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Abstract

Modeling and Analysis of Bacterial Survival Strategies

by

Michael Toshiro Morimoto

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Kameshwar Poolla, Chair

An interesting way to study biological systems is from the perspective of control theory.
Most of these systems can only operate within a narrow range of conditions, and exter-
nal disturbances typically conspire to push them out of their normal operating domains.
This has necessitated the development of mechanisms for physiological and environmental
sensing to ensure that vital internal variables are regulated. Without these feedback control
systems, life itself would be impossible due to daily and seasonal variations in environmental
conditions. Survival therefore depends largely on the effectiveness of these control systems,
and it is commonly assumed that natural selection has led to the evolution of optimal con-
trol strategies. This framework of evolutionary optimality is used in this dissertation to
examine sporulation, a bacterial survival strategy employed by Bacillus subtilis.

Sporulation is the process of forming a morphologically-distinct, dormant structure that
is able to withstand severe environmental insults. This dormant cell structure, called an
endospore (or spore), is typically formed in response to nutrient limitation or other environ-
mental signals associated with low food supply. A signal transduction pathway integrates
intra- and extra-cellular signals to arrive at a decision to sporulate, effectively acting as
a control mechanism that allows survival in the face of environmental nutrient limitation
and other serious disturbances. In the framework of evolutionary optimality, this control
strategy is hypothesized to be optimal in the sense of maximizing a fitness reward function
for the B. subtilis colony.

In this dissertation, sporulation is analyzed from this perspective to uncover some inter-
esting characteristics of the decision policy. It is shown that sporulation provides a higher
fitness than a simpler bacterial survival strategy with many of the same benefits (called
dormancy in this study). The particular environment in which this is verified features a
catastrophic event several generations into the future, after which only the survival struc-
tures remain. This result agrees with the morphological differences between a spore and a
simple dormant cell. Moreover, the optimal sporulation policy qualitatively agrees with ex-
perimental data, while the optimal dormancy strategy is significantly different from observed
behavior in literature studies. These results offer a candidate evolutionary justification for
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the existence of sporulation.
Fitness-maximizing sporulation policies are then studied in the contexts of simple

population-level models with food-per-growing-cell rate dependencies. Since the results
for a single population model are not consistent with expected results, a second model is
postulated based on resource competition between two bacterial populations. The competi-
tive exclusion principle is shown to hold for the proposed model structure, which provides an
extension of previous resource competition results due to the sporulation model’s “storage-
like” spore states. For specialized cases of this competing populations model (birth and
death rates equal for both populations), an approximation of the steady state solution is
derived and input-output stability is analytically proved using perturbation methods. Both
of these are notable due to the model’s non-unique steady state solutions and the nonlinear-
ity of the proposed model. Though the steady state approximation imposes nutrient influx
changes to be small, it is intended to model adiabatic system trajectories for slowly-changing
nutrient conditions. In response to these changes, a game theoretic analysis yields two poli-
cies that cannot be invaded by rare mutants: 100% steady state sporulation efficiency if
nutrient influx decreases on average, and 0% steady state sporulation efficiency if nutri-
ent influx increases on average. Evolutionary dynamics are introduced to model changes
between these two optimal policies, and the nutrient influx is assumed to randomly switch
between positive and negative values based on a two-state Markov chain. A non-equilibrium
policy is derived for these modeling and environmental conditions, which is much closer to
experimental data than the optimal policies. The “choice” of the non-equilibrium policy
over the optimal policies is then examined in a prospect theory framework, and it is shown
that the preference of the non-optimal policy could be explained with appropriate shifts
of reference: when nutrient influx increases on average, the bacterium expects the worst
(pessimistic), and when nutrient influx decreases on average, the bacterium expects the
best (optimistic). While the non-equilibrium policy appears to fall within the class of bet-
hedging (risk-spreading) strategies, this is not the case as the probability of population
extinction is not decreased.

The work presented in this dissertation yields some interesting results on B. subtilis
behavior, some of which may generalize to other organisms that are capable of entering an
inactive state.
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Chapter 1

Introduction

Biological organisms are intricately engineered systems. With few exceptions (such as show
animals from fancy breeds), they are designed to maximize the survival of their species.
With over 3.5 billion years of research and development by evolution to address this ob-
jective, biological organisms have evolved into extremely complex systems. For example:
human arms have more degrees of freedom (seven) and muscle groups than are necessary for
three-dimensional positioning, yet most human beings are able to use this redundancy to
improve performance or adapt to internal/external changes [136, 143]; human kidneys ex-
crete blood-borne waste by non-selective filtration followed by selective re-absorption, which
allows unanticipated toxins to be excreted from the body [269]; and the metabolic path-
ways that are conserved across most living organisms are composed of extremely complex
interconnected subsystems (a simplified map is shown in Figure 1.1).

Despite these apparent complexities, biological systems exhibit resilient multi-functional
properties and robust architectures [36, 46]. From an engineering point of view, many
biological organisms appear to be the products of carefully-engineered designs. Realizing
the paramount goal of improving survival draws on diverse elements from many engineering
disciplines, ranging from mechanical engineering to materials science. For example:

1. The dimorphic chelae (claws) of many American lobsters differ in size and design
according to functionality. The smaller chela typically holds prey while the larger chela
crushes its shell, a strategy that is possible due to the disparity between mechanical
advantages of the chelae. Studies on some species have shown that the larger chela
has twice the mechanical advantage of the smaller chela [68].

2. Flying fish (family Exocoetidae) exhibit “good aerodynamic designs,” such as hyper-
trophied fins and a cylindrical body with a ventrally flattened surface, for proficient
gliding flight. Behavioral aspects of flying fish suggest that they initiate flight patterns
with a maximum lift coefficient and follow maximum-distance gliding paths [196].

3. The hypodermal blubber layer in marine mammals primarily serves to insulate and
provide energy reserves. Blubber in harbor seals experiences seasonal variations in
volume, mean depth, and ratio of blubber depth to body radius (d/r ratio). The d/r
ratio exhibits relatively small temporal and spatial variations (along the body length)
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Figure 1.1: Metabolic pathways, from Kanehisa and Goto [134].
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for a single seal, and blubber is preferentially lost from over-insulated areas of the
body. This suggests that blubber mass is adjusted to maintain maximal insulation
effectiveness [223].

4. Besides their obvious uses in dexterous maneuvers, human hands aid in body tem-
perature regulation. Some of the responses to increased core body temperature are
vasodilation of skin vessels and sweating [269], which increases the heat transfer away
from the body. The high surface area to volume ratio of a human hand makes it
extremely adept at cooling, much like fins or extended surfaces. Studies have shown
that hand cooling during exercise attenuates the rise in tympanic temperature and
may increase certain measures of exercise performance [119].

5. Wood is widely used as an engineering material because it has a remarkable combina-
tion of mechanical properties. On a normalized mass basis (accounting for densities),
wood has comparable stiffness, strength, and toughness (in certain orientations to the
grain) to aluminum, steel, and other glass-fiber composites [124].

6. Silk produced by spiders and other insects has very high strength, stiffness, and tough-
ness in both compression and tension, is reliable across a wide range of temperatures
and humidities, and is biodegradable [260]. Dragline silk is three times as tough as
aramid fibers and five times stronger (by weight) than steel. Spider silk has sig-
nificantly influenced the design of high-performance materials that may be used in
applications requiring high energy absorption and elongation [149].

There are countless other examples from which to draw, but the point is clear: Studying bi-
ological organisms from an engineering point of view is natural due to the design philosophy
behind most evolved traits, where functionality to improve survival is prized and rewarded.
In fact, biological systems often provide inspiration for the design of actual engineering
systems, which has spawned the relatively new paradigm of biomimicry [19].

One of the most striking features of biological systems is their ability to contend with
unknown environmental conditions. Though many are deliberately over-designed for average
use (e.g. bone thickness [233]), most are able to adapt to various situations by means of
sensor measurements and feedback control. This pervasive trait is briefly reviewed in the
next section.

1.1 Control systems in biology

One of the most interesting engineering perspectives of biological organisms and systems
comes through the lens of control theory. The study of feedback systems is a natural
framework within which to study biological organisms because they are constantly changing
and interacting with surrounding environments. Survival is intimately related to these a
priori unknown conditions, which has necessitated the evolution of sensing mechanisms to
help regulate key biological variables that are influenced by wide ranges of disturbances. For
example, many animals rely on sight or smell to detect predators, which is processed in the
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brain to create control signals to actuate muscles in the legs. At the highest levels, feedback
is involved in path planning and conscious decision-making, and at lower levels, feedback
is involved in muscle recruitment and balance. Even the evolutionary histories of biological
traits can be studied from a control theory point of view, where optimal control provides
a compelling interpretation of natural selection. Many interesting biological phenomenon
have simple feedback interpretations [46], which makes control theory a powerful tool to use
in the study of biological systems.

An exhaustive survey of control systems in biological organisms and systems is beyond
the scope of this dissertation. In just one field of biology (e.g. physiology, molecular cell
biology, or evolutionary biology), this would prove to be a monumental task. However, to
provide some idea of the broad applicability of control theory, three examples are listed
below:

1. Motor control: Skeletal muscle movements rely on a hierarchy of interrelated control
systems. For example, grasping a coffee mug on the kitchen table would be nearly
impossible without visual or tactile feedback. On top of this, equilibrium organs aid
in balancing while the arm is outstretched, and initial visual localization is used to
plan a spatial path to the final hand position. Though it may seem that feedforward
control may be able to accomplish seemingly trivial tasks such as walking or grabbing
objects, feedback is essential for these operations at most levels.

At the lowest levels, mechanical feedback is provided by the viscoelastic behavior of the
musculoskeletal system in its resistance to deformation, which has a stabilizing effect
on the high neural controller gains [52]. Slightly higher in the control hierarchy is the
neuronal feedback provided by the stretch reflex arcs, which help to regulate the mag-
nitudes and dynamics of force and length in the musculoskeletal system. Higher still
are the neuronal control loops which create large-scale muscle movements, which are
affected by tonic input from directional sensors, equilibrium organs, and mechanosen-
sory cells [52]. These are responsible for directing an animal to a desired location or
providing stabilization in the face of environmental perturbations. Additionally, com-
bined with the lower-level control loops, neuronal control systems help to regulate and
coordinate force generation and braking mechanisms that are essential for quick, accu-
rate, and harmonized movements [221]. Finally, at the highest level, neuronal control
in the higher centers of the brain relies on visual, olfactory, auditory, or other sensors
to command voluntary changes in muscle movement that are essential for guidance,
obstacle avoidance, hunting prey, or avoiding predators [52].

It is evident that the musculoskeletal movements can be represented as the product of a
complex, interconnected control system. Analysis is difficult since it is a distributed,
nonlinear, time-varying control system with redundancies on many levels [136]. In
particular, dissecting the controllers involved in path planning and overall muscle
movements is difficult, though observed muscle movements have been replicated by
assuming the nervous system minimizes an objective function that relies on jerk [136].

2. Biochemical networks: Genetic and protein cellular networks are widely studied
systems where control theoretic ideas have brought a deeper understanding of underly-
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ing processes. Though comparatively straightforward, these networks are responsible
for some extremely important cellular phenomena. For instance, they govern and
regulate processes such as the management of intracellular energy stores, the estab-
lishment of periodic cycles or rhythms, and gene expression and enzyme activation due
to environmental stimuli. It has been shown that some models of these networks can
reproduce many cellular processes, most of which contain feedback properties. These
applications of control theory were significant enough to cause Brian Goodwin (a key
contributor to early theoretical biology) to declare “the demonstration of negative
feedback control processes operating at the molecular level in cells is one of the most
significant developments in modern biology” [89].

One ubiquitous example of a biochemical network with feedback is the repression of
mRNA synthesis by a protein encoded by that mRNA or a metabolite formed under
the catalytic control of the protein [92]. In this case, the feedback is often negative
and nonlinear, since a simplified representation of protein (repressor) binding dynam-
ics leads to Michaelis-Menton kinetics [252]. Some examples of this general network
structure are the synthesis of the protein PER, which plays a crucial role in circa-
dian rhythms in Drosophilia, and the regulation of the enzyme phosphofructokinase
(PFK), which allows the formation of adenosine triphosphate (ATP) from adenosine
diphosphote (ADP) during glycolysis [252]. PER proteins inhibit the transcription of
their own mRNA while PFK activity is inhibited and triggered by ATP and ADP,
respectively. Slightly more complicated is the case of a regulator/operator gene that
controls the synthesis rate of a different protein through cytoplasmic interactions,
where the regulator protein is sensitive to environmental stimuli [122]. Examples of
this system structure are the lac operon in E. coli, which is only expressed when lac-
tose and glucose are high and low, respectively [122, 222], and the regulation of two
cyclins in well-nourished yeast cells, which are important for normal growth and di-
vision [252]. Expression of the lac operon is negatively-regulated by the lac repressor
and positively-regulated by the catabolite gene activator protein (CAP), while the
cyclins and their associated kinase subunits affect their own synthesis and the synthe-
sis/degradation of the other cyclin to produce periodic accumulation and degradation
of both proteins.

More complex biochemical networks exist (see Figure 1.1), but even in these higher-
order systems, feedback is invariably present [65]. Control theory has provided tools
for the analysis of biological systems, and conversely, complex biochemical networks
have provided inspiration for new analytical results for general control systems (for
example, see [229]).

3. Blood glucose control: Some of the most immediate applications of control the-
ory in biology are the physiological systems that maintain homeostatic conditions in
the human body. For example, blood pressure, blood acidity, and electrolyte balance
are all tightly regulated in a disease-free human. Each of these physiological vari-
ables varies narrowly around an operating point using biological sensors, actuators,
and controllers. The blood pressure system, for instance, uses baroreceptor pressure
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sensors in the carotid arteries and aortic arch to measure arterial pressure, and the
central nervous system (medullary cardiovascular center in the medulla oblongota)
sends signals to the peripheries and heart to affect total peripheral resistance (via
arterioles constriction) and cardiac output, respectively [269]. In the long term, blood
volume regulation by renal mechanisms also plays a major factor in blood pressure
control.

One of the most interesting homeostatic control systems is the relatively tight reg-
ulation of blood glucose (BG) levels. This control system is extremely important
because central nervous system cells use BG almost exclusively for fuel under non-
starvation conditions (most other cells have intracellular fuel stores such as glycogen)
[269]. Negative deviations from normal BG levels (hypoglycemia) lead to alterations
in neural activity due to lack of fuel, ranging from subtle impairment of neural activity
to seizures, coma, or even death; deviations in the positive direction (hyperglycemia)
lead to excess glucose, ketone, sodium, and water excretion in the urine, which reduces
blood volume, blood pressure, and brain blood flow, and increased blood hydrogen
ion concentrations due to accumulation of ketones in the blood, which can cause brain
dysfunction [269]. To maintain proper neural activity, tight BG regulation is required.
This objective is often challenged by extremely variable food levels in the gut.

A balanced meal contains all three of the major nutrients– carbohydrates, proteins,
and fat– with the majority of the energy content coming from carbohydrates [269]. For
the purposes of BG control, proteins and fat will be ignored in the sequel. Food enters
the gastrointestinal tract, where salivary and pancreatic amylases produce products
that are broken down into monosaccharides (glucose, galactose, and fructose) by en-
zymes in the luminal membranes of the small intestine epithelial cells [269]. These
monosaccharides are transported into the blood and into the liver, where galactose
and fructose are converted to glucose or enter similar metabolic pathways to glucose.
The meal therefore acts to raise BG levels when food is in the gut, which is emptied
approximately four hours after ingestion [269].

To deal with this irregular supply of BG, the human body has developed a control
system with BG sensors, actuators, and controllers. The BG sensors are pancreatic β-
and α-cells, neural cells, other endocrine cells, and possibly liver cells; the main actu-
ators are various hormones released by pancreatic β-cells (insulin), α-cells (glucagon),
adrenal medulla (epinephrine), and adrenal cortex (cortisol); and the controllers are
distributed throughout the pancreas and central nervous system [269]. Insulin is the
main control signal, which triggers the net uptake, utilization, and storage of fuel in
cells when blood insulin levels are high, and the net release and breakdown of stored
fuels when insulin levels are low. The effect of increased insulin levels is a reduction in
BG levels, so it is no surprise that insulin levels increase after meal ingestion. Interest-
ingly, there is a feedforward component of insulin release that is triggered from the gut,
which provides an increase of insulin levels before BG levels rise. Glucagon is released
when BG levels fall too low, which causes the breakdown and release of stored fuel
in the liver. The stress hormones epinephrine and cortisol are also released when BG

6



levels decrease below the operating point, which both act to increase the breakdown
and release of fuel in the liver, skeletal muscle, and fat cells [269]. These hormones that
oppose the action of insulin and raise BG levels are called glucose-counterregulatory
controls.

Control theory is being used to develop treatments for a pathology in the BG con-
trol system. Type-I diabetes mellitus patients suffer from an autoimmune disorder in
which the pancreatic β-cells are destroyed, effectively wiping out the main BG sensor
and actuator from the BG feedback interconnection. Until recently, all type-I dia-
betics used insulin injections and irregular BG measurements (via finger pricks) as a
surrogate for the controller, but we are now on the verge of a closed-loop mechanical
system based on (nearly) continuous BG measurements and continuous infusion of
insulin. Successful and safe implementation of the so-called “artificial pancreas” will
be one of the crowning achievements of control theory applications, but complexities
in BG dynamics, large disturbances, and significant inter- and intra-patient variabil-
ity present serious roadblocks [20]. These obstacles have prompted many different
approaches and controller designs for automatic BG regulation for type-I diabetics
[16, 118, 199].

Control theory can also provide analysis tools for biological behavior, where decisions
are made in response to environmental stimuli or conditions. This interesting perspective
is covered in the next section.

1.2 Control systems in behavior

The motor control overview in the previous section alluded to an interesting application
of control theory. The highest level of the control hierarchy lies in advanced brain centers
which integrate sensor signals to command high-level voluntary changes in muscle move-
ment. These commands are used to trace paths which are chosen on the basis of some
performance criterion. For example, the highest level motor controller will coordinate mus-
cles to move away a predator with a survival maximization goal, move in a straight line
between two points for a distance minimization goal, or move along the path of least resis-
tance in an energy minimization goal. Interestingly, all of these commands are the results
of conscious thought, where biological behavior is used as “actuation” to accomplish the
objective. Though lower-level control systems are involved in the execution of the chosen
behavior (i.e. regulation of Ca2+ during muscle shortening or temporal recruitment of motor
units during whole-muscle contractions [269]), the highest-level controller provides a general
“plan” that the lower-level systems aim to accomplish.

For human beings, these highest-level control actions (behaviors) are typically the results
of conscious thought. Information is gathered by our senses, processed in the nervous system,
and integrated into the pathways that determine our behavior. Unlike many physiological
control systems that operate autonomously from conscious thought, behavioral actions can
often be influenced by our awake, alert state. We are therefore actively participating “in
the loop” of this control system, which is an interesting departure from most control theory
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applications. This means that everything that can be accessed from consciousness (and
unconscious thoughts in many cases) affects the behavioral outcome to a set of environmental
stimuli, which adds considerable complexity to this problem. Life histories, for example,
may affect our behaviors when confronted with a particular task; a dark, forbidding path
may be preferred over a sunny, well-lit path for someone who does not watch cartoons or has
had positive experiences with dark paths in the past. Indeed, this complexity in behavioral
outcomes is a reflection of the complexity of the brain itself– one neuron may be connected
(via synapses) to as many as 2 × 105 other neurons, and there is still a great deal that is
still unknown about brain function and consciousness [269].

Despite the complexities involved in conscious decision-making, the resulting behaviors
are typically driven by the same objective as other biological systems: maximization of
survival. Analysis of animal behavior usually adopts this paradigm of natural selection,
where it is assumed that decision makers with higher survival will more heavily influence the
propensities of future generations than decision makers with lower survival (see Chapter 2).
Of course, since conscious decision-making is influenced by life history, survival-maximizing
behavior will not always be observed experimentally. Hypothesizing that decisions are made
to maximize some measure of survival is an intuitive and simple way to analyze animal
behavior.

Examples of survival-maximizing behavioral mechanisms resulting from high-level
decision-making include:

1. Core temperature in the human body is tightly regulated to insulate vital biochem-
ical reactions from fluctuating external temperatures and to protect against nerve
malfunction and protein denaturation [269]. Though lower-level control systems exist
(shivering thermogenesis or sweating), behavioral mechanisms are used to help regu-
late core temperature. For example, a reduction in surface area by curling up into a
ball reduces heat loss by radiation and conduction, while adding or removing clothing
can decrease or increase heat loss, respectively. Choice of surroundings is another
behavioral mechanism to aid thermoregulation, where a preference for shade will help
protect against hyperthermia.

2. Foraging is important for solitary animals with relatively high energy expenditures,
small energy stores, and periodic interruptions in feeding (e.g. small birds or rodents)
[270]. Survival-maximizing behavioral mechanisms have resulted in risk sensitive for-
aging for animals in experimental settings. For example, if an animal is offered a choice
between two food rewards where one amount is deterministic at the constant value
σ, and the other is random with expected value σ, it has been observed that most
animals will prefer the certain food choice when σ is large enough for survival and the
random food choice otherwise [220]. These behaviors have been labeled “risk averse”
and “risk seeking,” respectively. Intuitively, the deterministic food choice guarantees
survival when σ is large enough for survival, and the random food choice gives the
animal a chance of surviving when σ is too small for survival (there is a positive prob-
ability that the realization of food is large enough for survival). See Section 7.10.1 for
more details.

8



3. Economic theory usually assumes that survival is equivalent to monetary reward [241].
In this setting, humans seek to maximize their monetary assets by means of behavioral
mechanisms (e.g. decisions based on utility maximization). Interestingly, social exper-
iments have shown that behavior can be controlled by means of incentive or charging
mechanisms. For example, traffic congestion may be reduced by charging tolls during
peak commute times (reduction of monetary reward) or providing incentives during
off-peak times (augmentation of monetary reward). A six-month experiment was
performed in Bangalore that provided an incentive mechanism (credits in weekly lot-
tery drawings) to reduce morning commute times, and resulted in a drop of average
commute times from 71 minutes to 54 minutes [178]. The study was enthusiastically
adopted by commuters, management, and Indian national newspapers, which suggests
that it was successful in shaping the behavioral mechanisms of the participants.

One interesting aspect of behavioral control is the ability to qualitatively characterize
the controllers. Besides claiming optimality, characterizations can be borrowed from de-
scriptions of human decision-making. This is evident in the foraging example above, where
“risk averse” and “risk seeking” are used to characterize the behaviors (and controllers) of
foraging animals, depending on environmental conditions. Since behavior results from con-
scious decision-making, we are able to relate to these characterizations because it is easy to
imagine what we would do when placed in a similar situation. When formulated correctly,
these biological behavior control problems provide a fascinating interpretation of ourselves
and the biological organisms with which we share the world.

1.3 General research aims

The research presented in this dissertation explores a simple biological organism from a
control theoretic perspective. The intent is to characterize and gain a better understanding
of its observed behavioral mechanisms. More precisely, this research aims to answer the
following questions:

1. Why does a behavioral mechanism exist?

2. What is the optimal behavior under certain environmental conditions?

3. What are the characteristics of the actual, observed behavior? Is this behavior opti-
mal?

Of course, “optimality” will depend on the biological organism and specific circumstances
under which it is studied. For example, the optimal feeding behavior for a field mouse will
be very different than the optimal feeding behavior for a wolf pack. Nevertheless, most
behavioral mechanisms are assumed to optimize survival (which is context-specific) because
of natural selection, which provides a framework of evolutionary optimality in which to
perform the analysis. This allows the first two questions to be addressed in a straightforward
manner, and experimental data will provide the answer to the third question.
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The research platform used to address the research aims is the (relatively) well-
understood bacterium, Bacillus subtilis. It is a model organism for laboratory studies due
to its amenability to genetic manipulation [105], which has resulted in a comparatively
thorough account of its behavioral mechanisms. The particular behavior mechanism ex-
amined in this dissertation is the bacterium’s distinguishing ability to form an endospore
under adverse environmental conditions. Though seemingly a departure from conscious
decision-making, the “decision” to sporulate represents a high-level control system in the
bacterium’s physiology– several lower-level control systems are activated in response to the
sporulation decision. Since endospore formation directly affects survival, we can examine
this behavioral mechanism in the framework of evolutionary optimality to try to explain
and understand the existence of this survival strategy, optimal sporulation policies in dif-
ferent environmental conditions, and characterizations of actual, experimental sporulation
behaviors. In short, Bacillus subtilis provides an accessible system for which the general
research goals of this dissertation can be accomplished.

The objectives of this dissertation have been examined in the context of several other
biological organisms. Researchers have investigated the reasons for the existence of cer-
tain clutch sizes for birds [49, 171]; variability of hunting group numbers for African lions
[117]; intense bursts of song (the dawn chorus) by many songbirds [117]; ordering of the
T-cell independent immune response cascade [12]; stochastic phenotype switching in clonal
populations [1, 146]; and the dependence of international relations on the characteristics
of decision makers and context of the situation [172], to name a few examples. Though
this is a very small sample size of related research, all of the studies in the preceding list
were performed in the context of optimality, where the existence of a behavioral mechanism
was the result of a reward or survival maximization problem. In many cases, the optimal
behavioral mechanisms were found to be consistent with experimental observations, such as
hunting group numbers for lions, the dawn chorus, and ordering of immune response steps.
The experimental and theoretical consistencies in these studies, taken collectively, provide
compelling evidence of evolutionary optimality in real biological systems.

1.4 Summary of contributions

Several original results were obtained while addressing the general research aims of this
dissertation. These are summarized below:

1. Three population-level, phenomenological models were developed to capture the effects
of the decision to sporulate. A discrete time model based on a mean-valued, growing
collection of Markov chains provided the dynamics for examining a reason why sporu-
lation has evolved. A simpler, continuous time model with food-per-growing-cell rate
dependencies provided an optimal sporulation policy for a single colony, while a com-
peting populations model provided a different optimal policy based on evolutionary
stable strategies. Each model was able to capture population-level dynamical features
that experimental data revealed.

2. A possible reason for the existence of sporulation was postulated based on a com-
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parison to a similar survival strategy. This survival strategy, called dormancy, is a
relatively ubiquitous strategy that offers many of the same benefits as sporulation. It
was found that sporulation can confer higher fitness than dormancy in catastrophic
environments, which is consistent with the morphological differences between an en-
dospore and a dormant cell. The sporulation policy that maximized fitness in the
catastrophic environment was qualitatively much more similar to experimental data
than the optimal dormancy policy, which further supports the proposition that sporu-
lation has evolved specifically to deal with extremely harsh environmental conditions.

3. The competitive exclusion principle, a classical result in resource competition theory
where the population with the lowest equilibrium resource level competitively excludes
another population, was shown to apply for the general competing populations sporu-
lation model. In contrast to models typically exhibiting this principle, the sporulation
model had storage-like states that were immune from death by resource limitation (en-
dospores). Thus, the competitive exclusion principle was shown to apply to a broader
class of models than previously studied.

4. An analytical method to prove the input-output stability of the competing populations
model with identical birth and death rates was developed. This model was nonlinear,
had equilibrium values that depended on the initial conditions, and yielded a linearized
model with an eigenvalue at the origin, so the model could not be analyzed using many
classical techniques. Instead, perturbation methods were used to expand the states in
a power series of a perturbed variable, and it was analytically shown that the dynamics
of the expansion terms were each input-output stable. This allowed the stability of the
competing populations model with identical birth and death rates to be established
for the class of inputs considered in the subsequent analysis.

5. The optimal policy for the competing populations model was derived and charac-
terized. The optimal policy was derived as an evolutionary stable strategy (fitness
could not be increased by adopting another strategy), and the characterization was
performed in relation to a non-equilibrium policy converging towards the optimal
strategy. Prospect theory was used to show that the choice of the non-equilibrium
policy over the optimal policy is pessimistic during “good” times (nutrient influx in-
creasing on average) and optimistic during “bad” times (nutrient influx decreasing
on average). Since the non-equilibrium policy was qualitatively more consistent with
experimental observations than the optimal policy, it may be argued that Bacillus
subtilis exhibits optimistic and pessimistic behavioral mechanisms depending on the
environmental conditions.

The general contribution of the work done in this dissertation is an example of the
analysis of a biological system from a control theory point of view. This interdisciplinary
approach lead to small advancements in both fields, and added to the collection of interesting
research performed in this paradigm.
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1.5 Dissertation organization

Chapter 2 provides biological background information on Bacillus subtilis and evolutionary
biology. Included in the Bacillus subtilis background information are the signal integration
network responsible for the sporulation decision, the environmental variables that affect
sporulation, and the process of spore formation. The evolutionary biology background
focuses on defining and measuring fitness, which are key components of natural selection
and evolution. A presentation of the evolutionary optimality framework concludes the
chapter.

Chapter 3 provides background on the sporulating microcolony datasets that guided the
model development in this dissertation. Two of these datasets are presented and a modeling
exercise on parameter estimation is shown. This provides a more natural interpretation of
the datasets in terms of quantified sporulation decision policies.

A possible reason why sporulation exists (the first general research aim) is postulated in
Chapter 4. Background on dormancy is provided and the first sporulation model is derived.
A catastrophic environmental model is described, and evolutionary optimality is used to
derive the optimal sporulation and dormancy survival strategies. The chapter concludes
with some biological and experimental evidence that the proposed reason for sporulation
existence is not invalid.

Chapter 5 presents the second (single population) sporulation model, which is a simpler,
continuous time model. The rate dependencies are consistent with recent work on the
decision to sporulate. Evolutionary optimality is again used to find the fitness-maximizing
sporulation policy, which in this case is not consistent with experimental observations.
This necessitates the development of the competing populations model derived in the next
chapter.

Chapters 6 and 7 address the shortcoming of the single population, continuous time
model. Specifically, it is shown that the optimal policy for the single population model
does not produce the highest fitness under certain environmental conditions. Chapter 6
examines the competing populations model with different birth and death rates (for both
populations), where it is shown that the competitive exclusion principle holds (i.e. one
population becomes extinct). Chapter 7 examines the specialized case of identical birth
and death rates, where coexistence between two competing populations is possible. How-
ever, this model necessitates the development of a stability analysis based on perturbation
methods and an approximation of the steady state solution (since steady state values de-
pend on initial conditions). Since fitness depends on the competing population’s sporulation
strategy, an evolutionary stable strategy analysis allows the derivation of the optimal strat-
egy. Evolutionary dynamics and an environmental model are proposed, which allows a
non-equilibrium strategy to be derived and compared to the optimal strategy and a broader
class of risk-spreading strategies. The chapter concludes with the results of the comparisons
and some possible drawbacks of the analysis.

The last chapter provides general conclusions from the research performed in this dis-
sertation. General future research directions are suggested to complete the main body of
text. Appendices A and B provide supporting material for many of the presented results.
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Chapter 2

Biological Background

2.1 Bacillus subtilis background

2.1.1 Overview

Bacillus subtilis is a member of the genus Bacillus, which is one of the most diverse and
commercially useful groups of microorganisms that is composed of all endospore-forming,
Gram-positive, rod-shaped, straight or nearly straight bacteria capable of growing aerobi-
cally [39, 102]. Bacillus species are used commercially for producing enzymes, antibiotics,
fine biochemicals such as flavor enhancers and food supplements, and insecticides, and are
classified as “generally recognized as safe” by the FDA (though B. anthracis and B. cereus
are pathogenic to humans, and B. thuringiensis produces an insecticide) [102]. Found al-
most everywhere in nature, Bacillus species are generally not studied in great detail due
to their non-pathogenesis, which induces a lack of interest or funding [217]. This general
dearth of information does not hold true for B. subtilis, though, which is one of the most
intensively-studied and well-understood bacteria known today.

B. subtilis was discovered in 1835 (named Vibrio subtilis at the time), one of the first
species of Bacillus to be characterized [39]. Primarily known for its ability to form en-
dospores and ease of genetic manipulation, B. subtilis is a relatively benign bacteria with
several biotechnological uses [105]. One of the enzymes it produces, subtilisin, is an alkaline
protease that accounts for a large portion of the world enzyme market due to its use in de-
tergents [97]. Other B. subtilis practical applications include veterinary food supplements
[8, 154], probiotics [115], fermentation agents [120], and biofungicides [187].

Isolates of B. subtilis have been found all over the world, from deserts to the Antarctic
[217]. Though difficult to ecologically classify due to endospore transport by wind [63], B.
subtilis has been collected from a variety of different habitats. Primarily characterized as a
soil-dwelling microorganism, this bacteria has been shown to vegetatively grow in soil-like
conditions [190], which suggests that the soil is more than an accumulation location for wind-
borne endospores. Indeed, many of the natural B. subtilis isolates studied in the literature
are taken from soil samples. Found in low-organic content soils [168, 217] to nutrient-rich
soils [240], B. subtilis can flourish in a variety of different environments. Strains have been
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Figure 2.1: Sporulating microcolony of B. subtilis. The white, small objects in some of the
cells are the precursors to spores. This colony was transformed to create yellow fluorescent
protein when rapA is expressed, cyan fluorescent protein when spoIIA is expressed, and red
fluorescent protein when spo0A is expressed. See Section 2.1.3 for more details.

isolated from plant root surfaces, where it is believed they have a symbiotic relationship with
plants [63], and even in marine (primarily coastal) and freshwater environments [217]. Due
to is pervasiveness in soil, water, and plants ecosystems, B. subtilis can be found in various
foods such as spices, cocoa, milk, seeds, and bread [217]. This, in turn, leads to bacterial
samples found in animal and human feces, though it has long been thought that the passage
through the gastrointestinal tract is transient. However, recent evidence suggests that B.
subtilis can grow and divide inside chicken, pig, and human GI tracts [8, 116, 154, 248] due
to the presence of genes encoding for a respiratory nitrate reductase, which allows anaerobic
growth in the presence of nitrate [63]. Given the extent of its presence, we are fortunate
that B. subtilis is generally considered a harmless microorganism (though there have been
a few cases of food poisoning and open wound infections [86]).

There is an abundance of B. subtilis bacteria is the research laboratory because B.
subtilis is a model bacterial organism [105]. It is genetically and physiologically one of the
most well-understood bacteria (second only to Escherichia coli) due to its ease of isolation
and “simple” process of cellular differentiation. This differentiation process, the outcome
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of which is a bacterial endospore (or spore in the sequel), has provided the richest area of
research on this microorganism [102]. First observed by Ferdinand Cohn in 1876, spores
are the final product of a bacterial survival strategy to protect against harsh environmental
conditions (even extraterrestrial environments [188]). They are resistant to a variety of
noxious treatments, which makes B. subtilis spores important to food-processing and sterile
products industries. However useful this research may be for addressing B. subtilis ’s more
harmful relatives, the main thrust of B. subtilis research is the cellular differentiation process
itself. Though relatively simpler than other cellular differentiation processes (e.g. human
stem cells), the process of forming spores is very complex, both in its biochemistry and the
mechanisms used for control [102]. The following sections provide a brief overview of this
defining feature of B. subtilis.

