
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
“Sudo make me a smart device”: Accelerating and automating the end-to-end design of
smart devices.

Permalink
https://escholarship.org/uc/item/78v1m8r6

Author
Garza Guardado, J.

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/78v1m8r6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

“Sudo make me a smart device”: Accelerating and automating the end-to-end design of
smart devices.

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

J. Garza Guardado

Committee in charge:

Professor Steven Swanson, Chair
Professor Scott Klemmer
Professor Sorin Lerner
Professor Deian Stefan
Professor Paul H. Siegel

2023

Copyright

J. Garza Guardado, 2023

All rights reserved.

The Dissertation of J. Garza Guardado is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

I dedicate this work to my parents and family, who have lovingly supported me through this
journey. Without you, this work would not have been possible. Thank you!

iv

EPIGRAPH

We are whirlwinds of wind, born from the etheric field of the atmosphere that surrounds us,

going around a few times, dusting everything in our path, and then at the end of the

energetic-mathematical dynamics that fed us, we dissolve again to be only air, what we have

always been and what we will always be.

—Athena Swaruu

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xii

List of Listings . xiii

Acknowledgements . xiv

Vita . xv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Motivation . 2
1.2 Design Steps Fusion . 2
1.3 Overview . 3
1.4 Contributions and Results . 4
1.5 Content Structure . 6

Chapter 2 Background . 7

Chapter 3 Amalgam . 11
3.1 Introduction . 12
3.2 Background . 15

3.2.1 Web Technologies . 15
3.2.2 Tools for Programming Devices . 17
3.2.3 Hardware Interfaces . 18
3.2.4 Hardware Components . 19

3.3 Amalgam . 19
3.3.1 Overview . 20
3.3.2 Amalgam Platforms . 22
3.3.3 The Amalgam Library . 24
3.3.4 Amalgam-enhanced CSS Style . 28

3.4 Examples . 29
3.4.1 Video Player . 29
3.4.2 Commercial Scale . 30

vi

3.4.3 Dancing Speaker . 31
3.5 Impact on development time . 32
3.6 Related Work . 34

3.6.1 Integration of Hardware to Web Technologies . 35
3.6.2 Adding Hardware to the Web’s Semantics . 35
3.6.3 Programming hardware in high-level languages . 36
3.6.4 Rapid Development of Embedded Devices . 36

3.7 Acknowledgement . 37

Chapter 4 Appliancizer . 38
4.1 Introduction . 39
4.2 Related Work . 42

4.2.1 Rapid prototyping of electronic devices . 42
4.2.2 Automating PCB development . 44
4.2.3 Mapping graphical and tangible interfaces . 46

4.3 Appliancizer . 47
4.3.1 Design process overview with Appliancizer . 47
4.3.2 Graphical to tangible interface process overview . 49
4.3.3 Appliancizer tangible controls . 51

4.4 essential interface mapping . 52
4.4.1 Appliancizer tangible controls library . 55
4.4.2 Simulation of the device tangible interface . 55
4.4.3 Automated PCB layout generation . 56
4.4.4 Automated low-level code generation . 58
4.4.5 Application deployment . 59

4.5 Examples . 60
4.5.1 Physical Video Player . 61
4.5.2 Smart Thermostat . 62

4.6 Preliminary Study . 63
4.7 Discussion . 64

4.7.1 Rapid prototyping of smart devices . 64
4.7.2 Fast iterations . 65
4.7.3 Web-based prototypes . 65
4.7.4 Web browsing smart devices . 66
4.7.5 Limitations . 66

4.8 Acknowledgement . 68

Chapter 5 TypedSchematics: Block-based Electronic Schematic Design with Real-
time Detection of Common Errors . 69

5.1 Introduction . 70
5.2 Related Work . 73

5.2.1 HCI and Circuit Design . 74
5.2.2 Schematic Capture Tools and Design Reuse . 74
5.2.3 Block-based Circuit Tools . 76

vii

5.2.4 Higher Abstraction Tools for Circuits and Design Reuse 76
5.2.5 Board-Level HDLs . 77
5.2.6 Visual Schematic Representation Models . 77

5.3 Design Challenges . 78
5.3.1 Hardware Protocol Connections . 78
5.3.2 Supply Voltages . 79
5.3.3 Unknown Signals and Optional Connections . 80

5.4 TypedSchematics . 80
5.4.1 Design Process Overview . 81
5.4.2 Typed Schematic Blocks . 82
5.4.3 Syntax style . 82
5.4.4 Syntax Implementation Motivation . 84
5.4.5 Interactive block-based schematic design . 85
5.4.6 Mats Schematic Model Representation . 87
5.4.7 Real-time Interface Checking . 90
5.4.8 Automated Composition of Schematic Blocks into a Single Schematic . 92

5.5 Design Examples . 92
5.5.1 Thermostat . 92
5.5.2 Temperature Logger . 94

5.6 User Study . 94
5.6.1 Participants . 96
5.6.2 Structure . 96

5.7 Results . 98
5.7.1 Mats schematic model representation . 98
5.7.2 Real-time Detection of Common Connection Errors 100
5.7.3 Participants Experience and Observations . 100

5.8 Acknowledgement . 103

Chapter 6 Conclusion . 104
6.1 Amalgam . 104
6.2 Appliancizer . 105
6.3 TypedSchematics . 106
6.4 Future Work . 107

6.4.1 Increasing design abstraction through AI . 107
6.4.2 PCB-ready breakout boards . 107

6.5 Final Conclusion . 108

Bibliography . 109

viii

LIST OF FIGURES

Figure 2.1. Conventional development process cycle of modern smart devices. Under-
lined are the tasks required to be accomplished by developers in each field.
. 8

Figure 3.1. Styling hardware with Amalgam a) Describes the interface for a simple
numerical display controlled by a slider. Applying an Amalgam-enhanced
CSS style sheet b), produces . 20

Figure 3.2. Amalgam Platform: An Amalgam application, a web app that includes the
Amalgam Web API, can run on Amalgam Platforms which includes a web
browser engine that can communicate with hardware through the HAL. . . 23

Figure 3.3. Amalgam compiler hardening of soft elements, a) Shows a soft element
selected by an Amalgam-enchanced CSS property in b). After compilation
c) shows the hard element HTML which replaces a). 29

Figure 3.4. Video Player: At left, a demo of a video player which provides a familiar
on-scree interface for playing videos. At right, Amalgam allows the same
demo to drive a fully-tactile interface, the . 30

Figure 3.5. Evolving Scale: Amalgam allows a spectrum of different implementations
with minimal developer effort. From left to right: a software-only mock-up
includes a virtual, on screen load cell and supports 32

Figure 3.6. Our dancing speaker . 33

Figure 3.7. Programming Effort: Deeply integration of hardware components inter-
faces into the web languages allows Amalgam to reduce the lines of code
needed to integrate these components into . 34

Figure 4.1. Appliancizer allows web pages to be transformed into fully functional PCB
prototypes for rapid prototyping of smart electronic devices. Left a), we
show a video player web page that provides a familiar on-screen 39

Figure 4.2. Appliancizer IDE. Figure shows a) button for adding web applications,
b) virtual screen display area, c) empty virtual PCB, d) virtual PCB with
virtual hardware components, e) tangible controls hardware 48

Figure 4.3. Graphical to tangible interface process. Two HTML controls a <button>
and are transformed into tangible interfaces while one HTML
element, a <button>, is left as a graphical on-screen interface element. . . 50

ix

Figure 4.4. HTML controls vs Appliancizer tangible controls: To consider the wide
range of hardware components we considered mapping at the essential
interface level, thus encompassing hardware components 52

Figure 4.5. A essential interface mapping technique allows the same application to be
accessed as a fully graphical interface application (a) or a mix of graphical
and a tangible interface (b). 61

Figure 4.6. Development time comparison between Appliancizer and Amalgam for
designing a smart thermostat. 63

Figure 5.1. In the TypedSchematics design flow, the community creates reusable
schematic blocks using conventional schematic capture tools. Input and
output signals of schematic blocks are typed with . 69

Figure 5.2. A power supply connector typed schematic block (right) and its interactive
block, a power block (left). 85

Figure 5.3. A 5V regulator typed schematic block (right) and its interactive block, a
regulator block (left). 86

Figure 5.4. An Atmega328 microcontroller typed schematic block (right) and its inter-
active block, a compute module block (left). 86

Figure 5.5. A temperature sensor typed schematic block (right) and its interactive
block, a peripheral block (left). 87

Figure 5.6. Visual rendering of two mat blocks, consisting of 5V and 3.3V regulator
blocks, connected to a root mat block consisting of a power block (b) and
its tree graph structure model representation (a). 89

Figure 5.7. Visual rendering of multiple general blocks, consisting of a compute mod-
ule and three peripheral blocks, connected together (b) and their general
graph structure model representation (a). 89

Figure 5.8. A tree graph structure (left) connected to a general graph structure (right)
by reference, forming the Mats model representation for schematic blocks. 90

Figure 5.9. Schematic blocks design of a thermostat schematic using TypedSchemat-
ics (a) and Fusion 360 (b). Compared to Fusion 360, TypedSchematics
eliminates the need for multiple voltage and ground connections with 93

Figure 5.10. Schematic block design of a temperature logger with Wi-Fi capabilities
and a rechargeable battery. TypedSchematics helps designers jump right
into PCB layout design with the automated composition 95

x

Figure 5.11. Design time of a thermostat schematic with schematic blocks, described
in Figure 5.9, using Fusion 360 and TypedSchemtics. On average, partici-
pants’ design time was 2.8 times faster with . 99

xi

LIST OF TABLES

Table 3.1. A Selection of Hardware Components. Amalgam can connect to a huge
array of hardware components. These are the components our examples use. 19

Table 3.2. Amalgam’s hard elements . 28

Table 4.1. Mapping between HTML controls and hardware components 53

Table 4.2. Appliancizer tangible controls library . 55

Table 5.1. Typed Schematic Blocks Annotation Syntax . 83

xii

LIST OF LISTINGS

List 3.1. A hard element button code example which consist of a typical web component
code plus calls to hardware using the Linuxduino HAL library. 26

List 3.2. A hard element code example which consist of a typical web component that
listens for color changes in the background-color style property to effect those
changes in a RGB LED hardware component. 27

List 3.3. Video Player Code. At the top we show only two of the software components
of the Video Player web application, the play and pause button and the progress
bar. At the bottom the Amalgam-enhanced CSS . 31

List 3.4. Dancing speaker code implementation using Amalgam-enhanced CSS. 33

xiii

ACKNOWLEDGEMENTS

I would like to begin by deeply thanking my advisor, Prof. Steven Swanson, for his

invaluable guidance throughout my Masters and Ph.D. I appreciate the time you invested in

helping me write research papers, give good presentations, particularly your patience in helping

me understand what a research contribution is and is not, as well as your support in personal

matters, an advisor both academically and in the life.

In addition, I would also like to thank Devon J. Merrill, my research colleague, who in

addition to assisting me in my research helped me navigate my Ph.D., which as a foreign student

I greatly appreciate.

Finally, I also thank the members of the committee for their feedback and comments that

have helped me improve this work.

Chapter 3, in part, is a reprint of the material as it appears in the Proceedings of the 19th

International Conference on Web Engineering 2019. Garza, Jorge; Merrill, Devon J.; Swanson,

Steven, Springer Lecture Notes in Computer Science, 2019. The dissertation author was the

primary investigator and author of this paper.

Chapter 4, in part, is a reprint of the material as it appears in the Proceedings of the 2021

CHI Conference on Human Factors in Computing Systems. Garza, Jorge; Merrill, Devon J.;

Swanson, Steven, Association for Computing Machinery, 2021. The dissertation author was the

primary investigator and author of this paper.

Chapter 5, in part, is currently being prepared for submission for publication of the

material. Garza, Jorge; Swanson, Steven. The dissertation author was the primary investigator

and author of this chapter.

xiv

VITA

2012 B. S. in Electrical and Computer Engineering, Monterrey Institute of Technology
and Higher Education (ITESM).

2013–2014 Embedded Software Engineer, Torrey Electronics

2014–2016 M. S. in Computer Science (Computer Engineer), University of California San
Diego

2015–2016, 2023 Graduate Teaching Assistant,University of California San Diego

2016–2023 Graduate Research Assistant, University of California San Diego

2023 Ph.D. in Computer Science, University of California San Diego

xv

ABSTRACT OF THE DISSERTATION

“Sudo make me a smart device”: Accelerating and automating the end-to-end design of
smart devices.

by

J. Garza Guardado

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Steven Swanson, Chair

Smart devices design consists of multiple highly connected electronic device design

stages (firmware, PCB layout, application logic, etc.). However, the design tools are separate,

specializing in only one design stage, leading to complex design workflows with slow and

time-consuming iteration processes. In this dissertation, we explore circuit data information

encapsulation techniques for fusing multiple electronic device design steps, creating fast design

workflows. We detail these techniques through three design tools: a framework for rapidly

generating firmware from web-based applications, an interactive tool for rapidly transforming

web pages into functional smart devices, an interactive tool for quickly merging electronic

xvi

schematics with real-time detection of common errors. This work also presents design automation

techniques that are possible with the encapsulation of circuit data information. Small user studies

show how these tools can provide an alternative to traditional design workflows by lowering the

barrier to entry for beginners and streamlining design for experts.

xvii

Chapter 1

Introduction

Electronic devices play an essential role in our modern society. From the automation

of many daily tasks, such as thermostats that maintain a comfortable temperature in our home,

to multimedia entertainment devices. The expectations of electronic device designs that allow

multiple modes of interaction and have multiple sensors have led to an increase in design

complexity. The development of electronic devices is divided into multiple steps, for example,

software development, low-level code development, component selection, printed circuit boards

(PCB) design, among others. These steps vary depending on the electronic device type, smart

devices that include screens being the ones with the most number of development steps, as

they require high-level application logic development and graphical user interface (GUI) design.

These development stages are highly coupled, and any design changes from one stage must be

reflected in all development steps, making iterations slow and time-consuming. While the design

of electronic devices requires coordination between all steps of development, the design tools at

each stage have remained largely disconnected from one another.

This dissertation aims to explore new interactive design tools and techniques that fuse

different steps of the end-to-end electronic device design process, with the motivation of reducing

development times and design complexity. In particular, this work focuses on new approaches to

encapsulate circuit data specifications into modular blocks, necessary for fusing design steps and

which at the same time enables automation of low-level design tasks, further accelerating design.

1

Therefore, the central thesis of this work is the analysis of different encapsulation techniques

and interaction design methods that support designers, from beginners to experts, to create fast

electronic device designs with ease.

1.1 Motivation

The motivations for reducing the design complexity and development times required to

create electronic devices are many. In a broad context, lowering the design complexity allows

hobbyists, students, and novices to develop their own electronic devices and which in turn

provides multiple benefits, from educational to societal benefits.

Educational benefits include assisting students, teachers, and researchers with the creation

and exploration of complete electronic device designs [76], which do not remain mere prototypes.

Other benefits include, helping designers quickly create devices close to the final product that

allow faster transitions of new ideas to the market.

Tools with a low skill floor also help reach designers from diverse fields of study, assisting

them with the creation of new types of electronic devices (e.g., biomedical devices). At the

same time it promotes the democratization of devices [31, 101] allowing people to become less

dependent on large corporations.

On the other hand, shorter development times make it possible to quickly react to

emergencies where the creation of a unique electronic device is required [93], not to mention

faster iteration times, which enable quicker improvements to devices and ultimately have a

positive impact on consumers.

1.2 Design Steps Fusion

The current design process for smart devices can take years. Full automation of the

design process to develop smart devices that can generate device designs in seconds is not yet

possible; however, researchers are addressing this problem by creating interactive design tools

2

that abstract the design of different design steps by encasulating design information. In this

way, designers can provide some design steps to an interactive design tool, such as hardware

component selection, some user parameters, and perhaps the GUI and application logic of the

device, and from there the design tool. design, along with some automation, can generate some

of the design steps. Of course, the designer will also need to work to complete the remaining

design steps. With this we may not reduce the design time to seconds, but the design process can

be reduced to weeks or even less time.

We call the process of encapsulating circuit or other information from different design

steps (e.g., low-level code design, schematic design, PCB design), abstracting the information

into simpler parameters, and using these parameters in interactive tools that combine these

parameters to create new designs as a design steps fusion.

1.3 Overview

We created three interactive design tools: Amalgam, Appliancizer, and TypedSchematics,

which explore new approaches to achieve design steps fusion. These tools take advantage of the

use of circuit data encapsulation for the rapid creation of electronic circuits.

Amalgam and Appliancizer, centers on electronic devices that include the most number

of design steps, in this case smart devices with screens. The aim of Amalgam and Appliancizer

is to explore the design of a tool that abstracts as much as possible the design of smart devices,

while at the same time having the tool the ability to generate production-ready smart devices as

quickly as possible. This combination of high abstraction and automation across the end-to-end

design process allow us to fully research the possibilities and shortcomings of these types of

tools. In other words, both Amalgam and Appliancizer, center on exploring the highest design

ceiling possible which can produce manufacturable electronic PCB designs.

Amalgam focuses on an encapsulation technique for deeply integrating hardware devices’

firmware functionalities into HTML and CSS. Appliancizer extends the encapsulation and

3

integrates circuit design data, allowing the tool to generate complete electronic designs, including

PCB layout, directly from static web page designs. With Amalgam designers can transform web

pages into fully functional electronic devices in a couple of minutes.

Although Amalgam and Appliancizer allow for a fast design with great ease of use, these

tools do not permit low-level configurations. Using usiability terminology created by previous

HCI researchers [81, 92], this means that both Amalgam and Appliancizer have a low threshold

and a low ceiling when it comes to design, implying that both tools are easy for beginners but not

as powerful for experts. Furthermore, integrating more modules into each tool libraries requires

high expertise, which makes the scalability of these libraries not easy. TypedSchematics presents

a tool with a design direction focused on improving the reuse and integration of schematic design

blocks with a low-threshold, high-ceiling design experience, a balance that enables easy yet

highly configurable schematic designs. In addition, TypedSchematics improves the scalability of

the blocks’ library by incorporating an annotation syntax into current PCB design tools. Overall,

TypedSchematics lets designers rapidly create and merge different schematic blocks into a single

schematic, as well as provides detection of design errors in real-time.

In addition to the circuit design reuse methods presented by the three tools, Appliancizer

and Amalgam present unique solutions in terms of tool interface design that promote ease of

use for designers. Appliancizer allows designers to simulate the interaction between physical

components and components on the screen, using the same HTML elements as mock-up devices,

improving idea exploration. TypedSchematics in turn introduces a schematic representation

model that eliminates the need for ground connections and repetitive voltage, thus reducing

interaction costs.

1.4 Contributions and Results

For each design tool, this dissertation makes the following contributions:

4

Amalgam

• A toolkit that deeply integrates hardware devices into web programming technologies,

enabling rapid development and more flexible design iteration for embedded devices.

Amalgam lets developers replace soft interface components with hardware components

just by changing a CSS file.

We implemented Amalgam and evaluated its capabilities by prototyping three devices in a

web browser and then “hardening” them into standalone devices. Our results show that

Amalgam can significantly reduce the programmer effort required to implement software

for electronic devices.

Appliancizer

• A computational design that allows designers to rapidly generate functional smart devices,

including its firmware and complete PCB layout design, from web-based prototypes,

facilitating the prototyping of mixed graphical-tangible interactions and accelerating

development.

• Essential interface mapping, a technique that allows mapping the similarities between

HTML controls and tangible controls, enabling circuit synthesis, device simulation of

digital and tangible interfaces, and low-level code generation. Essential interface mapping

makes possible the transformation of HTML elements from graphical to tangible and

enables the almost complete automation of the conventional development process for smart

devices.

We demonstrated the capabilities of Appliancizer by transforming both a video player and

a smart thermostat web application into physical devices without requiring any changes to

the application source code. We have also demonstrated the rapid development capabilities

of Appliancizer through a preliminary user study showing a 6.5X speed improvement

compared to Amalgam.

5

TypedSchematics

• An interactive design tool that improves the merging process of schematic blocks and

enables real-time detection of potential design problems including mis-matched voltages,

mis-connected signals in complex interfaces, and missing (but necessary) connections.

• Mats, an abstraction technique that eliminates the need for repetitive voltage and ground

connections, reducing interaction costs. A flow-based programming paradigm is seam-

lessly integrated into Mats, making it possible to perform constraint validations of design

problems in real time.

We demonstrate the capabilities of TypedSchematics with two schematic design examples,

a thermostat and a temperature logger. A user study shows that, on average, participants’

design time of a thermostat schematic was 2.8 times faster with TypedSchematics than with

Fusion 360. Feedback from participants via a questionnaire also showed that participants

felt completely confident in the correctness of the design with TypedSchematics compared

to Fusion 360, where they felt somewhat confident.

1.5 Content Structure

The rest of this dissertation is organized as follows: Chapter 2 provides an overview of

the different electronic device design steps (e.g., schematic design, PCB assembly). Chapter 2

introduces Amalgam, a technique for encapsulating the low-level code required by circuit blocks

within web components and within the programming syntax of web technologies (HTML, CSS,

JS). Chapter 3 introduces Appliancizer, a tool that extends Amalgam and allows the automated

generation of electronic devices, including PCB designs and low-level code, from web pages.

Chapter 4 introduces TypedSchematics, a tool that makes composing schematics from schematic

design blocks easier by providing real-time detection of common errors. Chapter 5 presents

future work directions and Chapter 6 concludes.

6

Chapter 2

Background

Building an electronic device consists of multiple stages and varies depending on the

complexity of the device. In this section we describe the stages required to design a smart device

with an interactive screen, a complex electronic device with the largest number of design stages

and which requires skills in multiple fields: software, hardware and mechanics. Figure 2.1 shows

a diagram of the typical development process cycle for these devices that we briefly describe

below.

GUI & Application logic. In this stage, the graphical user interface (GUI) and the software of the

device are developed. As embedded device processors are becoming more powerful and priced

lower, the use of high-level programming languages (e.g., Python, Java, or web programming

languages) is becoming more popular among these devices [45, 55]. Web programming languages

(HTML, CSS, and JavaScript) have emerged as a popular solution for designing GUIs on

embedded devices due to their capabilities: state-of-the-art for developing rich GUI, first-class

networking, and available libraries.

Device Simulation. Embedded device software development is tightly coupled with the hardware

IO. Device simulation is often necessary to guide the design of the user experience and choose

what form the interface should take. Simulation lets designers iterate quickly, start software

7

Figure 2.1. Conventional development process cycle of modern smart devices. Underlined are
the tasks required to be accomplished by developers in each field.

development before the hardware is ready, and identify potential issues early.

