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Abstract: In populations of healthy show horses, the subclinical transmission and circulation of
respiratory pathogens can lead to disease outbreaks. Due to recent outbreaks of equine herpesvirus-1
myeloencephalopathy (EHM) in the USA and Europe, many show organizers have instituted various
biosecurity protocols such as individual horse testing, monitoring for early clinical disease and
increasing hygiene and cleanliness protocols. The aim of this study was to determine the accuracy
of detecting EHV-1 in the various environmental samples collected from the stalls of subclinical
shedders. Four healthy adult horses were vaccinated intranasally with a modified-live EHV-1 vaccine
in order to mimic subclinical shedding. Three additional horses served as non-vaccinated controls. All
the horses were stabled in the same barn in individual stalls. Each vaccinated horse had nose-to-nose
contact with at least one other horse. Prior to the vaccine administration, and daily thereafter for
10 days, various samples were collected, including a 6” rayon-tipped nasal swab, an environmental
sponge, a cloth strip placed above the automatic waterer and an air sample. The various samples
were processed for nucleic acid purification and analyzed for the presence of EHV-1 via quantitative
PCR (qPCR). EHV-1 in nasal secretions was only detected in the vaccinated horses for 1–2 days
post-vaccine administration. The environmental sponges tested EHV-1 qPCR-positive for 2–5 days
(median 3.5 days) in the vaccinated horses and 1 day for a single control horse. EHV-1 was detected
by qPCR in stall strips from three out of four vaccinated horses and from two out of three controls for
only one day. EHV-1 qPCR-positive air samples were only detected in three out of four vaccinated
horses for one single day. For the vaccinated horses, a total of 25% of the nasal swabs, 35% of the
environmental stall sponges, 7.5% of the strips and 7.5% of the air samples tested qPCR positive for
EHV-1 during the 10 study days. When monitoring the subclinical EHV-1 shedders, the collection
and testing of the environmental sponges were able to detect EHV-1 in the environment with greater
frequency as compared to nasal swabs, stationary strips and air samples.

Keywords: EHV-1; subclinical shedder; environmental samples; qPCR

1. Introduction

One of the greatest challenges of mitigating viral respiratory outbreaks in large horse
populations is the ability to capture the silent and clinical spread of highly contagious
viruses such as EIV, EHV-1 and EHV-4. Many large equestrian facilities and show venues
have instituted protocols with the goal of recognizing early clinical disease through the
routine assessment of rectal temperatures. However, such strategies do not consider silent
shedding and the transmission of respiratory viruses, especially in a population of adult and
often vaccinated horses. Various protocols have recently focused on either monitoring high-
risk horses through the testing of nasal secretions or testing the environment for targeted
infectious pathogens [1–4]. The first approach gives an insight into the shedding status of
horses in real-time but does not allow for predicting future shedding. The targeted testing
of nasal secretions is often difficult and impacted by the unwillingness of owners to enroll
their horses in such a protocol, as well as costs and the overall sustainability. However, the
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testing of high-risk horses is still a valuable option during emergency situations such as
outbreaks. Environmental monitoring has gained interest as the testing of high-traffic areas
(i.e., wash racks or housing areas where horses spend most of their time) gives a temporal
insight into pathogen buildup. While the latter strategy has shown great promise for
monitoring environmental spread and identifying clusters (adjacent stalls that test positive
for a specific respiratory pathogen) as a reflection of silent transmission, it has remained
time-consuming to perform and costly to implement. As devastating as the COVID-19
pandemic has been for the global human population, it has brought up novel strategies
for monitoring the presence and spread of SARS-CoV-2 [5,6]. Various studies have shown
the successful detection of SARS-CoV-2 in the air of indoor and outdoor facilities housing
symptomatic and asymptomatic COVID-19 patients [7,8]. Therefore, the aim of this study
was to determine the accuracy of detecting EHV-1 in various environmental and air samples
collected from the stalls of subclinical shedders.