2.1.2 Sporulation

Sporulation is a process where a B. subtilis bacterium forms a resilient, metabolically in-
active, and morphologically distinct cell type that is capable of reanimation (germination)
in the future [70, 109]. This event is primarily triggered by nutrient deprivation and pro-
tects against possible environmental stressors such as heat, radiation, and harmful chemicals
[55, 211, 236]. Sporulation has evolved to deal with unfavorable environmental conditions,
as it allows a cell to preserve its genome until favorable conditions return. Though other bac-
terial survival strategies exist (e.g. persistence, see Section 4.2), spore morphology suggests
that sporulation is tailored to survival in extreme environmental conditions.

B. subtilis spores have special features that protect them from environmental insults;
see Nicholson et al. for a detailed review [188]. The spore coat provides the first line of
defense against harmful conditions, particularly noxious chemicals (iodine, glutaraldehyde,
and peroxides), due to its relative impermeability that prevents peptidoglycan-lytic enzymes
from entering the spore cortex. Further inside the spore, the reduced water content in the
core protects against wet heat damage and is hypothesized to provide resistance against
γ-radiation. The relatively high mineral content of the spore core (particularly Ca2+) con-
tributes to wet and dry heat resistance as well as protection against oxidizing agents. Finally,
spore DNA is specifically protected by α/β-type small, acid-soluble proteins (SASP), which
saturate DNA to straighten, stiffen, and shape the DNA to an α-like helix. This has been
shown to protect against desiccation (dehydration), wet and dry heat, UV radiation, alky-
lating agents, and formaldehyde. Damaged spore DNA can be repaired during germination,
where experimental studies of spores lacking DNA repair mechanisms were susceptible to
desiccation, dry heat, γ-radiation, UV radiation, alkylating agents, and formaldehyde. Fig-
ure 2.2 shows the general structure of a spore. Though many of the factors involved in spore
resistance and longevity are still unknown, it is clear that a spore provides a very secure
storage site for bacterial DNA.

The process of spore formation is irreversible after the earliest stages are completed [198,
247]. In other words, if nutrient deprivation triggers the formation of a spore but nutrients
are reintroduced during the spore formation process, the B. subtilis bacterium will continue
to form a spore until it is finished. This will place the bacterium at a severe competitive

15



Figure 2.2: General structure of bacterial endospores, from Dragon and Rennie [53].

disadvantage against other bacteria that made the “correct” sporulation decision. Therefore,
the decision to sporulate should not be taken lightly by the cell. Since the survival and
competitive ability of the colony depend on making the correct sporulation decision at the
right time, it is expected that a relatively sophisticated mechanism governs the decision to
sporulate. This cellular mechanism, called the phosphorelay, is reviewed in the next section.

B. subtilis is not the only bacteria that is capable of forming spores. Other sporu-
lating bacteria include: Sporosarcina spp., Sporohalobacter spp., Sporolactobacillus spp.,
Clostridium spp., Anaerobacter spp., Desulfotomaculum spp., Heliobacterium spp., Helio-
philum spp, and other Bacillus spp. [188]. Table 2.1 lists some of these bacteria (as well as
other organisms for the sake of comparison) and their sporulation efficiencies. This char-
acterization describes the ratio between spores and vegetative (growing) cells in stationary
phase, or during conditions that approximate steady state. Implicit in this measurement
is the fact that sporulation is heterogeneous, even in an isogenic population. Though this
measurement is procured at different times for different experiments, it is typically taken
24-hours after inoculation in a sporulation media. From Table 2.1, a general trend emerges
regarding sporulation efficiencies: A bacterium from a nutrient-rich environment will have a
low sporulation efficiency, whereas a bacterium from a nutrient-poor environment will have
a high sporulation efficiency. Intuitively, an organism used to low nutrient conditions will
devote more resources to spores, while an organism used to high nutrient conditions will
devote more resources to vegetative growth. This general subject will be covered in more
detail in Section 2.2.3.
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Table 2.1: Sporulation efficiencies of other bacteria

Bacteria Sporulation
Efficiency

Specimen Origin Measurement
Notes

References

B. subtilis 58% 168 evolved 5000
generations with
< 800 sporulation
selection events

Exhaustion in
glucose-lacking
medium, 24-hr
after inoculation

[167, 168]

B. subtilis 0%− ≈ 10% 168 evolved 6000
generations with
relaxed selection
for sporulation
(DSM with 1%
glucose, lacking
sporulation salts)

Exhaustion in
glucose-lacking
medium, 24-hr
after inoculation

[167]

B. subtilis and
B. pumilus sensu
lato

≈ 100% Sonoran Desert
basalt

Exhaustion in
SSM, 24-hr after
inoculation (en-
tered stationary
phase ≈ 5-hr after
inoculation)

[17, 168]

B. subtilis ≈ 98% Dust particles on
“low nutrient”
spacecraft surfaces
in cleanrooms
(> 7.7 month
exposure time)

Exhaustion in
SSM, 24-hr after
inoculation

[166, 167,
168, 258]

B. thuringiensis 50%− 64% Leaf surfaces of
chickpea, pigeon
pea, pea, and
mung bean

Exhaustion in
LB medium,
overnight-grown
culture

[137]

C. cellulolyticuma 0.05% − 20%,
depending
on chemostat
dilution rate

Decayed grassb Steady state con-
ditions with differ-
ent dilation rates
in a chemostat

[202, 209]

continued on next page

aC. cellulolyticum has similar sporulation mechanisms as B. subtilis [272].
bB. subtilis is most often in vegetative form when associated with decaying organic material [63].
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continued from previous page

Bacteria Sporulation
Efficiency

Specimen Origin Measurement
Notes

References

B. megaterium
B. subtilis

B. licheniformis
B. pumilus

116%a

98.6%, 100%,
108.3%c

44.4%, 172.7%b

90%

Fecal matter and
GI tract of chick-
ensc

Exhaustion in
DSM broth, 24-hr
after inoculation

[8]

B. subtilis

Bacillus sp.d

A1 : 32.5%
C : 81%
H : 15.7%
A1 : 46%
C : 21.3%

H layer, A1 hori-
zon, and C hori-
zon in an acid for-
est soile

Exhaustion in
peptone yeast
extract agar

[240]

B. subtilis CH201
and
B. licheniformis
CH200

4, 6-hr: 72%
24-hr: 12%

Vetinary dietary
supplements ad-
ministered orally
to pigs as spores

Samples collected
by killing pigs at
hours 4, 6, 8, and
24; flow cytometry
used to measure
spore/cell counts

[154]

B. subtilis var.
natto

1%
2%
25.12%
3.98%
0.13%
0.40%
15.85%
0.50%
0.40%

Nine samples
from N. Thailand
fermented food
(Thua nao, 2-3
days of fermenta-
tion)

(not specified) [120]

continued on next page

aWithin the error of the method.
bExhibited an extended lag phase.
cThere is evidence to suggest that bacteria have evolved to live in gut ecosystems due to intense selec-

tion prior to the intestines [248]; GIT B. subtilis isolates exhibit increased growth and sporulation under
anaerobic conditions than other strains, in which sporulation is highly reduced [182, 113].

dIncluding circulans, subtilis, cereus, lichenformis, polymyxa, sphaericus, megaterium, firamus, lentus,
and brevis.

eH layer composed primarily of decomposing pine needles; A1 horizon composed of mineral soil, decom-
posing leaves, and pieces of decaying root; C horizon composed of mineral soil and decaying roots/root
exudates.
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continued from previous page

Bacteria Sporulation
Efficiency

Specimen Origin Measurement
Notes

References

B. subtilis:
PY79 (reference)
var. natto
feces isolates
gut biopsies

Max spore
timea:
16-hr
7-hr
9.6-hr
11.8-hr

Human gut biop-
sies (ileum) and fe-
cal samples

Exhaustion in
DSM medium

[116]

B. subtilis MB24 ≈ 15%b “Wild-type” lab-
oratory strain
(trpC2 metC3 )

Exhaustion in
DSM batch cul-
ture, ≈ 38-hr after
fed-batch phase

[182]

S. cerevisiaec:
Oak tree isolates
Wine isolates

100%
≈ 25− 70%

North American
oak trees and wine
fermentations

Exhaustion in
1% potassium ac-
etate (sporulation
medium), 24-hr
after inoculation

[83]

M. xanthusd ≈ 2− 5% Soil samples from
NY state, Greece,
Minnesota, India,
Japan, and Tai-
wane

Exhaustion in
CCT soft agar,
5-days after
inoculation

[129]

aQuicker sporulation may indicate an adaptation to the GIT environment [248], and possible increased
sporulation efficiency.

bNo pH control, labeled as “spore fraction” (not efficiency) in paper
cIncluded for comparison to Bacillus sp.
dIncluded for comparison to Bacillus sp.
eIsolates were selected based on their ability to sporulate similarly to model strain 1622.

2.1.3 Control of sporulation: The phosphorelay

Though not understood in its entirety, each cell possesses a relatively complex cellular net-
work that governs the important decision to sporulate [69, 109]. This genetic and protein
network, called the phosphorelay, integrates environmental and intracellular signals to en-
sure that a cell initiates sporulation only when appropriate conditions are met. This is
accomplished by activation of the “master regulator” protein Spo0A through addition or
subtraction of phosphate from proteins within the relay [32, 109, 245, 254]. If a phosphate
passes through the phosphorelay, the number of Spo0A∼P (the activated form of Spo0A)
molecules will increase until the concentration is high enough to turn on the remaining
genes of the sporulation pathway. For a single cell, once the number of Spo0A∼P molecules
exceeds a certain threshold, sporulation is initiated [38, 78]. Figure 2.3 shows a schematic
of the phosphorelay and some of the regulatory pathways that influence phosphate transfer
through the signal integration network.
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Figure 2.3: Schematic of the phosphorelay and regulatory pathways that influence sporula-
tion, from Sonenshein [245].

Many of the experiments examining the functionality of the phosphorelay are resuspen-
sion experiments, which consist of growing cells in a nutrient-rich broth, separating the
cells from the nutrients using a centrifuge, and transferring the cells to a chemically-defined
media (see Section 3.2). This media is primarily nutrient-poor (though other environmental
stressors may also be involved), and it has been observed that certain proteins autophos-
phorylate and add phosphate to the relay in response to this supposed nutrient deprivation
[4, 205]. One of these proteins that is widely studied is KinA, which is postulated to act as
a nutrient sensing device that increases the level of Spo0A∼P in response to nutrient limi-
tation [32, 72, 93]. This model hypothesizes that B. subtilis has a mechanism that increases
the propensity to sporulate when nutrient levels are diminished. Other phosphatases exist
(KinB, KinC, KinD, and KinE [254]), though they have not been studied as rigorously as
KinA.

KinA adds phosphate to the phosphorelay, but as mentioned above, there are also pro-
teins that remove phosphate from the phosphorelay. One of the most well-understood of
these proteins is RapA, which removes phosphate from Spo0F∼P (an intermediate protein
in the relay). RapA is co-expressed with PhrA, which is a protein that is exported from
the cell, processed extracellularly, and re-imported. The processed and re-imported PhrA
binds to and inactivates RapA, which reduces the amount of phosphate removal from the
relay [185, 203, 204, 206, 214]. Extracellular PhrA is higher around areas of high RapA-
expressing cell density, which makes the RapA/PhrA system a rough population sensing
apparatus. If the sub-population of RapA-expressing cells is locally high, there will be more
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PhrA present, which will subsequently be imported into the cells and inactivate the RapA
molecules. This will allow more phosphate to pass through the phosphorelay and activate
Spo0A, which drives sporulation. Thus, high (sub)population densities will also drive the
cell towards sporulation, though nutrient deprivation is also required since the phosphorelay
needs a source of phosphate.

The subpopulation of the cells expressing RapA are all growing and dividing (“vegeta-
tive”). However, especially in the early stages of colony growth, not all vegetative cells are
expressing RapA [24, 254]. It is not clear if imported PhrA has any effect in non-high-RapA
cells since its quorum sensing role has only been studied in the context of RapA. If it is
assumed, however, that the high-RapA cells are the only ones factored into the popula-
tion size measurements, then the population densities used to influence sporulation is only
a subpopulation measurement. However, especially after entry into stationary phase, the
number of RapA-expressing cells is typically close to the total number of vegetative cells
since Spo0A∼P represses rapA gene expression [254]. Thus, claiming that a B. subtilis cell
knows the total number of microcolony vegetative cells may only be valid during certain
periods of microcolony growth.

As mentioned before, once the level of Spo0A∼P (activated master regulator proteins)
exceeds a certain threshold, sporulation is initiated. Spo0A∼P causes several regulatory
proteins and sigma factors to be transcribed, which in turn regulate the expression of the
genes required for the second stage of sporulation [109]. These second stage sporulation
genes, collectively labeled spoII genes, give rise to third stage sporulation genes (spoIII )
through an additional round of regulatory protein and sigma factor transcription. This
“cascade of sigma factors” continues through six stages of sporulation until stage VII, when
the spore is released [69, 95]. The progression of stages II through VII typically occurs
deterministically; even if nutrients are reintroduced and population densities are dropped,
Spo0A∼P remains at a high level to drive the remaining stages of sporulation. This is
due to the positive feedback effects of the master regulator protein [78]. Spo0A∼P represses
arbB and sinR, which repress the expression of kinA and spo0A, respectively [109, 245, 254].
Therefore, more phosphate is fed into the phosphorelay and a larger pool of Spo0A is created
to absorb this phosphate, which make Spo0A∼P levels remain high. Due to this effect,
genetic markers for spoIIA (one of the operons controlled by Spo0A∼P) are used to identify
when a cell is irreversibly committed to sporulation [254]. Cell cycle and metabolic factors
influence also influence the positive feedback targets of Spo0A∼P [245], which provide a
stabilizing effect on Spo0A∼P levels when they are low.

2.1.4 Spore formation

Once a B. subtilis cell commits to sporulation, a specialized cell division takes place [71].
Instead of forming two identical daughter cells, a sporulating cell forms distinct daughter
cells that act together to create a single spore. The larger daughter cell, the “mothercell,”
engulfs the smaller “prespore” daughter cell shortly after the division occurs in a process
similar to phagocytosis [71]. These steps are mediated by the expression of the spoII and
spoIII operons, which also create some transcription factors that differentiate gene expres-
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Figure 2.4: Simplified representation of spore formation.

sion in the mothercell and prespore [69]. The prespore continues to develop (core, cortex,
and coat) with the help of the mothercell until it is fully mature, at which point the moth-
ercell releases the spore by lysing (bursting). These spore developmental and lysis steps
rely on the spoVI through spoVII operons and the transcription factors that they encode
[69, 71]. Figure 2.4 illustrates these general steps. Mothercell lysis provides an additional
source of nutrients for other vegetative cells, though the event takes place several hours
after the initial commitment to sporulation [24]. Thus, the sporulation process not only
reduces the number of vegetative cells that are consuming nutrients, but it also provides an
additional source of food when the mothercell lyses.

In the context of sporulation, it is important to examine the ability of a bacteria cell to
internally store energy. For example, if there is an overabundance of intracellular nutrient
storage molecules in a B. subtilis cell, sporulation by environmental nutrient deprivation
would almost never occur. It is known that there are nutrient storage molecules in several
types of bacteria [30, 130, 239, 263, 275], but it is interesting to examine the role of these
molecules in sporulating bacteria. In Bacillus cereus, cells that accumulate the energy
storage polymer polyhydroxyalkanoate (PHA) do not have this molecule after sporulation
and the degradation products are incorporated into the spore [140, 186]. It is concluded that
the storage molecule is utilized during the spore formation process. In Bacillus megaterium,
PHA-negative mutants formed more spores than the wild-type cells, suggesting that cells
depleted of these intracellular energy stores commit to sporulation earlier than wild-type
cells [157]. In this example, the nutrient storage molecule seemed to provide an alternative
energy source when extracellular nutrients were depleted. Though neither of the experiments
studied B. subtilis, they provide evidence that there exist intracellular storage molecules in
B. subtilis, and these molecules may be important during the decision to sporulate. In
particular, they may provide an alternative source of energy in a nutrient-poor environment
or the energy required for spore formation.

2.1.5 Germination

A spore can transform into a vegetative cell after it undergoes germination and outgrowth.
Germination characterizes the steps involved in the activation of spore metabolism while
outgrowth refers to the macromolecular synthesis needed to convert a metabolically-active
spore to a vegetative cell [235]. Since germination is irreversible, the steps involved in
outgrowth will not be covered here.

Commitment to germination may occur within seconds of exposure to germinants. These
are typically single amino acids, sugars, or purine nucleosides, but laboratory studies have
shown that cationic surfactants, salts, high pressure, or lysozyme can also trigger germina-
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tion [121, 235]. Recently, it has also been shown that muropeptide fragments of growing
cell walls act as potent germinants [237, 238], which may ensure that a spore is germinated
if environmental conditions allow growth for other cells. Germinants bind to germinant
receptors located in the spores inner membrane [235], which trigger several steps in the
germination pathway that can be grouped into two stages [235]:

1. Stage I:

(a) Release of spore H+, monovalent cations, and Zn2+ from the spore core. This
raises the core pH to allow for future metabolic acitivities.

(b) Release of the spore core’s large depot of dipicolinic acid (DHA) and associated
cations (Ca2+).

(c) Replacement of DPA by water. This results in an increase in core hydration and
causes some decrease in spore wet-heat resistance, though it is not enough to
allow metabolism.

2. Stage II:

(a) Hydrolysis of spore’s peptidoglycan spore cortex.

(b) Swelling of the spore core through further water uptake and expansion of the
germ cell wall. After this step is completed, the core is hydrated enough to allow
for protein mobility and enzyme action, and hence, metabolism. This marks the
cessation of dormancy.

These stages of germination do not require metabolic activity and are thought to be primar-
ily biophysical [121, 235]. Intuitively, this situation is similar to triggering a spring-loaded
mousetrap, where no energy is required to maintain the “armed” state. This allows for
increased spore longevity (up to 105 − 107 years [188]) since monitoring the environment
does not require energy.

Like sporulation, the commitment to germination is heterogeneous [277]. Though the
precise steps in germination commitment are not known, various factors (such as heat,
germinant levels, and average germinant receptors/spore) have been shown to influence ger-
mination commitment and timing [277]. In the presence of high germinant levels that are
typically sufficient to trigger germination, some spores germinate extremely slowly or not at
all [84]. These spores, called superdormant spores, pose a problem with pathogenic spore-
forming bacteria like B. cereus or B. anthracis because incomplete germination within a mi-
crocolony may cause antibacterial treatments to be less effective. Superdormant spores are
not genetically different from other spores within the colony, since germination, outgrowth,
and sporulation of superdormant spores resulted in a similar fraction of superdormant spores
(≈ 4% − 12%) [84]. Because of this fact, it is postulated that stochastic variation of the
number of germinant receptors or other structures necessary for germination is responsi-
ble for germination heterogeneity [84]. This is an issue related to spore formation, which
emphasizes the intricate complexity of this cellular differentation process.
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2.1.6 Cell cycle timing

The phosphorelay is influenced by other cellular regulatory pathways, including processes
that regulate the cell cycle. It has long been observed that sporulation may only be initiated
at certain times during the cell cycle; specifically, a starvation stimulus must be applied
while DNA is replicating, and the peak capacity for sporulation is reached around fifteen
minutes after chromosome replication has begun [48, 161]. Recently, it has been shown that
a sporulation inhibitor protein, Sda, acts as a “genetic timer” that only allows sporulation
during a certain part of the cell cycle [256]. This protein, which inhibits KinA’s autokinase
activity, reduces the levels of Spo0A∼P and is positively regulated by DnaA, a chromosome
replication initiation protein [225, 264]. Therefore, Spo0A∼P levels may only accumulate
when Sda levels are low, which only happens during a certain part of the cell cycle. More
precisely, Sda levels are low when a cell has the correct copy number and has completed
DNA replication and repair [256]. This protects spores against an abnormal number of
chromosome copies and an associated decrease in spore viability. Since cell cycle timing is
an important factor in sporulation initiation, a brief overview is provided below.

Control of cell cycle timing is a complex process. The typical stages of the bacterial
cell cycle are divided into periods: the time between division (birth) and the initiation of
chromosome replication (the B period); the time required for chromosome replication (the C
period); and the time between the completion of chromosome replication and the completion
of cell division (the D period) [264]. These periods most likely proceed temporally via
checkpoints that depend on the other two periods [27], though it is typically accepted
that a major metabolic control point for cell cycle timing regulation is the initiation of
chromosome replication [279]. The rate-limiting factor in chromosome replication initiation,
DnaA, unwinds certain regions of DNA at the origin of replication (oriC ) and needs to be
synthesized before a new round of replication may occur [264]. The rate of synthesis of
DnaA is subject to nutrient availability through the actions of small transcription-inhibiting
nucleotides collectively called (p)ppGpp [279]; higher nutrient availability leads to higher
accumulation rates of DnaA (faster replication frequency), while lower nutrient availability
leads to lower accumulation of DnaA (slower replication frequency). The C and D periods
are usually relatively constant [264], suggesting that chromosome replication initiation is
the major controller of cell cycle timing. Therefore, nutrient availability is inversely related
to the cell cycle length. In the context of sporulation, which can only be initiated at certain
times during the cell cycle, this implies that spore formation becomes rarer (on an absolute
time scale) as nutrients are depleted.

2.2 Evolutionary biology background

2.2.1 Overview

Charles Darwin’s groundbreaking work in On The Origin of Species can be grossly simplified
to the idea of natural selection or “the survival of the fittest” [201]. This statement applies
to traits, individual organisms, or groups of organisms, and intuitively means that the
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best-performing trait/individual/group will endure. Darwin proposed this hypothesis after
careful observation of unique animal traits that seemed to be the results of adaptation
to particular environments; for example, flightless birds on isolated oceanic islands with
no predators do not need to fly from danger, insects and birds susceptible to predation are
colored similarly to their habitats, burrowing rodents have small eyes covered by skin and fur
to protect against eye inflammation, and giraffe tails help to resist the attacks of insects (to
save strength) by acting as “fly-flappers” [47]. The principle thesis is that these adaptations
represent the fittest strategies under each set of environmental constraints, which suggests
that they have evolved to solve certain evolutionary optimization problems. In this case,
fitness maximization is the evolutionary objective and natural selection is the optimization
method. Although this has not been defined with mathematical rigor at this point, the idea
seems natural at its core: evolution has produced biological traits/individuals/groups that
are optimally-adapted to the environments in which they developed.

In order to provide a descriptive model of the actions of natural selection, the ideas
presented in the preceded paragraph must be formalized. Specifically, fitness needs to be
carefully examined from a biological perspective to guide its mathematical representation,
and natural selection must be dissected to provide evidence for evolutionary optimality.
This section will present some background on fitness and fitness metrics, followed by the
hypothesis of natural selection. A sampling of the great many mathematical studies on the
survival of the fittest illustrates the utility of this framework, and the evolutionary objective
used throughout this dissertation concludes the chapter.

2.2.2 Fitness

The concept of fitness or evolutionary objective is central to the theory of evolutionary
biology. Fitness can be interpreted as:

• The ability to produce offspring [100];

• Future reproductive success [117];

• Viability and fertility [244]; or

• Survival, mating success, and fecundity [194].

A common theme underlying these definitions is the ability to pass genetic information to
the next generation(s) in a given environment. For example, an organism is more likely to
pass genetic information to the next generation if it has a high probability of surviving to
adulthood, finding a mate, and producing several offspring. If any of the three probabilities
are small, then the fitness of an organism will also be small. Though fitness may be applied
to traits, individual organisms, populations, or species [9, 117], in each case, the general
concept of passing genetic information to the next generation applies. Natural selection
favors high relative fitness, and it is easy to imagine evolution as solving an optimization
problem where fitness for a particular environment is maximized (see Section 2.2.4).

Though the idea of fitness is clear, measuring fitness is not. This makes the idea of
“maximizing fitness” ambiguous because the ability to pass genetic information to the next
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generation in a given environment can be quantified differently for even a single experiment.
The following methods of measuring fitness have been widely used:

• Probability of surviving to adulthood [117];

• Expected number of offspring [210, 244];

• Probability of survival relative to the highest survival probability in the environment
[194];

• Dominant Lyapunov exponent [145, 146, 160, 179]; and

• Expected growth rate of the population (for both continuous and discrete models)
[44, 169, 171, 194].

For a rapidly-reproducing population, fitness is often measured as number of progeny or
growth rate [152, 208, 213]. A generational time scale is almost always used for these fitness
measurements [29], so the fitness of a trait, organism, population, or species is defined for
a specific generation. This is consistent with defining fitness as the ability to pass genetic
information to the next generation(s) in a given environment. For example, the fitness of an
adult organism may be the expected number of offspring it produces that are able to survive
to adulthood, or it may be some multiplicative factor of viable offspring number to fertile
parent number. The fitness may also be defined as the expected number of grand-offspring
it produces that are able to survive to adulthood, or some multiplicative factor of the ratio
between viable grand-offspring and fertile parent number.

There has been some debate pertaining to the appropriate horizon length for defining
an evolutionary objective. Should we only look at the fitness measurement one generation
into the future? Or, should we look several generations into the future? Some researchers
have argued that a longer-term measure of fitness is more appropriate in an evolutionary
setting, such as a million or ten-million years [249] or the expected time to extinction
[42]. Others have argued that a short term fitness measure is more realistic because it
relates adaptedness to the process of natural selection; that is, long term measures fail to
explain how the process of natural selection can be sensitive to differences in long term
fitness measurements of surviving offspring [29, 244]. In other words, selection has no
foresight: unless long term fitness is directly correlated with short term fitness, there is no
way that the success of distant generations will affect the ability of the current generation
to transmit genetic information. On the other hand, a long term fitness metric may be more
appropriate when examining an evolutionarily-optimized organism because its fitness has
been maximized since the origin of its existence. For the evolution of survival strategies in
particular, long term fitness is able to deal with species extinction. This becomes important
in the context of environmental uncertainty, where long term fitness measurements can
illustrate the tradeoff between offspring number and probability of extinction [43, 210].

2.2.3 Natural selection and evolution

An introductory explanation of the theory of evolution and natural selection can easily
require several hundred pages, so this section will focus on providing some evidence that
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adaptation is the process of (nearly) maximizing fitness by natural selection. The basic
mechanisms of natural selection and a brief review of optimality results in various fields of
biology will be covered in the sequel.

Natural selection is the differential survival and reproduction of entities that differ from
one another in one or more respects [79]. There are two major components of this definition:
genetic variability and selection pressure. Genetic strategies are heritable, so high-fitness
characters beget high-fitness offspring. Variability at the genetic level (imperfect heredity) is
needed to explore deviations from the parents’ strategies, where selection pressure weeds out
the poor-performing strategies and lets the best-performing strategies flourish. After each
iteration of heritable changes and selection pressure, the fittest traits/individuals/groups
increase in frequency relative to the less-fit strategies, until “survival of the fittest” is real-
ized.

Genetic changes → Heritable changes

Environmental → Selection pressure
interactions

⎫⎪⎪⎬⎪⎪⎭⇒ Natural selection

Genetic variability and selection pressure are necessary for natural selection [79]. Without
heritable changes, it is possible for fitness to decrease with each generation, and without
selection pressure, fitness may not increase. These two critical components are examined
below.

Mechanisms of genetic variability

Adaptation by natural selection relies on genetic inheritance, the primarily accepted
method of passing information to future generations. “Information” in this context refers to
the factors that affect an organism’s ability to survive and reproduce, such as the growth of
specialized appendages, the ability to eliminate competition, or (in the case of B. subtilis)
the development of decision-making genetic networks. All of these genetically-inherited
traits are realizations of the expressions of genes, which are portions of DNA that give
rise to particular proteins/enzymes/protein-assembly machines. A single gene will encode a
single protein or enzyme via the “central dogma” of molecular biology: DNA is transcribed
to RNA (messenger, ribosomal, or transfer) which is then translated to proteins or enzymes
[2]. These proteins and enzymes are the building blocks and machinery used to fabricate an
organism and its ability to survive and reproduce, and are used in everything from organic
structures to biological propensities to behave a certain way [151]. This is readily apparent
in an embryo of an animal: a mixture of DNA is inherited from the parents that directs,
through the expression of genes to form proteins/enzymes, the observed characteristics of the
offspring. This genetic inheritance is consistent with the fact that offspring resemble their
parents, and is traditionally considered the most important factor in determining biological
fitness since genetic makeup largely dictates how an organism develops and behaves.

If genes affect the phenotypes (observed characteristics) of an organism, then differences
in genetic makeup (genotype) between two organisms will lead to differences in fitness be-
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tween the two organisms. Differences in genotype may arise from a multitude of sources,
though the most commonly studied source is sexual reproduction. Discussion of the details
of sexual reproduction, such as meiosis, dominant and recessive genes, and chromosomal
crossing over, is not completely relevant for an asexually-reproducing organism like B. sub-
tilis, but the basic idea is that each parent donates different regions to the complete DNA
of the offspring [269]. The genes of the next generation will therefore be a combination of
the genes from the previous generation and may therefore bestow higher (and lower) fitness
measurements than the parents’ generation. The genetic diversity resulting from sexual re-
production is very large compared to the diversity resulting from binary fission (the type of
asexual reproduction found in B. subtilis), since the parent DNA is simply replicated and the
daughter cells (offspring) each receive an identical copy. Though it may seem that genetic
homogeneity is the only possibility in asexually-reproducing species, some organisms have
developed strategies to promote genetic diversity such as the development of natural genetic
transformation (competence) in bacteria. This event, typically occurring after the onset of
stationary phase in microcolony growth, allows horizontal gene transfer by the uptake of
the extracellular DNA resulting from the death of other cells [56, 94]. Other horizontal
gene transfer mechanisms include conjugation (transfer of genetic material through direct
cell-cell contact) and transduction (injection of foreign DNA by a bacteriophage) [158]. In
addition to sexual reproduction or horizontal gene transfer, genetic variation may also result
from random mutations of cellular DNA or errors during chromosomal replication (though
the resulting phenotypes most likely have lower fitness [171]), which allow novel genes to be
introduced into the population. However, horizontal gene transfer plays the most important
role in bacterial genetic diversity [63]. Whatever the dominant method of genetic variability,
the end result is a heritable diversification of phenotypes and fitnesses for each generation.

In addition to genetic inheritance, some information may be passed to future generations
in other forms. Though not as significant in determining phenotype as genetic inheritance,
one example is extranuclear inheritance. Besides parental DNA, other parts of the par-
ent cells may be inherited to the offspring. In sexual reproduction, for example, the ovum
contains other cellular organelles in addition to maternal DNA. Some organelles, such as mi-
tochondria and chloroplasts, have DNA that replicates independently of nuclear DNA [23].
The offspring therefore receives information from the mother that is not coded into the DNA
of the offspring (recall that the offspring DNA is from both the mother and father). This
phenomenon is apparent in several cases, such as identical egg color in genetically-different
hen offspring, identical shell coil orientations in pond snail offspring not necessarily resem-
bling their mother’s, and the inheritance of altered cilia on the surface of the protozoa
Paramecium [171]. A more controversial way that an acquired characteristic may be passed
to future generations is by selectively-increased alterations to an organism’s DNA. Experi-
ments have suggested that an organism lacking an essential gene for survival will increase
directed mutations until the gene is recovered [33, 141], indicating that there is an indi-
rect way for the environment to alter DNA. Phenotypic differences can therefore be also
attributed to factors that are non-genetic in origin.

Regardless of the way in which phenotypic differences occur, each distinct phenotype
will give rise to a specific fitness measurement. These differences in fitness are the means
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by which adaptation occurs.

Selection pressure

A population of organisms with different fitness measurements in a constant environment
will likely be eventually composed of those organisms that increase the population’s average
fitness. Given enough time, the population’s average fitness will often be nearly maxi-
mized [117, 194]. This is because a high-fitness organism will typically be descended from
high-fitness parents. Though easy to see for asexually-reproducing organisms, this makes
sense even for sexually-reproducing organisms. Assuming high-fitness DNA sequences at
a particular locus do not vary dramatically from other high-fitness DNA sequences at the
same locus, combinations of genes producing high fitness are likely to produce an organ-
ism with high fitness. Although phenotypic variability still results when two high-fitness
organisms sexually reproduce, the expected fitness of the offspring will likely be higher than
the fitness of an offspring from two low-fitness organisms (it has been proposed that evolu-
tion has rendered the more-favorable genes dominant [75]). These high-fitness members of
the population will consequently be more viable and fertile than the relatively low-fitness
members, which will eventually lead to the elimination of the subpopulation harboring the
less-favorable genes. Higher-fitness organisms will always eventually replace lower-fitness
organisms from our definition of fitness, so the population’s fitness level will always be non-
decreasing; indeed, as Darwin stated in On The Origins of Species, “The larger and more
dominant groups thus tend to go on increasing in size; and they consequently supplant many
smaller and feebler groups” [47]. Given enough time, a finite fitness metric, a large popula-
tion, and a constant environment, this process of adaptation will tend towards a (possibly
local) maximal average fitness for the population [192, 197].

The simplistic description given above proposes that the average fitness for a population
will always be non-decreasing, but this is not necessarily true. Though non-decreasing
average fitness may seem to logically follow from the preceding arguments, it does not explain
how some organisms exhibit decreased fitness over time [194] or how some may gradually
become extinct (for example, the gradual extinction of several vertebrates during the Upper
Permian period of the Paleozoic Era [265]). These facts seemingly contradict Ronald Fisher’s
Fundamental Theorem of Natural Selection, which states “The rate of increase in fitness
of any organism at any time is equal to its genetic variance in fitness at that time” [74],
thus implying that fitness is always non-decreasing. The theorem, as stated, is true in
the semantics and context in which it was stated [73, 216]; however, it does not imply
that the population’s average fitness is always non-decreasing. The theorem refers to the
partial change in a single organism’s fitness due to selection and does not take the (possibly)
detrimental effects of mutation or environmental changes into account (note that extinction
events can usually be attributed to environmental changes) [64, 212]. If, however, we can
assume that the effects of disadvantageous mutations are negligible and the environment
is constant, then the Fundamental Theorem of Natural Selection may be approximately
true for a population’s average fitness. Assuming that the mutation rate is similar in B.
subtilis as it is in Drosophilia, a single mutation will affect approximately one cell for every
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240 cells produced [75]. Combined with the facts that some mutations are beneficial and
only 272 genes (of ≈ 4100) are essential in B. subtilis [139], detrimental mutations in B.
subtilis cannot be concluded to be significant in its evolution. The environment in which
the bacteria usually resides in the wild (see Section 2.1.1) may be approximated as constant
if the time scale for ecological change are long compared to the generational time scale for
B. subtilis (of course, we are ignoring any adverse affects that overcrowding may impinge
on the environment). Thus, it may be possible to assume that the population’s average
fitness has been non-decreasing for B. subtilis during the course of its evolution, which
would imply that its fitness has been nearly maximized. Even without the assumptions of
negligible detrimental mutations and a nearly constant environment, it is not unreasonable
to claim that the bacteria’s fitness is nearly maximized due to its ubiquity in the wild and
its relatively sophisticated decision-making processes.