Hardware Components Selection. The selection of electrical components is made in this stage.

Components such as ICs, LEDs, resistors, capacitors, and sensors are selected based on design

specifications and desired device futures. An understanding of the capabilities of each component

is required to select each component correctly. User interface decisions drive hardware selection,

which, in turn, impacts how the programmer implements aspects of that interface.

Electronics Prototyping. Interactive prototype boards and toolkits such as Arduino [20], BBC

micro:bit2 [41], and Raspberry Pi [88], are used to rapidly and inexpensively create prototypes

of electronic devices. Multiple prototyping paradigms exist, Lambrichts et al. [64] categorizes

these paradigms into three, based on the use of: discrete electronic components only, breakout

and development boards, and integrated toolkits consisting of modules specifically designed to

work together.

Low-level code. After hardware components selection, code that makes the connection between

8

the software and each hardware component is needed. We use the term low-level code to refer

to all the necessary code required to communicate with hardware components. Low-level code

is also known as firmware in the case of microcontrollers and device drivers in the case of

processors.

Electronic devices use a variety of wired communication protocols for interfacing with

hardware components, such as GPIO, I2C, SPI, and UART. We refer through this work to

these protocols as hardware interfaces. Each hardware interface can address a wide range

of sensors and actuators, including accelerometers, LEDs, servo motors, and light detection

sensors as examples. Embedded computing platforms (e.g., Raspberry Pi [88]) provide groups

of pins with different capabilities that may cover some or all of the above interfaces. The pin

numbering varies for each embedded computing platform. To make the low-level work with the

different computing platforms developers also need to map the low-level code with the pins of

the computing platform, known as pin mapping.

Circuit Netlist & Schematics. At this stage, connections are created between the different

selected hardware components. PCB design tools are used to generate circuit netlists as they

allow designers to visually interconnect the hardware components required for a device. The

visual representation of circuit netlists is known as PCB schematics. KiCAD KiCAD and

EAGLE [34] are examples of PCB design tools. Pin mappings in the low-level code must match

the PCB schematics for the device to function properly.

PCB Layout Design. After completing a schematic design, PCB design tools also provide

graphical interfaces for creating PCB layouts. A PCB layout digitally describes the physical

placement and routing between hardware components. From a PCB layout, manufacturing files

can be generated containing all the specifications required for PCB fabrication; known as Gerber

files.

9

PCB Manufacture. The cost of manufacturing PCBs has dropped in recent years, allowing

hobbyists and students to create high-quality, long-lasting, and reliable circuits. PCB fabrication

industries like JLCPCB [56], for example, provide 2-layer PCB fabrication for $ 2 and 1-week

lead times, allowing for low-cost rapid iterations of PCB prototypes. After PCB manufacturing,

industries can also provide assembly services for the physical placement and soldering of

hardware components, freeing hardware developers from the technical skills required to assemble

these devices.

Mechanical Design & Manufacture. At this stage, the manufacture of enclosures and mechani-

cal parts is carried out. Mechanical engineers must know the dimensions of PCBs and hardware

components to design mechanical parts. Connector openings, gear sizes, and screw terminal

positions can go wrong if they are not known. While the mechanical parts of the electronic

device are essential, in this work we only focus on the software and hardware tasks of the design

process.

The different stages of the design of electronic devices require many steps and deep

experience in each of these areas, which translates into additional costs and time. Because the

entire design process is highly coupled, any design change must be reflected at all stages of

development, making iterations time-consuming and complex, especially as each task is typically

handled by different people with different skill sets.

However, although each of these stages depends on one another, the tools used in each

of the stages are loosely coupled, remaining disconnected and separate from one another. In

this work, we propose new design tools that fuse several of these design stages using different

methods of encapsulating circuit data information. We also explore design automation workflows

that are possible with the encapsulation of circuit data information.

10

Chapter 3

Amalgam

Amalgam is a tool that focuses on fusing software or application logic and low-level

code design steps of smart devices. Amalgam does this by integrating the low-level code of

hardware components found in embedded devices (e.g., a push button) directly into the HTML

and CSS syntax. By doing so our system reduces the programming effort required to develop

new embedded devices that use web technologies, as well as adds new interesting capabilities to

the design of these, for example, hardware manipulation through CSS.

Amalgam’s application logic and low-level code steps fusion is achieved by encapsu-

lating low-level code information in HTML web components and low-level code hardware

interface specifications and pin assignments (e.g., SPI port, I2C address, GPIO number) into

the CSS syntax. Amalgam’s library of modules with encapsulated information consists of nine

elements that allow the use of different hardware components (e.g., servo motors, RGB LEDs,

potentiometers) as HTML elements.

We demonstrate Amalgam’s capabilities by exploring three embedded devices built using

web programming technologies. Also, we demonstrate how Amalgam reduces programming

effort by comparing two traditional approaches of building one of these devices against Amalgam.

Results show our system reduces the lines of code required to integrate hardware elements into

the device application to a line of code per hardware component added to an embedded device.

11

3.1 Introduction

With the rise of the Internet of Things (IoT) and smart, connected devices in the home,

workplace, and environment, the web and its underlying technologies are pushing up against

the real world in a wide range of domains. Connected sensors, web-enabled appliances, and

personal electronics all require software that interacts seamlessly with the physical world (e.g.,

the user or the environment), cloud-based services, and local compute resources. The growing

demand for these devices means they need to be easy to program.

Building these smart, connected devices requires programmers to manually bridge the gap

between tangible user interfaces (e.g., buttons, knobs, and displays), sensors (e.g., temperature,

light, and movement), and actuators (e.g., servos, motors, and lab equipment) and software.

On the software side, web technologies – Javascript, CSS, HTML and the universe of

libraries available for them – are state-of-the-art for developing rich user interfaces, provide

deep integration network services, and are the languages of choice for a large population of

developers.

Web programming technologies provide a clean separation between program logic,

interface structure, and appearance. They make it simple to re-style an interface for a new device

or adapt an existing interface to a new form factor (such as desktop to mobile). These tools are so

powerful that they have become the default user interface design tools for fixed-function mobile

devices, desktop applications, and mobile applications.

For hardware, the tools of choice remain C and C++ which can easily handle the particu-

lars of controlling hardware components (e.g., interrupts, pin assignments, and device drivers) to

control sensors, tactile user inputs, and actuators. However, they make building user interfaces

and networking communication more cumbersome.

Creating a seamless experience that blends on-screen, soft controls, hardware interface

elements, sensors, and actuators is challenging because the elegant separation that HTML, CSS,

and JavaScript does not extend across the hardware/software boundary. In practice, the tools

12

available for hard and soft elements differ in syntax, operation philosophy, and requirements.

This problem is ubiquitous in modern devices. The interfaces to embedded devices – from

personal fitness monitors to home appliances – have sophisticated, polished, and powerful user

interfaces. Even small devices (e.g., the Apple Watch) typically run full-blown operating systems

that can support high-level languages for graphical user interfaces. According to an annual

industry survey of embedded designers, 67% of new embedded designs utilize an operating

system and 49% use graphical interfaces [37].

Embedded devices with graphical interfaces can have a blending of soft and hard com-

ponents that provide information to or from the user. Examples of soft components can be

on-screen buttons, range sliders, and indicators in the form of text or graphics. Hard or physical

components include tactile buttons, knobs, and sensors (such as temperatures, heart rate, and so

forth), actuators (such as servo motors) and hardware indicators (for example, status lights).

Previous attempts to address this problem simply translate the same complex interfaces

into higher-level languages, rather than deeply integrating hard elements into the idioms and

tools high-level languages provide. This does not solve the problem: Programmers must still

treat physical interface components differently than their soft counterparts.

Indeed, several projects [63, 86] provide JavaScript libraries for controlling robots [5] and

general embedded systems [46], but they leave behind the power of CSS and HTML, preventing

deeper integration with existing programming toolkits and tools.

As a result, web programmers that want to build software that deeply integrates software

and hardware cannot leverage their own experience; the wealth of training, documentation, and

message boards; or the myriad web programming frameworks that are available. Instead they

must develop custom solutions to bridge the gap.

We propose Amalgam, a toolkit that extends web programming technologies across the

hardware/software boundary by seamlessly including hardware devices into Javascript, CSS, and

HTML. Amalgam exposes hardware devices like buttons, sensors, lights, and motor as domain

object model (DOM) objects that have the same interface as the analogous HTML elements (e.g.,

13

<button> or <input type=range>).

Amalgam lets programmers harden conventional DOM objects into hardware devices

using a simple CSS directive. The directive controls whether a particular component appears

on-screen or as a physical component, and describes how the device connects physically to

compute platform.

As a result, moving a button from on-screen to the real world requires just editing a

CSS property and physically connecting the button. Application logic does not change because

the interface remains the same. More important, existing frameworks like Angular [1] and

JQuery [29] work just as well with hard elements as soft.

This capability extends to output as well. For instance, the programmer can create

complex lighting effects by using CSS to animate the color of an RGB LED. Likewise, setting

the content of a that has been hardened into display changes the contents of the display.

We have implemented Amalgam as a Javascript framework and developed a small but

useful library of hardware components. We demonstrate Amalgam’s capabilities by using these

components to create three embedded devices with rich hardware/software interfaces. We

demonstrate that Amalgam works seamlessly with existing web-programming frameworks and

libraries to build complex, responsive interfaces for these devices. We also describe Amalgam’s

implementation and measure how Amalgam makes it easier to develop these kinds of devices.

The rest of this paper is organized as follows. Section 3.2 introduces the technologies

used throughout the paper. Section 3.3 gives a overview of Amalgam, and Section 3.4 illustrates

Amalgam’s capabilities by describing three Amalgam devices. Section 3.5 evaluates the impact

of Amalgam on developer effort. Finally, Section 3.6 describes related work, and conclusions for

this tool are presented in the final chapter, Section 6.1.

14

3.2 Background

Amalgam lets programmers integrate hardware components (e.g., push buttons, LEDs,

sensors, etc.) in applications built using web programming technologies like Javascript, CSS,

and HTML. It accomplishes this by providing interfaces to those components that mimic the

interfaces of “soft” components (e.g., on-screen buttons) provide. Below, we describe the

aspects of these technologies that are most relevant to Amalgam and briefly review the interfaces

currently available to programmers for using hardware components.

3.2.1 Web Technologies

Programming for the web continues to drive a remarkable amount of innovation in

programming tools and abstractions. These innovations are visible in the rapid evolution of

HTML ([12], [110]), CSS, and JavaScript (officially ECMAScript [36]) and in the myriad

frameworks and libraries available for web programming. These tools ease development of

complex, flexible, highly-interactive user interfaces. Crucially, these frameworks rely on the

interfaces that HTML, CSS, and JavaScript provide and the programming idioms (e.g., promises

and asynchronous operations) that form the foundation of web programming.

HTML and DOM The Document Object Model (DOM) [84] specifies a wide range of user

interface elements, including buttons, sliders, check boxes made up of HTML tags and attributes.

Software interacts with these elements through DOM method calls, CSS styles, and DOM events.

CSS CSS uses a declarative language to control the appearance of DOM elements on the

screen. Its complexity has grown to allow it control many aspects of a program’s behavior (e.g.,

what controls appear on mobile vs desktop displays). It has also replaced tedious programming

for things like animations.

JavaScript JavaScript provides an object-oriented programming language for manipulating

the DOM and implementing program logic. A defining characteristic of JavaScript is its first-

class support for asynchronous operations. Indeed, JavaScript code (especially in interactive web

15

applications) should be non-blocking.

JavaScript’s non-blocking, asynchronous execution model places it at odds with con-

ventional interfaces for hardware devices, in which programs issue synchronous system calls

from languages like C, C++, or Python that do not support asynchronous operations by default.

While it is possible to “shoehorn” this model into JavaScript, the result is inelegant and pre-

vents programmers from relying on the powerful idioms that JavaScript provides and JavaScript

programmers rely on.

Frameworks A hallmark of modern web programming is the amazing number and vari-

ety of open-source “frameworks” that leverage these core technologies. Frameworks provide

powerful improvements in programmability, implement useful features, or solve common web-

programming problems.

Individuals and companies have created a diversity of frameworks ranging from the simple

to the complex, with more appearing every year. This activity lies at the heart of innovation in

web-based user interface programming. All these frameworks are deeply intertwined with (and

dependent on the power of) the core web technologies.

Web Components Web components [108] are a recent extension to HTML that allows

programmers to extend the DOM by defining new tags that behave like native tags. Web

components can read, write or listen to the changes to their HTML attributes and react when

those attributes changes (e.g., in response to CSS animation). Frameworks like Angular [1]

served as a proving ground for these capabilities.

Web Assembly Browsers use JIT-accelerated interpreters to execute JavaScript code. This

limits performance and prevents languages like C or C++ from running in the browser. Web

Assembly [11] eliminates this limitations and lets developers to pre-compile code in any language

for execution in the browser.

Electron Web browsers use a sandbox environment for web applications which restricts

their access to the file system or hardware. Electron [2] is a framework that lets trusted web

16

applications access the file system or hardware through the use of Node.js [7]. Electron also

allows web applications to run as stand alone desktop applications, a capability commonly sought

in frameworks for building embedded devices.

3.2.2 Tools for Programming Devices

Innovation in programming tools for controlling low-level hardware components that let

devices interact with users and the real world (e.g., buttons, sensors, LEDs) have undergone a

renaissance in parallel with web programming. Software tools like the Arduino development

environment [20] and hardware platforms like Raspberry Pi [88] have made it possible for relative

novices to build complex electronic devices. The result has been an explosion of creativity in the

“maker” community.

Arduino and Raspberry Pi provide access to hardware through C/C++ or Python inter-

faces that let programmers manipulate IO pins and peripherals attached to micro-controllers or

embedded processors. They hide the details of the underlying hardware and provide a measure

of portability across different platforms. For instance, the same code will run (with a little effort)

on Raspberry Pi and Beagle Bone Black [26].

Despite being simpler than the register-based (and very nonportable) interface that

“raw” hardware provides, the interfaces are still low-level: they provide simple function calls

for toggling an IO line or reading an analog voltage on a processor pin rather than smoothly

dimming an LED or reporting that a particular button has been pushed.

Building complex applications with rich user interfaces using these interfaces is possible,

but it is complex. A common route is to use GUI toolkits like Qt [8] that are C/C++-based

and then use multiple threads to handle asynchronous events (e.g., button presses). These

toolkits also lack many features that make web programming tools so powerful: first-class

networking integration, an abundance of frameworks, and sophisticated, declarative control over

the interface’s appearance (i.e., CSS).

This approach also makes prototyping and refining interfaces with Qt and low-level

17

hardware interfaces cumbersome. Implementing a simple design change (e.g., converting an

on-screen button to a physical button) requires significant changes to application logic. The

effort required discourages rapid and frequent design iteration.

Finally, and most importantly, toolkits like Qt lack the user base, vibrant online commu-

nities, rich suite of libraries, and near universal availability of web-based tools for building GUIs.

As a result, the learning curve is steep and there is less help available online.

Combined, these challenges mean that building electronic devices that meld soft (i.e., on

screen) controls with hard (i.e., tactile) controls is hard. GUI designers and web developers must

“retool” to program hardware and, likewise, embedded systems programmers must bridge the

gap to the browser to leverage web technologies.

3.2.3 Hardware Interfaces

Embedded computing devices use a variety of electrical interfaces to connect to hardware

components. These include general purpose I/O (GPIO) for single-bit digital inputs and outputs

(e.g., to detect a butt press or turn on an LED), analog to digital converters (ADC) input to

measure an external voltage (e.g., to measure lighting levels or temperature), analog outputs

(e.g., to dim an LED or control a motor’s speed). In addition, Serial Peripheral Interface (SPI)

and Inter-Integrated Circuit (I2C) busses provide standard mechanism for communicating with

more complex peripherals (e.g., LED arrays or simple displays). Finally, a single physical pin

can serve multiple roles (e.g., the I2C pins can also serve as GPIO pins).

Each embedded computing platform (e.g. Raspberry Pi or Beagle Bone Black) will

provide a different set of pins with different capabilities cover some or all of the above interfaces.

Functionally similar devices might require different interfaces, so there is great diversity

in how, for instance, a button might connect to the system.

18

Table 3.1. A Selection of Hardware Components Amalgam can connect to a huge array of
hardware components. These are the components our examples use.

Name Description Hardware
Interface

Uses

Rotary Potentiometer (
or “pot”)

A knob with a fixed
range

ADC or I2C Analog volume controls,
light dimmers

Rotary encoder A knob that turns for-
ever in either direction

ADC or I2C Menu selection, digital
volume control

Linear motorized pot A slider that can also
move itself to specified
location

ADC or I2C
and GPIO

Audio mixing boards

RGB LED An LED that can emit
any color of light

SPI Indicators, decoration

Tactile push-button A “clicky” button GPIO Buttons, controls,
switches

Servo motors Precisely controllable
motors

I2C Robot joints, actuators

LCD text display Black and white, high
contrast display

Serial Calculators, inexpen-
sive text displays

LED numerical display Illuminated “7-segment”
displays

SPI Inexpensive numerical
displays

Load cell A pressure sensor SPI Digital scales

3.2.4 Hardware Components

Arduino and Raspberry Pi can connect to an enormous range of hardware components.

Table 3.1 briefly describes the components we use in our example code (Section 3.3) and example

devices (Section 3.4).

3.3 Amalgam

Amalgam is a Web API that integrates hardware components into web programming

tools in a natural and transparent way. It provides a new style attribute (hardware) that converts

an on-screen element of a web-based interfaces into a hardware device. We call this process

hardening the on-screen element. Hardening allows, for instance, the replacement of an on-

screen button with a physical button. The element’s interface remains the same so application’s

software does not need to change.

We have implemented Amalgam as a JavaScript library. It leverages Web Components

19

Figure 3.1. Styling hardware with Amalgam a) Describes the interface for a simple numerical
display controlled by a slider. Applying an Amalgam-enhanced CSS style sheet b), produces the
same on-screen version of the interface c) implemented in hardware d).

and Web Assembly to build DOM elements that interface with hardware, and it provides a

simple compiler that parses a web page’s CSS style sheets and hardens elements according the

hardware directives it finds.

This section describes Amalgam’s programming interface, presents a simple example

of Amalgam in action, describes the library of physical components we have implemented, and

what is required to create a new one.

3.3.1 Overview

Amalgam’s programming interface is simple by design. It lets programmers convert

existing DOM elements, which we call soft elements, into hardened elements that exist in the

real world.

20

Figure 3.1 shows a simple Amalgam application. In the figure, (a) shows the HTML for

a range <input> and a <div> along with the event callbacks to ensure that the <div> displays

the value of the <input>. (c) depicts the web page in browser running on a Raspberry Pi.

The CSS code in (b) hardens both elements by setting their hardware attribute. It

converts the <div> into a seven-segment LED display and the <input> into a rotary knob

potentiometer. The photo (d) shows the hardware. Turning the knob, updates the display. No

other changes are necessary to the code.

The value of the hardware attribute describes what kind of hardware to use (in this case,

the knob and the display) and how the two components connect to the Raspberry Pi. In this

case, the display connects via SPI and the potentiometer connects to the first channel of an

analog-to-digital (ADC) integrated circuit connected via I2C

Once hardened, the components continues to behave just like the original soft component.

It has the same DOM methods and emits the same events (e.g., when the knob moves, the

<input> emits onchange). If the hardened component has a display capability (e.g., an RGB

LED), the programmer can style or animate it with CSS.

Since hard elements have the same interface as soft elements, existing application code

requires no modification. In particular, web programming frameworks function as expected

without any changes.

Amalgam can also soften hardware components by replacing them with on-screen,

simulated components. For instance, during software development and testing for a smart

light switch, an <input> could emulate the input from a light sensor to facilitate development

and testing without access to actual hardware: The developer could move slider to control the

simulated light level.

We have implemented a small library (Section 3.3.3) of hardware components that

Amalgam can use to harden DOM elements, but implementing new components is simple.

Cleanly integrating hardware components into web programming technologies offers

multiple benefits.

21

• Easy Hardware Emulation Amalgam decouples application design from hardware design.

Software developers can implement the software for a soft version of a device long before

the hardware is complete.

• Faster Design Iteration Developers can rapidly explore different designs by hardening

and softening different parts of a user interface without needing to modify application

logic.

• Faster Development Amalgam lets developers leverage the universe of available

JavaScript frameworks to quickly build complex applications.

• Automatic Web Integration Because they are web applications, Amalgam applications

have first-class access to web services, the cloud, etc.

Amalgam makes it easy for programmers to control hardware devices, but they still need

to assemble the device. And they need some familiarity with the hardware and its limitations.

Amalgam can replace any HTML element with any hard component, but the programmer must

be aware potential limitations. For example, setting the value attribute for <input> hardened

into a normal potentiometer will not move the potentiometer. If the programmer needs that

capability, she should use a rotary encoder or motorized pot. Likewise, the designer must be

aware of which pins connect the hardware components and if those connections change, the

programmer must update the CSS.

3.3.2 Amalgam Platforms

Amalgam applications run an Amalgam platform. A platform includes a computing

device (e.g., a RaspberryPi), a web programming runtime that includes JavaScript, DOM, and

CSS (e.g., a web browser) that the applications run in and an hardware abstraction layer (HAL)

that provides low-level access to hardware. A web server (running on the platform or remotely)

serves the application. Figure 3.2 shows the components of an Amalgam platform and their

relationships to an Amalgam application.

22

Figure 3.2. Amalgam Platform: An Amalgam application, a web app that includes the Amal-
gam Web API, can run on Amalgam Platforms which includes a web browser engine that can
communicate with hardware through the HAL.

23

The HAL exposes a standard software interface (i.e., function calls) to common hardware

interfaces (i.e., electrical connections to the platform hardware). The prototype Amalgam

HAL is a user space implementation of Arduino Reference Language [20] for Linux, called

Linuxduino [6]. It accesses low-level hardware through Linux’s standard drivers, so it should

be portable across the many Linux-based embedded systems that are available. Since it is

Arduino-compatible, it supports a huge array of hardware components.

We compile Linuxduino to web assembly, so it runs directly in the JavaScript runtime.

The main difference between different Linux-based platforms is the set of electrical

interfaces they provide. For instance, Raspberry PI provides 26 digital IO pins, two I2C

interfaces and two SPI interfaces, but no analog inputs or outputs. Beaglebone Black has 25

digital pins, six analog outputs, and seven analog inputs, one I2C bus and one SPI bus. In

addition, the platforms use different naming schemes for their pins.

