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Abstract

We will investigate practical aspects for a recently introduced blind (noncoherent) communication

scheme, called modulation on conjugate-reciprocal zeros (MOCZ), which enables reliable transmission

of sporadic and short-packets at ultra-low latency in unknown wireless multipath channels, which are

static over the receive duration of one packet. Here the information is modulated on the zeros of

the transmitted discrete-time baseband signal’s z−transform. Due to ubiquitous impairments between

transmitter and receiver clocks a carrier frequency offset (CFO) will occur after a down-conversion to

the baseband, which results in a common rotation of the zeros. To identify fractional rotations of the base

angle in the zero-pattern, we propose an oversampled direct zero testing decoder to identify the most

likely one. Integer rotations correspond to cyclic shifts of the binary message, which we compensate by

a cyclically permutable code (CPC). Additionally, the embedding of CPCs into cyclic codes, allows to

exploit additive error correction which reduces the bit-error-rate tremendously. Furthermore, we use the

trident structure in the signals autocorrelation to estimate timing offsets and the channels effective delay

spread. We finally demonstrate how these impairment estimations can be largely improved by receive

antenna diversity, which enables extreme bursty reliable communication at low latency and SNR.

I. INTRODUCTION

We introduced in [1], [2] a novel blind (noncoherent) communication scheme for the physical

layer, called modulation on conjugate-reciprocal zeros (MOCZ), to reliably transmit sporadic

short-packets of fixed size over unknown wireless multipath channels with bandwidth W at

an incredible low-latency. Here the information of the packet is modulated on the zeros of the
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transmitted discrete-time baseband signal’s z−transform. We will call the discrete-time baseband

signal a MOCZ symbol, similar to an orthogonal frequency division multiplexing (OFDM)

symbol, which is a finite length sequence of complex-valued coefficients. These coefficients

will then modulate a continuous-time pulse shape at a sample period of T = 1/W to generate

the continuous-time baseband waveform. Since the MOCZ symbols (sequences) are neither

orthogonal in time nor frequency domain, the MOCZ design can be seen as a non-orthogonal mul-

tiplexing scheme. After up-converting to the desired carrier frequency, the transmitted passband

signal will propagate in space such that, due to reflections, diffractions, and scattering, different

delays of the attenuated signal will interfere at the receiver. Hence, multipath propagation causes

a time-dispersion which results in a frequency-selective fading channel [3]. Due to ubiquitous

impairments between transmitter and receiver clocks a carrier frequency offset (CFO) will be

present after a down conversion to the baseband. Doppler shifts due to relative velocity causes

additional frequency dispersion which can be also approximated in first order by a CFO. This

is a known weakness in many multi-carrier modulation schemes, such as OFDM [3]–[6], and

various approaches have been developed to estimate or eliminate the CFO effect. A common

approach for OFDM systems is to learn the CFO in a training phase or from blind estimation

algorithms, such as MUSIC [7] or ESPRIT [8]. Furthermore, due to the unknown distance and

asynchronous transmission, a timing offset (TO) of the received symbol has to be determined as

well, which will otherwise destroy the orthogonality of the OFDM symbols [9, p. 5.1],[10]. By

“sandwiching” the data symbol between two training symbols a timing and frequency offset can

be estimated [11],[12]. By using antenna arrays at the receiver, antenna diversity of a single-

input-multiple output (SIMO) system can be exploited to improve the performance [5].

Whereas OFDM is typically used in long frames, consisting of many successive OFDM

symbols and hence much longer signal lengths, we consider here only one single symbol

transmission with a very short signal length. This places high demands on such a bursty signaling

scheme, since timing and carrier frequency offsets have to be addressed from only one received

symbol. Here our MOCZ scheme will be a promising solution. Since any communication will

be scheduled and timed on the MAC layer by a certain bus, running with a known bus clock-

rate, timing-offsets of the symbols can be assumed as fractions of the bus clock-rate. We will

introduce here an improved receiver design for a coded binary MOCZ (BMOCZ) scheme and

demonstrate by bit-error-rate (BER) simulations the robustness against these impairments.

In the MOCZ design, a CFO will result in an unknown common rotation of all received zeros.
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Since the angular zero spacing in a BMOCZ symbol of length K+1 is given by a base angle of

2π/K, a fractional rotation can be easily obtained at the receiver by an oversampling during the

post-processing to identify the most likely transmitted zeros (zero-pattern). Rotations, which are

integer multiples of the base angle, correspond to cyclic shifts of the binary message word. By

using a cyclically permutable code (CPC) for the binary message, the BMOCZ symbol becomes

invariant against any cyclic shift and hence against any CFO. This prevents any further symbol

transmissions for estimating the CFO, which will reduce overhead, latency, and complexity. As

a byproduct, this has the appealing feature of providing a CFO estimation from the decoding

process of a single BMOCZ symbol. Furthermore, due to the embedding into a cyclic code, such

as BCH codes, we can use their error correction capabilities to improve the BER and moreover

the block error-rate (BLER) performance tremendously. By measuring the energy of the expected

symbol length with a sliding window in the received signal, we can identify arbitrary TOs at the

receiver. We will show the robustness of the TO estimation analytically, which reveals another

strong property of the MOCZ design.

At last, we will combine CFO and TO with error correction over multiple receive antennas

and demonstrate antenna diversity of the SIMO system. By simulating BER over the received

SNR for various average power delay profiles, with constant and exponential decay as well as

random sparsity constraints, we will demonstrate the performance in various indoor and outdoor

scenarios by using the simulation framework Quadriga [13].

A. Notation

We will use small letters for complex numbers in C. Capital Latin letters denote natural

numbers N and refer to fixed dimensions, where small letters are used as indices. Boldface

small letters denote row vectors and capitalized letters refer to matrices. Upright capital letters

denote complex-valued polynomials in C[z]. We will denote the first N natural numbers in N

as [N ] := {0, 1, . . . , N − 1}. For K ∈ N we denote by K + [N ] = {K,K + 1, . . . K +N − 1}

the K−shift of the set [N ]. The Kronecker-delta symbol is given by δnm and is 1 if n = m

and 0 else. For a complex number x = a + jb, given by its real part Re(x) = a ∈ R and

imaginary part Im(x) = b ∈ R with imaginary unit j =
√
−1, its complex-conjugation is given

by x = a− jb and its absolute value by |x| =
√
xx. For a vector x ∈ CN we denote by x− its

complex-conjugated time-reversal or conjugate-reciprocal, given as x−k = xN−k for k ∈ [N ]. We

use A∗ = A
T

for the complex-conjugated transpose of the matrix A. For the N × N identity
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matrix we write IN and for a N ×M matrix with all elements zero we write ON,M . By Dx we

refer to the diagonal matrix generated by x ∈ CN . The N×N unitary Fourier matrix F = FN is

given entry-wise by fl,k = e−j2πlk/N/
√
N for l, k ∈ [N ]. By T ∈ RN×M denote the elementary

Toeplitz matrix given element-wise as δn−1m. The all one and all zero vectors in dimension N

will be denoted by 1N and 0N , respectively. The `p-norm of a vector x = (x0, . . . , xN−1) ∈ CN

is given by ‖x‖p = (
∑N−1

k=0 |xk|p)1/p for p ≥ 1. If p = ∞ we write ‖x‖∞ = maxk |xk| and for

p = 2 we set ‖x‖2 = ‖x‖. The expectation of a random variable x is denoted by E[x].

II. SYSTEM MODEL AND REQUIREMENTS

We are interested in a blind and asynchronous transmission of a short single MOCZ symbol

at a designated bandwidth W . In this “one-shot” communication we assume no synchronization

and no packet scheduling between transmitter and receiver. Such extreme sporadic, asynchronous,

and ultra short-packet transmissions are required, for example, in critical control applications,

exchange of channel state information (CSI), signaling protocols, secret keys, authentication,

commands in wireless industry applications, or initiation, synchronization and channel probing

packets to prepare for longer or future transmission phases. By choosing the carrier frequency,

transmit sequence length, and bandwidth accordingly, a receive duration in the order of the

channel delay spread can be obtained, which pushes the latency at the receiver to the lowest

possible. Since the next generation of mobile wireless networks aims for large bandwidths with

carrier frequencies beyond 10Ghz, in the so called mmWave band, the transmitted signal duration

will be in the order of nano seconds. Hence, even at moderate mobility, the wireless channel

in an indoor or outdoor scenario can be considered as approximately time-invariant over such a

short time duration. On the other hand, wideband channels are highly frequency selective, which

is due to the superposition of different delayed versions (echos) of the transmitted signal at the

receiver. This makes equalizing in time-domain very challenging and is commonly simplified

by using OFDM instead. But conventional OFDM requires an additional cyclic prefix to convert

the frequency-selective channel to parallel scalar channels and in coherent mode it requires

additional pilots (training) to learn the channel coefficients. This will increase the latency for

short messages dramatically.