2. Materials and Methods
2.1. Study Population

The study was performed in an eight-stall barn using seven healthy adult horses.
The study population was composed of three mares and four geldings ages 5–16 years
(median age 10 years). Four study horses were vaccinated intranasally with a modified-live
EHV-1 vaccine (Rhinomune, Boehringer Ingelheim Animal Health, St. Joseph, MO, USA)
in order to mimic nasal viral shedding similar to subclinically infected horses [9,10]. The
administration of the EHV-1 vaccine has been shown to reliably induce EHV-1 shedding
for up to 5 days at amounts similar to what is expected in naturally infected horses. Three
additional horses served as non-vaccinated controls. All horses were stabled in the same
barn in individual stalls with four horses on one side of the isle and three horses on the
other side (Figure 1). Each control horse was stabled next to a vaccinated horse and each
horse had nose-to-nose contact with at least one other horse through grilled side walls. The
horses were fed twice daily and had ad libitum access to water. Furthermore, the stalls
were cleaned once daily and dirty bedding as well as manure were removed and replaced
with fresh shavings.
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Figure 1. Layout of the barn housing four vaccinated horses and three unvaccinated controls.
Four horses were stabled on one side of the aisle and three horses were stabled on the other side.
One stall remained unoccupied.

2.2. Sample Collection and Testing

Prior to vaccine administration and daily thereafter for a total of 10 days, the follow-
ing daily samples were collected from every study horse: a 6” rayon-tipped nasal swab
(Puritan®, Guilford, ME, USA), an environmental sponge (3M, St. Paul, MN, USA), a soft
fabric cloth strip placed above the automatic waterer (Medipore H soft cloth tape, 3M,
St. Paul, MN, USA) and an air sample. The nasal swabs were collected from the left and
right rostral nasal passages by gently introducing the swabs along the ventral meatus
and rotating them for 5 s. The biocide-free cellulose sponges measure 1.5 × 3 inches, are
mounted at one end of a stick and are prehydrated with a neutralizing buffer diluent for
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the collection of the samples. Each stall was swabbed along the front corner where the
food and water buckets were kept, the inside of the stall door and the front bars of the
stall that faced the barn isle for a total surface of approximately 16 square feet. A total
of ten 4 × 4-inch cloth strips were placed around the automatic waterer and randomly
assigned a number from 1–10, corresponding to the daily strip to be collected. Last but
not least, air sampling was performed using a commercial Coriolis Compact air sampler
(Bertin Instruments, Rockville, MD, USA). The Coriolis Compact is a dry cyclonic collector
intended for microbial air monitoring. Its innovative dry cyclonic technology aspirates
the particles with an airflow rate of 50 L per minute and centrifuges them in a disposable
cone. The collection time lasted 8 min per stall, keeping the instrument 12 inches from
each study horse and also walking the stall with the instrument to collect aerosolized dust.
The instrument was cleaned between collections to prevent carryover contamination. All
procedures were approved by the Institutional Animal Care and Use Committee of the
University of California.

The various samples were processed for nucleic acid purification using an automated
nucleic acid extraction system (QIAcube HT, Qiagen, Valencia, CA, USA) according to the
manufacturer’s recommendations. Thereafter, the purified nucleic acids were tested for the
presence of EHV-1 using a previously validated qPCR assay [11].

The frequency of EHV-1 detection for the various samples from vaccinated and control
horses was determined and compared.

