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Abstract

Background: Individuals with substance use disorders typically exhibit a predilection toward instant gratification with 
apparent disregard for the future consequences of their actions. Indirect evidence suggests that low dopamine D2-type 
receptor availability in the striatum contributes to the propensity of these individuals to sacrifice long-term goals for short-
term gain; however, this possibility has not been tested directly. We investigated whether striatal D2/D3 receptor availability 
is negatively correlated with the preference for smaller, more immediate rewards over larger, delayed alternatives among 
research participants who met DSM-IV criteria for methamphetamine (MA) dependence.
Methods: Fifty-four adults (n = 27 each: MA-dependent, non-user controls) completed the Kirby Monetary Choice Questionnaire, 
and underwent positron emission tomography scanning with [18F]fallypride.
Results: MA users displayed steeper temporal discounting (p = 0.030) and lower striatal D2/D3 receptor availability (p < 0.0005) 
than controls. Discount rate was negatively correlated with striatal D2/D3 receptor availability, with the relationship reaching 
statistical significance in the combined sample (r = -0.291, p = 0.016) and among MA users alone (r = -0.342, p = 0.041), but not 
among controls alone (r = -0.179, p = 0.185); the slopes did not differ significantly between MA users and controls (p = 0.5).
Conclusions: These results provide the first direct evidence of a link between deficient D2/D3 receptor availability and steep 
temporal discounting. This finding fits with reports that low striatal D2/D3 receptor availability is associated with a higher risk 
of relapse among stimulant users, and may help to explain why some individuals choose to continue using drugs despite 
knowledge of their eventual negative consequences. Future research directions and therapeutic implications are discussed.

http://www.oxfordjournals.org/
mailto:elondon@mednet.ucla.edu?subject=
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Introduction

Drug addiction is characterized by persistent drug use despite 
adverse consequences, perhaps in part because the instant 
pleasure garnered by using drugs is perceived to outweigh the 
long-term benefits of sobriety. Consistent with this idea, labora-
tory studies routinely find that individuals with substance use 
disorders display greater preference for smaller, more immedi-
ately available rewards (e.g. money, drugs) over larger, delayed 
alternatives than healthy controls (MacKillop et  al., 2011). 
Moreover, research indicates that those who most strongly 
favor the immediate options on such laboratory-based choice 
tasks are also most likely to relapse during attempted absti-
nence (Krishnan-Sarin et al., 2007; Yoon et al., 2007; MacKillop 
and Kahler, 2009; Mueller et al., 2009; Washio et al., 2011; Sheffer 
et al., 2012; Stanger et al., 2012 and also see Passetti et al., 2008; 
Landes et al., 2012). Nonetheless, few studies have attempted to 
elucidate the neural mechanisms underlying addicts’ inordinate 
preference for immediate rewards.

Dopamine is heavily implicated in intertemporal choice 
(for a review, see Winstanley, 2011), and indirect evidence sug-
gests that deficient dopamine D2/D3-type receptor-mediated 
dopaminergic neurotransmission in the striatum may be an 
important contributing factor to this immediacy bias. Like steep 
temporal discounting, low striatal D2/D3 receptor availability is 
observed among individuals with substance use disorders (for 
a review, see Trifilieff and Martinez, 2014), and has been linked 
with an increased likelihood of relapse (Martinez et  al., 2011; 
Wang et  al., 2012). Chronic exposure to methamphetamine 
(MA) or cocaine induces persistent reductions in striatal D2/D3 
receptor availability in rats (McCabe et al., 1987; Puig et al., 2014) 
and monkeys (Nader et al., 2006; Groman et al., 2012), and rats 
treated chronically with either of these drugs exhibit greater 
temporal discounting than controls (Richards et al., 1999; Paine 
et  al., 2003; Roesch et  al., 2007; Mendez et  al., 2010). Humans 
with attention-deficit hyperactivity disorder or obesity—two 
other disorders that are associated with low striatal D2/D3 recep-
tor availability (for a review, see Trifilieff and Martinez, 2014)—
also display greater temporal discounting than healthy controls 
(for a review, see Bickel et al., 2012). Greater temporal discount-
ing has also been observed among carriers of the A1 allele of the 
ANKK1 Taq1A polymorphism (Eisenberg et al., 2007), a genetic 
variant associated with low striatal D2 receptor density/binding 
in humans relative to A2 homozygotes (Jonsson et al., 1999).

Although an association between low striatal D2/D3 receptor 
availability and steep temporal discounting has been implied, 
this link has not been directly evaluated. We therefore examined 
striatal D2/D3 receptor availability in relation to temporal dis-
counting in research participants who met DSM-IV criteria for 
MA dependence and a group of healthy controls. MA-dependent 
individuals were selected as a group for study because case-con-
trol studies find that they display deficits in striatal D2/D3 recep-
tor availability (Volkow et al., 2001; Lee et al., 2009; Wang et al., 
2012) and exaggerated temporal discounting (Hoffman et  al., 
2006; Monterosso et al., 2007). We hypothesized that striatal D2/
D3 receptor availability would be negatively correlated with dis-
count rates among MA users, and possibly also among controls. 
Because tobacco use has also been linked with low striatal D2/D3 
receptor availability (among males; Fehr et al., 2008; Brown et al., 
2012) and steep temporal discounting (MacKillop et al., 2011), the 
association was explored as well in the control-group smokers. 

Because chronic MA abusers also display lower D2/D3 receptor 
availability than non-users in extrastriatal brain areas (London 
laboratory unpublished data), including several that have been 
implicated in intertemporal choice (for reviews, see Carter et al., 
2010; Wesley and Bickel, 2014), exploratory analyses were per-
formed to investigate whether extrastriatal D2/D3 receptor avail-
ability might also be negatively correlated with discount rate.

Methods

Participants

Procedures were approved by the University of California Los 
Angeles (UCLA) Office for Protection of Research Subjects. 
Participants were recruited using the Internet and local news-
paper advertisements. All provided written informed consent 
and underwent eligibility screening using questionnaires, the 
Structured Clinical Interview for DSM-IV (First et al., 1996), and a 
physical examination. Twenty-seven individuals who met criteria 
for current MA dependence but were not seeking treatment for 
their addiction and 27 controls completed the study. D2/D3 recep-
tor availability data from approximately half of the MA users 
and controls have been reported previously (Lee et al., 2009), and 
smaller subsets were included in other studies from our labo-
ratory regarding D2/D3 receptor availability (Brown et  al., 2012; 
Ghahremani et al., 2012; Zorick et al., 2012; Kohno et al., 2015).

The exclusion criteria were: central nervous system, cardiovas-
cular, pulmonary, hepatic, or systemic disease; HIV seropositive sta-
tus; pregnancy; lack of English fluency; MRI ineligibility (e.g. metal 
implants, claustrophobia); current use of psychotropic medica-
tions; current Axis I disorder including substance abuse or depend-
ence for any substance other than nicotine (or MA or cannabis for 
MA users only; all MA users met criteria for MA dependence, and 
2 met criteria for cannabis dependence; substance-induced mood 
disorders were also not exclusionary for this group).

