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Solution of scaling quantum networks

Yu. Dabaghian and R. Blümel

Department of Physics, Wesleyan University, Middletown, CT 06459-0155, USA

(February 6, 2003)

We show that all scaling quantum graphs are explicitly integrable, i.e.

any one of their spectral eigenvalues En is computable analytically, explicitly,

and individually for any given n. This is surprising, since quantum graphs

are excellent models of quantum chaos [see, e.g., T. Kottos and H. Schanz,

Physica E 9, 523 (2001)].

05.45.Mt

Graphs are networks of bonds and vertices. Figure 1 shows two examples: a three-

bond four-vertex star graph (Fig. 1a) and a three-bond four-vertex linear graph (Fig. 1b).

A quantum particle moving on the graph turns the graph into a quantum graph [1]. If

the quantum particle moves freely on the graph, subjected only to flux conservation at its

vertices, we call it a standard quantum graph. This is the type of quantum graph most

frequently studied in the literature [1–5]. A larger class of quantum graphs, including the

standard quantum graphs, are dressed quantum graphs [6]. A dressed quantum graph has

potentials on its bonds and δ-functions on its vertices. The potentials on its bonds are

essentially arbitrary as long as they do not introduce turning points on the bonds. But even

this case can be dealt with trivially by re-defining the topology of the graph.

An important subset of dressed quantum graphs are scaling quantum graphs [7–9]. In this

case the graph bonds are dressed with scaling potentials and the graph vertices are dressed

with scaling δ-functions. A scaling potential is one whose strength V0 scales with the energy

E of the quantum particle according to V0 = λE, where λ is a constant. The strength of

a scaling δ-function scales with k =
√
E. Scaling potentials and δ-functions are a natural

choice to consider. On the one hand they frequently occur in physical systems [10–15], on

the other hand they are mathematically convenient, since they allow studying a quantum
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system without causing phase-space metamorphoses [16] in the underlying classical system.
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FIG. 1. (a) Dressed three-bond star graph and (b) dressed four-vertex chain graph. Different

potential strengths on the bonds are indicated by different thickness of the bonds. Different vertex

strengths are indicated by different dot sizes representing the vertices.

It has been pointed out before [17] that this is the most natural way of studying quantum

systems, in particular quantum chaos [18,19]. Since quantum graphs are popular and suc-

cessful models of quantum chaos [1–5], it may come as a surprise that the energy spectrum

En, n = 1, 2, . . . of all scaling quantum graphs is explicitly and analytically solvable in the

form En = . . ., involving only known quantities on the right-hand side. In many cases the

solutions can be stated in closed analytical form.

The spectral function g(0)(k) of a general scaling, dressed quantum graph is of the form

[7]

g(0)(k) = cos(S0k − πγ0) −
N

∑

j=1

a
(0)
j cos(Sjk − πγj), (1)

where S0 > 0 is the total reduced action length of the graph [7,8], 0 < Sj < S0 are certain

combinations of the reduced bond actions [7,8], N is the number of action combinations in

(1), γ0, γj are constant phases and a
(0)
j are constant amplitudes. The spectrum En of the

quantum graph is obtained by solving the spectral equation

g(0)(k(0)
n ) = 0, n = 1, 2, . . . (2)
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via En = (k
(0)
n )2. For the purposes of this paper we are only interested in the positive

solutions of (2), and obtain a well-defined counting index n by defining k
(0)
1 to be the first

positive root of (2). As a first step toward the solution of the general problem, it was shown

in [7–9] that (2) can be solved explicitly in the form k
(0)
n = . . . if the regularity condition

N
∑

j=1

|a(0)
j | < 1 (3)

is fulfilled. In order to substantiate our claim that (2) is solvable explicitly for all scaling

quantum graphs, we have to show that (2) is solvable explicitly even if (3) is not fulfilled.