For a communication in mmWave band massive antenna arrays are exploited to overcome

the large attenuation, which increases the complexity and energy consumption in estimating the

huge amount of channel parameters and becomes the bottleneck in mmWave MIMO systems,
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especially for mobile scenarios. However, in a sporadic communication only one symbol will

be transmitted and a next symbol may follow at an unknown time later. In a random access

channel (RACH), a different user may transmit the next symbol from a different location,

which will therefore experience an independent channel realization. Hence, the receiver can

barely use any channel information learned from past communications. OFDM systems approach

this by transmitting many successive OFDM symbols as a long frame, to estimate the channel

impairments, which will cause a considerable overhead and latency if only a few data-bits need

to be communicated. Furthermore, to achieve orthogonal subcarriers in OFDM, the cyclic prefix

has to be at least as long as the channel impulse response (CIR) length, resulting in signal lengths

at least twice as the CIR length during which the channel also needs to be static. Using OFDM

signal lengths much longer than the coherence time might be not feasible for fast time-varying

block-fading channels. Furthermore, the maximal CIR length needs to be known at the transmitter

and if underestimated will lead to a serious performance loss. This is in high contrast to our

MOCZ design, where the signal length can be chosen for a single MOCZ symbol independently

from the CIR length. The goal in this work is to address the ubiquitous impairments of the

MOCZ design under such ad-hoc communication assumptions and signal lengths in the order

of the CIR length.

After up-converting the MOCZ symbol, which is a discrete-time complex-valued baseband

signal x = (x0, x1, . . . , xK) ∈ CK+1 of two-sided bandwidth W , to the desired carrier frequency

fc, the transmitted passband signal will propagate in space. Regardless of directional or om-

nidirectional antennas, the signal will be reflected and diffracted at point-scatters, resulting in

different delays of the attenuated signal which interfere at the receiver if the maximal delay

spread Td of the channel is larger than the sample period T = 1/W . Hence, the multipath

propagation causes time dispersion resulting in a frequency-selective fading channel. Due to

ubiquitous impairments between transmitter and receiver clocks an unknown frequency offset

∆f will be present after the down-conversion to the received continuous-time baseband signal

r̃(t) = r(t)ej2πt∆f . (1)

By sampling r̃n = r̃(nT ) at the sample period T , the received discrete-time baseband signal

can be represented by a tapped delay line (TDL) model. Here the channel action is given as the

convolution of the MOCZ symbol x with a finite impulse response {h`}, where the `th complex-

valued channel tap h` describes the `th averaged path over the bin [`T, (` + 1)T ), which we
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model by a circularly symmetric Gaussian random variable in CN (0, s`p
`) for l ∈ [L] and zero

elsewhere. The average power delay profile (PDP) of the channel can be sparse and exponentially

decaying, where s` ∈ {0, 1} defines the sparsity pattern of S = |supp(h)| =
∑L−1

`=0 s` = ‖s‖1

non-zero coefficients and p ≤ 1 the exponential decay rate. To obtain equal average transmit and

average receive power we will eliminate in our analysis the overall channel gain by normalizing

the CIR realization h = (h0, . . . , hL−1) by its average energy
∑L−1

l=0 slp
l (for a given sparsity

pattern), such that E[‖h‖2] = 1. The convolution output is then additively distorted by Gaussian

noise wn ∈ CN (0, N0) of zero mean and variance (average power density) N0 for n ∈ N as

r̃n = ejnφ
K∑
k=0

xkhn−τ0−k+ejnφwn =
K∑
k=0

ejkφxke
j(n−k)φhn−τ0−k+w̃n =

K∑
k=0

x̃kh̃n−τ0−k+w̃n. (2)

Here φ = 2π∆f/W mod 2π ∈ [0, 2π) denotes the carrier frequency offset (CFO) and τ0 ∈ N

the timing offset (TO), which marks the delay of the first symbol coefficient x0 via the first

channel path h0, measured in integer multiples of the sample time T . The modulated MOCZ

symbol x̃ ∈ CK will have rotated coefficients x̃k = ejkφxk as well as the channel h̃` = ej(`+τ0)φh`,

which will be also effected by a global phase τ0φ. Since the channel taps have a uniform

independent phase the distribution does not change. By the same argument, the Gaussian noise

distribution is not alternated by the phase, hence we have w̃n ∈ CN (0, N0) for any n and φ.

In [1], [2] a good signal-codebook is given for Binary MOCZ (BMOCZ) for the set of

normalized Huffman sequences C (R,K) =
{

x ∈ CK+1
∣∣ a(R,K) = x ∗ x−, x0 > 0

}
, i.e., by

all x ∈ CK+1 with positive first coefficientand “impulsive-like“ autocorrelation [14], given by

a = a(R,K) = x ∗ x− = (−η,0K , 1,0K ,−η) with η = 1/(RK +R−K) (3)

for some R > 1. The absolute value of (3) forms a trident with one main peak at the center,

given by the energy ‖x‖2 = 1, and two equal side-peaks of η ∈ [0, 1/2), see Figure 1. From an

analytical and empirical investigation [1], the BMOCZ symbols are most robust against noise if

R = R(K) =
√

1 + sin(π/K) > 1 , K ≥ 2. (4)

Hence, the BMOCZ codebook (constellation set) C = C (K) is only determined by the number

K. Each BMOCZ symbol (constellation, Huffman sequence) defines the coefficients of a poly-

nomial of degree K, where the K zeros are uniformly placed on a circle of radius R or R−1,

selected by the message bits m = (m1, . . . ,mK) ∈ {0, 1}K as

X(z) =
K∑
k=0

xkz
k = xK

K∏
k=1

(z −R2mk−1ej2π(k−1)/K) = xK

K∏
k=1

(z − α(mk)
k ) (5)

February 11, 2019 DRAFT



7

see also Figure 3. Hence, the BMOCZ encoder is defined iteratively for q = 2, . . . , K by its

zero codeword α(m) = (α
(m1)
1 , . . . , α

(mK)
K ) ∈ Z ⊂ CK as

xq = (0,xq−1)− (R2mq−1ej
2πq
K xq−1) with x1 = (−R2m1−1ej

2π
K , 1), (6)

where we normalize after the last iteration step x = xK/ ‖xK‖. From the received N = L+K

noisy signal samples (no CFO and TO)

yn =
K∑
k=0

xkhn−k + wn = (x ∗ h)n + wn, (7)

the decoder is given as a Direct Zero Testing (DiZeT) of the received polynomial Y(z) =∑N−1
n=0 ynz

n at the 2K possible zero positions as

m̂k =

1, |Y(Rej2π
k−1
K )| < RN−1|Y(R−1ej2π

k−1
K )|

0, else
, k = 1, . . . , K, (8)

see [1], [2]. A global phase in Y(z) will have no affect to the DiZeT decoder and to the received

zeros. But the CFO φ modulates the BMOCZ symbol in (2) and causes a rotation1 of its zeros

by −φ in (5), which will destroy the hypothesis test of the DiZeT decoder. Hence, one needs to

either estimate φ or use an outer code for BMOCZ to be invariant against an arbitrary rotation

of the entire zero codebook Z , which we will introduce in Section IV. However, before we can

apply the DiZeT decoder, we have to identify the timing offset of the symbol which yields to

the convolution output in (7).

