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1Department of Computer Science and Engineering, University of Notre Dame, US

2Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 
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Abstract

Cell segmentation and motion tracking in time-lapse images are fundamental problems in 

computer vision, and are also crucial for various biomedical studies. Myxococcus xanthus is a type 

of rod-like cells with highly coordinated motion. The segmentation and tracking of M. xanthus are 

challenging, because cells may touch tightly and form dense swarms that are difficult to identify 

individually in an accurate manner. The known cell tracking approaches mainly fall into two 

frameworks, detection association and model evolution, each having its own advantages and 

disadvantages. In this paper, we propose a new hybrid framework combining these two 

frameworks into one and leveraging their complementary advantages. Also, we propose an active 

contour model based on the Ribbon Snake, which is seamlessly integrated with our hybrid 

framework. Evaluated by 10 different datasets, our approach achieves considerable improvement 

over the state-of-the-art cell tracking algorithms on identifying complete cell trajectories, and 

higher segmentation accuracy than performing segmentation in individual 2D images.

I. Introduction

Characterizing the dynamics of cell morphology and motility is a fundamental problem in 

various biomedical studies. With the development of advanced techniques on imaging and 

experiments, identifying the trace of cell populations in both the space and time in time-

lapse images has become an important issue in computer vision [1]. For example, cell 

tracking algorithms have been applied to quantitative biological studies [2], such as 

quantifying the effects of inhibitors on cells passing through the cell-cycle, monitoring cell 

motility, and measuring the nuclear translocation. Also, tracking cells and the evolution of 

the associated constellation patterns during the development of kidney tissues is a key step in 

the study of cystic kidney diseases [3], [4].

The objective of this work is the segmentation and tracking of Myxococcus xanthus, a social 

surface-dwelling bacterium. The rod-like M. xanthus cells are a type of Gram-negative 

bacteria with noticeable collective motions, called swarming. Cell-cell contact occurs 

frequently to regulate individual behaviors while the whole swarm is constantly in motion 

[5]. Time-lapse confocal microscopy is widely used to visualize the development of M. 
xanthus swarms over time. Experiments have been conducted to investigate the mechanism 

of M. xanthus swarming at different scales, from the individual cell’s surface gliding 
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motility [6] to the highly coordinated motions in large swarms [7]. M. xanthus has been 

recognized as a model organism for studying the collective cell motion principles, which 

may be generalized to other cellular systems [8].

The time-lapse images collected in an experiment may contain hundreds of image frames 

with hundreds of cells in each frame. Thus, manual cell segmentation and tracking tends to 

be a tedious process with poor reproducibility, which dramatically increases the need for 

(semi-) automated methods.

M. xanthus poses new challenges for segmentation and tracking. During cell-cell collision, 

the physical distances between cell boundaries may fall below the imaging resolution. The 

obscure boundaries of tightly touching cells — head-to-head touching and touching in large 

clusters with high cell density — make cell segmentation difficult (e.g., Fig. 1). 

Furthermore, over-segmentation or false negative errors are sometimes difficult to avoid 

within tightly packed swarms. This is because the squeezed space among individual cells 

may cause local image degradation, and consequently make it difficult to correctly detect all 

cells. The difficulty in tracking is mainly due to four aspects: the proximity of cell positions; 

the similarity of elongated cell shapes; the diversity of cell behaviors; the cells being 

difficult to detect.

A. Related Work

Known algorithms for cell segmentation and tracking on time-lapse images can be broadly 

classified into two categories: detection association (DA) and model evolution (ME).

1) Detection Association—In the DA framework, segmentation is first performed on 

each image frame, and optimal cell correspondences are then built across all frames of the 

image sequence to form cell trajectories. The optimality of cell correspondences can be 

defined locally, frame-wise, or globally. Local optimization is used to search for the best 

match for a particular cell within a certain spatial range in the next frame [9]. Optimal 

associations between cells in consecutive frames can be formulated as a minimum-cost flow 

problem [10] or 0–1 integer programming [11]. Also, the correspondences in the whole 

image sequence can be obtained by a global optimization using the Viterbi algorithm [12] or 

k-partite graph matching [13]. A hierarchical approach was also proposed, which performs 

both frame-wise and global optimization [14].

Joint segmentation and tracking schemes were proposed recently [4], [15]. Different from 

traditional detection association methods, the detection step only obtains segmentation 

candidates. In the association step, the actual segmentation and trajectories are built 

simultaneously in a single model, which optimizes spatial-temporal consistency globally.

One advantage of the DA framework is the flexibility in handling various cell behaviors. 

But, because segmentation is performed separately on each frame, the temporal context is 

not fully leveraged when obtaining the segmentation. In some situations, like tightly 

touching M. xanthus, the segmentation may suffer from severe errors for this reason. Poor 

segmentation can degrade the tracking accuracy considerably, although some approaches 

may handle certain types of segmentation errors [14], [15], [16]. On the other hand, 
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morphological properties, such as dynamic changes of cell shapes, cannot be fully extracted 

from error-prone segmentation results.

2) Model Evolution—In the ME framework, segmentation and tracking are performed 

simultaneously by evolving cells in the form of contours from frame to frame, i.e., using the 

segmentation of one frame to initialize the evolution in the next frame. By propagating 

information from frame to frame, temporal context is exploited for segmentation, and the 

results could be better than those of the DA framework, especially on images of low quality. 