3. Results

Prior to vaccination, all samples collected from the seven study horses and their
environment tested EHV-1 qPCR-negative (Table 1). Because of the expected short EHV-1
shedding time, the nasal swabs were only collected on the day of vaccination and for 96 h
thereafter. EHV-1 qPCR-positive nasal secretions were identified in the vaccinated horses
only for 1 to 2 days, with viral loads ranging from 1769 to 1,491,914 gB genes/million cells
(median 919,121 gB genes/million cells). The environmental sponges tested EHV-1 qPCR-
positive for 2–5 days (median 3.5 days) in vaccinated horses and for 1 day in a single control
horse (horse 4). The environmental sponges tested EHV-1 qPCR-positive anywhere from
day 2 to day 10 post-vaccination. EHV-1 was detected by qPCR in stall strips from three
out of four vaccinated horses and from two out of three controls for only one day (days 2,
5 and 10 for vaccinated horses and days 2 and 7 for control horses). EHV-1 qPCR-positive
air samples were only detected in three out of four vaccinated horses for one single day
(days 4 (2 horses) and 5 post-vaccination). For the vaccinated horses, a total of 25% of the
nasal swabs, 35% of the environmental stall sponges, 7.5% of the strips and 7.5% of the air
samples tested qPCR positive for EHV-1 during the study period. For the non-vaccinated
horses, a total of 0% of the nasal swabs, 2.5% of the environmental sponges, 5% of the
strips and 0% of the air samples tested qPCR-positive for EHV-1 during the 10 study days.
Overall, the environmental sponges were more reliable in detecting EHV-1 by qPCR in the
environment of the subclinical shedders as compared to other environmental sample types.
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Table 1. EHV-1 qPCR results listed as negative (white box) or positive (red box) for various biological and environmental samples collected from four vaccinated
horses and three non-vaccinated controls. Gray boxes represent samples not taken.

Horse Sample Type Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

1 (control) Nasal secretion negative negative negative negative negative
Sponge negative negative negative negative negative negative negative negative negative negative

Strip negative positive negative negative negative negative negative negative negative negative
Air negative negative negative negative negative negative negative negative negative negative

2 (vaccinated) Nasal secretion negative positive positive negative negative
Sponge negative positive positive positive negative negative negative negative negative negative

Strip negative negative negative negative negative negative negative negative negative negative
Air negative negative negative negative positive negative negative negative negative negative

3 (vaccinated) Nasal secretion negative positive negative negative negative
Sponge negative negative negative positive positive negative positive positive negative positive

Strip negative negative negative negative positive negative negative negative negative negative
Air negative negative negative negative negative negative negative negative negative negative

4 (control) Nasal secretion negative negative negative negative negative
Sponge negative positive negative negative negative negative negative negative negative negative

Strip negative negative negative negative negative negative positive negative negative negative
Air negative negative negative negative negative negative negative negative negative negative

5 (vaccinated) Nasal secretion negative positive negative negative negative
Sponge negative negative negative positive positive negative negative negative negative negative

Strip negative positive negative negative negative negative negative negative negative negative
Air negative negative negative positive negative negative negative negative negative negative

6 (vaccinated) Nasal secretion negative positive negative negative negative
Sponge negative positive negative negative negative positive positive positive negative negative

Strip negative negative negative negative negative negative negative negative negative positive
Air negative negative negative positive negative negative negative negative negative negative

7 (control) Nasal secretion negative negative negative negative negative
Sponge negative negative negative negative negative negative negative negative negative negative

Strip negative negative negative negative negative negative negative negative negative negative
Air negative negative negative negative negative negative negative negative negative negative
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4. Discussion

The study results show that the horses vaccinated with a modified-live EHV-1 vaccine
intranasally shed for a short period and, similar to subclinically infected horses, were
able to contaminate the environment. Among a variety of samples collected from the
environment of these so-called subclinical shedders, EHV-1 was most frequently detected
in the environmental sponges as compared to the other types of environmental samples
such as the strips and air samples.

To bypass the challenges of dealing with contagious EHV-1 and being able to repro-
ducibly induce subclinical shedding, an EHV-1 MLV intranasal vaccine protocol was used.
This protocol has been successfully used in the past to study the systemic and mucosal
antibody response post vaccine administration [9,10]. Historically, the vaccine-derived
EHV-1 could be detected in the nasal secretions of vaccinated horses for 1–5 days. In
the present study, only the EHV-1-vaccinated horses had molecular evidence of EHV-1 in
nasal secretions, with peak levels similar to the ones seen in naturally infected subclinical
shedders [12]. Furthermore, there was no evidence of EHV-1 transmission between the
vaccinated and control horses, based on the lack of EHV-1 detection in the nasal secretions
of the control horses throughout the study period. This observation relates to the low
infectious nature of the EHV-1 vaccine strain.