A diagnosis of MA dependence and a positive urine test for 
MA at intake were required for MA-group participants, who 
completed the study as inpatients at the UCLA General Clinical 
Research Center, and were prohibited from using any drugs 
(besides nicotine in cigarettes) for 4–7 days before testing. MA 
users completed the behavioral and imaging measures 2 days 
apart on average (standard deviation [SD]  =  2.1; range: 1–11). 
Controls were studied on a nonresidential basis and completed 
the measures 22 days apart on average (SD = 28.0; range 1–111). 
All participants were required to provide a urine sample on each 
test day that was negative for amphetamine, cocaine, MA, ben-
zodiazepines, opioids, and cannabis. Compensation was pro-
vided in the form of cash, gift certificates, and vouchers.

Delay Discounting

Delay discounting was assessed with the Monetary-Choice 
Questionnaire (MCQ; Kirby et al., 1999), which presents partici-
pants with 27 hypothetical choices between a smaller, immedi-
ate monetary amount and a larger, delayed alternative. Most of 
the participants completed the task using a paper-and-pencil 
format, but some completed the task on a computer (10 controls 
[9 smokers], 4 MA users); the questions were presented in the 
same sequence, regardless of task format.

A logistic regression was performed on the data from each 
participant, separately, using his/her responses to all 27 choices 
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(coded as 0 for immediate-option and 1 for delayed-option 
selections) as the dependent variable, and the natural log of the 
equivalence k value associated with each test question as the 
independent variable. This k-equivalence value was the number 
that would equalize the immediate option with the delayed alter-
native, assuming the hyperbolic discounting function: V = A/(1 + 
kD), where V represents the perceived value of amount A made 
available D days in the future (Bickel et al., 2012). The parameter 
estimates from the logistic regression were used to calculate the 
k-equivalence value at which the function intersected 0.5 (the 
stochastic indifference point). This derived k value character-
ized the individual’s discount rate (Kirby et al., 1999; see Wileyto 
et al., 2004). Because the MCQ only probes discounting between 
a minimum k-equivalence of 0.0002 and a maximum of 0.25, 
these values were designated as the minimum and maximum k 
values, respectively, that could be assigned.

D2/D3 Receptor Availability

Dopamine D2/D3 receptor availability was assessed using a 
Siemens EXACT HR+ positron emission tomography (PET) scan-
ner in 3D mode with [18F]fallypride as the radioligand (Mukherjee 
et al., 1995). Following a 7 min transmission scan acquired using 
a rotating 68Ge/68Ga rod source to measure and correct for atten-
uation, PET dynamic data acquisition was initiated with a bolus 
injection of [18F]fallypride (~5 mCi ± 5%, specific activity ≥ 1 Ci/
μmol). Emission data were acquired in two 80 min blocks, sepa-
rated by a 10–20 min break.

Raw PET data were corrected for decay, attenuation, and 
scatter, and then reconstructed using ordered-subsets expec-
tation-maximization (3 iterations; 16 subsets), using ECAT v7.2 
software (CTI PET Systems Inc.). Reconstructed data were com-
bined into 16 images (each representing an average of 10 min of 
dynamic data), and the images were motion-corrected using FSL 
McFLIRT (Jenkinson et al., 2002), and co-registered to the indi-
vidual’s structural MRI scan image using a six-parameter, rigid-
body transformation computed with the ART software package 
(Ardekani et al., 1995). Structural images were magnetization-
prepared, rapid-acquisition, gradient-echo scans acquired 
during a separate session using a Siemens Sonata 1.5T MRI 
scanner. All images were registered to MNI152 space using FSL 
FLIRT (Jenkinson and Smith, 2001). Volumes of interest (VOIs) 
were derived from the Harvard-Oxford atlases transformed into 
individual native space, or defined using FSL FIRST (Ardekani 
et  al., 1995). VOIs of the functional striatal subdivisions were 
created as described previously (Mawlawi et al., 2001).

Time-activity data within VOIs were imported into the PMOD 
3.2 kinetic modeling analysis program (PMOD Technologies 
Ltd.), and time-activity curves were fit using the simplified ref-
erence tissue model 2 (SRTM2; Wu and Carson, 2002). The cere-
bellum (excluding the vermis) was used as the reference region 
(Vandehey et al., 2010). The rate constant for transfer of the tracer 
from the reference region to plasma (k2′) was computed as the 
volume-weighted average of estimates from receptor-rich regions 
(caudate and putamen), calculated using the simplified reference 
tissue model (Lammertsma and Hume, 1996), as suggested by 
Ichise et al. (2008). Time-activity curves were re-fit using SRTM2 
(Wu and Carson, 2002), with the computed k2′ value applied to all 
brain regions. Regional binding potential referred to non-displace-
able binding, calculated as BPND = (R1(K2′ / K2a) − 1), where R1 = K1/K1′ 
is the ratio of tracer-delivery parameters for the tissue of inter-
est and reference tissue, and k2a is the effective rate parameter for 
transfer of tracer from the tissue of interest to the plasma (Mintun 
et al., 1984; Logan et al., 1996; Innis et al., 2007). Volume-weighted 
bilateral averages of all VOIs were used for analyses.

Statistical Analyses

Continuous variables were assessed for homogeneity of variance 
across groups using Levene’s tests. Demographic variables were 
examined for group differences using two-tailed independent- 
samples t-tests, Mann-Whitney U-tests, or Fisher’s exact tests, 
as appropriate. Group differences in discount rate and BPND 
were tested using separate independent samples t-tests, and 
potential confounding variables were assessed as covariates. 
As expected, the distribution of discount rates was positively 
skewed. Because a natural log transform yielded a more nor-
mal distribution, ln(k) was used for analyses. The threshold for 
statistical significance was set at α = 0.05 for all analyses. One-
tailed p-values are reported for analyses where a specific direc-
tional effect was predicted (e.g. higher discount rate and lower 
BPND in MA users on average relative to non-users, negative rela-
tionships between BPND and discount rate).

Exploratory analyses were also carried out to investigate 
whether discount rate is negatively correlated with BPND in 
extrastriatal regions. These analyses were restricted to regions 
that exhibit appreciable [18F]fallypride BPND (arbitrarily defined 
as >0.5; see Table 2).

Results

Participant Characteristics

The groups included similar proportions of males and females 
(p  =  0.414), and did not differ in age (p  =  0.386); however, MA 
users averaged significantly fewer years of formal education 
than controls (p = 0.015; Table 1). The majority of participants in 
both groups were white (MA group: 23 white [6 Hispanic/Latino], 
2 Asian, 2 other; controls: 22 white [5 Hispanic/Latino], 1 black, 
2 Asian, 1 Native American, 1 other). Most of the MA users, but 
only approximately half of the controls, were smokers (p = 0.018); 
among the smokers, the proportions of males and females were 
similar across groups. On average, MA users reported using MA 
for 9.1 years, and on 21.4 of the 30 days before enrolling in the 
study, with 2.7 grams used in the preceding week.