Mean-shift based algorithms have been used to track migrating cells when only cell 

centroids are of interest [17]. Active meshes [18], open active contours [19], and level set 

based techniques [20], [21] have been applied to track various types of cells. Shape 

constraints [22] or topology constraints [23] can be adopted during evolution to achieve 

higher accuracy, and various techniques [21], [24] can be used to reduce the computational 

complexity of conventional level sets significantly. Also, model evolution can be extended 

and implemented in the graph-cut framework [25], [26].

But, due to the nature of propagation, ME methods cannot handle all cell behaviors well 

enough, and may perform poorly when cell displacements are large between consecutive 

frames. For example, a separate step is usually applied to each frame, before or after 

evolution, to identify cells entering the imaging window using classic segmentation methods 

[20], [24], [25]. Understandably, this segmentation step could be error-prone, which may 

introduce false contours and propagate errors. Moreover, ME methods often assume that the 

same cell overlaps considerably in consecutive frames.

Attempts have been made to combine the DA and ME frameworks (e.g., [27]); but, such 

methods still face troubles when cells are tightly packed.

B. Our Contributions

In this paper, we propose a new hybrid framework for segmenting and tracking cells, which 

combines the DA and ME frameworks and demonstrates its applicability on time-lapse 

images of M. xanthus. The spirit of our approach is to employ a detection association 

scheme to build preliminary correspondence, then analyze the temporal correspondence to 

identify cells whose segmentation and tracking may be problematic, and finally invoke a 

model evolution scheme to handle those troublesome cells.

Our hybrid framework takes advantage of the complementary strengths of the DA and ME 

frameworks by means of two complementary modules, called Context Builder and Cell 
Tracker.

The Context Builder module (similar to the DA framework) extracts and analyzes the 

spatial-temporal context to guide the contour evolution performed by the Cell Tracker. The 

guidance from the context helps overcome common issues in known active contour methods, 

e.g., leakage or inability to deal with large cell displacements between consecutive frames. 

Also, the Context Builder can alleviate the burden of the contour evolution in handling 

entering cells, which is another common limitation of the ME framework. In addition, when 

using only the ME framework, each contour has to evolve in every frame. In contrast, 
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combining with the DA framework allows a contour to evolve only when necessary. This 

may reduce the possibility of error propagation, comparing to the ordinary ME framework.

The Cell Tracker module (similar to the ME framework) tackles the segmentation and 

tracking of those cells on which pre-segmentation or association fails; it refines the pre-

segmentation so that the Context Builder can build more accurate correspondence for the 

next frame. Consequently, our method obtains better tracking results than the state-of-the-art 

cell tracking algorithms, and achieves higher segmentation accuracy than some well-known 

cell segmentation algorithms which work on each individual frame.

This work extends our pioneer work in [28]. The core idea of this paper, i.e., a systematical 

scheme combining the DA and ME frameworks, was sketched in [28]. Also, some 

preliminary experiments showed promising results. In this paper, we propose a new 

matching scheme for the Context Builder in the framework, while the work in [28] directly 

adopted the EMD matching model in [14]. We formulate the matching model in a different 

way and design a new measure as the EMD ground distance, a key component of the model. 

As a consequence, our new algorithm can establish a more accurate temporal context than 

that in [28] (see Section II-A1 for detailed discussion). Besides, it was suggested in [28] to 

manually correct the segmentation of the first frame. Here, we propose a new approach to 

automatically refine the segmented regions in the first frame, which achieves comparable 

performance as manual correction. Moreover, a thorough evaluation of our proposed 

approach is conducted with more diverse datasets. We systematically evaluate the stability of 

parameter selections, segmentation and tracking accuracy. A novel measurement is proposed 

in this work for segmentation accuracy evaluation. Finally, we discuss both the limitations 

and applicability of our proposed framework in various cell tracking problems.

C. Organization of the Paper

The rest of the paper is organized as follows. Section II describes the proposed hybrid 

framework, which includes two key modules, Context Builder (Section II-A) and Cell 
Tracker (Section II-B). Section III presents the implementation details, evaluation and 

comparison results. Finally, Section IV concludes the paper and discusses the generality of 

the proposed hybrid framework and future work.

II. Methodology

Fig. 2 shows our framework outline. On each frame of the input image sequence, pre-

segmentation is obtained by an application-dependent algorithm. The one we use for M. 
xanthus is described in Section III.

The pre-segmentation of the first frame may be manually examined and corrected. Manual 

correction is especially useful for low quality images, serving as prior knowledge to tackle 

extremely difficult cases. Detailed discussion on manual correction and automation will be 

presented in Section III-C.

On each frame K > 1, our method performs two steps:
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Step 1: The Context Builder employs a matching model based on the Earth Mover’s 

Distance (EMD) on frames {K−1; …; K+t} to associate detected cells, where the 

constant t > 1 indicates the depth of the temporal context. The tasks of the Context 
Builder are: (1) detecting and confirming the newly entering cells in frame K; (2) 

confirming cells in frame K that have good pre-segmentation and associating them 

with some existing trajectories; (3) identifying the cells on which segmentation or 

association is uncertain. For such error-prone cells, the Cell Tracker will be invoked 

in the next step.

Step 2: The Cell Tracker simultaneously segments and tracks the error-prone cells 

identified in Step 1, using active contours. For M. xanthus specifically, we propose an 

open active contour model based on the Ribbon Snakes [29] and the Chan-Vese 

model [30]. Note that while M. xanthus cannot merge, the Cell Tracker can be 

adapted to cell fusion in other problems, by allowing contours to merge during the 

evolution.

