]}

=

(
1

L

L−1∑
t=0

e2πik0t/L

)
E exp

{
2πi

L−1∑
n=1

(
nk0

L
+ kn

)
βn

}
.

Note that e2πik0/L is an Lth root of unity, so the left sum above is zero unless L divides k0,
in which case the sum is L. But if L divides k0, say k0 = −La, then

E exp

{
2πi

L−1∑
n=1

(
nk0

L
+ kn

)
βn

}
= 1

(
kn =

−nk0

L
for n = 1, . . . , L− 1

)
, (6.65)

which can be nonzero only if kn = −n(−La)/L = na for n = 1, . . . , L− 1. Thus

{γ, β1, . . . , βL−1} d
= {α0 − αL−1 (mod 1), ω1, . . . , ωL−1}. (6.66)
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Now that we know
∑L−1

i=0 iJ∆αiK is independent of ω, and that J ′ is a function of ω, we
use the following elementary fact: if X and Y are independent random variables in Z/LZ
and Y is uniform, then X + Y is uniform and independent of X. Independence of d and ω
is immediate.

Proof of Theorem 6.11. Exchangeability of the components ωi of ω is immediate from Propo-
sition 6.10. We have

z+
i = ∆mi + ∆αi = ωi + J ′i + δi`+ − δi`− . (6.67)

By construction (6.47) and (6.48), J ′i and δi`+ are functions of the value ωi and the unordered
set of values {ω0, . . . , ωL−1}. Using the preceding Lemma 6.12, we find `− = `+−d is uniform
on {0, . . . , L− 1} and independent of ω.

We then recognize z+
i given by (6.67) as a function of ωi, the set of values {ω0, . . . , ωL−1},

and `−, the last of which is independent of ω. Exchangeability of the components of z+

follows.

This leads quickly to a nice macroscopic description of the threshold configurations as
L → ∞. We will describe this in terms of the strains, which are (approximately, and up
to normalization) the forces exerted by the springs connecting the particles. Write si =
mi+1 − mi, i = 0, . . . , L − 1, and call these the strains in the configuration indicated by
m. From previous work in CDW-like systems [28, 29], we expect that these should be in
some sense diverging as L→∞. For our toy model, we determine the precise nature of this
divergence. Define a rescaled, continuous parameter strain process according to:

s(L)(t) = (12/L)1/2sbLtc (0 ≤ t ≤ 1), (6.68)

i.e. the càdlàg process obtained from s after central limit rescaling. A well known limit
theorem for exchangeable variates (found for instance in [65]) gives the distributional limit
of the processes s(L).

Corollary 6.13 ([67, Cor. 5.4]). With m = m+ and the corresponding threshold strains
s = s+, as L → ∞ the processes s(L) converge distributionally in the Skorokhod space
D([0, 1]) (equipped with the J1-topology) to a periodic Brownian motion with zero integral:

B0(t) = B(t)−
∫ 1

0

B(r) dr (0 ≤ t ≤ 1), (6.69)

where B(t) is a standard Brownian bridge. The process B0 is Gaussian with zero mean and
stationary under periodic translations of the interval [0, 1], with covariance given by

EB0(0)B0(t) =
1

12
(1− 6t+ 6t2) (0 ≤ t ≤ 1). (6.70)



CHAPTER 6. AN EXACTLY SOLVABLE TOY MODEL FOR CDW 75

Proof. We first use Theorem 6.11 and a standard result (see for example [16, Thm. 24.2] or
[65, Thm. 16.23]) to show that the processes

ŝ(L)(t) ≡ L−1/2

bLtc∑
i=0

z+
i (0 ≤ t ≤ 1) (6.71)

converge in distribution in the Skorokhod space D([0, 1]) to (12)−1/2B(t) where B(t) is
standard Brownian bridge. We claim that we have distributional convergence,(

L−1/2

L−1∑
i=0

z+
i , L

−1

L−1∑
i=0

(z+
i )2δL−1/2z+i

)
d→ (0, (12L)−1δ0) ∈ R×M(R), (6.72)

where M(R) is the space of locally finite measures on R equipped with the vague topology.
In fact, the first component is exactly equal to 0, so we focus on the second component,
which we write as

L−1

L−1∑
i=0

(z+
i )2δ0 + L−1

L−1∑
i=0

(z+
i )2(δL−1/2z+i

− δ0). (6.73)