Delay Discounting

MA users tended to discount delayed options more steeply than 
controls [ln(k) means ± standard error of the mean (SEM): MA 
users  =  -3.52 ± 0.25, controls  =  -4.08 ± 0.33; t52  =  1.34, p  =  0.094, 
Cohen’s d = 0.36]. Neither sex (p = 0.969), age (p = 0.215), smok-
ing status (i.e. current smoker; p  =  0.301), nor years of educa-
tion (p  =  0.536) independently predicted discount rate when 
controlling for group; however, task format (i.e. administration 
on paper or a computer) emerged as an extraneous predictor of 
discount rate (p = 0.027), with the computerized version associ-
ated with steeper discounting. After controlling for task format, 
the group difference in discounting reached statistical signifi-
cance (F1,51 = 3.70, p = 0.030, ηp

2 = 0.068); the group difference was 
nearly significant when the two MA users who met criteria for 
cannabis dependence were excluded from analyses (F1,49 = 2.81, 
p = 0.050, ηp

2 = 0.054). As expected, control-group tobacco smok-
ers tended to discount delayed options more steeply (-3.79 ± 0.46) 
than nonsmokers (-4.39 ± 0.48), but this difference was not sig-
nificant when controlling for task format (p = 0.359, ηp

2 = 0.006). 
Discount rates did not differ substantially between either male 
(-3.59 ± 0.58) and female (-4.06 ± 0.66) smokers or non-smokers 
(males: -4.40 ± 0.70; females: -4.37 ± 0.88) in the control group or 
male (-3.65 ± 0.38) and female (-3.42 ± 0.34) MA users when con-
trolling for task format (all p > 0.36, ηp

2 < 0.01).
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Discount rate was not clearly related to years of regular MA 
use (r = 0.052, p = 0.796), days of MA use in the 30 days prior to 
study enrollment (r = -0.018, p = 0.928), or grams of MA used in 
the week prior to enrollment (r = -0.044, p = 0.830) among MA 
users, or to Fagerström Test for Nicotine Dependence (FTND; 
Heatherton et  al., 1991) scores (r  =  0.075, p  =  0.800), number 
of years smoking (r  =  0.043, p  =  0.884), or cigarettes per day 
(r = 0.325, p = 0.258) among control-group tobacco smokers.

Striatal D2/D3 Receptor Availability

BPND was significantly lower in the striata of MA users 
than controls (means ± SEM: MA users  =  17.13 ± 0.57, con-
trols  =  20.15 ± 0.70; t52  =  3.35, p  =  0.0005, Cohen’s d = 0.91). 
When controlling for participant group, striatal BPND was not 
independently predicted by years of education (p  =  0.208), 
but it was independently predicted by age (p  <  0.0005; BPND 
decreased as age increased), sex (p  =  0.010; lower among 
males), and smoking status (p = 0.012; lower among smokers). 
A  stepwise regression, controlling for group, indicated that 
age was the best predictor of striatal BPND, and neither sex nor 
smoking status significantly improved the predictivity of the 
model including group and age. The group difference in BPND 
remained significant after controlling for age (F1,51  =  21.37, 
p < 0.0005, ηp

2 = 0.295), and when the two MA users who met 
criteria for cannabis dependence were excluded from analy-
ses (F1,49 = 19.66, p < 0.0005, ηp

2 = 0.286). Although striatal BPND 
was slightly lower among control-group smokers (18.72 ± 1.07) 
than non-smokers (21.69 ± 0.70), this difference was not sig-
nificant when controlling for age (p = 0.276, ηp

2 = 0.015). Among 
controls, when controlling for age, striatal BPND was signifi-
cantly lower in male (16.55 ± 1.20) than female (21.62 ± 1.15) 
smokers (F1,11  =  9.70, p  =  0.005, ηp

2  =  0.469), but did not dif-
fer substantially between male (20.84 ± 1.02) and female 
(23.05 ± 0.36) nonsmokers (p  =  0.144, ηp

2  =  0.112). Striatal 
BPND was only marginally lower among male (16.52 ± 0.63) 
than female (17.62 ± 0.90) MA users when controlling for age 
(p = 0.478, ηp

2 < 0.0005).

Among MA users, striatal BPND was significantly negatively 
correlated with years of regular MA use (r =  -0.404, p = 0.036), 
but not with days of MA use in the 30 days prior to study enroll-
ment (r  =  -0.270, p  =  0.172) or grams of MA used in the week 
prior to enrollment (r =  -0.222, p = 0.266) when controlling for 
age. Among control-group tobacco smokers, striatal BPND tended 
to be negatively correlated with FTND score (r = -0.502, p = 0.068), 
but not with number of years smoking (r = -0.285, p = 0.322) or 
cigarettes per day (r = -0.286, p = 0.322) when controlling for age.

Relationship Between Delay Discounting and Striatal 
D2/D3 Receptor Availability

Combined Sample
A significant negative correlation between discount rate and 
striatal BPND was found when the data from both groups of par-
ticipants were combined (r = -0.291, p = 0.016), with BPND explain-
ing 8.5% of the variance in discount rates across the pooled 
sample. In post hoc analyses, negative relationships were seen 
in all three striatal subdivisions (limbic striatum [LST]: r = -0.217, 
p = 0.057; associative striatum [AST]: r = -0.298, p = 0.014; sen-
sorimotor striatum [SMST]: r  =  -0.258, p  =  0.030), but only the 
correlation in the AST remained significant following correction 
for multiple comparisons using the Holm-Bonferroni method. 
Similar results were obtained with age-adjusted BPND values 
(whole striatum: r = -0.251, p = 0.033; LST: r = -0.171, p = 0.108; 
AST: r = -0.259, p = 0.029; SMST: r = -0.212, p = 0.062; age-adjusted 
values were calculated by adding the residual values obtained 
by regressing BPND on age in the combined sample to the sam-
ple mean for each participant). Partial correlations indicated 
that controlling for task format and the number of days elapsed 
between measures did not substantially alter the relationships 
between discount rate and striatal BPND (unadjusted BPND values: 
rpartial = -0.223, p = 0.058; rpartial = -0.152, p = 0.144; rpartial = -0.223, 
p  =  0.058; rpartial  =  -0.189, p  =  0.092; age-adjusted BPND values: 
rpartial = -0.187, p = 0.095; rpartial = -0.106, p = 0.230; rpartial = -0.185, 
p = 0.097; rpartial =  -0.145, p = 0.155 for the whole striatum, LST, 
AST, and SMST, respectively); none of the partial correlation 
coefficients differed significantly from the respective bivariate 
coefficients (all p > 0.68).

Sobel tests indicated that striatal BPND did not mediate the 
group difference in discount rate, regardless of whether age-
adjusted BPND values were used, and this did not depend on task 
format (all p > 0.29). Analogous analyses yielded similar results 
in each of the three striatal functional subdivisions (all p > 0.23).

MA Users 
Discount rate was significantly negatively correlated with 
striatal BPND (r = -0.342, p = 0.041), which explained 12% of the 
variance in discount rate across MA users (Figure 1). Negative 
relationships were seen in all three striatal subdivisions (LST: 
r = -0.194, p = 0.166; AST: r = -0.322, p = 0.050; SMST: r = -0.330, 
p  =  0.046; Figure  2), but none reached significance after cor-
rection for multiple comparisons (Holm-Bonferroni method). 
Similar results were obtained with age-adjusted BPND values 
(whole striatum: r = -0.321, p = 0.052; LST: r = -0.153, p = 0.223; 
AST: r  =  -0.307, p  =  0.060; SMST: r  =  -0.324, p  =  0.049). Partial 
correlations indicated that controlling for task format and the 
number of days elapsed between measures did not substantially 
alter the relationships between discount rate and striatal BPND 
(unadjusted BPND values: rpartial = -0.333, p = 0.052; rpartial = -0.217, 
p = 0.149; rpartial = -0.305, p = 0.069; rpartial = -0.329, p = 0.054; age-
adjusted BPND values: rpartial  =  -0.276, p  =  0.091; rpartial  =  -0.152, 
p = 0.235; rpartial = -0.248, p = 0.116; rpartial = -0.281, p = 0.087 for the 