At the end, the final segmentation of frame K is obtained. Each segmented cell in frame K is 

either associated with an existing trajectory or starts a new trajectory.

A. Context Builder

Our Context Builder module works on consecutive frames K − 1 to K + t to build the 

temporal context by performing hierarchical matching based on the Earth Mover’s Distance 

(EMD) matching model [14]. The major advantages of the EMD matching model include 

the capability of handling cells moving in/out the image frames and cell divisions, and the 

robustness to various segmentation errors, such as false negative segmentations or falsely 

merged cells.

Suppose frame K ≥ 2 is being processed and cell trajectories have been constructed for 

frames 1 to K − 1. The EMD matching model is applied to establish cell correspondences in 

frames K − 1 to K + t (we use t = 3, so the depth of the temporal context is five consecutive 

frames). Frame K − 1 is included in order to associate cells in frame K with some existing 

cell trajectories. By analyzing the cell correspondences in the temporal context, three types 

of objects will be extracted: confirmed cells (c-Cell), reliable cells (r-Cells), and uncertain 

cells (u-Cell).

C-Cells are the cells in frame K that have no correspondence with the cells in frame K – 1 

but have corresponding cells with consistent shapes (i.e., the length differs less than a 

parameter Lenter) and positions in frames K + 1, …, K + t. Confirmed by the temporal 

context, c-Cells could be entering cells with high likelihood of not being false alarm. Thus, 

no manual correction is needed for entering cells in our method.

R-Cells are the cells in frame K that have unique one-to-one correspondence with some cells 

in frame K − 1 with consistent cell shapes (i.e., the length differs less than Lseg). The pre-

segmentation of r-Cells can be finalized, due to the reliable correspondence and the high 

shape similarity with cells in frame K − 1.

Chen et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



U-Cells are the cells in frame K − 1 with no correspondence in frame K or whose 

corresponding cells in frame K are not r-Cells. Intuitively, u-Cells are the cells at the ends of 

some existing trajectories, whose correspondence cannot be confidently determined in frame 

K. If a u-Cell touches the image border and has no correspondence in the succeeding frames, 

then its trajectory will be terminated (i.e., considered as a leaving cell). The remaining u-

Cells are propagated to frame K and fed to Cell Tracker.

The final segmentation of frame K contains all successfully evolved u-Cells, all r-Cells, and 

c-Cells not overlapping with any evolved contours.

1) Matching Algorithm—We adopt and re-formulate the hierarchical association scheme 

based on the EMD matching model in [14] for linking the detected cells. The classical 

definition of EMD can be found in [14] and [31].

EMD Matching Model and Hierarchical Association: We extend the classical definition 

of EMD to a matching model, and our hierarchical association scheme applies this matching 

model at two levels, namely, between every two consecutive frames and within a certain 

number of consecutive frames (i.e., the temporal context).

In our EMD matching model, the goal is to find the optimal correspondence between two 

sets of cells, ℘ = {(p1, wp1), …, (pn, wpn)} and  = {(q1, wq1), …, (qm, wqm)}, where pi 

(resp., qj) is a cell with wpi (resp., wqj) pixels in an image. Two virtual cells p0 and q0 with 

very large weights, e.g., wp0 = wq0 = ∞, are also created.

The model is formulated as the following optimization problem.

(1)

subject to

(2a)

(2b)

(2c)
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Here, ℘̂ = (p0, wp0) ∪ ℘ and 𝒬̂ = (q0, wq0) ∪ . Optimal cell correspondences between ℘ 
and  can be obtained by solving the above optimization problem, in the sense that the 

minimum EMD value means the smallest total matching cost and a large fij value (for i ≠ 0 

and j ≠ = 0) implies a strong correspondence between pi and qj.

An intuitive interpretation of the EMD model is that pi is a pile of dirt of wpi quantities, and 

qj is a hole which can hold dirt by up to wqj quantities; fij is the amount of dirt distributed 

from pile pi to hole qj, and Dij is the cost for dirt distribution of one unit quantity from pi to 

qj. Then, EMD is to compute the minimum total cost for the entire dirt distribution.

Dij, also called the ground distance, is a key component of the EMD model. Our definition 

and computation of Dij are detailed in Appendix 2. Intuitively, Dij has the following 

interpretation. When i and j are both positive, Dij measures the matching cost of two cell 

detections. D00 = ∞, because flows between virtual cells are meaningless. If either i or j is 0, 

but not both, there are two different interpretations. Suppose i > 0 and j = 0. If pi is close to 

the image border, then Dij measures the cost for pi leaving the imaging window. Otherwise, 

Dij is the cost for a pixel in pi matching to nothing, which is used to model the situation that 

pi is a false alarm or the corresponding cell is somehow missing. Also, this is designed to 

accommodate the possible discrepancy between the numbers of pixels in the segmentation of 

the same cell across different frames. The case with i = 0 and j > 0 can be interpreted in a 

similar manner.

We apply the EMD matching model in a hierarchical fashion. In the low-level association 

(Fig. 3(b)), the EMD matching model is applied to every two consecutive frames in a 

conservative manner. In other words, we accept only strong correspondence, i.e., pi ∈ ℘ is 

associated with qj ∈  only if the fij value in the optimal solution satisfies fij > ρ · min (wpi, 

wqj) and Dij < λ. Here, ρ and λ are determined empirically.