III. TIMING OFFSET AND EFFECTIVE DELAY SPREAD FOR BMOCZ

In an asynchronous communication, the receiver does not know when a packet from a trans-

mitter (user) will arrive. Hence, at first the receiver has to detect a transmitted packet, which

is already one bit of information. We will assume that the receiver decide correctly, that in an

observation window of Nobs = Nnoise + K + L received samples, one single MOCZ packet of

length K with maximal channel length of L is captured. By assuming a maximal length L and a

known or a maximal K at the receiver, the observation window can be chosen, for example, as

Nobs = 2N . From the noise floor knowledge at the receiver, a simple energy detector with a hard

1The CFO would rotate the zeros in any scheme of modulation on zeros, but we will consider here for simplicity only the

BMOCZ scheme.
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Figure 1: Left figure shows the magnitudes of a Huffman sequence for K = 127 in blue and

the absolute Huffman bracket in red. The right figure shows the autocorrelation magnitudes as

well as the correlation between bracket and Huffman sequence, which both reveal a trident.

threshold over the observation window can be used for a packet detection. Then, an unknown

TO τ0 ∈ [Nnoise] and CFO φ ∈ [0, 2π) will be present in the observation window

r̃n = ejnφ(x ∗ h)n−τ0 + w̃n = (x̃ ∗ h̃Tτ0)n + w̃n , n ∈ [Nobs]. (9)

The challenge here is to identify τ0 and the efficient channel length which contains most of the

energy of the instantaneous CIR realization h. The estimation of these Timing-of-Arrival (TOA)

parameters are usually done by observing the same channel under many symbol transmission, to

obtain a sufficient statistic of the channels PDP [15], [16]. Since we only have one observation

available, a good estimation is very challenging.

The efficient (instantaneous) channel length Leff, defined by an energy concentration window,

will be much less than the maximal channel length L, due to blockage and attenuation by the

environment, which might also cause a sparse, clustered, and exponential decaying power delay

profile. For the MOCZ scheme, it is essential to correctly identify in the window (9) the first

received sample h0x0 from the transmitted symbol x, or at least do not miss it, since it will

carry most of the energy if h0 is the line of sight (LOS) path. It was shown in [2] that for the

optimal radius in BMOCZ, x0 carries in average 1/4 to 1/5 of the BMOCZ symbol energy, see

also Figure 1. On the other hand, an overestimated channel length Leff will reduce the overall

bit-error performance because the receiver collects unnecessary noise samples.

Since we assume no CSI at the receiver, the channel characteristic, i.e., the instantaneous

power delay profile, has to be determined entirely from the received MOCZ symbol. We will

introduce here an efficient approach for the BMOCZ design, by exploiting the radar properties
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of the Huffman sequences, to obtain excellent estimation of the timing offset and the effective

channel delay in moderate and high SNR.

Huffman sequences have an impulsive autocorrelation (3), originally designed for radar ap-

plications, and are therefore very suitable to measure the channel impulse response [17]. Since

the transmitted Huffman sequence is still unknown at the receiver, we can not correlate the

received signal with the correct Huffman sequence to retrieve the CIR. Instead, we will use an

approximative universal Huffman sequence, which is just the first and last peak of a typical

Huffman sequence, expressed by the impulses (δ0)k = δ0k and (δK)n = δKk for k ∈ [K + 1] as

κψ = δ0 + ejψδK ∈ CK+1 (10)

which we call the K−Huffman bracket of phase ψ. Since the first and last coefficients are

x0 =
√
R2‖m‖1−Kη , xK = −

√
R−2‖m‖1+Kη (11)

see [2], typical Huffman sequences, i.e., having same amount of ones and zeros, will have

|x0|2 = |xK |2 = η. (12)

By correlating the modulated Huffman sequence x̃ with the Huffman bracket κψ we keep the

locational properties of the Huffman autocorrelation (trident)

ă = κ−ψ ∗ x̃ = (e−jψx0, e
−jψ ˙̃x, x0 + ej(Kφ−ψ)xK , ˙̃x, ejKφxK) , x̃ = ˚̃x + ˙̃x, (13)

where x̊ = x0δ0 +xKδK denotes the exterior signature and ẋ = (0, x1, . . . , xK−1, 0) the interior

signature of the Huffman sequence x, see Figure 1. Here, the interior signature can be seen as

the data noise floor distorting the trident a in (3). Taking the absolute-squares in (13), we get

for the three peaks of the approximated trident

|ă0|2 = |x0|2, |ăK |2 = |x0|2 + |xK |2 − 2|x0xK | cos(Kφ− ψ), |ă2K |2 = |xK |2, (14)

where the side-peaks have energy

Esides = |x0|2 + |xK |2 = (R2‖m‖1−K +R−2‖m‖1+K)η ≤ ‖x‖2 = 1. (15)

Since ε = 2 ‖m‖1 − K ∈ [−K,K] we get by (3) and 2 ≤ Rε + R−ε ≤ RK + R−K that

2η ≤ Esides ≤ 1, where the lower bound is achieved for typical sequences with ε = 0 (having

the same amount of ones and zeros) and the upper bound for ε = ±K (all ones or all zeros).

If η = 1/2 then the two coefficients (the exterior signature x̊) will carry all the energy of the
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Huffman sequence. But then also R = 1 and the only Huffman sequences (real valued first and

last coefficient) are given by x0 = ±1/
√

2, xK = ±1/
√

2 and xk = 0 for k else, which are the

coefficients of polynomials with K uniform zeros on the unit circle, see [18]. For R given by

(4) the autocorrelation side-lobe η is exponentially decaying in K but is bounded to η ≥ 1/5 for

K = 1, 2, . . . , 512. Hence, Esides ≥ 0.4, such that almost half of the Huffman sequence energy

is always carried in the two peaks. If the CFO would be known, we can set ψ = Kφ − π and

get for the center peak in (14)

Ecenter = |x0|2 + |xK |2 + 2|x0||xK | ≥ 4η ≥ 0.8, (16)

i.e., the energy of the center peak is roughly twice as large as the energy of the side-peaks, and

reveals the trident in the approximated Huffman autocorrelation ă. But , since we do not know

the CFO and Kφ − ψ ≈ 2nπ for some n ∈ N then we get x0 + xK ≈ 0 for typical Huffman

sequences, such that the power of the center peak will vanish. Hence, in the presence of an

unknown CFO the center peak does not always identify the trident. We will therefore correlate

the positive Huffman bracket κ0 with the absolute-square value of x or in presence of noise and

channel with the absolute-square of the received signal r̃, which will result approximately in

d = κ−0 ∗ |r̃|2 = κ−0 ∗ |x̃ ∗ h̃Tτ0|2 + κ−0 ∗ |w̃|2 ≈ |ă|2 ∗ |h̃Tτ0|2 + | ˜̃w|2 ∈ RNobs+K
+ (17)

where w̃ and ˜̃w are colored noise and

|ă|2 = (|x0|2, | ˙̆x|2, Esides, | ˙̆x−|2, |xK |2) (18)

denotes the noisy trident which collects three times the instant power delay profile |h|2 of

the shifted CIR. These three echos of the CIR will be separated if we have K ≥ L. The

approximation in (17) can be justified by the isometry property of the Huffman convolution.

Briefly, L < K, the generated (banded) L × N Toeplitz matrix Tx =
∑K

k=0 xkT
k, for any

Huffman sequence x ∈ C (K), is a stable linear time-invariant (LTI) system, since the energy

of the output satisfy for any CIR realization h ∈ CL

‖x ∗ h‖2 = ‖hTx‖2 = tr(hTxT
∗
xh
∗) = tr(h∗Axh) = ‖x‖2 tr(h∗h) = ‖x‖2 ‖h‖2 . (19)

Here, Ax = TxT
∗
x is the L × L autocorrelation matrix of x, which is the identity scaled by

‖x‖2 if L < K. Hence, each normalized Huffman sequence, generates an isometric operator Tx

having the best stability among all discrete-time LTI systems, as studied in [19].
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A. Timing Offset Estimation

The delay of the strongest path |hs| = ‖h‖∞ can be identified from the maximum in (17)

t̂ =

(
argmax
t∈[Nobs+K]

dt

)
−K =

(
argmax

t∈[Nobs−K]+K

dt

)
−K, (20)

where the last equality follows from the fact that both peaks in κ0 are contributing between K

and Nobs. If the CIR has a LOS path, then s = 0 and we immediately have found an estimate

for the timing-offset by τ̂0 = t̂. In case of NLOS or if the first paths are equally strong, we

have to go further back and identify the first significant peak above the noise floor, since the

convolution sum of the CIR with the interior signature might produce a significant peak. Let us

note here, that this might result in a misidentification of the tridents center peak by (20), for

example if |hs|/|h0| � 1. Therefore we will use as a peak threshold

ρ = ρ(K,d) =
1

K + 1

ŝ+τ̂0+K∑
n=ŝ+τ̂0

dn, (21)

which is the average power of the Huffman sequence distorted by the channel and noise. By

comparing to the noise power N0 we found empirically to set the noise-dependent threshold to

ρ0 = max{ρ(K,d)/10, . . . , ρ(K,d)/100, 10 ·N0} (22)

to ensure with high probability to be above the instantaneous noise energy. By using an iterative

back stepping in Algorithm 1, we will stop if the sample power falls below the threshold ρ0,

which finally yields an estimate τ̂0 of the timing-offset. In line 3 of Algorithm 1 we update the

timing-offset estimate, if the sample power is larger than the threshold and the average power

of the preceding samples is larger than the threshold divided by 1 + (log b)/3, which will be

weighted by the amount b of back-steps.