Table 1.  Characteristics of Research Participants

Group Controls (n = 27) MA users (n = 27)

Sex (M/F) 16/11 12/15
Age (years) 35.4 ± 8.8 (19–51) 33.3 ± 9.3 (19–48)
Education (years) 14.2 ± 2.2 (8–18) 12.8 ± 1.9 (9–16)*
No. daily tobacco 8/6 11/12*
  smokers (M/F)
Cigarettes per day 12.9 ± 4.9 (8–20) 11.5 ± 9.6 (1–40)
  (daily smokers only)
Years smoking 19.1 ± 11.4 (3–36) 17.4 ± 9.8 (2–35)
  (daily smokers only)
FTND score 3.5 ± 2.1 (0–8) 2.7 ± 2.4 (0–9)
  (daily smokers only)
Duration of regular MA N/A 9.1 ± 6.8 (1.5–24)
use (years)
Frequency of MA use N/A 21.4 ± 7.1 (5–30)
  (days in last 30 days)
Intensity of MA use N/A 2.7 ± 2.7 (0.6–14.5)
  (grams in last week)

Data are presented as mean ± SD (range), except for sex and smoking status.

FTND: Fagerström Test for Nicotine Dependence
(possible range: 0 [low] - 10 [high]; Heatherton et al., 1991)
*Significant group difference, p < .05



Ballard et al.  |  5

whole striatum, LST, AST, and SMST, respectively); none of the 
partial correlation coefficients differed significantly from the 
respective bivariate coefficients (all p > 0.82).

Controls 
Discount rate tended to be negatively correlated with striatal 
BPND among controls, but this relationship did not reach statisti-
cal significance in either the whole striatum (r = -0.179, p = 0.185; 
Figure  1) or any of the striatal subdivisions (LST: r  =  -0.158, 

p = 0.215; AST: r = -0.209, p = 0.147; SMST: r = -0.142, p = 0.240; 
Figure 2). Similar results were obtained with age-adjusted BPND 
values (whole striatum: r  =  -0.100, p  =  0.310; LST: r  =  -0.074, 
p = 0.356; AST: r = -0.130, p = 0.260; SMST: r = -0.050, p = 0.401). 
There was no indication that discount rate was more strongly 
correlated with striatal BPND in smokers than nonsmokers (data 
not shown). Partial correlations indicated that controlling for 
task format and the number of days elapsed between measures 
did not substantially alter the relationships between discount 
rate and striatal BPND (unadjusted BPND values: rpartial  =  -0.025, 
p = 0.453; rpartial = -0.014, p = 0.473; rpartial = -0.044, p = 0.418; rpar-

tial  =  -0.006, p  =  0.490; age-adjusted BPND values: rpartial  =  0.018, 
p  =  0.465; rpartial  =  0.028, p  =  0.447; rpartial  =  0.001, p  =  0.499; rpar-

tial = 0.040, p = 0.425 for the whole striatum, LST, AST, and SMST, 
respectively); none of the partial correlation coefficients dif-
fered significantly from the respective bivariate coefficients (all 
p > 0.56).

Tests comparing the slopes of the correlations revealed no 
significant group differences with respect to the whole striatum 
or any of the functional subdivisions (all p > 0.30).

Exploratory Analyses in Extrastriatal Regions

Negative relationships between discount rate and BPND were 
found in all of the extrastriatal regions of MA users (Table  2). 
Notably, among MA users, correlations at p < 0.05 were found in 
the midbrain, anterior cingulate cortex (ACC), and thalamus. In 
the combined sample, correlations at p < 0.05 were found in the 
amygdala, hippocampus, and ACC. No correlations at p  <  0.05 
were found in extrastriatal VOIs among controls. None of the 
correlations were significant following correction for multiple 
comparisons using the Holm-Bonferroni method.

Tests comparing the slopes of the correlations revealed a 
significant group difference with respect to the midbrain (unad-
justed BPND values: p = 0.076; age-adjusted BPND values: p = 0.041), 
but the slopes of the correlations between ln(k) and BPND were 
not significantly different between controls and MA users with 

Figure 1.  Regression lines illustrate correlations between delay discounting [rep-

resented as the natural log of each individual’s discount rate; ln(k)] and striatal 

dopamine D2/D3 receptor availability (indexed by [18F]fallypride non-displaceable 

binding potential [BPND], unadjusted) in whole striata of methamphetamine (MA) 

users and non-user controls. Pearson product-moment correlation coefficients 

are shown (r values).

Figure 2.  Regression lines illustrate correlations between delay discounting [represented as the natural log of each individual’s discount rate; ln(k)] and striatal dopa-

mine D2/D3 receptor availability (indexed by [18F]fallypride non-displaceable binding potential [BPND], unadjusted) in the striatal functional subdivisions of metham-

phetamine (MA) users and non-user controls. Pearson product-moment correlation coefficients are shown (r values).
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respect to any of the other brain regions examined in explora-
tory analyses (all other p > 0.19).

Discussion

In line with previous reports, MA users displayed lower striatal 
D2/D3 receptor availability (Volkow et al., 2001; Lee et al., 2009; 
Wang et al., 2012) and higher discount rates (Hoffman et al., 2006; 
Monterosso et al., 2007) than controls, on average. As hypothe-
sized, discount rate was significantly negatively correlated with 
striatal D2/D3 receptor availability in the combined sample and 
among MA users alone. Although the slopes of the striatal cor-
relations were not significantly different between controls and 
MA users, the relationship did not reach statistical significance 
among controls alone. Exploratory analyses revealed negative 
relationships between discount rate and D2/D3 receptor avail-
ability in every extrastriatal region examined among MA users, 
but none retained significance following correction for multiple 
comparisons.

While substantial evidence implicates dopamine as a key 
determinant of intertemporal choice (for reviews, see Peters 
and Buchel, 2011; Winstanley, 2011), this study is the first to 
link temporal discounting directly with a measure of dopa-
mine signaling capacity. The findings indicate that deficient 
D2/D3 receptor availability may contribute to steep temporal 
discounting among individuals with substance use disorders, 
attention-deficit hyperactivity disorder, or obesity (for a review, 
see Bickel et al., 2012), and carriers of the A1 allele of the ANKK1 
Taq1A polymorphism (Eisenberg et  al., 2007). This reasoning 
is supported by reports that rats treated chronically with MA 
or cocaine display evidence of greater discounting of delayed 
rewards than saline-treated rats (Richards et  al., 1999; Paine 
et al., 2003; Roesch et al., 2007; Mendez et al., 2010), as both of 
both of these stimulants induce persistent reductions in striatal 
D2/D3 receptor availability in rats (McCabe et al., 1987; Puig et al., 
2014) and monkeys (Nader et al., 2006; Groman et al., 2012) fol-
lowing chronic exposure.