Child-deficient (resp., parent-deficient) cells: For a cell in frame K, its corresponding cells in 

frame K +1 (resp., K − 1) are called children (resp., parents). For each cell not in the last 

(resp., first) frame of the temporal context, if the total weight sum of its children (resp., 

parents), Wsum, and its own weight, Wcell, satisfy |Wsum − Wcell| > (1 − ρ) |Wcell|, then we 

call it child-deficient (resp., parent-deficient). Here, ρ is the same as the aforementioned 

parameter, i.e., the maximum acceptable ratio between the flow amount and cell size.

In the high-level association (Fig. 3(c)), the EMD matching model is applied to all child-
deficient cells and parent-deficient cells within the temporal context, i.e., frames K − 1, K, 

…, K + t. The ground distance is assigned using the same method as for the low-level 

association. Different from the low-level, the weight of each cell is set as |Wsum − Wcell|. In 

the optimal solution, the correspondence between a child-deficient cell and a parent-

deficient cell actually reconnects a “broken” trajectory.

Note that, the EMD matching model in [14] only requires the total amount of flows not 

exceeding the total weight of P and that of Q; but, when the total weights are highly 

unbalanced between P and Q, only a small amount of flows is allowed, and thus some of the 

actual correspondence cannot be established. Comparing to [14], the EMD matching model 

is improved here. Specifically, we require that all “dirt” of each pile be completely 
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distributed to either some actual holes or the virtual hole (q0), and the “space” of each hole 

be fully filled by flows from either some actual piles of dirt or the virtual pile (p0).

2) Spatial-temporal Context—The Context Builder assists the Cell Tracker by preparing 

the spatial-temporal context. The spatial context forms a Barrier Map of all r-Cells, which 

will be used to partially guide the contour evolution in the Cell Tracker (see Section II-B2), 

namely, defining a force field according to the positions of all r-Cells. The force field is of 

large magnitude when close to r-Cells, and vanishes when far enough away from the vicinity 

of r-Cells.

The temporal context acts on all propagated u-Cells to initialize their evolution in the Cell 
Tracker. For a particular u-Cell, its initial contour in frame K is obtained by an approach 

based on the Earth Mover’s Morphing (EMM) [32], if it has at least one corresponding cell 

in the temporal context. If the u-Cell has no corresponding cell and is away from the image 

border, then it will be directly copied to frame K as the initial contour. (See Appendix 1.3 for 

the implementation details.) Otherwise, it will be treated as a leaving cell and the associated 

trajectory will be terminated.

B. Cell Tracker

The Cell Tracker module employs an open active contour model to segment and track cells 

simultaneously. For M. xanthus, the cell contours are represented as Ribbon Snakes [29]. 

Specifically, each contour is of a parametric form ϕ(s) = (x(s), y(s), w), where (x(s), y(s)) is 

a parametric curve (representing the cell centerline) and w is the half width of the contour 

(see Fig. 5). The objective is that the parametric curve can converge to the cell centerline. In 

practice, ϕ(s) is represented as an ordered list of control points. The number of control points 

for each curve is fixed. Since M. xanthus in our data may range from 20 to 80 pixels long, 

20 control points are used for a balance of simplicity and accuracy. The half width w is 

computed from the segmentation result of the same cell in the preceding frame and is the 

same for each control point.

The initial positions of the contours are determined by interpreting the temporal-context 

extracted by the Context Builder (see Section II-A2). Because the motion of an M. xanthus 
cell is led by one of its two poles, the displacements of the poles could be larger than the 

displacement of the rest of the cell body. To reduce the portion of the initial contour 

potentially residing outside of the expected cell body, the length of the initial contour will be 

shortened by η from the two tips before evolution, where η is a value in (0, 1) indicating the 

curve shortening ratio.

The evolution of each contour ϕ is governed by the following equation. All contours evolve 

simultaneously, namely, we update the positions of all contours at each time step.

(3)
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where ω1, ω2, and ω3 are the weight parameters of the forces, chosen empirically. We use 

ω1 = ω3 = 1 and ω2 = 0:25.

For each control point (x(s), y(s)) of a cell, the image force and repelling force are the sum 

of the respective forces exerted on the two outer boundaries of the contour in the outward 

normal directions. In addition, extra forces, including Flength, Fimage, and Frepel, are applied 

in the outward tangential direction on the first and last control points of the curve (see Fig. 

6). Furthermore, the internal force is exerted on each point to regulate the smoothness of the 

curve.

1) Image Force—The image force is designed to attract the curves to the cell centerlines. 

The computation of the image force is based on the following observation. The cell regions 

are of slightly higher intensity than the average background intensity. The cell regions and 

the background are mostly separated by narrow bands of low intensity pixels, but giving 

possibly weak edge evidence (see Fig. 4). Therefore, the Chan-Vese model is selected for 

computing the image force [30], instead of edge-based algorithms. Specifically, the 

magnitude of the image force at a point p is IM (p) = − ((I(p) − μ1)2 − (I(p) − μ2)2), where I 
(p) is the intensity at p, μ1 is the average intensity inside the corresponding cell region 

enclosed by the outer boundary, and μ2 is the average background intensity and computed by 

averaging the intensity of pixels not within any region enclosed by evolving contours.

2) Repelling Force—A contour will suffer from the repelling force defined by the Barrier 
Map when it moves close to other contours. Let {ϕ1, ϕ2, …, ϕn} be all evolving contours. 