B. Efficient Channel Length Estimation

Since the BMOCZ design does not need any channel knowledge at the receiver, it is also well

suited for estimating the channel itself at the receiver. Here, a good channel length estimation

is essential for the performance of the decoder, if the power delay profile (PDP) is decaying.

At some extent, the channel delays will fade out exponentially and the receiver can cut-off the

received signal by using a certain energy ratio threshold. Let us recall the average received SNR

rSNR =
E[‖x ∗ h‖2]

E[‖w‖2]
= E

E[‖h‖2]

N ·N0

=
1

N0

(23)
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where E = ‖x‖2 = N is the energy of the BMOCZ symbols, which is constant for the codebook.

If the power delay profile is flat, then the collected energy will be uniform and the SNR will not

change if we cut the channel length at the receiver. However, the additional channel zeros will

increase the confusion for the DiZeT decoder and reduce the BER performance. Therefore, the

performance will decrease for increasing L at a fixed symbol length K, see simulations in [2].

For the most interesting scenario of K ≈ L the BER performance loss is only 3dB over Eb/N0,

but will increase dramatically if L� K. The reason for this behaviour is the collection of many

noise taps, which will lead to more distortion of the transmitted zeros. Since in most realistic

scenarios the PDP will be decaying, most of the channel energy will be concentrated in the first

channel taps. Hence, if we cut the received signal length to Neff = K +Leff, we will reduce the

channel length to Leff < L and improve the rSNR for non-flat PDPs with p < 1, since it holds

1

N0

=
N
(∑Leff−1

l=0 pl + pLeff
∑L−Leff

l=0 pl
)

N ·N0

≈ N
∑Leff−1

l pl

(K + L)N0

<
N
∑Leff−1

l pl

(K + Leff)N0

=
NE[‖heff‖2]

NeffN0

. (24)

Since 1/E[‖heff‖2] � N/Neff we obtain a significant gain in SNR if L � K and p < 1.

Hence, by cutting the received signal to the effective channel length, given by a certain energy

concentration, we can improve the SNR and reduce at the same time the amount of channel

zeros, which we will demonstrate by simulations in Section V-C.

Assuming the knowledge of the noise floor N0 at the receiver, a cut-off time can be defined

as the window time which, for example, contains 95% of the received energy. The estimation

of the efficient channel length Leff can be done after the detection of the timing-offset τ0 with

Algorithm 1. We assume here that the maximal channel delay is L. Since the BMOCZ symbol

length is K + 1, we know that the samples rh = (rτ0+K+1, . . . , rτ0+K+L) of the received time-

discrete signal in (2), which is the CIR correlated by shifts of x and distorted by additive

noise (we ignore here the CFO distortion since it will be not relevant for the PDP estimation),

see Figure 2a-b. We therefore need to determine Leff by an energy concentration threshold,

which depends on the instantaneous SNR of rh. We know, that the last channel tap hLeff will be

multiplied by |xK |2, which is as strong as |x0|2 in average. There are many signal processing

methods to detect the efficient energy window Neff in the received samples, like total variation

smoothing [20], or regularized least-square methods [20], [21] which promotes short window

sizes (sparsity). We propose in Algorithm 2 an iterative increasing of Leff starting at 1 and increase
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Algorithm 1 center-peak-back-step (CPBS)

Require: |r|2, ρ0, K, and t̂

1: for b = 1 to bK/2c do

2: if |rt̂−b|2 > ρ0 &
∑b

n=1 |rt̂−n|2 >
bρ0

1+ log b
3

then

3: τ̂0 = t̂− b

4: end if

5: end for

6: return τ̂0

Algorithm 2 CIR energy-detection (CIRED)

Require: |r|2, τ̂0, N0, K, L, and p

1: Er =
∑L

`=1 |rτ̂0+K+1+`|2 − LN0;

2: Eeff = |rτ̂0+K+1|2; Leff = 1; µ = pLN0/2Er ;

3: while Eeff < µ · Er do

4: Leff = Leff + 1;

5: Eeff = Eeff + |rτ̂0+K+Leff|2;

6: end while

7: return Leff

until enough channel energy is collected. Here we set the estimate channel/signal energy to

Er = ‖rh‖2 − LN0 (25)

where we start with the maximal CIR length L. By assuming a path exponent of p we can

calculate a threshold for the effective energy Eeff ' µEr with µ = pLN0/2Er . The algorithm then

collects as many samples Leff of rh until the energy Eeff is achieved and sets Neff = K + Leff.

The extracted modulated signal is then given by

ỹ = (r̃τ̂0 , r̃τ̂0+1 . . . , r̃τ0+Neff), (26)

which will processed further for a CFO detection and final decoding.

IV. CARRIER FREQUENCY OFFSET

We assume now, that the down-converted baseband signal in (9) has no further timing-offset

and captured all path delays up to N = K +L. The signal will experience an unknown CFO of

φ ∈ [0, 2π)

ỹn = ejnφ(x ∗ h)n + wn , n ∈ [N ]. (27)

This is a common problem in many multi-carrier systems, such as OFDM, which therefore

require CFO estimation algorithms [4]–[6]. For a bandwidth of W = 1/T , the relative frequency

offset is

ε = ∆f · T = ∆f/W. (28)
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Figure 2: Absolute-squares of (a) a CIR realization with NLOS for L = 127, S = 83, and

p = .98 (c) normalized BMOCZ symbol with K = 127 and 68 outer zeros (b) received samples

which echoes the distorted CIR with efficient length Leff = 100 and (d) the correlation of the

received samples with the Huffman bracket at rSNR = 14dB with the echo of the trident

multiplied by the strongest path in red and the first path in green at a timing-offset τ0 = 86.

Let us consider, for example, a carrier frequency of fc = 1GHz with a drastic frequency offset

of ∆f ∈ [−1, 1]MHz and bandwidth W = 1Mhz. This would result in a relative frequency offset

ε ∈ [−1, 1], which is able to rotate all zeros by any φ = 2πε ∈ [0, 2π) in the z-plane. Hence, the

received polynomial (noiseless) will experience a rotation of all its N − 1 zeros by the angle φ

Ỹ(z) =
N−1∑
n=0

ỹnz
n =

N−1∑
n=0

yne
jnφzn = Y(ejφz) = yN−1

N−1∏
n=1

(ejφz − γn) (29)

= ejφ(N−1)yN−1

N−1∏
n=1

(z − γne−jφ) = ejφ(N−1)xKhL−1

K∏
k=1

(z − αke−jφ)
L−1∏
l=1

(z − βle−jφ).
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Figure 3: Frequency-offset estimation via oversampling the DiZeT decoder for K = 6 data

zeros and without channel zeros by a factor of Q = K = 6. Blue circles denote the codebook

Z (6), solid blue circles the transmitted zeros αk and red the received rotated zeros α̃k.

As illustrated in Figure 3, we have to ensure that each rotated zero (red) α̃k = e−jφαk does

not leave the zero-codebook set (blue) Z = Z (K) :=
{
R±1ej2π

k
K

∣∣∣ k ∈ [K]
}

. To apply the

DiZeT decoder, we have to find θ such that ejθα̃ ∈ Z , i.e., we need to ensure that all the K

data zeros will lie on the uniform grid. Hence, for θK = 2π/K the CFO can be split in

φ = lθK + θ (30)

for some l ∈ [K] and θ ∈ [0, θK), where l is called the integer and θ the fractional CFO, which

are also present in OFDM systems [9, Cha.5.2]. Only if θ = 0 (or correctly compensated), the

DiZeT decoder, will sample at correct zero positions and decode, due to the unknown integer

shift l, a cyclic permuted bit sequence m̃ = mSl, which we will correct in Section IV-C by an

cyclically permutable code.