The results are also compatible with the literature concerning 
the neuroanatomical substrates of intertemporal choice. There 
was evidence of correlations involving several brain regions that 
have been implicated by functional neuroimaging and lesion 
studies as playing a role in selecting between immediate and 
delayed rewards: e.g. the midbrain, dorsal striatum, globus pal-
lidus, thalamus, amygdala, hippocampus, ACC, and insula (for 
reviews, see Peters and Buchel, 2011; Wesley and Bickel, 2014). 
The prefrontal cortex (PFC) is critically important for the ability 
to resist temptation for instant gratification in order to achieve 

long-term goals (Goldstein and Volkow, 2011), and striatal D2/D3 
receptor availability modulates PFC activity when goal-directed 
choices are made (Kohno et al., 2015). Moreover, D2/D3 receptor 
availability in the putamen has been shown to be negatively 
correlated with glucose metabolism in the orbitofrontal cor-
tex, which is implicated in delaying gratification (Goldstein and 
Volkow, 2011), especially among MA users (Volkow et al., 2001).

Choosing a smaller, more immediately available reward over 
a larger, more delayed alternative can be considered as an impul-
sive choice. However, while striatal D2/D3 receptor availability 
has been shown to be negatively correlated with trait impulsiv-
ity among MA users (i.e. total score on the Barratt Impulsiveness 
Scale v.11; BIS-11; Lee et al., 2009), there was no evidence that 
BIS-11 total scores were correlated with discount rates in this 
sample of participants (data not shown). Still, as expected, total 
BIS-11 scores were robustly higher among MA users than con-
trols on average in this sample, and were negatively correlated 
with striatal D2/D3 receptor availability when controlling for age 
in the combined sample (data not shown). This result implies 
that even though both trait impulsivity and temporal discount-
ing are related to striatal D2/D3 receptor availability, they repre-
sent at least partially separable constructs.

One limitation of this study is that [18F]fallypride has com-
parably high affinity for both D2 and D3 dopamine receptors 
(Elsinga et al., 2006; Banerjee and Prante, 2012), particularly as 
levels of D3 receptors may be higher than once estimated in mul-
tiple brain regions, including the striatum (Sun et al., 2012, 2013). 
Nevertheless, several lines of research suggest that individuals 
with substance use disorders, including MA users (Boileau et al., 
2012), have higher densities of D3 receptor levels in striatal and 
extrastriatal brain regions than those who do not frequently 
abuse drugs (Payer et  al., 2014). Thus, it seems probable that 
the lower [18F]fallypride BPND among MA users primarily reflects 
lower D2 receptor availability in this group compared to con-
trols. An additional limitation includes the possibility of com-
petition with endogenous dopamine influencing [18F]fallypride 
BPND (Cropley et al., 2008; Ceccarini et al., 2012). That IQ was not 
assessed is also a limitation, because IQ has been found to be 
significantly correlated with delay discounting (de Wit et  al., 
2007), and a group difference in the former could therefore over-
shadow the true group difference in the latter.

There are also some caveats that should be considered when 
interpreting the results of this study. First, the MCQ has limited 
ability to provide precise estimates of discount rates for indi-
viduals who discount very steeply. That is, the choice items 
only probe preference up to a maximum k-equivalence value of 
0.25, and this value was assigned as a conservative estimate of 

Table 2.  Exploratory Correlational Analyses

 

Combined sample (N = 54) Controls (n = 27) MA users (n = 27)

Unadjusted BPND Age-adjusted BPND Unadjusted BPND Age-adjusted BPND Unadjusted BPND Age-adjusted BPND

Amygdala -0.302 (0.013) -0.264 (0.027) -0.279 (0.080) -0.205 (0.152) -0.275 (0.083) -0.251 (0.103)
Hippocampus -0.278 (0.021) -0.236 (0.043) -0.220 (0.135) -0.137 (0.248) -0.295 (0.068) -0.322 (0.051)
Globus pallidus -0.181 (0.096) -0.131 (0.173) -0.052 (0.398) 0.036 (0.570) -0.303 (0.062) -0.283 (0.076)
Thalamus -0.194 (0.080) -0.137 (0.161) -0.065 (0.374) 0.044 (0.586) -0.334 (0.045) -0.305 (0.061)
Midbrain -0.078 (0.287) -0.039 (0.388) 0.136 (0.750) 0.188 (0.826) -0.376 (0.027) -0.381 (0.025)
mOFC -0.210 (0.064) -0.149 (0.141) -0.235 (0.119) -0.098 (0.313) -0.168 (0.202) -0.133 (0.254)
ACC -0.270 (0.024) -0.228 (0.049) -0.217 (0.138) -0.099 (0.311) -0.368 (0.030) -0.372 (0.028)
Insula -0.164 (0.118) -0.086 (0.269) -0.093 (0.323) 0.072 (0.639) -0.288 (0.073) -0.314 (0.055) 

Data are presented as Pearson correlation coefficients (p value; one-tailed, uncorrected).

BPND age-adjustments made at the combined sample level.

mOFC: medial orbitofrontal cortex; ACC: anterior cingulate cortex 
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discount rate to individuals whose calculated k value was pre-
dicted to exceed this value (3 controls, 2 MA users). Second, BPND 
values were highly correlated across all VOIs examined in both 
groups of participants, which limits the ability to draw conclu-
sions regarding the relative importance of D2/D3 receptor avail-
ability in specific brain regions to discount rate. Finally, as there 
is some evidence that abstinence from drugs can increase tem-
poral discounting among addicted individuals (Field et al., 2006), 
it is possible that abstinence from MA may have amplified the 
difference in discount rate between MA users and controls.

The results of this study may help to explain why low stri-
atal D2/D3 receptor availability is associated with poor treatment 
response among individuals with MA dependence (Wang et al., 
2012) and cocaine dependence (Martinez et al., 2011). This view 
seems reasonable given that steep temporal discounting has 
also been linked with poor treatment response among cocaine-
dependent individuals (Washio et al., 2011), and predicts relapse 
among smokers (Krishnan-Sarin et al., 2007; Yoon et al., 2007; 
MacKillop and Kahler, 2009; Mueller et al., 2009; Sheffer et al., 
2012). The present results lend empirical support to a theoreti-
cal model in which Trifilieff and Martinez (2014) propose that, 
“low D2 receptor levels and dopamine transmission in the ven-
tral striatum lead to impulsive behavior, including the choice 
for smaller, immediate rewards over larger, but delayed or more 
effortful, rewards, which may represent an underlying behavio-
ral pattern in addiction.” Consistent with this model, we found 
evidence of a negative correlation between discount rate and D2/
D3 receptor availability in the limbic striatal subdivision (primar-
ily the ventral striatum). The correlation in the limbic striatum 
did not reach statistical significance, possibly due to the high 
D3/D2 receptor ratio in this region (Payer et al., 2014) and partial 
volume effects.

An important question for future research is to determine 
whether interventions that increase D2/D3 receptor availability 
can reduce temporal discounting, at least among those with low 
D2/D3 receptor availability. Pharmacological interventions could 
prove useful to this end. For example, varenicline increases stri-
atal D2/D3 receptor availability in rats (Crunelle et al., 2012), and 
in a study of human smokers, males (but not females) treated 
with varenicline showed lower temporal discounting than pla-
cebo-treated controls (Ashare and McKee, 2012). This finding is 
compelling considering that dorsal striatal D2/D3 receptor avail-
ability is lower in male (but not female) smokers compared to 
nonsmoker controls (Brown et al., 2012). There also is evidence 
that rimonabant increases striatal D2/D3 receptor availability 
(Crunelle et al., 2013), and can decrease discounting of delayed 
rewards in rats (Boomhower et  al., 2013, also see Pattij et  al., 
2007; Wiskerke et  al., 2011). Nonpharmacological approaches 
may be useful as well, as there is preliminary evidence that 
intensive exercise can increase striatal D2/D3 receptor avail-
ability in MA-dependent individuals (Robertson et al., 2013) and 
patients with early-stage Parkinson’s disease (Fisher et al., 2013). 
Similarly, in a mouse model of Parkinson’s disease, higher stri-
atal D2/D3 receptor availability and D2 receptor expression was 
noted among those exposed to high-intensity exercise relative 
to non-exercising controls (Vučcković et al., 2010).