Suppose p is a point on the outer boundary of ϕi, or the first or last control point of ϕi. Then, 

the magnitude of the repelling force at p is RP (p) = BM (p) + EC (p), where BM (p) 

denotes the force from the Barrier Map, and EC (p) denotes the force from the Evolving 
Contours other than ϕi.

Here, d(p) is the shortest distance from p to any point on the skeleton of any r-Cell; dj(p) is 

the distance from p to ϕj; Lrepel is a constant cut-off value of the furthest distance that the 

repelling force can act on. As a rule of thumb, Lrepel can be set as the average cell thickness.

3) Length Force—Between consecutive frames, the shape of a cell should be consistent. 

As of M. xanthus, certain cell lengths can be expected (except for cell divisions). Inspired by 

[19], we take such information as prior knowledge and impose onto the evolution. 

Specifically, the initial contours are shortened by a certain ratio in order to reduce the 

possibility of part of an initial contour residing outside of the cell body. Then, Flength is 
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imposed on the first and last control points of the curve in the tangential direction outwards 

to make the cell grow into the expected length.

Suppose the length of a particular u-Cell in frame K − 1 is LK−1. Then the target length of 

this cell in frame K, denoted by , is set as LK−1. (The special cases for setting the target 

length are presented in Appendix 1.1.) The magnitude of Flength is defined as SHi = γi · ds, 

where i ∈ {1, 2} is the index of the two tips. Suppose the current length of the contour is L.

The value of γi depends on the image force and repelling force. Suppose v1 and v2 are the 

tangential components of Fimage + Frepel at the two tips, respectively.

In general, vi > 0 indicates expansion, and vi < 0 means the contour will be compressed on 

that tip. Thus, when only one of the two vi’s is positive, the length force will be exerted only 

on the tip that is not compressed; when both vi’s are negative, the length force will act only 

on the tip suffering less compression.

4) Internal Force—Finternal acts on all control points to regulate the contour smoothness, 

with the classic form Finternal = αϕ″ − βϕ″″;, where α and β are weight parameters (we use 

α = 0.4 and β = 0.2). For dealing with the high order derivatives of the internal force, the 

implementation details are presented in Appendix 1.2.

The evolution of a particular contour will stop when the contour length is within  and 

the external force exerted on the contour is no larger than 0.1. The maximum number of 

iterations for all contours is Itermax.

Finally, the Cell Tracker checks for potential cell divisions, since M. xanthus may split in the 

middle of a cell body. After the evolution of each contour, the intensity of the centerline in 

the grayscale image is extracted. A local regression with a second degree polynomial is 

performed to smooth the values. If the minimum is located near the middle of the centerline 

(i.e., away from the middle less than 10% of the cell length) and the ratio of the maximum to 

the minimum is larger than θ, a threshold determined experimentally, then the contour will 

be split in the middle. The contours of the daughter cells will shrink by η first, and then 

evolve (the newly split contours) to find the optimal positions. Meanwhile, the cell lineage 
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can be established. There are many advanced division detection methods in the literature, 

such as the training-based approach in [16]. Our trial studies showed that our division 

checking is effective for our problem, and thus is adopted for the sake of simplicity.

We should mention that certain contours may fail to converge to or locate the expected cells, 

mainly due to severe image cluttering. Two examples are shown in Fig. 7. A particular 

contour will be removed after evolution if its length is shorter than Lskip (a pre-determined 

value based on prior knowledge) or the average intensity along the final contour differs by 

more than 50% from that of the initial contour. Again, we adopt a simple heuristic for the 

sake of simplicity and acceptable effectiveness, even though more advanced postprocessing 

methods, such as the convergence failure checking in the twin-separation model [33], are 

available.

III. Experiments and Evaluations

Our approach was implemented using Matlab (Version: 2014a) with the image processing 

toolbox and optimization toolbox. The complete set of all codes will be available at http://

www3.nd.edu/~jchen16/project/cmark.html.

A. Data

We conducted experiments on ten in-house image sequences of M. xanthus. The image sizes 

range from 300 × 500 to 900 × 1200 pixels, while each pixel is about 0.1 μm × 0.1 μm. 

Briefly, a CTT-agar pad was formed on a microscope slide using silicon isolator gaskets. The 

bacteria were inoculated on the top of the pad and covered with a cover slip. After a period 

of 12–32 hours, a movie of 5 second intervals was made using a 60x oil-immersion 

objective. The specific bacteria strains of M. xanthus used in our experiments were DK8621 

and DK1622.

B. Pre-segmentation

The pre-segmentation of our method consists of two steps. (i) A pixel-wise classification is 

performed using [34]. The output of [34] is a probability map, namely, the probability of 

being on cells is computed for each pixel. A 3 × 3 mean filter is applied to the probability 

map to smooth the values. Then, a binary image is obtained from the probability map using 

the Otsu thresholding [35]. (ii) The detected regions are separated at the intersection points 

of the region centerlines or at each centerline point whose curvature is larger than 0.25, an 

experimentally determined threshold.

C. First Frame Refinement

As mentioned in Section II, manual correction may be performed on the pre-segmentation of 

the first frame to serve as additional prior knowledge, which could be helpful in some 

difficult cases. To fully automate our approach, we propose a method to refine the pre-

segmentation of the first frame automatically. The refinement method inherits the same idea 

of our hybrid framework, namely, using the spatial-temporal context to guide the active 

contour evolution, to obtain refined segmentation. Because the spatial-temporal context is 

built totally from error-prone pre-segmentation, the interpretation of the context may contain 
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errors in extreme cases. As a result, the proposed automatic refinement may achieve 

comparable quality as manual correction, but may contain a few errors in some difficult 

scenarios (the results are reported in Table II). This confirms the objective of manual 

correction, providing extra prior knowledge to tackle extremely difficult cases.