These differences are visible to Amalgam programmers so moving an Amalgam program

between platforms requires adjustments to the CSS that hardens the components. Likewise, if

the hardware designer changes which pins connect a particular device to the platform, the CSS

must change as well.

3.3.3 The Amalgam Library

To explore Amalgam’s ability to accelerate the design of complex hard/soft interfaces,

we built seven hard elements that match existing soft elements HTML interfaces. Table 3.2

summarizes the elements Amalgam currently supports.

The range of possible hard elements is broader than the set of elements that HTML

provides, because many different hardware devices can replace a single HTML element and even

similar hardware devices may connect to the system through different interfaces.

For instance, the example in Figure 3.1 hardened the <input> into a potentiometer (or

“pot”) that connected via one ADC channel. It could have instead used a “rotary encoder” that

connects via two digital IO lines or a “motorized slide pot” that requires an ADC line and three

24

digital IO lines, two lines to control the motor direction and one to get the user slider touch

feedback.

The Amalgam library has entries for each of these alternatives. Their internal software

implementations are quite different despite appearing the same to the application (i.e., as a range

<input>).

Adding new hard elements to Amalgam requires two steps. The first is creating a web

component that will interface with the hardware device. The component encapsulates the

firmware (written in JavaScript) that controls the hardware via the HAL.

For example, List 3.1 is a class that implements a hard button by extending

HTMLElement and providing three methods: get observedAttributes() defines the at-

tributes this element supports. Whenever an attribute changes, including when an element

is harden, attributeChangedCallback() runs and gets updated. Finally, the runtime invokes

connectedCallback() once after the attributes are updated, indicating that the web component

is ready. Here initialization and configuration of hardware is carried out. In this case, a given

gpio number, set in the gpio attribute value, is configured as input and is physically connected to

a button. After that another function sets up a call back that polls the IO pin every 200ms, which

is enough to detect a button press, and emulates a click when it detects a physical button press

(lines 13 - 18). For this example the gpio number can only be initialized once but it works for

our embedded device prototypes requirements.

Another example, in List 3.2 a class implements an RGB LED. Here the hard element

listens for changes to the style attribute. If there is a change, the background-color CSS property

gets computed and its color value is sent to a RGB LED using the SPI protocol. The servo-motor

hard element has a similar implementation but instead it computes the transform CSS property

and then the rotation angle is sent to the servo motor.

The final step is to register the new class with Amalgam so the programmer

can use it to harden elements. The code in List 3.1 defines a new HTML tag called

<physical-button> that the programmer can use directly (e.g., <physical-button

25

List 3.1. A hard element button code example which consist of a typical web component code
plus calls to hardware using the Linuxduino HAL library.

1 class PHYSICAL_BUTTON extends HTMLElement {
2 constructor () { super (); this.gpio; }
3
4 // Monitor attribute changes.
5 static get observedAttributes () {
6 return ['onclick ', 'gpio'];
7 }
8
9 connectedCallback () {

10 // Initialize GPIO
11 Linuxduino.pinMode(this.gpio , Linuxduino.INPUT);
12 // Start Reading GPIO
13 setInterval(() => {
14 // Call 'onclick ' if physical button pressed
15 if (Linuxduino.digitalRead(this.gpio) == Linuxduino.HIGH) {
16 this.click ();
17 }
18 },200);
19 }
20
21 // Respond to attribute changes.
22 attributeChangedCallback(attr , oldValue , newValue){
23 if (attr == 'gpio') {
24 this.gpio = parseFloat(newValue);
25 }
26 }
27
28 }
29
30 customElements.define('physical-button ',PHYSICAL_BUTTON);

26

List 3.2. A hard element code example which consist of a typical web component that listens
for color changes in the background-color style property to effect those changes in a RGB LED
hardware component.

1 class PHYSICAL_RGB extends HTMLElement {
2 constructor () {super (); this.spi = null; this.spiPort;}
3
4 // Monitor attribute changes.
5 static get observedAttributes () {
6 return ['style ', 'spi-port '];
7 }
8
9 connectedCallback () {

10 // Initialize SPI
11 this.spi = new Linuxduino.SPI ();
12 this.spi.begin(this.spiPort);
13 }
14
15 // Respond to attribute changes.
16 attributeChangedCallback(attr , oldValue , newValue){
17 if (attr == 'style ') {
18 // Get background color
19 var backgroundColor = window.getComputedStyle(this , null)["

background-color"];
20 // Effect the changes on the physical RGB
21 setPixelColor(this.spi ,rgb2hex(backgroundColor));
22 } else if (attr == 'spi-port ') {
23 this.spiPort = newValue;
24 }
25 }
26 }
27
28 customElements.define('physical-rgb-led ',
29 PHYSICAL_RGB);

27

Table 3.2. Amalgam’s hard elements

Hard element tag Amalgam
version

Compatible soft ele-
ment tag

Notes

<physical-pot> Rotary Po-
tentiometer
(or “pot”)

<input

type=’’range’’>

Triggers ’oninput’ when po-
tentiometer input value is
changed.

<physical-encoder> Rotary en-
coder

<input

type=’’range’’>

Triggers ’oninput’ when po-
tentiometer input value is
changed.

<physical-motorized-pot> Linear mo-
torized pot

<input

type=’’range’’>

Triggers ’oninput’ when po-
tentiometer input value is
changed, also setting the
’value’ attribute can set the
slider position.

<physical-rgb-led> RGB LED <div> Color is set to the CSS
background-color property.

<physical-button> Tactile
push-
button

<button> Triggers ’onclick’ event at but-
ton press.

<physical-servo-motor> Servo
motor

<div> Servo angle is set to angle ro-
tation of CSS transform prop-
ery.

<physical-lcd> LCD text
display

 Text is set with a hard at-
tribute.

<physical-seven-segments> LED numer-
ical display

 Numbers are set with a hard
attribute.

<physical-weight-sensor> Load cell <input

type=’’range’’>

Measured weight is available
via Angular ng-bind attribute.

onclick="foo()" gpio="1"></physical-button>) to create a hard button. The registra-

tion process makes the Amalgam CSS compiler aware of the class so it can replace an existing

tag (e.g., a <button>) with a <physical-button>.

3.3.4 Amalgam-enhanced CSS Style

The hardware CSS style attribute controls if and how Amalgam hardens a DOM element.

The value of hardware describes which hard component should replace the software component

and describes which electrical interfaces the corresponding hardware device will connect to.

Figure 3.3 (b) shows the CSS code required to harden a soft element (a). Each value for

hardware starts with the name of the hard component that Amalgam will use to replace the soft

element. The remaining arguments are of the form attr (value) that Amalgam uses to set the

28

Figure 3.3. Amalgam compiler hardening of soft elements, a) Shows a soft element selected
by an Amalgam-enchanced CSS property in b). After compilation c) shows the hard element
HTML which replaces a).

hard HTML attributes on the hard element (c) it creates. The hard element as well will inherit

soft HTML attributes from the soft element in (a) to keep the same web application functionality

without any changes.

Our prototype implementation uses a JavaScript CSS processor to scan a pages style

sheets for hardware declarations, and then harden the elements appropriately.

3.4 Examples

To demonstrate Amalgam’s capabilities, we built three electronic devices: A video player

appliance, an electronic commercial scale (e.g., for weighing items in a grocery store), and a

dancing speaker. Each electronic device started with an on-screen, soft prototype. Then, we

hardened some of the soft components and built a prototype of the physical device. The Amalgam

platform we use comprises Raspberry Pi, running Ubuntu Linux and Electron.

3.4.1 Video Player

The video player appliance (Figure 3.4) demonstrates Amalgam’s ability to transform

an existing web page into the software for a physical device. The left side of the figure shows

29

Figure 3.4. Video Player: At left, a demo of a video player which provides a familiar on-scree
interface for playing videos. At right, Amalgam allows the same demo to drive a fully-tactile
interface, the only difference being the style sheet.

the soft video player built with the Youtube Player API [111]. It provides a familiar on-screen

interface for playing videos, including the slider that displays and controls the current spot in the

video.

The right side of the figure shows the appliance we built. Videos appear on the screen, but

all the rest of interface is hard. The only difference in software the CSS directives to hardened

the three buttons, the volume control, and slider (List 3.3).

The appliance mimics all the behavior of the original, including the progress bar. We

hardened it into a motorized linear pot that both the software and the user can move, so the user

can “scrub” through the video by moving the slider.

3.4.2 Commercial Scale

The scale we built (Figure 3.5) shows how Amalgam can simplify and accelerated

iterations during prototyping. The scale has two users: the customer and the salesperson. The

salesperson can select products from an illustrated list, see the price per pound, weigh the item,

and adjust the scale by zeroing it or setting a tare weight (to account for the weight of a container),

and show the total. The customer can see the items name and total price displayed on as second

display on the back of the scale.

The soft version (at left) implements all this interface and all the application logic using

soft elements. In particular, it softens the load cell (that measures weight) and the second display

30

List 3.3. Video Player Code. At the top we show only two of the software components of the
Video Player web application, the play and pause button and the progress bar. At the bottom the
Amalgam-enhanced CSS required to harden the software elements, process that is carried out by
the compiler at run-time.

1 <!-- Soft elements -->
2 <button onclick="playPause ()" id="playPause">Play/Pause</button>
3 <input type="range" min="0" max="10" step="1" value="0" id="progressBar">
4
5 <!-- Amalgam-enchanced CSS -->
6 <style>
7 #playPause {
8 hardware: physical-button(gpio:var(--gpio5));
9 }

10
11 #progressBar {
12 hardware: physical-motorized-pot
13 (motora:var(--gpio23), motorb:var(--gpio24),
14 touch:var(--gpio25), adc-channel: 2,
15 i2c-addr: 0x48 , i2c-port:url("/dev/i2c-1"));
16 }
17 </style>

on the back of the scale (both shown as gray overlays). The developer can perfect the application

logic (including varying the weight on the virtual scale) in a web browser without access to real

hardware.

We implemented the soft version using Angular [1], a sophisticated model-view-controller

library. Among other things, Angular makes it trivial to “bind” the output of the load cell to

the weight display. Since Amalgam’s hard elements have the same interface as normal DOM

elements, this works just as easily with hard elements.

The rest of the figure show two prototype versions. The design in the center provides

a completely soft salesperson interface. The one at right uses hard components for the buttons

and numeric displays. Both of them have a hard customer display. The only software difference

between all three versions is a few lines of CSS.

3.4.3 Dancing Speaker

Our dancing speaker (Figure 3.6) highlights the power of using CSS animations to control

hardware. The speaker plays and “dances” to music by waving its arms and flashing its lights in

time to the music. It is a fanciful design that a “maker” might assemble as a hobby project.

31

Figure 3.5. Evolving Scale: Amalgam allows a spectrum of different implementations with
minimal developer effort. From left to right: a software-only mock-up includes a virtual, on
screen load cell and supports software development; a “soft” interface version that uses a touch
screen for the main screen and buttons and an LCD for the rear screen; and hybrid version that
uses 7-segment displays and tactile buttons.

Assembling the hardware for the dancing elements is simple, but writing the software to

control (e.g., beat detection and complex coordinated transitions) them would be very complex.

Instead of writing that code from scratch, our design leverages an unmodified, third-party library

called Rythm.js [9] that can make any website dance in time to the music. Rythm.js uses CSS

classes (e.g., “rythm color1” and “rythm twist1”) to represent background color and angle

rotation changes to <div> tags.

Applying those classes to the servos and LEDs makes them dance just as well. List 3.4

shows the HTML and CSS implementation of our dancing speaker.

3.5 Impact on development time

Amalgam’s goal is to make it easier for developers to build physical devices with rich

interfaces. To quantify its effectiveness, we built two other versions of the video player: One

using pure JavaScript and another using JavaScript and C.

The “C+JS” version uses a simple server implemented in C that exposes hardware com-

ponents via a TCP socket. The JavaScript that implements the application logic communicates

with it via TCP sockets.

32

Figure 3.6. Our dancing speaker

List 3.4. Dancing speaker code implementation using Amalgam-enhanced CSS.
1 <button onclick="playPause ()" id="playPause"
2 style="hardware: physical-button(gpio: var(--gpio5))"> playPause
3 </button> <!-- Play/Pause button -->
4 <button onclick="prevSong ()" id="prev"
5 style="hardware: physical-button(gpio: var(--gpio6))"> Prev
6 </button> <!-- Previous Song button -->
7 <button onclick="nextSong ()" id="next"
8 style="hardware: physical-button(gpio: var(--gpio12))"> Next
9 </button> <!-- Next Song button -->

10 <input type="range" min="0" max="1" step="0.1" value="1" id="slider"
11 style="hardware: physical-pot(adc-channel: 1, i2c-port: url('/dev/i2c-1 ')

,
12 i2c-addr: 0x48"> <!-- Volume -->
13 <div class="rythm color1"
14 style="hardware: physical-rgb-led(spi-port: url('/dev/spidev0.0 '))">
15 </div> <!-- RGB LEDs -->
16 <div class="rythm twist1"
17 style="hardware: physical-servo-motor(servo-channel: 0, i2c-port: url('

/dev/i2c-1 '), i2c-addr: 0x48)">
18 </div> <!-- Servo Motor 1 -->
19 <div class="rythm twist2"
20 style="hardware: physical-servo-motor(servo-channel: 3, i2c-port: url('

/dev/i2c-1 '), i2c-addr: 0x40)">
21 </div> <!-- Servo Motor 2 -->

33

Figure 3.7. Programming Effort: Deeply integration of hardware components interfaces
into the web languages allows Amalgam to reduce the lines of code needed to integrate these
components into web application based electronic devices, therefore reducing development time.

The “Pure JS” version calls the HAL directly to control the hardware and implements the

same functionality that Amalgam’s hard elements implement internally. We refer to this as glue

code.

Figure 3.7 compares the lines of code (LOC) required to integrate the hardware compo-

nents into each version of the application. The measurements do not include the frameworks,

libraries, or the server and communication code for C+JS.

We also include the lines of code added or changed in the application code to accommo-

date the change from soft element to hard elements (labeled as “invasive” changes).

The figure shows that Amalgam vastly reduces the effort required to harden components:

five lines of CSS in one file compared to over eighty lines of JavaScript and CSS spread

throughout the application for Pure JS and C+JS. Amalgam avoids invasive changes completely.

3.6 Related Work

Amalgam seamlessly integrates hardware components into HTML, CSS, and Javascript

to reduce development effort and facilitate faster prototyping. Below, we place Amalgam in

34

context with other projects with similar goals.

3.6.1 Integration of Hardware to Web Technologies

Several previous projects have focused on the integration of hardware to web technologies.

In particular, the Web of Things [51], and IoT protocols such as MQTT [70] and SOAP [33].

These IoT protocols use web programming technologies (e.g., HTTP, Web Sockets, XML, etc.)

to interface remotely with hardware devices which have integrated sensors and actuators. As

hardware devices become more powerful at a reduced cost [96] embedded developers are looking

to use web programming technologies to also interface locally with hardware. Related efforts

adapt JavaScript to run on constrained devices (e.g JerryScript [46]).

Web Browsers have become an extensively used platform that can run across heteroge-

neous hardware and software platforms, and they provide access to a limited number of hardware

components like cameras and microphones [4] via standardized JavaScript APIs.

As web technologies are becoming popular on embedded, mobile devices, other standards

for interfacing with hardware components have been included, such as Bluetooth low energy [10]

and sensors like accelerometers, gyroscopes and ambient light detection [3]. Still, web browsers

standards have not been able to keep up with the myriads of hardware components currently

available.

Developers who want to use non-standard (or less common) hardware components with

web technologies must do so in an ad hoc manner by developing custom communication protocols

or “glue” libraries to provide access in JavaScript. Projects like Jhonny-Five [5] provide these

facilities for some hardware devices, but it does not integrate cleanly CSS or HTML. It also does

not provide easy access to generic interfaces like I2C and SPI, limiting its generality.

3.6.2 Adding Hardware to the Web’s Semantics

Work has also been done to integrate hardware into the web programming languages but

for remote devices. Projects like GSN [14], LSN [66] and OpentIoT [61], which facilitate the

35

integration of IoT diveces to their networks using IoT Protocols, have gone a step further and

have also integrated sensors data into the web syntax. Semantic Sensor Network (SSN) [27] has

been developed from these projects and adds sensor data and hardware components description

(e.g., of temperature sensors and barometers) into the XML syntax. However, these systems

focus communication among devices rather than communication between the software and

locally attached hardware components. Amalgam is, in fact, complimentary to these efforts

because it would simplify programming the sensor nodes.

3.6.3 Programming hardware in high-level languages

Abstracting hardware interfaces into high-level languages facilitates the development

of devices by being able to use the high-level languages capabilities (e.g objects, garbage

collection, etc). Previous work exists for adding hardware interfaces into the high-level languages.

MircoPython [105] for example lets you program micro-controllers using the python language.

Blockly [47] on the other use a visual programmer editor where ports exists to be used for

different languages. By facilitating development these languages have been used to teach first-

time learners how to program embedded devices [59]. These projects have similar goals (i.e.,

exposing hardware via a language’s native idioms and programming constructs), but pursue that

goal in the context of other languages.

3.6.4 Rapid Development of Embedded Devices

Many tools exist for the rapid software development of embedded devices. The Arduino

Language [20], minimizes the time to develop of embedded software on microcontroller plat-

forms by hiding their low level complexity behind a simple library. TinyLink [50] reduces the

lines of code by providing tools that generate the underlying hardware interfaces and binaries re-

quired for a target platform. Microsoft .NET Gadgeteer [107] uses a modular hardware platform

that is deeply integrated into the Microsoft Visual Studio IDE. Gadgeteer provides hardware

abstraction libraries for each supported module and facilitate development by using C# as its

36

main programming language.

Amalgam is similar in some respects to both Arduino and the software support in Gad-

geteer: All three projects aim to integrate hardware support into the host language (C for Arduino,

C# for Gadgeteer, and Javascript/CSS/HTML for Amalgam). Amalgam, however, improves

on the usability of the others by leveraging the flexibility and power of web programming

technologies.

3.7 Acknowledgement

Chapter 3, in part, is a reprint of the material as it appears in the Proceedings of the 19th

International Conference on Web Engineering 2019. Garza, Jorge; Merrill, Devon J.; Swanson,

Steven, Springer Lecture Notes in Computer Science, 2019. The dissertation author was the

primary investigator and author of this paper.

37

Chapter 4

Appliancizer

Appliancizer, our interactive design tool, builds on top of Amalgam and further fuses the

PCB design, circuit netlist (schematic) design, and device simulation steps, making possible the

automatic generation of Schematics, PCB design files, and low-level code from web pages plus

the selection of hardware components. With Appliancizer web pages can be rapidly transformed

into completely functional smart devices.

For device simulation, Appliancizer exploits the similarities between graphical and

tangible interfaces, allowing the simulation of smart devices physical interfaces using HTML

elements as mockup hardware components.

An encapsulation technique we call essential interface mapping, allows our tool to convert

graphical user interface elements (e.g., an HTML button) into tangible interface components

(e.g., a physical button) without the need to change the application source code.

Appliancizer makes the prototyping of mixed graphical-tangible interactions as easy as

modifying a web page and allows designers to leverage the well-developed ecosystem of web

technologies. We demonstrate how our tool simplifies and accelerates the design of complex

electronic devices through the development of two smart devices with Appliancizer.

38

Figure 4.1. Appliancizer allows web pages to be transformed into fully functional PCB proto-
types for rapid prototyping of smart electronic devices. Left a), we show a video player web page
that provides a familiar on-screen interface for playing videos. Left b), a thermostat simulated
on a web page with basic controls for adjusting the temperature. Right of the web pages shows
automatically generated smart electronic devices running the same web application but with a
tactile interface.

4.1 Introduction

Electronic devices play an essential role in our modern society. From the automation

of many daily tasks, such as thermostats that maintain a comfortable temperature in our home,

to multimedia entertainment devices. With the arrival of smart devices, such as smartphones,

users expectations of their interaction with electronic devices have changed. Smart devices

are expected to have rich interfaces that combine graphical displays with physical buttons and

controls. Smart devices must also be connected to the internet and integrated into ecosystems

to communicate with other devices [30]. Developing smart devices requires both designing a

physical device as well as web-oriented interactions and rich graphical interfaces.

Web technologies such as HTML, CSS, and JavaScript have proven adept at creating

interactive interfaces and facilitating integration with online services. The myriad available

libraries make creating compelling animations, multimedia playback, and interacting with web-

services possible with a few lines of code. These capabilities make web technologies ideal

for designing interfaces for smart devices. For example, Tizen [95] and Firefox OS [83] use

web-based architectures for smart devices. However, the many details involved with integrating

web technologies with tangible interfaces slows new product development.

39

The conventional process for developing smart devices that combine graphical and

tangible interactions requires substantial expertise in a range of specialties – user interface

design, PCB design, and embedded programming [68]. This makes it hard to quickly, agilely, and

cheaply prototype these complex devices [74]. Even though the accessibility to manufacturing

and assembly services has improved, there is still a gap between having access to manufacturing

technology and the skills and knowledge required to build these devices [73].

To bridge the gap, several design tools, such as JITPCB [21], EDG [91] and TAC [19],

automate the generation of circuits from software by creating new hardware description languages

at the circuit netlist or schematic-level. Enabling the programmatic or visual creation of circuits,

without requiring expertise in schematic creation or PCB layout design. However, these tools do

not target smart devices (that is, devices with screens and web connectivity). They also require

developers to learn novel hardware description languages or syntax. To the best of our knowledge,

no tool integrates graphical and physical user interfaces using existing web technologies.

In this paper, we address this shortcoming with Appliancizer, a computational design tool

that allows designers to prototype electronic devices as web pages, which are then automatically

converted into physical smart devices with tactile interfaces. Appliancizer provides an interactive

online IDE1 that allows users to simulate the interactions between hardware components and

on-screen elements. Appliancizer guides users through the device design workflow, abstracting

away the complexity of hardware design. With our computational design tool, the process of

designing smart devices with both graphical and tactile interfaces (mixed interfaces) is simplified

to only GUI and software development.

Compared to previous work such as JITPCB, EDG, and TAC, our approach uses ubiqui-

tous web technologies and its rich GUI Model-View-Controller (MVC) model to create circuits.