Establishing a causal link between D2/D3 receptor availabil-
ity and temporal discounting is likely to have significant clinical 
implications. This is because there is evidence that interven-
tions that reduce temporal discounting are useful for treating 
disorders that are associated with both steep discounting and 
low striatal D2/D3 receptor availability. For instance, contingency 
management decreases discounting among cocaine-dependent 
individuals (Landes et  al., 2012) and smokers (Yi et  al., 2008), 

and methylphenidate decreases discounting in children with 
attention-deficit hyperactivity disorder (Shiels et al., 2009). More 
importantly, greater reductions in discounting predict a greater 
likelihood of protracted abstinence among cocaine users (Black 
and Rosen, 2011) and smokers (Secades-Villa et al., 2014). Thus, 
if a causative link between D2/D3 receptor availability and tem-
poral discounting is established, it may lead to the development 
of novel D2/D3-targeted interventions which could be used to 
more effectively treat a variety of disorders.

In conclusion, the results of this study indicate that low D2/
D3 receptor availability is associated with steep temporal dis-
counting. This link may explain why some individuals choose to 
continue using drugs despite knowledge of their future negative 
consequences, and could help to guide strategies for treating 
substance abuse and other psychiatric disorders.

Acknowledgments

This research was supported by NIH grants R01 DA020726, P20 
DA022539, M0I RR00865, and endowments from the Thomas P 
and Katherine K Pike Chair in Addiction Studies (Dr London), 
and the Marjorie M Greene Trust. Dr Ballard was supported by 
T32 DA024635.

Statement of Interest

None of the sponsors were involved with the design, collec-
tion, analysis, or interpretation of data, writing the manuscript, 
or the decision to submit the manuscript for publication. Dr 
London has received research funding from Philip Morris USA 
for unrelated studies. This study was not supported by indus-
try funds. The other authors report no potential conflicts of 
interest.

References
Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H (1995) A fully 

automatic multimodality image registration algorithm. J 
Comput Assist Tomogr 19:615–623.

Ashare RL, McKee SA (2012) Effects of varenicline and bupropion 
on cognitive processes among nicotine-deprived smokers. 
Exp Clin Psychopharm 20:63–70.

Banerjee A, Prante O (2012) Subtype-selective dopamine recep-
tor radioligands for PET imaging: current status and recent 
developments. Curr Med Chem 19:3957–3966.

Bickel WK, Jarmolowicz DP, Mueller ET, Koffarnus MN, Gatchal-
ian KM (2012) Excessive discounting of delayed reinforcers as 
a trans-disease process contributing to addiction and other 
disease-related vulnerabilities: emerging evidence. Pharma-
col Ther 134:287–297.

Black AC, Rosen MI (2011) A money management-based sub-
stance use treatment increases valuation of future rewards. 
Addict Behav 36:125–128.

Boileau I, Payer D, Houle S, Behzadi A, Rusjan PM, Tong J, Wilkins 
D, Selby P, George TP, Zack M (2012) Higher binding of the 
dopamine D3 receptor-preferring ligand [11C]-(+)-propyl-
hexahydro-naphtho-oxazin in methamphetamine polydrug 
users: a positron emission tomography study. J Neurosci 
32:1353–1359.

Boomhower SR, Rasmussen EB, Doherty TS (2013) Impulsive-
choice patterns for food in genetically lean and obese Zucker 
rats. Behav Brain Res 241:214–221.

Brown AK, Mandelkern MA, Farahi J, Robertson C, Ghahremani 
DG, Sumerel B, Moallem N, London ED (2012) Sex differences 



8  |  International Journal of Neuropsychopharmacology, 2015

in striatal dopamine D2/D3 receptor availability in smokers 
and non-smokers. Int J Neuropsychop 15:989–994.

Carter RM, Meyer JR, Huettel SA (2010) Functional Neuroimag-
ing of Intertemporal Choice Models. J Neurosci Psychol Econ 
3:27–45.

Ceccarini J, Vrieze E, Koole M, Muylle T, Bormans G, Claes S, 
Van Laere K (2012) Optimized in vivo detection of dopamine 
release using 18F-fallypride PET. J Nucl Med 53:1565–1572.

Cropley VL, Innis RB, Nathan PJ, Brown AK, Sangare JL, Lerner 
A, Ryu YH, Sprague KE, Pike VW, Fujita M (2008) Small effect 
of dopamine release and no effect of dopamine depletion on 
[18F]fallypride binding in healthy humans. Synapse 62:399–
408.

Crunelle CL, de Wit TC, de Bruin K, Ramakers RM, van der Have 
F, Beekman FJ, van den Brink W, Booij J (2012) Varenicline 
increases in vivo striatal dopamine D2/3 receptor binding: an 
ultra-high-resolution pinhole [123I]IBZM SPECT study in rats. 
Nucl Med Biol 39:640–644.

Crunelle CL, van de Giessen E, Schulz S, Vanderschuren LJ, de 
Bruin K, van den Brink W, Booij J (2013) Cannabinoid-1 recep-
tor antagonist rimonabant (SR141716) increases striatal 
dopamine D2 receptor availability. Addict Biol 18:908–911.

de Wit H, Flory JD, Acheson A, McCloskey M, Manuck SB (2007) IQ 
and nonplanning impulsivity are independently associated 
with delay discounting in middle-aged adults. Pers Individ 
Dif 42:111–121.

Eisenberg DT, Mackillop J, Modi M, Beauchemin J, Dang D, Lis-
man SA, Lum JK, Wilson DS (2007) Examining impulsivity as 
an endophenotype using a behavioral approach: a DRD2 TaqI 
A and DRD4 48-bp VNTR association study. Behav Brain Funct 
3:2. 

Elsinga PH, Hatano K, Ishiwata K (2006) PET tracers for imaging 
of the dopaminergic system. Curr Med Chem 13:2139–2153.

Fehr C, Yakushev I, Hohmann N, Buchholz HG, Landvogt C, 
Deckers H, Eberhardt A, Klager M, Smolka MN, Scheurich A, 
Dielentheis T, Schmidt LG, Rosch F, Bartenstein P, Grunder G, 
Schreckenberger M (2008) Association of low striatal dopa-
mine d2 receptor availability with nicotine dependence 
similar to that seen with other drugs of abuse. Am J Psych 
165:507–514.

Field M, Santarcangelo M, Sumnall H, Goudie A, Cole J (2006) 
Delay discounting and the behavioural economics of ciga-
rette purchases in smokers: the effects of nicotine depriva-
tion. Psychopharmacology (Berl) 186:255–263. 

First MB, Spitzer RL, Gibbon M, Williams J (1996) Structured 
Clinical Interview for DSM-IV Axis I  Disorders-Patient Edi-
tion (SCID-IP, Version 2.0). New York, NY: Biometrics Research 
Department, New York State Psychiatric Institute.