We claim the second sum above can be ignored as L → ∞. Fix a continuous, compactly
supported function f on R, and any ε > 0. Choose L sufficiently large that |x| < L−1/2

implies |f(x)− f(0)| < ε, and observe that∣∣∣∣∣
∫
f(x)L−1

L−1∑
i=0

(z+
i )2(δL−1/2z+i

− δ0)(dx)

∣∣∣∣∣ ≤ ε

4
(6.74)

almost surely, since |z+
i | ≤ 1

2
. Distributional convergence of the first sum of measures in

(6.73) amounts to distributional convergence of the coefficient

L−1

L−1∑
i=0

(z+
i )2 = L−1

L−1∑
i=0

ω2
i + L−1

L−1∑
i=0

(z+ − ωi)(z+
i + ωi)

d→ 1

12
. (6.75)

Here we have used the (weak) law of large numbers on
∑L−2

i=0 ω
2
i , since removing one term

restores independence, and∣∣∣∣∣L−1

L−1∑
i=0

(z+ − ωi)(z+ + ωi)

∣∣∣∣∣ ≤ L−1

L−1∑
i=0

|J ′i + δi`+ − δi`− |(2)

= 2L−1

∣∣∣∣∣
L−1∑
i=0

ωi

∣∣∣∣∣ d→ 0

again using law of large numbers. The convergence (6.72) holds, and scaling limit for ŝ(L)(t)
follows.
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We now return to s(L)(t). Writing ŝi ≡
∑i

j=0 z
+
i , a routine calculation gives

si −
(
ŝi −

1

L

L−1∑
j=0

ŝj

)
= αi − αi+1. (6.76)

In particular, the difference on the left-hand side is bounded by a constant, and thus disap-
pears in the central limit scaling. Note also that

1

L

L−1∑
j=0

ŝj =

∫ 1

0

ŝbLtc dt, (6.77)

and that integration
∫ 1

0
· dt is a continuous functional on the Skorokhod space D([0, 1]). The

convergence to the distribution of (6.69) follows.
That B0(t) has mean zero is immediate, and that it is Gaussian follows from easy ar-

guments. The discrete analogue, a Gaussian vector with its sum subtracted from each
component, is of course standard, since (possibly degenerate) Gaussian distributions are
preserved under affine maps. Working on the level of continuous processes, we can fix some
0 = t0 < t1 < · · · < tn−1 < tn = 1 and observe using standard properties of Brownian bridge
that ∫ 1

0

B(r) dr −
n∑
i=1

1

2
[B(ti−1) +B(ti)](ti − ti−1) (6.78)

is Gaussian and independent of (B(t0), . . . , B(tn)).
Stationarity can be deduced from that of the sequence of strains si, or from computing

the covariance EB0(t)B0(t′) for some t, t′ ∈ [0, 1] and recognizing this as a function of the dif-
ference t′− t; recall that wide-sense stationarity and stationarity are equivalent for Gaussian
processes. The formula (6.70) is obtained using Fubini’s theorem and calculus.

Simulations of full CDW systems [85, 86] suggest that the total polarization scales like
P ∼ L3/2. The scaling limit of Corollary 6.13 allows us to rigorously deduce this scaling for
the polarization of the toy model from flat initial condition to threshold.5 We compute

P =
1

L

L−1∑
i=0

m+
i =

∫ 1

0

m+
bLtc dt =

∫ 1

0


bLtc∑
i=0

si − min
0≤r≤1

bLrc∑
i=0

si

 dt

= L

∫ 1

0

{∫ t

0

sbLuc du− min
0≤r≤1

∫ r

0

sbLuc du

}
dt

= L3/2

{∫ 1

0

∫ t

0

L−1/2sbLuc du dt− min
0≤r≤1

∫ r

0

L−1/2sbLuc du

}
=
L3/2

√
12

{∫ 1

0

s(L)(t)(1− t) dt− min
0≤r≤1

∫ r

0

s(L)(t) dt

}
5The threshold-to-threshold polarization of the toy model scales differently; see [67] for details.
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Figure 6.1: Simulated distribution for the flat-to-threshold polarization.

This figure appears originally in [67]. For various system sizes L, the po-
larization has been rescaled by L−3/2. The frequencies were obtained from
106 random realizations for each size.