A. Decoding BMOCZ via FFT

The DiZeT decoder for BMOCZ allows also a simple hardware implementation at the receiver.

Let us scale the received samples yn with the radius powers Rn respectively R−n

yDR := y


1 0 . . . 0
0 R . . . 0
...

. . .
...

0 0 . . . RN−1

 . (31)
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By applying the Ñ−point unitary IDFT matrix F∗ on the N0 zero-padded scaled signal, where

Ñ = QK with Q := dN/Ke, we get the samples of the z−transform2 by

√
Ny

(
DR 0N,QK−N

)
F∗ =

(
N−1∑
n=0

ynR
nej2π

0·n
Ñ , . . . ,

N−1∑
n=0

ynR
nej2π

(Ñ−1)·n
Ñ

)
= Y(α

(1)
Q )

where α(m)
Q,k = α

(m)
k (e0, . . . , ej2π

Q−1
QK ) ∈ CQ. Hence, the DiZeT decoder simplifies to

m̂k =

1 , |yD̃RF∗|Q(k−1) < RK−1|yD̃R−1F∗|Q(k−1)

0 , else
, k = 1, . . . , K. (32)

Here, Q ≥ 2 can be seen as an oversampling factor of the IDFT, where we pick each Qth

sample point to obtain the zero sample values. Hence, the decoder can be fully implemented by

a simple IDFT from the delayed amplified received signal, by using for example FPGA or even

analog front-ends. We can also rewrite the diagonal scaling matrix (31) in the symmetric form

DR := diag(R(N−1)/2, . . . , R−(N−1)/2) = R−(N−1)/2DR, (33)

such that D−1
R = DR−1 corresponds to a time-reversal of the diagonal, which brings us to

|yD̃R|QkF∗QK ≤ |y−D̃RF∗QK |Qk , k ∈ [K], (34)

since the absolute values cancel the phases from a circular shift S and the conjugate-time-reversal

y− = ySΓ, where Γ = F2 is the circular time-reversal, can be rewritten by using F∗Γ = F = F∗.

B. Fractional CFO estimation via Oversampled FFTs

To estimate the factional frequency offset, we will oversample by choosing Q > dN/Ke to

add Q further K zero blocks to DR. This leads to an oversampling factor of Q and allows to

quantize [0, θK) in Q uniform bins with separation φQ = θK/Q for a base angle θK = 2π/K.

Hence, the absolute values of the sampled z−transform in (27) of the rotated codebook-zeros

are given by

|Ỹ(ejqφQα
(1)
k )| = |ỹD̃RF∗QK |Qk⊕Ñ q , |Ỹ(ejqφQα

(0)
k )| = |ỹ−D̃RF∗QK |Qk⊕Ñ q (35)

2An even more efficient FFT calculation with N log(N) could be achieved if Ñ = 2n
′

for some n′ ∈ N.
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Figure 4: BER over rSNR for BMOCZ with DiZeT for random φ ∈ [0, θK/2) for L = K = 32.

for each q ∈ [Q] and k ∈ [K], where ⊕N is addition modulo N . To estimate the fractional

frequency offset of the base angle, we will sum the K smaller sample values and select the

fraction corresponding to the smallest sum

q̂ = arg min
q∈[Q]

K∑
k=1

min{|ỹD̃RFQK |Qk⊕Ñ q, |ỹ−D̃RFQK |Qk⊕Ñ q} and θ̂ =
q̂

Q
θK . (36)

Then the recovered signal ŷ = ỹM−θ̂ will have the data zeros on the constellation grid ZK .

See Figure 4 for a random fractional CFO θ and Figure 3 for a schematic picture.

C. Using Cyclically Permutable Codes

To be robust against rotations which are integer multiple of the base angle, we will need an

outer block code in FK2 for the binary message m ∈ FB2 , which is invariant against cyclic shifts,

i.e., a bijective mapping on the Galois Field F2 = {0, 1}

G : FB2 → FK2 ,m 7→ c = G(m) (37)

such that G−1(cSl) = m for any l ∈ [K]. We will use the common notation for the code length

n = K. Such a block code is called a cycling register code (CRC) CCR [22], which can be

constructed from the linear block code Fn2 , by separating it in all its cyclic equivalence classes

[c]CRC =
{

cSl
∣∣ l ∈ [n]

}
, c ∈ Fn2 (38)

where c has cyclic order ν if cSν = c for the smallest possible ν ∈ {1, 2, . . . , n}. To make

coding one-to-one, each equivalence class can be represented by the codeword c̃ with smallest
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decimal value [23]3. Then Fn2 is given by the union of all its equivalence class representatives

and its cyclic shifts, i.e.

Fn2 =

MCRC⋃
i=1

{
c̃iS

l
∣∣∣ l = 1, . . . , ν(i)

}
(39)

This will generate in a systematically way a look-up table for the cycling register code. Unfor-

tunately, the construction is non-linear and combinatorial difficult. However, the cardinality of

such a code is proven explicitly for any positive integer n in [22, Thm.VI.3] to be (number of

cycles in a cycling register)

|CCR(n)| = 1

n

∑
d|n

Φ(d)2n/d (40)

where Φ(d) is the Euler function, which counts the number of elements t ∈ [d] coprime to d.

For n prime, we obtain

|CCR(n)| = 1

n
(2n + (n− 1)2) ≥ 2n

n
= 2n−log2 n (41)

which would allow to encode at least B = n − dlog nebits. For n = K = 31 this would result

in a loss of only 5bits and is similar to the loss in a BCH-(31, 26) code, which can correct

1bit error. Note, the cardinality of a cycling register code CCR is minimal if n is prime. This

can be seen by acknowledging the fact that the cyclic order of a codeword is always a divisor

of n, see for example [24, Lem.1]. Therefore, if n is prime we only have the trivial orders 1

and n, where the only codewords with order ν = 1 are the all one 1 and all zero 0 codeword

and all other codewords have the maximal or full cyclic order ν = n. Hence, extracting the

CRC from Fn2 obtains the same cardinality (41). Taking from a block code of length n only

the codewords of maximal cyclic order and selecting only one representative of them defines a

cyclically permutable code (CPC) and was first introduced4 by Gilbert in [27]. If n is prime,

only two equivalence classes in CCR are not of maximal cyclic order, hence the cardinality for

a CPC if n is prime is at most (2n − 2)/n.

However, the construction from Fn2 , even for n prime, is a combinatorial problem, especially

the decoding. Hence, to reduce the combinatorial complexity, many approaches starting from

3The authors call the cycling register codes as cyclically permutable codes, which are nowadays defined differently.

Furthermore, they claim that CRCs are also comma-free codes, which is not true by definition.
4Let us emphasize at this point, that comma-free codes, introduced by Golomb et al. [25] are a class of codes with smaller

size than CPCs or CRCs. Altough, the combinatoric is very similar and was proven to be (40) if the Euler function is substituted

by the Möbius function, see for example [26].
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cyclic codes and extract all codewords with maximal cyclic order [28]–[30]. Since a cyclic

(n, k, dmin) code corrects up to (dmin − 1)/2 bit errors, any CPC code extraction will inherit the

error correction capability.

We will follow an approach from [28] to construct a CPC from a binary cyclic (n, k, dmin)

code by still obtaining the best possible cardinality (2k − 2)/n if n is a Mersenne prime. By

reasons which will be clear later, we can extract from this CPC an affine subcode whith maximal

dimension, which we will call an affine cyclically permutable code (ACPC). This allows a linear

encoding of B = n − blog nc bits by a generator matrix and an additive non-zero row vector,

which defines the affine translation.