Fisher BE, Li Q, Nacca A, Salem GJ, Song J, Yip J, Hui JS, Jakowec 
MW, Petzinger GM (2013) Treadmill exercise elevates striatal 
dopamine D2 receptor binding potential in patients with 
early Parkinson’s disease. Neuroreport 24:509–514.

Ghahremani DG, Lee B, Robertson CL, Tabibnia G, Morgan AT, De 
Shetler N, Brown AK, Monterosso JR, Aron AR, Mandelkern 
MA, Poldrack RA, London ED (2012) Striatal dopamine D2/D3 
receptors mediate response inhibition and related activity in 
frontostriatal neural circuitry in humans. J Neurosci 32:9.

Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal 
cortex in addiction: neuroimaging findings and clinical impli-
cations. Nat Rev Neurosci 12:652–669.

Groman SM, Lee B, Seu E, James AS, Feiler K, Mandelkern MA, 
London ED, Jentsch JD (2012) Dysregulation of D(2)-mediated 
dopamine transmission in monkeys after chronic escalating 
methamphetamine exposure. J Neurosci 32:5843–5852.

Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) 
The Fagerstrom Test for Nicotine Dependence: a revision of 
the Fagerstrom Tolerance Questionnaire. Br J Addict 86:1119–
1127.

Hoffman WF, Moore M, Templin R, McFarland B, Hitzemann RJ, 
Mitchell SH (2006) Neuropsychological function and delay 
discounting in methamphetamine-dependent individuals. 
Psychopharmacology (Berl) 188:162–170.

Ichise M, Cohen RM, Carson RE (2008) Noninvasive estimation 
of normalized distribution volume: application to the mus-
carinic-2 ligand [(18)F]FP-TZTP. J Cereb Blood Flow Metab 
28:420–430.

Innis RB et al.  (2007) Consensus nomenclature for in vivo imag-
ing of reversibly binding radioligands. J Cereb Blood Flow 
Metab 27:1533–1539.

Jenkinson M, Smith S (2001) A global optimisation method for 
robust affine registration of brain images. Med Image Anal 
5:143–156.

Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved opti-
mization for the robust and accurate linear registration and 
motion correction of brain images. Neuroimage 17:825–841.

Jonsson EG, Nothen MM, Grunhage F, Farde L, Nakashima Y, 
Propping P, Sedvall GC (1999) Polymorphisms in the dopa-
mine D2 receptor gene and their relationships to striatal 
dopamine receptor density of healthy volunteers. Mol Psy-
chiatry 4:290–296.

Kirby KN, Petry NM, Bickel WK (1999) Heroin addicts have higher 
discount rates for delayed rewards than non-drug-using con-
trols. J Exp Psychol Gen 128:78–87.

Kohno M, Ghahremani DG, Morales AM, Robertson CL, Ishibashi 
K, Morgan AT, Mandelkern MA, London ED (2015) Risk-Taking 
Behavior: Dopamine D2/D3 Receptors, Feedback, and Fron-
tolimbic Activity. Cereb Cortex 25:236–245. 

Krishnan-Sarin S, Reynolds B, Duhig AM, Smith A, Liss T, McF-
etridge A, Cavallo DA, Carroll KM, Potenza MN (2007) Behav-
ioral impulsivity predicts treatment outcome in a smoking 
cessation program for adolescent smokers. Drug Alcohol 
Depend 88:79–82.

Lammertsma AA, Hume SP (1996) Simplified reference tissue 
model for PET receptor studies. Neuroimage 4:153–158.

Landes RD, Christensen DR, Bickel WK (2012) Delay discounting 
decreases in those completing treatment for opioid depend-
ence. Exp Clin Psychopharm 20:302–309.

Lee B, London ED, Poldrack RA, Farahi J, Nacca A, Monterosso JR, 
Mumford JA, Bokarius AV, Dahlbom M, Mukherjee J, Bilder 
RM, Brody AL, Mandelkern MA (2009) Striatal dopamine d2/
d3 receptor availability is reduced in methamphetamine 
dependence and is linked to impulsivity. J Neurosci 29:14734–
14740.

Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL 
(1996) Distribution volume ratios without blood sampling 
from graphical analysis of PET data. J Cereb Blood Flow Metab 
16:834–840.

MacKillop J, Kahler CW (2009) Delayed reward discounting pre-
dicts treatment response for heavy drinkers receiving smok-
ing cessation treatment. Drug Alcohol Depend 104:197–203.

MacKillop J, Amlung MT, Few LR, Ray LA, Sweet LH, Munafo MR 
(2011) Delayed reward discounting and addictive behavior: a 
meta-analysis. Psychopharmacology (Berl) 216:305–321.

Martinez D, Carpenter KM, Liu F, Slifstein M, Broft A, Friedman 
AC, Kumar D, Van Heertum R, Kleber HD, Nunes E (2011) 
Imaging dopamine transmission in cocaine dependence: link 
between neurochemistry and response to treatment. Am J 
Psych 168:634–641.



Ballard et al.  |  9

Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, Hwang 
DR, Huang Y, Simpson N, Ngo K, Van Heertum R, Laruelle M 
(2001) Imaging human mesolimbic dopamine transmission 
with positron emission tomography: I. Accuracy and preci-
sion of D(2) receptor parameter measurements in ventral 
striatum. J Cereb Blood Flow Metab 21:1034–1057.

McCabe R, Hanson G, Dawson T, Wamsley J, Gibb J (1987) Meth-
amphetamine-induced reduction in D 1 and D2 dopamine 
receptors as evidenced by autoradiography: Comparison with 
tyrosine hydroxylase activity. Neuroscience 23:253–261.

Mendez IA, Simon NW, Hart N, Mitchell MR, Nation JR, Wellman 
PJ, Setlow B (2010) Self-administered cocaine causes long-
lasting increases in impulsive choice in a delay discounting 
task. Behav Neurosci 124:470–477.

Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ 
(1984) A quantitative model for the in vivo assessment of 
drug binding sites with positron emission tomography. Ann 
Neurol 15:217–227.

Monterosso JR, Ainslie G, Xu J, Cordova X, Domier CP, London ED 
(2007) Frontoparietal cortical activity of methamphetamine-
dependent and comparison subjects performing a delay dis-
counting task. Hum Brain Mapp 28:383–393.

Mueller ET, Landes RD, Kowal BP, Yi R, Stitzer ML, Burnett CA, 
Bickel WK (2009) Delay of smoking gratification as a labora-
tory model of relapse: effects of incentives for not smoking, 
and relationship with measures of executive function. Behav 
Pharmacol 20:461–473.

Mukherjee J, Yang Z-Y, Das MK, Brown T (1995) Fluorinated 
benzamide neuroleptics—III. Development of (S)-N-[(1-allyl-
2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2,3-dimeth-
oxybenzamide as an improved dopamine D-2 receptor tracer. 
Nucl Med Biol 22:283–296.

Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL, Buch-
heimer N, Ehrenkaufer R, Mach RH (2006) PET imaging of 
dopamine D2 receptors during chronic cocaine self-adminis-
tration in monkeys. Nat Neurosci 9:1050–1056.

Paine TA, Dringenberg HC, Olmstead MC (2003) Effects of chronic 
cocaine on impulsivity: relation to cortical serotonin mecha-
nisms. Behav Brain Res 147:135–147.