In Appliancizer, HTML is our hardware description language, therefore there is no need to add

any extra configurations or change the source code of the web-based prototypes. This facilitates

rapid prototyping of devices with both physical and graphical interfaces. As a consequence,

1Appliancizer interactive online IDE - https://appliancizer.com/.

40

https://appliancizer.com/

web developers (and others without experience with embedded systems) may more easily create

embedded devices.

Appliancizer uses a modular design approach that encapsulates multiple reusable circuit

schematic pieces with their required low-level code and other circuit specifications, referred

through the paper as tangible controls (e.g., physical buttons, sliders, LED’s required schematics,

hardware interfaces, low-level code, etc). Tangible controls are designed by experts and reusable

by novices. Each tangible control maps to one of the three supported HTML GUI elements

(buttons, sliders, and text). For example, both knob and temperature sensor tangible controls map

to the HTML slider element. By combining the different HTML GUI elements, Appliancizer

can automatically generate new circuit board designs and the required low-level code.

Appliancizer uses and demonstrates essential interface mapping. A novel technique that

allows the automated generation of (i) a simulated interface of the smart device, (ii) schematic

and PCB layout ready for manufacture, (iii) the low-level code required to make the device work.

Appliancizer also explores the use of a custom web browser for easier application deployment,

an approach enabled by our essential interface mapping technique.

Our tool is built on top of our previous work Amalgam [43]. Amalgam is a framework

that extends the HTML DOM to the physical domain allowing software communication between

graphical and tangible elements. However, Amalgam does nothing to assist the user with

hardware design and application deployment. In contrast with Appliancizer, Amalgam users

must design the PCB board manually, program the pin mappings, and learn complex Linux

commands to run the web application.

The rest of this paper is organized as follows. Section 4.2 describes previous work and

techniques for accelerating and reducing the complexity of the conventional development process.

Section 4.3 and Section 4.4 introduce Appliancizer and our essential interface mapping technique.

Section 4.5 demonstrates our tool and technique capabilities by describing two devices made with

our tool. Section 4.6 evaluates with a preliminary user study the rapid prototyping capabilities

of devices with Appliancizer. Section 4.7 discusses the advantages and limitations of our work.

41

Conclusions and final remarks for this tool are presented in the final chapter, Section 6.2.

4.2 Related Work

In this section, we review previous work that helps reduce the complexity of the design

process required for the development and prototyping of electronics devices, as well as techniques

relevant to this paper.

4.2.1 Rapid prototyping of electronic devices

Developing electronic devices is a complex process, therefore it is important to place our

design tool in the context of the field. In this section, we discuss existing systems and how they

interact with the different stages of electronic device development.

Several non-PCB prototyping systems have developed solutions to accelerate one or more

steps of the conventional development process of electronic devices described in Section 2.

Tangible interface simulation

Many commercial tools [80, 89] offer low-level circuit simulation, targeted toward expert

users. ThinkerCad Circuits [104], in particular, provides an accessible graphical environment

allowing less-experienced users to simulate hardware component behavior and low-level code

using a virtual breadboard.

Compared to these tools, Appliancizer uses higher-level abstraction. Appliancizer simu-

lates interface behavior, not electrical circuits. Only essential interface events between application

software and the hardware are simulated.

Rapid circuit prototyping using modular design

In modular design, hardware and software complexity is divided into different modules

that can be reused. Modular design techniques are commonly used to achieve faster prototyp-

ing compared to the conventional development process. Multiple authoring tools allow rapid

42

interactive exploration of circuit designs at the physical level using a modular design.

Microsoft .NET Gadgeteer, MakerWear, littleBits, and SoftMod [107, 58, 24, 65] use

prefabricated circuit modules as electronic building blocks that can snap together to create a

range of electronic devices. These systems rely on proprietary toolkits. This limits support

to only the proprietary hardware modules created explicitly for these systems. While toolkits

attempt to standardize modules (for example, Grove [49]), these proprietary systems may be

subject to limited future support and licensing fees.

In contrast, Appliancizer creates custom PCB prototypes using the universally used PCB

schematics as modules. These PCB schematics can be directly used or modified to create a

final commercial device. Additionally, schematic modules can easily be added to our tool as

EAGLE files and updated without requiring expert designers to go through the additional steps to

manufacture them. Appliancizer schematic modules also use the same off-the-shelf components

(e.g., buttons, sensors, LED’s, etc) that will be used in the final device.

Accelerating low-level code development

Modular design is also used for low-level code in .NET Gadgeteer, Arduino, and oth-

ers [23, 20, 50] by providing higher-level libraries. These systems successfully remove some

of the expert knowledge needed to program embedded devices (e.g. microcontroller registers

manipulation) but still require user implementation of low-level communication with tangible

interface components.

Appliancizer is built on top of Amalgam [43]. Amalgam deeply integrates different

low-level code modules into the HTML and CSS syntax creating a clear separation between

software code and low-level code. With Amalgam, the low-level code modules can be mapped to

trigger HTML DOM events (e.g. onclick), therefore requiring zero low-level code development.

However, Amalgam by itself still requires the user to know other low-level details such as pin

mappings and Linux device file names.

Amalgam allows Appliancizer to present the same JavaScript events for tangible interface

43

components as graphical interface components. However, by using tangible controls and essential

interface mapping Appliancizer completely abstracts all low-level details, making developing

tangible interfaces as easy as developing graphical interfaces in HTML and JavaScript.

Mechanical design and mixed interfaces

Makers’ Marks [94], RetroFab [90], and .NET Gadgeteer SolidWorks pluginprovide rapid

design facilities for the integration of mechanical parts (and device enclosures) with tangible

interface components. These systems often make a clear division between the mechanical,

hardware, and software domains resulting in a mental gap for designers.

f3.js [57] works across domains and provides designers with a single codebase allowing

users to interactively design the device enclosures with the aid of an IDE in conjunction with

the device software code. This technique provides a mixed interface generation from a single

codebase where one part of the code is utilized for the device functionality and the other for the

device mechanical design.

Compared to these tools, Appliancizer focuses on helping users with the PCB design of

the device and not on the mechanical design. Similar to f3.js, our tool provides a single codebase

for the generation of a mixed interface interaction with the electronic device.

Amalgam allows Appliancizer to present the same JavaScript events for tangible interface

components as graphical interface components. However, by using tangible controls and essential

interface mapping Appliancizer completely abstracts all low-level details, making developing

tangible interfaces as easy as developing graphical interfaces in HTML and JavaScript.

4.2.2 Automating PCB development

Current PCB design tools operate at lower abstraction levels, limiting the design process

to the circuit netlist and PCB layout design tasks described in Section 2. Furthermore, as

mentioned by Lin et al. these tools have stayed fundamentally the same over the years, without

providing design assistance or improvements for novices [68]. Recent work has proposed

44

integrating the high-level abstractions of circuit design specifications into programming languages

to allow the automation of multiple design steps. This transformation process is similar to the

synthesis of hardware description languages (e.g., Verilog [103] and VHDL [82]) into gate-

level blocks (for example, NAND, NOR, Flip-Flops) but for board-level circuits. Hence, this

process is also called synthesis for circuits. Synthesis for circuits translates high-level hardware

description languages into circuit netlist or schematic modules of commonly used circuit designs

(for example, an LED with a resistor) instead of gate blocks. The benefits of synthesis for circuits

include: accelerated development; avoiding the need for in-depth knowledge of electronics; and

opening electronic design to new communities with a different set of skills, such as software

developers.

Just in Time Printed Circuit Board (JITPCB) [21], Embedded Design Generation (EDG)

[91] and Trigger-Action-Circuits (TAC) [19] are examples of tools that go beyond the traditional

schematic capture process and provide board-level hardware description languages that allow

synthesis for circuits. However, despite achieving faster development times and a notable

reduction of complexity in comparison to the conventional development cycle, these synthesis

tools integrate the hardware abstractions at the software level, requiring developers to learn extra

development steps or limiting the functionality of the software application. JITPCB, for example,

requires users to learn a separate programming language, Stanza [87], and manually specify

which schematic modules to use in conjunction with the software. EDG requires users to learn an

API to generate circuit diagrams. These two tools have benefits to experts doing low-level circuit

design. TAC further abstracts the circuit specifications as a visual programming language but

limits the application logic complexity by only having an if-then programming model [106]. In

contrast to these systems, Appliancizer uses a well-developed programming language specifically

designed for creating UIs with a focus on network interactions (HTML and JavaScript).

Appliancizer integrates the hardware abstractions at the HTML GUI level and leverages

its rich MVC model to create circuits. In Appliancizer, HTML is the hardware description

language, therefore, our tool is also defined as a GUI-based hardware description language for

45

board-level circuits. Combining this abstraction with our essential interface mapping allows

for circuit synthesis without requiring users to learn extra development steps or even modify

the software application source code. This allows Appliancizer users not to have to design

schematics or PCBs layouts to create responsive, tangible interfaces

At the level of workflow automation, and taking as a model the diagram described in

Figure 2.1, of the synthesis tools described above, only JITPCB can generate full PCB layout

designs from a software programming language. EDG and TAC limit their work at the circuit

netlist design step. Appliancizer’s essential interface mapping technique allows workflow

automation that spans from the device simulation to the PCB layout design tasks of the smart

devices development process. Our tool generates complete PCB Gerber files that can be sent to

manufacture without modifications.

4.2.3 Mapping graphical and tangible interfaces

A modular design concept that enables rapid prototyping has prevailed for the compu-

tational design of tangible interfaces that span from desktop computers to embedded devices.

Especially post-WIMP, many of these tools have exploited the correlations that exist between

graphical and tangible interfaces to accelerate prototyping.

Phidgets [48] first proposed packaging hardware components and their required low-

level code into modules that can interact with on-screen GUI elements, allowing users to

prototype tangible interfaces faster. Similarly, d.tools [52] uses the concept of phidgets to

graphically prototype hardware and screen transitions of electronic devices. D.tools exploited

these similarities by creating physical and virtual duals of components that are mapped to make

tangible components interact with graphical ones. Further exploration of the mapping between

graphical and tangible interfaces is done by iStuff [22] and the work by Coyotte et al [28] to

accelerate the prototyping of tangible or mixed interfaces. These prior tools rely on a full desktop

event handling system for mediating between physical device components and the software

application logic. Appliancizer allows users to first prototype smart devices as GUIs and then

46

generate a fully functional physical version with minimal effort. Appliancizer is, to the best of

our knowledge, the first system to use graphical-tangible interface mapping to fully automate the

hardware design of standalone smart devices.

4.3 Appliancizer

To lower the PCB design entry bar and speed up the prototyping of mixed graphical-

tangible interactions required for smart devices design, we created Appliancizer. Appliancizer

is an online computational design tool that enables designers to transform web pages into fully

functional PCB prototypes of smart electronic devices. With our tool, HTML-based interfaces are

transformed into mixed interfaces, interfaces that include GUI and tactile elements. Compared

to the conventional development process that requires designers to have extensive expertise in

multiple fields, Appliancizer simplifies smart device PCB prototype development by requiring

only front-end web design knowledge and minimal hardware knowledge. In addition, we release

Appliancizer’s implementation as open-source software2. In this section, we provide an overview

of the design process with our tool.

4.3.1 Design process overview with Appliancizer

Appliancizer simplifies the design workflow required to prototype smart device PCBs

by providing simple steps to build these devices. Figure 4.2 shows the interface of the tool.

Designers first start by developing a front-end web application consisting of HTML, CSS, and

JavaScript code, much as they would for a normal web-based application. Our tool provides a

built-in front-end web editor for user convenience which can be accessed with the add a new

web page button (a). Designers create their web-based prototypes with the clear idea that the

prototype will be converted into a device and use the three supported HTML elements as mock-up

hardware components to begin prototyping the interactions between graphical and potential

tangible interfaces. The three supported HTML elements, listed in Table 4.1, are defined as

2Appliancizer source code - https://github.com/NVSL/Appliancizer.

47

https://github.com/NVSL/Appliancizer.

Figure 4.2. Appliancizer IDE. Figure shows a) button for adding web applications, b) virtual
screen display area, c) empty virtual PCB, d) virtual PCB with virtual hardware components,
e) tangible controls hardware components selection area, tangible interface simulation f), and
a build button for generating the PCB layout, display required parts, and show application
deployment steps g).

HTML controls through the rest of the paper.

After the new web-based prototype is developed, users can then upload the web applica-

tion to a virtual screen display within our IDE that represents what users will see on the smart

device screen. Our tool will highlight a green dotted border around the HTML controls that can

be transformed into tangible interfaces. Otherwise, a red dotted border will be displayed (b).

The available HTML controls to transform can be dragged and dropped into a resizable

virtual PCB (c) and (d), creating a clear separation between the graphical interfaces and the

potential tangible interfaces. Each HTML control dropped into the virtual PCB maps to tangible

controls which the user can select (e). Appliancizer supported tangible controls are listed in

Table 4.2. Examples of tangible controls that the user can select are tactile buttons, LED’s, and

temperature sensors hardware components.

Accompanying components like resistors or any other hardware components required by

the main tangible control hardware component are also automatically added to the virtual PCB.

A simulation mode enables developers to simulate the potential tangible interfaces of the smart

device (f). Finally, with a simple click, developers can get the list of all parts with a link showing

where to buy them, Gerber files ready for manufacture automatically generated from the virtual

PCB, and simple steps to deploy and run the web application on the new smart device d). The

generated smart device for the virtual PCB in d) is illustrated in Figure 4.1 a).

48

4.3.2 Graphical to tangible interface process overview

With Appliancizer, HTML controls can be moved off-screen to become tangible interface

components. Figure 4.3 shows a more detailed view of the process for transforming a graphical

interface into a tangible one by showing how internally a button and span HTML controls are

transformed into tangible interfaces with which a user can interact. After the HTML controls

in a web page a), b) are dragged and dropped into the virtual PCB c). Our essential interface

mapping matches the essential IO data similarities that exist between dragged HTML and similar

hardware components. An HTML control button, for example, matches tactile pushbuttons

perfectly as both produce an ON or OFF essential input data.

For each hardware component and accompanying components in the tangible control

module, schematic modules describing the interconnection between the components are provided

by our tool. Each schematic module represents an HTML control. By combining the different

HTML controls, new circuit board designs can be generated. When ready for manufacturing, a

complete schematic is generated from each separate schematic module d). A PCB layout is then

generated from the complete schematic e). Finally, f) shows the final PCB after manufacture.

Using a modular design approach our tool also encapsulates the required low-level code

for communicating with each hardware component. For deployment, a web application is also

generated with the required low-level hardware code allowing its interaction with hardware

components. A custom operating system image, provided by our tool, allows users to navigate

and run the web application. Finally, at runtime, the selected HTML elements are replaced by

hard HTML elements [43] consisting of web components [108] and low-level code that interface

with the selected tangible controls hardware components. Figure 4.1 shows two examples of

smart devices, a video player and a thermostat. Its PCBs were automatically created from a

web page, and their hardened HTML elements allow physical interaction with the device’s web

application.

49

Figure 4.3. Graphical to tangible interface process. Two HTML controls a <button> and
 are transformed into tangible interfaces while one HTML element, a <button>, is left
as a graphical on-screen interface element.

50

4.3.3 Appliancizer tangible controls

To better explain our tool, we define as tangible controls as the encapsulation of high-

level circuit specifications for hardware components (e.g. LEDs, pushbuttons, etc). The circuit

specifications that are encapsulated into each tangible control and the method of integration with

development tools affect the system capabilities. Examples of circuit specifications that can be

encapsulated are low-level code for interfacing with the hardware components, circuit netlists,

voltages, and hardware communication protocols required by the hardware parts, among others.

Figure 4.4 on the right shows an overview of all the circuit specifications that are encap-

sulated for each tangible interface component provided by our tool. Each Appliancizer tangible

control consists of a schematic module, a low-level code block, required hardware components,

and the hardware interfaces required to communicate with the hardware components.

The tangible controls concept has been implemented in previous tools, described in

Section 4.2.2 and Section 4.2.3, each encapsulating different hardware features. Phidgets and

Amalgam [43] for example have explored the use of tangible controls, but limit the encapsulation

to contain only low-level code, leaving the PCB schematic and layout design to the developer.

In contrast, Appliancizer tangible controls provide additional circuit specifications that allow

the generation of PCB schematics and layouts. JITPCB, EDG, and TAC which similarly allow

synthesis, limit the integration and exploration of tangible controls to the software level. On the

other hand, Appliancizer integrates tangible controls at the graphical interface level, allowing the

essential interface mapping of graphical and tangible modules.

Appliancizer tangible controls are designed by experts and reusable by novices. Com-

pared to existing non-PCB rapid prototyping tools, experts designing these modules can add

and update the modules as familiar plain-text PCB schematic files, rather than designing and

manufacturing toolkit-compatible modules. Appliancizer supported tangible controls are listed

in Table 4.2.

51

Figure 4.4. HTML controls vs Appliancizer tangible controls: To consider the wide range of
hardware components we considered mapping at the essential interface level, thus encompassing
hardware components that may not interact with the user, such as sensors.

4.4 essential interface mapping

By forming well-established mappings the translation between graphical and tangible

elements, or to be more precise between HTML controls and tangible controls, can be performed,

enabling design automation of smart devices that require rich GUI. In previous works, iStuff [22]

and the work of Coyotte et al [28] limited the exploration of interface mappings at the user

interface level. Therefore, preventing the analysis of hardware components that do not require

direct physical interaction with the user (e.g, a temperature sensor).

While, from the perspective of HCI is not necessary, for fabrication the goal is to map as

many HTML elements with hardware components as possible, even if the user never interacts

physically with the hardware components. A mapping that covers a wide range of hardware

components allows the creation of more diverse smart devices. Therefore, to cover a wider

range of hardware components we suggest mapping HTML controls and tangible controls at

the essential interface level. Opening the analysis of how graphical interface elements can

also be used to prototype the behavior of hardware components that do require direct physical

interaction.

52

Table 4.1. Mapping between HTML controls and hardware components

HTML controls Essential interface Hardware components

 Multi-byte
Output

Actuators, LEDs, Relays,
Servos, LCD Displays, etc.

<input type="range"> Numeric Input & Output Sensors, Temperature Sen-
sor, Potentiometers, etc.

<button> 1-bit Input Interrupts, Push Buttons,
Status Signals, etc.

Figure 4.4 shows a comparison between HTML controls and our Appliancizer tangible

controls using the Model-View-Controller architecture model as a reference. Both the HTML

controls and the communication of the Appliancizer tangible control with the controller are

abstracted at the level of the essential interface, or the most essential data that is sent to the web

application.

By studying the similarities of the HTML elements and essential interfaces of the different

hardware components, we created a relational table that contains a mapping between the two.

Table 4.1 shows our mapping table that we organize between HTML controls and a classification

of different hardware components (e.g., sensors, actuators, etc.). One of the things we considered

when creating this mapping is being able to address as many hardware components as possible

with the least amount of HTML elements. This makes application development easier by not

requiring specialized HTML elements to match specific hardware components. We describe

each essential interface mapping in detail below.

Multi-byte Output

A or text HTML element provides information to the user. Therefore, we

consider this element to be mapped to actuators that require one or multiple bytes of information

sent by the web application to react, such as LEDs, servos, and LCDs. Once the interface

becomes tangible, the data is transmitted to the low-level code and transformed accordingly for

each hardware component. For example, for a LED, the web application must produce an ”ON”

53

or ”OFF” text to turn the LED on or off. In the case of a servo motor, the number of text in

angles (e.g. ”45”) will make the servo rotate 45 degrees. Similarly, a 16×2 LCD screen will

only display the raw text produced by the software application.

Numeric Input & Output

<input type="range"> range sliders naturally match any sensor that produces a range

of values. These sensors can vary from physical knobs or sliders that require human interaction

to effect changes to temperature, light, and humidity sensors that interact with the environment.

While range sliders are perfect for providing input data, web applications can also change the

slider position through code, making the essential interface also a good candidate for outputting

data to hardware components that require a range of values to actuate (e.g. servos).

1-bit Input

The <button> HTML element remains as the most intuitive for providing 1-bit input

data to software applications. However, hardware components that produce 1-bit inputs are not

limited to tactile pushbuttons. Integrated circuits that trigger interrupts when special conditions

are met can be used as well.

The screen component

Mixed interface smart electronic devices require the use of a display to allow digital

interaction with the device. Devices made with Appliancizer by default will display all the

HTML GUI elements left in the virtual screen display. Developers can then connect any HDMI

display to the device to interact with HTML elements on the device screen. However, in certain

applications, the integration of the device screen with the PCB is required. For these applications,

Appliancizer allows the <iframe> element to be dropped inside the virtual PCB where different

HDMI displays with varying sizes can be selected allowing developers to populate the virtual

hardware components adjusting to the screen display dimensions, as is illustrated in Figure 4.2

d).

54

Table 4.2. Appliancizer tangible controls library

Tangible controls Essential interface

LED (Red, Green, Blue) Thruhole & SMD Multi-byte Output
Servo Motor Multi-bytes Output
16×2 LCD Display Multi-bytes Output
Potentiometer Numeric Input & Output
Motorized Potentiometer Numeric Input & Output
Temperature Sensor Numeric Input & Output
Tactile Push Button Thruhole & SMD 1-bit Input

4.4.1 Appliancizer tangible controls library

The implemented Appliancizer tangible controls that can be selected for each HTML

control, listed by their essential interface, is shown in Table 4.2. Each off-the-shelf hardware

component that can be used with our tool can come in different sizes and with variations, as is

the case with LEDs that can come in thru-hole or surface mount device (SMD) versions and

varying colors. With Appliancizer, low-level code can be written once and reused for similar

versions of the hardware part. However, a schematic module must be created for each part to

address the changes in sizes and shapes.

While some of our tangible controls use solderable breakout boards to facilitate assembly.

With our approach, each discrete electronic component soldered onto the breakout board PCB

can be directly integrated into the Appliancizer-generated PCB layout, as we do with the button

and LED tangible controls.

4.4.2 Simulation of the device tangible interface

Device simulation enables developers to prototype and test the software of the device even

before the device is manufactured, allowing experimentation and avoiding repeated prototyping

to analyze the system behavior. Full simulation of the device hardware is expensive in terms of

the computational resources needed. A popular and less expensive technique is to display an

on-screen mock-up of the tangible interfaces that allow software developers to trigger simulated

55

essential interface data events sent to the software application by the hardware components. This

approach is common in mobile application development [72], where virtual buttons and sensors

are used to represent physical components such as volume, home, keyboard buttons, and sensors

allowing developers to debug their mobile applications without requiring a physical device.