The functional on D([0, 1]) given by

ψ(t) 7→
∫ 1

0

ψ(t)(1− t) dt− min
0≤r≤1

∫ r

0

ψ(t) dt (6.79)

is continuous, so this yields a distributional limit for L−3/2P .
The distributional limit for

√
12/L3P can be re-expressed in terms of Brownian bridge:∫ 1

0

B0(t)(1− t) dt− min
0≤r≤1

∫ r

0

B0(t) dt = max
0≤r≤1

∫ 1

0

B(t)φ(t− r) dt, (6.80)

writing φ(t) = 1
2
− t for 0 ≤ t < 1, and extending so that φ is 1-periodic. The desired

distribution is that of

max
0≤r≤1

∫ 1

0

B(t)φ(t− r) dt = max
0≤r≤1

∫ 1

0

B(t+ r)φ(t) dt, (6.81)

extending B(t) to be 1-periodic. Noting that B(· + r) − B(r) has the same distribution as
B(·), and that φ(t) is orthogonal to constant functions, we find that

G(r) =

∫ 1

0

B(t)φ(t− r) dt (6.82)
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is a mean zero, stationary Gaussian process. A straightforward calculation gives

EG(0)G(r) =
1

720
(1− 30r2 + 60r3 − 30r4) (0 ≤ r ≤ 1). (6.83)

In particular, E(G(r) − G(0))2 ∼ r2 as r → 0, and a result of Weber [102] applies to show
there exists a constant c > 0 so that

c−1t
√

720Ψ(t
√

720) ≤ P
{

max
0≤r≤1

G(r) > t

}
≤ ct
√

720Ψ(t
√

720) (6.84)

for all t ≥ 0. Here Ψ(x) is the probability that a standard normal random variable exceeds
x. It follows that the distributional limit of L−3/2P has sub-Gaussian tail. We are unable to
describe the distribution more precisely, and in general distributions of maxima of Gaussian
processes are known explicitly in only a handful of cases [2]. See Figure 6.1 for simulation
results.

6.5 Summary

To close this chapter, let us recount what has been accomplished. For a periodic Fukuyama-
Lee-Rice model, we have established a basic theory for existence and uniqueness of threshold
configurations. A sandpile approximation of this system, suitable when the substrate po-
tential V is very strong relative to the springs connecting the particles, admits an explicit
formula for its threshold state. When the spatial randomness is uniform modulo one, this
leads to a Brownian scaling limit for the first differences of the configuration, allowing us
to rigorously obtain the asymptotic polarization scaling P ∼ L3/2 for the flat-to-threshold
case in one-dimension. This had been known previously only by numerical means for the full
model, and in addition to providing a new rigorous result in an area where few are known,
this raises a very interesting possibility: could the original model have a Gaussian scaling
limit as well? In the next section we report some preliminary numerical indications regarding
this question.
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Chapter 7

More charge density wave questions

In this chapter we present some numerical evidence gathered after the completion of [67, 68]
concerning the threshold state of the full model, set some goals for future investigations, and
suggest that what is really necessary to understand the full model could be quite difficult to
obtain.

7.1 Numerical evidence for a Gaussian scaling limit

The toy model and the full model do have differences. As an important example, the (nu-
merically observed) threshold-to-threshold polarization for the full model scales in L the
same way as the flat-to-threshold polarization; for the toy model, the exponents are differ-
ent [67]. We do also observe some similarities. The previous chapter identified a Brownian
scaling limit for the threshold strains in the toy model. We now discuss the possibility that
something similar could be true for the full model, aided by some preliminary numerical
evidence.

We have implemented code intended to identify the threshold well numbers for the full
model given the potential parameter λ and the phase shifts α. We have used the Python
language and the NumPy/SciPy [64] array and statistical facilities, and figures have been
prepared using Matplotlib [60]. Our algorithm is essentially the ZFA, with some adjustments:

• We first generate the toy threshold well numbers. In light of (6.26), these can be
obtained by inverting the Laplacian (using FFTs), rounding to integers, and then
applying the toy ZFA to verify (or correct) the result.