The refinement approach works as follows. At the beginning, we apply the Context Builder 
module, i.e., the hierarchical association scheme, to the pre-segmentation of the temporal 

context (frames 1 to 5 in our case). By analyzing the context, we check each cell detection in 

the first frame and decide whether it needs refinement. We will prepare the initial contours 

and target lengths (as discussed in Section II-B3) for the cells that need to be refined (by the 

Cell Tracker module), while those “no-further-refinement” detections will constitute the 

Barrier Map (as in Section II-B2).

Two types of detections will remain unchanged, namely, a detection close to the image 

border or a detection with a unique “child” of a similar length. A detection away from the 

image border and with no “child” in the context will be discarded (considered as false 

positive detection).

Except unchanged detections, the initial contours and target lengths will be computed, with 

two cases. (1) If multiple detections, say {P1, P2, …, Pk}, in the first frame have a common 

“child”, say Q, and Q has a unique path of descendants of similar lengths in the subsequent 

frames, then the centerline of the longest length among {P1, P2, …, Pk} will be used as the 

initial contour (discarding the remaining detections), and the target length will be set as the 

maximum length of Q and its descendants. (2) Otherwise, a detection, say P, in the first 

frame will adopt its centerline as the initial contour. The target length will be set as the 

maximum value among the length of P and the lengths of P’s descendants down to the last 

frame of the context or before the frame in which the corresponding descendant of P has 

multiple parents.

The first case above is intended to handle false split detections in the first frame, while the 

second case aims to refine partial segmentations. Note that the Cell Tracker will perform cell 

division checking, in order to handle false merge detections. Moreover, false negative 

detections, if any, in the first frame do not need special treatment. They will be treated as c-

Cells (as shown in Section II-A) in the hybrid framework and start to be kept track of as 

soon as the appearance is confirmed.

In our experiments, the automatic refinement results contain errors only in two (out of 10) 

movies. The segmentation and tracking results using the automatic refinement and manual 

correction are both presented in Table II. It is evident that our fully automated approach can 

achieve comparable accuracy as the semi-automated version, while human intervention may 

provide extra assistance to deal with the highly difficult situations.

D. Selection of Parameters

Table I gives a list of the parameters in our hybrid framework that may need adjustments in 

different datasets. Most of the parameters can be determined according to the images to be 

analyzed. For example, Lrepel in the definition of the repelling force is roughly set as the 
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average cell thickness in the images. On the other hand, there are some parameters in the 

Cell Tracker that may not be derived straightforwardly from the data, and are related to the 

performance of contour evolution. Hence, it is important to demonstrate that such 

parameters are not sensitive to our selection.

The parameters to be evaluated are ω1, ω2, ω3 (the weights of the image force, repelling 

force, and length force in Equ. (3), respectively), α, β (the weights of the two terms in the 

internal force), N (the number of control points of each contour), and γ (the time step of the 

contour evolution, see Appendix 1.2). We randomly select five movies and manually 

segment the first two frames in each of them. All the cells in the first frame are directly 

propagated as the initial contours for the second frame. After the evolution terminates, we 

compare the evolution results against the manual segmentation results.

Metric: The metric is adapted from the F1-score and adjusted particularly for M. xanthus. 

The basic idea is to measure the difference in length between the segmented cells and the 

ground truth. Suppose there are n true cells in the manual segmentation, denoted by {G1, G2, 

…, Gn}, and m segmented cells, denoted by {S1, S2, …, Sm}. A segmented cell Si is a good 

segmentation of Gj, if ||Si ∩ Gj|| > 0.5· ||Gj|| and ||Si ∩ Gj|| > 0.5 · ||Si||. It guarantees that each 

segmented cell is a good segmentation of at most one ground truth cell, and there is at most 

one good segmentation for each ground truth cell. Then, the centerlines of Si and Gj are 

extracted (using morphological thinning), denoted by Sci and Gcj, respectively. For each 

pixel of Sci, if it does not overlap with Gj, then it is counted as a False Positive (FP) pixel. 

For each pixel of Gcj, if it does not overlap with Si, then it is counted as a False Negative 

(FN) pixel. In addition, the pixels of the centerlines of all segmented cells that are not a good 

segmentation of any ground truth cell are considered as FP pixels; the pixels of the 

centerlines of all ground truth cells without good segmentation are considered as FN pixels. 

Suppose the total number of pixels of the centerlines of all segmented cells is nS, and the 

total number of pixels of the centerlines of all ground truth cells is nG. Then, the Precision is 

Pr = (nS − FP)/nS, and the Recall is Re = (nG − FN)/nG. Finally, the accuracy is measured by 

the F1-score, i.e., F = 2 * Pr * Re/(Pr + Re).

We choose to evaluate the results by pixels on the center-lines, instead of pixels in the whole 

cell regions, because the cell boundaries are not well-defined. The manually segmented 

thickness of the same cell may vary from person to person, and may even be inconsistent for 

the same person at different times. Due to the specific shape of M. xanthus, there is a smaller 

impact from the subjectiveness on the cell length than the width. Moreover, we did not adopt 

the measure in [14], which we found may underestimate some particular errors, such as 

partial segmentation (i.e., not wholly segmented). For instance, a segmented cell with a 

length 1/3 shorter than the actual length may still be taken as a good segmentation with no 

error. Thus, we proposed the above metric.