Our essential interface mapping technique inherently allows the creation of a virtual

tangible interface for smart devices, since both, HTML controls and Appliancizer tangible

control, are matched by the same essential interface data. After the HTML controls are removed

from the virtual screen display and dropped into the virtual PCB area, developers can interact

with the virtual hardware components placed in the virtual PCB when in simulation mode.

Changes to the virtual hardware components will produce the same effects in the web application

since it’s the same web GUI but split into a graphical and a simulated tangible interface by the

developer. Taking as an example the virtual button in Figure 4.3 (c), in simulation, any ’onclick’

events will still be sent to the controlling web application code. Then, after PCB fabrication (f)

and deployment of the application, pressing the physical button will trigger the same events in

the web application as its virtual counterpart.

4.4.3 Automated PCB layout generation

Adding circuit characteristics to tangible control modules also allows Appliancizer to

automatically generate the PCB layout required for the smart device. The PCB layout generation

is divided into three tasks: hardware component selection, complete schematic generation, and

hardware components placement. Below we describe these tasks and conclude with the PCB

manufacture and assembly process.

Hardware component selection

Once the HTML controls are placed on the virtual PCB, developers can select among the

hardware components implemented in Table 4.2, only those that match the essential interface

mapping. Figure 4.2 (e) shows an example of the hardware components that can be selected for

56

the <button> HTML control.

Complete schematic generation

To automatically generate the complete schematic we use a modular design technique

at the circuit level. In this technique, schematic pieces of commonly used electronic designs

(e.g., LED and resistor, etc) are separated into modules, as is shown in Figure 4.3 (d). Each

schematic module consists of a circuit with power nets, ground nets, internally connected nets,

and disconnected nets.

Internally connected nets describe the connection of the main tangible interface com-

ponents (e.g, a tactile button) with their accompanying hardware components (e.g, resistors,

capacitors). Disconnected nets are left for the hardware interfaces (e.g., GPIO, I2C, etc) required

for each hardware component. At build, each disconnect net is greedily assigned to the next

available hardware interface of the computing device platform (e.g., GPIO interface to pin 4).

In case there are no more hardware interfaces can be assigned we alert the user. Similar circuit

netlist or schematic generation techniques have been implemented by JITPCB, EDG, TAC, and

more recently Ehidna [75] for devices that use microcontrollers. In our tool, however, we target

systems on chips (SoC) computing devices that can run operative systems which have become

more popular in new embedded designs [37].

Hardware components placement

To generate a PCB layout the physical position of hardware components and the size of

the PCB must be known. After the HTML controls are dropped into the virtual PCB and the

desired hardware component is selected, a 2D virtual part image that represents the physical

dimensions of the real hardware part can be positioned by the designer in the resizable virtual

PCB. Accompanying hardware components for each Appliancizer tangible control can be moved

as well. After virtual placement, the position of each virtual hardware component and the size of

the virtual PCB are then used to create the PCB layout, described in more detail in Section 4.4.3.

57

Compared to tools like JITPCB, which require adding placement and rotation of hard-

ware components programmatically, with Appliancizer, designers visually move and place the

virtual hardware parts in their desired locations inside the virtual PCB. Although the hardware

components placement could also be generated automatically, we choose to use a WYSIWYG

methodology as we believe is more intuitive for the user.

Generating the PCB layout

After the complete schematic is generated and knowing the hardware components posi-

tions, the PCB layout generation process takes place. From the complete schematic, we generate

the PCB layout positioning all hardware components inside the PCB to match the virtual PCB

design. After placement, we run the auto-routing process provided by EAGLE, a third party

PCB CAD used by our tool, to generate the routed PCB. Finally, after the PCB layout routing

completes, the Gerber files are also generated using EAGLE. The Gerber files are then sent to

a PCB fabrication service for its manufacture. Figure 4.3 shows in (e) the PCB layout after

is routed, and (f) the PCB after manufactured. The physical hardware parts were assembled

manually, however, PCB services can also provide assembly. To merge the different schematic

modules and generate the PCB layout we use Swoop [99], a tool we created to edit, create, and

manipulate EAGLE files. Only the automatic routing process and the Gerber file generation

tasks are performed using EAGLE.

4.4.4 Automated low-level code generation

At build time, our tool also generates all the low-level code required to make the smart

device work. The generation of the low-level is divided into two steps: A pin mapping process

and the generation of the user web-application integrated with the required low-level code for

the device.

58

Pin mappings

Appliancizer also generates hardware interfaces mappings at the software level, known

as pin mappings. The pin mappings indicate which IO pins each tangible control low-level

code should use and must match the schematic of the device (e.g., button GPIO interface to pin

4). tangible control are not limited to one hardware interface, Figure 4.1 device (a) shows a

motorized potentiometer which requires two GPIO interfaces to move the motor and one I2C

interface to get its position.

To automatically generate the pin mappings each tangible control is encoded with the

hardware interfaces required by the low-level code to communicate with the hardware compo-

nents. In the same complete schematic generation process described Section 4.4.3, the required

hardware interfaces by each tangible control are greedily assigned to the next available computing

device header pins. However, in this case, the resulting product is a Amalgam-enhanced CSS file

used by Amalagam to map the low-level of each tangible control with the correct hardware pins

and that match the generated schematic. The generated CSS file is used by Amalgam for the

hardening [43] process to take place.

Web application low-level code integration

After the pin mapping process, we add to the user web application all the low-level

code from each selected tangible control. Finally, the user web application, integrated with the

required tangible control modules and a CSS file indicating to Amalgam how to harden the soft

HTML elements (HTML controls) with the correct tangible control, is hosted on our server. A

web link to the hosted web application is provided to the user which they can use to navigate to

the generated web application integrated with low-level code.

4.4.5 Application deployment

The conventional application deployment process requires users to learn complex Linux

shell commands for application deployment, making it challenging for novices. To facilitate

59

the process, we created a custom OS that allows users to simply navigate to the generated web

link described in Section 4.4.4. Links are shareable making it possible for other users to test

applications created by others. Our custom OS can be downloaded from our tool.

At boot, our custom OS provides a familiar web browser interface where users can

introduce the generated web link to navigate to the generated web application. Our custom OS

also contains Amalgam which is executed when a new web page is loaded, making our web

browser behave differently. Unlike standard web browsers, our custom OS web browser will

harden the selected HTML control by the developer, extending the HTML DOM to the physical

world and allowing physical interaction with the web page. The hardening process is described

in depth in [43].

A smart device or a web page?

One of the unique characteristics that our essential interface mapping technique offers

is the capability of having two versions of the same application, one fully graphical and the

other one with a mix of graphical and tangible interfaces. After our tool generates the web

application integrated with low-level code, the web application is still accessible from a standard

web browser and will render all HTML elements on the screen. However, when the same web

page is accessed through our custom OS the user-selected HTML elements to transform are

removed from the screen and their interface becomes tangible. Figure 4.5 shows the same web

application described in Figure 4.3. Accessing the web application from a standard web browser

will result in a fully graphical interface (a). Otherwise, if the web application is accessed from

our custom OS with the generated PCB mounted, will result in a fully functional smart device

(b).

4.5 Examples

To demonstrate our essential interface mapping technique we created two smart devices,

a physical video player and a smart thermostat, using Appliancizer. Figure 4.1 illustrates these

60

Figure 4.5. A essential interface mapping technique allows the same application to be accessed
as a fully graphical interface application (a) or a mix of graphical and a tangible interface (b).

two electronic devices. Below we describe each smart device in detail.

4.5.1 Physical Video Player

The first smart device we created is a physical video player which was transformed into

a smart device directly from a video player web application. To create the smart device we

first built a soft video player using the YouTube API [111] by following a tutorial available

online. Then, we loaded the application to Appliancizer and moved the player HTML controls

to the virtual PCB, as shown in Figure 4.2. Finally, we sent the generated PCB to manufacture

resulting in the smart device shown in Figure 4.1 (a). The physical video player device mimics

all the behavior of the original soft version, including the progress bar which moves as the video

progresses and which the user can actuate to change the video to a specific time. The user can

press the physical push buttons to play or stop the video, and move to the next or previous video.

No modifications were made to the source code of the web application for deployment.

61

Originally our physical video player only had a play and pause button. After testing the

video player smart device we wanted to include physical previous and next buttons. Since our

essential interface mapping technique makes web applications work as web-based prototypes

of smart devices. The buttons were simply added as developing any other web page, without

requiring adding low-level code or extra configurations. The old device PCB was replaced by

the newly generated PCB and the custom OS web browser was simply refreshed to update the

mappings, allowing physical interaction with the added buttons.

4.5.2 Smart Thermostat

For the second smart device, we took inspiration from the Nest thermostat [102] that

provides an intuitive GUI for controlling the temperature inside a room. However, instead of

following a tutorial and writing the code ourselves, we decided to search existing web applications

from CodePen [25], a popular online editor for sharing front-end web applications. We found that

the use of HTML elements as hardware mock-up components is an approach intuitively used for

prototyping smart devices graphically and quickly discovering a web-based NEST prototype [25].

Although, the initial proposal of the web application shared by the community was to graphically

simulate the Nest thermostat tangible interface, with Appliancizer we transformed the web

application into a real smart thermostat.

The soft version of the smart thermostat includes two HTML buttons to increase or

decrease the target temperature, an HTML span tag that indicates if the weather to turn ON or

OFF the cooling compressor, and finally, a range slider that simulates the ambient temperature of

the room. Correspondingly, the built physical version of the devices consists of two physical

buttons, a LED that physically simulates the ON and OFF state of the compressor, and a

temperature sensor that indicates the ambient temperature with a range of values. However,

compared to the motorized potentiometer that also provides an interface to programmatically

control the position of the slider using a DC motor, the temperature sensor is limited to only

transmitting an input range of values to the web application. Therefore, any initial value set to

62

Figure 4.6. Development time comparison between Appliancizer and Amalgam for designing a
smart thermostat.

the soft slider version will be ignored by the low-level code of the temperature sensor tangible

control. Finally, for this device we left the screen component as a soft element, allowing the PCB

to be placed at the back or at a different angle from the screen display.

4.6 Preliminary Study

To gauge how our essential interface mapping technique speeds prototyping of smart

devices that require mixed interfaces we ask two developers with prior experience designing

PCBs to build the same smart thermostat described in Section 4.5.2 using both Appliancizer

and Amalgam. The web application of the smart thermostat was provided for both tools. For

Amalgam, the hardware footprints library was provided as well, requiring users to only select

the hardware components for laying out the PCB.

Figure 4.6 shows the development time difference between Appliancizer and Amalgam. It

took developers an average time of 4 minutes with Appliancizer versus an average of 26 minutes

with Amalgam to design a smart thermostat device. A speed-up of 6.5X in development time with

Appliancizer. These results were expected since Amalgam, compared to Appliancizer, requires

63

users to generate the schematic and PCB layout manually. Furthermore, with Amalgam, users also

require to program the pin mappings for the low-level code to work with the selected computing

device. These two separate tasks are shown correspondingly for Amalgam in Figure 4.6.

4.7 Discussion

The conventional design, test, and prototype process for smart devices that require mixed

graphical and tangible interfaces are composed of complex tasks. To mitigate the challenges we

introduce a essential interface mapping technique that allows transforming HTML GUI elements

within web pages into tangible ones. To demonstrate our technique we created Appliancizer, an

online computational design tool that allows designers to generate functional smart devices from

web-based prototypes. In this section, we discuss some observed capabilities and limitations of

our essential interface mapping technique and compare Appliancizer to previous work.

4.7.1 Rapid prototyping of smart devices

While previous tools have achieved synthesis for board-level circuits [21, 19, 91], they

limit the high-level hardware abstractions of circuits at the software code level, requiring

developers to learn complex integration steps or limiting the software application functionality. In

our work, we consider the abstraction at the graphical interface level for smart electronic devices

that require graphical and tangible interfaces. Previous tools at this level have demonstrated a

relationship between graphical and tangible interfaces [48, 22, 28]. However, they are limited

to systems that require the desktop computer as a mediator and are incapable of generating full

stand-alone devices. In contrast, our tool takes advantage of these similarities for synthesis,

allowing us to transform graphical interfaces into tangible ones and automate different tasks of

the design process, without requiring developers to change the application source.

Using a essential interface mapping technique, the development of a smart device comes

down to selecting which HTML elements to transform and selecting the desired hardware

components that match the essential interface of the selected HTML elements, enabling rapid

64

prototyping down to the circuit board level design.

Section 4.6 demonstrates Appliancizer rapid prototyping of smart devices. Amalgam

developers spend a significant part of their time creating schematics and PCB layouts of the same

circuit blocks. Comments from one of our users acknowledge that

”even remembering how to connect commonly used circuit designs takes time”

After comparing the PCB layouts generated automatically by Appliancizer and the ones

manually designed by both users, we discover no significant differences in the routing or design.

4.7.2 Fast iterations

Compared to the conventional design process of standard PCB software tools that require

developers to re-design the PCB and implement new low-level code after adding or removing

hardware components, our tool, on the other hand, provides a faster iteration process by automat-

ing these tasks. With Appliancizer users only need to choose to leave some items inside the web

page as graphical elements and make others tangible, enabling fast iterations of the same smart

device design.

4.7.3 Web-based prototypes

Aside from board-level rapid prototyping, our essential interface mapping technique

enables users with the capability to rapidly explore physical prototypes using HTML GUIs,

also referred to as web-based prototypes. For our smart thermostat application, even if the web

community of original developers for the smart thermostat web application ruled out the idea

of having a physical version of the device, they were able to efficiently explore the physical

interaction with the device using HTML elements as mock-up hardware components. Even

before the existence of our tool, the use of GUI elements as mock-up hardware components

seems intuitive for designers for prototyping smart device’s physical interactions with on-screen

elements. Appliancizer’s simulated tangible interface provides the user with a clear division of

on-screen HTML elements and those used as mock-up hardware components. This allows a

65

clearer exploration of the interactions between the graphical and tangible interfaces of the smart

device. After interaction design exploration using the simulated tangible interface, our tool can

then transform the mock-up hardware components into real tangible interfaces.

4.7.4 Web browsing smart devices

Another observed ability of our essential interface mapping technique is the ability

to have two versions for the same web application, one that interacts fully digitally with the

user and another in which some HTML elements can physically interact. Since both versions

are encapsulated in the same application, applications created with Appliancizer inherit all

the properties of web technologies. Therefore, allowing smart device applications to also

be requested, displayed, and executed using standard web browser techniques. Our custom

operating system implements the idea by allowing users to navigate to web applications that

contain the low-level that makes the smart device work. To run the physical video player and

smart thermostat applications, the only required modification is to change the PCB generated and

navigate to the web URL link provided by Appliancizer. Finally, if the web application source

code is modified, a simple page refresh allows the device to be updated.

Since our custom works like a browser for smart devices, users can navigate to smart

devices web applications created by other developers and easily test their functionality after the

PCB for the corresponding web application is replaced.

4.7.5 Limitations

Our tool has several limitations including limitations of the auto-routing algorithms

which limit the complexity of supported PCB layouts and the compulsory use of JavaScript

which may limit real-time performance. However, we narrow the discussion to the limitations

presented in our essential interface mapping technique:

66

Limited HTML controls

Appliancizer supports a limited number of HTML elements that map to tangible interfaces.

HTML radio buttons, checkboxes, lists, and others could potentially be used to map tangible

interfaces allowing more intuitive web-based design prototypes of smart devices. For a physical

switch, a HTML element with changing text ON and OFF is well supported with our

current implementation. However, a checkbox HTML element may provide a better fit when

prototyping.

Expressing hardware components capabilities and limitations

Hardware components have different capabilities which make them not always fully

match with their HTML element counterpart. In Figure 4.1 the motorized potentiometer and

the temperature sensor both map to the HTML slider element. The HTML slider element’s

value can be set pragmatically. However, while the motorized potentiometer also can be set

programmatically (with some latency) the temperature sensor component cannot. Therefore,

designers must be aware that, for some hardware components, the behavior will not exactly

match the HTML element behavior when the graphical interface is transformed into a tangible

one.

Mapping limitations

A essential interface mapping that reaches the most number of hardware components

allows creating more varieties of smart devices. However, our current essential interface mapping

approach is limited for some hardware components.

Appliancizer is well fitted for hardware sensors and actuators that require low essential

data transfers. Hardware components that require transferring intensive information such as SD

Cards, Ethernet ICs, etc are not suitable for our tool.

Among the suitable hardware components, our tool also presents some limitations. For

example, mapping hardware components that require multiple essential interfaces. An example

67

of one of these hardware components is the inertial measurement unit (IMU) that reports

acceleration in three different axes (e.g, X, Y Z). For each axis, a numeric range of values is

produced. This requires more than one slider element to fully map the IMU essential interfaces.

4.8 Acknowledgement

Chapter 4, in part, is a reprint of the material as it appears in the Proceedings of the 2021

CHI Conference on Human Factors in Computing Systems. Garza, Jorge; Merrill, Devon J.;

Swanson, Steven, Association for Computing Machinery, 2021. The dissertation author was the

primary investigator and author of this paper.

68

Chapter 5

TypedSchematics: Block-based Electronic
Schematic Design with Real-time Detec-
tion of Common Errors

Figure 5.1. In the TypedSchematics design flow, the community creates reusable schematic
blocks using conventional schematic capture tools. Input and output signals of schematic blocks
are typed with information using our annotation syntax. Typed schematic blocks are imported
to our interactive tool and usable by any designer. A simplified schematic representation
model reduces the number of interactions required to connect schematic blocks. Real-time
connection error validation allow schematic blocks to be connected safely. Schematic blocks
are automatically merged into a complete schematic in a standard format, allowing designers to
quickly proceed with PCB design.

Appliancizer’s encapsulation of modules containing circuit information enables the

fusion of multiple electronic design steps and design automation. However, when it comes

to editing these modules or scaling the library of existing modules, the process is complex

and unintuitive, often requiring in-depth knowledge of the tool’s internals. Furthermore, with

69

Appliancizer the pin mapping is done automatically, not allowing the user to select how to

connect the different modules. In summary, Appliancizer has narrow design walls when it comes

to circuit configuration and design.

In this work, we introduce Typedschematics, an interactive design tool that primarily

focuses on an encapsulation technique to make modules easier to configure and scale, while

providing designers with the ability to configure module connections and compose them inter-

actively. In other words, Typedschematics seeks a balance that allows for fast generation of

design but with highly configurable modules that contain circuit information, modules which are

referred throughout this work as blocks.

To create a better encapsulation technique, TypedSchemaics first focuses on the schematic

design step of circuit design, allowing designers to merge different electronic schematic blocks.

The design of the PCB layout is reserved for future work. A real-time detection of common

schematic design errors is introduced to safely compose schematic blocks. In addition, we are

introducing a new schematic model representation for schematic blocks that reduces interaction

costs and speeds up the design process.

We demonstrate the capabilities of our tool with examples as well as a user study

comparing TypedSchematics to Fusion 360, a schematic design tool with schematic blocks

creation capabilities often used by beginners.

5.1 Introduction

Interactive electronic schematic design has been established as a de facto process that

precedes PCB layout design. In this interactive design, users draw schematics by placing virtual

electronic component symbols on virtual sheets and connect their signals together, a model used

in many popular schematic capture tools (e.g., KiCad, Altium, Fusion 360). The falling cost

of circuit board manufacturing processes has made hardware design more accessible than ever

before, opening up professional-quality circuit design to students, hobbyists, and others but

70

making the weaknesses of schematic capture tools more evident.

The growing community of circuit designers has noted that one of the biggest problems

with schematic capture tools is the process of reusing and merging schematic blocks [68]. While

some current circuit design tools provide some forms of schematic reuse, these mechanisms do

not provide information about the capabilities of the blocks, for example, signal types, required

voltages, among others. This makes composing reusable blocks to build new designs fraught

with design challenges. Design challenges that constantly lead to connection errors and require

designers to carefully analyze each schematic block they wish to combine, making schematic

block reuse a less popular option among circuit designers.

Commercial block-based circuit design tools such as Sparkfun’s À La Carte (ALC) [38]

and Altium’s Upverter Modular [18] have taken small steps to improve this situation. These tools

allow designers to choose different pre-tested circuit blocks, such as microcontrollers, sensors,

and connectors, and allow their integration to create complete new designs. Yet, although

these tools have novel interactive design flows, the processes for merging schematic blocks still

requires one or more engineers to manually create the full schematic as well as to check for any

connection errors, an engineering design fee that can approach $1,000 per design [39].

While popular opinions deny the need for better reuse processes [16], the rise and

interest in tools that can simplify the reuse process for schematics blocks suggests otherwise.

Comparing the current state of reuse capabilities in schematic design with software design would

be equivalent to software designers figuring out which data types (e.g., bool, int, char) are needed

as input parameters and return values for each function by reading its code. In addition to

understanding the input and output data types required by functions, data type information in

software makes possible the detection of common data type errors at compile or real time, also

known as type checking, a form of constraint validation. In schematics, the analog for software’s

data types are electrical interfaces that specify the compatible voltages, electrical currents, and

data transfer interfaces (e.g., Serial, I2C, or PCIe). These interface types, if properly encoded,

can provide ”type” checking for hardware designs [43, 18, 44].

71

Although recent work [67, 21] has explored the addition of type information as well as

the use of constraint validation mechanisms of connections for building circuits by proposing the

use of board-level hardware description languages (HDLs). These tools are code-oriented and

decoupled from the traditional visual and interactive schematic and circuit design flow, requiring

circuit designers to learn programming languages. A learning task that requires a steep learning

curve for novices or beginners without the help of visual and interactive interfaces. In addition,

the use of code-based schematic model representations makes it impossible to reuse existing

schematic designs. To date, there is no visual interactive tool that integrates the benefits of adding

type information to schematic blocks, as well as implements error detection mechanisms in the

merge process.

In this paper, we address these shortcomings with TypedSchematics, an interactive

design tool that allows designers to annotate existing schematic blocks with type information

enabling real-time detection of connection errors. To detect connection errors, TypedSchematics

implements a similar approach to type checking using hardware protocol interfaces as a base

which we call interface checking. A method that makes schematic blocks reuse and the merging

process safer and faster.

Compared to board-level HDLs, TypedSchematics leverages the already established

traditional design flow for easier adoption. An expressive syntax facilitates annotating schematic

blocks with type information for easier integration into our interactive tool.

In contrast to existing commercial solutions, such as Sparkfun ALC and Altium Upverter,

which require external engineers to integrate or merge schematic design blocks, our typed syntax

makes possible the automation of the merging step, allowing the rapid and automatic generation

of full schematic designs.