1) CPC construction from cyclic codes: Cyclic codes exploit efficiently the algebraic structure

of Galois fields Fq, given by a finite set having a prime power cardinality q = pm
′ . A linear

block code over Fq is a cyclic code if each cyclic shift of a codeword is a codeword. It is a

simple-root cyclic code if the characteristic p of the field Fq is not a divisor of the block length

n. If the block length is of the form n = qm − 1, we call it a primitive block length and if

the code is cyclic we call it a primitive cyclic code, [31, Def.5.3.1]. We will investigate here

binary cyclic codes of length n = 2m − 1 with q = p = 2, which are simple-root and primitive

cyclic codes. Due to its linearity, cyclic codes can be encoded and decoded by a generator G

and check matrix H in a systematic way. The cardinality of a binary cyclic (n, k) code is always

Mc = 2k. Hence, by partitioning the cyclic code in equivalence classes of maximal cyclic order

and selecting one codeword as their representative leaves us with a maximal cardinality of

|CCPC| ≤
2k − 1

n
. (42)

for any extracted CPC. Note, the zero codeword is always a codeword in a linear code but

has cyclic order one and hence is not an element of a CPC. To exploit the cardinality most

efficiently, the goal is to find cyclic codes such that each non-zero codeword has maximal

cyclic order. We will follow a construction of Kuribayashi and Tanaka in [28] for prime code

lengths of the form n = 2m − 1, also known as Mersenne primes. For m = 2, 3, 5, 7 this

applies to K = n = 3, 7, 31, 127, which are relevant signal lengths for binary short-messages.

Furthermore, we will only consider cyclic codes which have 1 as a codeword. We will show

later that this is indeed the case. Since n is prime, each codeword, except 0 and 1 has maximal

cyclic order. Hence, each codeword of a5 cyclic (n, k) code has maximal cyclic order and since it

5There are multiple cyclic (n, k) codes, which differ by the choice of the generator polynomial.
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is a cyclic code all its cyclic shifts must be also codewords. Hence the cardinality of codewords

having maximal order is exactly M = 2k − 2. Therefore, we only need to partition the cyclic

code in its cyclic equivalence classes, which will leave us with |CCPC| = M/n = (2k − 2)/n.

Note, this number must be indeed an integer, by the previous mentioned properties, see also [28,

Lem.2]. The main advantages of the Kuribayashi-Tanaka (KT) construction is the systematic code

construction and the inherit error-correcting capability of the underlying cyclic code, from which

the CPC is constructed. Furthermore, combining error-correction and cyclic-shift corrections will

be ideal for BMOCZ.

The code construction is two-folded. We have an inner Cin− (k, k−m) and outer Cout− (n, k)

cyclic code, where the inner cyclic codewords will be affine translated by the Euclidean vector

e1 = (1, 0, . . . , 0) ∈ Fk2. In this sense, the CPC construction is affine. This can be realized by

an affine mapping from Fk−m2 to Fn2 , which can be represented by the BCH generator matrices

Gin and Gout together with the affine translation e1 as

G : Fk−m2 → Cin + e1 → Cout ⊂ Fn2

m 7→ i = mGin + e1 7→ c = iGout = G(m).
(43)

To derive the generator matrix we can exploit the algebraic structure of the cyclic codes, given

by its Galois fields. By definition of cyclic codes, we have to factorize the polynomial

xn − 1 = (x− 1)
S∏
s=1

Gs(x) (44)

in irreducible polynomials Gs(x) of degree ms, which must be divisors of m. If n is prime, m

must be also prime6 and hence all the irreducible polynomials are primitive and of degree ms =

m, except one of them, G0(x) = x− 1, has degree one. Hence, it must hold S = (n− 1)/m. As

outer generator polynomial Gout(x) =
∏S

s=S−J+1 Gs(x) =
∑Jm

i=0 gout,ix
k we choose the product

of the last 1 ≤ J ≤ S primitive polynomials Gs(x) yielding to a degree Jm = n− k, see [28,

(23)]. Each codeword polynomial of degree less than n is then given by

C(x) = I(x)Gout(x) (45)

where I(x) =
∑k−1

a=0 iax
a is the informational polynomial of degree less than k and represented

by the binary information word i = (i0, i1, . . . , ik−1) ∈ Fk2, which we call the inner codeword.

6The Mersenne prime number n = 2m−1 can be seen as a definition for prime numbers m. Assume, m is not prime, than it

is a composite number m = ab for some integers a, b > 1. But since the geometric series
∑b−1
n=0 2

an = (2ab − 1)/(2a − 1) =

n/(2a − 1) is an integer, n can not be prime.
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Similar, the codeword polynomial C(x) is represented by the CPC codeword c ∈ Fn2 . By [28,

Thm.2] a message polynomial M(x) =
∑k−m−1

b=0 mbx
b of degree less than k −m and R(x) = 1

will be mapped to the information polynomial by the inner generator polynomial

I(x) = M(x)Gin(x) + 1. (46)

In [28] the authors map all possible cyclic equivalence classes to M(x), by separating the inner

code in S−1 separated inner codes. However, the remaining S−2 codes will only map < 2k−m

more message polynomials to codeword polynomials and therefore be not enough to encode an

additional bit. Hence, we will just omit these other inner codewords. This has the advantage, that

we can write with (43) the subset of the CPC as an affine cyclically permutable code (ACPC),

which is given by the polynomial multiplication over F2

C(x) = I(x)Gout(x) = (M(x)Gin(x) + 1)Gout(x) = M(x)G(x) + Gout(x). (47)

Here, we introduced a third generator polynomial G(x) = Gin(x)Gout(x) which will be affine

translated by the polynomial Gout(x). This generator polynomial G(x) will map surjective Fk−m2

to a cyclic code in Fn2 and can therefore be expressed in matrix form as

mG + gout ∈ CACPC ⊂ Cout (48)

where gout = (gout,0, . . . , gout,n−k, 0, . . . , 0) ∈ Fn2 and the generator matrix7 (Toeplitz) is given by

G =


g0 g1 . . . gk−(k−m)−1 gk−(k−m) 0 . . . 0
0 g1 . . . gk−(k−m)−2 gk−(k−m)−1 gk−(k−m) . . . 0

|
... �

...
0 0 . . . . . . gm

 ∈ Fk−m×k2 . (49)

For linear codes, we can use the Euclidean algorithm, to compute xn−i = Qi(x)G(x) + Si(x)

for i = 1, . . . , k−m, where the remainder polynomials Si(x) =
∑

j si,jx
j will have degree less

than n− k = n− (n−m) = m, which allows one to rewrite the Toeplitz matrices as systematic

matrices, see [31, pp.112]. Here, the check symbols si,j define the k−m×n systematic generator

and n−k+m× n check matrix

G̃=[−P Ik−m], H̃=[In−k+m PT ] with P=


sk−m,0 . . . sk−m,n−k−1 0m
sk−m−1,0 . . . sk−m−1,n−k−1 0m

...
...

...
s1,0 . . . s1,n−k−1 0m

 (50)

7The notation is flipped compared to [31] to match the ordering of words and polynomials. Note also, c = aG⇔ cT = GTaT .
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such that G̃H̃T = Ok−m,n−k+m. Here we needed zero padding to embed the code in Fn2 . This

allows one to write the cyclic outer code as Fk−m2 G = Fk−m2 G̃. Of course, each mG and mG̃

will be mapped to different codewords, but this is just a relabeling. Since Fk−m2 G̃ defines a

cyclic (n, k −m) code and n is prime, each codeword must have n distinct cyclic shifts. The

affine translation gout separates than each of these n distinct cyclic shifts by mapping them to

representatives of distinct cyclically equivalence classes of maximal order. This gives us a very

simple encoding rule for each m ∈ FB2 :

c = mG̃ + gout = G(m) ∈ CACPC, (51)

and decoding rule. Here an ACPC codeword c can be decoded by just subtracting the affine

translation gout and cut-off the last B = k−m binary letters to obtain the message word m ∈ FB2 ,

see (50). However, we will observe a cyclic shifted codeword v = cSl and by construction we

know that only one cyclic shift will be an element of CACPC and consequently it holds

∀ j 6= l mod (n− 1) : c̃j = vS−j − gout 6∈ Fk−m2 G̃ ⇔ c̃jH̃
T 6= 0. (52)

Hence, we only need to check all n cyclic shifts of the sense-word v to identify the correct

cyclic shift l, which is given if c̃lH̃
T = 0. If there is an additive error e we can use the error

correcting property of the outer cyclic code Coutin (47) to repair the codeword. Here, we can use

again the systematic matrices G̃out and H̃out to represent the outer cyclic code in a systematic

way. Note, that each information message i which corresponds to a CPC codeword c will be an

element of Fk2G̃out. Furthermore, all its cyclic shifts cSl will be outer cyclic codewords. Hence,

by observing the sense-word

ṽ = cSl + e (53)

and determining its syndrome s = vH̃T
out, which we look-up int the syndrome table Tsynd of H̃out

to identify the corresponding coset leader (error-word) e, which recovers the shifted codeword

(we assume maximal t errors, bounded-distance decoder) as

v = ṽ − e, (54)

see for example [31, p.59]. This allows to correct up to t = (n− k − 1)/2 errors of the cyclic

codeword. From the additive error-free sense-word c we can, as described previously, identify

the correct shift l̂ from (52) and by taking the last B = k letters the original message m. If the

error vector e introduces more than t bit flips, the error correction will fail and the chance is
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high that we will mix up the ACPC codewords and experience a block (word) error. Therefore,

we will need low coding rates for the outer cyclic code Gout to prevent such a catastrophic error.