Before we turn our attention to the general case, we introduce our methods with the help

of a simple example. Let us consider a scaling quantum graph derived from the three-bond

star graph shown in Fig. 1a by putting the scaling potentials Vl(E) = λlE, 0 < λl < 1 on

its three bonds of length Ll, l = 1, 2, 3, require the “Kirchhoff-type” [5] flux conservation

condition
∑3

l=1 dψl/dxl = 0 at its central vertex (ψl is the quantum wave function on bond

number l of the graph and xl is the coordinate on bond number l) and require Dirichlet

boundary conditions on its three dead-end vertices. The spectral equation is of the form (1)

with N = 3, γ1 = γ2 = γ3 = 0 and

S0 = α1 + α2 + α3, S1 = −α1 + α2 + α3, S2 = α1 − α2 + α3, S3 = α1 + α2 − α3,

(4)

a
(0)
1 =

−β1 + β2 + β3

β1 + β2 + β3
, a

(0)
2 =

β1 − β2 + β3

β1 + β2 + β3
, a

(0)
3 =

β1 + β2 − β3

β1 + β2 + β3
, (5)

where

αl = βl Ll, βl =
√

1 − λl, l = 1, 2, 3. (6)

The amplitudes in (5) do not fulfill the regularity condition (3). In some cases
∑3

j=1 |a
(0)
j | = 1

(for instance for a
(0)
j > 0, j = 1, 2, 3), and in many cases

∑3
j=1 |a

(0)
j | > 1, which strongly

violates the regularity condition (3). Since the methods and techniques presented in [7–9] for

obtaining the spectrum of a graph explicitly depend crucially on (3), it seems that completely
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different methods have to be developed for general graphs, such as the three-bond star graph

of Fig. 1a, which do not fulfill (3). There is, however, a way to reduce (1) to a form that

allows to bring the powerful theory of regular quantum graphs [7–9] to bear. In order to

motivate and to illustrate this method, let us study the case α1 = 1, α2 = 7, α3 = 11,

β1 = 1/10, β2 = 1/5, β3 = 1/2. In this case a
(0)
1 = 3/4, a

(0)
2 = 1/2, a

(0)
3 = −1/4, S0 = 19,

S1 = 17, S2 = 5, S3 = −3 and the spectral equation is given by

g(0)(k) = cos(19k) − 3

4
cos(17k) − 1

2
cos(5k) +

1

4
cos(3k). (7)

Since |a(0)
1 | + |a(0)

2 | + |a(0)
3 | = 3/2 > 1, this quantum graph is certainly not regular. But let

us look at the first derivative of (7). Dividing by S0, we obtain

g(1)(k) = cos[S0k + π/2] −
3

∑

j=1

a
(1)
j cos[Sjk + π/2] =

− sin(19k) +
51

76
sin(17k) +

5

38
sin(5k) − 3

76
sin(3k). (8)

This time we have
∑3

j=1 |a
(1)
j | = 16/19 < 1 and therefore, since (8) is precisely of the form

(1) and satisfies (3), it can be solved explicitly using the methods of [7–9]. In particular

it was shown in [7–9] that root number n of a spectral equation that satisfies (3), such as

(8), is found in the root interval [k̂n−1, k̂n], where k̂n are the root separators [7–9]. It was

also shown in [7–9] that the location of the root separators is entirely controlled by the local

extrema of the trigonometric function with the largest action argument. Thus, in our case,

the root separators of (8) are given by k̂n = (2n + 1)π/38. Since according to [7–9] root

number n and only root number n is located in the interval [k̂n−1, k̂n], we can now compute

all roots of (8) explicitly and individually according to

k(1)
n =

∫ k̂n

k̂n−1

k

∣

∣

∣

∣

dg(1)(k)

dk

∣

∣

∣

∣

δ(g(1)(k)) dk. (9)

In [20] we show that because of the hermiticity of the spectral eigenvalue problem on quantum

graphs the locations of the local extrema of g(0)(k) are separators for the roots of g(0)(k). The

location of the local extrema of g(0)(k), however, are given by the zeros of g(1)(k), which, up
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to constants, is the derivative of g(0)(k). Therefore, using the roots k
(1)
n , explicitly computed

in (9), as the root separators of (7), we obtain, again explicitly and individually,

k(0)
n =

∫ k
(1)
n

k
(1)
n−1

k

∣

∣

∣

∣

dg(0)(k)

dk

∣

∣

∣

∣

δ(g(0)(k)) dk. (10)

This solves the task of computing the spectrum of our example of the three-bond dressed

star graph explicitly.