Among the three different environmental samples, the stall sponges showed the
highest detection rate for EHV-1. Stall sponges have been used in recent years to monitor
the environment of at-risk horses and have been shown to be more reliable for detecting
respiratory pathogens as compared to nasal secretions [2–4]. While the testing of respiratory
secretions in healthy sport horses gives a real-time insight into their shedding status, testing
the environment determines the accumulation of respiratory pathogens over time.

When swabbing a stall, it is important to focus on areas where the horse spends
time, such as feeding areas. While most vaccinated horses shed EHV-1 for 1 day, the
short shedding time and high amount of virus shed were enough to contaminate the
environment allowing the detection of EHV-1 from day 2 to 10. While all vaccinated horses
had EHV-1 qPCR-positive stall sponges, one non-vaccinated horse with direct contact
to a vaccinated horse also had one single positive sponge. Because of the direct contact
between the vaccinated and control horses through grill partitions, the positive EHV-1
sponge result from the control horse stall likely originated from the neighboring vaccinated
horse. Because sport horses at equestrian events are often kept in stalls with solid walls
and have no direct contact to neighboring horses, it is unlikely that a subclinical shedder
would contaminate stalls beyond its own.

It is interesting to observe that stall sponges tested three times more frequently EHV-
1 qPCR-positive as compared to stationary wipes placed over the automatic waterer, a
place known to have frequent nose and mouth interactions. The difference may relate
to the overall surface area collected, considering that the stall sponges collected material
over a 16-square-foot area (2304 square inch), compared to the individual 16-square-inch
wipes. Also, the arbitrarily chosen location above the waterer could have contributed to
the lower EHV-1 detection rate. It is possible that a more frequented area, such as the
feeding area, might have generated a higher detection rate of EHV-1. While wipes are
less time-consuming to manage as compared to the collection of stall sponges, they might
still represent a sound strategy for monitoring the environmental buildup of respiratory
pathogens for high-risk horses at show venues.

Surprisingly, the detection of EHV-1 in air samples was low and occurred in three out
of four vaccinated horses around the middle of the study period. The detection of viruses
in the air samples presents many challenges because viruses are present in the air only at
extremely low concentrations, which translates to the necessity of sampling relatively larger
air volumes. Furthermore, there are not yet standardized protocols on how to best collect
aerosolized viruses in regard to the sampling distance from the target, height from the floor,
flow rates and sampled air volumes. The portable dry cyclonic collection device used in
the present study has been successful in monitoring outdoor and indoor spaces for the
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presence of SARS-CoV-2 [13,14]. In the latter studies, the air collection was performed over
30 min. The inability to detect EHV-1 around the peak shedding time may relate to the large
size of the alphaherpesvirus, the lack of aerosolization or the collection protocol. It was of
interest to note that EHV-1 was detected on the 4th and 5th day post-vaccination and likely
reflects the environmental virus that was picked up during the dynamic collection phase
while walking the stall around the horse and kicking up bedding in order to generate dust.
More work is needed in order to maximize the air collection protocol, as such monitoring
devices may be less time-consuming compared to environmental swabs. However, one of
the drawbacks of air sampling and testing is the price of the air sampler and the disposable
cones used to collect each air sample. While sponges (approximately USD 3.0/sponge)
and strips (approximately USD 0.05/strip) are cheap disposable collection devices, the
disposable cones for the air sample are more expensive (USD 13.0/cone). More studies
are needed in order to determine if the convenient approach to sampling and testing air
could replace the time-consuming collection of environmental stall samples, especially in
situations where a high density of at-risk horses is housed in the same environment.

5. Conclusions

In conclusion, the present data showed that, in an EHV-1 subclinical shedding model
using a modified-live vaccine administered intranasally, the virus was able to be detected
for a short period in nasal secretions. The environmental buildup of EHV-1 could be
detected via various environmental samples collected daily over 10 days. Among the
various samples, the environmental sponges were more reliable in detecting EHV-1 by
qPCR in the environment of subclinical shedders as compared to the stationary strips and
air samples. It is important to keep in mind that the goal of environmental monitoring for
EHV-1 and other respiratory pathogens is to assess the buildup of such pathogens in the
environment in order to act in case of clustering of positive stalls.
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