Passetti F, Clark L, Mehta MA, Joyce E, King M (2008) Neuropsy-
chological predictors of clinical outcome in opiate addiction. 
Drug Alcohol Depend 94:82–91.

Pattij T, Janssen MC, Schepers I, Gonzalez-Cuevas G, de Vries TJ, 
Schoffelmeer AN (2007) Effects of the cannabinoid CB1 recep-
tor antagonist rimonabant on distinct measures of impulsive 
behavior in rats. Psychopharmacology (Berl) 193:85–96.

Payer D, Balasubramaniam G, Boileau I (2014) What is the role 
of the D receptor in addiction? A mini review of PET studies 
with [C]-(+)-PHNO. Prog Neuropsychopharmacol Biol Psychia-
try 52:4–8. 

Peters J, Buchel C (2011) The neural mechanisms of inter-tempo-
ral decision-making: understanding variability. Trends Cogn 
Sci 15:227–239.

Puig S, Marie N, Benturquia N, Noble F (2014) Influence of cocaine 
administration patterns on dopamine receptor regulation. 
Psychopharmacology (Berl) 231:3131–3137. 

Richards JB, Sabol KE, de Wit H (1999) Effects of methampheta-
mine on the adjusting amount procedure, a model of impul-
sive behavior in rats. Psychopharmacology (Berl) 146:432–439.

Robertson CL, Chudzynski J, Rawson R, Cooper CB, Mooney L, Brown 
AK, Mandelkern MA, Ishibashi K, London ED (2013) Dopamine 
D2/D3 receptor recovery with methamphetamine abstinence 
and exercise. Program No. 817.05. 2013 Neuroscience Meeting 
Planner. San Diego, CA: Society for Neuroscience, 2013.

Roesch MR, Takahashi Y, Gugsa N, Bissonette GB, Schoenbaum G 
(2007) Previous cocaine exposure makes rats hypersensitive 
to both delay and reward magnitude. J Neurosci 27:245–250.

Secades-Villa R, Weidberg S, Garcia-Rodriguez O, Fernandez-
Hermida JR, Yoon JH (2014) Decreased delay discounting in 
former cigarette smokers at one year after treatment. Addict 
Behav 39:1087–1093.

Sheffer C, Mackillop J, McGeary J, Landes R, Carter L, Yi R, Jones 
B, Christensen D, Stitzer M, Jackson L, Bickel W (2012) Delay 
discounting, locus of control, and cognitive impulsiveness 
independently predict tobacco dependence treatment out-
comes in a highly dependent, lower socioeconomic group of 
smokers. Am J Addict 21:221–232.

Shiels K, Hawk LW, Jr., Reynolds B, Mazzullo RJ, Rhodes JD, Pelham 
WE, Jr., Waxmonsky JG, Gangloff BP (2009) Effects of methyl-
phenidate on discounting of delayed rewards in attention def-
icit/hyperactivity disorder. Exp Clin Psychopharm 17:291–301.

Stanger C, Ryan SR, Fu H, Landes RD, Jones BA, Bickel WK, Bud-
ney AJ (2012) Delay discounting predicts adolescent sub-
stance abuse treatment outcome. Exp Clin Psychopharm 
20:205–212.

Sun J, Xu J, Cairns NJ, Perlmutter JS, Mach RH (2012) Dopamine 
D1, D2, D3 receptors, vesicular monoamine transporter 
type-2 (VMAT2) and dopamine transporter (DAT) densities in 
aged human brain. PLOS One 7:e49483.

Sun J, Cairns NJ, Perlmutter JS, Mach RH, Xu J (2013) Regulation 
of dopamine D receptor in the striatal regions and substantia 
nigra in diffuse Lewy body disease. Neuroscience 248C:112–126.

Trifilieff P, Martinez D (2014) Imaging addiction: D2 receptors 
and dopamine signaling in the striatum as biomarkers for 
impulsivity. Neuropharmacology 76(Pt B):498–509.

Vandehey NT, Moirano JM, Converse AK, Holden JE, Mukherjee 
J, Murali D, Nickles RJ, Davidson RJ, Schneider ML, Christian 
BT (2010) High-affinity dopamine D2/D3 PET radioligands 
18F-fallypride and 11C-FLB457: a comparison of kinetics in 
extrastriatal regions using a multiple-injection protocol. J 
Cereb Blood Flow Metab 30:994–1007.

Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, 
Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong 
C, Pappas N (2001) Low level of brain dopamine D2 receptors 
in methamphetamine abusers: association with metabolism 
in the orbitofrontal cortex. Am J Psych 158:2015–2021.

Vučcković MG, Li Q, Fisher B, Nacca A, Leahy RM, Walsh JP, 
Mukherjee J, Williams C, Jakowec MW, Petzinger GM (2010) 
Exercise elevates dopamine D2 receptor in a mouse model 
of Parkinson’s disease: In vivo imaging with [18F] fallypride. 
Mov Disord 25:2777–2784.

Wang GJ, Smith L, Volkow ND, Telang F, Logan J, Tomasi D, Wong 
CT, Hoffman W, Jayne M, Alia-Klein N, Thanos P, Fowler JS 
(2012) Decreased dopamine activity predicts relapse in meth-
amphetamine abusers. Mol Psychiatry 17:918–925.

Washio Y, Higgins ST, Heil SH, McKerchar TL, Badger GJ, Skelly 
JM, Dantona RL (2011) Delay discounting is associated with 
treatment response among cocaine-dependent outpatients. 
Exp Clin Psychopharm 19:243–248.

Wesley MJ, Bickel WK (2014) Remember the future II: meta-anal-
yses and functional overlap of working memory and delay 
discounting. Biol Psychiatry 75:435–448.

Wileyto EP, Audrain-Mcgovern J, Epstein LH, Lerman C (2004) 
Using logistic regression to estimate delay-discounting func-
tions. Behav Res Meth Ins C 36:41–51.

Winstanley CA (2011) The utility of rat models of impulsivity in 
developing pharmacotherapies for impulse control disorders. 
Br J Pharmacol 164:1301–1321.



10  |  International Journal of Neuropsychopharmacology, 2015

Wiskerke J, Stoop N, Schetters D, Schoffelmeer AN, Pattij T (2011) 
Cannabinoid CB1 receptor activation mediates the opposing 
effects of amphetamine on impulsive action and impulsive 
choice. PLOS One 6:e25856.

Wu Y, Carson RE (2002) Noise reduction in the simplified refer-
ence tissue model for neuroreceptor functional imaging. J 
Cereb Blood Flow Metab 22:1440–1452.

Yi R, Johnson MW, Giordano LA, Landes RD, Badger GJ, Bickel WK 
(2008) The effects of reduced cigarette smoking on discounting 
future rewards: an initial evaluation. Psychol Rec 58:163–174.

Yoon JH, Higgins ST, Heil SH, Sugarbaker RJ, Thomas CS, Badger 
GJ (2007) Delay discounting predicts postpartum relapse to 
cigarette smoking among pregnant women. Exp Clin Psy-
chopharm 15:176–186.

Zorick T, Lee B, Mandelkern MA, Fong T, Robertson C,  
Ghahremani DG, Brown AK, Sumerel B, London  
ED (2012) Low striatal dopamine receptor availability  
linked to caloric intake during abstinence  
from chronic methamphetamine abuse. Mol Psychiatry 
17:569–571.