In general, given a spectral equation (1) which does not fulfill (3), we generate a chain

of derivative spectral equations g(m)(k), where g(m)(k) is the m’th derivative of (1) divided

by Sm
0 , explicitly given by

g(m)(k) = cos(S0k − πγ0 +mπ/2) −
N

∑

j=1

a
(m)
j cos(Sjk − πγj +mπ/2), (11)

where a
(m)
j = a

(0)
j (Sj/S0)

m. Since S0 < Sj , there always exists anM such that the amplitudes

a
(m)
j satisfy the regularity condition (3), i.e.,

∑N

j=1 |a
(M)
j | < 1. Therefore, according to [7–9],

root separators k̂
(M)
n exist on the level M and the roots k

(M)
n of g(M)(k) = 0 are explicitly

computable via

k(M)
n =

∫ k̂
(M)
n

k̂
(M)
n−1

k

∣

∣

∣

∣

dg(M)(k)

dk

∣

∣

∣

∣

δ(g(M)(k)) dk. (12)

Since we now know the roots on the level M , we can go one step backwards to level M − 1.

According to a root-counting argument [20] based on the Weyl formula [18,19], the root

separators k̂
(M−1)
n on the level M − 1 are the locations of the local extrema of g(M−1)(k),

which are given explicitly by the roots k
(M)
n , which we know. Therefore, k̂

(M−1)
n = k

(M)
n and

the roots of g(M−1)(k) = 0 can now be computed explicitly, according to

k(M−1)
n =

∫ k
(M)
n

k
(M)
n−1

k S0

∣

∣g(M)(k)
∣

∣ δ(g(M−1)(k)) dk. (13)

Steps (12) and (13) define a recursive procedure,

k(m−1)
n =

∫ k
(m)
n

k
(m)
n−1

k S0

∣

∣g(m)(k)
∣

∣ δ(g(m−1)(k)) dk, m = M,M − 1, . . . , 2, (14)
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which can be followed until the level 0 is reached and the roots k
(0)
n , i.e. the spectrum of the

quantum graph, is known explicitly.

It is important to notice that (12) – (14) are not just formal solutions. They yield k
(m)
n ,

m = 0, . . . ,M explicitly, by quadratures. Thus (12) – (14) constitute explicit solutions of

the problem, very much in the spirit of the definition of explicit solutions by quadratures in

the theory of differential equations [21].

Several special cases require discussion. If the regularity condition (3) is fulfilled, a root

kn lies strictly inside of the interval [k̂n−1, k̂n]. However, if (3) is not fulfilled, it is possible

that a root k
(m)
n coincides with one of its separators k̂

(m)
n−1 or k̂

(m)
n . This is, e.g., the case in

our star-graph example above, where k
(0)
18 = π is a root and a root separator of (7). In the

parameter space of α’s and β’s cases like this are extremely rare (nongeneric). But even if

such a case occurs, it does not present a problem for our theory. At the contrary, it saves

one integration step since it can always be checked before performing the integration in (14),

whether one of the separators k
(m)
n−1 or k

(m)
n is a root of g(m−1)(k). If so, the result k

(m−1)
n−1 =

k
(m)
n−1, or k

(m−1)
n−1 = k

(m)
n , respectively, is known in advance, without actually performing the

integration.