• The toy threshold well numbers are used as the initial well numbers as we iterate the full
ZFA. As (aside from numerical considerations) the ZFA has an essentially unique fixed
point, the initial condition does not affect the result, but only the number of iterations
required to reach it. This seems to have reduced the running time in our simulations,
indicating that the toy model’s threshold well numbers give a rough approximation to
those of the full model, or at least a better approximation than starting with m = 0.
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• Whereas in the toy model we have (with proper rescaling) only integer changes and
consequently no fear of rounding error, for the full model we have many repeated
additions and subtractions of powers of η. This is a recipe for instability [58], and
measures are taken to counteract this. Namely, once the ZFA indicates that all sites
must jump (i.e. we are at threshold), the well coordinates are recomputed from α and
the candidate m. The operation producing ỹ is a convolution, and the computation
can be effected efficiently and with stability using FFTs. We then apply the ZFA again,
with the corrected well coordinates. Only when we obtain well numbers which, after
correction of ỹ, do we stop and call the result the threshold well numbers.

Using this code we have generated many independent pseudorandom environments α for
system sizes L ∈ {1024, 2048, 4096, 8192}, and computing the threshold well numbers with
potential strength1 λ = 2.5. The first difference of m is then computed, giving the strains.
The questions of particular interest are these

(i) Is the threshold strain process asymptotically Gaussian as L→∞?

(ii) Does the limiting covariance match that which we observed rigorously for the toy
model?

Of course, if the answers to (i) and (ii) are both yes, then the threshold state of the full
model has the same scaling limit as the toy version. Showing this rigorously would be a
considerable development in the field, but for reasons indicated in Section 7.3, we expect
that numerical results are the best we can hope for at the moment.

Unfortunately we cannot give a definitive answer to question (i). For finite L, we know
that things are not Gaussian without running any simulations. The strain process, as a
first difference of integers, takes only discrete values, and since ∆m is easily shown to be
bounded for the full model as well as the toy, these values occupy a region whose extent is
bounded by a function of L. We also do not have at this time a conjecture regarding the rate
of convergence to a Gaussian limit. In these conditions, our assessment of the asymptotic
normality is necessarily more art than science.

We begin with an assessment using the “eyeball metric”: in Figure 7.1 we have plotted
the histogram of a one-dimensional marginal of the strain process at size L = 8192. The
discrete nature of the underlying set is somewhat apparent in the “spikes” that appear, but a
smoothed version of the given shape does not look substantially different from the Gaussian
function which has been superimposed.

We can, of course, pursue a more quantitative approach. In Figures 7.2 and 7.3 we show
the results of applying the D’Agostino-Pearson [33, 34] and Shapiro-Wilk [97] normality tests.
We have divided our data set into chunks consisting of 100 samples each, and tested these,
rather than testing the entire set at once (and thus having no evident way to display the
variability inherent in the results). In both cases the results compare favorably with genuine2

1There is nothing particularly meaningful about this choice, except that the same was used by M. Mungan
and the author for some prior simulation work with the full model.

2Truly genuine normal variables require a natural entropy source, and we have not gone to this extreme.
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Histogram for one-dimensional marginal at size 8192 with 4096 realizations

Figure 7.1: Histogram for one-dimensional marginal of the strain.

We have rescaled the strain process according to
√

12/L, just as for the
toy model. The probability density for a normal random variable with
mean and variance chosen to match the empirical values of these for the
data set. We believe the “spikes” to be manifestations of the discrete
nature of the underlying distribution; choosing a different number of bins
for the histogram results in more spikes or fewer, in different places.

batches of normal variables. The Shapiro-Wilk results in particular indicate improvement in
the results as L increases, as we would expect. There are many other single-variable normality
tests we might try; we have selected these two because implementations are available in SciPy.

Of course normality of one-dimensional marginals is insufficient for normality, and we de-
sire a multivariate test. The variety of tests available for multivariate normality is overwhelm-
ing, and we have been persuaded by [56] to specialize on the BHEP test, which computes a
weighted L2-difference between the empirical characteristic function of the data (normalized
to have mean zero and the identity covariance matrix) and that of a genuine Gaussian. This
statistic has two nice properties: invariance under nonsingular affine transformations and
consistency, the latter indicating that the test can distinguish3 between normal distributions

3Given enough data, of course.
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Figure 7.2: D’Agostino-Pearson normality test results.