The identified cyclic shift and fractional CFO estimation (36) yields then the estimated CFO

φ̂ = θ̂ + l̂θK . (55)

Example 1. The most non-trivial8 example of ACPC is for m = 3 and l = 1, which gives

n = 23 − 1 = 7, k = 7− 3 = 4, B = 4− 1 = 1 (56)

This is also the Hamming (7, 4) code with minimal distance dmin = 3 and hence can correct 1

bit error. The code is also perfect.

Example 2. For K = n = 31 we get for t = 2 error corrections a message length of k = 21 in

a cyclic BCH-(31, 21) code from which we can construct a CPC of cardinality [28, (25),(30)]

|CCPC| =
4∑
i=1

25(i−1)+1 = 21 + 26 + 211 + 216 = 6750 ≥ 216. (57)

This allows to encode B = 16 = k −mbits. The cardinality is optimal for any cyclic (31, 26)

code (42)

|CCPC| =
Mc

n
=

221 − 2

31
= 2

220 − 1

25 − 1
=

3∑
i=0

25i+1 = 21 + 26 + 211 + 216 = 6750. (58)

The next example would be for n = 127, which we also simulated in Figure 7. Unfortunately,

the next Mersenne prime is only at 8191, which might be not anymore considered as a short-

packet length. However, the authors want to emphasize that other CPC constructions exist which

do not require Mersenne prime lengths n or even binary alphabets. In [30] the authors showed

construction of CPCs with alphabet size q, given as a power of a prime, and block length n =

qm−1 for any positive integer m. Hence, for q = 2 and a binary cyclic code (n = 2m−1, k, dmin)

which satisfy [30, Thm.1] will result in (2k − 1)/n CPC codewords. An example is given for

n = 15 = 24−1 and k = 8, dmin = 4 where n is not a Mersenne prime number and the maximal

bound (42) of (28 − 1)/15 = 17 is achieved, allowing to encode B = 4 bits and correct 2 bit

errors. which is very close to the BCH code (15, 7) with 2bit error correction.

8For m = 2 only 1 and 0 are the BCH codewords, which would be removed for the CPC. Note, m has to be prime.
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Let us mention the shortest non-trivial CPC, which can be addressed without cyclic code

construction, but also with no error correction capabilities.

Example 3. For n = 3 we get only have 23 = 8 binary words of length 3 which have 4 different

cyclic permutable codewords c1 = 1, c2 = (1, 1, 0), c3 = (1, 0, 0), c4 = 0 allowing to encode

B = 2bits of information with no error correction. However, this code allows an TO estimation,

as well as a CIR estimation. For a super short control signal, this might be therefore interesting.

By omitting c1 and c4, i.e., by dropping one bit of information, we can even estimate with the

DiZeT oversampling decoder any possible CFO.

V. SIMULATIONS

We determined by Monte-Carlo simulations with MatLab 2017a the bit-error-rate (BER) over

averaged Eb/N0 and rSNR under various channel settings and block lengths K. The transmit

and receive time will be in all schemes N = K+L over which the CIR h of length L is assumed

to be static, see Figure 9. Therefore, the energy per bit is Eb = B/N with B = ‖m‖1 which is

the inverse of the spectral efficiency ρ = N/B. In each simulation run, the CIR coefficients are

redrawn according to the channel statistic given by the decay exponent p ≤ 1. The CFO φ is

drawn uniformly from [0, 2π) and the timing-offset τ0 uniformly form [0, N ]. Furthermore, the

additive distortion is also drawn from an i.i.d. Gaussian distribution CN (0, N0), which we will

scale to obtain various received SNR and Eb/N0 values, Figure 5a.

Due to the embedded error correcting and a complete failure if a wrong CPC codeword

is detected, the BER and BLER (block-error-rate) are almost identical over received SNR for

BMOCZ-ACPC, see Figure 5b.

Of course, it would be also possible to detect a wrong decoding and request a retransmit. How-

ever, this is in contrast to our system aspects since we want to address sporadic communication

of single packets.

A. Multiple Receive Antennas

For a receiver with M antennas, we may exploit receive antenna diversity, since each antenna

will receive the transmit signal over an independent CIR realization (best case). Due to the short

wavelength in the mmWave band large antenna arrays with λ/2 spacing can be easily installed

on small devices. We assume in all simulations:
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• The B information bits m ∈ FB2 are drawn uniformly.

• All signals arrive with the same timing-offset τ0 at the M receive antennas (dense antenna

array, fixed relative antenna positions (no movements)).

• The clock-rate for all M antennas is identical, hence all received signals have same CFO.

• The maximal CIR length L, sparsity level S, and PDP p are the same for all antennas.

• Each received signal experience an independent noise and CIR realization, with sparsity

pattern sm ∈ {0, 1}L for |supp(sm)| = S and hm ∈ CL where hm,l = CN (0, sm,lp
l).

The DiZeT decoder (32) for BMOCZ without TO and CFO, can be implemented straight forward

to a single-input-multiple-output SIMO antenna system:

m̂k =

1 ,
∑M

m=1 |ymD̃RF∗|2Q(k−1) < R2K−2
∑M

m=1 |ymD̃R−1F∗|2Q(k−1)

0 , else
. (59)

B. CFO Estimation for Multiple Receive Antennas

As in Section IV-B we can estimate the fractional CFO by (36) for M received signals ym

q̂ = arg min
q∈[Q]

K∑
k=1

min

{
M∑
m=1

|ỹmD̃RFQK |Qk⊕Ñ q,
M∑
m=1

|ỹ−mD̃RFQK |Qk⊕Ñ q

}
. (60)

The effect of different coding rates on BER and block error rate (BLER) for the BMOCZ-

ACPC-(K,B) scheme with K = 31 transmitted zeros and channel lengths L = 16, 32 with flat

power profile p = 1 is shown in Figure 5. If the coding rate is decreased to B/K = 6/31 ' 1/5,

allowing up to 5 bit error corrections, we achieve a BLER of 10−1 at almost 6dB received SNR,

which is 6dB better as for the coding rate 16/31 ' 1/2. Hence, if power is an issue, the coding

rate can be decreased accordingly to approach a low SNR regime, at the cost of data rate.

C. Timing and Effective Channel Length Estimation

We chose a random integer timing offset in τ0 ∈ {0, 1, 2 . . . , N − 1} in Figure 6 and with

an exponentially power delay profile exponent p = 0.98 and dominant LOS path. In the CPBS

Algorithm 1 and CIRenergy Algorithm 2 we used the sum of all received antenna samples and

the sum of the noise powers

|rn|2 =
M∑
m=1

|rm,n|2 and σ2 = MN0. (61)

Indeed, if the CIR length is larger with exponential decay, a wrong TO estimation yields to less

performance degradation as for shorter lengths, since the last channel tap will be much smaller

February 11, 2019 DRAFT



26

0 5 10 15 20 25 30 35 40 45 50

EbN0 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R
 runs per point: 29000 with p=1 for K=31

Huffman BMOCZ-BCH-(31,16) and DiZeT and R=1.0514, L=16

Huffman BMOCZ-BCH-(31,16) and DiZeT and R=1.0514, L=32

Huffman BMOCZ and DiZeT and R=1.0514, L=16

Huffman BMOCZ and DiZeT and R=1.0514, L=32

BMOCZ-ACPC-(31,11)  systematic with NK-DiZeT and CFO for L=15

BMOCZ-ACPC-(31,11)  systematic with NK-DiZeT and CFO for L=32

BMOCZ with NK-DiZeT and random fractional base angle CFO for L=16

BMOCZ with NK-DiZeT and random fractional base angle CFO for L=32

BPSK theoretical flat fading, coherent

(a)