The results are shown in Fig. 8. The objective of these experiments is not to select the 

parameters for achieving the highest accuracy (which may cause overfitting). Instead, these 

experiments are intended to demonstrate that the selected parameters are within the range 

that the overall accuracy is stable and high. In other words, slight change in any of the 

selected parameter values will not degrade the performance.
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E. Tracking Performance

The metric for the tracking performance is the number of complete trajectories. This is a 

harsh metric because merely a few cell correspondences in fault may cause a huge loss in the 

number of complete cell trajectories. All the results were examined visually by human 

experts.

Our method is compared against four state-of-the-art algorithms [10], [14], [16], [19]. The 

method in [19] is a representative one for the model evolution framework. The other three 

are different detection association approaches: [10] performs frame-wise optimal matching, 

[16] conducts global optimization across the whole image sequence, and [14] is a 

hierarchical scheme based on the EMD matching model.

For a fair comparison, the same pre-segmentation was used for our method and for [14] and 

[10]. The results of [16] were obtained by the off-the-shelf software, ilastik (http://

ilastik.org/), while the parameters were determined by following the software manual.

The method in [19] cannot be reimplemented exactly, due to insufficient implementation 

details available. We tried our best to make it perform as good as possible, following 

common practice. In addition, our method needs no human intervention. But, the model 

evolution method [19] may need other human interventions, as discussed in [19].

The implementation of [10] strictly followed the description in [10]. The only difference is 

the matching cost. The original definition was for small disk-shape cells. For a fair 

comparison, we used the same cost as in [14], which was specifically designed for elongated 

cells. As for [14], the implementation and all the parameters are exactly the same as in [14].

All tracking results are shown in Table II. In dataset 2, the same cell in two consecutive 

frames may overlap less than 50%, which showed that our method is more effective than the 

model evolution method [19] in dealing with large cell displacements. Also, the results 

showed that our method has better performance than the three detection association 

approaches.

F. Segmentation Performance

We compared the segmentation results with two segmentation methods to show the benefit 

of leveraging temporal context in segmentation. First, the Otsu thresholding [35] is used as 

the baseline method. Second, ilastik [34] is one of the best open source software for cell 

segmentation based on pixel classification. Except ours, the other methods are all performed 

on individual image frames.

We manually segmented 20 frames selected randomly in each dataset as the ground truth. 

The metric used to evaluate segmentation accuracy is the same as the F1-score defined in 

Section III-D. The results in Table II show that our hybrid framework achieves higher 

segmentation accuracy than the methods which do not utilize the temporal context. In 

addition, the pre-segmentation accuracy is reported to show how much the Cell Tracker can 

help in improving the pre-segmentation results. For example, in dataset 7, the accuracy of 

final segmentation is very close to that of pre-segmentation. Meanwhile, the tracking 
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performance of our hybrid scheme is somewhat similar to [14]. Recall that our Context 
Builder module stems from [14]. Actually, most of the pre-segmentation are confirmed as 

good segmentation by the temporal context, and the Cell Tracker module may not be 

invoked frequently to refine the results. It shows the flexibility of our hybrid framework.

For low quality images, such as dataset 6, the pre-segmentation is refined a lot. On the other 

hand, there are also some situations, like dataset 4, where the improvement is not prominent. 

This is because some image frames are so blurred that either quite some cell tracks are lost 

or the whole cell bodies are hard to extract.

IV. Discussion and Conclusions

In a nutshell, we present a hybrid framework for segmentation and tracking of M. xanthus in 

time-lapse images, and an open active contour model specially for M. xanthus which can be 

seamlessly integrated with our proposed framework. Our approach systematically combines 

two major powerful frameworks, the detection association framework and model evolution 

framework. Indeed, we carefully design the hybrid framework such that our detection 

association method (i.e., the Context Builder module) is used to build preliminary 

correspondences among cells across different frames, and our model evolution method (i.e., 

the Cell Tracker module) is invoked wherever the preliminary correspondences are 

suspicious. Our hybrid framework inherits the flexibility in handling various cell behaviors 

and the robustness to segmentation errors from detection association methods, and also 

attains the superiority of model evolution methods in leveraging temporal context 

information. The evaluation shows that our approach outperforms state-of-the-art cell 

tracking algorithms and effectively utilizes temporal information to achieve higher 

segmentation accuracy.

The current framework still has two major limitations. First, in the Context Builder module, 

an EMD matching model is used to establish the temporal context. The model has a size-

consistency assumption, namely, the size of a cell does not have large change in consecutive 

frames, and a cell undergoing division is split in the middle so that the sum of the sizes of 

the two daughter cells is almost equal to that of the parent cell. This is true for certain types 

of cells, such as Myxococcus xanthus and Pseudomonas aeruginosa, but not for all cell 

types. Second, the Cell Tracker module aims to leverage the spatial-temporal context to 

segment and track cells, wherever it is hard to correctly detect them within a single frame. In 

general, the Cell Tracker can refine the pre-segmentation results in low-quality images. But, 

when an image is heavily blurred, even only in a local area, the Cell Tracker may still fail 

since too little valid information on cells in such a local area is available.