In creating TypedSchematics, we noticed that in the process of merging schematic blocks,

connecting power signals (e.g., Ground, VDD) becomes a repetitive task, as well as causing a

pile up of wires or tags, producing a less clear design layout.

To create a clearer layout, TypedSchematics also introduces ”Mats”, a new visual

72

schematic representation model for schematic blocks that uses a combination of tree and graph

structures. This new approach allows breaking down the traditional structure consisting of a single

schematic graph into one that is more efficient for schematic blocks, eliminating unnecessary

signal connections and reducing interaction costs.

A data flow programming paradigm is also seamlessly integrated with the visual

schematic representation model for running interface checking on block connections.

Overall, the contributions of our work are as follows:

• A method of adding type information to existing schematic blocks that enables real-time

detection of connection errors, facilitating the process of merging schematic blocks using

interactive designs.

• The introduction of Mats, a schematic representation model for schematic blocks that

reduces design interaction costs.

The rest of this paper is organized as follows. Section 5.2 describes previous work

and techniques for reusing schematic designs and discusses existing block-based interfaces

for circuit design. Section 5.3 explains some of the design challenges with schematic blocks.

Section 5.4 introduces TypedSchematics. Section 5.5 demonstrates our tool capabilities by

describing two devices made with TypedSchematics. Section 5.6 and Section 5.7 demonstrates

how TypedSchematics addresses the design challenges with a user study. Conclusions and final

remarks for this tool are presented in the final chapter, Section 6.3.

5.2 Related Work

Our work focuses on a new interactive schematic design flow that improves schematic

blocks merging process by making use of the addition of type information to schematic blocks

enabling type checking, as well as the introduction of ”Mats”, a new visual schematic representa-

tion model that reduces design interaction costs. In this section, we review previous work related

to our research.

73

5.2.1 HCI and Circuit Design

Recently, there is a growing interest in the HCI community in tools that help and assist

circuit designers in the different stages of circuit development. Previous research has work on

projects that assist designers in the initial circuit prototyping stages that use breadboards [62, 32].

Other works have focused on improving the debugging and visualization of analog and digital

circuits data like currents and voltages [97, 109]. While other works [53, 98] focus on the final

stages of circuit design, such as supporting debugging and mass production of PCBs. Our work,

on the other hand, focuses on the schematic design stage, a stage that usually follows after the

initial prototyping of circuits on breadboards or development boards. Schematic design is also a

preliminary stage to PCB design. Schematic design provides the designer with a simpler visual

interactive format for connecting electronic components, where even dimensional blocks are

used as opposed to irregular electronic components footprint shapes.

After schematic and PCB layout design, PCBs are manufactured, providing a more

stable and durable circuit packaging format instead of loose wires. In recent years, with the

miniaturization of electronic components and the reduction in PCB manufacturing costs, has

led some designers to skip the initial prototyping stage with breadboards and use the schematic

design and PCB layout stages as the main prototyping platform, making schematic capture tools

more relevant than ever.

5.2.2 Schematic Capture Tools and Design Reuse

Commercial PCB design tools like Fusion 360 [34], KiCad [60], and Altium [15]

primarily consist of a schematic capture software and a PCB layout software. Our tool focuses

solely on the schematic design aspect of the PCB design process. Modern commercially

available schematic capture tools have methods for reusing schematic blocks. Below we explain

these methods and their limitations.

74

Hierarchical Sheets also known as Multi-Sheet Hierarchical Design [17] allows de-

signers to abstract complexity from schematics into reusable blocks. In this method, the designer

creates a schematic subsheet and selects signals in the design to export. On another sheet,

designers can draw one or more reusable blocks that reference the created subsheet and exported

signals. The exported signals serve as inputs and outputs for the reusable block to be connected

with other elements within the schematic sheet. Fusion 360, KiCad, and Altium all implement

some form of hierarchical sheets.

Hierarchical sheets provide schematic reuse, however it is limited to the same project,

without the ability to export the design to other projects.

Design Snippets [16] in Altium and similarly ModularDesignBlocks [35] in Fusion

360, its an improvement on reusability, allowing parts of schematics to be copied and pasted into

other designs. This method allows the export and import of schematic blocks, however it does

not have any abstraction that clearly defines the inputs and outputs of the blocks, thus behaving

more like a sophisticated copy and paste tool.

Device Sheets [16], created by Altium, allows having hierarchical sheets with the

ability to be exportable and used in other projects. Device Sheets can also be versioned, called

Managed Device Sheets. Device Sheets is the most advanced form of schematic block reuse in

commercial available schematic design tools.

While previous approaches allow reuse of schematic blocks, the lack of connection error

detection mechanisms prevents designers from safely connecting schematic blocks together. In

a small group of expert designers who can communicate with each other efficiently, the use

of connection validations may be pointless. However, when it comes to exporting schematic

blocks to larger communities of both experts and novices, connection validations are a must

and currently non-existent. The lack of connection validations may be one of the reasons why

75

schematic block reuse in the hardware community is not as common as it is in the software

community.

5.2.3 Block-based Circuit Tools

Block-based or modular design is an efficient approach for reusing designs; this method

relies on the encapsulation of information to abstract parts of a system, used in both software

and hardware. Altium Upverter formerly Gpetto [18] and SparkFun À La Carte (ALC) [38] are

block-based design tools that encapsulate circuit design information for reuse. ALC separates

hardware components by functionality (e.g., power, sensors, connectors) and allows designers to

select hardware components using a shopping cart-style layout. However, designers are limited

to selecting blocks and cannot select the block inputs and outputs to use. Altium Upverter goes

further and provides a UI that allows designers to connect blocks inputs and outputs using drag

and drop menus. Altium Uperter UI also allows dragging and dropping circuit blocks onto a

virtual PCB, used later for PCB fabrication.

While these tools allow rapid creation of circuit designs the circuit blocks are fixed and

are only extensible by the developers of the tools. In addition, the process of merging and

validating circuit blocks connections is left to external engineers.

None of these tools have the ability to add new community-designed circuit blocks to

the tools, as well as algorithms for validating connections. These processes fall to the engineers

behind the tools.

5.2.4 Higher Abstraction Tools for Circuits and Design Reuse

Previous research work has focused on increasing the abstraction of circuit design by mak-

ing use of modular design and reusing common circuit designs. Trigger-Action-Circuits [106]

reuses popular circuit implementations and abstracts the design to a behavioral level and makes

possible the automated generation of circuit diagrams from a if-then programming approach. Ap-

pliancizer [44], on the other hand, abstracts the circuits to the GUI level, allowing for schematics

76

and pcb layout automated generation from web interfaces. While these tools allow the creation of

circuit designs almost automatically, the high abstraction eliminates the ability to configure low

aspects of the design, for example, pin and wire connection selections between circuit blocks are

impossible in these tools. Also, circuit blocks require a large amount of hardware information.

Making the encapsulation syntax complex, requiring expert developers familiar with the tool

to create these blocks. For example, Trigger-Action-Circuits block developers require XML

knowledge, while Appliancizer block developers require HTML/CSS knowledge.

Unlike these tools, TypedSchematics does not try to automate the synthesis of schematics,

it aims to make the schematic design process easier and less error prone.

5.2.5 Board-Level HDLs

Other work, such as Polymorphic Block [67] and JITPCB [21], enable reuse of circuit

design blocks with connection constraint validations with the use of hardware description

languages (HDLs) for board-level circuits. These tools use code to represent the connections

between electrical components or blocks of components instead of using visual circuit diagrams

as schematics. An advantage of using HDLs to build circuits is the ability to create programs

that can recommend circuit blocks to use or even build entire circuits automatically by running

constraint validation solvers until the correct circuits are found that fit the system requirements.

While this approach has many benefits in terms of automation, it requires learning a completely

different set of tools and workflows (e.g., code syntax, compilation process, libraries), resulting

in designers having a steep learning curve compared to the traditional use of visual design

workflows.

5.2.6 Visual Schematic Representation Models

The visual representation model of schematics consists of connections of circuit symbols

(e.g., resistors, capacitors, integrated circuits) and uses a graph structure algorithm, using nodes

to represent symbols and edges for possible connections. This visual model has not changed

77

much since the standardization of circuit symbols [13] and the introduction of the first schematic

capture software [71].

However, the search to abstract the complexity of circuit design and the appearance of

new circuit design surfaces, in addition to PCBs, has led to rethinking the model for specific

applications that bring special benefits to their users. Aesthetic Electronics [69], for example,

combines the schematic model with graphic design tools bringing improvement to the fabrication

of circuits embedded in fabrics or ornaments. Appliancizer [44] combines web design (HTML,

CSS, JS) with circuit abstractions for the rapid creation of gadgets that feature screens. While

Polymorphic blocks [67] uses code as the basis of representation of the schematic model which

allows the automation of circuit designs. Our tool as well, adds enhancements to the visual

schematic representation model for the particular use with schematic blocks.

5.3 Design Challenges

Schematic design using schematic blocks presents unique challenges compared to tradi-

tional schematic design. While in traditional schematic design, designers can access data sheets

to understand how to connect the electronic component symbols. Current development with

schematic blocks lacks standards to provide schematic blocks information, leaving designers

in the dark when it comes to connecting blocks made by other designers. Below, we describe

in detail some of the challenges that arise when composing schematic blocks with the lack of

information.

5.3.1 Hardware Protocol Connections

Hardware protocols (e.g., I2C, SPI, GPIO) have become a popular way for transmitting

information between ICs (Integrated Circuits), making these protocols ideal for connecting

separate circuit designs, and therefore often used in block schematics.

These hardware protocols range from a single wire (e.g., GPIO) to any number of wires,

and each protocol has different special ways of connecting these wires. A single mistake

78

connecting one of these wires can produce a circuit error. For example, I2C, which consists

of a two-wire protocol called Serial Clock (SCL) and Serial Data (SDA), cannot mix its wires

(e.g., SCL with SDL). Knowing how to connect these protocols creates the first challenge when

combining schematic blocks, requiring designers to know these protocols properly in order to

connect them correctly.

Furthermore, these protocols also integrate different capabilities making them have

connection restrictions in special circumstances. One example is the hardware protocol SPI

which uses three wires to transmit data, one clock wire (SCK) and two data wires (MISO, MOSI),

allowing faster data transfer rates than the I2C hardware protocol. This protocol requires one

IC to be configured as Master and another IC as Slave, making other configuration connections

impossible otherwise. Similarly, the I2C protocol requires each IC to have a unique 7-bit

address (e.g., ’0×1F’), making duplicate I2C addresses connections imposible. If any of these

extra capabilities are not met, the circuit fails, making this another challenge when it comes

to connecting schematic blocks together, since this information is rarely included in schematic

designs.

5.3.2 Supply Voltages

All schematic blocks require at least a voltage and ground to power the block’s internal

circuitry. The required voltage may vary depending on the schematic block design, with some

requiring a fixed voltage (e.g., 3.3V, 5V) and others allowing a range of voltages (e.g., 3.3V-5V),

depending on the block’s internal ICs or circuitry capabilities. Existing schematic design tools

lack the ability to annotate supply voltage information on schematic blocks, making finding the

required block’s voltage another design challenge. Since all schematic blocks require power and

ground signals, connecting these wires becomes a repetitive task, often resulting in stacking of

wires in the design.

79

5.3.3 Unknown Signals and Optional Connections

While block diagram designers generally try to annotate input and output signals with

meaningful names so that it is understood if these signals are part of a protocol (e.g., SDA,

SCL) or not. Since there are no standards for annotating signals, the block signals and their

capabilities are generally unknown. Making designers have to review and understand the entire

schematic and even the datasheet for each component. Therefore, making this is one of the

biggest challenges in schematic blocks design. An unknown signal example might be a signal

named ”Reset”, which although the name is meaningful, does not indicate whether it is part of

any hardware protocol or its connection capabilities.

Finally, there are signals that can be optional. Interrupt signals, which serve to signal

microcontrollers when data is ready, are one example. Interrupt signals prevent microcontrollers

from needing to wait for information in a loop. While the firmware in some designs takes

advantage of this signal, simpler designs that constantly pull the data do not require it. Not

knowing whether a signal is optional presents another challenge, leaving designers unsure

whether or not specific signals are necessary for the block’s proper function.

5.4 TypedSchematics

To improve the process of merging electronic schematic blocks and reduce its design

challenges, we created TypedSchematics 1. TypedSchematics reduces errors in building complex

schematics by enabling reuse and automatically enforcing constraints. TypedSchematics allows

designers to add type information to schematic blocks, enabling the use of real-time connection

validation mechanisms and allowing for effortless integration with other schematic blocks. Once

schematic block connections are complete, full schematics are generated automatically.

TypedSchematics also improves the schematic representation model for schematic blocks

with the introduction of Mats, interactive design blocks with grouping capabilities aside from wire

1TypedScheamtics is available online at url-retracted

80

url-retracted

connections, enabling the automatic connection of power signals, therefore reducing interaction

costs. Below is an overview of the design process with our tool and system design.

5.4.1 Design Process Overview

Figure 5.1 gives an overview of the design flow with our tool. With TypedSchematics,

designers start by adding type information to schematic blocks created with existing schematic

capture tools (e.g., Fusion 360), thus creating typed schematic blocks. The type information

follows minimal syntax of symbols and naming conventions for declaring interfaces that are then

written as signal names or as text in schematic blocks. Typed schematic blocks, as well as the

schematic image of these blocks, are added to our interactive tool by experts and displayed in a

sidebar for designers to use (a).

Typed schematic blocks are classified into four groups based on their capabilities: power,

regulators, and computer peripherals. Designers then add typed schematic blocks to a workspace

(b) where each typed schematic block is rendered as an Interactive block (c), each with different

interactive capabilities depending on their classification. The rendered blocks are connected

using our schematic representation model, Mats. The Mats design pattern allows grouping

compute and peripheral blocks inside power and regulator blocks, avoiding having to connect

ground and voltage signals for all schematic blocks, making design faster.

For each block schematic connection, our tool runs an interface checking algorithm

in real-time, which validates voltages and interfaces connections, among others. In case of a

connection error, a message is displayed to designers indicating the cause of the error (d). A

process that makes the merging process safer and faster. After designers finish connecting the

desired schematic blocks, with a simple click, our tool can generate the complete schematic in a

file format usable by existing schematic design tools (e.g., Fusion 360), enabling designers to

immediately continue with the PCB layout design process.

81

5.4.2 Typed Schematic Blocks

Typed schematic blocks are electronic schematics annotated with type information using

our syntax style. Similar to programming languages, our tool allows circuit designers to declare

types within schematic blocks using existing schematic capture tools (e.g., Fusion 360). While

programming languages use data types to classify data with different attributes and data sizes

(e.g., bool, int, char), our tool proposes the use of hardware interface protocols (e.g., GPIO, I2C,

SPI) as well as for power signals (e.g., 3.3V, 5V) for type declarations. We call type declarations

for schematic blocks as interface types. Interface types declaration annotations are made directly

on signal nets of schematic diagrams. The following sections explain in detail the annotation

process to create typed schematic blocks.

5.4.3 Syntax style

The syntax style for interface types declarations is divided in three categories. The first

protocol interface types which are used as connection edges for the blocks. The second power

interface types which describe the power capabilities of the blocks. Finally, a global attributes

syntax to declare further block information, as well as added capabilities of interface types. Our

syntax was based on common patterns followed by designers to annotate signal names, explained

in more detail in Section 5.4.4, making it easier for designers to understand. Our syntax is also

minimal, Table 5.1 shows the full syntax style for declaring interface types, below we explain

each syntax category in detail.

Protocol Interface Types

Protocol interface types are declared with the ’#’ ASCII prefix followed by the protocol

name (e.g., SPI, I2C, GPIO). Protocol interface types can consist of multiple signals. The

Inter-Integrated Circuit (I2C) protocol is an example, this protocol is made up of two signals

usually named Serial Clock Line (SCL) and Serial Data Line (SDA). The symbol ’.’ can be

used to group signals of the same protocol (e.g., #I2C.SDA, #I2C.SCL). Our interactive Type

82

Table 5.1. Typed Schematic Blocks Annotation Syntax

Types Syntax

Protocol #Protocol.Signal Voltage
Power @(VIN or VOUT) Voltage
Power GND
Global Attributes #Global Attributes
Optional Symbols Explanation

- Alternate name
! Protocol not required

Schematic tool displays protocol signals as one wire, avoiding the need for users to connect each

protocol signal one by one.

It is common for microcontrollers or integrated circuits to have more than one same

protocol, for example having multiple General Purpose Inputs/Outputs (GPIO), each with

different functionalities. The ASCII ’-’ symbol gives the interface protocol an alternate name

distinguishable from the others, allowing the enumeration or description of functionality (e.g.,

#GPIO-0, #GPIO0-1, #GPIO-RESET).

Finally, it is also common in schematic block designs to leave some connections as

optional. The symbol ’!’ allows to indicate that the connection of a protocol interface type is

optional (e.g., #GPIO-0!).

Power Interface Types

Power interface types are declared with the ’@’ ASCII prefix followed by two reserved

words ’VIN’ or ’VOUT’ which indicates our tool if the schematic block receives power, outputs

power, or both. If the typed schematic block outputs power, it is classified as a power block. The

classification of the different blocks is covered in detail in Section 5.4.5.

Following the previous syntax, the ASCII ’ ’ symbol is used to indicate the voltage

restrictions of the power signals, which allows designers to specify fixed voltages or a range

of allowed voltages (e.g., VOUT 3V, VIN 5V-9V). By knowing the input and output voltages

83

constraints, voltage validation is achieved.

Finally, The word ’GND’, a common abbreviation for ”Ground”, is used as a reserved

keyword. Our tool grounds all schematic blocks via signals declared as ’GND’, when generating

the full schematic.

Global Attributes

Our syntax also allows designer to include global attributes for schematic blocks such

as the block classification (e.g., Power, Peripheral) as well as additional information for the

interface protocols such as the address of the I2C protocol interface type or whether the SPI

protocol is master or slave, allowing for more refined validations. These global attributes are

defined within the schematic as text comments using the syntax ’# ¡global attributes¿ ’.

5.4.4 Syntax Implementation Motivation

The implementation of our syntax for adding type information to schematic blocks was

based on the analysis of different schematic diagrams from the community of circuit designers,

both amateurs and experts. In the analyzed schematics, it was observed that designers divide

schematic diagrams by their functionality, separating schematic diagrams in most cases by four

classifications: power, connectors, computing modules, and peripherals. We also found that

most of the time schematic diagrams have named signals based on their protocol or functionality

(e.g., SDA, SCL, RESET, ENABLE). Signals used for power have names that describe the signal

voltage (e.g., 3.3V, 5V), and in the case of ground signals, a single signal name is used, usually

GND.

Our syntax style uses the same design patterns already observed in the circuit designers

community, standardizing the syntax for better sharing and reuse of schematic blocks.

84

Figure 5.2. A power supply connector typed schematic block (right) and its interactive block, a
power block (left).

5.4.5 Interactive block-based schematic design

Typed schematic blocks are imported directly into our block-based schematic design tool,

TypedSchematics. If accepted, the imported blocks are rendered as visual Interactive blocks

when added to the workspace area.

The visual rendering of each interactive block varies according to the typed schematic

block classification, which can be: Power, Regulators, Compute Modules, or Peripherals. Each

classification is explained below.

Power blocks are capable of supplying power to other blocks and are the root of the

tree structure that contains the entire schematic design, described in more detail in Section 5.4.6.

Power blocks are defined declaring a signal with a voltage output (VOUT), for example

VOUT 5V-9V, and no voltage input (VIN). Power blocks contain connectors that supply power

to the circuit (e.g., power connector, USB connector). Figure 5.2 left, shows an example of an

interactive power block, on the right its corresponding typed schematic block consisting of a

power connector, a resettable fuse for short circuit protection and a voltage stabilizing capacitor.

Regulator blocks step the voltage up or down to supply blocks with their required

voltage. Regulator blocks are defined declaring both a voltage input (e.g., VIN 5V-9V) and a

voltage output (e.g., VOUT 5V). Figure 5.3 left, shows an example of an interactive regulator

85

Figure 5.3. A 5V regulator typed schematic block (right) and its interactive block, a regulator
block (left).

Figure 5.4. An Atmega328 microcontroller typed schematic block (right) and its interactive
block, a compute module block (left).

block, on the right its typed schematic block consisting of a 5-volt AMS1117 IC [100] power

regulator. The input voltage range was taken directly from the power IC datasheet.

Compute module blocks are intended for microcontrollers or processors capable of

communicating with peripherals. These blocks require an input voltage and have multiple

protocol interface types to address a variety of sensors and actuators. Figure 5.4 left, shows

an example of a rendered compute module block, on the right its corresponding schematic

consisting of an 8-bit Atmega328 [77] microcontroller and accompanying electrical components:

an 8 MHz crystal, programming pin headers and a reset switch, commonly used in designs.

86

Figure 5.5. A temperature sensor typed schematic block (right) and its interactive block, a
peripheral block (left).

Peripheral blocks are intended for sensors or actuators. These blocks also require

an input voltage and have fewer protocol interface types compared to compute module blocks.

Figure 5.5 left, shows an example of a rendered peripheral block, on the right its corresponding

schematic consisting of a temperature sensor IC MCP9808 [78] with a fixed I2C address ’0×18’

declared as an I2C extra property using the global attributes comment block.

5.4.6 Mats Schematic Model Representation

On-screen interactive blocks are divided into two types: mat blocks and general blocks,

each with different interaction capabilities and connection structures. General blocks behave like

graph nodes, allowing for edge connections and positioning along the workspace. Mat blocks

inherit the capabilities of general blocks and also allow any block to sit on them, hence the name

Mat. Blocks classified as power and regulators are mat block types, while blocks classified as

computing and peripheral are general block types.

Compared to the schematic model representation of conventional schematic design tools,

that use a general graph structure to interactively connect electrical symbols. TypedSchematics

allows the structure to be divided into two, a tree graph structure for mat blocks and a graph for

87

other blocks. We call this new divided structure Mats.

The motivation for the implementation of Mats was given after observing the repetitive

task of connecting power signals between designers using existing schematic design tools. Mats

eliminate the need for such repetitive power signal connections. Each of the structures in the

Mats schematic representation model and their capabilities are further described below.

Tree Graph and Mat Blocks

The tree structure for mat blocks allows for the elimination of manual power connections

required by all typed schematic blocks that would otherwise have to be made if represented by a

single graph structure. This simplifies the visual diagram of typed schematic blocks by reducing

clutter, and reducing the cost of interactions by freeing the designers from having to specify the

input voltages for each block.