0 5 10 15 20 25 30 35 40 45

rSNR in dB

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
L
E

R

  runs per point: 29000 with p=1 for K=31

(b)

Figure 5: Simulations for arbitrary CFO with ACPC-(31,11) for B = 11bits. The Eb/N0

averaged over the fading channel is defined here as 1/BN0 for B information bits.

in average power. We simulated by choosing randomly for each simulation, consisting of D

different noise powers N0, Each binary plain message m will result in a codeword c ∈ FK2

which corresponds to a normalized BMOCZ symbol x ∈ CK+1. We will normalize the CIR at

the transmitter to h̃ = h/E[‖h‖2], where the average energy of the CIR is given by (24) as the

expected power delay profile in s

ES,h = E[‖h‖2] =
L−1∑
l=0

slp
l. (62)

This ensures that for each selected sparsity pattern of the CIR, we will have normalized CIR

energy if selecting random channel taps by the law of large numbers. By averaging over the

sparsity pattern, this would result in a large deviation of the CIR energy and would require many

more simulations, therefore we calculated the average power with knowledge of the sparsity

patterns, i.e., by knowing the support realization.
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Figure 6: BER over Eb/N0 with M = 2 and 4 antennas for BMOCZ-ACPC-(31, 16) distorted

by TO and CFO (green curves). OFDM-IM is without CFO and TO.
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S = 42. BCH with no CFO and TO and ACPC with CFO and TO using Algorithm 1+2.
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Figure 8: TO and CFO estimation errors for M = 1, 2 and M = 4 receive antennas.

D. Comparison to Noncoherent Schemes

First, we will compare without TO and CFO BMOCZ to OFDM and pilot based schemes,

as in [2], in Figure 10b with a single antenna where the CIR is generated from the simulation

framework Quadriga [13] and finally in Figure 11a with multiple-receive antennas.

a) Pilot and SC-FDE with QPSK: Here we use a pilot impulse
√

E
2
δ0 of length P = L to

determine the CIR and K + 1− L symbols to transmit data via QPSK in a single-carrier (SC)

modulation by a frequency-domain-equalization (FDE). Applying FDE, we can then decode the

QPSK or QAM modulated OFDM subcarriers K + 1−L, see [1]. The energy E is split evenly

between the pilots and data symbols, which results in better BER performance for high SNR,

see Figure 11b (we not use SNR knowledge at the transmitter)

b) OFDM-Index-Modulation (IM): We also compare to: OFDM-IM with Q = 1 and Q = 4

active subcarriers out of KIM = K+1 and to OFDM-Group-Index-Modulation (GIM) with Q = 1

active subcarriers in each group of size G = 4. To obtain an OFDM symbol we need to add a

cyclic-prefix, which requires KIM ≥ L. For OFDM systems, the CFO will result in a circular

shift of the KIM subcarriers and hence create the same confusion as for BMOCZ. The only

difference is, that OFDM operates only on the unit circle, whereas BMOCZ operates on two

circles inside and outside the unit circle. Note, in OFDM-IM a cyclic permutable code is not

applicable, since the information for example with Q = 1 is a cyclic shift, which is exactly what

the CFO introduces. For more active subcarriers Q > 1 and grouping the carriers in groups,

ICI free IM schemes can be deployed, see for example [32]. A group size of G = 4 seems to
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Figure 9: Comparison to two successive OFDM-DPSK blocks, one OFDM-IM, a pilot and

QPSK, and a BMOCZ block in time-domain. The solid bars denote the used subcarriers/zeros.

perform the best for OFDM-IM. However, this will require L� K which is not our proposed

regime for MOCZ.

c) OFDM-Differential-Phase-Shift-keying (DPSK): We will use two successive OFDM

blocks to encode differentially the bits via Q-PSK over Kdif subcarriers. To ensure the same

transmit and receive lengths as for BMOCZ, we will split the BMOCZ symbol length K + 1 in

two OFDM symbols with cyclic prefix x
(1)
CP and x

(2)
CP of equal length9 Ndif = N/2, where we have

to chose N = K + L to be even. Furthermore, to include a CP of length L− 1 in each OFDM

block, we need Ndif = (K + L)/2 ≥ 2L − 1 resulting in the requirement K ≥ 3L − 2. If L is

even and K = nL for some 2 < n ∈ N we get Kdif = Ndif−L+ 1 = (n− 1)L/2 + 1 subcarriers

in each OFDM block. The shortest transmission time is then given for even L with n = 3 by

N = 4L, resulting in Kdif = L+ 1 subcarriers. Modulating them with Q-PSK allows to transmit

(L+ 1) logQ bits differentially. To match the spectral-efficiency of BMOCZ as best as possible,

we select Q = 8 to encode 3bits per subcarrier and hence B = (L+ 1)3 = (K/3 + 1)3 = K + 3

message bits, which is 3bits more than BMOCZ. The encoding of the DPSK is done relative to

the first OFDM block i = 1, which will transmit PSK constellation points as with phase zero

s
(1)
k = 1 respectively data phases s(2)

k = ej2πqk/Q with qk = bi2de(m(k−1) log(Q)+1, . . . ,mk log(Q))

for k = 1, . . . , Kdif. Hence, in time domain, we obtain

x = (x
(1)
CP ,x

(2)
CP ), x

(i)
CP = (CP(i),x(i)), CP(i) = (x

(i)
Ndif−L+1, . . . , x

(i)
Ndif−1), x(i) = F∗s(i) (63)

for i = 1, 2. Here x will be also normalized. After removing the CP at the receiver the received

9Note, that K has to be odd to divide by 2.
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Figure 10: (a) BER of blind schemes over instantaneous SNR corrected by spectral efficiency

and (b) random channel realizations with Quadriga at maximal delay spread L = 41.

data symbols in frequency domain via the mth antenna for the kth carrier is given by

R
(i)
m,k = Hm,ks

(i)
k +W

(i)
m,k (64)

where we consider {W (i)
m,k} as independent circularly symmetric Gaussian random variables and

Hm,k ∈ C the channel coefficient of the kth subcarrier. Hence, each subcarrier can be seen as

a Rayleigh flat fading channel and we will use the decision variable for a hard-decoding of M

antennas

q̂k = argmin
q∈[Q]

∣∣∣∣∣ 1

M

M∑
m=1

R
(2)
m,kR

(1)
m,k − e

j 2πq
Q

∣∣∣∣∣
2

= int

(
Q

2π
∠

(
1

M

M∑
m=1

R
(2)
m,kR

(1)
m,k

)
mod Q

)
(65)

see for example [33] (multiple users) or [34, Sec.8.1] (single antenna). Here int(·) rounds to the

nearest integer. We ignore here a possible weighting by knowledge of SNR.
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E. Simulations with Quadriga Channel Simulator

We used the version 2.0 of the Quadriga channel simulator10 [13], to generate random CIRs

for the Berlin outdoor scenario (“BERLIN_UMa_NLOS”), with NLOS at a carrier frequency

fc = 4Ghz and bandwith W = 150Mhz, see Figure 10a. Transmitter and receiver are stationary

using omnidirectional antennas (λ/2). The transmitter might be a base station mounted at 10m

altitude and the receiver might be a ground user with ground distance 20m. The LOS distance

is then ≈ 22m.

VI. CONCLUSION

We proposed a timing-offset and carrier frequency offset estimation for the novel BMOCZ

modulation scheme in wideband frequency-selective fading channels. The CFO robustness is

realized by a cyclically permutable code, which allows to identify the integer CFO. An over-

sampled DiZeT decoder allows to estimate the fractional CFO. The CPC code construction

with cyclic BCH codes allow to correct additional bit errors which enhances the performance

of the BMOCZ design for moderate SNRs. Furthermore, we used a novel simulation software

Quadriga version 2.0, to generate random CIR at a bandwidth of 150Mhz. Due to the low-latency

of BMOCZ the CFO and TO estimation from one single BMOCZ symbol, this blind scheme is

ideal for control-channel applications, where few critical and control data need to be exchanged

while at the same time, channel and impairments information need to be communicated and

estimated. Coded BMOCZ with ACPC is therefore a promising scheme to enable low-latency

and ultra-reliable short-packet communications over unknown wideband channels.
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