As one of our future works, we plan to apply our approach to different types of cells in both 

2D and 3D images. For a specific cell type, the ground distance in the EMD matching model 

may need to be designed accordingly to capture the specific domain knowledge so that the 

temporal context can be established appropriately. In addition, different model evolution 

methods may be needed for different applications, such as 3D active meshes [18] for 3D+t 

tracking problems.
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Fig. 1. 
A frame in an M. xanthus movie. Two zoom-in regions amplify some details of obscure cell 

boundaries due to touching in a cluster (upper) and head-to-head touching (lower).
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Fig. 2. 
The outline of our framework. Two key modules are labeled in red. The dashed line means 

the pre-segmentation is obtained for each frame first. The solid lines show the work flow to 

process each frame K > 1. See Section III-C for the processing of the first frame. Assume 

cell trajectories have been built until frame K − 1. For frame K, Context Builder extracts the 

spatial-temporal context. Reliable cell detections in frame K are associated with existing 

trajectories, and reliable entering cells are confirmed. Next, trajectories with uncertain 

correspondence, together with the spatial-temporal context, are fed to Cell Tracker to find 

their positions in frame K by contour evolution. The reliable cells, entering cells, and 

evolved cells are put together to produce the final segmentation and trajectory identity of 

each cell in frame K.
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Fig. 3. 
Illustration of building the temporal context by hierarchical association. (a) To process frame 

K, the association scheme is applied to frames K − 1, …, K + 3 (the temporal context depth 

is 5 in this example). Each detected object is represented as a vertex in a graph of five 

columns, one column per frame. Suppose 6 trajectories, labeled as 1 to 6, have been built up 

to frame K − 1. (b) In the low-level association, the correspondence is first built between 

every two consecutive frames. (c) In the high-level association, the EMD-based matching 

model is applied to all child-deficient and parent-deficient vertices (see Section II-A for the 

definitions) to link these vertices within the entire temporal context. Context Analysis: Let 

Vi,j denote the cell corresponding to the j-th vertex (from top to bottom) in the i-th column. 

VK,1 can be confirmed as a reliable segmentation and is linked to trajectory 2 if VK−1,2 and 

VK,1 have consistent shapes. VK,5 can be confirmed as an entering cell and initiates a new 

trajectory if VK+1,5, VK+2,5, and VK+3,5 have similar shapes as VK,5. Trajectory 1 will be 

terminated if VK−1,1 is close to the image border. The remaining trajectories, 3, 4, 5, and 6, 

will continue by propagating VK−1,3, VK−1,4, VK−1,5, and VK−1,6 to frame K, respectively. 

The Cell Tracker will find their corresponding cell regions in frame K by the evolution of 

active contours. The initial contours will be interpreted from the context. For example, the 

initial position of trajectory 6 is set as the interpolated position of morphing from VK−1,6 to 

VK+1,6.
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Fig. 4. 
An example of cells showing weak edge evidence between the cell bodies and image 

background.
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Fig. 5. 
Illustrating the Ribbon Snake representation: ϕ(s) = (x(s), y(s), w). The parametric curve 

(x(s), y(s)) is represented as an ordered list of control points. The half width w of the contour 

is the same for each control point.
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Fig. 6. 
Illustrating the forces exerted on an evolving contour. The length force is applied only to the 

first and last control points in the outward tangential direction. In the normal direction, the 

forces are the sum of the forces applied to the corresponding outer boundary points.
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Fig. 7. 
Two extreme examples on which the contour evolution may fail. (Left) The appearance of 

the cell circled by red is largely degraded due to tightly packed neighboring cells. As a 

result, the evolving contour may not converge to the expected cell centerline. (Right) The 

cluttered background alters the intensity along the cell body (indicated by red arrows), thus 

possibly causing broken contours or leakage.
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Fig. 8. 
Evaluating the stability of the parameters for controlling the contour evolution. (a)–(e) The 

performance in five experiments of varying the values of the parameters, ω1 (the weight of 

the image force), ω2 (the weight of the repelling force), ω3 (the weight of the length force), 

γ (the evolution step size), and N (the number of control points to represent a cell curve). 

The colored curves in the figures represent the results of different experiments. The values 

used to produce the results in Table II are indicated by the dashed lines. (f) The performance 

of varying the weight parameters of the two terms in the internal force, α and β. The plot is 

averaged over all five experiments. The selected values are indicated by the star.
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TABLE I

The parameters of our proposed framework that may need adjustment for different datasets.

Category Notation Description Default Value Remark

Context Builder

t t + 2 is the depth of the temporal context 3 Commonly used values: 1, 2, 3

ρ The minimum acceptable ratio between the flow 
amount and cell size in low-level association

0.75 Reasonable range: (0.6, 0.9)

λ The maximum acceptable matching cost of 
correspondence in low-level association

2 Decrease for more conservative low-
level association

Cell Tracker

η The shortening ratio of an initial contour 0.2 May reduce for more rigid bacteria

Itermax The maximum number of iterations used for 
contour evolution

60 80% of the estimated average number 
of pixels along cell centerlines

Lskip The length threshold to discard short objects 10 Max(10, 0.9*shortest cell length)

Lseg The maximum discrepancy in length for reliable 
segmentation

6 Estimated average cell thickness

Lenter The maximum discrepancy in length for entering 
cells

10 Increase when cells may move very 
fast

θ The threshold for determining potential cell division 2 Increase when the cell boundaries 
exhibit stronger edge evidence in 

general

Lrepel The cut-off distance for repelling force to take 
effect

6 Estimated average cell thickness
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