The description of adaptation given above fits into the framework of an optimization
problem, even without the mutation and environment assumptions. The cost function is
the fitness metric, the decision variables are genotypes giving rise to different phenotypes,
and the constraints model the interactions between phenotype, environment, and fitness.
The optimization problem is solved using a non-descent method (assuming the population’s
average fitness always increases) or some randomized algorithm (assuming the population’s
average fitness may decrease) [159]. The random optimization implementation adds the
original gene sequence to random gene vectors drawn from the distribution resulting from
inter-generational genetic variability, and the highest-fitness gene sequence (possibly ex-
cluding the original seed if each generation produces offspring only once) is assigned the
starting point for the next iteration. Adaptation can be roughly visualized using the “adap-
tive topography” description provided by Wright [194, 273], where a multidimensional field
of discrete gene frequencies produces a fitness surface that is shaped by the constraints.
The non-descent method provides a way to climb the hills of this surface, while the random
optimization method proceeds in the direction of steepest ascent from the set of random
gene vectors (this may result in a descent direction that lowers fitness if there does not
exist a gene vector that increases fitness). Figure 2.5 provides a visualization of this “hill
climbing” algorithm, where possible local maxima are present. Though the adaptive topog-
raphy idea is now widely disregarded due to mathematical inconsistencies [64], it provides
an intuitive way to argue that the fitness is at least locally maximized when evolution is
allowed to proceed for a long time. It has been shown that some biological systems do not
attain the maximum fitness values, but these may be due to environmental variation (which
changes the fitness landscape), finite time, or inability of genetic combinations to achieve
the maximum value [197, 207].

The optimization problem becomes more complex when competition is involved, since
the fitness associated with a genotype will depend on the genotypes of other organisms.
Though it is possible to model competition as environmental constraints in the problem, it
is commonly approached using evolutionary stable strategies (ESS) which rely on mathe-
matical techniques from game theory [170]. The genetic strategy for an ESS typically does
not correspond to the same genotype that would be obtained with simple fitness maximiza-
tion, though organisms not utilizing the ESS always have lower fitness [197]. Thus, when
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dealing with organisms that evolved while facing severe competition, special care must be
taken in the examination and assumptions of optimal behavior. Background information
on ESSs and their relationships to optimal policies are given in Section 7.7.1.

Examples

Several examples have been examined that show the optimality of certain observed
characteristics in the wild. The Great Tit bird has been shown to lay the number of eggs
that maximizes the fitness of the offspring by artificially increasing or enlarging the clutch
size [49], and other species (swifts and starlings) most commonly lay the number of eggs that
gives the greatest number of survivors [171]. The optimal clutch size is dependent on the
environment, and the ability to adjust clutch size annually is an adapted trait; for example,
the Great Tit can adjust the sizes of its first and second broods according to the predicted
food supply in the future [85]. Other bird examples include the explanations of songbird
behavior at dawn and the foraging behavior of small birds in the winter as solutions to
optimization problems [117].

The vertebrate immune response has also been shown to be optimal [12]. Specifically, the
instantaneous antibody production rate is maximized by allocating the large lymphocyte
population among 1) proliferation to more lymphocytes (which secrete some antibodies),
2) differentiation to plasma cells (which secrete a lot of antibodies), and 3) differentiation
to memory cells (which have surface antibodies and guard against future infections from
the same antigen). The authors take a “cybernetic” approach to solving this optimiza-
tion problem and show that the temporal ordering of the lymphocyte allocation in mice
(proliferation→plasma cells→memory cells) is optimal. They also show that the increase
in memory cell production and decrease in response time is consistent with the solution to
the optimization problem.

The cellular heat shock response has also been shown to be nearly optimal in Escherichia
coli [66]. When the temperature rises above the normal operating temperature in a cell,
essential proteins become misfolded or unfolded, which results in the failure of the cellular

Figure 2.5: “Fitness landscape” visualization of adaptation, from Elena and Lenski [67].
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networks in which they operate. Most cells have evolved heat shock proteins to 1) refold
and reorganize misfolded proteins and 2) destroy damaged proteins in order to survive
temperature increases. Since the cost of creating heat shock proteins may be large relative
to the detrimental effects of misfolded proteins, there is a trade off between producing large
quantities of heat shock proteins and minimizing the number of misfolded/damaged proteins.
By varying a weighting parameter between the L2 norms of the number of misfolded proteins
and the number of heat shock proteins, the authors showed that the wild type norms nearly
coincide with the optimal solution for a particular value of the weighting parameter.

2.2.4 Fitness maximization problem

With fitness quantified and an argument for natural selection presented, we are ready to state
the problem that underlies our evolutionary optimal framework. In some form or another,
it is the same as every other evolutionary biology-inspired mathematical study of biological
systems [91, 170, 197]. The evolutionary optimal framework provides an intuitive and simple
foundation in which to study evolved traits, where a behavior exists solely to accomplish an
evolutionary objective. Though there are serious critiques of this framework [58, 90, 218],
it provides a plausible starting point for the study of natural biological organisms.

Sporulation is a prime candidate for examination in the framework of evolutionary op-
timality. Since it results from a genetic network, it is heritable and can be optimized after
several rounds of selection. In this case, selection pressure is exerted by competitors and the
environment, where poor sporulation strategies are dominated by more fit strategies after
several rounds of selection. With the typical microbial fitness measurement of offspring in
the future [152, 208, 213], sporulation “parameters” u∗ can be assumed to be selected so

u∗ = argmax
u∈U

(offspring in the future) (2.1)

s.t. (system dynamics)

where the constraints depend on the chosen sporulation model. Chapters 4–7 solve this
problem under various circumstances in an attempt to provide a formal study of sporulation
in a mathematical framework.
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Chapter 3

Experimental Data

3.1 Introduction

The qualitative biological background in Chapter 2 may elucidate a suitable structure for a
sporulation model, but quantitative data is needed to verify that the proposed model is able
to capture the general behavior of the biological system. A good candidate model structure
will be able to explain the quantitative data with a reasonable choice of model parameters;
on the other hand, a bad candidate model will require biologically-unreasonable values for
model parameters to explain the data, if at all. Data is especially valuable for biological
systems, where modeling may help to corroborate or discover novel findings. For example,
Alan Hodgkin and Andrew Huxley used data to hypothesize the existence of voltage-gated
ion channels in a giant squid axon. This was confirmed several years later and won them
the 1963 Nobel Prize in Physiology or Medicine [110, 189].

The research in this dissertation is fortunate to have access to experimental B. subtilis
sporulation data from the Arkin Laboratory for Systems and Synthetic Biology. As a
member of the B. subtilis group, I was able to observe experimental procedures and supervise
some data processing and analysis for experiments devoted to the study of the sporulation
decision process. Though the experimental conditions did not necessarily correspond to the
assumed environmental conditions in this dissertation, the data was able to guide the model
developments in Chapters 4–7.

Two experimental datasets are presented in Section 3.3 after a rough description of the
experimental conditions in Section 3.2. Though I processed data for several more exper-
iments, the two experiments exhibited in this chapter correspond to the most complete
datasets. This data is analyzed in the context of a very simple Markov model for a single
cell in Section 3.4. Parameter identification is performed for the Markov model parameters,
which are used as a verification source for subsequent models in this dissertation.

3.2 Experimental conditions

Sporulation, one of the most well-known stress responses for the model organism B. sub-
tilis, has been the focus of numerous studies. There are standardized procedures used to
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make a microcolony of B. subtilis sporulate effectively [103], most of which involve nutrient
limitation as the primary stressor. Sporulation resuspension experiments, where a colony is
grown and transferred to a nutrient-poor media that promotes sporulation, allow the stress
response to be examined using time-lapse fluorescence microscopy imaging. The general
experimental setup and conditions we used are described below.

3.2.1 Experimental setup

Common to most sporulation protocols is the induction of sporulation by nutrient limitation.
“Nutrients” can be defined as the chemicals that trigger sporulation when they are scarce.
These essential chemicals are carbon (energy source), nitrogen (protein/amino acid building
blocks), and phosphorus. The medium upon which sporulation occurs should be limited in
at least one of these three chemicals. Different methodologies for inducing sporulation were
developed to be “most effective” at producing nice experimental results for particular strains
of B. subtilis, so it is unclear which of the three chemicals acts as the sporulation-inducing
nutrient [103].

In the experiments done in Arkin Lab, cells are grown in “growth medium” (GM),
which is a chemically-defined medium (i.e. known composition) with enough nutrients for
growth. After reaching a certain optical density, some cells are resuspended in a nutrient-
poor medium. The nutrient-poor medium is made up of Sterlini-Mandelstam medium (SM),
which contains “sporulation salts” that promote sporulation, and a little bit of GM. Ex-
perimentalists have found that residual GM introduced into the SM-GM mixture does not
interfere with subsequent sporulation [103], meaning that the control over initial nutrient
concentrations may not be tightly regulated. Some of the same batch of SM-GM is combined
with agarose (agar) to make gel pads, and once the gel construction and resuspension are
complete, some of the cells are squirted on top of the gel pad. The gel pad is then rotated
around to allow a more even distribution of cell solution, after which it is inverted onto a
microscope slide container. At this point, many of the bacteria are in a monolayer between
the agar pad and container boundary. The container is then sealed to prevent moisture
from escaping. Figure 3.1 shows the experimental environment during data collection.

The experimental protocol calls for the SM-GM to be well mixed. This suggests that the
carbon/nitrogen/phosphorus concentrations are relatively uniform throughout the solution.
Therefore, the liquid that is introduced with the cells onto the gel pad should have a
relatively uniform distribution of nutrients, though as mentioned before, the initial nutrient
level may be variable from experiment to experiment. On the other hand, it is hard to
conjecture about the nutrient makeup of the gel. It is unknown if the nutrient distribution
changes while crosslinks are formed in the gel, and this is probably very difficult to verify
on the order of the size of the bacteria (≈ 2μm). However, it is probably safe to assume
that the nutrient distribution in the gel is also initially uniform, simply because a better
hypothesis is not available.

Another issue related to the nutrients in the gel is diffusion. The data shows that cells
initially have enough nutrients to sustain exponential growth, after which sporulation occurs
(as evident in Figures 3.8 and 3.13, where the cell cycle times become shorter before getting
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Figure 3.1: Experimental setup during data collection.

longer). This implies that the nutrient availability eventually goes down since spores form
at locations with different cell densities. This also implies that the diffusivity of nutrients
through the gel pad is not very high, or else the bacteria would almost never run out of
nutrients (the gel pad is 0.5 mm thick, so there is a large nutrient reservoir). Estimates
of diffusivity of glucose in some gels are available (∼ 10−10 m2/s [3]), which are still quite
high considering the length scales of the experiment. The problem with low diffusivity of
nutrients through the gel arises when a spore is released: if the nutrients cannot travel very
quickly through the gel, then the spatial effects of mothercell lysis nutrient distribution
should not be ignored. However, one may argue that the nutrients are also released into
the SM-GM liquid that was introduced when the cells were inoculated, which would have
a higher diffusivity for the nutrients than the gel. It is difficult to conclude the validity of
ignoring spatial effects either way, but for the sake of simplicity, it will be assumed that the
experimental conditions yield a homogeneous spatial distribution of nutrients.

In essence, there is no quantitative information about nutrient levels during the experi-
ments. Qualitatively, the best description is a nutrient-poor medium.

After the colony is resuspended and mounted in the microscope, spatially-isolated bacte-
ria are found to ensure that the resulting microcolonies are isogenic. The locations of several
candidate points are recorded in a microscope camera motion-control program, and these
points are revisited every 15 minutes for 2-3 days. A digital camera (Photometrics Cool-
SNAP HQ2) is used to record the microscopy images at a pixel resolution of 512×512. The
room that houses the microscope is temperature-controlled and the microscope is insulated
from vibrations using an anti-vibration table.

3.3 Data

The experimental data comes from time-lapse microscopy videos of sporulating colonies of
B. subtilis with fluorescence proteins tied to the expression of key genes in the sporulation
pathway. These videos are automatically processed and manually checked/processed to seg-
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ment (identify) cells that are growing/dividing. Once the prespore appears in the mothercell
(this time does not correspond to when a cell commits to sporulation), segmentation stops
for that cell. A cell’s lineage is constructed from tracking software after manual processing,
so individual cells can be tracked and the segments give average (over the area of the cell)
fluorescence intensity versus time for each track. From these tracks, several time series can
be extracted, which include the numbers of vegetative cells, spores, and dead cells.

Some examples of the raw data for two different experiments are given in Figures 3.2
and 3.3. Experiment 090731 was initiated on July 31, 2009, and experiment 090810 started
on August 10, 2009. The experimental procedures were identical.

Figure 3.2: Example of raw data for experiment 090731.

Though it may be easy to distinguish between the cells and background in Figures 3.2
and 3.3, it is difficult to implement an algorithm to automatically segment an experimental
movie. Though automatic segmentation packages exist, they are designed for movies of
cells that are much easier to segment (large cells with high background/foreground con-
trast) [35, 61, 234]. None of them proved to be effective for segmenting our experimental
findings, so an imaging processing/segmentation/manual correction program was created
in Matlab to process the data. Most of the programming was done by Dr. Ilka Bischofs,
and will not be covered in this dissertation. Though effective for some movies, the adopted
segmentation package typically required ≈ 40 hours of manual corrections. A much more
effective segmentation package has been developed by my colleague, Gavin Price, and will
be released shortly.
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Figure 3.3: Example of raw data for experiment 090810.

After segmentation, the numbers of vegetative cells and dead cells versus time can be
plotted. Additional data sets for the numbers of cells making the decision to sporulate and
cells committed to sporulation can also be obtained, though this is not directly observable
from the data (see Section 3.4.3). Average cell cycle times can also be computing, indexed
at the beginning of each cell cycle. These data sets are given in Figures 3.4 – 3.13 for
experiments 090731 and 090810.

3.4 Exercise: A simple Markov model interpretation

of the data

3.4.1 Overview

This section will outline a parameter estimation exercise for a simple model based on a set
of assumed operating modes for B. subtilis during nutrient limitation. The purpose of this
exercise is to gain quantitative information about bacterial behavior, especially the decision
to sporulate. Some of the results of this exercise will be used later in this dissertation to
test the validity of theoretical conclusions.
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Figure 3.4: Number of vegetative cells for experiment 090731.
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Figure 3.5: Number of dead cells for experiment 090731.
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Figure 3.6: Estimated number of decision cells for experiment 090731.
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Figure 3.7: Estimated number of cells committed to sporulation and spores for experiment
090731.
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Figure 3.8: Cell cycle times for experiment 090731.
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Figure 3.9: Number of vegetative cells for experiment 090810.
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Figure 3.10: Number of dead cells for experiment 090810.
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Figure 3.11: Estimated number of decision cells for experiment 090810.
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Figure 3.12: Estimated number of cells committed to sporulation and spores for experiment
090810.
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Figure 3.13: Cell cycle times for experiment 090810.
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3.4.2 Model

The actual system that governs the decision to sporulate, the phosphorelay, is very complex
and interconnected. Using a first-principles model to describe the sporulation decision is not
possible; capturing the important dynamics will lead to high order, nonlinear systems [24]
which are impossible to corroborate with data because of the many unknown parameters and
difficulty in manipulating inputs into the phosphorelay. Therefore, instead of starting with
a complicated, detailed model to examine the control policies in the decision to sporulate, a
simplified, phenomenological model for B. subtilis will be used that treats the phosphorelay
as a black box that processes inputs and returns control actions. The model, depicted in
Figure 3.14, assumes that each cell is operating in one of five modes (death = cell is dead;
V = vegetative growth; D = decision mode; C = committed to sporulation; and S = fully
mature spore). These modes were chosen because they can be observed from the data1.

death V D C S1

1− p2 − p3

p3 p2 p1

1− p1

1− p4

p4
1

Figure 3.14: Markov model for a single cell.

When a single cell transitions from mode D to mode V (continuing to grow/divide),
another copy of the Markov model is created for the new offspring. The parameter p3
reflects the nutrient availability and other adverse environmental conditions.

The cell cycle time is characterized by the variable p2, and the decision to sporulate
shows up in the variable p1. Modeling the decision to sporulate as a probability has been
adopted in at least one other study [230]. The decision to sporulate takes place only at
the end of the cell cycle in my model, which is consistent with the fact that the decision to
sporulate only occurs within a certain period of the cell cycle [161, 256].

Cell cycle times change during the course of microcolony development. Researchers have
observed that the two daughter cells from a single parent cell are more likely to form spores
as a pair rather than separately [48, 257]. Since the decision to sporulate takes place only
during a certain period of the cell cycle, the cell cycle times for both daughter cells must
be similar. Therefore, it is assumed that the cell cycle parameter p2 for both daughter cells
is chosen by the parent cell while it is in mode D. Similarly, the parent cell also chooses
the spore maturation parameter p4 while in decision mode D since one may view spore
formation as a specialized form of cell division [108]; in other words, after the division to

1The transition into mode “committed to sporulation” is estimated for the collected data because the
prespore appears several hours after sporulation is initiated.
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produce mothercell and prespore, a cell cycle with only one period takes place. Though not
as well-studied as the phosphorelay, there is a brief review on the cell cycle timing decision
in Section 2.1.6.

A simpler model would have lumped the C and S modes together since there is no return
from committing to sporulate under our experimental conditions. However, since nutrient
release from mothercell lysis presumably influences the vegetative cells, the model needs to
keep track of the transition from committed to sporulation, to spore release.

Another simpler model would have no death mode since there are relatively few deaths
that occur during the course of the resuspension experiments. However, the death mode
must be present because it is essential to understand the trade-off between the decision to
grow or sporulate. For example, suppose there was no death mode and a B. subtilis cell
was in decision mode at time t. Maximization of “fitness” would mean choosing p1 = 0 and
p2 = 1, which is clearly not consistent with a wild-type B. subtilis sporulating microcolony
phenotype. A cell may only transition into death from V because it may spend a long time
in V , and it does not actively choose to die (so it is not accessible from mode D). This
mode is also not accessible from C because it is not possible to distinguish between cells
transitioning to death from C or V .

3.4.3 Parameter estimation

The bacteria chooses p1 through the phosphorelay, and there is evidence to support that
p2 and p4 are also chosen since the processes that they influence fluctuate during the ex-
periments. These parameters, which change in response to environmental conditions, are
therefore the control parameters/policies for nutrient-deprived B. subtilis. We are interested
in estimating these parameters from the data so we can analyze a bacterium’s behavior in
the framework of the model presented in the previous section.

The data naturally lead to examination of the number of cells in each operating mode
as a way to extract useful information about the probabilities. Rough estimates of some
of the probabilities can be obtained using the number of cells in each operating mode and
some information about the cell tracks. These numbers are realizations of random variables
since the underlying system is assumed to be stochastic. In the sequel, let Xdeath(t) be the
random variable (RV) representing the number of cells in death at time t; XV (t) be the RV
for the number of cells in V at t; XD(t) be the RV for the number of cells in D at t; XC(t)
be the RV for the number of cells in C at t; and XS(t) be the RV for the number of cells
in S at time t. The (non-normalized) population distribution at time t can be described by

the vector X(t) :=
[
Xdeath(t) XV (t) XD(t) XC(t) XS(t)

]T
.

Since the prespore appears several hours after the cell commits to sporulation, only
estimates of the number of cells in D and C can be constructed at a given time. Specifically,
the number of cells entering C at time t is the number of prespore appearances at time t+TC ,
where TC is the time between commitment to sporulation and prespore appearance. The
number of cells in mode D at time t is the number of cell divisions between t and t + 1,
plus the number of new commitments to sporulation at time t+ 1. It will be assumed that
TC = 4.5 hours is known in the following analysis [24], though this is likely to be violated
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during later parts of the experiments (see Sections 3.4.3 and 3.4.4).
The number of cells entering S is difficult to observe from the videos because mothercell

lysis events are typically difficult to detect when cell densities are high.

Problem formulation

Assume that at time t, a bacterium in the decision mode chooses and fixes p1(t), p2(t), and
p4(t). These values will be constant for this particular bacterium until it chooses them again
(the next time it enters D, if at all). Assume also that the time scale of environmental effects
is much smaller than the sampling time, which means that we can ignore spatial effects and
that global cell number measurements (from extracellular Phr molecules, for example) have
no delay. This implies that every cell in mode D at time t will choose the same numbers
for their individual p1(t), p2(t), and p4(t). A point of emphasis is that the probabilities
for each B. subtilis cell are only chosen each time it enters D, so it may be possible that
the microcolony may be composed of individual cells with entirely different probability
parameters at a particular time during stationary phase.

This fact is important because the expected population distribution mX(t) := E {X(t)}
cannot be easily written as mX(t + 1) = A(p1(t), p2(t), p3(t), p4(t))mX(t) since there are a
whole bunch of different choices for p1(t), p2(t), and p4(t) floating around in the colony.
Again, this is due to the asynchronous entry into mode D.

Estimating the probability of sporulation p1(t)

Based on the model described in Figure 3.14, the conditional probability mass function of
the random variable ΔC(t) := XC(t+ 1)−XC(t) given XD(t) is

Pr {ΔC(t) = δC(t)|XD(t) = xD(t)} =

(
xD(t)
δC(t)

)
p1(t)

δC(t)(1− p1(t))
xD(t)−δC(t).

The likelihood of the data (δC(t), xD(t)) is

L (δC(t), xD(t)) = Pr {ΔC(t) = δC(t), XD(t) = xD(t)}
= Pr {ΔC(t) = δC(t)|XD(t) = xD(t)}Pr {XD(t) = xD(t)} .

Since the system is causal, Pr {XD(t) = xD(t)} is not a function of p1(t).
The maximum likelihood estimate (MLE) for p1(t) based on the data (δC(t), xD(t)) can

now be easily found to be:

p̂1(t) =
δC(t)

xD(t)
.

It can be verified that, under the distribution implied by the model in Figure 3.14, this
estimate is also unbiased. Is it also easy to verify that the statistic δC is a complete sufficient
statistic for the family of distributions conditioned on XD(t) = xD(t), which implies that
p̂1(t) is the uniform minimum variance unbiased estimator of p1(t) [150]. This estimator is
also asymptotically efficient (it has the minimum mean squared error between the estimate
and the actual parameter as the sample size xD(t) goes to ∞), which can be verified by
comparison to the Cramér-Rao lower bound.
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Estimating the cell cycle parameter p2(t) and death probability p3(t)

Preliminaries and assumptions As mentioned in Section 5.2, the cell cycle parameter
p2(t) is chosen when the cell is in mode D and held fixed until the next time (if any) the cell
is in D. In other words, suppose that a cell chooses its sporulation probability, cell cycle
parameter, and spore maturation parameter at time Z1. The parameters p1(Z1), p2(Z1),
and p4(Z1) are held fixed until the next time the cell enters D. So, the cell cycle time will
have a constant parameter p2(Z1) in its Markov chain even though the current time t may
be greater than Z1.

The death probability, on the other hand, varies continuously with time since it reflects
the environmental effect of nutrient consumption and depletion. To make the analysis easier,
we can make the assumption that the cells consume nutrients on a first come, first serve
basis, so the nutrient availability at the beginning of the cell cycle is what determines the
probability of death. This may be plausible, for example, if each cell imported nutrients
only during the beginning of the cell cycle. This is most likely not representative of what
the physical system is doing, but it allows for much easier calculations. It will therefore be
assumed that p3(t) is constant throughout the cell cycle, and only changes for a single cell
upon entry into mode V .

This approximation will break down when the probability of death is relatively high. If a
significant fraction of the cells are dying while in V , the number of cells consuming nutrients
may dramatically fluctuate with time. For example, if 90% of the population dies while in
V and the cell cycle time is very large, then we would expect that the probability of death
should decrease as the population is dwindling. This is because the nutrient-per-cell level
is increasing, which intuitively should lead to higher survival rates. Under this condition
we will require a different parameter identification approach than the ones given in Sections
3.4.3 and 3.4.3 since p3(t) is no longer constant for a single cell during its cell cycle.

Since p2(t) is assumed to be constant throughout the cell cycle, other events taking
place around the cell do not influence the cell cycle timing. This assumption simplifies our
analysis because certain random variables become independent (see next section).

Estimating p2(t) and p3(t) Suppose that at time t + 1, ΔV (t) cells enter mode V with
fixed parameters p2(t) and p3(t). Of these ΔV (t) cells, some may die and the remaining will
transition to mode D. These numbers are realizations of random variables representing the
number of cells that move to D, LD, and the number of cells that die, Ldeath. Notice that,
under the model in Figure 3.14, LD + Ldeath = ΔV (t). The distributions for LD and Ldeath

are binomial with parameters p2(t)
p2(t)+p3(t)

and p3(t)
p2(t)+p3(t)

, respectively, but these will not help

much with the identification of the probability parameters (we can only get an expression for
the ratio of the parameters because, conditioned on knowledge of ΔV (t), the distributions
are dependent on one another). We can, however, look at realizations of the random variable
governing the exit time from V for each cell to extract more useful information from the
data.

A cell in mode V can either go to D or to death. Denoting the random variables for exit
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time to D and death as TD and Tdeath respectively, the possible realizations are:

TD =

{
tD with prob. (1− p2(t)− p3(t))

tD−1p2(t) for tD ∈ [1,∞)

z1 with prob. p2(t)
p2(t)+p3(t)

for z1 /∈ [1,∞)

Tdeath =

{
tdeath with prob. (1− p2(t)− p3(t))

tD−1p3(t) for tdeath ∈ [1,∞)

z2 with prob. p3(t)
p2(t)+p3(t)

for z2 /∈ [1,∞)

where realizations of z1 for TD corresponds to the event in the sample space when the cell
dies (and vice versa for z2). Now, suppose that we have ΔV (t) cells entering mode V and LD

of them transition to D while Ldeath of them transition to death. The LD cells transitioning
to D will have realizations of TD,i = tD,i 	= z1 and Tdeath,i = z2 for i = 1, . . . , LD. Since
TD,i 	= z1 ⇒ Tdeath,i = z2,

Pr {TD,i = tD,i ∩ Tdeath,i = z2} = Pr {TD,i = tD,i} .

The same can be said about the remaining probabilities for the Ldeath cells that die. Since
it is assumed that cells transitioning away from mode V do not affect the timing of the cells
currently in mode V (implying independence of the exit times for the ΔV (t) cells), the like-
lihood of the data D := (tD,1 ∩ z2, tD,2 ∩ z2, . . . , tD,LD

∩ z2, z1 ∩ tdeath,1, . . . , z1 ∩ tdeath,Ldeath
)

is:

L (D) =

LD∏
i=1

(1− p2(t)− p3(t))
tD,i−1 p2(t)

Ldeath∏
i=1

(1− p2(t)− p3(t))
tdeath,i−1 p3(t)

= (1− p2(t)− p3(t))
∑LD

i=1 tD,i+
∑Ldeath

i=1 tdeath,i−LD−Ldeath pLD
2 pLdeath

3 .

The log-likelihood is concave in the parameter vector
[
p2(t) p3(t)

]T
, so we can maximize

the log-likelihood to get MLE estimates for the probabilities. For notational convenience,
define α1 :=

∑LD

i=1 tD,i and α2 :=
∑Ldeath

i=1 tdeath,i. The maximum likelihood estimators are:

p̂2(t) =
(α1 + α2 − LD)LD − LDLdeath

(α1 + α2 − Ldeath) (α1 + α2 − LD)− LDLdeath

p̂3(t) =
(α1 + α2 − Ldeath)Ldeath − LDLdeath

(α1 + α2 − Ldeath) (α1 + α2 − LD)− LDLdeath

These estimators are biased. For example, the relatively common occurrence when LD =
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ΔV (t) and Ldeath = 0 yields

p̂2(t) =
LD∑LD

i=1 tD,i

E {p̂2(t)} = E

{
E

{
LD∑LD

i=1 tD,i

∣∣∣∣∣LD

}}

> E

⎧⎨⎩LD
1

E

{∑LD

i=1 tD,i

∣∣∣LD

}
⎫⎬⎭

= E

{
LD

p2(t)

LD

}
= p2(t)

by Jensen’s Inequality. The corresponding estimate for p3(t) is 0. This is a lower bound on
the actual parameter, since p3(t) = 0.001 for ΔV (t) = 10 would likely yield LD = 10 and
p̂3(t) = 0.

An alternative method to estimate p2(t) and p3(t) It may seem natural to view the
arrival times from V as events in a Bernoulli process, where the exit from V is governed by
the probability p2(t)+p3(t) (the probability that a cell exits V at each time). This Bernoulli
process then splits to arrivals in D or death, which leads to a new Bernoulli process for the
arrivals in D or death. Parameterizing these processes can be found as follows:

Pr {arrival from V } = p2(t) + p3(t)

Pr {choose D|arrival from V } =
p2(t)

p2(t) + p3(t)

Pr {arrive at D} = Pr {choose D ∩ arrival from V }
= Pr {choose D|arrival from V }Pr {arrival from V }
= p2(t).

Thus, the process describing the arrivals at D has a probability of success p2(t), and the
probability of success for arrivals in death can be found similarly to be p3(t). Denoting the
inter-arrival times for D as TB

D and using the assumptions in the previous section, we can
estimate p2(t) by the (biased) maximum likelihood estimator

p̂2(t) =
LD∑LD

i=1 t
B
D,i

where LD is the total number of arrivals at D for the cells that enter V at time t + 1. A
similar estimator can be found for p3(t). Notice the effort in making the distinction between
TD and TB

D, because these random variables are not the same: TD represents some of the
interarrival times (the ones that “choose”D) for the original Bernoulli process parameterized
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by p2(t) + p3(t), while TB
D represents the interarrival times for the split Bernoulli process.

For every realization, TB
D ≥ TD. Analogous statements apply for arrivals at death. Figure

3.15 illustrates these processes.

p2(t)
p2(t)+p3(t)

p3(t)
p2(t)+p3(t)

TB
D

TD Tdeath

TB
death

Original process

Figure 3.15: Graphical representation of Bernoulli process splitting.

Though it may seem natural to think of this problem as a Bernoulli splitting process,
it is easier to deal with the available data using the approach given previously. This is
primarily because of the additional step of constructing the original process (parameterized
by p2(t) + p3(t)) from the raw cell cycle data.

Estimating the spore maturation parameter p4(t)

Preliminaries and assumptions Similar to the methodology in in the previous section,
it will be assumed that p4(t) remains constant for a particular cell when it is in C. An
additional simplifying assumption is that mothercell lysis by some cells in C will not affect
the spore development of the remaining cells in C. As before, this will allow the exit times
from C to be independent.

Estimating p4(t) An estimate for p4(t) can be found by examining the case in Section
3.4.3 and setting either p3(t) = 0 or p2(t) = 0 (so there is only one way a cell may exit V ).
This leads to the maximum likelihood estimator:

p̂4(t) =
δC(t)∑δC(t)
i=1 tS,i

where δC(t) is a realization of the number of cells entering C at time t + 1 and tS,i is a
realization of the dwell time in C for cell i. As mentioned at the end of Section 3.4.3, this
estimator is biased.

Data windowing

The performance of the estimators degrades when the data is sparse. For example, there
are several instances of time in the collected datasets where only one cell is in mode D.

49



The MLE for p1(t) will be either 0 or 1, which may not even be close to the actual decision
variable.

One way to compensate for this problem is to window the data so the variances of the
estimators are “small,” or below some specified threshold. Though this may improve the
performance of the estimators, windowing the data will reduce the temporal resolution of
the parameter estimates. This is an extremely important trade-off to analyze, but will not
be addressed in this work.

3.4.4 Results

This section shows some data from the two processed videos. No data windowing was
performed, which makes the results toward the end of each experiment less reliable (when
there are few transition events). The last part of this section shows some results from a
study on mothercell lysis events, which relates p2(t) and p4(t).

Estimates for p1(t)

Figures 3.16 and 3.17 show the p1(t) estimates for experiments 090731 and 090810, respec-
tively. As mentioned before, there was no data windowing performed on these data sets,
so the estimates at certain parts of the datasets (especially near the ends of the experi-
ments) are not very good. Despite this drawback, it is clear that there is an initial wave of
sporulation events in both experiments, followed by another sporulation wave ≈ 15 hours
afterwards. This is consistent with qualitative observations.
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Figure 3.16: Estimate of p1(t) for experiment 090731.
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Figure 3.17: Estimate of p1(t) for experiment 090810.

From these estimates, the “population heterogeneity” that characterizes the sporulation
decision is evident– the majority of the estimates for p1(t) are between 0 and 1. In other
words, from these isogenic colonies (grown from a single ancestor), the decision to sporulate
varies across the population. Assuming that this bacterial strain is indeed “wild” (i.e. these
experimental responses are evolutionary optimal), we should therefore expect any theoretical
sporulation policies in this dissertation to exhibit population heterogeneity.

Estimates for p2(t)

Figures 3.18 and 3.19 show the p2(t) estimates for experiments 090731 and 090810, respec-
tively. Aside from the initial ≈ 7 hours, these estimates seem to be decreasing with time.
This is consistent with the hypothesis that cell cycle times are correlated with nutrient
availability [264, 279], since the experimental setup does not introduce nutrients during the
data collection phase; nutrients are exhausted from the SM-GM as the microcolony grows.
This claim makes intuitive sense: cell growth involves the transformation of nutrients to cell
matter, so the higher the nutrient level, the faster the cell may grow and progress though
cell cycles. Everything “slows down” for the cell when nutrients run low, which is consistent
with the integral of nutrient level directly affecting cell cycle timing. Therefore, p2(t) can
be used as an estimate of the nutrient available to the bacteria.

Estimates greater than 1 correspond to events where a single cell has more than one
division septum, which are commonly observed during the early stages of the experiments.
This event was not considered in the proposed Markov model, so the corresponding estimates
are not valid.
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Figure 3.18: Estimate of p2(t) for experiment 090731.
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Figure 3.19: Estimate of p2(t) for experiment 090810.
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Though the performance of the estimator may be poor due to the small number of cells,
the initial ≈ 7 hours of the experiments exhibit interesting behavior. If the parameter p2(t)
was a direct indicator of nutrient availability, then both experiments suggest that nutrients
increase initially from the point of view of the bacteria. Alternatively, the initial concentra-
tion of nutrients on the agar pad may be higher than the cellular environmental conditions
immediately preceding resuspension, resulting in a decrease in p2(t). The interesting thing
about this explanation is that the first wave of sporulation occurs while the average cell
cycle time is decreasing (p2(t) increasing), which implies that sporulation occurs when nu-
trient availability increases. This may be due to a food-per-growing-cell shortage during this
time (the presumed dependence for sporulation), assuming that p2(t) is selected on absolute
nutrient availability.