Only blocks classified as power and regulator appear as mat block types. Mat blocks are

resizable and allow other blocks to sit on them. When any type of blocks is dragged and dropped

on top of the mat blocks, the output voltage of the mat block is connected to the input voltage of

the dropped block. The power mats form a tree with the global power supply mat as its root. As

an example, Figure 5.6 (b) shows a power block containing two regulator blocks, one 5 volts and

one 3.3 volts, (a) shows the tree graph structure representation for these three mat blocks.

Connecting General Components

Non-power supply components (i.e., general blocks) can be linked together in a general

graph structure. This structure allows connections between edges of blocks, as normal schematic

design tools. General blocks can also be added to mat blocks. The graph structure is exemplified

in Figure 5.7, where (b) shows a compute module block connected to three peripheral blocks;

two LEDs, and a temperature sensor, while (a) shows the representation of the internal graph

structure.

88

Figure 5.6. Visual rendering of two mat blocks, consisting of 5V and 3.3V regulator blocks,
connected to a root mat block consisting of a power block (b) and its tree graph structure model
representation (a).

Figure 5.7. Visual rendering of multiple general blocks, consisting of a compute module
and three peripheral blocks, connected together (b) and their general graph structure model
representation (a).

89

Figure 5.8. A tree graph structure (left) connected to a general graph structure (right) by
reference, forming the Mats model representation for schematic blocks.

Combining Mats and General Blocks

The tree and graph structures are joined together when general blocks are dropped into

mat blocks. The combination of these allow the designer to deal with the power-related aspects

of the design separately from the signal connection aspects. Figure 5.8 shows an example of

combining the power mats in Figure 5.6 with the general components in Figure 5.7.

5.4.7 Real-time Interface Checking

When making connections between schematic blocks, either by connecting wires between

general blocks or by dragging and dropping blocks onto mat blocks, TypedSchematic checks

if the connections are valid through interface checking. Interface checking runs in real time.

To perform interface checking in real time, a flow-based programming paradigm is seamlessly

integrated into the tree and general graph structures described in Section 5.4.6 and Section 5.4.6.

When designers make connections, interface type information is acquired using a message

passing algorithm and validations are performed. The validation routines are stored as code files

allowing interface types to scale.

Currently, our tool performs four types of interface checkings described below, an error

is displayed to the designer when the constraints are not met.

90

Protocol Interface Matching

A protocol matching interface checking is triggered when connecting wires between

general blocks. This validation verifies that protocol interfaces are of the same type, an error is

displayed in case of protocol types mismatch.

Voltage Interface Matching

Voltage matching interface checking is triggered when blocks are dragged and dropped

onto mat blocks. This validation verifies that the voltage interface type of the dropped block

element and that of the mat blocks fits together. For example, if the designer wants to add a

compute module block that requires 5V to a mat block with an output voltage of 3V, the action is

not allowed.

Required Interface

With the use of the ’!’ symbol, described in Section 5.4.3, designers can indicate whether

protocol interface types are required or not. This interface checking verifies, when attempting to

generate the full schematic, that no required interface connections are missing.

Additional Interface Checkings

With the use of global attributes, described in Section 5.4.3, additional capabilities

can be added to interface types. Interface checking for additional interface type capabilities

can be extended by designers. For example, the I2C protocol interface type includes address

validations in which if there are duplicate addresses (i.e., two sensors with the same I2C

address) the connection is invalid. Another example is the SPI protocol interface type, which

includes validations that require a master-slave connection, rendering master-master or slave-

slave connections invalid.

In addition to these interface checkings, design errors are also verified, such as trying to

generate a schematic with no schematic blocks.

91

5.4.8 Automated Composition of Schematic Blocks into a Single
Schematic

If there are no design errors, TypedSchematics automatically merges all typed schematic

blocks into a single schematic file. In this step, the tree and general graph structures are converted

into a single graph and the signals of each interface type are connected according to the design.

The final schematic design is compatible with existing schematic design tools, allowing

designers to quickly move To the PCB layout design process.

5.5 Design Examples

We demonstrate TypedSchematics Mats schematic model representation capabilities by

building two schematic designs, a thermostat and a temperature logger.

5.5.1 Thermostat

A thermostat is a common circuit design used in many commercial electronic devices, in-

cluding refrigerators, air conditioners, and ovens. Thermostats regulate temperature by activating

actuators (e.g., cooling compressors) when the measured temperature has reached a user-entered

set point.

Figure Figure 5.9 shows a minimal design of a thermostat designed with schematic blocks

using TypedSchematics (a) and Fusion 360 (b) to provide a better visual comparison. Both

tools include the same schematic blocks. As peripherals the design includes: a MCP9808 [78]

temperature sensor, two buttons to set the temperature, an LED indicator that simulates actuators

activation, and a display consisting of four 7-segment displays and drived by a HTK16K33

IC [54]. For computation, an Atmega328 [77] with a 8 MHz crystal. A DC jack supplies power

to the entire design, while a 5V regulator provides the correct voltage to all schematic blocks.

At the level of hardware protocol interfaces, both the display and the temperature sensor

require an I2C connection. The microcontroller only has one I2C port available, however both

I2C interfaces can be connected to the same port using daisy-chaining, an I2C capability. To

92

Figure 5.9. Schematic blocks design of a thermostat schematic using TypedSchematics (a) and
Fusion 360 (b). Compared to Fusion 360, TypedSchematics eliminates the need for multiple
voltage and ground connections with the use of Mat blocks, reducing interaction costs and wire
clutter. TypedSchematics also combines all interface signals into one, further reducing wires and
eliminating the need to know how to connect each individual interface signal. When the design
is ready, TypedScheamtics warns designers if connections are missing. Fusion 360 (b) design
was implemented by P02.

achieve I2C daisy-chaining both the display and the temperature sensor must have different I2C

addresses. The temperature sensor also has an interrupt signal to tell the microcontroller when

I2C data is available. This signal interface is of type GPIO and its alternative name is ALERT, as

indicated in the data sheet. Finally the LED and the two buttons are GPIO type interfaces.

Compared to Fusion 360, TypedSchematics eliminates the need for multiple voltage and

ground connections with the use of Mat blocks, shown in (a) as the red blocks. In Fusion 360,

users must also connect each interface wire individually, for example SDA and SCL to make an

I2C connection. In contrast, TypedSchematics combines all interface signals into a single one,

further reducing wires and eliminating the need to know the wires should be connected for each

interface.

Fusion 360 also makes it hard to identify the required interface for some signals, for

example OUTPUT, LED, and ALERT in the design, since there is no standard for naming signals.

The TypesSchematics annotation syntax ensures that all signals are defined with an interface and

an optional alternative name (e.g., GPIO-ALERT).

93

Finally, in the thermostat design, only the temperature sensor ALERT interrupt signal is

optional. In Fusion 360 it is impossible to know if the other signals should be connected or not

without looking at each component datasheet. On the contrary, when using TypedSchematics our

tool generates an error in case of any missing connection.

5.5.2 Temperature Logger

In the following design example, we present a temperature logger with Wi-Fi capabilities

and a rechargeable battery, common components of IoT devices.

Figure 5.10 (a) shows the temperature logger schematic blocks design. This design

reuses the LED and temperature sensor peripheral blocks used in the thermostat design and adds

a 8 MB flash IC [79] to log temperature data. The compute block is based on the ESP8266

microcontroller [40] with built-in Wi-Fi, used in many IoT designs. Power is supplied via a

USB connector, which feeds a LiPO battery charger circuitry with included regulator. While

the design structure is similar to the thermostat described in Figure 5.9. The capabilities of the

circuit are completely different, demonstrating the simplicity of the classification chosen for the

schematic blocks described in Section 5.4.5 and how it fits into multiple designs.

TypedSchematics automatically merges the different blocks into a single schematic,

helping designers jump right into PCB layout design. Figure 5.10 (b) shows the starting PCB

layout that is generated from the temperature logger design. Each protocol wires are correctly

connected between electronic components. Power signals are properly distributed and connected

to all corresponding electronic components.

5.6 User Study

To demonstrate how TypedSchematics supports designers in the schematic blocks com-

position process with the addition of safety futures and a new schematic model representation

approach, we conducted a small user study. In the user study, participants were given the task of

designing a schematic using both TypedSchematics and Fusion 360, a popular schematic design

94

Figure 5.10. Schematic block design of a temperature logger with Wi-Fi capabilities and a
rechargeable battery. TypedSchematics helps designers jump right into PCB layout design with
the automated composition of schematic blocks.

95

tool.

Overall, our user study focused on the process of connecting schematic blocks together.

The realism of the schematic designs and the merging process were emphasized, choosing as a

design a thermostat described in Figure 5.9. For Fusion 360, the hierarchical sheet design reuse

approach was used for connecting schematic blocks. Below, we describe the study. Section 5.7

describes our findings.

Although our user study has a quantitative section, for the most part it centers on the

qualitative aspect, taking in consideration the feedback and opinions of participants.

5.6.1 Participants

We recruited two participants (P01 and P02) through email advertising at our university,

both participants graduate students with intermediate Fusion 360 schematic design knowledge.

Participants were rewarded with a $40 Amazon gift card for a two-hour user study.

5.6.2 Structure

The user study consisted of three phases. First, a video training to teach participants how

to use TypedSchematics and reinforce their knowledge of block schematic manipulation using

Fusion 360. Second, a zoom interview where the participants developed a temperature controller,

described in Figure 5.9, in both TypedSchematics and Fusion 360. Finally, a questionnaire where

the participants were asked questions comparing the usability of both tools on multiple aspects,

as well as their feedback. We discuss more about each phase below.

To prepare participants in the use of TypeSchematics, a video 2 was recorded to teach

the different classifications of the interactive blocks, as well as the differences and capabilities

between standard and mat blocks. In this stage, they designed a circuit to make an LED blink,

the ”hello word” of hardware design. Likewise, they were taught the new schematic model

representation, Mats. Knowledge of how to connect block schematics using Fusion 360 was also

2TypedSchematics video tutorial - url-retracted

96

url-retracted

reinforced through a video tutorial provided by Fusion 360’s developers, as the use of schematic

blocks is not something that all designers implement in their designs.

In the 1-hour zoom meeting, participants were guided through the process of creating a

blinking LED circuit using Fusion 360 and TypedSchematics, having now the opportunity to ask

any questions. Subsequently, they were asked to design a thermostat and were provided with all

the necessary schematic blocks for the design, in both Fusion 360 and TypedSchematics.

In the case of Fusion 360, participants were emailed a single schematic file containing all

required schematic blocks. For TypedSchematics, participants were sent a web link, different

from the one used for the tutorial 3, containing more schematic blocks.

In Fusion 360, the Hierarchical Sheets approach described in Section 5.2.2 was used as it

is the only method that encapsulates schematics into reusable blocks in Fusion 360.

The participant’s computer screen was recorded throughout the temperature controller

design process, as well as their voices. After finishing both designs, they were asked for their

opinion on their design experience using both tools, ending the zoom meeting.

The questionnaire consisted of 15 questions divided into three sections: schematic blocks

merging process, Mats schematic model representation, and general questions. The first two

sections of questions centered on understanding the participants’ usability preferences regarding

TypedSchematics compared to Fusion 360. The general questions, centered on understanding

any possible barriers to participants in adopting TypedSchematics for future designs. For each

section, participants also had the option to leave feedback.

One of the concerns with the Mats schematic model representation was that users might

not fully understand the new design pattern and how it works internally. That is why the

questionnaire also included four questions to evaluate the participants’ understanding of Mats.

3TypedSchematics user study - url-retracted

97

url-retracted

5.7 Results

Participants were able to complete the thermostat design using TypedSchemtics and

Fusion 360. However, the results show significant differences in design experience and design

times. Below, we show these differences for each of the TypedSchematics contributions: the

Mats schematic model representation and the real-time detection of connection errors, as well as

discuss the overall experience of participants.

5.7.1 Mats schematic model representation

To assess how Mats reduces interaction costs versus existing schematic model represen-

tations, the thermostat design time was compared in both tools. To make these measurements,

the recordings were used where the start and end times of each design were obtained. The

results, shown in Figure 5.11, show that, on average, the design time of the participants was 2.8

times faster with TypedSchematics than with Fusion 360. Taking the participants on average 16

minutes to merge the schematics blocks in Fusion 360 and 5.6 minutes in TypedSchematics.

Although the results show better design performance with TypedSchematics, a big

concern for us was the usability and ease of learning from participants, since the schematic

model representation approach is different from the traditional one.

To assess the ease of learning, we asked the questions focused on Mats, which is new

compared to the traditional approach. We ask questions concerning the different types of mat

blocks (power and regulator blocks), and what connections they connect internally (voltage and

ground), among other things. Both participants completed the quiz without any errors.

In terms of usability, both participants preferred the TypedSchematics design style for

merging schematics blocks compared to Fusion 360. Overall, participants felt that using mat

blocks helps reduce the visual information overload that occurs with the accumulation of power

signals, making the design look cleaner and less cluttered.

98

Figure 5.11. Design time of a thermostat schematic with schematic blocks, described in Fig-
ure 5.9, using Fusion 360 and TypedSchemtics. On average, participants’ design time was 2.8
times faster with TypedSchematics than with Fusion 360.

99

5.7.2 Real-time Detection of Common Connection Errors

Real-time detection of common connection errors was assessed through confidence

weighted multiple-choice questions regarding connections, to better understand the participants

confidence levels when making connections. These questions were divided into protocol and

power interface type connections. The results showed that participants felt completely confident

making protocol and power interface type connections using TypedSchematics. Whereas with

Fusion 360, participants felt somewhat or fairly confident when making the same connections. In

general, participants feel more comfortable connecting schematics blocks using TypedSchematics

real-time interface checking.

5.7.3 Participants Experience and Observations

Through the user study, we made several observations that further show the design

differences with TypedSchematics compared to Fusion 360. In this section, we discuss these ob-

servations and also quote some of the user experiences that were gathered through the recordings

and the questionnaire.

Deciding which Power Regulator Block to Use

In the user study it was observed that in Fusion 360 the participants had trouble deciding

which voltage regulator to use, whether 3.3V or 5V, to power the underlying blocks. The reason

for this indecision is that it is necessary to know the supply voltage required for each of the

schematic blocks in order to know which voltage regulator to use. Since there is no information

in Fusion 360 indicating the required voltage or any type of checking, participants spent a great

time analyzing each schematic block’s internal diagrams to figure out which voltage regulator to

use.

The correct regulator to use for the thermostat is 5V as only the display has this restriction

while all other schematic blocks support a voltage range of 3.3V to 5V. However, in the user

study, P01 started with a 3.3V voltage regulator and eventually, realizing that the display required

100

5V, decided to add an extra 5V voltage regulator just for the display. Although the atmega328

microcontroller accepts an input and output voltage of 3.3V and 5V, making this design valid,

in stricter designs or with the use of another microcontroller, this design is incorrect, and could

cause serious damage to the entire circuit. This is due to the difference in communication

wire voltages between the microcontroller and the display. P02 also used a 3.3V regulator

early on and realized that a 5V regulator was required near the end of the design, taking more

design time to make the change. However, P02 did not add any extra voltage regulators. In

TypedSchematics, participants did not encounter any of these problems with the assistance of the

real-time interface checking, which guided participants through the design process by displaying

useful error information when they made connection errors.

Unsure of How to Connect Hardware Protocol Interfaces

When connecting the I2C hardware protocol interface, both participants made comments

indicating they were not sure how to connect the I2C interface correctly. In particular, both

participants were unsure how to connect multiple I2C interface blocks, forgetting that the I2C

can be daisy-chained, and asking in Fusion 360 if all the SDA wires shown in Figure 5.9 (b)

should be connected together or not, same for the SCL wires. For this case, both participants

received a brief guide on how to connect these wires; otherwise, the user study would have

exceeded the allotted time. In TypedSchematics, since protocol interface types are represented

by a single ”wire” on the screen and automatically connected at generation time, the designers

were completely confident and did not ask any questions.

For both designs, neither participant asked about the I2C address conflicts that can arise

with I2C daisy chaining. The likely cause is that, in the case of Fusion 360, which has no method

to detect these conflicts, such a conflict would have led to both participants having a design error.

101

Unsure of Optional Connections

The MCP9808 temperature sensor I2C interrupt signal is optional for the thermostat

design, shown in Figure 5.9 (b) as ALERT. P02, unsure of the interface and capabilities of this

signal in Fusion 360, searched online for known datasheets and e-blogs for more information.

After spending 1.5 minutes researching the capabilities of this signal, the participant discov-

ered that the connection interface type was of GPIO and that was optional, leaving the signal

unconnected. P01 treated the ALERT signal as required and made a wire connection. In the

case of TypedSchematic, none of the participants had a problem determining if some signals are

optional, as our tool alerts the designer in case of missing connections.

Participants overall experience

When comparing Fusion 360 to Type Schematics, both participants found the design

experience with TypedSchematics easier than with Fusion 360. P02 went further and described

the Fusion 360 experience as follows:

”Is not fun. Schematic design, which is a high level design compared to PCB
layout, should be the easy part”.

P02 also described the design experience with TypedSchematics as follows:

”Is not work at all, is very simple to use”

Finally, from the answers collected from the questionnaire, the only limitations of

participants to adopt TypedSchematics in new designs is the lack of a large library of schematic

blocks and inclusion of more interface types (e.g., USB, HDMI). Which is to be expected given

that our tool is experimental and intended for research purposes only.

Additionally, participants also find this tool a good fit as a design template generator of

schematics for quickly getting started with new designs or for exploring new design ideas.

102

5.8 Acknowledgement

Chapter 5, in part, is currently being prepared for submission for publication of the

material. Garza, Jorge; Swanson, Steven. The dissertation author was the primary investigator

and author of this chapter.

103

Chapter 6

Conclusion

We have explored three different encapsulation techniques to fuse different steps of the

electronic device design process through the presented design tools: Amalgam, Appliancizer and

TypedSchematics.

From the results of these projects, we can show that it is possible to greatly accelerate the

development and exploration of electronic device designs by encapsulating circuit information

and automating steps. At the same time, we also show that the abstraction of circuit information

improves and reduces design complexity. Concluding remarks on each specific project are

presented below.

6.1 Amalgam

Amalgam deeply encapsulates low-level hardware code into web programming technolo-

gies, fusing the low-level code design and Application logic and GUI smart device design steps

described in Section 2. This enables rapid development and more flexible design iteration for

smart embedded devices.

Amalgam’s framework lets developers replace soft interface components with hardware

components just by changing a CSS file. A compiler was designed to swap selected HTML

elements with web components integrated with low-level code at web page’s run time, granting

Amalgam the ability to switch between pure soft and soft plus hard software code versions,

104

avoiding this way invasive changes to the application code. We implemented Amalgam and

evaluated its capabilities by prototyping three network-connected electronic devices in a web

browser and then “hardening” them into stand-alone devices.

Our results show that Amalgam vastly reduces the effort required to integrate low-level

code required to communicate hardware components into the application code. Comparing

the same code for a video player smart device, only five lines of CSS code were required with

Amalgam compared to over eighty lines of code with the traditional approach.

6.2 Appliancizer

Appliancizer builds on top of Amalgam and further fuses the schematic and PCB layout

design steps for smart devices, allowing designers to rapidly generate functional smart devices

from web-based prototypes, facilitating the prototyping of mixed graphical-tangible interactions.

Appliancizer encapsulates multiple reusable circuit schematic pieces with their required low-level

code, allowing for automated generation of circuit netlists. Further encapsulation of virtual 2D

components that are drag-and-drop into a resizable virtual PCB makes it possible to know the

physical position of hardware components, enabling automated PCB generation.

An encapsulation technique we call essential interface mapping maps the similarities

between HTML controls and tangible controls which enables the direct transformation of

HTML elements from graphical to tangible and enables the almost complete automation of the

development process for smart devices described in Section 2. Essential interface mapping also

allows the simulation of smart devices physical interfaces using HTML elements as mockup

hardware components.

Appliancizer makes graphical and tangible interaction prototyping as easy as modifying a

web page and allowing designers to leverage the well-developed ecosystem of web technologies.

This accelerates development and reduces complexity for designers. We have demonstrated the

capabilities of our tool and novel techniques by transforming both a video player and a smart

105

thermostat web application into physical devices without requiring any changes to the application

source code. We have also demonstrated the rapid development capabilities of our tool through

a preliminary user study which show a speed-up of 6.5X in development time compared to

Amalgam.

6.3 TypedSchematics

TypedSchematics introduces a circuit data encapsulation technique for electronic schemat-

ics that enables the creation of an interactive design tool with a low threshold but a high ceiling,

a balance that allows for fast and easy yet highly configurable schematic designs. This encap-

sulation technique centers on annotating schematics with hardware interface types (e.g., I2C,

SPI), giving schematic blocks knowledge of required connections rather than having wires with

unknown connection types, and allowing the manual connection of inputs of schematic blocks in

a faster and easier way.

Compared to block-based design tools for rapid design, such as Sparkfun ALC and

Upverter Modular, which rely on existing schematic design tools (e.g., Fusion 360) for composing

schematic blocks. These tools present multiple design challenges including: correctly connecting

hardware protocol interfaces, supplying the correct voltages to the schematic blocks, detecting if

some signals on the schematic blocks are optional.

TypedSchematics addresses these design challenges by separating power-related con-

nections from connections between general components. It also provides real-time, interactive

feedback on potential design problems including mis-matched voltages, mis-connected signals

in complex interfaces, and missing (but necessary) connections.

TypedSchematics’s mat abstraction eliminates the need for repetitive voltage and ground

connections, reducing interaction costs. A flow-based programming paradigm is seamlessly

integrated into Mats, making it possible to perform interface checking in real time.

In addition, TypedSchematics improves the scalability of the blocks’ library by incor-

106

porating the annotation syntax into current PCB design tools. Overall, TypedSchematics lets

designers rapidly create and merge different schematic blocks into a single schematic, as well as

provides detection of design errors in real-time.

We demonstrate the capabilities of TypedSchematics with two schematic design examples,

a thermostat and a temperature logger. We further demonstrate the design challenges of existing

schematic design tools and how TypedSchematics addresses these challenges, as well as reduces

interaction costs, through a user study. Results show that, on average, participants’ design time

of a thermostat schematic was 2.8 times faster with TypedSchematics than with Fusion 360.

Feedback from participants via a questionnaire also showed that participants felt completely

confident in the correctness of the design with TypedSchematics compared to Fusion 360, where

they felt somewhat confident.