This box plot describes the p scores obtained using the D’Agostino-
Pearson [33, 34] normality test, which combines skewness and kurtosis
tests. As usual the box surrounds the middle 50% of the points, with a
line in the center indicating the median. The system sizes L are indicated
at the bottom, and the final column was produced from running the test
on pseudorandom normal variables. The strain results compare favorably
with the normal results.

and any fixed non-Gaussian alternative.
We have repeatedly tested groups of 200 samples of ten-dimensional marginals, chosen

to be (as nearly as possible) equispaced over 0, 1, . . . , L − 1. As before we have included
also genuine normal variables for comparison. The results are shown in Figures 7.4 – 7.7.
The quantity of samples per batch and dimension have been selected so as to allow com-
parison with Table 7.1, which helps to verify that the BHEP implementation (done by the
author, unlike the prior tests) is correct. Note that unlike the p values, where larger values
indicated that we cannot reject the hypothesis of normality, smaller BHEP statistics indi-
cate an empirical distribution close to a Gaussian. The article [57] recommends rejection of
hypothesized normality when the statistics exceed the thresholds indicated in Table 7.1.

Of course the evidence in our possession cannot confirm normality, but that we are unable
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Figure 7.3: Shapiro-Wilk normality test results.

Here we have applied the same testing procedure as in Figure 7.2, but
with the Shapiro-Wilk test [97]. Unlike the former figure, the p values are
increasing in L, indicating that, as far as this test is concerned, the variates
are behaving more like normal variables as the system size increases.

β = 0.1 β = 0.5 β = 1.0 β = 3.0
1− α: 0.9 0.95 0.9 0.95 0.9 0.95 0.9 0.95

thresholds: 2.87× 10−4 3.02× 10−4 0.467 0.480 0.979 0.986 1.00001 1.00008

Table 7.1: Numerically computed thresholds for rejecting, at the indicated levels of sig-
nificance, the hypothesis of multivariate normality given 200 independent samples from a
distribution on R10. The values here have been reproduced from [57, Table IV].
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Figure 7.4: BHEP normality tests on ten-dimensional marginals, β = 0.1.

The rejection thresholds for significance levels α = 0.1 and α = 0.05 from
Table 7.1 are 2.87×10−4 and 3.02×10−4, respectively. The genuine normal
variates gave statistics which sit almost entirely under this threshold, as
one would expect, and so did the marginals of the strain process for sizes
larger than 1024. Each batch includes 200 realizations, and the number
of batches used for sizes 1024, 2048, 4096, and 8192 were 163, 81, 40, and
20, respectively.

to reject it is an indication that an attempt to prove normality may not be in vain. We turn
now to question (ii), the covariance of the strain process. Here our results strongly suggest
convergence to the limiting covariance for the toy model. We have rescaled all the strain
processes by

√
12/L and replaced the discrete indices from 0, . . . , L − 1 with the interval

[0, 1), just as in Corollary 6.13. Figure 7.8 shows the results, using all available data. In
light of these results, we are optimistic about the possibility that the threshold strains for
the full model have a scaling limit, and in fact the same scaling limit as we found for the toy
model.
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Figure 7.5: BHEP normality tests on ten-dimensional marginals, β = 0.5.

The procedure of Figure 7.4 was repeated with the parameter β = 0.5.
Here Table 7.1 gives rejection thresholds 0.467 and 0.480.

7.2 A dynamic flat-to-threshold evolution

One of the features of [67], which we have omitted from this document to focus on other
portions of this work, is a description of the threshold-to-threshold evolution for the toy
model. Here we start from the (−)-threshold state and iterate the ZFA until we reach the
(+)-threshold. Due to the simplified, sandpile-like behavior of the toy model,

• the difference between the initial well numbers and the current well numbers has,
throughout this process, a trapezoidal shape;

• the shape of the trapezoid is determined entirely by two-sided, lower record process;
and

• a heuristically (but, at present, not rigorously) justifiable replacement of some ex-
changeable variates with i.i.d. variates gives an excellent approximation of the average
rescaled polarization as a function of the difference of zmax − z+

max, the current maxi-
mum well coordinate minus that at threshold. Note that zmax − z+

max is the analogue
in this case of F+ − F , the threshold force minus the current force.
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Figure 7.6: BHEP normality tests on ten-dimensional marginals, β = 1.0.

Rejection thresholds from Table 7.1: 0.979 and 0.986. Again our evidence
is insufficient to reject normality.