Estimates for p3(t)

Figures 3.20 and 3.21 show the p3(t) estimates for experiments 090731 and 090810, respec-
tively. With the same caveat about data windowing and the reliability of these estimators,
it appears that death is a relatively infrequent occurrence for B. subtilis during nutrient lim-
itation in these experiments. It is difficult to observe any trends in the estimates, though if
death depended on absolute nutrient availability, it would be expected that these increase
with time. On the other hand, if p3(t) depended on food-per-growing-cell, then regulation
of the vegetative population to keep this metric constant would ensure that p3(t) remained
constant. Indeed, the vegetative population is constantly decreasing in size. It is unclear
from the data if any of these hypotheses are not invalid.
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Figure 3.20: Estimate of p3(t) for experiment 090731.
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Figure 3.21: Estimate of p3(t) for experiment 090810.

Estimates for p4(t) (via mothercell lysis events)

Cells from experiment 090731 were picked that clearly exhibit mothercell lysis events, and
the tracks were recorded from prespore appearance to mothercell lysis. We originally wanted
to see a correlation between autofluorescence intensity of the prespore and mothercell lysis
(e.g. mothercell lysis occurs once the normalized CFP level crosses some threshold), but it
did not show anything useful. We noticed, however, that the timing between commitment
to sporulation and mothercell lysis resembled the cell cycle timing plot for this experiment
(see Figure 3.22).

A nice result, which is consistent with the idea of spore formation as a specialized form
of cell division [71], is that the average mothercell lysis time is related to the average cell
cycle time. Figure 3.23 shows an illustration of this relationship. In the figure, intermediate
points were resampled to provide more data points in the illustration.

It appears that the parameters p2(t) and p4(t) are related. In this dataset, p4(t) ≈ 1
5
p2(t).

3.5 Concluding remarks

This chapter presented experimental conditions and data from resuspension experiments
performed in the Arkin Lab. In the context of a simple Markov model, a parameter identifi-
cation exercise was performed to quantify certain aspects of B. subtilis behavior. Specifically,
the sporulation decision policies for two experimental microcolonies were found, as well as
cell cycle timing, death, and spore maturation parameters. Since this dissertation is devoted
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Figure 3.22: Averaged mothercell lysis and cell cycle times for experiment 090731.
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Figure 3.23: Relationship between average mothercell lysis time and average cell cycle time.
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to the study of sporulation, the estimates for p1(t) will prove useful in the sequel. The other
parameters will not be revisited.

Using this data to guide model development has some drawbacks, all of which are related
to corroborating theoretical results with experimental findings:

1. Nutrient information: As mentioned before, there is no quantitative information about
nutrient availability in these datasets. Though it may be possible to infer these values
from average cell cycle times (see Section 3.4.4), an extensive literature review suggests
that this has not been verified quantitatively using experiments. Thus, there is no
direct way to monitor the nutrient availability in these resuspension experiments.
Even if it were possible to directly record nutrient values, the experimental nutrient
conditions may not facilitate a tractable solution for nonlinear sporulation models,
where constant or “catastrophic” nutrient conditions are needed (see Chapters 4 and
5).

2. “Wildness” of experimental strain: In an evolutionary optimal framework (see Section
2.2.4), care must be taken when utilizing experimental results. More precisely, there is
no guarantee that the laboratory organism under study has been selected to respond
optimally to the experimental conditions. This can be due to a variety of reasons, one
of which is that the laboratory organism does not exhibit “wild”-type phenotypes (as-
suming wild organisms have been selected long enough to behave optimally). Common
laboratory strains, such as 168 (the strain used in these experiments), have been do-
mesticated long enough that some important phenotypes have been lost [28, 63, 195].
This implies that the data collected from experiments with these domesticated strains
do not correspond to evolutionary optimal decision-making.

3. Experimental conditions: Another reason that a laboratory organism might not ex-
hibit an evolutionary optimal response is the experimental conditions may not mirror
the environment conditions in which the organism underwent natural selection. For
example, an organism that evolved inside a volcano will not respond optimally (i.e.
maximal fitness) to nutrient abundance in a rain forest, and vice versa. Unless it is
known that the experimental conditions are similar to the conditions in which the
laboratory organism evolved, then it is difficult to compare a theoretically-optimal
decision policy to the available data. Even if the organism exhibits an optimal re-
sponse for the experimental environment, the experimental setup may not allow the
optimal phenotype to manifest; for example, biofilm formation is not possible when
bacteria grow in a monolayer (as in our experiments), but is supposedly essential for
an optimal sporulation response [45, 114, 246].

Thus, corroborating theoretical findings with experimental results may not be possible,
even if the theoretical work is correct. However, data is still useful in assessing the general
behavior and results of a candidate model. The two datasets presented in this chapter
will provide, at the very least, a quick litmus test for theoretical work presented in this
dissertation.
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There is clearly a need to strengthen the ties between experimental conditions and
theoretical assumptions as much as possible. For the work in this dissertation, directly
recording nutrient levels will increase the biological impact of any research more than any
other experimental modification. Microfluidic devices are a step in the right direction [7, 18],
though quantification of nutrient levels is still not direct. The solution to this problem
is admittedly complex due to the required understanding of the actual inputs into the
phosphorelay and the implementation of devices to measure these inputs.

Another way to increase the biological relevance of evolutionary optimal theoretical
work is to work with bacteria that have evolved in environments similar to the experimental
settings. This requires isolation of strains from natural ecosystems, where they have pre-
sumably maximized their fitnesses due to repeated rounds of natural selection. This also
requires the experimental nutrient conditions and physical constraints to mirror those from
the natural ecosystem. While these tasks may be difficult to accomplish in practice, they
may help counter criticisms of work based on the evolutionary optimality assumption.
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Chapter 4

Sporulation Versus Dormancy

4.1 Introduction

The decision to sporulate is governed by a complex cellular network (the phosphorelay),
and the formation of a spore itself is a complex developmental process (see Chapter 2).
Due to its sophistication and the fact that several bacteria are capable of forming spores
(other bacteria in the genera Bacillus and Clostridium [224]), it is unlikely that sporulation
is a neutral or deleterious mutation that hitchhiked with beneficial mutations [67]. There
must be a compelling reason why sporulation has evolved, and this chapter will examine a
possible explanation for the existence of sporulation by comparing it to a simple reduction
in metabolic activity, a similar bacterial survival strategy.

The survival strategy comparison will be done in fitness space. Natural selection has
maximized the fitness of an organism in a particular environmental condition, so the max-
imal fitnesses associated with each survival strategy can be directly compared. If there
exists an environment in which sporulation has a higher fitness than another survival strat-
egy, then it is possible that sporulation has evolved because it provides a better chance
of survival. The comparison becomes stronger when the proposed environmental condition
reflects the actual environment in which the bacteria have evolved.

Though most traits have been selected to increase an organism’s fitness [171], quanti-
tative comparisons between different traits has not received much attention. Many studies
have been performed on evolutionary optimality in the abstracted context of optimizing pa-
rameters for a particular model structure [66, 117, 170, 194, 197], but comparing maximal
fitnesses for different model structures is an often unexplored direction. This chapter will
provide an exercise in this area, where two different models for sporulation and metabolic
reduction are proposed in Sections 4.3.1 and 4.3.2. Section 4.5 formulates the specific fitness
maximization problem for the environmental profile suggested in Section 4.4, and the results
of the comparison between sporulation and metabolic reduction are given in Section 4.6.
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4.2 Dormancy background

A simple reduction in metabolic activity provides many of the benefits of sporulation with-
out the complexity and energetic costs of spore formation [59]. Metabolic reduction, or
“dormancy” in the sequel1, is common across the microbial world [7] and does not result
in the formation of a morphologically-distinct protective structure. Instead, dormancy is a
reversible state that reduces the amount of nutrient needed for survival and protects against
stressors that rely on cellular metabolism [59, 127, 160]. Thus, dormancy is a way to deal
with nutrient limitation and protect against a certain class of environmental stressors.

Example of strategies that reduce metabolic activity are “viable but non-culturable cells”
and “persisters” [59]. Persister cells were discovered in the 1940s from the observation that
bacteria cultures cannot be completely killed by antibiotic treatment– a small portion of
the population “persists” [145]. However, these cells did not acquire a genetic resistance
to the antibiotics, since subsequent regrowth and antibiotic treatment results in the similar
persistent population [81]. This heterogeneous response to antibiotics is the result of a
reversible dormant state, in which a bacterium severely reduces or suspends its growth; this
makes the bacterium resistant to treatments that affect cell wall synthesis or translation,
which are common antibiotic targets [59]. Though dormancy is most often studied in the
context of antibiotic treatments (due to its application to human health [160]), a reduction
in metabolic activity or growth rate will also protect against nutrient deprivation [264, 279].

There are several similarities between sporulation and dormancy. They both protect
against certain environmental stressors and allow survival in the face nutrient limitation. At
the same time, there are many differences between the survival strategies, the most obvious
being the formation of a morphologically-distinct protective structure for sporulation. The
physiological differences between a spore and a non-active cell allow the spore to survive
harsher environmental conditions (see Section 4.7), though the energetic costs of spore
formation and phosphorelay maintenance may be much greater than the reversible switching
to the dormant state. However, for the purposes of this study, the two survival strategies
confer many of the same starvation-related benefits.

4.3 Models

4.3.1 Sporulation model

The decision to sporulate is made once per cell cycle [256]. Assume that a group of mV (t)
cells makes a decision to commit p(t) cells to spores at time t. The remaining 1−p(t) cells not
committed to sporulation will divide to produce 2(1−p(t))mV (t) growing cells. A fraction of
this group q(t) will die during the course of their cell cycles, and at the end of the cell cycle
the decision to sporulate is repeated [48, 257]. Since spores are resilient to environmental
stressors, they are assumed to not die. It is implicitly assumed that there exist sufficient
intracellular nutrient stores to complete spore formation or cell division, possibly in the form

1Technically, sporulation is a type of dormancy strategy. However, I will define dormancy as a strategy
that simply reduces metabolic activity. This is consistent with other studies [160].
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of polyhydroxyalkanoates [130], so a vegetative cell will perish only after the completion of
the cell division event. It is also assumed the nutrient level is not high enough to exit
the spore state, so sporulation is an irreversible process (i.e. no germination). Denoting
one generation as the time between cell cycles and assuming the cell cycles for all cells are
synchronous, a simple (deterministic) model describing the colony dynamics is given below:

mV (t+ 1) = 2(1− p(t))(1− q(t))mV (t)

mS(t+ 1) = mS(t) + p(t)mV (t)

q(t+ 1) =

⎧⎨⎩
0 if z(t) < 0
z(t) if 0 ≤ z(t) ≤ 1
1 if z(t) > 1

where z(t) = q(t) +KM(t+ 1).
In these equations, the variables are

M(t) = mV (t)− δp(t−Δ)mV (t−Δ)−N(t)

mV (t) = number of vegetative/growing cells

mS(t) = number of cells committed to sporulation

p(t) = decision variable for the fraction of cells that commit to sporulation

q(t) = fraction of growing cells that perish during a cell cycle

N(t) = nutrient added over one generation (normalized)

δ = parameter that describes the amount of nutrient released from mothercell lysis

Δ = time between commitment to sporulation and mothercell lysis

K = parameter to describe the nutrient consumption by a growing cell

Since cells are assumed to strictly consume nutrients, δ < 1. Also, since cell cycle times
depend on nutrient level (see Section 3.4.4) [27, 264, 279], N(t) is defined relative to a single
generation.

A useful picture for the dynamics of q(t) is offered in Figure 4.1. Notice that it is possible
for M(t) < 0 if more nutrients are released from mothercell lysis and/or exogenously added
to the environment than consumed by growing cells. In this case, the fraction of surviving
growing cells increases. On the other hand, if M(t) > 0, then the nutrient level decreases
and the fraction of dying cells increases. The motivation for choosing to model the death
fraction dynamically is to capture the fact that without nutrient infusion, the nutrient level
will always be decreasing with time. A static relationship between vegetative cells and death
fraction would not display this behavior.

Figure 4.2 provides a graphical representation of the vegetative cell and spore dynamics.

Except for the dynamics of q(t), this sporulation model corresponds to the mean-valued
model of the stochastic model presented in Chapter 3 (with C and S grouped into a single
operating mode).
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Figure 4.1: Dynamics of q(t).

4.3.2 Dormancy model

A simple, population-level model for dormancy is very similar to the sporulation model.
However, the following differences need to be accommodated: non-negligible exit from dor-
mant state even with low nutrient levels [145], and no mothercell lysis events. The energetic
cost of forming a spore is assumed, for the sake of simplicity, to be negligibly higher than
forming a dormant cell. We also assume that a dormant cell has no metabolic activity, so
no growth or death are possible in the dormant state (“perfect” dormant structures). A
simple dormancy model can therefore be written as:

mV (t+ 1) = 2(1− α1(t))(1− q(t))mV (t) + α2(t)mP (t)

mP (t+ 1) = (1− α2(t))mP (t) + α1(t)mV (t)

q(t+ 1) =

⎧⎨⎩
0 if zP (t) < 0
zP (t) if 0 ≤ zP (t) ≤ 1
1 if zP (t) > 1

where mP (t) is the number of dormant cells, α1(t) and α2(t) are decision variables for the
fraction of cells that commit to and exit dormancy, respectively, zP (t) = q(t)+KMP (t+1),
and MP (t) = mV (t)−N(t).

Figure 4.3 provides a graphical representation of the vegetative and dormant cell dy-
namics.

4.4 Environmental model

To gain insight into the possible reasons why sporulation may be preferable to dormancy,
attention must be restricted to a situation where these strategies are the dominant mech-
anisms for species survival. A scenario with constant environmental conditions turning
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Figure 4.2: Vegetative cell and spore dynamics for the sporulation model. The nodes
represent allowable states of the cell, and the parameters p and q are the fraction of cells
that transition to the indicated state. The transition from Decision to Growth doubles the
number of cells originally present in the Decision mode.
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Figure 4.3: Vegetative and dormant cell dynamics for the dormancy model. The nodes
represent allowable states of the cell, and the parameters α1, α2, and q are the fraction of
cells that transition to the indicated state. The transition from Decision to Growth doubles
the number of cells originally present in the Decision mode.

catastrophic at the T − 1 generation (T 
 1) provides a suitable environmental profile that
will select for a survival strategy, where it is assumed that the survival structures (spores
and dormant cells) can survive the catastrophe. A “catastrophic” environment will force
q(t) = 1 ∀t ≥ T − 1. In this case, the best strategy is the one that is produces the largest
number of survival structures, so increased sporulation or dormancy is crucial for survival
in this environment. It is assumed that N(t) ≡ N is large enough to support a nonzero
growing cell population to the T −1 generation, to avoid the trivial sporulation policy p ≡ 1
(immediate sporulation/dormant cell formation by all vegetative cells). For the sake of
simplicity, constant decision policies are assumed because N is constant and T is very large
(much larger than the settling time of the system dynamics). These conditions will produce
a constant optimal policy over most of the optimization horizon, so the constant decision
policy presumption is a minor simplification.
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This environmental model may be consistent with actual conditions that a soil-dwelling
bacterium may encounter. For example, intermittent drought conditions, frigid winter tem-
peratures, or flooding may destroy plant life and impose extremely harsh conditions for
soil-dwelling organisms. The proposed environmental profile is similar to that used in an-
other bacterial survival study [80], and it is consistent with the heat treatment mechanisms
used to select for increased sporulation [166, 168] and spore isolation (see references in Table
2.1).

4.5 Problem statement

As mentioned in the introduction to this chapter, we are interested in comparing sporulation
to dormancy. Using the proposed population-level dynamics and environmental model, this
comparison can be done by focusing on the effects of the differences between the two model
structures. More precisely, the effects of these differences on fitness maximization will be
used to perform the comparison between the two survival strategies.

With the proposed environmental model and constant decision policy assumption, the
long term fitness maximization problem (Problem 2.1) is

max
u

J(T )

s.t. system dynamics

0 � u � 1

where � denotes element-wise inequality and the specific forms for J(T ) and u are given
in Table 4.1. This particular fitness maximization problem will henceforth be referred to as
the “long term catastrophe” problem.

Table 4.1: Parameters for fitness maximization problem

Sporulation Dormancy
J(T ) mS(T ) mP (T )
u p (α1, α2)

After the solutions for the long term catastrophe problems are computed for each survival
strategy, the two optimal strategies can be compared. Theoretically, the strategy with the
higher fitness would be preferred since it maximizes a population’s fitness. This does not
imply, however, that the lower-fitness strategy disappears due to competitive advantages
that it may offer. In other words, the strategy that maximizes the fitness of a population
does not necessarily correspond to an evolutionary stable strategy [169, 197] (see Section
7.7.1 for more details). Nonetheless, we will judge the performance of a survival strategy
based on its fitness measurement J(T ).

4.6 Results

Without loss of generality, assume mP (0) = mS(0) = 0.
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4.6.1 Dormancy strategy for long term catastrophe problem

Since T is assumed to be much larger than the settling time of the system dynamics, the
fitness maximization problem for the dormancy strategy is very straightforward because we
may ignore the transient response of the model. The objective function for constant decision
variables is

J(T ) = mP (T ) =
T−1∑
i=0

α1 (1− α2)
i mV (T − 1− i),

from which it is immediately clear that the optimal resuscitation term is α∗
2 = 0 since,

although the dormancy model is generally not stable, mV (t) and q(t) will always remain
bounded (though not necessarily constant). If K is chosen small enough such that q(t) < 1
∀t, then mV (t) > 0 ∀t. For mV (t) and q(t) periodic,

T−1∑
i=0

q(i+ 1)− q(i) =
T−1∑
i=0

KMP (i) ≈ 0

since T is much larger than the system dynamics timescale. The objective function may be
closely approximated by

J(T ) ≈ α1NT. (4.1)

Obviously, the argument that maximizes this cost function (α∗
1) is the maximum allowable

α1. From the dynamics for mP (t),

1

T

T−1∑
i=0

mV (i+ 1)

mV (i)
=

1

T

T−1∑
i=0

2 (1− α1) (1− q(i)) ≈ 1

where the approximation is good when T is much larger than the system dynamics timescale
and mV (t) is periodic and has an average value much larger than the amplitude of its
oscillations. Since the dormancy model is a population model, mV (t) should always be
large, so the approximation is valid.

The average value of q(t) is q = 1− 1
2(1−α1)

. From the constraint 0 ≤ q < 1, the maximum

value of α1 is α∗
1 =

1
2
.

Note that by ignoring the transient response, it has been assumed that the states mV (0)
and q(0) were already at the optimal configuration. Dropping this assumption will give
approximately the same result (if T is large), though α∗

1 will be very slightly less than 1
2
if

the optimal states are not reachable from the initial conditions with α1 = 1
2
and α2 = 0.

Nonetheless, we will assume (α∗
1, α

∗
2) =

(
1
2
, 0
)
is the optimal dormancy strategy for the long

term catastrophe environment.
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4.6.2 Sporulation strategy for long term catastrophe problem

The optimal constant decision variable p for the sporulation strategy is found analogously.
The cost function is

J(T ) = mS(T ) =
T−1∑
i=0

pmV (i),

where periodicity in q(t) and large T give the following result, obtained from
∑T−1

i=0 M(i) ≈ 0:

T−1∑
i=0

mV (i) ≈ NT

1− δp

The cost function can therefore be closely approximated by

J(T ) ≈ p

1− δp
NT (4.2)

subject to the constraint p ≤ 1
2
, which is derived in a similar manner as the constraint on α1

for the dormancy model. Since it is assumed that cells do not create nutrients (i.e. δ < 1),
the maximizing p is readily found to be p∗ = 1

2
.

The same caveat about reachability of the optimal states for the dormancy model ap-
plies to the sporulation model. Also, for both models, the approximations are exact if the
numerical values for the parameters are chosen such that mV (t) and q(t) approach constant
values.

Figures 4.4 and 4.5 provide simulation support for the analytical claims above. In the
simulations, K = 0.01, N = 10, T = 500, mV (0) = 11, mS(0) = mP (0) = 0, q(0) = 0.01,
δ = 0.5, and Δ = 2. Though not obvious from these figures, the reachability issue is present
because the optimal p and α1 are just below 0.5 (corresponding to one increment of the
gridded space).

From Equations 4.1 and 4.2, it is clear that the sporulation survival strategy has a higher
fitness than the dormancy survival strategy due to the mothercell lysis term.

4.6.3 Time-varying decision policies

The result of higher fitness for sporulation with constant decision policies can be extended
to special cases of time-varying decision policies, as long as α∗

2 ≡ 0. When the condition
α∗
2 ≡ 0 is satisfied, the dormancy model is equivalent to the sporulation model with δ = 0.

By examining the effect of mothercell lysis on fitness maximization, presented in Theorems
4.6.1 and 4.6.4, conclusions about time-varying decision policies for both survival strategies
can be drawn.

Theorem 4.6.1. Let δ be the amount of nutrient release by mothercell lysis. Suppose the
decision policy is p = {p(0), p(1), p(2), . . .} and initial conditions are independent of δ.
Suppose

K ≤ 1

2maxt mδ
V (t)

(4.3)
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and

δ ≥ mδ
V (t)−mV (t)

mδ
V (t)m

δ
V (t+ 1−Δ)p(t+ 1−Δ)K

, ∀t (4.4)

where mδ
V (t) is the number of growing cells when δ > 0. Then, for all initial conditions,

1− qδ(t) ≥ 1− q(t), ∀t
where qδ(t) corresponds to the case with mothercell lysis nutrient release, and q(t) corre-
sponds to the case without mothercell lysis nutrient release.

Equivalently, suppose the policy p and the initial conditions are independent of δ, the
death fraction does not increase too rapidly, and δ is greater than some number. Then,
the fraction of cells surviving to the next generation with mothercell lysis nutrient release
for any δ > 0 is always greater than or equal to the fraction of cells surviving to the next
generation without mothercell lysis nutrient release.

Proof. Denote a variable yδ(t) as being associated with the case of mothercell lysis nutrient
release (δ > 0) and y(t) (without the superscript) as being associated with the case of no
mothercell lysis nutrient release (δ = 0). The result will be shown by induction.

For the base case, let t = 1. Since the initial conditions are identical (qδ(0) = q(0) and
mδ

V (0) = mV (0)), and since the decision policies are the same, thenmδ
V (1) = mV (1). Letting

M δ(1) = mδ
V (1)− δp(1−Δ)mδ

V (1−Δ)−N(1) and M(1) = mV (1)−N(1) = mδ
V (1)−N(1),

the definitions for qδ(1) and q(1) clearly show that 1− qδ(1) ≥ 1− q(1).
For the inductive step, suppose 1− qδ(τ) ≥ 1− q(τ) ∀τ ≤ t. This implies that mδ

V (τ) ≥
mV (τ) ∀τ ≤ t since the initial conditions are assumed to be identical and the control p is
identical.

Showing that 1− qδ(t+ 1) ≥ 1− q(t+ 1) is equivalent to showing that

qδ(t) +KM δ(t+ 1) ≤ q(t) +KM(t+ 1)

⇔ mδ
V (t+ 1)−mV (t+ 1) ≤ δp(t+ 1−Δ)mδ

V (t+ 1−Δ) +
q(t)− qδ(t)

K
. (4.5)

From the system dynamics,

mδ
V (t+ 1)−mV (t+ 1) = 2(1− p(t))

[
(1− qδ(t))mδ

V (t)− (1− q(t))mV (t)
]

≤ 2mδ
V (t)

[
1− mV (t)

mδ
V (t)

− qδ(t) + q(t)
mV (t)

mδ
V (t)

]
≤ 2mδ

V (t)

[
1− mV (t)

mδ
V (t)

− qδ(t) + q(t)

]
where the first inequality results from 1 − p(t) ≤ 1 and the second inequality results from
mδ

V (t) ≥ mV (t) . From conditions (4.3) and (4.4), respectively,

mδ
V (t+ 1)−mV (t+ 1) ≤ mδ

V (t)−mV (t)

mδ
V (t)K

+
q(t)− qδ(t)

K

≤ δp(t+ 1−Δ)mδ
V (t+ 1−Δ) +

q(t)− qδ(t)

K

∀t, which satisfies Equation 4.5. Therefore, 1− qδ(t+ 1) ≥ 1− q(t+ 1).
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Remark 4.6.2. The condition (4.3) on K ensures that qδ(t)− qδ(t+ 1) ≤ 1
2
, ∀t.

Remark 4.6.3. It is possible that condition (4.4) may not be satisfied with the constraint
δ < 1.

Though Theorem 4.6.1 may seem obvious, the subtlety lies in the fact that a decreased
fraction of cells dying puts a larger load on the nutrient supply, which will correspondingly
increase the parameter q(t).

Theorem 4.6.4. Suppose conditions (4.3) and (4.4) hold, and the initial conditions are
independent of δ. Then, for all T > 0,

max
p

mδ
S(T ) ≥ max

p
mS(T ),

where p = {p(0), p(1), . . . , p(T − 1)}.
Equivalently, suppose the initial conditions are independent of δ, q(t) does not increase

too rapidly, and δ is greater than some number. Then, the spore component of the fitness
metric with mothercell lysis is at least as large as the spore component of the metric without
mothercell lysis.

Proof. For any T > 0, the objective functions can be written as

mS(T ) =
T−1∑
t=0

p(t)2tmV (0)
t−1∏
i=0

(1− p(i))(1− q(i))

mδ
S(T ) =

T−1∑
t=0

pδ(t)2tmV (0)
t−1∏
i=0

(1− pδ(i))(1− qδ(i)).

Denote the optimal policy and states with ∗. By definition,

T−1∑
t=0

pδ∗(t)2tmV (0)
t−1∏
i=0

(1− pδ∗(i))(1− qδ∗(i)) ≥
T−1∑
t=0

p(t)2tmV (0)
t−1∏
i=0

(1− p(i))(1− qδ(i))

for any other policy with elements p(t), including the optimal policy corresponding to the
model with no mothercell nutrient release (with elements p∗(t)). Then,

T−1∑
t=0

pδ∗(t)2tmV (0)
t−1∏
i=0

(1− pδ∗(i))(1− qδ∗(i)) ≥
T−1∑
t=0

p∗(t)2tmV (0)
t−1∏
i=0

(1− p∗(i))(1− qδ(i))

but since 1− q∗(i) ≤ 1− qδ(i) ∀i ≤ T − 1 (both under the same policy with elements p∗(t)),
then

T−1∑
t=0

p∗(t)2tmV (0)
t−1∏
i=0

(1− p∗(i))(1− qδ(i)) ≥
T−1∑
t=0

p∗(t)2tmV (0)
t−1∏
i=0

(1− p∗(i))(1− q∗(i)).
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So, end to end, we are left with the inequality

T−1∑
t=0

pδ∗(t)2tmV (0)
t−1∏
i=0

(1− pδ∗(i))(1− qδ∗(i)) ≥
T−1∑
t=0

p∗(t)2tmV (0)
t−1∏
i=0

(1− p∗(i))(1− q∗(i)),

or

max
p

mδ
S(T ) ≥ max

p
mS(T )

for all T > 0.

Theorem 4.6.4 indicates that a model with mothercell lysis nutrient release will always
have a higher fitness in the long term catastrophe problem than a similar model lacking
mothercell lysis nutrient release, as long as some parametric conditions are satisfied. There-
fore, even without the constant decision policy assumption, sporulation may provide a higher
fitness than dormancy for the proposed environmental conditions.

4.7 Discussion

Examining Equations 4.1 and 4.2, it is evident that the sporulation survival strategy has a
higher fitness than the dormancy survival strategy in the long term catastrophe environment
described in Section 4.5. With conditions on K and δ, Theorems 4.6.1 and 4.6.4 extend the
selection of sporulation over dormancy for time-varying decision policies in environments
where α∗

2 ≡ 0 (no exit from dormant state) because the dormancy model becomes equivalent
to the sporulation model with δ = 0.

The choice of α∗
2 ≡ 0 is corresponds to extremely harsh environmental conditions, where

it is better to “wait out the storm” and remain dormant instead of risk increased death in the
growing state; indeed, since the cells know of the catastrophe T−1 generations into the future
in the proposed example, it was better to devote resources to the accumulation of survival
structures. Though difficult to detect in morphologically-indistinct survival structures (e.g.
persistence [59]), there is evidence to suggest that resuscitation from the dormant state is
not necessarily common. For example, some spores have been dated to 105 − 107 years old
[188], and several bacterial species produce a subpopulation of “superdormant” spores that
do not germinate even in high-nutrient conditions [84].

The quantitative preference of sporulation over dormancy in extremely harsh en-
vironments is also consistent with the morphological differences between spores and
metabolically-inactive cells. Inactive cells survive by simply not interacting with their en-
vironment, which reduces energetic demands and resists stressors that rely on metabolic
activity (e.g. antibiotics disrupt cell replication machiner [7, 59, 81]). On the other hand,
spores are specifically designed to protect the cell from harsh environmental conditions and
have been recognized as the “hardiest known form of life on Earth” [188]; indeed, since
spores do not have any metabolic activity (germination is initiated by passive mechanisms
[121, 235, 277]), there is no way to repair potential damage to cellular DNA prior to germi-
nation. The outer parts of the spore (integument) have evolved to protect against noxious
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chemicals, disinfectants, and degradative enzymes, while the inner parts of the spore (cortex
and protoplast) protect against heat, dehydration, and radiation [53] (see Section 2.1.2 for
more details). Thus, a spore does a better job protecting a genome copy than a dormant
cell in scenarios that are similar to the proposed environmental profile, where conditions
are harsh enough such that all vegetative cells perish. The results of this modeling exercise
should therefore be expected.

The optimal constant sporulation decision policy is qualitatively consistent with exper-
imental evidence. Though the available data were sourced from nutrient exhaustion con-
ditions (not exactly a catastrophic event; see Section 3.2), the parameter p∗ = 1

2
is similar

to maximum likelihood estimates of p (see Section 3.4.4). Figure 4.6 illustrates this agree-
ment with the “wild type” B. subtilis 168 strain. Due to this close, qualitative agreement
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Figure 4.6: Estimate for p for experiment 090731.

with experimental evidence, it seems that sporulation may have evolved to specifically deal
with these types of “catastrophic” conditions. On the other hand, experimental dormancy
studies (albeit for E. coli) suggest a non-zero resuscitation rate (α2 > 0) and a dormancy
commitment fraction of 10−6 − 10−5 [183], which corresponds to α1 � 1. Since these are
not qualitatively consistent with the optimal dormancy policy derived in this chapter, it is
possible that dormancy is ill-suited to deal with catastrophes and has evolved to address
other environmental conditions.

Thus, the fitness space comparison performed in this chapter and the above consider-
ations suggest that sporulation has evolved specifically to deal with catastrophic environ-
ments.
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4.8 Concluding remarks

This chapter provided a quantitative assessment of the benefit of sporulation over a simple
reduction in metabolic activity. It was shown that the proposed survival strategy mod-
els predict that sporulation provides a fitness advantage over dormancy in a long term
catastrophic environment with constant decision policies. This result was extended to time-
varying decision policies under certain conditions. Thus, if the modeling assumptions are
valid, it seems that sporulation is a better survival strategy than dormancy for a long term
catastrophic environment. This result is consistent with the difference between dormant
cell and spore physiology.

There are several possible points of contention with the modeling assumptions:

1. Timing: The assumed ordering of the cell cycle may not be accurate. For example,
it is assumed that a bacterium makes the sporulation/dormancy decision at the end
of the cell cycle, and it can die only during a certain part of the cell cycle (after
division but before the sporulation/dormancy decision is made). The time between
the decision and cell division is not necessarily small, so there may be sufficient time
for death. Also, the models assume a single point during the cell cycle when nutrients
are consumed, whereas they are likely absorbed throughout the entire cell cycle.

2. Energetic difference between spore and dormant cell formation: Sporulation has been
characterized as an “energy-intensive” process [109, 165]. Dormancy, on the other
hand, does not require any additional energy because the cell just slows its metabolism.
Energetic costs associated with environmental sensing may also differ between the two
strategies. Incorporating these differences into the model may provide an important
trade-off for spore formation.

3. Independence of spores from environment: Though spores are highly resistant to
environmental stressors, they are not immune to them. Physical constraints such
as space availability are not considered in this study, which makes the unbounded
population growth predicted by the optimal policies unrealistic (spores are affected
by mechanical stress [126]). This spore independence assumption does not admit a
clear relationship between nutrient influx and population size, a feature which seems
appealing to exhibit in a population-level model.

Though it may seem that many of these objections are important, they were omitted in order
to obtain the relatively clean results presented in this chapter. However, it is clear that some
of these assumptions need to be revisited because some (e.g. energetic difference between
spore and dormant cell formation and finite steady state) would significantly increase the
accuracy of model.

Aside from the incorporation of possibly important modeling assumptions into the anal-
ysis, there are several directions that will significantly improve the impact of the work
presented in this chapter. The most outstanding extension is the comparison of sporulation
to other bacterial survival strategies other than dormancy, such as cannibalism [87], reduc-
tion in cell surface area [224], or competence [184]. These comparisons will provide more
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clues about reasons for the evolution of sporulation. Additionally, modeling environmental
conditions to more closely resemble experimental conditions (e.g. nutrient exhaustion resus-
pension experiments) will allow a direct comparison to data. These extensions will increase
the relevance of the work presented in this chapter.
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Chapter 5

Bacterial Behavior; Single Population
Model

5.1 Introduction

The previous chapter provided a possible explanation for why sporulation has evolved. The
attention of this dissertation will now shift to the analysis of the characteristics of sporulation
in an attempt to explain the general behavior of this evolutionary optimal decision policy.
In particular, sporulation will be studied in the context of human decision-making in order
to provide a qualitative understanding to which we may easily relate.

Understanding animal behavior in the context of human decision-making is common in
biological systems since it is natural to frame unfamiliar ideas using concepts with which we
are accustomed. However, beyond this trivial relationship, there have been significant strides
in understanding animal behavior by assuming animals will act like humans. In other words,
it is hypothesized that animal behavior is the result of “rational” decision-making, where an
observed behavior can be explained by asking what a (rational) human would do if it was
in the animal’s position. Ignoring the technicality that not all humans act rationally, this
framework is appealing because it provides self-centered characterizations that are consistent
with the way we may act. Though it may be true that many biological organisms lack the
cognitive capabilities of humans, their behaviors have been shaped to resemble rational
choices to maximize certain measures of fitness (see Section 2.2.4). For example, we are
able to explain many evolved phenotypes in the context of game theory (see Section 7.7.1),
and we can characterize many foraging animals as risk seeking or risk averse (see Section
7.10.1). The remainder of this dissertation will be devoted to deriving an evolutionary
optimal sporulation decision policy and carefully labeling B. subtilis ’s behavior using human
behavioral terms, in hopes of providing a relatable characterization of a bacterial survival
strategy.

The population-level, discrete time sporulation model proposed in Chapter 4 is insuffi-
cient to study the characteristics of sporulation. Specifically, when considering maximization
of total population number over a long time horizon, the optimal sporulation policy is to de-
vote ≈ 1

2
of the vegetative cells to spores with no germination. This leads to the unrealistic
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scenario of an unbounded total population level. In a control volume (i.e. a typical labora-
tory setting), an unbounded population number will necessitate the inclusion of mechanical
stress and nutrient gradient effects into the model. Though studies have been done on the
effects of mechanical stress on vegetative B. subtilis cells [226] and spores [126], introducing
these effects and spatial modeling into the discrete time sporulation model would make it
cumbersome to analyze. It is therefore desired to construct a model that predicts a steady
state population in response to a constant nutrient influx, where the steady state population
number depends on the magnitude of the nutrient influx. These features were both absent
from the discrete time model.