In other special cases the roots of g(m)(k) = 0 can be obtained in the form of explicit

periodic orbit expansions [7,8]. In order to illustrate this, let us return to our example of the

three-bond star graph. We notice that the spectral equation g(1)(k) = 0 of the three-bond

star graph looks the same as the spectral equation [7]

g
(0)
4V−chain(k) = sin(S0k) + r2 sin(S1k) + r2r3 sin(S2k) − r3 sin(S3k) = 0 (15)

of the dressed four-vertex chain graph shown in Fig. 1b, where r2 = (β1 − β2)/(β1 + β2),

r3 = (β2 − β3)/(β2 + β3) are the reflection coefficients at the vertices number 2 and 3 of

the chain graph, and the actions S0, . . . , S3 are the same as in (4). If we arrange for the

bond actions of the chain graph to equal the bond actions of the three-bond star graph,

and furthermore arrange for a
(1)
1 = −r2, a(1)

2 = −r2r3, a(1)
3 = r3, which is possible if the

scaling constants of the three-bond star graph fulfill β2
1 − β2

2 + β2
3 = 0, then g(1)(k) of the

6



three-bond star graph is the same as the spectral equation (15) of the associated four-vertex

chain graph and the spectral points k
(1)
n can be stated immediately and explicitly in the

form of convergent, periodic orbit expansions [7,8], bypassing any integrations that would

have been necessary according to the scheme defined in (14).

Although they presented the first examples of explicitly solvable quantum graphs, a

major shortcoming of [7] and [8] is the fact that the theory presented in [7] and [8] is

only applicable to regular quantum graphs, i.e. quantum graphs that fulfill the regularity

condition (3). In this paper we showed that the restriction to regular quantum graphs is

not necessary: all scaling quantum graphs can be solved explicitly. Nevertheless, the theory

presented in [7–9] provides an indispensable foundation without which the present theory

would not be possible.

A conceptual advance is the following. Frequently an operational definition of quantum

chaos, or a quantum chaotic regime, is the “loss of quantum numbers”. To illustrate, let us

consider a Hamiltonian system with Hamiltonian Ĥ = Ĥ0 + µV̂ , where Ĥ0 is an integrable

Hamiltonian, µ is a real parameter and V̂ , with respect to and in conjunction with Ĥ0, is a

nonintegrable perturbation. Many quantum systems, for instance the hydrogen atom in a

strong magnetic field [10], can be described in this way. For µ = 0 the system is integrable

and possesses a complete set of quantum numbers

that can be obtained, at least approximately, using EBK quantization [18,19]. As the

parameter µ increases, EBK quantization breaks down and the system makes a transition to

quantum chaos. This explains the frequently employed practice of characterizing the onset of

quantum chaos by a loss of quantum numbers, since the breakdown of the EBK quantization

scheme implies the loss of quantum numbers. The results obtained in this paper, however,

show that this is not necessarily a good way to characterize quantum chaos. Although not

strictly chaotic in the classical limit (due to ray-splitting [11,12,22,23] the term stochastic

may characterize the situation better), quantum graphs were shown by many authors [1–5]

to be excellent models of quantum chaos. Yet, our results above show that a well-defined

quantum number, the counting index n, still exists, and produces explicit energy levels in
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exactly the same spirit as the EBK quantization scheme.

The iteration scheme (14) is perhaps the most interesting feature of our method of ex-

plicitly solving quantum graphs. We call the smallest M that “regularizes” a given quantum

graph (i.e. the amplitudes of g(M) fulfill (3)), the order of the quantum graph. For any given

quantum graph its order is unique. Since the order M of a quantum graph determines the

length of the bootstrapping iteration scheme (14), it is possible that the order of a quantum

graph is also an indication of the complexity of its spectrum. Quantum iterations similar to

(14) were studied before [24] and were found to lead to sensitivity and chaos on the quan-

tum level. This may explain the reason why certain quantum graphs are such good models

of quantum chaos [1–5] and the order M of the quantum graph may be an indication of

how well a given quantum graph can be described in terms of the usual diagnostic tools of

quantum chaos, such as, e.g., random matrix theory [18,19,25].

The authors acknowledge financial support by the National Science Foundation under

Grant No. 9984075.
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