It would be quite desirable to have such a description for the flat-to-threshold evolution;
not just the final polarization, which we have determined using Corollary 6.13, but one-
dimensional marginals (or at least averages of these) over all values of4 zmax − z+

max.
In the threshold-to-threshold case, there is a single “active region” where jumps are

occurring, and these occur in such a way that the result is a growing trapezoidal displacement
from the initial well numbers. In some numerical work conducted by Mungan [82] it appears
that after an initial phase consisting of very small avalanches, due to the negative correlation
between the initial well coordinates when m = 0, that several distinct regions of activity
appear, grow, and merge. A precise description of this behavior has not yet been achieved,
and would be an interesting subject for future work.

4Actually, we cannot really specify all values of zmax − z+max, but we can set a maximum allowable value
for this, and look at the first ZFA iterate for which this quantity is below this maximum.
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Figure 7.7: BHEP normality tests on ten-dimensional marginals, β = 3.0.

Rejection thresholds from Table 7.1: 1.00008 and 1.00019. Here we have
set the vertical axis to exclude a small number of “fliers,” which (with one
exception) occurred at size L = 1024, so as to see the boxed range more
clearly.

7.3 An `∞ Aubry-Mather theory?

Finally, we point out that what the Fukuyama-Lee-Rice model really demands is nothing
less than an Aubry-Mather theory for a one-sided, `∞ objective rather than the classical
`2-like objective (for the case where the particle interaction is Hookean). We seek valid
configurations, perhaps with a fixed rotation number, which approach (or achieve?)

inf
m

sup
i
ỹi (7.1)

within the stated class. This seems quite nontrivial: on the one hand, the `∞ objective is
not sensitive to (tiny) changes in well coordinates at sites with well coordinates smaller than
the supremum, so one might expect some local flexibility. On the other hand, for generic η
we cannot change any well coordinates without changing all of them.

The Aubry-Mather theory for twist maps and the Frenkel-Kontorova model was developed
quite long after these sorts of objects were considered initially, and even guided by this
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Figure 7.8: Empirical covariance for the full model.

The empirical strain covariance for the indicated system sizes, with num-
ber of realizations in parentheses, are plotted, together with the limiting
covariance for the threshold strains in the toy model. The data for the full
model have been normalized by

√
12/L, just as for the toy model. None

of the curves differs drastically from the ideal, and the differences we do
see are decreasing in L.

example, the author can find no reason to believe that an `∞ version could be quickly
developed. However, this may be done eventually. Other L∞ variational problems have,
with significant effort, admitted interesting characterizations for their solutions. (Consider
as an example the problem of extending a function defined on the boundary of a domain to
its interior, in such a way that the extension (i) is Lipschitz and (ii) has the smallest possible
Lipschitz constant. The solution to this problem is an infinity harmonic function, a viscosity
solution to the infinity Laplace equation [31, 63].) The author hopes to pursue this in future
work, guided in part by intuition acquired in the investigation of the toy model reported in
the previous chapter.
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Chapter 8

Conclusion

We have presented two models, one involving scalar conservation laws with stochastic initial
conditions, another an elastic structure driven through a disordered medium, and toy versions
of each. We have not yet succeeded in rigorously solving the problems originally posed, but
for these toy models we have obtained results, the most important of which are probably in
Theorem 3.14 and Corollary 6.13.

Additionally, the process of investigating the toy models has led us to formulate questions
related to the original problems that seem to be novel, particularly:

• Do Hamilton-Jacobi equations with Poisson initial conditions such as those described
in Chapter 4 have solutions which are described for t > 0 by a grand canonical ensemble
with a simple potential?

• Do the threshold strains of the Fukuyama-Lee-Rice model have a Brownian scaling
limit, as appears may be the case based on preliminary numerics?

We might never have considered these, if not for the time spent studying the toy versions.
It also seems likely that the intuition built up in this process will be helpful in addressing
these new questions, though only time will tell.

The author believes that these examples, together with several others, illustrate the
usefulness of identifying simple (and in some cases, exactly solvable) models in the field of
statistical mechanics, or in any area where the questions have a similar flavor. In a field full
of daunting problems and overwhelming technicalities, an incremental approach—solving a
toy problem, then extending—seems preferable to going for broke on a problem which might
remain open for some time.
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