In order to facilitate the finite steady state population number goal, a simple, population-
level, continuous time sporulation model is developed in Section 5.2. Switching to continuous
time allows the timing assumptions on nutrient consumption, sporulation decision and for-
mation, and germination to be dropped. Though a matter of taste, treating sporulation,
germination, birth, and death transitions as rates allows a more natural representation of
a dynamical system. In order to maintain the validity of a population-based model, it is
assumed that the nutrient influx is large. Because of this assumption, it is also assumed
that the nutrient release from mothercell lysis is negligible and the germination rate is no
longer zero. Finally, for the sake of simplicity, the spore formation time is assumed to be
folded into the sporulation rate parameterization, which eliminates pure time delays in the
model.

After the development of the continuous time model, Section 5.3.1 verifies the finite
steady state property. Section 5.3.2 then formulates and solves the population maximization
problem.

5.2 Model

Suppose a living population is composed only of vegetative cells and spores, which are
supported by a nutrient influx. At each instance in time, vegetative cells form spores at a
rate of α2, spores germinate to form vegetative cells at a rate of α3, vegetative cells grow
at a rate of α4, and vegetative cells die at a rate of α1. It is assumed that spores are
independent of nutrient conditions (similar to the modeling assumption in Chapter 4), the
spore maturation time is incorporated into the sporulation rate parameterization, and the
nutrients released from mothercell lysis are negligible compared to the nutrient infusion.
The last assumption necessitates the inclusion of non-zero germination.

A graphical interpretation of the population model is given in Figure 5.1, which shows
the assumed operating modes a single cell may occupy and the rates of transition between
each mode.

It is assumed that all of the αi’s depend on f
X
, the population-average nutrient level,

which depends on time. α1 and α2 should be non-increasing in f
X

while α3 and α4 should

be non-decreasing in f
X
. In other words, there should be a relative increase in growth and

germination with higher nutrient levels, and a relative increase in death and sporulation
with lower nutrient levels.
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Figure 5.1: Schematic of population model showing the operating modes of the cells. X is
the vegetative state and S is the committed to sporulation/spore state.

The single population model is therefore

Ẋ = (α4 − α1 − α2)X + α3S

Ṡ = α2X − α3S

ḟ = −γX + e

where

States:

X = number of vegetative (growing) cells

S = number of spores

f = nutrients available to bacteria

Input:

e = nutrient influx rate

Parameters:

α1 = death rate

α2 = sporulation rate

α3 = germination rate

α4 = birth rate

γ = nutrient consumption parameter

and it is assumed that nutrient consumption is proportional to the number of vegetative
cells.

The assumed parameterizations for the αi’s are piecewise linear

α1 = max

{
0, u1 − u1

l1

f

X

}
α2 = max

{
0, u2 − u2

θ

f

X

}
α3 = min

{
u3,

u3

β

f

X

}
α4 = min

{
u4,

u4

l4

f

X

}
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where the ui’s and li’s can be identified from data and θ and β describe the sporulation and
germination decision processes, respectively. Illustrations of the parameterizations for the
αi’s are given in Figure 5.2. In simulations in the sequel, the chosen parameter values are

u1 = 0.3

u2 = 0.5

u3 = 3 ln 2

u4 = 3 ln 2

l1 = 1

l4 = 30,

which are justified in Appendix A. It is assumed that germination takes only one cell cycle
to complete, so the maximum germination rate is equal to the maximum birth rate.

The nutrient consumption parameter γ should be chosen so the population is “large
enough” to not invalidate the population-level modeling assumptions. The values γ = 0.01
or γ = 0.001 are used throughout the remainder of this dissertation.

It is important to emphasize that this model is a population-level model while exam-
ining the parameterizations for the αi’s because they are not consistent with the expected
parameterizations for a single cell. For example, it might be expected that the death rate
α1 should saturate at low f

X
because a cell presumably needs a minimum amount of food

(> 0) to survive. However, if we consider a fixed control volume with a non-homogeneous
spatial distribution of nutrients, the local nutrient level may be significantly different from
the average nutrient level (which we are calling f

X
in this model). For example, even if the

average nutrient level lies below the threshold of nutrients needed for survival, there may
be patches in the control volume where the local nutrient level is much higher. Even as the
average nutrient level approaches zero, there still may be patches that are able to sustain
growth. Hence, the population-level death rate α1 does not saturate at low nutrient levels.

5.3 Single population model results

5.3.1 Steady state

Assume a constant nutrient influx e(t) = e ≥ 0 and restrict the state variables to be non-
negative (X ≥ 0, S ≥ 0, and f ≥ 0). For e > 0, there is a single equilibrium point

(
X,S, f

)
with X > 0, S > 0, and f > 0, and another “equilibrium” point (0, 0, f(t)) where f(t) is
non-constant (for e = 0, the only point where cell numbers are constant is (0, 0, 0)).

The non-trivial equilibrium point
(
X,S, f

)
has an important, intuitive feature: the birth

rate α4 is equal to the death rate α1, which defines a constant operating point c := f

X
that

is completely determined by the parameterizations for α1 and α4. For example, if the birth
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f
X
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α2

f
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f
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α4

f
X
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0

Figure 5.2: Illustrations of the parameterizations for the population model transition rates.
α1 is the death rate, α2 is the sporulation rate, α3 is the germination rate, and α4 is the
birth rate.
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and death rates are

α1 = max

{
0, u1 − u1

l1

f

X

}
α4 = min

{
u4,

u4

l4

f

X

}
,

where ui > 0 and l4 ≥ l1 > 0, then the (unique) constant operating point is given by

c =
u1

u4

l4
+ u1

l1

.

Expressions for the states at this equilibrium point are

X =
e

γ

S =
max

{
0, u2 − u2

θ
c
}

min
{
u3,

u3

β
c
} X

f =
e

γ
c

and it can be shown that
(
X,S, f

)
is locally stable under certain conditions.

Corollary 5.3.1. The equilibrium point
(
X,S, f

)
described above is locally stable if ui > 0

(i = 1, 2, 3, 4), li > 0 (i = 1, 4), γ > 0, θ > 0, and β > 0.

Proof. For the equilibrium point
(
X,S, f

)
described by

X =
e

γ

S =
max

{
0, u2 − u2

θ
c
}

min
{
u3,

u3

β
c
} X

f =
e

γ
c,

four cases need to be examined: θ ≥ c and β ≥ c, θ < c and β ≥ c, θ ≥ c and β < c, and
θ < c and β < c.

Case I: θ ≥ c and β ≥ c
The deviation variables δX = X−X, δS = S−S, δf = f −f , and δe = e− e are described
by the linearized dynamics

d

dt

⎡⎣ δX
δS
δf

⎤⎦ =

⎡⎣ −u1 − 2u2 +
u2

θ
c u3

β
c u4

l4
+ u1

l1
+ u2

θ

2u2 − u2

θ
c −u3

β
c −u2

c

−γ 0 0

⎤⎦⎡⎣ δX
δS
δf

⎤⎦+

⎡⎣ 0
0
1

⎤⎦ δe

=

⎡⎣ −a1 a2 a3
a4 −a5 −a6
−a7 0 0

⎤⎦⎡⎣ δX
δS
δf

⎤⎦+

⎡⎣ 0
0
1

⎤⎦ δe
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where ai > 0, i = 1, 2, . . . , 7, if uj > 0, j = 1, 2, 3, 4, lj > 0, j = 1, 2, γ > 0, θ > 0, and
β > 0. The characteristic equation for the linearized system is

λ3 + (a1 + a5)λ
2 + (a1a5 + a3a7 − a2a4)λ+ (−a2a6a7 + a3a5a7) = 0.

Necessary and sufficient conditions for all roots of the equation λ3 + b1λ
2 + b2λ + b3 = 0

to have negative real part are b1 > 0, b3 > 0, and b1b2 > b3. It will be shown that the
characteristic equation above satisfies these conditions.

Clearly, since all of the ai’s positive, the condition b1 > 0 is satisfied. The condition
b3 > 0 means that we require

−a2a6a7 + a3a5a7 > 0

to be true. Since a2 = a5,

−a2a6a7 + a3a5a7 > 0

⇔ a5a7 (a3 − a6) > 0

and since

a3 − a6 =
u4

l4
+

u1

l1
+

u2

c
− u2

c

=
u4

l4
+

u1

l1
> 0,

the condition b3 > 0 is satisfied. Finally, the condition b1b2 > b3 requires

(a1 + a5) (a1a5 + a3a7 − a2a4) > (−a2a6a7 + a3a5a7) ,

which is equivalent to

a1a3a7 + a2a6a7 + (a1a5 + a5a5) (a1 − a4) > 0,

which is satisfied since

a1 − a4 = u1 + 2u2 − u2

θ
c− 2u2 +

u2

θ
c

= u1 > 0.

The dynamics of the deviation variables are therefore stable when θ ≥ c and β ≥ c.
Case II: θ < c and β ≥ c

The linearized dynamics are

d

dt

⎡⎣ δX
δS
δf

⎤⎦ =

⎡⎣ −u1
u3

β
c u4

l4
+ u1

l1

0 −u3

β
c 0

−γ 0 0

⎤⎦⎡⎣ δX
δS
δf

⎤⎦+

⎡⎣ 0
0
1

⎤⎦ δe

=

⎡⎣ −a1 a2 a3
0 −a2 0

−a4 0 0

⎤⎦⎡⎣ δX
δS
δf

⎤⎦+

⎡⎣ 0
0
1

⎤⎦ δe
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where again the ai’s are positive under the conditions described above. The characteristic
equation for the linearized system is

λ3 + (a1 + a2)λ
2 + (a1a2 + a3a4)λ+ a2a3a4 = 0.

Clearly, a1 + a2 > 0 and a2a3a4 > 0, and

(a1 + a2) (a1a2 + a3a4) > a2a3a4

⇔ a1 (a1a2 + a3a4) + a1a
2
2 > 0

which is satisfied. The dynamics of the deviation variables are therefore stable when θ < c
and β ≥ c.

Case III: θ ≥ c and β < c
The linearized dynamics are

d

dt

⎡⎣ δX
δS
δf

⎤⎦ =

⎡⎣ −u1 − u2 u3
u4

l4
+ u1

l1
+ u2

θ

u2 −u3 −u2

θ−γ 0 0

⎤⎦⎡⎣ δX
δS
δf

⎤⎦+

⎡⎣ 0
0
1

⎤⎦ δe

=

⎡⎣ −a1 a2 a3
a4 −a5 −a6
−a7 0 0

⎤⎦⎡⎣ δX
δS
δf

⎤⎦+

⎡⎣ 0
0
1

⎤⎦ δe

Note that

a3 − a6 =
u4

l4
+

u1

l1
+

u2

θ
− u2

θ

=
u4

l4
+

u1

l1
> 0

and

a1 − a4 = u1 + u2 − u2

= u1 > 0,

so the conditions for stability derived for the previous case are valid for this case. Thus, the
dynamics of the deviation variables are stable when θ ≥ c and β < c.

Case IV: θ < c and β < c
The linearized dynamics are

d

dt

⎡⎣ δX
δS
δf

⎤⎦ =

⎡⎣ −u1 u3
u4

l4
+ u1

l1

0 −u3 0
−γ 0 0

⎤⎦⎡⎣ δX
δS
δf

⎤⎦+

⎡⎣ 0
0
1

⎤⎦ δe

=

⎡⎣ −a1 a2 a3
0 −a2 0

−a4 0 0

⎤⎦⎡⎣ δX
δS
δf

⎤⎦+

⎡⎣ 0
0
1

⎤⎦ δe

where the Jacobian matrix has elements with the same signs as Case II. Therefore, we can
immediately conclude that the dynamics of the deviation variables are stable when θ < c
and β < c.
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By looking at the dynamics, it is clear that the “equilibrium” point (0, 0, f(t)) is unstable,
so the point

(
X,S, f

)
is a globally stable equilibrium in the allowable state space. Therefore,

for a set of initial conditions where either X(0) > 0 or S(0) > 0 and for e > 0, the steady
state solution is given by

(
X,S, f

)
.

The steady state expressions reveal several intuitive facts that the model is able to
capture:

• The steady state vegetative cell and spore numbers are monotonically increasing in e.

• For a fixed e, the steady state spore number increases as θ or β increase.

• The relative allocation of the population to spores increases as θ or β increase.

The number of steady state vegetative cells does not depend on θ or β; it is only dependent
on the nutrient influx. This is because of the assumption that spores do not consume any
nutrients.

5.3.2 Steady state population number maximization

The long term fitness maximization problem (Problem 2.1) for this model is

max
θ,β

X + S

s.t. steady state relationships

θ > 0

β > 0

with a constant nutrient influx e. Examination of the steady state expressions gives the
solution of the optimization problem– the maximum is approached as θ → ∞ and β → ∞.

In other words, it is always better to allocate as much of the population to spores as
possible. This is qualitatively consistent with the optimal constant policies derived in the
previous chapter.

If steady state population maximization is the driving factor behind evolution, and
nutrient influx in the wild is always approximately constant, then we should expect that a
B. subtilis colony will always form spores, even as the nutrient influx approaches infinity.
This is obviously not the case, and will be further examined in Chapters 6 and 7.

5.4 Concluding remarks

This chapter provided an alternative model to address some of the drawbacks of the discrete
time model presented in Chapter 4. The issue of the ordering of cell cycle events is resolved
by posing the model in continuous time, and a steady state population level is achieved by
germination parameterization (non-zero for positive nutrient levels). The proposed model
also captures an intuitive relationship between nutrient level and steady state population
number, and relative spore allocation with varying θ and β. This model was used to solve
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the long term fitness problem for a constant nutrient influx e, where it was found that
the optimal policy is the one that approaches maximal sporulation (θ → ∞) and zero
germination (β → ∞). Though similar to the optimal constant policies derived in the
previous chapter, the result is not expected since it is suboptimal to have a vegetative
population.

The derived optimal policy does not agree with biological observations of sporulating
bacterial colonies, where a non-zero vegetative population persists with a non-zero nutrient
supply. This leads to interesting questions that motivate the work in Chapters 6 and 7:
Why would a colony every choose finite θ and β? Is there a benefit to choosing smaller θ
and β? What conditions may lead to a smaller choice of θ and β?

The question pertaining to why a smaller θ and β may be preferable can be answered
by looking at Figure 5.3, which shows two (non-competing) populations with identical ini-
tial conditions but different θ and β, each subjected to the same nutrient level change
f(t) = 1 + 49 · 1(t− 200). In this figure, it is clear that a smaller θ and β will give a faster
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Figure 5.3: Effect of choosing different values for θ and β.

speed of response and settling time, even though the steady state population level may be
smaller (relative to the population with larger θ and β). This is important because if these
two populations were competing for the same resources, the one that is able to respond
quicker will have a competitive advantage when nutrients increase. A smaller θ and β can
therefore be characterized as being more “aggressive” than the strategy employing larger
parameter choices. Since the model developed in this chapter assumed a single population
evolving in a vacuum, it is not surprising that the results are not consistent with experimen-
tal observations; after all, most biological organisms evolve in a competitive setting [259].
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Therefore, competition seems like it should affect the optimal sporulation and germination
policies. This important aspect of selecting θ and β leads to the model developed in the
next chapter.

Another drawback of the proposed model (and the subsequent models in Chapters 6
and 7) is the assumed rate dependencies for sporulation and germination. Specifically, it
is expected that the relative spore allocation should increase when f decreases; however,
for the assumed sporulation and germination rate dependencies, this spore allocation is
independent of f . This may be remedied by letting sporulation and germination depend on
f instead of f

X
. This does not, however, affect the optimal policies in this chapter, nor will

it affect the work in Chapter 7 (see Section 7.5). Thus, for the sake of simplicity, it will be
assumed that all of the rates depend on the population-average nutrient level in the sequel.
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Chapter 6

Bacterial Behavior; Competing
Populations Model I

6.1 Introduction

It was demonstrated at the end of the previous chapter that there may be a benefit to
survival strategies that do not commit all resources to spores. Specifically, with identical
initial population sizes, a colony with relatively more vegetative cells can respond more
quickly to increases in nutrient availability (see Figure 5.3). This leads to a competitive
advantage for a population that does not devote all resources to sporulation, but it also
introduces a severe drawback: the population becomes more susceptible to decreases in
nutrient availability.

Before exploring this trade off in Chapter 7, a general model of competing populations
is presented in this chapter. It will be shown in Section 6.4 that a more specialized model is
required to perform the desired trade off analysis due to the general model’s insensitivity to
sporulation and germination policies. This result is consistent with the so-called competitive
exclusion principle, discussed in Sections 6.5 and 6.6.

6.2 Model

The competing populations models presented below and in Chapter 7 augment the model
from Chapter 5 with an additional population that competes for the same resources.

The general competing populations model is

Ẋ1 = (α4,1 − α1,1 − α2,1)X1 + α3,1S1

Ẋ2 = (α4,2 − α1,2 − α2,2)X2 + α3,2S2

Ṡ1 = α2,1X1 − α3,1S1

Ṡ2 = α2,2X2 − α3,2S2

ḟ = −γ (X1 +X2) + e
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where the αi parameterizations are (i = 1, 2)

α1,i = max

{
0, u1,i − u1,i

l1,i

f

X1 +X2

}
α4,i = min

{
u4,i,

u4,i

l4,i

f

X1 +X2

}
α2,i = max

{
0, u2 − u2

θi

f

X1 +X2

}
α3,i = min

{
u3,

u3

βi

f

X1 +X2

}
.

It is assumed that the two competing populations are identical except for their birth, death,
sporulation, and germination rates. In particular, we are assuming that any quorum sensing
molecules (e.g. Phr molecules) are the same for both populations, so each cell is able to
sense the total population density. This is the reason why the αi’s depend on f

X1+X2
, not f

X1

or f
X2

. Mathematically, this rate dependence assumption avoids the situation where each
population maximizes the total population number by letting θ → ∞ and β → ∞ (similar
to the situation presented in Section 5.3.2).

6.3 Equilibria

Suppose that e = e is constant. For this input, the corresponding equilibrium values
(X1, X2, S1, S2, f) can be found by setting the derivatives in the model to zero:

0 = (α4,1 − α1,1 − α2,1)X1 + α3,1S1

0 = (α4,2 − α1,2 − α2,2)X2 + α3,2S2

0 = α2,1X1 − α3,1S1

0 = α2,2X2 − α3,2S2

0 = −γ(X1 +X2) + e.

These equations yield the following set of equations:

α2,1X1 = α3,1S1

α2,2X2 = α3,2S2

X1 +X2 =
e

γ

α4,1 = α1,1

α4,2 = α1,2.

For α4,1 	= α4,2 and α1,1 	= α1,2, the last two equalities cannot typically be satisfied simulta-
neously. However, it is possible to satisfy one equality at a time, which leads to two possible
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equilibria. For example, if α4,1 = α1,1, then all derivatives of the model are zero as long as
X2 = S2 = 0 and α2,1X1 = α3,1S1.

The two equilibria are given in Table 6.1, where ci is the value of
f

X1+X2
where α4,i = α1,i,

i = 1, 2, which describes the operating points of each equilibrium. Assume that l4 ≥ l1 to

reflect the fact that the birth rate becomes smaller when cells start dying, so ci =
u1,i

u4,i

l4,i
+

u1,i

l1,i

.

Table 6.1: Equilibria for competing populations model with different birth

and death rates

Equilibrium 1 (α4,1 = α1,1) Equilibrium 2 (α4,2 = α1,2)
X1

e
γ

0

X2 0 e
γ

S1
α4,1(c1)

α1,1(c1)
X1 0

S2 0 α4,2(c2)

α1,2(c2)
X2

f c1X1 c2X2

It will be shown in the next section that under certain conditions, one of these equilibria
is locally unstable and the other is locally stable.

6.4 Stability

Without loss of generality, let c1 < c2, where ci corresponds to Equilibrium i in Table 6.1.

Theorem 6.4.1. If X1, X2, S1, S2, and f are non-negative, the birth, death, sporulation,
and germination rates are finite and positive over a nonempty set of values of f

X1+X2
, and

γ � 1, then Equilibrium 1 is locally stable and Equilibrium 2 is locally unstable.

Proof. See Appendix B.1.

Remark 6.4.2. The condition γ � 1 allows a simplified proof of the claim. Numerical
simulations suggest that the condition is not necessary, but the proof then becomes extremely
messy. Since γ should be chosen small to not invalidate the population-level model, the
simplification is warranted.

Remark 6.4.3. Equilibrium 1 is globally stable if X1, X2, S1, S2, and f are non-negative.
Indeed, the proof of Theorem 6.4.1 included the case when f

X1+X2
> c2. The only other case

that needs to be examined is the point
(
X1, X2, S1, S2, f

)
= (0, 0, 0, 0, f(t)), which can be

shown to be locally unstable; see Appendix B.2.

6.5 The competitive exclusion principle

Theorem 6.4.1 shows that, in the case of competing populations with different birth and
death rates, only one population persists. In particular, the population with the smaller ci
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will survive while the other population becomes extinct. Recall that each ci is the “resource”
level (i.e. value of f

X1+X2
) at which the birth rate is equal to the death rate, or the steady

state resource level for population i. Theorem 6.4.1 therefore states that the population
that is able to survive at the smaller resource level in steady state will eventually exclude
the other population.

This result is consistent with the competitive exclusion principle. Though derived for
chemostat models following Lotka-Volterra growth dynamics, this principle states that the
population with the smallest steady state, abiotic resource level will approach a finite
nonzero density, while the remaining competitors will become extinct [96]. Also called
the “R∗-rule” in some texts, the competitive exclusion principle traces its roots back to
Volterra [261] and has since then been applied to several extensions of the chemostat mod-
els. Though the proof generalizing this principle to a broader class of population models
is incorrect (in [6], the “Lyapunov function” is not positive definite), the simplicity of this
statement makes it an attractive proposition in ecology.

There are several experimental studies of organisms that seem to follow the competitive
exclusion principle. Competition experiments between E. coli and P. aeruginosa [101], P.
fluorescens and A. tumefaciens [15], L. casei and S. cerevisiae [176], C. cochlearium and
C. tetanomorphum [147], Spirillum sp. and Pseudomonas sp. [123, 164], and Aerobacer
sp. and Achromobacter sp. [123] all follow the competitive exclusion principle. In addition,
several experimental studies on phytoplankton, higher plants, and some metazoa reveal that
this principle is valid when the modeling assumptions are satisfied [96].

Though the competitive exclusion principle predicts low diversity in the wild, it is often
(subjectively) observed that ecological systems exhibit a large amount of diversity. This di-
versity may be maintained by violating the oversimplified modeling assumptions (spatial ho-
mogeneity, population interactions only through resource consumption, and time-invariance
[96]), but it has also been shown that diversity may be preserved under conditions more
closely resembling natural systems. For example, if the resource level fluctuates [98, 155]
or if competing populations can consume different resources [5, 6], then different species
may coexist (the latter situation giving rise to ecological niches). However, for systems that
satisfy the modeling assumptions of Volterra’s original system, the competitive exclusion
principle is a comforting theoretical result.

Though competitive exclusion has been shown to apply broadly, it does not directly
apply to the proposed competing populations model. This is because the proposed model
incorporates a “storage-like” state (spores) that make many of the competitive exclusion
proofs invalid. However, Theorem 6.4.1 proves that this principle still applies for this specific
model.

6.6 Discussion

Though it is appealing that the proposed competing populations model agrees with previous
work (even though the rate parameterizations/dependencies and model structure are differ-
ent), the case of different birth and death rates does not shed any significant insights into
the evolutionary roles of the sporulation or germination policies. This is because Theorem
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6.4.1 holds regardless of the values of the sporulation or germination parameters (as long as
they are positive and finite), so independent tuning of these policies will have no effect on
the competitive abilities of a population. In other words, a population may adopt optimal
sporulation and germination policies for a particular environment, but it will become extinct
when competed against a population with inferior sporulation and germination policies but
a lower ci.

It is possible that the sporulation, germination, birth, and death rates are all depen-
dent, e.g. adjusting the sporulation rate will also change the birth rate. This may be due to
genetic interactions or epistasis, a phenomenon where changing one gene affects more than
one phenotype in a non-additive manner [180]. Due to the relative complexity of the phos-
phorelay and its dependence on other cellular networks within the bacteria [161, 245, 255],
it is likely that this occurs in B. subtilis. However, adjustment of the sporulation and
germination policies still takes a back seat to achieving the smallest possible ci, even if it
implies that the associated sporulation and germination policies are severely suboptimal.
Bacterial decision-making for populations with different birth and death rates will therefore
be disregarded in the remainder of this dissertation since this framework does not provide
any insight about the evolution of sporulation.

6.7 Concluding remarks

This chapter introduced a competing populations extension to the continuous time model
developed in Chapter 5. In its most general form, both populations have different birth,
death, sporulation, and germination rates, and they interact only through resource competi-
tion. It was shown that this general model conforms to the competitive exclusion principle,
where the population that equilibrates at a higher resource level (in this case, resource
= f

X1+X2
) will eventually become extinct. Assuming that the sporulation and germination

policies can be tuned independently of the cellular machinery that governs the birth and
death rates, the competitive exclusion principle implies that the long term fitness problem
does not depend on sporulation or germination. In other words, this situation does not
elucidate any interesting information about the survival strategies under study.

Aside from the competitive exclusion outcome, there are other possible shortcomings in
the general competing populations model. While it is assumed that the populations only
interact through resource competition, there may be other forms of interaction related to the
sporulation and germination policies. For example, it has been found that sporulating B.
subtilis cells export a killing factor and a signaling protein that act cooperatively to block
sister cells from sporulating and to cause them to lyse, which introduces a cannibalistic
nutrient source [87, 88]. This is also related to the modeling assumption that the nutrient
infusion is much larger than the nutrients released from mothercell lysis or cell death, which
may affect sporulation decision policies in a competitive setting. For instance, a population
that does not sporulate as readily as a competing population will benefit from the release of
nutrients from competing mothercells lysing. Though these interactions may be important,
they add complexity to a model that is already non-trivial to analyze, so we will continue
to employ the simple resource competition assumption in the next chapter.
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The assumption of total population sensing may also be invalid. Since the competing
populations are genetically distinct, the quorum sensing molecules (i.e. Phr molecules) may
be unique for each population. In this case, the rate dependencies would be altered and each
population would persist indefinitely. This is because they would be consuming different
“resources” in the forms of f

X1
and f

X2
, and it has been shown that the competitive exclusion

principle does not generally hold for two populations consuming different resources [6, 96].
Though entirely plausible, the inclusion of different rate dependencies for both populations
would allow each population to exist almost independently from the other population, which
defeats the purpose of the competing populations framework. Therefore, total population
sensing will be assumed in the sequel.

The next chapter will examine the special case where the competitive exclusion principle
does not hold: Equal birth and death rates for both populations. This framework permits
the analysis of various sporulation and germination policies.
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Chapter 7

Bacterial Behavior; Competing
Populations Model II

7.1 Introduction

The previous chapter examined a competing populations model with different birth and
death rates, and it was found that this scenario does not shed much insight into the evolution
of sporulation (see Section 6.6). This chapter will therefore study the specialized case of
identical birth and death rates for both competing populations. With this restriction,
competitive performance will depend on the remaining differences between the populations,
which are confined to be the sporulation and germination policies in the following analysis
of bacterial survival strategies.

Though often ignored in comparable studies of competing populations due to the diffi-
culty in distinguishing between the two populations [96], the identical birth and death rates
scenario may occur in constant natural ecosystems due to natural selection. Since extinction
will occur unless a population’s ci is less than or equal to the other population’s ci, selection
pressure will result in a non-increasing (with time) overall value of ci. Since there is a min-
imum resource level at which a cell can survive (to preserve basic metabolic functions [2]),
there is a minimum c∗i > 0 that can be adopted by a population to competitively exclude any
other population with a different ci 	= c∗i . Thus, all populations will be evolving to attain c∗i .
With sufficient evolutionary time, this value will be procured and maintained because any
other strategy will be competitively excluded. Therefore, the situation of identical birth
and death rates is plausible from an evolutionary point of view.

Within this framework, the population maximization problem presented in Section 5.3.2
can be more closely analyzed. In the next section, it is shown that ≈ 100% sporulation is
no longer the best strategy under all conditions due to the trade off between population
number volatility and insensitivity to nutrient change. After a type of input-output stabil-
ity is proved in Section 7.4, approximations for the total population numbers are derived
in Section 7.5 for the nonlinear competing populations model. With the introduction of
environmental and evolutionary models, it is shown in Section 7.10.1 that, relative to the
theoretically-optimal behavior, sporulating bacteria behave optimistically in poor conditions
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and pessimistically in favorable conditions. This behavior is compared to a general class of
risk-spreading strategies in Section 7.10.2.

7.2 Model

The second competing populations model is

Ẋ1 = (α4 − α1 − α2,1)X1 + α3,1S1

Ẋ2 = (α4 − α1 − α2,2)X2 + α3,2S2

Ṡ1 = α2,1X1 − α3,1S1

Ṡ2 = α2,2X2 − α3,2S2

ḟ = −γ (X1 +X2) + e

where the αi parameterizations are

α1 = max

{
0, u1 − u1

l1

f

X1 +X2

}
α4 = min

{
u4,

u4

l4

f

X1 +X2

}
α2,i = max

{
0, u2 − u2

θi

f

X1 +X2

}
α3,i = min

{
u3,

u3

βi

f

X1 +X2

}
.

for i = 1, 2. Note that this model is identical to the model in Chapter 6 except for α4,1 =
α4,2 = α4 and α3,1 = α3,2 = α3 (identical birth and death rates).

7.2.1 Benefit of “aggressive” decision policy

The simple simulation results given in Figure 7.1 (created with X1(0) = X2(0) = 1, S1(0) =
S2(0) = 1, f(0) = 1, and e(t) = 0.001+.999·1(t−400)) indicate that this model captures the
competitive advantage of the population with smaller θ and β due to the quicker response
time. The competitive advantage leads to better performance with respect to the maxX+S
metric. As in the single population model, the numerical values u1 = 0.3, u2 = 0.5,
u3 = u4 = 3 ln 2, l1 = 1, and l4 = 30 were used in the simulations.

The behavior captured by the model brings up the obvious questions: under what en-
vironmental conditions is it better to choose a larger θ and β, and under what conditions
is it better to choose a smaller θ and β? Unfortunately, this question is not as easy to
answer as the single population model (where is was always better to choose θ and β large)
because there are infinitely many equilibrium points for a given constant nutrient influx e
(see Section 7.3). Simulations suggest that the equilibrium point that the system converges
to is dependent on the initial conditions of the simulation; this makes it possible to choose
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Figure 7.1: Demonstration of a population with smaller θ and β performing better (w.r.t.
maxX + S).

initial conditions to favor any particular choice of θ and β with respect to maxX + S, for
the same nutrient influx e. An expression for the solution of the system of equations can-
not be explicitly found due to the nonlinearities, which makes analytical results difficult to
find/prove.

7.3 Equilibria

Suppose that e = e > 0 is constant. For this input, the corresponding equilibrium values
(X1, X2, S1, S2, f) can be found by setting the derivatives of the model to zero:

0 = (α4 − α1 − α2,1)X1 + α3,1S1

0 = (α4 − α1 − α2,2)X2 + α3,2S2

0 = α2,1X1 − α3,1S1

0 = α2,2X2 − α3,2S2

0 = −γ(X1 +X2) + e.
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These equations yield the following set of equations:

α2,1X1 = α3,1S1

α2,2X2 = α3,2S2

X1 +X2 =
e

γ

α4 = α1.

As before, the last equation gives a constant operating point f

X1+X2
≡ c = u1

u4
l4

+
u1
l1

. However,

unlike the single population case, the assumptions α4,1 = α4,2 and α1,1 = α1,2 leave only four
independent equations to solve for the five unknown equilibrium values (X1, X2, S1, S2, f).
The equilibrium values are therefore not unique, and there exists an infinite number of
values that satisfy the equilibrium conditions for a constant e.

By inspection, the positive cone

S =
{(

X1, X2, S1, S2, f
)
: X1 > 0, X2 > 0, S1 > 0, S2 > 0, f > 0

}
is included in the set of allowable equilibrium vales, so both populations may coexist. This
coexistence is consistent with other model structures with identical birth and death rates
[96].

7.4 Stability

Assessing the local stability of any equilibrium by examining the eigenvalues of the lin-
earized system leads to inconclusive results because the Jacobian has an eigenvalue at 0
(see Appendix B.3). Thus, the (input-output) stability of the nonlinear system with nonzero
nutrient influx cannot be immediately determined– even if the linearized system had eigen-
values with negative real part, asymptotic stability of an equilibrium point does not imply
bounded input bounded output stability.

Instead, the stability analysis will proceed in the following manner: Assume that
(X1,0, X2,0, S1,0, S2,0, f0) is an equilibrium point corresponding to the input e. Note that this
point is not unique (see Section 7.3). Now, assume that the input is changed to e = e + ε,
where ε is constant, and expand the states as power series in ε:

X1 = X1,0 + X1,1ε + X1,2ε
2 + X1,3ε

3 + · · ·
X2 = X2,0 + X2,1ε + X2,2ε

2 + X2,3ε
3 + · · ·

S1 = S1,0 + S1,1ε + S1,2ε
2 + S1,3ε

3 + · · ·
S2 = S2,0 + S2,1ε + S2,2ε

2 + S2,3ε
3 + · · ·

f = f0 + f1ε + f2ε
2 + f3ε

3 + · · ·
where the coefficients of the powers of ε are independent of ε. If it can be shown that
all of the coefficients of εk, k = 1, 2, . . ., are bounded, then it can be concluded that the
competing populations model with identical birth/death rates is bounded input bounded

93



output (BIBO) stable for the class of piecewise-constant inputs. Stability for this class of
inputs (simply denoted as “BIBO stability” in the sequel) is sufficient for the long-term
fitness maximization framework considered in this dissertation.

An examination between the relationship between the power series expansion in ε and
a Taylor series expansion will be useful in the following analysis. Specifically, it will help
in the power series expansion of 1

X1+X2
. With slight abuse of notation, consider a variable

X(ε) expanded around some operating point at ε = 0, where X0 := X(0). We can write
out expansions based on a power series in ε and in terms of deviations from the operating
point X.

X(ε) = X0 +X1ε+X2ε
2 +X3ε

3 + · · ·
= X0 +

∂

∂ε
(X)

∣∣∣∣
ε

δε+
1

2

∂2

∂ε2
(X)

∣∣∣∣
ε

(δε)2 +
1

3!