6.4 Future Work

6.4.1 Increasing design abstraction through AI

Recent research has shown the possibility of generating HTML interfaces from text

descriptions [85]. On the other hand, Appliancizer allows designers to quickly generate electronic

devices with mixed graphical and physical interfaces from HTML interfaces. Therefore, we see

possible the integration of these two tools for the creation of a creativity tool that allows an even

faster design flow for the creation of smart devices.

6.4.2 PCB-ready breakout boards

Through our work, the electronic prototyping design phase was set aside, without fusing

this stage with any tool. However, we see the possibility of integrating this step into Typed-

Schematics. Since breakout boards are already built with a modular design in mind, we see the

possibility of integrating the design of schematics blocks into TypedSchematics. An idea that

would enable the rapid transition and generation of PCB designs from prototypes, bridging the

107

gap between prototyping and production. This idea is under proposal and has been presented as

a position paper at CHI 2023 ”Beyond Prototyping Boards: Future Paradigms for Electronics

Toolkits” [42].

6.5 Final Conclusion

The fusion of different electronic design steps, design steps fusion, is achievable through

circuit information encapsulation which accelerates the design of electronic devices through

reuse and automation. Circuit information encapsulation methods and techniques affect how

different steps of electronic design can be connected together. Throughout this dissertation,

we have explored different encapsulation methods and how they enable and influence new

design flows. Through user studies we show that, in addition to speeding up design, fusing and

encapsulation reduce design complexity. Ultimately, this translates into electronic design tools

that allow experts to work more rapidly and efficiently through design reuse and automation, and

makes electronics design more accessible to beginners with the reduction in design complexity.

108

Bibliography

[1] AngularJS - Superheroic JavaScript MVW Framework. https://angularjs.org/.
[2] Electron — Build cross platform desktop apps with JavaScript, HTML, and CSS. https:

//electronjs.org/.
[3] Generic Sensor API. https://www.w3.org/TR/generic-sensor.
[4] HTML Media Capture. https://www.w3.org/TR/html-media-capture/.
[5] Johnny-Five: The JavaScript Robotics & IoT Platform. http://johnny-five.io/.
[6] Linuxduino - A javscript library for communicating with hardware in a Arduino style

programming for any Linux platform. Available online at: http://www.w3.org/TR/html5.
[7] Node.js. https://nodejs.org/en/.
[8] Qt - Cross-platform software development for embedded & desktop. https://www.qt.io/.
[9] Rythm.js - GitHub Pages. https://okazari.github.io/Rythm.js/.

[10] Web Bluetooth Community Group. www.w3.org/community/web-bluetooth.
[11] WebAssembly. https://webassembly.org/.
[12] World Wide Web Consortium, HTML5 Specification. Available online at: http://www.w3.

org/TR/html5.
[13] Ieee standard american national standard canadian standard graphic symbols for electrical

and electronics diagrams (including reference designation letters). IEEE Std 315-1975
(Reaffirmed 1993), pages i–244, 1993.

[14] Karl Aberer, Manfred Hauswirth, and Ali Salehi. Infrastructure for data processing in large-
scale interconnected sensor networks. In Mobile Data Management, 2007 International
Conference on, pages 198–205. IEEE, 2007.

[15] Altium. Altium designer. (2022), 2022.
[16] Altium. Designing for reuse in altium designer (2018), 2022.
[17] Altium. Multi-sheet & hierarchical designs in altium designer (2020), 2022.
[18] Altium. Upverter modular (2022), 2022.
[19] Fraser Anderson, Tovi Grossman, and George Fitzmaurice. Trigger-action-circuits: Lever-

aging generative design to enable novices to design and build circuitry. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology, pages
331–342. ACM, 2017.

[20] Arduino. Arduino reference, 2020.
[21] Jonathan Bachrach, David Biancolin, Austin Buchan, Duncan W Haldane, and Richard

Lin. Jitpcb. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2230–2236. IEEE, 2016.

[22] Rafael Ballagas, Meredith Ringel, Maureen Stone, and Jan Borchers. istuff: a physical

109

https://angularjs.org/
https://electronjs.org/
https://electronjs.org/
https://www.w3.org/TR/generic-sensor
https://www.w3.org/TR/html-media-capture/
http://johnny-five.io/
http://www.w3.org/TR/html5
https://nodejs.org/en/
https://www.qt.io/
https://okazari.github.io/Rythm.js/
www.w3.org/community/web-bluetooth
https://webassembly.org/
http://www.w3.org/TR/html5
http://www.w3.org/TR/html5

user interface toolkit for ubiquitous computing environments. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 537–544, 2003.

[23] Hernando Barragán. Wiring: Prototyping physical interaction design. Interaction Design
Institute, Ivrea, Italy, 2004.

[24] Ayah Bdeir. Electronics as material: Littlebits. In Proceedings of the 3rd International
Conference on Tangible and Embedded Interaction, TEI ’09, pages 397–400, New York,
NY, USA, 2009. ACM.

[25] CodePen. Build, test, and discover front-end code - nest thermostat control, 2020.
[26] Gerald Coley. Beaglebone black system reference manual. Texas Instruments, Dallas,

2013.
[27] Michael Compton, Payam Barnaghi, Luis Bermudez, RaúL Garcı́A-Castro, Oscar Corcho,

Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog, et al.
The ssn ontology of the w3c semantic sensor network incubator group. Web semantics:
science, services and agents on the World Wide Web, 17:25–32, 2012.

[28] Adrien Coyette and Jean Vanderdonckt. Prototyping digital, physical, and mixed user
interfaces by sketching. In Workshop on User Interface eXtensible Markup Language
UsiXML, France, Paris, 2010.

[29] Kris De Volder. Jquery: A generic code browser with a declarative configuration language.
In International Symposium on Practical Aspects of Declarative Languages, pages 88–102.
Springer, 2006.

[30] Flavia C Delicato, Paulo F Pires, Thais Batista, Everton Cavalcante, Bruno Costa, and
Thomaz Barros. Towards an iot ecosystem. In Proceedings of the First International
Workshop on Software Engineering for Systems-of-Systems, pages 25–28, 2013.

[31] Carl DiSalvo, Jonathan Lukens, Thomas Lodato, Tom Jenkins, and Tanyoung Kim.
Making public things: how hci design can express matters of concern. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages 2397–2406,
2014.

[32] Daniel Drew, Julie L Newcomb, William McGrath, Filip Maksimovic, David Mellis, and
Björn Hartmann. The toastboard: Ubiquitous instrumentation and automated checking of
breadboarded circuits. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology, pages 677–686, 2016.

[33] Lars Dürkop, Jahanzaib Imtiaz, Henning Trsek, and Jürgen Jasperneite. Service-oriented
architecture for the autoconfiguration of real-time ethernet systems. In 3rd Annual
Colloquium Communication in Automation (KommA), 2012.

[34] EAGLE. Pcb design software - autodesk, 2020.
[35] Autodesk Eagle. Modular design blocks, 2022.
[36] ECMA Ecma. 262: Ecmascript language specification. ECMA (European Association for

Standardizing Information and Communication Systems), pub-ECMA: adr,, 1999.
[37] EETimes. 2017 Embedded Markets Study: Integrating IoT and Advanced Technology

Designs, Application Development Processing Enviroments, Apr. 2017. https://m.eet.
com/media/1246048/2017-embedded-market-study.pdf.

[38] SparkFun Electronics. Sparkfun À la carte. (2022), 2022.
[39] SparkFun Electronics. Sparkfun À la carte faq. (2022), 2022.
[40] ESPRESSIF. A cost-effective and highly integrated wi-fi mcu for iot applications, 2022.

110

https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
https://m.eet.com/media/1246048/2017-embedded-market-study.pdf

[41] Micro:bit Educational Foundation. Meet the new bbc micro:bit, 2023.
[42] J Garza and Steven Swanson. Pcb-ready breakout boards: Bridging the gap between

electronics prototyping and production. arXiv preprint arXiv:2303.06620, 2023.
[43] Jorge Garza, Devon J Merrill, and Steven Swanson. Amalgam: Hardware hacking for web

developers with style (sheets). In International Conference on Web Engineering, pages
315–330. Springer, 2019.

[44] Jorge Garza, Devon J Merrill, and Steven Swanson. Appliancizer: Transforming web
pages into electronic devices. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, pages 1–13, 2021.

[45] Julien Gascon-Samson, Kumseok Jung, Shivanshu Goyal, Armin Rezaiean-Asel, and
Karthik Pattabiraman. Thingsmigrate: Platform-independent migration of stateful
javascript iot applications. In 32nd European Conference on Object-Oriented Program-
ming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[46] Evgeny Gavrin, Sung-Jae Lee, Ruben Ayrapetyan, and Andrey Shitov. Ultra lightweight
javascript engine for internet of things. In Companion Proceedings of the 2015 ACM SIG-
PLAN International Conference on Systems, Programming, Languages and Applications:
Software for Humanity, SPLASH Companion 2015, pages 19–20, New York, NY, USA,
2015. ACM.

[47] Google. Blockly: A visual programming editor, 2022.
[48] Saul Greenberg and Chester Fitchett. Phidgets: Easy development of physical interfaces

through physical widgets. In Proceedings of the 14th Annual ACM Symposium on User
Interface Software and Technology, UIST ’01, pages 209–218, New York, NY, USA, 2001.
ACM.

[49] Grove. Grove modules - seeed studio, 2020.
[50] Gaoyang Guan, Wei Dong, Yi Gao, Kaibo Fu, and Zhihao Cheng. Tinylink: A holistic

system for rapid development of iot applications. In Proceedings of the 23rd Annual
International Conference on Mobile Computing and Networking, pages 383–395. ACM,
2017.

[51] Dominique Guinard and Vlad Trifa. Towards the web of things: Web mashups for
embedded devices. In Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), in proceedings of WWW (International World Wide
Web Conferences), Madrid, Spain, volume 15, 2009.

[52] Bjoern Hartmann, Scott R Klemmer, Michael Bernstein, and Nirav Mehta. d. tools:
Visually prototyping physical uis through statecharts. In in Extended Abstracts of UIST
2005. Citeseer, 2005.

[53] Steve Hodges. Democratizing the production of interactive hardware. In Proceedings of
the 33rd Annual ACM Symposium on User Interface Software and Technology, pages 5–6,
2020.

[54] HOLTEK. Ram mapping 16*8 led controller driver with keyscan - ht16k33, 2022.
[55] Utkarshani Jaimini and Mayur Dhaniwala. Javascript empowered internet of things. In

2016 3rd International Conference on Computing for Sustainable Global Development
(INDIACom), pages 2373–2377. IEEE, 2016.

[56] JLCPCB. Low cost pcb prototype & pcb fabrication, 2020.
[57] Jun Kato and Masataka Goto. F3. js: A parametric design tool for physical computing de-

111

vices for both interaction designers and end-users. In Proceedings of the 2017 Conference
on Designing Interactive Systems, pages 1099–1110, 2017.

[58] Majeed Kazemitabaar, Jason McPeak, Alexander Jiao, Liang He, Thomas Outing, and
Jon E. Froehlich. Makerwear: A tangible approach to interactive wearable creation for
children. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, CHI ’17, pages 133–145, New York, NY, USA, 2017. ACM.

[59] M. Khamphroo, N. Kwankeo, K. Kaemarungsi, and K. Fukawa. Micropython-based edu-
cational mobile robot for computer coding learning. In 2017 8th International Conference
of Information and Communication Technology for Embedded Systems (IC-ICTES), pages
1–6, May 2017.

[60] KiCad. Kicad eda, 2022.
[61] Jaeho Kim and Jang-Won Lee. Openiot: An open service framework for the internet of

things. In Internet of Things (WF-IoT), 2014 IEEE World Forum on, pages 89–93. IEEE,
2014.

[62] Yoonji Kim, Hyein Lee, Ramkrishna Prasad, Seungwoo Je, Youngkyung Choi, Daniel
Ashbrook, Ian Oakley, and Andrea Bianchi. Schemaboard: Supporting correct assembly
of schematic circuits using dynamic in-situ visualization. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology, pages 987–998,
2020.

[63] Roman Kuc, Edward W Jackson, and Alexander Kuc. Teaching introductory autonomous
robotics with javascript simulations and actual robots. IEEE Transactions on Education,
47(1):74–82, 2004.

[64] Mannu Lambrichts, Raf Ramakers, Steve Hodges, Sven Coppers, and James Devine.
A survey and taxonomy of electronics toolkits for interactive and ubiquitous device
prototyping. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 5(2):1–24, 2021.

[65] Mannu Lambrichts, Jose Maria Tijerina, and Raf Ramakers. Softmod: A soft modular
plug-and-play kit for prototyping electronic systems. In Proceedings of the Fourteenth
International Conference on Tangible, Embedded, and Embodied Interaction, pages
287–298, 2020.

[66] Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Josiane Xavier Parreira, and Manfred
Hauswirth. The linked sensor middleware–connecting the real world and the seman-
tic web. Proceedings of the Semantic Web Challenge, 152:22–23, 2011.

[67] Richard Lin, Rohit Ramesh, Connie Chi, Nikhil Jain, Ryan Nuqui, Prabal Dutta, and
Björn Hartmann. Polymorphic blocks: Unifying high-level specification and low-level
control for circuit board design. In Proceedings of the 33rd Annual ACM Symposium on
User Interface Software and Technology, pages 529–540, 2020.

[68] Richard Lin, Rohit Ramesh, Antonio Iannopollo, Alberto Sangiovanni Vincentelli, Prabal
Dutta, Elad Alon, and Björn Hartmann. Beyond schematic capture: Meaningful abstrac-
tions for better electronics design tools. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, pages 1–13, 2019.

[69] Joanne Lo, Cesar Torres, Isabel Yang, Jasper O’Leary, Danny Kaufman, Wilmot Li, Mira
Dontcheva, and Eric Paulos. Aesthetic electronics: Designing, sketching, and fabricating
circuits through digital exploration. In Proceedings of the 29th Annual Symposium on

112

User Interface Software and Technology, pages 665–676, 2016.
[70] D Locke. Mq telemetry transport (mqtt) v3. 1 protocol specification. ibm developerworks

technical library (2010), 2010.
[71] Mike Marsh. Designing PCBs for Surface-Mount Assemblies, pages 504–510. Springer

Berlin Heidelberg, Berlin, Heidelberg, 1988.
[72] Victor Matos. Android environment emulator. Cleveland State University, 20(11), 2009.
[73] David A Mellis and Leah Buechley. Do-it-yourself cellphones: an investigation into the

possibilities and limits of high-tech diy. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1723–1732, 2014.

[74] David A Mellis, Leah Buechley, Mitchel Resnick, and Björn Hartmann. Engaging
amateurs in the design, fabrication, and assembly of electronic devices. In Proceedings of
the 2016 ACM Conference on Designing Interactive Systems, pages 1270–1281. ACM,
2016.

[75] Devon J Merrill, Jorge Garza, and Steven Swanson. Echidna: mixed-domain compu-
tational implementation via decision trees. In Proceedings of the ACM Symposium on
Computational Fabrication, pages 1–12, 2019.

[76] Devon J Merrill and Steven Swanson. Reducing instructor workload in an introductory
robotics course via computational design. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, pages 592–598, 2019.

[77] Microchip. Atmega328, 2022.
[78] Microchip. Mcp9808, 2022.
[79] Micron. 8mb low-voltage serial nor flash: M25p80, 2022.
[80] Multisim. Live Online Circuit Simulator, 2020.
[81] Brad Myers, Scott E Hudson, and Randy Pausch. Past, present, and future of user interface

software tools. ACM Transactions on Computer-Human Interaction (TOCHI), 7(1):3–28,
2000.

[82] Zainalabedin Navabi. VHDL: Analysis and modeling of digital systems. McGraw-Hill,
Inc., 1997.

[83] Mozilla Developer Network. Firefox os, 2013, 2013.
[84] Gavin Nicol, Lauren Wood, Mike Champion, and Steve Byrne. Document object model

(dom) level 3 core specification. W3C Working Draft, 13:1–146, 2001.
[85] OpenAI. Gpt-3 demo, code generation, 2023.
[86] Sarah Osentoski, Graylin Jay, Christopher Crick, Benjamin Pitzer, Charles DuHadway,

and Odest Chadwicke Jenkins. Robots as web services: Reproducible experimentation
and application development using rosjs. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 6078–6083. IEEE, 2011.

[87] P. Li and J. Bachrach, ”The Stanza Language”, 2015.
[88] Raspberry Pi. Teach, learn, and make with raspberry pi, 2015.
[89] Proteus. PCB Design and Circuit Simulator Software, 2020.
[90] Raf Ramakers, Fraser Anderson, Tovi Grossman, and George Fitzmaurice. Retrofab: A

design tool for retrofitting physical interfaces using actuators, sensors and 3d printing. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pages
409–419, 2016.

[91] Rohit Ramesh, Richard Lin, Antonio Iannopollo, Alberto Sangiovanni-Vincentelli, Björn

113

Hartmann, and Prabal Dutta. Turning coders into makers: the promise of embedded
design generation. In Proceedings of the 1st Annual ACM Symposium on Computational
Fabrication, page 4. ACM, 2017.

[92] Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, Ben Shneiderman, Randy Pausch, Ted
Selker, and Mike Eisenberg. Design principles for tools to support creative thinking. 2005.

[93] Annika Richterich. When open source design is vital: critical making of diy healthcare
equipment during the covid-19 pandemic. Health Sociology Review, pages 1–10, 2020.

[94] Valkyrie Savage, Sean Follmer, Jingyi Li, and Björn Hartmann. Makers’ marks: Physical
markup for designing and fabricating functional objects. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology, pages 103–108, 2015.

[95] Sunil Saxena and HV Kwon. Tizen architecture. In Tizen Developer Conference, San
Francisco, California, 2012.

[96] M. Schlett. Trends in embedded-microprocessor design. Computer, 31(8):44–49, Aug
1998.

[97] Evan Strasnick, Maneesh Agrawala, and Sean Follmer. Coupling simulation and hardware
for interactive circuit debugging. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, pages 1–15, 2021.

[98] Evan Strasnick, Sean Follmer, and Maneesh Agrawala. Pinpoint: A pcb debugging
pipeline using interruptible routing and instrumentation. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, pages 1–11, 2019.

[99] Swoop. A python library for eagle pcb design files, 2015.
[100] Advanced Monolithic Systems. 1a low dropout voltage regulator, 2022.
[101] Joshua G Tanenbaum, Amanda M Williams, Audrey Desjardins, and Karen Tanenbaum.

Democratizing technology: pleasure, utility and expressiveness in diy and maker practice.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 2603–2612, 2013.

[102] Nest Learning Thermostat. v1. 0 [product brochure]. Nest Labs, plus publication date
addendum, 2011.

[103] Donald Thomas and Philip Moorby. The Verilog® Hardware Description Language.
Springer Science & Business Media, 2008.

[104] TinkerCad Circuits, 2020.
[105] Nicholas H Tollervey. Programming with micropython: Embedded programming with

microcontrollers and python. 2017.
[106] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman. Practical

trigger-action programming in the smart home. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’14, pages 803–812, New York, NY, USA,
2014. ACM.

[107] Nicolas Villar, James Scott, Steve Hodges, Kerry Hammil, and Colin Miller. . net
gadgeteer: a platform for custom devices. In International Conference on Pervasive
Computing, pages 216–233. Springer, 2012.

[108] Webcomponents. Specifications, 2020.
[109] Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku, Ming-Wei Hsu,

Jun-You Liu, Yu-Chih Lin, and Mike Y Chen. Currentviz: Sensing and visualizing
electric current flows of breadboarded circuits. In Proceedings of the 30th Annual ACM

114

Symposium on User Interface Software and Technology, pages 343–349, 2017.
[110] Stelios Xinogalos, Kostas E. Psannis, and Angelo Sifaleras. Recent advances delivered

by html 5 in mobile cloud computing applications: A survey. In Proceedings of the Fifth
Balkan Conference in Informatics, BCI ’12, pages 199–204, New York, NY, USA, 2012.
ACM.

[111] YouTube Player API Reference for iframe Embeds - Google Developers, 2020.

115

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Motivation
	Design Steps Fusion
	Overview
	Contributions and Results
	Content Structure

	Background
	Amalgam
	Introduction
	Background
	Web Technologies
	Tools for Programming Devices
	Hardware Interfaces
	Hardware Components

	Amalgam
	Overview
	Amalgam Platforms
	The Amalgam Library
	Amalgam-enhanced CSS Style

	Examples
	Video Player
	Commercial Scale
	Dancing Speaker

	Impact on development time
	Related Work
	Integration of Hardware to Web Technologies
	Adding Hardware to the Web's Semantics
	Programming hardware in high-level languages
	Rapid Development of Embedded Devices

	Acknowledgement

	Appliancizer
	Introduction
	Related Work
	Rapid prototyping of electronic devices
	Automating PCB development
	Mapping graphical and tangible interfaces

	Appliancizer
	Design process overview with Appliancizer
	Graphical to tangible interface process overview
	Appliancizer tangible controls

	essential interface mapping
	Appliancizer tangible controls library
	Simulation of the device tangible interface
	Automated PCB layout generation
	Automated low-level code generation
	Application deployment

	Examples
	Physical Video Player
	Smart Thermostat

	Preliminary Study
	Discussion
	Rapid prototyping of smart devices
	Fast iterations
	Web-based prototypes
	Web browsing smart devices
	Limitations

	Acknowledgement

	TypedSchematics: Block-based Electronic Schematic Design with Real-time Detection of Common Errors
	Introduction
	Related Work
	HCI and Circuit Design
	Schematic Capture Tools and Design Reuse
	Block-based Circuit Tools
	Higher Abstraction Tools for Circuits and Design Reuse
	Board-Level HDLs
	Visual Schematic Representation Models

	Design Challenges
	Hardware Protocol Connections
	Supply Voltages
	Unknown Signals and Optional Connections

	TypedSchematics
	Design Process Overview
	Typed Schematic Blocks
	Syntax style
	Syntax Implementation Motivation
	Interactive block-based schematic design
	Mats Schematic Model Representation
	Real-time Interface Checking
	Automated Composition of Schematic Blocks into a Single Schematic

	Design Examples
	Thermostat
	Temperature Logger

	User Study
	Participants
	Structure

	Results
	Mats schematic model representation
	Real-time Detection of Common Connection Errors
	Participants Experience and Observations

	Acknowledgement

	Conclusion
	Amalgam
	Appliancizer
	TypedSchematics
	Future Work
	Increasing design abstraction through AI
	PCB-ready breakout boards

	Final Conclusion

	Bibliography