∂3

∂ε3
(X)

∣∣∣∣
ε

(δε)3 + · · ·

where δε = ε since ε = 0. Thus, we have the following relationships:

X1 =
∂

∂ε
(X)

∣∣∣∣
ε

X2 =
1

2

∂2

∂ε2
(X)

∣∣∣∣
ε

X3 =
1

3!

∂3

∂ε3
(X)

∣∣∣∣
ε

...

The quantity 1
X(ε)

can therefore be expanded as a power series in ε as

1

X(ε)
=

∞∑
n=0

(
1

X

)
n

εn

=
∞∑
n=0

1

n!

(
1

X

)(n)
∣∣∣∣∣
ε

εn

where (x)(n) := ∂n

∂εn
(x). The coefficient of the nth power of ε is then(

1

X

)
n

=
1

n!

(
1

X

)(n)
∣∣∣∣∣
ε

.

The notation for the evaluation of the derivative at ε will be omitted in the sequel for
simplicity.

Lemma 7.4.1.
(

1
X

)(n)
is affine in ∂n

∂εn
(X).
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Proof. This claim will be shown by induction.
For the base case n = 1, (

1

X

)(1)

=
∂

∂ε

(
1

X

)
= − 1

X2
0

∂

∂ε
(X).

Now, for the inductive step, suppose that
(

1
X

)(n−1)
is affine in ∂n−1

∂εn−1 (X). Then, we can

write
(

1
X

)(n−1)
as (

1

X

)(n−1)

= C +D
∂n−1

∂εn−1
(X),

where C and D are not functions of ∂n−1

∂εn−1 (X). Taking the derivative yields(
1

X

)(n)

=
∂

∂ε

(
1

X

)(n−1)

=
∂C

∂ε
+

∂D

∂ε

∂n−1

∂εn−1
(X) +D

∂n

∂εn
(X)

which is affine in ∂n

∂εn
(X).

Remark 7.4.2. This Lemma gives a very useful property. If G = G0 + G1ε + G2ε
2 + · · · ,

then the coefficient in front of εn for the expansion of 1
G
will be linear in Gn. In other words,(

1
G

)
n
is linear in Gn.

Lemma 7.4.1 can also be visualized in terms of the power series expansion of X.

Corollary 7.4.3. If X = X0 +X1ε+X2ε
2 + · · · , then(

1

X

)
n

=
1

n!

(
1

X

)(n)

= Cn − Xn

X2
0

where Cn is not a function of ∂n

∂εn
(X).

Proof. The claim will be shown by induction.
Recall that

X1 =
∂

∂ε
(X)

∣∣∣∣
ε

X2 =
1

2

∂2

∂ε2
(X)

∣∣∣∣
ε

X3 =
1

3!

∂3

∂ε3
(X)

∣∣∣∣
ε

...
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For the base case (n = 1), (
1

X

)(1)

=
∂

∂ε

(
1

X

)
= − 1

X2
0

∂

∂ε
(X)

= −X1

X2
0

where C1 = 0 is not a function of ∂
∂ε
(X).

For the inductive step, assume that(
1

X

)
n−1

=
1

(n− 1)!

(
1

X

)(n−1)

= Cn−1 − Xn−1

X2
0

,

where Cn−1 is not a function of ∂n−1

∂εn−1 (X). Then,(
1

X

)(n)

=
∂

∂ε

(
1

X

)(n−1)

= (n− 1)!
∂Cn−1

∂ε
− (n− 1)!

∂

∂ε

(
1

(n−1)!
∂n−1

∂εn−1 (X)

X2
0

)

= (n− 1)!
∂Cn−1

∂ε
− X2

0
∂n

∂εn
(X)− 2 ∂n−1

∂εn−1 (X)X0
∂
∂ε
(X)

X4
0

= (n− 1)!
∂Cn−1

∂ε
+

2 ∂n−1

∂εn−1 (X)X0
∂
∂ε
(X)

X4
0

−
∂n

∂εn
(X)

X2
0

= C̃n −
∂n

∂εn
(X)

X2
0

= n!

(
Cn − Xn

X2
0

)
which completes the proof.

A more specific form of Cn can be obtained.

Corollary 7.4.4. If X = X0 +X1ε+X2ε
2 + · · · and(

1

X

)
n

= Cn − Xn

X2
0

,

then, for n ≥ 2,

Cn = (−1)n
Xn

1

Xn+1
0

+
znyn
gn

where zn ∈ R, gn ∈ {X0, X
2
0 , X

3
0 , . . .} and yn is drawn from the set of monomials of

(X1, X2, . . . , Xn−1) excluding the subset of monomials of (X1).
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Proof. The claim will be shown by induction.
For the base case (n = 2),(

1

X

)
2

=
1

2

∂2

∂ε2

(
1

X

)
=

1

2

(
2

X3
0

(
∂

∂ε
(X)

)2

− 1

X2
0

∂2

∂ε2
(X)

)

=
X2

1

X3
0

− X2

X2
0

.

Thus, C2 =
X2

1

X3
0
is consistent with the hypothesis with z2 = 0.

For the inductive step, assume(
1

X

)
n−1

=
1

(n− 1)!

∂n−1

∂εn−1

(
1

X

)
= (−1)n−1X

n−1
1

Xn
0

+
zn−1yn−1

gn−1

− Xn−1

X2
0

.

Then, (
1

X

)
n

=
1

n!

∂n

∂εn

(
1

X

)
=

(n− 1)!

n!

∂

∂ε

[
(−1)n−1X

n−1
1

Xn
0

+
zn−1yn−1

gn−1

− Xn−1

X2
0

]
=

1

n

[
(−1)n−1 (n− 1)Xn

0

(
∂
∂ε
(X)

)n−2 ∂2

∂ε2
(X)− n

(
∂
∂ε
(X)

)n
Xn−1

0

X2n
0

+
∂

∂ε

zn−1yn−1

gn−1

+
2X1Xn−1

X3
0

− nXn

X2
0

]
=

1

n

[
(−1)n−12(n− 1)Xn−2

1 X2

Xn
0

+
∂

∂ε

zn−1yn−1

gn−1

+
2X1Xn−1

X3
0

]
+ (−1)n

Xn
1

Xn+1
0

− Xn

X2
0

Note that the term ∂
∂ε

zn−1yn−1

gn−1
is

∂

∂ε

zn−1yn−1

gn−1

= zn−1

gn−1
∂
∂ε
(yn−1)− yn−1

∂
∂ε
(gn−1)

g2n−1

= zn−1

∂
∂ε
(yn−1)

gn−1

− zn−1

yn−1
∂
∂ε
(gn−1)

g2n−1
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where ∂
∂ε
(yn−1) and yn−1

∂
∂ε
(gn−1) belong to the set of monomials of (X1, X2, . . . , Xn−1)

excluding the subset of monomials of (X1). Indeed, the only way the subset of monomials
of (X1) could appear at this step is if yn−1 was drawn from this subset.

Therefore, we can express
(

1
X

)
n
as(

1

X

)
n

=
znyn
gn

+ (−1)n
Xn

1

Xn+1
0

− Xn

X2
0

where zn, yn, and gn conform to the definitions in the corollary statement.

Remark 7.4.5. The description of the set from which yn is drawn excludes polynomials
such as X1, X

3
1 , X

10
1 , etc.; the condition states that the only way X1 shows up is when it is

multiplied by another monomial of (X2, . . . , Xn−1).

Remark 7.4.6. Corollaries 7.4.3 and 7.4.4 will be useful in deriving the steady state dy-
namics for the coefficients of εk, k ≥ 2 (see Theorem 7.4.12).

Remark 7.4.7. The set from which gn is drawn can be shown to be limited to
{X0, X

2
0 , . . . , X

n
0 }, but it is immaterial for the main purposes of this Corollary. Addition-

ally, the set from which zn is drawn can be shown to be Z, but its usefulness does not merit
the attention.

We will often encounter terms such as

fX1

X1 +X2

=
∞∑
n=0

(
fX1

X1 +X2

)
n

εn

where it is of interest to find an expression for
(

fX1

X1+X2

)
n
. This is a straightforward calcu-

lation:

fX1

X1 +X2

=

( ∞∑
n=0

fnε
n

)( ∞∑
n=0

X1,nε
n

)( ∞∑
n=0

(
1

G

)
n

εn

)

=
∞∑
n=0

n∑
j=0

j∑
i=0

fiX1,j−i

(
1

G

)
n−j

εn

where G := X1 +X2 for notational simplicity. Thus,(
fX1

X1 +X2

)
n

=
n∑

j=0

j∑
i=0

fiX1,j−i

(
1

G

)
n−j

.

Notice that this is linear in (fn, X1,n, Gn) (from Lemma 7.4.1), where Gn = X1,n + X2,n.
Therefore, the coefficients in the power series expansion of the state equations will be gov-
erned by linear systems (with possibly nonlinear forcing functions). In other words, the
state equation for X1,n will be linear in X1,n, X2,n, S1,n, S2,n, and fn.
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Returning to the original system, assume that c ≤ min{θ1, θ2, β1, β2}. Since ε is constant,
the state equations are

∞∑
n=1

Ẋ1,nε
n =

∞∑
n=1

[(
u4

l4
+

u1

l1
+

u2

θ1

)(
fX1

X1 +X2

)
n

− (u1 + u2)X1,n +
u3

β1

(
fS1

X1 +X2

)
n

]
εn

∞∑
n=1

Ẋ2,nε
n =

∞∑
n=1

[(
u4

l4
+

u1

l1
+

u2

θ2

)(
fX2

X1 +X2

)
n

− (u1 + u2)X2,n +
u3

β2

(
fS2

X1 +X2

)
n

]
εn

∞∑
n=1

Ṡ1,nε
n =

∞∑
n=1

[
u2X1,n − u2

θ1

(
fX1

X1 +X2

)
n

− u3

β1

(
fS1

X1 +X2

)
n

]
εn

∞∑
n=1

Ṡ2,nε
n =

∞∑
n=1

[
u2X2,n − u2

θ2

(
fX2

X1 +X2

)
n

− u3

β2

(
fS2

X1 +X2

)
n

]
εn

∞∑
n=1

ḟnε
n =

∞∑
n=1

[−γ (X1,n +X2,n)] ε
n + ε

where the ε0 term drops out because it is assumed that (X1,0, X2,0, S1,0, S2,0, f0) is an equi-
librium corresponding to the input e.

Starting with n = 1, the equations governing the dynamics of X1,1, X2,1, S1,1, S2,1, and
f1 can be isolated by looking at the coefficients of the ε1 terms. For X1,1,

Ẋ1,1 =

(
u4

l4
+

u1

l1
+

u2

θ1

)(
fX1

G

)
1

− (u1 + u2)X1,1 +
u3

β1

(
fS1

G

)
1

where (
fX1

G

)
1

=
1∑

j=0

j∑
i=0

fiX1,j−i

(
1

G

)
1−j

= −f0X1,0G1

G2
0

+
f0X1,1

G0

+
f1X1,0

G0

= −c
X1,0

X1,0 +X2,0

(X1,1 +X2,1) + cX1,1 +
X1,0

X1,0 +X2,0

f1(
fS1

G

)
1

=
1∑

j=0

j∑
i=0

fiS1,j−i

(
1

G

)
1−j

= −f0S1,0G1

G2
0

+
f0S1,1

G0

+
f1S1,0

G0

= −c
S1,0

X1,0 +X2,0

(X1,1 +X2,1) + cS1,1 +
S1,0

X1,0 +X2,0

f1

where c = f0
X1,0+X2,0

. Notice that these terms are linear in X1,1, X2,1, S1,1, S2,1, and f1. The
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state equation is therefore

Ẋ1,1 =

[(
u4

l4
+

u1

l1
+

u2

θ1

)
c

X2,0

X1,0 +X2,0

− (u1 + u2)− u3

β1

c
S1,0

X1,0 +X2,0

]
X1,1

+

[
−
(
u4

l4
+

u1

l1
+

u2

θ1

)
c

X1,0

X1,0 +X2,0

− u3

β1

c
S1,0

X1,0 +X2,0

]
X2,1

+

[
u3

β1

c

]
S1,1 + [0]S2,1 +

[(
u4

l4
+

u1

l1
+

u2

θ1

)
X1,0

X1,0 +X2,0

+
u3

β1

S1,0

X1,0 +X2,0

]
f1

The other state equations can found similarly:

Ẋ2,1 =

[
−
(
u4

l4
+

u1

l1
+

u2

θ2

)
c

X2,0

X1,0 +X2,0

− u3

β2

c
S2,0

X1,0 +X2,0

]
X1,1

+

[(
u4

l4
+

u1

l1
+

u2

θ2

)
c

X1,0

X1,0 +X2,0

− (u1 + u2)− u3

β2

c
S2,0

X1,0 +X2,0

]
X2,1

+ [0]S1,1 +

[
u3

β2

c

]
S2,1 +

[(
u4

l4
+

u1

l1
+

u2

θ2

)
X2,0

X1,0 +X2,0

+
u3

β2

S2,0

X1,0 +X2,0

]
f1

Ṡ1,1 =

[
u2 − u2

θ1
c

X2,0

X1,0 +X2,0

+
u3

β1

c
S1,0

X1,0 +X2,0

]
X1,1

+

[
u2

θ1
c

X1,0

X1,0 +X2,0

+
u3

β1

c
S1,0

X1,0 +X2,0

]
X2,1

+

[
−u3

β1

c

]
S1,1 + [0]S2,1 +

[
−u2

θ1

X1,0

X1,0 +X2,0

− u3

β1

S1,0

X1,0 +X2,0

]
f1

Ṡ2,1 =

[
u2

θ2
c

X2,0

X1,0 +X2,0

+
u3

β2

c
S2,0

X1,0 +X2,0

]
X1,1

+

[
u2 − u2

θ2
c

X1,0

X1,0 +X2,0

+
u3

β2

c
S2,0

X1,0 +X2,0

]
X2,1

+ [0]S1,1 +

[
−u3

β2

c

]
S2,1 +

[
−u2

θ2

X2,0

X1,0 +X2,0

− u3

β2

S2,0

X1,0 +X2,0

]
f1

ḟ1 = −γ (X1,1 +X2,1) + 1

Letting x := [X1,1 X2,1 S1,1 S2,1 f1]
T , the first-order dynamics are governed by

ẋ = A1x+B1 (7.1)

where B1 = [0 0 0 0 1]T . Note that this is the same system that describes the dynamics of
small deviation away from the equilibrium (X1,0, X2,0, S1,0, S2,0, f0), i.e. it is the linearized
system.
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Theorem 7.4.8. If S1,0, S2,0, and f0 are non-negative, X1,0 and X2,0 are positive, the birth,
death, sporulation, and germination rates are finite and positive over a nonempty set of
values of f

X1+X2
, and γ � 1, then System (7.1) has bounded states for the class of bounded

piecewise constant inputs.

Proof. See Appendix B.3.

Remark 7.4.9. Like Theorem 6.4.1, the condition γ � 1 allows a simplified proof of the
claim. Numerical simulations suggest that the condition is not necessary, but the proof then
becomes extremely messy. Since γ should be chosen small to not invalidate the population-
level model, the simplification is warranted.

Remark 7.4.10. The input to state transfer function derived in the proof reveals that all
of the states will approach a constant value in response to a constant input.

With the base case (n = 1) established in Theorem 7.4.8, induction may be used to show
that all terms in the power series expansion are bounded. To show this, assume that all
coefficients of εk, k = 1, 2, . . . , n − 1 are bounded. We will now argue that the coefficients
of εn are also bounded, which will complete the induction and prove that the competing
populations model with identical birth and death rates is BIBO stable.

Though it was established that
(

fX1

X1+X2

)
n
is linear in fn, X1,n, and X2,n (similarly for(

fX2

X1+X2

)
n
,
(

fS1

X1+X2

)
n
, and

(
fS2

X1+X2

)
n
), it is possible to extract more information about

this term, under the conditions of Theorem 7.4.8, from the assumption that the lower order
states are stable. In particular, if fk, X1,k, and X2,k, k = 1, 2, . . . , n−1 all approach constant
values, then

ḟk → 0 and k = 1, 2, . . . , n− 1 ⇒ X1,1 +X2,1 → 1

γ
, and

X1,j +X2,j → 0, j = 2, 3, . . . , n− 1

due to the state equation for fk, k = 1, 2, . . . , n−1. In addition to the steady state values of
X1,k +X2,k, stability of fk, X1,k, and X2,k, also allows the computation of the steady state
values of fk, k = 1, 2, . . . , n− 1.

Lemma 7.4.11. Under the conditions of Theorem 7.4.8, and if fk, X1,k, and X2,k, k =
1, 2, . . . , n− 1 all approach constant values, then

fk → c (X1,k +X2,k) , k = 1, 2, . . . , n− 1

as t → ∞.

Proof. The claim will be shown by induction.
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For the base case (k = 1), if X1,1 and S1,1 approach constant values, then Ẋ1,1+ Ṡ1,1 = 0
as t → ∞:

0 = Ẋ1,1 + Ṡ1,1

=

[(
u4

l4
+

u1

l1
+

u2

θ1

)
c

X2,0

X1,0 +X2,0

− (u1 + u2)− u3

β1

c
S1,0

X1,0 +X2,0

]
X1,1

+

[
−
(
u4

l4
+

u1

l1
+

u2

θ1

)
c

X1,0

X1,0 +X2,0

− u3

β1

c
S1,0

X1,0 +X2,0

]
X2,1

+

[
u3

β1

c

]
S1,1 + [0]S2,1 +

[(
u4

l4
+

u1

l1
+

u2

θ1

)
X1,0

X1,0 +X2,0

+
u3

β1

S1,0

X1,0 +X2,0

]
f1

+

[
u2 − u2

θ1
c

X2,0

X1,0 +X2,0

+
u3

β1

c
S1,0

X1,0 +X2,0

]
X1,1

+

[
u2

θ1
c

X1,0

X1,0 +X2,0

+
u3

β1

c
S1,0

X1,0 +X2,0

]
X2,1

+

[
−u3

β1

c

]
S1,1 + [0]S2,1 +

[
−u2

θ1

X1,0

X1,0 +X2,0

− u3

β1

S1,0

X1,0 +X2,0

]
f1

=

(
u4

l4
+

u1

l1

)
c

X1,1X2,0

X1,0 +X2,0

− u1X1,1 −
(
u4

l4
+

u1

l1

)
c

X1,0X2,1

X1,0 +X2,0

+

(
u4

l4
+

u1

l1

)
X1,0

X1,0 +X2,0

f1

= c
X1,1X2,0

X1,0 +X2,0

− cX1,1 − c
X1,0X2,1

X1,0 +X2,0

+
X1,0

X1,0 +X2,0

f1

=
X1,0

X1,0 +X2,0

(−cX1,1 − cX2,1 + f1)

which implies that f1 = c (X1,1 +X2,1) in steady state since one of the conditions of the
lemma is X1,0 > 0. Note that the same result would have been obtained if Ẋ2,1 + Ṡ2,1 was
used instead.

For the inductive step, assume that fj, X1,j, and X2,j, all approach constant values and
fj = c (X1,j +X2,j) for j = 1, 2, . . . , k − 1. It will be shown that if fk, X1,k, and X2,k all
approach constant values, then fk = c (X1,k +X2,k).

Since the states are stable up to the kth term in the power series expansion, then Ẋ1,j +
Ṡ1,j = 0 in steady state for j = 1, 2, . . . , k. This implies that

(X1 +X2)
[
Ẋ1,k+1 + Ẋ2,k+1ε

k+1 + Ẋ1,k+2 + Ẋ2,k+2ε
k+2 + · · ·

]
=

(
u4

l4
+

u1

l1

)
fX1 − u1X1 (X1 +X2) .

Expanding f , X1, and X2 in their power series expansions and retaining only the coefficients
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of εk yields:

0 =

(
u4

l4
+

u1

l1

) k∑
i=0

fiX1,k−i − u1

k∑
i=0

X1,i (X1,k−i +X2,k−i)

=

(
u4

l4
+

u1

l1

)(
fkX1,0 +

k−1∑
i=0

c (X1,i +X2,i)X1,k−i

)
− u1

k∑
i=0

X1,i (X1,k−i +X2,k−i)

=

(
u4

l4
+

u1

l1

)(
fkX1,0 +

k−1∑
i=0

c (X1,i +X2,i)X1,k−i

)
− u1

k∑
i=0

X1,k−i (X1,k +X2,k)

=

(
fkX1,0 +

k−1∑
i=0

c (X1,i +X2,i)X1,k−i

)

− c

(
X1,0 (X1,k +X2,k) +

k−1∑
i=0

X1,k−i (X1,k +X2,k)

)
= fkX1,0 − cX1,0 (X1,k +X2,k)

which implies that fk = c (X1,k +X2,k) in steady state since one of the conditions of the
lemma is X1,0 > 0.

Lemma 7.4.11 and the state equation for f therefore imply

fk →
{

c
γ

k = 1

0 2 ≤ k ≤ n− 1

if fk, X1,k, and X2,k, k = 1, 2, . . . , n− 1 all approach constant values. With these facts and
Corollary 7.4.4, it is possible to derive the steady state dynamics of the coefficients of εn.

Theorem 7.4.12. Under the conditions of Theorem 7.4.8, and if fk, X1,k, and X2,k, k =
1, 2, . . . , n− 1 all approach constant values, then

ẋn → Anxn

as t → ∞, where xn := [X1,n X2,n S1,n S2,n fn]
T .

Proof. Corollary 7.4.4 states that
(
1
G

)
n
= (−1)n

Gn
1

Gn+1
0

+ znyn
gn

− Gn

G2
0
, where G := X1 +X2. In

steady state, it is known that fk = Gk = 0 for k = 2, 3, . . . , n− 1 since the coefficients up to
εn−1 are bounded. This implies that yk → 0 for k = 2, 3, . . . , n since yn is drawn from the set
of monomials of (X1, X2, . . . , Xn−1) excluding the subset of monomials of (X1). Therefore,
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if 0 < j < n, (
f

G

)
j

=

j∑
i=0

fi

(
1

G

)
j−i

= f0

(
1

G

)
j

+ f1

(
1

G

)
j−1

= f0

(
(−1)j

Gj
1

Gj+1
0

− Gj

G2
0

)
+ f1

(
(−1)j−1G

j−1
1

Gj
0

− Gj−1

G2
0

)

= f0

(
(−1)j

Gj
1

Gj+1
0

)
+ f1

(
(−1)j−1G

j−1
1

Gj
0

)

=
f0
G0

(−1)j
Gj

1

Gj
0

+
f1
G1

(−1)j−1G1G
j−1
1

Gj
0

= 0

where the fourth equality results from Gj = 0 for 1 < j < n. Therefore, up to order n,

f

G
=

f0
G0

+

(
f

G

)
n

εn

in steady state. Now, extending the index to j = n from the set equations above leads to(
f

G

)
n

=
n∑

i=0

fi

(
1

G

)
n−i

= f0

(
1

G

)
n

+ f1

(
1

G

)
n−1

+ fn

(
1

G

)
0

since it has not been established that fn converges to 0. Continuing,(
f

G

)
n

= f0

(
1

G

)
n

+ f1

(
1

G

)
n−1

+ fn

(
1

G

)
0

= f0

(
(−1)n

Gn
1

Gn+1
0

− Gn

G2
0

)
+ f1

(
(−1)n−1G

n−1
1

Gn
0

)
+

fn
G0

= c(−1)n
Gn

1

Gn
0

+ (−1)n−1G
n
1

Gn
0

− f0
Gn

G2
0

+
fn
G0

=
fn
G0

− f0Gn

G2
0

.

Therefore, up to order n,

f

G
=

f0
G0

+

[
fn
G0

− f0Gn

G2
0

]
εn.
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Multiplying this term by X1 = X1,0 +X1,1ε+X1,2ε
2 + · · · gives

f

G
X1 =

[
f0
G0

+

[
fn
G0

− f0Gn

G2
0

]
εn
] [

X1,0 +X1,1ε+X1,2ε
2 + · · · ] ,

which allows the determination of
(

fX1

X1+X2

)
n
:(

fX1

X1 +X2

)
n

=
f0
G0

X1,n +
X1,0

G0

fn − f0X1,0

G2
0

Gn

= cX1,n +
X1,0

X1,0 +X2,0

fn − c
X1,0

X1,0 +X2,0

(X1,n +X2,n)

= c

(
1− X1,0

X1,0 +X2,0

)
X1,n − c

X1,0

X1,0 +X2,0

X2,n +
X1,0

X1,0 +X2,0

fn.

which is linear in the states X1,n, X2,n, and fn. Similarly,(
fX2

X1 +X2

)
n

= −c
X2,0

X1,0 +X2,0

X1,n + c

(
1− X2,0

X1,0 +X2,0

)
X2,n +

X2,0

X1,0 +X2,0

fn(
fS1

X1 +X2

)
n

= c

(
1− S1,0

X1,0 +X2,0

)
X1,n − c

S1,0

X1,0 +X2,0

X2,n +
S1,0

X1,0 +X2,0

fn(
fS2

X1 +X2

)
n

= −c
S2,0

X1,0 +X2,0

X1,n + c

(
1− S2,0

X1,0 +X2,0

)
X2,n +

S2,0

X1,0 +X2,0

fn

are all linear in the states X1,n, X2,n, S1,n, S2,n, and fn. Notably, there are no con-
stant/forcing terms.

Therefore, the dynamics of the coefficients of the εn (n > 1) are

Ẋ1,n →
(
u4

l4
+

u1

l1
+

u2

θ1

)(
fX1

X1 +X2

)
n

− (u1 + u2)X1,n +
u3

β1

(
fS1

X1 +X2

)
n

Ẋ2,n →
(
u4

l4
+

u1

l1
+

u2

θ2

)(
fX2

X1 +X2

)
n

− (u1 + u2)X2,n +
u3

β2

(
fS2

X1 +X2

)
n

Ṡ1,n → u2X1,n − u2

θ1

(
fX1

X1 +X2

)
n

− u3

β1

(
fS1

X1 +X2

)
n

Ṡ2,n → u2X2,n − u2

θ2

(
fX2

X1 +X2

)
n

− u3

β2

(
fS2

X1 +X2

)
n

ḟn → −γ (X1,n +X2,n)

which are linear in the states as t → ∞. Since there are no constant/forcing terms, the
dynamics can be written as

ẋn = Anxn

in steady state.
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Remark 7.4.13. Lemma 7.4.1 suggests that, for all n ≥ 1,

ẋn = Anxn + Bn

where Bn is some (possibly nonlinear) forcing function. Theorem 7.4.12 says that the forcing
goes to zero as t → ∞.

From Remark 7.4.13, it is possible to conclude that the coefficients of εn are bounded
as long as the eigenvalues of An lie in the closed left half plane. This will complete the
inductive step for BIBO stability of the proposed model.

Lemma 7.4.14. Under the conditions of Theorem 7.4.12, the eigenvalues of An lie in the
closed left half plane.

Proof. From the proof of Theorem 7.4.12, An can be filled out to be

An =

⎡⎢⎢⎢⎢⎣
a11 a12 a13 0 a15
a21 a22 0 a24 a25
a31 a32 a33 0 a35
a41 a42 0 a44 a45
a51 a52 0 0 0

⎤⎥⎥⎥⎥⎦
where

a11 =

(
u4

l4
+

u1

l1
+

u2

θ1

)
c

X2,0

X1,0 +X2,0

− (u1 + u2)− u3

β1

c
S1,0

X1,0 +X2,0

a12 = −
(
u4

l4
+

u1

l1
+

u2

θ1

)
c

X1,0

X1,0 +X2,0

− u3

β1

c
S1,0

X1,0 +X2,0

a13 =
u3

β1

c

a15 =

(
u4

l4
+

u1

l1
+

u2

θ1

)
X1,0

X1,0 +X2,0

+
u3

β1

S1,0

X1,0 +X2,0

a21 = −
(
u4

l4
+

u1

l1
+

u2

θ2

)
c

X2,0

X1,0 +X2,0

− u3

β2

c
S2,0

X1,0 +X2,0

a22 =

(
u4

l4
+

u1

l1
+

u2

θ2

)
c

X1,0

X1,0 +X2,0

− (u1 + u2)− u3

β2

c
S2,0

X1,0 +X2,0

a24 =
u3

β2

c

a25 =

(
u4

l4
+

u1

l1
+

u2

θ2

)
X2,0

X1,0 +X2,0

+
u3

β2

S2,0

X1,0 +X2,0
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a31 = u2 − u2

θ1

X2,0

X1,0 +X2,0

+
u3

β1

c
S1,0

X1,0 +X2,0

a32 =
u2

θ1
c

X1,0

X1,0 +X2,0

+
u3

β1

c
S1,0

X1,0 +X2,0

a33 = −u3

β1

c

a35 = −u2

θ1

X1,0

X1,0 +X2,0

− u3

β1

S1,0

X1,0 +X2,0

a41 =
u2

θ2
c

X2,0

X1,0 +X2,0

+
u3

β2

c
S2,0

X1,0 +X2,0

a42 = u2 − u2

θ2

X1,0

X1,0 +X2,0

+
u3

β2

c
S2,0

X1,0 +X2,0

a44 = −u3

β2

c

a45 = −u2

θ2

X2,0

X1,0 +X2,0

− u3

β2

S2,0

X1,0 +X2,0

a51 = a52 = −γ

and c = f0
X1,0+X2,0

. This matrix is identical to A1 from Theorem 7.4.8, where it was proved

that the eigenvalues have non-positive real part (see Appendix B.3). Therefore, all of the
eigenvalues of An lie in the closed left half plane.

The induction is complete: X1,n, X2,n, S1,n, S2,n, and fn are bounded and approach
constant values for a constant input for all n. Since none of the coefficients for any power
of ε blow up, the proposed model is BIBO stable.

7.5 Steady state approximation

Though the equilibrium values (X1, X2, S1, S2, f) cannot be found in a closed-form expres-
sion, an approximate relationship between successive steady states can be found.

Suppose that e produces the steady state (X1, X2, S1, S2, f), where X1+X2 
 1 (this is
required for the population-level model to remain valid). Now let the nutrient influx change
to e+ ε, where |ε| � e. Recall that the new steady state cannot be found by linearizing the
system around the equilibrium (X1, X2, S1, S2, f) because the Jacobian has an eigenvalue at
0 (see Appendix B.3). This makes the deviations from equilibrium in steady state undefined
because the inverse of the Jacobian cannot be found.

It is possible, however, to write the new steady state solution as a power series in ε. For
example, assume that X1 approaches

X̂1 = X1 +X1,1ε+X1,2ε
2 +X1,3ε

3 + · · ·
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where the X1,n are independent of ε. It was shown in Section 7.4 that each of the X1,n

are bounded as long as some benign conditions are satisfied (see Theorem 7.4.8), so the
proposed expansion is uniformly valid [125].

If ε is small enough, then the new steady state (X̂1, X̂2, Ŝ1, Ŝ2, f̂) in response to e + ε
can be well-approximated by retaining only the first power of ε:

X̂1 = X1 +X1,1ε

X̂2 = X2 +X2,1ε

Ŝ1 = S1 + S1,1ε

Ŝ2 = S2 + S2,1ε

f̂ = f + f1ε.

Finding closed-form expressions for Xi,1, Si,1, and f1 is not possible because of the same
reason the steady states could not be found in the first place: Too many unknowns and not

enough equations. Assuming that f

X1+X2
≤ min{θ1, θ2, β1, β2}, a subset of the equations

after substituting the first-order approximation are

0 =

((
u1

l1
+

u4

l4
+

u2

θ1

)
f + f1ε

X1 +X2 + (X1,1 +X2,1)ε
− (u1 + u2)

)(
X1 +X1,1ε

)
+

u3

β1

f + f1ε

X1 +X2 + (X1,1 +X2,1)ε

(
S1 + S1,1ε

)
0 =

(
u2 − u2

θ1

f + f1ε

X1 +X2 + (X1,1 +X2,1)ε

)(
X1 +X1,1ε

)
− u3

β1

f + f1ε

X1 +X2 + (X1,1 +X2,1)ε

(
S1 + S1,1ε

)
0 = −1

γ

(
X1 +X2 + (X1,1 +X2,1)ε

)
+ e+ ε

The equations for X2 and S2 are similar to the first two equalities. The expressions can be
simplified for small ε by

1

X1 +X2 + (X1,1 +X2,1)ε
∼ 1

X1 +X2

− X1,1 +X2,1(
X1 +X2

)2 ε.
Since the left hand sides of the equations above are identically 0, then the coefficients of the
powers of ε must be zero. The ε0 coefficients yield the original steady state equations, but
the ε1 coefficients yield the following:

X1,1 +X2,1 =
1

γ
f1

X1,1 +X2,1

= c

α2,1(c)X1,1 = α3,1(c)S1,1

α2,2(c)X2,1 = α3,2(c)S2,1.
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Except for the first equality, these equations are identical to the equilibrium conditions for
the input e. Notably, there are only four independent equations for five unknowns, so the
new steady state (X̂1, X̂2, Ŝ1, Ŝ2, f̂) cannot be exactly derived in the power series in ε.

Though exact expressions for Xi,1, Si,1, and f1 cannot be found, an approximation that
is valid for small ε can be derived. The differential equations for X1 + S1 and X2 + S2 are

Ẋ1 + Ṡ1 = (α4 − α1)X1

Ẋ2 + Ṡ2 = (α4 − α1)X2,

which means that, for Xi(0) + Si(0) = X i + Si (i = 1, 2) and any t > 0,

(X1(t) + S1(t))−
(
X1 + S1

)
=

∫ t

0

(α4(τ)− α1(τ))X1(τ)dτ

(X2(t) + S2(t))−
(
X2 + S2

)
=

∫ t

0

(α4(τ)− α1(τ))X2(τ)dτ

As t → ∞, ∫ t

0

(α4(τ)− α1(τ))X1(τ)dτ → (X1,1 + S1,1) ε∫ t

0

(α4(τ)− α1(τ))X2(τ)dτ → (X2,1 + S2,1) ε.

For small enough ε, it is reasonable to assume that Xi(τ) ≈ X i for 0 < τ ≤ t, i = 1, 2. This
implies that, as t → ∞,

(X1,1 + S1,1) ε ≈ X1

∫ t

0

(α4(τ)− α1(τ)) dτ

(X2,1 + S2,1) ε ≈ X2

∫ t

0

(α4(τ)− α1(τ)) dτ

In other words, the change in total population level is proportional to the vegetative cell
subpopulation. This is consistent with the fact that only vegetative cells grow and die,
whereas spore numbers are independent of environmental factors. The approximation leaves
the following relationship:

(X1,1 + S1,1) ε

(X2,1 + S2,1) ε
=

X1

∫ t

0
(α4(τ)− α1(τ)) dτ

X2

∫ t

0
(α4(τ)− α1(τ)) dτ

⇒ X1,1 + S1,1

X2,1 + S2,1

=
X1

X2

,

or

X1,1

X2,1

=
X1

X2

1 + α2,2(c)

α3,2(c)

1 + α2,1(c)

α3,1(c)
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where c = f

X1+X2
is the (constant) equilibrium operating point given by α4 = α1.

With the addition of the extra equation offered by the approximation, there are now five
equations to solve for the perturbed steady state:

X1,1 +X2,1 =
1

γ
f1

X1,1 +X2,1

= c

α2,1(c)X1,1 = α3,1(c)S1,1

α2,2(c)X2,1 = α3,2(c)S2,1

X1,1

X2,1

=
X1

X2

1 + α2,2(c)

α3,2(c)

1 + α2,1(c)

α3,1(c)

,

which allows the perturbed steady state (X̂1, X̂2, Ŝ1, Ŝ2, f̂) to be found in terms of the
previous steady state (X1, X2, S1, S2, f). For example, the total population size Ai :=
X i + Si from one steady state to another can be written as

A1(k + 1) = A1(k)

[
1 +

1
γ
(1 + b1(k))(1 + b2(k))

2

A1(k)(1 + b2(k))2 + A2(k)(1 + b1(k))2
ε(k)

]
(7.2)

A2(k + 1) = A2(k)

[
1 +

1
γ
(1 + b1(k))

2(1 + b2(k))

A1(k)(1 + b2(k))2 + A2(k)(1 + b1(k))2
ε(k)

]
, (7.3)

where k denotes the “kth steady state,” and

b1 :=
α2,1(c)

α3,1(c)

b2 :=
α2,2(c)

α3,2(c)

map to the steady state sporulation efficiencies for each population.
Figures 7.2–7.5 provide support that the steady state approximation is valid for small ε.

These simulations were produced with e = 1, θ1 = β1 = 10, and θ2 = β2 = 1. As expected,
the approximation becomes more accurate as |ε| → 0.

Figure 7.6 shows a time-domain simulation with slightly different sporulation and ger-
mination policies and e(t) = 1+0.01 ·1(t−700)−0.03 ·1(t−1400). As before, the predictive
performance of the approximation degrades as ε gets larger.

Due to the small ε condition, the subsequent analysis is restricted to slowly varying
environments. These are environments that change sufficiently slowly such that populations
remain in a “quasi-steady state” operating mode. In other words, the time scale of the
environment must be much longer than the time scale of the population dynamics. Though
somewhat restrictive, this is necessary in order to have a closed-form steady state expression.

Equations (7.2) and (7.3) are robust to a different functional dependencies for α2,i and
α3,i as long as |ε| � e. Specifically, suppose that α4 and α1 still depend on f

X1+X2
(so
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Figure 7.2: Approximated and actual X1. The black horizontal line indicates X1.
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Figure 7.3: Approximated and actual X2. The black horizontal line indicates X2.
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Figure 7.4: Approximated and actual S1. The black horizontal line indicates S1.
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Figure 7.5: Approximated and actual S2. The black horizontal line indicates S2.
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Figure 7.6: Approximated and actual total population numbers.

that logistic-like growth and death depend on the carrying capacity-like term f of the
environment), but α2,i and α3,i are now only functions of f :

α2,i = max

{
0, u2 − u2

θi
f

}
α3,i = min

{
u3,

u3

βi

f

}
for i = 1, 2. At equilibrium for input e, there are still too many unknowns for the number
of equations, though two of the equations have changed:

α3,i

(
f
)
Si = α2,i

(
f
)
X i

⇒ α3,i

(
ce

γ

)
Si = α2,i

(
ce

γ

)
X i.

Since the equilibrium values still depend on the initial conditions, we can apply the small ε
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approximation to get equations for the perturbed steady state:

X1,1 +X2,1 =
1

γ
f1

X1,1 +X2,1

= c

α2,1

(
ce

γ

)
X1,1 = α3,1

(
ce

γ

)
S1,1

α2,2

(
ce

γ

)
X2,1 = α3,2

(
ce

γ

)
S2,1

X1,1

X2,1

=
X1

X2

1 +
α2,2( ce

γ )
α3,2( ce

γ )

1 +
α2,1( ce

γ )
α3,1( ce

γ )

,

which lead to the following expressions for X1,1 + S1,1 and X2,1 + S2,1:

X1,1 + S1,1 =

1
γ
X1

(
1 +

α2,2( c(e+ε)
γ )

α3,2( c(e+ε)
γ )

)(
1 +

α2,1( c(e+ε)
γ )

α3,1( c(e+ε)
γ )

)
X2+S2

1+
α2,2( ce

γ )
α3,2( ce

γ )

(
1 +

α2,1( c(e+ε)
γ )

α3,1( c(e+ε)
γ )

)
+ X1+S1

1+
α2,1( ce

γ )
α3,1( ce

γ )

(
1 +

α2,2( c(e+ε)
γ )

α3,2( c(e+ε)
γ )

)

X2,1 + S2,1 =

1
γ
X2

(
1 +

α2,2( c(e+ε)
γ )

α3,2( c(e+ε)
γ )

)(
1 +

α2,1( c(e+ε)
γ )

α3,1( c(e+ε)
γ )

)
X2+S2

1+
α2,2( ce

γ )
α3,2( ce

γ )

(
1 +

α2,1( c(e+ε)
γ )

α3,1( c(e+ε)
γ )

)
+ X1+S1

1+
α2,1( ce

γ )
α3,1( ce

γ )

(
1 +

α2,2( c(e+ε)
γ )

α3,2( c(e+ε)
γ )

) .

If |ε| � e,

c(e+ ε)

γ
≈ ce

γ
⇒

α2,i

(
c(e+ε)

γ

)
α3,i

(
c(e+ε)

γ

) ≈
α2,i

(
ce
γ

)
α3,i

(
ce
γ

) ,
which implies that Equations (7.2) and (7.3) still hold. Even if c(e+ε)

γ
was not close to ce

γ
, it

is still possible for
α2,i( c(e+ε)

γ )
α3,i( c(e+ε)

γ )
≈ α2,i( ce

γ )
α3,i( ce

γ )
if θi ≈ βi 
 1.
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7.6 Sporulation efficiency as control variable

Equations (7.2) and (7.3),

A1(k + 1) = A1(k)

[
1 +

1
γ
(1 + b1(k))(1 + b2(k))

2

A1(k)(1 + b2(k))2 + A2(k)(1 + b1(k))2
ε(k)

]
(7.2)

A2(k + 1) = A2(k)

[
1 +

1
γ
(1 + b1(k))

2(1 + b2(k))

A1(k)(1 + b2(k))2 + A2(k)(1 + b1(k))2
ε(k)

]
, (7.3)

are in terms of b1(k) and b2(k), which form a one-to-one map with the sporulation efficiencies
ui(k) ∈ [0, 1] of each population. Specifically, for i = 1, 2,

bi(k) = ∞ ↔ 100% sporulation efficiency (“conservative”)
bi(k) = 0 ↔ no spores (“aggressive”)

For example, if b2(k) = ∞ and b1(k) < ∞, it is easy to verify that A2(k + 1) = A2(k) and

A1(k + 1) = A1(k) +
1

γ
(1 + b1(k))ε(k)

which is expected since X1,1 =
1
γ
and S1,1 = b1(k)X1,1.

Since the bi(k)’s dictate how well one population does relative to the other (with respect
to maxX +S), these parameters (or the corresponding ui(k)’s) can be labeled as the “con-
trol” for each population. The selection of the control is discussed in Section 7.8, where
it is seen to be a result of natural selection. Hence, bacteria do not actively choose their
bi(k) or ui(k) to maximize their own fitness, but rather the subpopulations with the “best”
bi(k) or ui(k) competitively exclude the other subpopulations. Nevertheless, it is convenient
to imagine the bi(k) or ui(k) as “being chosen” to try to do better than other competing
populations.

Even though each bi(k) is a steady state parameter (
α2,i(c)

α3,i(c)
), it captures the transient

trade-off associated with being too conservative. Specifically, a population with a relatively
small bi(k) will devote more resources towards rapid growth when ε > 0, but suffers more
losses when ε < 0. For example, consider two competing populations at equilibrium with
A1(k) = A2(k), or X1 + S1 = X2 + S2. Suppose b1(k) > b2(k). Then, X1 < X2, and
since only vegetative cells can grow, population 2 will increase more than population 1.
This will happen even if θ2 > θ1 (population 2 sporulates more readily than population 1)
because b1(k) > b2(k) implies that β2 < β1, so population 2 also germinates more readily
than population 1. Therefore, the vegetative subpopulation always remains relatively large
in the more “aggressive” population.

Sporulation efficiencies ranging from ≈ 0% (laboratory selected) to ≈ 100% (naturally
selected) can be found in the literature [167, 168]. However, 100% sporulation efficiency
is uncommon [167]. In the model, 100% sporulation can only be obtained if there was no
germination at all values of f

X1+X2
(or β → ∞), which implies that there will be no vege-

tative cells after they all commit to sporulation (even with a re-introduction of nutrients).
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Although this may seem like a poor strategy, it will be shown in Section 7.7 that this is
a useful tactic under certain situations. Similarly, 0% sporulation efficiency may also be
an effective survival strategy since there are many other bacteria that are not capable of
forming spores (e.g. Escherichia coli), but they are able to flourish in a variety of different
environments. Thus, the allowable values for each bi(k) will be

0 ≤ bi(k),

with no upper limit for each bi(k) to accommodate 100% sporulation. The corresponding
sporulation efficiencies ui(k) are therefore limited to

0 ≤ ui(k) ≤ 1.

A plot of the mapping between the bi(k) and sporulation efficiencies ui(k) is given in Figure
7.7.
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Figure 7.7: Relationship between bi(k) and the sporulation efficiency parameter ui(k).

7.7 Evolutionary stable strategies

With the “control” parameter for a sporulating B. subtilis colony identified, the optimal
policy can now be derived. However, finding the optimal control is not as straightforward
as simply maximizing the steady state total population number– in this case, the opti-
mal policy depends on the control of the competing population. This situation calls for a
game-theoretic treatment, where tools developed specifically for evolutionary biology can
be utilized. Before using these tools to address the optimal sporulation problem, relevant
background is provided below.
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7.7.1 Game theory background

The application of game theory to evolutionary biology allowed the development of a pow-
erful idea applicable in several different fields, from economics to psychology [99, 175]. This
idea, developed by John Maynard Smith, is to model the evolution of biological traits whose
advantages depend on their frequency in the population [170]. This modeling framework
allowed Maynard Smith to develop theory for an evolutionary stable strategy (ESS). In-
tuitively, an ESS is a biological trait/strategy which, if adopted by an entire population,
cannot be invaded by a small number of deviant biological traits/strategies. In other words,
no further evolutionary change is possible once an ESS is established. Since its roots lie in
game theory, a brief introduction to game theory will be presented before the main results
of ESSs are stated.

A game involves a number of players, a set of strategies for each player, and a payoff
that quantitatively describes the outcomes of every play of the game in terms of the amount
that each player wins or loses [10]. This payoff function, which players typically aim to
maximize, depends on the strategies of all players. For example, in a two player game
where player 1 adopts strategy q1 and player 2 adopts strategy q2, the payoff for player
1 is J1(q1, q2) ∈ R (strategy q1 played against strategy q2) while the payoff for player 2
is J2(q1, q2) ∈ R (strategy q2 played against strategy q1). Though both players seek to
maximize their payoffs, they do not know the strategies that the other player will use. Since
each payoff depends on the strategy of the other player, this maximization must assume the
other player acts in a certain way. Under the assumption that both players act rationally,
each player will maximize his own payoff. This leads to the concept of a Nash equilibrium,
which is defined to be a set of strategies (q∗1, q

∗
2) that are the best responses to each other–

no player can do better by deviating from a Nash point, assuming that the other player
does not deviate. Mathematically, for a two person game this corresponds to [10]

J1(q
NE
1 , qNE

2 ) ≥ J1(q1, q
NE
2 ) and

J2(q
NE
1 , qNE

2 ) ≥ J2(q
NE
1 , q2).

Note that a single player may have a higher payoff if both players use different strategies
than (qNE

1 , qNE
2 ). Also, if J1 = −J2, then a Nash equilibrium is a saddle point.

For q1 and q2 each played with certainty (not drawn from a probability distribution),
there are conditions for the existence of at least one Nash equilibrium. If q1 and q2 are
elements of compact and convex sets, and if the payoff functions satisfy [10]

1. J1 and J2 are continuous,

2. q1 �→ J1(q1, q2) is concave for fixed q2, and

3. q2 �→ J2(q1, q2) is concave for fixed q1,

then there is a Nash equilibrium for the payoff functions J1 and J2. These conditions are
only sufficient, so Nash equilibria may exist that do not satisfy these conditions.

117



There are several methods for finding Nash equilibria. One such methodology involves
the computation of the rational reaction sets for each player [10, 232]. For a two player
game, these sets are

R1 =

{
(q∗1, q2) | J1(q

∗
1, q2) = max

q1
J1(q1, q2)

}
R2 =

{
(q1, q

∗
2) | J2(q1, q

∗
2) = max

q2
J2(q1, q2)

}
so each rational reaction set is the best response to the other player’s (fixed) strategy. It is
clear to see that the set of all Nash equilibria is given by R1 ∩R2.

It is possible for many Nash equilibria to exist for a game. Though there are several
ways one may select a “correct” Nash equilibrium (which predicts the actual outcome of
the game), one of the most widely used criteria is stability. An appealing definition of
stability is offered by an ESS, which is stable in the following sense: No player can do better
with a unilateral switch to another strategy, and there is no incentive to move to another
equilibrium. In other words, once an ESS is established, no other strategy can invade [82].

It is clear that if q∗ is an ESS, then (q∗, q∗) is a Nash equilibrium. Hence, it is an
optimal policy under the assumption that other members also adopt their optimal policies.
However, not every Nash equilibrium satisfies the stability property of an ESS. Conditions
for an ESS can be derived from the following thought experiment [10]: Suppose a population
is composed of many members, where pairwise conflicts between population members often
occur. When these conflicts do occur, a symmetric game is played (J1(q1, q2) = J2(q2, q1)),
which allows the analysis to proceed by focusing on the payoff J = J1 to player 1.

For the sake of simplicity, assume the allowable strategies for the game are
q∗, q1, q2, . . . , qN . Suppose that strategy q∗ is used by most members of the population
and a small proportion of the population adopts deviant strategies q1, q2, . . . , qN . From the
point of view of player 1, let 1−p be the probability of playing a game with a player adopt-
ing q∗, and let pi be the probability of playing a game with a player adopting qi, where∑N

i=1 pi = p. Since q∗ is used by most population members, assume 0 < p ≈ 0.
If player 1 adopts q∗, his expected fitness in a pairwise conflict with another member of

the population is

F (q∗) = J(q∗, q∗)(1− p) +
N∑
i=1

J(q∗, qi)pi.

If player 1 adopts a deviant strategy qk, his expected payoff is

F (qk) = J(qk, q
∗)(1− p) +

N∑
i=1

J(qk, qi)pi.

For strategy q∗ to be strictly better than any deviant strategy qk,

F (q∗) > F (qk)

⇔ J(q∗, q∗) > J(qk, q
∗) +

1

1− p

N∑
i=1

[J(qk, qi)− J(q∗, qi)] pi
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for all k = 1, . . . , N . However, since p ≈ 0, then strategy q∗ is better against any deviant
strategy if

J(q∗, q∗) > J(qk, q
∗) for all k = 1, . . . , N.

Therefore, a population with most members adopting q∗ cannot be invaded by a small
population adopting deviant strategies. If J(q∗, q∗) = J(qk, q

∗) for some k, it is still possible
for F (q∗) > F (qk) as long as

J(q∗, qi) > J(qk, qi) for all i = 1, . . . , N

for all of the k such that J(q∗, q∗) = J(qk, q
∗).

This leads to the following definition [169, 266]: A strategy q∗ is an ESS against deviant
strategies q1, q2, . . . , qN if either

1. J(q∗, q∗) > J(qk, q
∗), for all k = 1, . . . , N ,

2. for any qk such that J(q∗, q∗) = J(qk, q
∗), we must have J(q∗, qi) > J(qk, qi) for all

i = 1, . . . , N .

An analogous derivation for a continuum of strategies (N → ∞) will produce a similar
definition of an ESS.

7.7.2 Evolutionary stable strategies for the quasi-steady state
model

To make our exposition simpler, the following analysis will be performed in terms of the
parameters bi(k), which form a one-to-one map with sporulation efficiencies ui(k) (see Figure
7.7).

Since evolution cannot predict the future, it is only capable of operating in response to
each ε(k). For population 1, this means

b∗1(k) = arg max
0≤b1(k)

J1(b1(k), b2(k))

where J1(b1(k), b2(k)) = A1(k + 1) represents the payoff for choosing b1(k) against the
strategy b2(k). The 2nd population’s goal is similarly defined, where J2(b1(k), b2(k)) =
A2(k + 1). It is easy to derive the rational reaction sets for populations 1 and 2:

R1 = {(b1(k), b2(k)) | b1(k) = b∗1(k)}

where b∗1(k) =

{
max

{
0,
√

A1(k)
A2(k)

(1 + b2(k))− 1
}

if ε(k) > 0

∞ if ε(k) < 0

R2 = {(b1(k), b2(k)) | b2(k) = b∗2(k)}

where b∗2(k) =

{
max

{
0,
√

A2(k)
A1(k)

(1 + b1(k))− 1
}

if ε(k) > 0

∞ if ε(k) < 0
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Note that R1 and R2 depend on the population numbers A1(k) and A2(k) when
ε(k) > 0. This is because of the density-dependent reward functions J1(b1(k), b2(k)) and
J2(b1(k), b2(k)), which are uncommon in biological game theory applications due to the
assumption of individual pairwise conflicts [170]. We may assume a similar setup with
inter-population conflicts occurring between individual bacteria or small (but equally-sized)
subgroups of each population, which implies that A1(k) = A2(k) in the reward functions
above. This will be called the “fair-game” assumption in the sequel.

Alternatively, we may prove that A1(k) = A2(k) eventually if each population acts
rationally (i.e. adopts b∗1(k) and b∗2(k)) and ε(k) has the same sign for all k. This steady
state framework is valid if we assume that both populations have been interacting for a long
time in a consistently-trending environment before performing our analysis.

Assume that A1(k) < A2(k) and ε(k) > 0 ∀k, and suppose b∗2(k) is given. Then b∗1(k) <
b∗2(k). Defining ΔAi(k) :=

1
ε(k)

(Ai(k + 1)− Ai(k)), i = 1, 2, it is easy to see that

ΔA1(k) =
A1(k)(1 + b∗1(k))(1 + b∗2(k))

2

A1(k)(1 + b∗2(k))2 + A2(k)(1 + b∗1(k))2
1

γ

ΔA2(k) =
A2(k)(1 + b∗1(k))

2(1 + b∗2(k))
A1(k)(1 + b∗2(k))2 + A2(k)(1 + b∗1(k))2

1

γ
.

Since Ai(k+1) =
(
1 + ΔAi(k)

Ai(k)
ε(k)

)
Ai(k) and ε(k) > 0, the population with the larger ΔAi(k)

Ai(k)

will have the larger rate of growth. Indeed,

(1 + b∗1(k))(1 + b∗2(k))
2

A1(k)(1 + b∗2(k))2 + A2(k)(1 + b∗1(k))2
>

(1 + b∗1(k))
2(1 + b∗2(k))

A1(k)(1 + b∗2(k))2 + A2(k)(1 + b∗1(k))2

since b∗1(k) < b∗2(k). Since the analysis is symmetric when A1(k) > A2(k), we have that
A1(k) → A2(k) as k → ∞.

The set of all Nash equilibria is given by R1 ∩ R2 [10, 232] under the condition that
A1(k) = A2(k). Note that, since J1 and J2 are not strictly concave for fixed b2(k) and b1(k),
respectively, then there is no guarantee that R1∩R2 is not empty. However, there are Nash
equilibria, which are given by

(
bNE
1 (k), bNE

2 (k)
)
=

{ (
bNE
2 (k), bNE

1 (k)
)

if ε(k) > 0
(∞,∞) if ε(k) < 0

which says that there are infinitely many Nash equilibria when ε(k) > 0 and one Nash
equilibria when ε(k) < 0. Of this set of Nash equilibria, it can be shown that

(
bNE
1 (k), bNE

2 (k)
)
=

{
(0, 0) if ε(k) > 0
(∞,∞) if ε(k) < 0

are in fact ESSs. Similar to the definition given in background section for ESSs, a strategy
bESS(k) from a continuum of strategies is an ESS against deviant strategies b(k) if either

1. J(bESS(k), bESS(k)) > J(b(k), bESS(k)), for each b(k) 	= bESS(k),
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2. for any b(k) such that J(bESS(k), bESS(k)) = J(b(k), bESS(k)), we must have

J(bESS(k), b̂(k)) > J(b(k), b̂(k))

for all b̂(k) 	= bESS(k),

where J can be J1 or J2 because it is assumed that all population members participate in
symmetric games [10]. The following analysis assumes J = J1, which focuses on the payoff
to player 1.

It can be verified that Condition 1 of the ESS definition holds for bNE(k) = 0 when
ε(k) > 0 and bNE(k) = ∞ when ε(k) < 0. Suppose that ε(k) > 0, A1(k) = A2(k), and
consider the strategy bNE(k) = 0. Then,

J(0, 0) = A1(k)

[
1 +

1
γ

A1(k) + A2(k)
ε(k)

]

= A1(k) +
1

2

ε(k)

γ
.

Now, playing any other strategy b(k) > 0, the payoff is

J(b(k), 0) = A1(k)

[
1 +

1
γ
(1 + b(k))

A1(k) + A2(k)(1 + b(k))2
ε(k)

]

= A1(k) +
1 + b(k)

1 + (1 + b(k))2
ε(k)

γ
.

For any b(k) > 0, J(0, 0) > J(b(k), 0). To see why, suppose not: J(0, 0) ≤ J(b(k), 0). Then,

1

2
≤ 1 + b(k)

1 + (1 + b(k))2

⇔ 1 + (1 + b(k))2 ≤ 2 + 2b(k)

⇔ 1 + 2b(k) + b2(k) ≤ 1 + 2b(k)

which is a contradiction because b(k) > 0. Therefore, bESS(k) = 0 when ε(k) > 0.
To show that bNE(k) = ∞ is an ESS when ε(k) < 0, a similar process is followed. When

A1(k) = A2(k) and bNE(k) = ∞, there are no vegetative cells that perish as a result of the
diminished nutrient supply (due to 100% sporulation efficiency). Then, by inspection,

J(∞,∞) = A1(k + 1) = A1(k)

i.e. the total population is unaffected due to the assumption that spores are independent
of the nutrient supply. Playing any other strategy b(k) < ∞, the payoff is

J(b(k),∞) = A1(k)

[
1 +

1
γ
(1 + b(k))

A1(k)
ε(k)

]

= A1(k) + (1 + b(k))
ε(k)

γ
.
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It is obvious that J(∞,∞) > J(b(k),∞) since ε(k) < 0. Thus, bNE(k) = ∞ is an ESS. It
may seem unsettling that the stated value J(∞,∞) = A1(k) was not equal to

A1(k) +
(1 +∞)(1 +∞)2

(1 +∞)2 + (1 +∞)2
ε(k)

γ
.

However, the payoff J(∞,∞) = A1(k) is correct. The reason is because the asymptotic
expansion for the new equilibrium,

X̂1 + Ŝ1 = X1 + S1 + (X1,1 + S1,1) ε

breaks down ((X1,1 + S1,1) ε ∼ 1) when both sporulation efficiencies approach∞. Therefore,
Equations (7.2) and (7.3) are no longer valid, so the payoff should be calculated by referring
to the original system of equations.

The ESS is therefore

bESS(k) =

{
0 if ε(k) > 0
∞ if ε(k) < 0

(7.4)

which says that it is optimal to be “aggressive” when the nutrient supply is increasing and
“conservative” when the nutrient supply is decreasing.

This ESS is robust to other reward functions. For example, suppose that
J(b1(k), b2(k)) = A1(k+1)−A2(k+1) (a reward function for a zero-sum game). Then, the
fair-game assumption leads to the Nash equilibria

(
bNE
1 (k), bNE

2 (k)
)
=

{ (
bNE
2 (k), bNE

1 (k)
)

if ε(k) > 0
(∞,∞) if ε(k) < 0

.

To show that Equation (7.4) is an ESS for this reward function, note that J(b(k), b(k)) = 0
for any 0 ≤ b(k) as long as the fair-game assumption holds. In particular,

J(0, 0) = 0

J(∞,∞) = 0.

Now, when ε(k) > 0 and b(k) > 0,

J(b(k), 0) =
−b2(k)(1 + b(k))

(1 + b(k))2 + 1

ε(k)

γ

< J(0, 0)

and when ε(k) < 0 and b(k) < ∞,

J(b(k),∞) = (1 + b(k))
ε(k)

γ

< J(∞,∞)

which implies that Equation (7.4) also gives an ESS for this zero-sum reward function.
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The evolutionary optimal decision policy relies on the sign of changes in the nutrient
supply. Under ideal circumstances, the B. subtilis population will never decrease since
ui(k) = 1 (100% sporulation efficiency) accompanies decreases in nutrient supply. When
the nutrient supply increases, the optimal policy calls for no spores. In this sense, the
decision policy resembles a bang-bang/on-off controller. Of course, from a mean population
point-of-view, this does not happen to actual bacterial colonies, where the dynamics of
evolutionary change limit the bandwidth of the evolutionary optimal controller.

7.8 Dynamics of evolution

7.8.1 Evolutionary dynamics background

An ESS is a policy that players will adopt because no other player can do better by adopting
a deviant strategy. Since it also defines a Nash equilibrium, an ESS is optimal under the
assumption that other players use their optimal strategies [10, 197]. However, since it
describes the strategy which eventually becomes established in the population, an ESS is a
steady state policy in a population with invariant payoffs. In the context of simple biological
systems, an ESS corresponds to a genotype (strategy) that maximizes the fitness (payoff) of
an organism in response to the maximum-fitness phenotypes adopted by other organisms.
The dynamics of evolution typically preclude the possibility of a different optimal policy
becoming unilaterally adopted by a population after one round of selection [172]; frequency
gains of the optimal genotype (the fraction of the population adopting the optimal strategy)
are usually modeled and observed to be incremental as long as genotypes produce a positive
number of offspring. Over time, however, genes that give rise to maximum fitness will
increase in frequency (across the population) to 1. Mathematically, the Price equation
[215] and other selection equations predict this behavior. For example, the simple selection
dynamics suggested by Orr [194] predict that changes in allele frequency can be modeled as

Δp =
pqs

1− qs

where p is the frequency of allele 1, q = 1 − p is the frequency of allele 2, and s ∈ [0, 1] is
the selection coefficient (allele 2’s fitness measured as a fraction of allele 1’s fitness). For
q, p ∈ (0, 1), it is impossible for Δp to be −p or 1 − p, so a genotype offering the optimal
phenotype/maximum fitness cannot overtake an entire population in one step. Indeed, these
selection dynamics predict sigmoidal paths of allele frequencies. The Price equation, which
models the selection dynamics differently, reproduces this behavior in the sense that “gene
frequencies change so as to move towards optimality” [91]. Since the fitness of a gene is
determined by its phenotype(s), the more fit traits will spread in a population through
competitive interactions until the entire population is composed of the trait that offers
maximum fitness, but this process takes many rounds of selection.

It can be shown that incremental increases in the optimal genotype lead to incremental
changes in a population’s average fitness. In other words, the average fitness across a
population cannot reach its maximum fitness after one round of selection. Suppose that
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0 ≤ x ≤ x is an allowable set of genotypes in a population, with elements ordered such
that strategy x = 0 has the lowest fitness and x = x has the highest fitness. The fitness
associated with each genotype is given by an increasing function f(x). Let the distribution of
phenotypes initially be F1(x) and the corresponding density be p1(x), and after one round of
selection, the distribution changes incrementally to F2(x) (with corresponding density p2(x))
such that F1(x) ≥ F2(x) ∀x ∈ [0, x], with strict inequality holding for at least some x. In
other words, the strategies with high fitness spread in the population while the strategies
with low fitness get weeded out. Suppose that the KL divergence between F1(x) and 1(x)
is sufficiently large such that an “incremental change” results in F2(x) 	= 1(x), where 1(x)
is the heaviside step function. Since the genotype sets are the same for both populations,
the average population fitnesses are

J1 =

∫ x

0

f(x)p1(x)dx

J2 =

∫ x

0

f(x)p2(x)dx

before and after the round of natural selection, respectively. Note that, since f(x) is in-
creasing in x,

J2 =

∫ x

0

f(x)p2(x)dx < f(x)

∫ x

0

p2(x)dx

=

∫ x

0

f(x)δ(x)dx

where δ(x) = d
dx
1(x), so J2 does not achieve the maximum fitness. The average population

fitness does increase, however, which can be shown by defining

y1 = F1(x)

y2 = F2(x)

so dy1
dx

= p1(x) and
dy2
dx

= p2(x). This notation results in

J1 =

∫ x

0

f(x)p1(x)dx =

∫ 1

0

f
(
F−1
1 (y1)

)
dy1 =

∫ 1

0

f
(
F−1
1 (y)

)
dy

J2 =

∫ x

0

f(x)p2(x)dx =

∫ 1

0

f
(
F−1
2 (y2)

)
dy2 =

∫ 1

0

f
(
F−1
2 (y)

)
dy.

Since F1(x) ≥ F2(x), F
−1
1 (y) ≤ F−1

2 (y) with strict inequality holding for at least some y.
Since f is increasing, this implies that∫ 1

0

f
(
F−1
1 (y)

)
dy <

∫ 1

0

f
(
F−1
2 (y)

)
dy

⇒ J1 < J2
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Figure 7.8: Adaptation of sporulation efficiency in B. subtilis populations over 6000 gener-
ations, from Maughan et al. [167].

so the average population fitness has increased, but because of the incremental change in
the genotype distribution, it does not achieve its maximum value.

There are several records of average population fitness gains due to adaptation by natural
selection in laboratory settings. In response to a new, relatively constant environment,
many of these fitness gains are “initially rapid but tend to decelerate over time” [67]. Elena
and Lenski [67] suggest that these dynamics indicate that the populations, after being
placed in a new environment, are evolving from a region of low fitness towards an adaptive
peak or plateau (adopting Wright’s “fitness landscape” as a visualization model [273]). For
example, in a long-term (6000 generations) experiment with several groups of B. subtilis
populations undergoing selection against sporulation, the experimental populations showed
that sporulation efficiency (u(k) in the model presented) decreased exponentially to 0%
(three of the five populations) or nearly 0% (two of the five populations) [167]; see Figure
7.8. Though there was no significant increase in sporulation efficiency in the five populations
grown in an environment that presumably selected for sporulation [168], it was generally
observed that competitive fitness (against ancestors) increased the largest during the early
evolutionary stages [166]. Though the genetic details of these experiments is beyond the
scope of this work, it was found that up to 27% of the genes analyzed were transcribed at
significantly different levels than the ancestor [165], which indicates that these changes were
in fact due to natural selection.

Other experiments demonstrate initially fast adaptation that decelerates over time. In
a long-term experiment on E. coli that evolved for 20000 generations in a specific growing
condition, it was found that the rate of improvement was 1

10
as fast between generations
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Figure 7.9: Fitness gains in E. coli populations over 20000 generations, from Cooper and
Lenski [41].

15000-20000 compared to the first 5000 generations [41, 51]. At a higher generational reso-
lution, it was also observed that morphology (cell size) and fitness (measured in competition
with the ancestor) evolved rapidly for the first 2000 generations and was relatively static
between 5000-10000 generations [153]. Data from these experiments is shown in Figure 7.9,
and the authors suggested a hyperbolic model to fit the data [51, 153].

The general, qualitative dynamics of decelerating fitness gains are reproduced in other
experiments with bacteria [60, 142, 268, 274] and viruses [31, 191]. One important idea that
all of these data confirm is that evolution does not act instantaneously across a population
at a sufficiently fine time scale. Though a single member of the population may exhibit
an adaptive step change in fitness [67], the average population fitness changes are relatively
continuous. Specifically, if a population adopts an ESS for one environment and is abruptly
placed in a different environment, it will exhibit a seemingly continuous change to the new
ESS [111, 112, 192]. According to the studies cited above on evolutionary dynamics, this
change will decelerate over time.

7.8.2 Proposed evolutionary model

The experimental studies outlined in the previous section suggest that a simple, linear model
may be an adequate way to describe changes between two evolutionary stable strategies.
Additionally, the sporulation efficiency adaptation studies [165, 166, 167, 168] suggest an
evolutionary model governing the dynamics of u(k). Letting u(k) parameterize the sporu-
lation efficiency for the kth steady state (u(k) = 0, no sporulation; u(k) = 1, 100% sporu-
lation), the proposed model for evolutionary changes to the sporulation decision policy due
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to natural selection is

u(k + 1) = u(k) + Δu(k) (7.5)

Δu(k) =

{
ηI (1− u(k)) if ε(k) < 0
−ηDu(k) if ε(k) > 0

where ηI and ηD describe the effect of selection pressure on increases and decreases in u(k),
respectively. Both parameters ηI and ηD must be chosen so 0 ≤ u(k) ≤ 1 ∀k (i.e. no
overshoot). This model agrees with the facts that evolutionary changes are non-anticipative
and adaptive changes decelerate over time. Though the time scale of the model is in terms of
successive steady states, ε(k) may be restricted to be small enough so a relatively constant
number of generations is elapsed during some percentage (i.e. 95%) settling time. The
linearity of the model is consistent with other evolutionary models (e.g. [271]).

The proposed evolutionary model (7.5) is similar to replicator dynamics, which are of-
ten used to illustrate the dynamics of population games in the context of ESSs. Replicator
dynamics, named because of the assumption that strategies breed true in an asexual popula-
tion, track the frequency of pure strategies in a population in a system of ordinary differential
equations or difference equations [10, 266]. For example, if a fraction 0 ≤ x1 ≤ 1 of the
population adopted strategy u1 and the remaining fraction x2 = 1 − x1 of the population
adopted u2, then the replicator dynamics are

ẋ1 = x1 [{Expected fitness of using u1} − {Expected population fitness}]
ẋ2 = x2 [{Expected fitness of using u2} − {Expected population fitness}]

where the expected fitnesses are evaluated at the current strategy distribution (x1, x2).
Then, for instance, if x1 = 1 then the expected fitness of using u1 is the same as the
expected fitness of the population. The population will then remain at this vertex of the
simplex of possible choices for (x1, x2). Discrete time difference equations for replicator
dynamics take a similar form,

x1(k + 1) =
α + {Expected fitness of using u1}
α + {Expected population fitness}x1(k)

x2(k + 1) =
α + {Expected fitness of using u2}
α + {Expected population fitness}x2(k)

where α is chosen large enough so the numerators (and hence the denominators) are always
positive [112]. The stability of replicator dynamics is often used to relate the steady state
xi to an ESS [10, 266].

It can be shown that the simpler, linear evolutionary model (7.5) is consistent with the
discrete time replicator dynamics under a few assumptions and simplifications. Suppose that
strategies 0 ≤ u(k) ≤ 1 are gridded into n different strategies, 0 = u1 < u2 < · · · < un = 1.
Then, if xi(k) denotes the fraction of the population adopting strategy ui at time k,

u(k) =
n∑

i=1

uixi(k).
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The dynamics of each xi are

xi(k + 1) =
α + {Expected fitness of ui}

α + {Expected population fitness}xi(k),

which lead to the dynamics of u(k):

u(k + 1) =
n∑

i=1

uixi(k + 1)

=
n∑

i=1

uixi(k)
α + {Expected fitness of ui}

α + {Expected population fitness}
= u(k)

+
{Expected population fitness}

α + {Expected population fitness}

[
n∑

i=1

uixi(k)
{Expected fitness of ui}

{Expected population fitness} − u(k)

]
which is equivalent to (7.5) if the following conditions hold:

1. α 
 1 so {Expected population fitness}
α+{Expected population fitness} ≈ constant.

2. If strategy m has the highest fitness, then

{Expected fitness of ui} =

{
≈ {Expected population fitness}

xi(k)
if i = m

� {Expected population fitness}
xi(k)

otherwise
.

Note that it is generally very difficult for a reward function to satisfy the second condition.
Nonetheless, the proposed evolutionary model (7.5) is approximately consistent with the
structure of the replicator dynamics model. Though differences arise if the conditions above
do not hold, the simplicity of the linear model compensates for the complexities of dealing
with the replicator dynamics.

Since the proposed evolutionary model is based on population-average phenotype
changes (or fitness changes, since the sporulation model assigns each sporulation efficiency
a fitness value), it is general enough to allow for two different scenarios at the genetic level:

1. A single genotype which gives rise to phenotypic polymorphism. In other words, the
entire population adopts a single genetic strategy gives rise to the probabilistic decision
policy where a cell forms a spore in steady state with probability u(k).

2. Genetic polymorphism which gives rise to phenotypic polymorphism. A simple exam-
ple of this scenario is a fraction u(k) of the population with a genetic predisposition
to form spores more readily than the remaining 1 − u(k) fraction of the population.
Importantly, these two subpopulations are genetically distinct.

The difference between these two cases will become important when the results are compared
to “bet-hedging” strategies (see Section 7.10.2).

Since evolutionary dynamics preclude the possibility of bang-bang/on-off decision poli-
cies for stabilizing ηI and ηD, it is possible for a population to arrive at a non-equilibrium
decision policy as k → ∞ if the sign of ε(k) switches frequently enough. This possibility
will be explored in Sections 7.9-7.10.
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7.9 Environmental model

Suppose that the environment can switch between two modes. In one mode, denoted H for
“high,” ε(k) is positive. In the other, denoted L for “low,” ε(k) is negative. In both cases,
ε(k) must be small in order for the steady state model to remain valid.

It is assumed that ε(k) has the same magnitude ε while in H or L for the sake of
simplicity.

The Markov model in Figure 7.9 illustrates the proposed model for transitioning between
H and L.

H L

p

1− p

q

1− q

Figure 7.10: Markov model of environment. H corresponds to ε(k) = ε > 0 and L corre-
sponds to ε(k) = −ε < 0.

The environment is modeled as randomly transitioning between periods of increasing
nutrient supply and decreasing nutrient supply. This may be a realistic model for a periodic
environment, such as nutrient variation due to changing seasons, weather, or circadian
conditions. For example, it may be possible that nutrient availability from plant roots in soil
(where B. subtilis commonly dwells) is dependent on 24-hour light cycles, temperature, and
cloud cover. The environment may remain inH or L by setting p or q to zero, respectively, to
model permanent trends in nutrient supply (as long as ε(k) � e ∀k to preserve the validity
of the model). The condition q ≈ 0 may be applicable to desert isolates of B. subtilis
(for example, from the Sonoran desert basalt [168]), where sustained nutrient depletion is
sporadically interrupted by short periods of outgrowth.

For fixed p and q, ε(k) is now a random process. As k gets large, we can easily calculate
E {ε(k)} since the environmental Markov chain is a single class of recurrent states [22]. The
stationary distribution of the Markov chain in Figure 7.9 is

Operating mode =

{
H with probability q

p+q

L with probability p
p+q

which implies that, as k gets large,

E {ε(k)} = ε Pr {ε(k) = ε} − ε Pr {ε(k) = −ε}
= ε

q

p+ q
− ε

p

p+ q

= ε
q − p

p+ q
.

Large k is a reasonable assumption because it is assumed that ESSs are steady state policies.
One may alternatively invoke the ergodicity of the environmental Markov chain.
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Due to the choice of expanding the new steady state to only the first power of ε, i.e.
X̂1 = X1 + X1,1ε, and the fair-game assumption A1(k) = A2(k), the ESS for the reward
function E {A(k + 1)} is

bESS(k) =

{
0 if E {ε(k)} > 0
∞ if E {ε(k)} < 0

or

bESS(k) =

{
0 if q > p
∞ if q < p

. (7.6)

In terms of the sporulation efficiencies, the ESSs are

uESS(k) =

{
0 if q > p
1 if q < p

. (7.7)

This policy is intuitive when viewed from a long-term interpretation. Denoting TH as the
(random) time spent in H and TL as the (random) time spent in L for one complete cycle,
we would expect a positive average (in time) nutrient influx if E {TH} > E {TL}. Thus,
the optimal policy should correspond to positive nutrient influx, or u = 0. Note that the
probability mass functions for TH and TL are

Pr {TH = tH} = (1− p)tH−1p

Pr {TL = tL} = (1− q)tL−1q

so

E {TH} > E {TL}
⇔ 1

p
>

1

q

which is equivalent to the condition for uESS(k) = 0.
Unless p or q are zero, the ESS for sporulation efficiencies will never be achieved in steady

state due to the proposed evolutionary model. Notably, evolution cannot see into the future,
so selection cannot take expected long-term behavior into account. For example, whenever
the environment is in L, a subpopulation with u = 1 will out-compete a subpopulation with
u = 0, which will shift the average total-population sporulation policy upwards. This will
happen even if E {TH} 
 E {TL}, and it will prevent uESS = 0 from ever being attained.

Intuitively, it is expected that the actual value of u(k) will depend on the period and
“duty cycle” of the environment. For instance, if ηI = ηD and p ≈ q > 0, then u(k) will be
around 1

2
on average. Though not optimal from an evolutionary point of view (a population

with a fixed u = 0 or u = 1 would do better in the long run), the actual policy which is
constrained by evolutionary dynamics will be derived in the next section.
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7.10 Non-equilibrium policy

Since the dynamics of u(k) depend on the sign of ε(k), the actual sporulation policy becomes
a random process.

Theorem 7.10.1. Suppose q 	= 0 and p 	= 0. Then, as k → ∞, E {u(k)} will converge to
a periodic signal with minimum value

umin =

[
1− (1−ηI)q

1−(1−ηI)(1−q)

]
(1−ηD)p

1−(1−ηD)(1−p)

1− (1−ηI)q
1−(1−ηI)(1−q)

(1−ηD)p
1−(1−ηD)(1−p)

(7.8)

and maximum value

umax = 1 + (umin − 1)
(1− ηI)q

1− (1− ηI)(1− q)
. (7.9)

Proof. As before, denote TH as the (random) time spent in H and TL as the (random) time
spent in L. Without loss of generality, suppose that the environment enters L at k = 0.
While in L, the value of u(k) increases:

E {u(TL)} = E

{
u(0) +

TL−1∑
k=0

Δu(k)

}
= E {u(0)}+ E

{
TL−1∑
k=0

Δu(k)

}
.

The expected summation can be broken down into two parts,

E

{
TL−1∑
k=0

Δu(k)

}
= E

{
TL−1∑
k=0

ηI (1− u(k))

}

= E

{
TL−1∑
k=0

ηI

}
− E

{
TL−1∑
k=0

ηIu(k)

}

with

E

{
TL−1∑
k=0

ηI

}
= E

{
E

{
TL−1∑
k=0

ηI

∣∣∣∣∣TL

}}
= E {TLηI}
=

1

q
ηI
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and, assuming |1− ηI | < 1,

E

{
TL−1∑
k=0

ηIu(k)

}
= E

{
E

{
TL−1∑
k=0

ηIu(k)

∣∣∣∣∣TL

}}

= E

{
ηIE

{
TL−1∑
k=0

u(k)

∣∣∣∣∣TL

}}

= E

{
ηI

[
TL−1∑
k=0

E {u(0)} (1− ηI)
k +

TL−1∑
k=1

k−1∑
i=0

(1− ηI)
iηI

]}

= E

{
ηI

[
E {u(0)} 1− (1− ηI)

TL

ηI
+

TL−1∑
k=1

(
1− (1− ηI)

k
)]}

= E

{
E {u(0)} − E {u(0)} (1− ηI)

TL + ηI(TL − 1)− ηI

TL−1∑
k=1

(1− ηI)
k

}
= E {u(0)} − E {u(0)}E{(1− ηI)

TL
}
+ ηIE {TL − 1}
− E

{
(1− ηI)− (1− ηI)

TL
}

= E {u(0)} − E {u(0)} (1− ηI)q

1− (1− ηI)(1− q)
+ ηI

(
1

q
− 1

)
− (1− ηI) +

(1− ηI)q

1− (1− ηI)(1− q)

or

E

{
TL−1∑
k=0

ηIu(k)

}
= (E {u(0)} − 1)− (E {u(0)} − 1)

(1− ηI)q

1− (1− ηI)(1− q)
+

ηI
q

Substituting these last two series of equalities into the original expression for E {u(TL)}
gives

E {u(TL)} = E {u(0)}+ ηI
q
− (E {u(0)} − 1) + (E {u(0)} − 1)

(1− ηI)q

1− (1− ηI)(1− q)
− ηI

q

= 1 + (E {u(0)} − 1)
(1− ηI)q

1− (1− ηI)(1− q)
. (7.10)

After TL, the system spends TH time units in H. During this time, the value of u(k)
decreases:

E {u(TL + TH)} = E

{
u(TL) +

TL+TH−1∑
k=TL

Δu(k)

}

= E {u(TL)}+ E

{
TL+TH−1∑

k=TL

−ηDu(k)

}
.
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The second term can be computed as

E

{
TL+TH−1∑

k=TL

−ηDu(k)

}
= E

{
E

{
TL+TH−1∑

k=TL

−ηDu(k)

∣∣∣∣∣TL, TH

}}

= E

{
−ηD

TL+TH−1∑
k=TL

E {u(k)}
}

= E

{
−ηDE {u(TL)}

TL+TH−1∑
k=TL

(1− ηD)
k−TL

}
= −E {u(TL)}+ E {u(TL)}E

{
(1− ηD)

TH
}

= −E {u(TL)}+ E {u(TL)} (1− ηD)p

1− (1− ηD)(1− p)

so E {u(TL + TH)} can be written as

E {u(TL + TH)} = E {u(TL)}+
[
−E {u(TL)}+ E {u(TL)} (1− ηD)p

1− (1− ηD)(1− p)

]
=

[
1 + (E {u(0)} − 1)

(1− ηI)q

1− (1− ηI)(1− q)

]
(1− ηD)p

1− (1− ηD)(1− p)
.

Using this equation, the dynamics of the local minima of E {u(k)} can be examined. Defining
a time scale Tn := n(TL + TH), n = 0, 1, 2, . . ., the dynamics are

E {u(Tn+1)} =
(1− ηI)q

1− (1− ηI)(1− q)

(1− ηD)p

1− (1− ηD)(1− p)
E {u(Tn)}

+

[
1− (1− ηI)q

1− (1− ηI)(1− q)

]
(1− ηD)p

1− (1− ηD)(1− p)
. (7.11)

Note that

(1− ηI)q

1− (1− ηI)(1− q)
=

q − qηI
1− (1− ηI − q + qηI)

=
q − qηI

ηI + q − qηI
< 1

and similarly for (1−ηD)p
1−(1−ηD)(1−p)

, which means that∣∣∣∣ (1− ηI)q

1− (1− ηI)(1− q)

(1− ηD)p

1− (1− ηD)(1− p)

∣∣∣∣ < 1

so E {u(Tn)} approaches a constant value as n → ∞. This value is determined by inspection
of Equation (7.11):

E {u(Tn)} →
[
1− (1−ηI)q

1−(1−ηI)(1−q)

]
(1−ηD)p

1−(1−ηD)(1−p)

1− (1−ηI)q
1−(1−ηI)(1−q)

(1−ηD)p
1−(1−ηD)(1−p)
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which is the same as Equation (7.8), which proves that part of the theorem. For the
maximum value, one simply uses Equation (7.10).

Sporulation efficiency simulations for different environments are given in Figures 7.11
and 7.12. The upper and lower bounds for E {u(k)} (Equations (7.8) and (7.9)) are also
given in the figures.
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Figure 7.11: u(k) for p = 0.1 and q = 0.4.

Note that the non-equilibrium policy is able to explain any sporulation efficiency between
0% and 100%, depending on the environment and model parameters. In this respect, it is
consistent with the sporulation efficiencies given in Table 2.1 and the experimental data
given in Section 3.4.4 (there was no observed germination, so the sporulation efficiencies
were ≈ 100%). Though identifying the specific p and q parameters for real environments
may be impossible, the qualitative behavior of the non-equilibrium policy is qualitatively
consistent with observed B. subtilis behavior.

7.10.1 Non-equilibrium policy compared to ESS

For the environment modeled in Figure 7.9, the evolutionary optimal policy is given in
Equation (7.7), repeated below:

uESS(k) =

{
0 if q > p
1 if q < p

. (7.7)

The actual expected policy given in the previous section is different from the evolutionary
optimal policy. Notably, it allows for sporulation efficiencies between 0% and 100%.
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Figure 7.12: u(k) for p = 0.9 and q = 0.4.

Modeling the actual expected policy as a “choice” over the optimal (ESS) policy, it can
be shown that the “decision” to choose the actual expected policy exhibits risk sensitiv-
ity. Recall that the policy uESS(k) = 0 devotes all resources to vegetative growth while
uESS(k) = 1 results in no vegetative cells. Since growth or death between successive steady
states is proportional to the subpopulations of vegetative cells, a population with a relatively
low value of u(k) will exhibit more gains or losses to positive or negative ε than a population
with a relatively higher value of u(k). Therefore, competing population 1 with uESS(k) = 0
against population 2 with u(k) > 0 will result in A1(k + 1) having a higher variance than
A2(k + 1). Similarly, competing population 1 with uESS(k) = 1 against population 2 with
u(k) < 1 will result in A1(k + 1) having a lower variance than A2(k + 1). Since the ESSs
are optimal, populations adopting these strategies will have a higher expected payoff than
populations not adopting them. Thus, there is evidence that the “choice” of u(k) 	= uESS(k)
is risk sensitive because:

1. If E {ε(k)} > 0, a policy with a lower expected value and lower variance is adopted
over uESS(k) = 0.

2. If E {ε(k)} < 0, a policy with a lower expected value and higher variance is adopted
over uESS(k) = 1.

The decision to choose the actual expected policy seems to exhibit risk aversion for positive
expected gains and risk seeking for negative expected gains. This intuitive idea will be
shown to be consistent with a general model of choice, and two possibly interesting ideas
about bacterial expectations emerge from the analysis.
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Prospect theory background

Expected utility theory arose from the observation that people make decisions that often
do not maximize the expected value of their rewards. For example, it was found in 1738
that people would pay only a small monetary amount to play a game with infinite expected
payoff (the Petersburg paradox) [21, 231]. Instead of maximizing the expected reward, it
was postulated that people maximize the expected utility of their reward. This idea was
formalized in 1944 by von Neumann and Morgenstern [262] with an axiomatic definition of
rational decision-making, which allowed a logical analysis of games of chance. This expected
utility theory provided a normative model of rational choice between a set of prospects. For
notational convenience, define a prospect (x1, p1; . . . ; xn, pn) as a contract that yields the
outcome xi with probability pi, where

∑n
i=1 pi = 1. Let W (x1, p1; . . . ; xn, pn) ∈ R be

the overall utility of the prospect (x1, p1; . . . ; xn, pn), which is the expected utility of the
outcomes

∑n
i=1 piw(xi). The axioms that a rational decision maker must satisfy, according

to von Neumann and Morgenstern [262], are

1. Completeness: Let A = W (x1, p1; . . . ; xn, pn) and B = W (x′
1, p

′
1; . . . ; x

′
n, p

′
n). Then,

either A > B, A < B, or A = B.

2. Transitivity: Let C = W (x̂1, p̂1; . . . ; x̂n, p̂n). If A > B and B > C, then A > C.

3. Independence: If A > B, λ ∈ (0, 1], then λA+ (1− λ)C > λB + (1− λ)C.

4. Continuity: If x1 > x2 > x3, ∃p ∈ (0, 1) such that W (x2, 1) = W (x1, p; x3, 1− p).

Asset integration is a tenet of expected utility theory, which states that a prospect
(x1, p1; . . . ; xn, pn) is acceptable at asset position a iff W (a + x1, p1; . . . ; a + xn, pn) > w(a)
[132]. In other words, the overall utility of a prospect is calculated on the final states, not
on the gains or losses.

Risk sensitivity is defined as a preference for/against a prospect (x1, p1; . . . ; xn, pn) with∑n
i=1 xipi = x when compared to a certain payoff x. Risk aversion is the preference of the

certain payoff x over the gamble (up to a positive risk premium), and risk seeking is the
preference of the gamble over the certain payoff (down to a negative risk premium). These
attitudes can be represented by utility functions that are concave and convex, respectively.
For example, in economic analysis w is typically concave to represent the law of diminishing
returns [231], which was sufficient to explain the Petersburg paradox.

Though it is presumed that humans act rationally to maximize their expected utility,
several studies have uncovered systematic inconsistencies between actual human decisions
and expected utility theory [231, 250]. These inconsistencies compelled Kahneman and
Tversky in 1979 to develop an alternative model of choice to explain human decision-making
[132]. Their new framework, called prospect theory, postulated a descriptive model that
differed from expected utility theory in three significant ways [132, 133, 250]:

1. Value function: Instead of a utility function w defined on final states, Kahneman
and Tversky proposed a value function v defined on deviations from a reference point
(gains/losses from a current asset position). Instead of generally being concave like
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w, v is typically concave for gains and convex for losses. Additionally, v is steeper for
losses than for gains (loss aversion).

2. Weighting function: Instead of weighting by actual probabilities pi, Kahneman and
Tversky proposed a weighting function π(pi). Unless the expectation principle holds
(π(pi) = pi), the weighting function generally satisfies the following:

• π(p) is an increasing function of p, with π(0) = 0 and π(1) = 1.

• For very small p, π(p) > p.

• Subadditivity: π(rp) > rπ(p), for small p and 0 < r < 1.

• “Subcertainty”: π(p) + π(1− p) < 1, 0 < p < 1.

• Subproportionality: If 0 < p, q, r ≤ 1, π(pq)
π(p)

≤ π(pqr)
π(pr)

.

3. Overall value of prospects: If (x1, p1; x2, p2) is a regular prospect (i.e., either p1+p2 < 1
or x1 ≥ 0 ≥ x2 or x1 ≤ 0 ≤ x2), then the overall value of the prospect is

V (x1, p1; x2, p2) = π(p1)v(x1) + π(p2)v(x2).

For strictly positive or negative prospects, it is assumed that the prospect is edited
such that there is a riskless component (the minimum gain or loss which is certain
to be obtained or paid) and a risky component (the additional gain or loss which is
actually at stake). For the prospect (x1, p1; x2, p2), if p1+p2 = 1 and either x1 > x2 > 0
or x1 < x2 < 0, the overall value of the prospect is

V (x1, p1; x2, p2) = v(x2) + π(p1) [v(x1)− v(x2)] .

In addition to these modifications to expected utility theory, Kahneman and Tversky allowed
the value function to be defined around a shifted reference point [11, 251]. Though it is
assumed that the carriers of value are gains and losses, the current asset position may not
always be the correct position from where to assess gains or losses. A shift in reference point
may correspond to the status quo or an asset position that one had expected to attain; for
example, an unexpected tax withdrawal from a monthly paycheck is experienced as a loss,
not a reduced gain, and an entrepreneur who is weathering a slump with greater success
than his competitors may interpret a small loss as a gain, relative to the larger loss he had
reason to expect [132]. Other studies indicate that people often demand much more to give
up an object than they would be willing to pay to acquire it (the endowment effect or status
quo bias) [131, 138], which can be attributed to shifts in reference points and loss aversion
encoded into the value functions. Reference points may also change due to recent changes
in assets to which one had not adapted, which may explain the observation of the increased
tendency to bet on long shots over the course of the betting day [132, 173].

Note that prospect theory presents a more general model of choice than expected utility
theory. Setting the reference point to zero assets allows a utility function to be recovered
from a value function, and setting π to the identity function allows the axioms of rational
decision-making to be satisfied.
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Biological applications of choice models

Beyond the applications to human behavior and psychology, expected utility theory has been
used for nonhuman studies on habitat choice and territoriality, life history, and reproductive
and social behaviors [14, 270]. Foraging behavior is perhaps the most widely applied example
of utility theory for animals, with attention primarily focused on solitary feeding specialists
with low reserves, high metabolic requirements, and periodic and relatively lengthy inter-
ruptions of foraging (e.g. long, cold nights) [270]. Payoffs are almost always food, with the
underlying hypothesis that foragers make decisions to maximize the utility of food. The
general findings of risk sensitive foraging behavior are [34, 54, 104, 128, 162, 174, 220]:

1. Risk insensitive behavior is rare in the animals studied (such as birds, rats, and hon-
eybees). Research has uncovered the so-called energy budget rule, which is tested by
offering a subject the choice of a variable food amount or a certain food amount equal
to the expected value of the risky choice. When the certain food amount is above
the required food amount to survive (positive energy budget), subjects preferred the
certain reward; however, when the certain food amount is below the required food
amount to survive (negative energy budget), subjects preferred the variable reward.
Intuitively, survival is guaranteed by selecting the certain food amount with a positive
energy budget, while the probability of survival is maximized by selecting the ran-
dom food amount under a negative energy budget. If the food amount carries utility,
it is postulated that the utility function is convex-concave. Below the food amount
required for survival, w is convex, whereas above this value, w is concave.

2. Different cases of food variability (with positive energy budgets) exhibit different risk
attitudes. Whereas the energy budget rule predicts risk aversion for food amount,
experiments suggest that subjects are risk prone when choosing between a random
delay until food is given and a certain delay until food is given (the amount of food
for both choices in the delay experiments is fixed). The energy budget rule does
not satisfactorily explain this behavior, though it is possible that aspects of prospect
theory may describe it. For example, a delay in feeding time may be framed as a loss
to an animal that has grown accustomed to feeding at a certain time. The temporal
reference point of the previous feeding time implies that the value function is convex
in the domain of the experimental feeding times.

Some studies (e.g. [162, 172]) applied prospect theory to foraging behavior, though most
have been analyzed in the more specialized framework of expected utility theory.
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Prospect theory applied to the decision policy choice

Suppose that population 1 adopts bESS(k) and population 2 adopts b(k) 	= bESS(k). Then,
denoting ΔAi(k) :=

1
ε(k)

(Ai(k + 1)− Ai(k)),

A1(k + 1) =

⎧⎨⎩ A1(k) + ΔA1(k)ε with Pr
{

q
p+q

}
A1(k)−ΔA1(k)ε with Pr

{
p

p+q

}
A2(k + 1) =

⎧⎨⎩ A2(k) + ΔA2(k)ε with Pr
{

q
p+q

}
A2(k)−ΔA2(k)ε with Pr

{
p

p+q

}
where

ΔA1(k) =

1
γ
(1 + b(k))2(1 + bESS(k))

(1 + b(k))2 + (1 + bESS(k))2

ΔA2(k) =

1
γ
(1 + b(k))(1 + bESS(k))2

(1 + b(k))2 + (1 + bESS(k))2
.

Without loss of generality, normalize the gains or losses for each k by ε so that prospects
may be represented purely in terms ΔA1(k) and ΔA2(k).

When E {ε(k)} > 0 (or q > p), the gains or losses are

ΔA1(k) =

1
γ
(1 + b(k))2

(1 + b(k))2 + 1

ΔA2(k) =

1
γ
(1 + b(k))

(1 + b(k))2 + 1

with

Pr {ΔAi(k) > 0} =
q

p+ q
>

1

2

Pr {ΔAi(k) < 0} =
p

p+ q
<

1

2

for i = 1, 2. Note that

ΔA1(k) > ΔA2(k) > 0

since b(k) > 0.
When E {ε(k)} < 0 (or q′ < p′), the gains or losses are

ΔA′
1(k) = 0

ΔA′
2(k) =

1

γ
(1 + b′(k))
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with

Pr {ΔA′
2(k) > 0} =

q′

p′ + q′
<

1

2

Pr {ΔA′
2(k) < 0} =

p′

p′ + q′
>

1

2
.

No shifts of reference Straight application of prospect theory on the prospects

1. (ΔA1(k),
q

p+q
;−ΔA1(k),

p
p+q

)

2. (ΔA2(k),
q

p+q
;−ΔA2(k),

p
p+q

)

(when q > p) results in

π

(
q

p+ q

)
v (ΔA1(k)) + π

(
p

p+ q

)
v (−ΔA1(k)) <

π

(
q

p+ q

)
v (ΔA2(k)) + π

(
p

p+ q

)
v (−ΔA2(k)) (7.12)

since both prospects are not regular and (ΔA2(k),
q

p+q
;−ΔA2(k),

p
p+q

) is chosen. Similarly,
the choice between the prospects

1. (0, 1)

2. (ΔA′
2(k),

q′
p′+q′ ;−ΔA′

2(k),
p′

p′+q′ )

(when q′ < p′) results in

v(0) = 0 < π

(
q′

p′ + q′

)
v (ΔA′

2(k)) + π

(
p′

p′ + q′

)
v (−ΔA′

2(k)) . (7.13)

It will be shown that this simple formulation of the decision problem is not consistent with
the hypotheses of prospect theory.

Equation (7.12) can be written as

π

(
q

p+ q

)
[v (ΔA1(k))− v (ΔA2(k))] < π

(
p

p+ q

)
[v (−ΔA2(k))− v (−ΔA1(k))]

which implies that

v (ΔA1(k))− v (ΔA2(k))

v (−ΔA2(k))− v (−ΔA1(k))
<

π
(

p
p+q

)
π
(

q
p+q

) < 1 (7.14)

since π (z) is monotonic in z and q > p. On the other hand, Equation (7.13) can be written
as

−π

(
p′

p′ + q′

)
v (−ΔA′

2(k)) < π

(
q′

p′ + q′

)
v (ΔA′

2(k))
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which implies that

−v (−ΔA′
2(k))

v (ΔA′
2(k))

<
π
(

q′
p′+q′

)
π
(

p′
p′+q′

) < 1 (7.15)

since q′ < p′.
Equations (7.14) and (7.15) are inconsistent with each other. They respectively imply

that

v (ΔA1(k)) + v (−ΔA1(k)) < v (ΔA2(k)) + v (−ΔA2(k))

v (ΔA′
2(k)) + v (−ΔA′

2(k)) > 0.

or

v (ΔA1(k)) < −v (−ΔA1(k))

v (ΔA′
2(k)) > −v (−ΔA′

2(k)) .

The second inequality contradicts the first inequality and the prospect theory hypothesis
that v(x) < −v(x) for all x > 0 [132]. This discrepancy suggests that the decision problem
formulation must be refined.

Including shifts of reference Introducing two shifts of reference will allow the choices
to be consistent with the prospect theory model of choice. Specifically, suppose the two
translations are:

• +ΔA1(k) if E {ε(k)} > 0, and

• −ΔA′
2(k) if E {ε(k)} < 0.

The first shift results in a choice between the prospects

1. (2ΔA1(k),
q

p+q
; 0, p

p+q
)

2. (ΔA1(k) + ΔA2(k),
q

p+q
; ΔA1(k)−ΔA2(k),

p
p+q

)

(when q > p), which results in

π

(
q

p+ q

)
v (2ΔA1(k)) < v (ΔA1(k)−ΔA2(k))+

π

(
q

p+ q

)
[v (ΔA1(k) + ΔA2(k))− v (ΔA1(k)−ΔA2(k))] (7.16)

since (ΔA1(k)+ΔA2(k),
q

p+q
; ΔA1(k)−ΔA2(k),

p
p+q

) is now regular and is chosen. Similarly,
the choice between the shifted prospects

1. (−ΔA′
2(k), 1)
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2. (0, q′
p′+q′ ;−2ΔA′

2(k),
p′

p′+q′ )

(when q′ < p′) results in

π

(
p′

p′ + q′

)
v (−2ΔA′

2(k)) > v (−ΔA′
2(k)) . (7.17)

It will be shown that this formulation, with shifts of reference, is consistent with the hy-
potheses of prospect theory.

Equation (7.16) can be written as[
1− π

(
q

p+ q

)]
v (ΔA1(k)−ΔA2(k)) >

π

(
q

p+ q

)
[v (2ΔA1(k))− v (ΔA1(k) + ΔA2(k))]

⇔ v (ΔA1(k)−ΔA2(k))

v (2ΔA1(k))− v (ΔA1(k) + ΔA2(k))
>

π
(

q
p+q

)
1− π

(
q

p+q

) .
Assuming that the expectation principle holds,

q > p ⇒ π

(
q

p+ q

)
>

1

2
⇒

π
(

q
p+q

)
1− π

(
q

p+q

) > 1,

the following inequality is a result of Equation (7.16):

v (ΔA1(k)−ΔA2(k)) > v (2ΔA1(k))− v (ΔA1(k) + ΔA2(k)) . (7.18)

Note that this is consistent with the hypothesis v(z) concave for z > 0, since Equation
(7.18) is equivalent to

v (ΔA1(k)−ΔA2(k))− v (0) > v (2ΔA1(k))− v (ΔA1(k) + ΔA2(k)) .

Equation (7.17) is consistent with the conditions required to derive Equation (7.18) and
the hypotheses of prospect theory. Specifically, if v(z) is convex for z < 0,

v (0)− v (−ΔA′
2(k)) > v (−ΔA′

2(k))− v (−2ΔA′
2(k))

⇔ v (−2ΔA′
2(k)) > 2v (−ΔA′

2(k)) .

Under the assumption that the expectation principle holds,

p′ > q′ ⇒ π

(
p′

p′ + q′

)
>

1

2
,

which, combined with the convexity condition, leads to

π

(
p′

p′ + q′

)
v (−2ΔA′

2(k)) >
1

2
v (−2ΔA′

2(k))

> v (−ΔA′
2(k))

which is consistent with Equation (7.17). Equations (7.16) and (7.17) can therefore be
explained by prospect theory.
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Significance of prospect theory and shifts of reference

With two specific shifts of reference, it was shown that the “decision” to adopt the actual
expected policy over the optimal policy is consistent with the model of choice suggested
by prospect theory. This means that natural selection and evolutionary dynamics conspire
in a manner to mimic an agent that exhibits risk sensitive decisions. It is interesting to
note that prospect theory was originally developed to describe human economic preferences
[133, 250], which may imply that evolution evaluates and “chooses” phenotypes in a way
that is similar to actual human editing and decisions. These choices are optimal according
to the model of choice provided by prospect theory (“postdictive” perspective [231]) . In
fact, since the expectation principle was not violated in the analysis, one may argue that the
choice of phenotype is rational for positive E {ε(k)} (or negative E {ε(k)}) since the axioms
of expected utility theory hold; in other words, as long as E {ε(k)} remains positive (or
negative), the decisions simply maximize a concave (convex) utility function with unaltered
probability weights.

Perhaps more interesting are the shifts of references required to make the “choice” of
the actual decision policy over the optimal policy consistent with prospect theory. Recall
that the shifts were:

• +ΔA1(k) if E {ε(k)} > 0, and

• −ΔA′
2(k) if E {ε(k)} < 0,

where ΔA1(k) and ΔA′
2(k) are the larger gains/losses of the two choices under different

environmental conditions. As mentioned in the Section 7.10.1, a shift of reference describes
the status quo or the gain/loss that the deciding agent expects to see [251, 253]. Therefore, it
is possible to claim that natural selection and evolutionary dynamics expect, when choosing
between two prospects,

• maximum losses when E {ε(k)} > 0, and

• maximum gains when E {ε(k)} < 0.

This may imply that bacterial behavior has evolved to expect the worst when the nutrient
influx is increasing on average, and expect the best when the nutrient influx is decreasing
on average. Compared to the optimal ESS, the actual strategy performs better if the
environment unexpectedly switches to the other operating mode. In other words, bacteria
are pessimistic under good conditions and optimistic under bad conditions. Though
similar to the prospect theory hypotheses of risk aversion for gains and risk seeking for
losses, the optimistic and pessimistic labels refer to the particular beliefs that are required
to provide a descriptive model of the decision policy selection. Therefore, if the mathematical
modeling and assumptions for this analysis are representative of actual bacteria populations,
we can claim that bacteria act both optimistically and pessimistically, depending on the
environmental conditions.

The longer the environment remains in either H or L, the lower the “degree” of pes-
simism and optimism, respectively. For example, if two populations with the same initial
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population-average strategy were placed in environment mode H, the population reintro-
duced to L first will more readily form spores than the population reintroduced to L later.
According to the proposed evolutionary model, this is because the longer an environment
remains constant, the more adapted a population will become to that particular condition
(to maximize its fitness). From a bacteria colony’s point of view, an interesting descriptive
model that explains this behavior can be constructed. Suppose a colony has undergone t
rounds of a constant environmental trend in H. It is reasonable to assume that the bacteria
cannot predict the future, so they may not have knowledge of the parameter p that governs
the distribution of TH , the (random) number of steps spent in H. Even if the environment
has constant p and q up to the current time, there still may be uncertainty in the estimated
value of p due to unforeseen circumstances (e.g. sunlight exposure may significantly alter
the availability of nutrients in soil [163]). Therefore, suppose that the bacteria colony forms
an estimate p̂ of the actual parameter p while in H. There are several heuristic ways in
which this may be accomplished, simply using the fact that the realization tH of the random
variable TH is greater than t. For example,

• p̂ ← E {TH} > t

• p̂ ← Pr {TH > t} ≥ γ

• p̂ ← E {TH} < t but var (TH) > γ(t− E {TH})
are all possible candidates for calculating p̂ knowing only that tH > t. In all of these cases,
p̂ is bounded by a decreasing function of t. Intuitively, this means that the longer one
spends in H, the longer one would expect to remain in H since the distribution governing
TH is memoryless. Therefore, as the estimated probability of transitioning to L becomes
smaller, the actual policy gets closer to the optimal ESS. This may lead to an “adaptive
coin-flipping”-like strategy [43, 193, 233], where an individual cell will form a spore with
probability p̂

p̂+q̂
and continue to vegetatively grow with probability q̂

p̂+q̂
. This strategy gives

rise to a time-varying population-average strategy that converges to u = 0 as tH → ∞.
The non-equilibrium strategy is sufficiently general to explain observed sporulation effi-

ciencies in wild strains of bacteria (see Table 2.1). It captures the intuitive expectation that
a bacterium should evolve higher sporulation efficiencies in nutrient-poor environments and
lower sporulation efficiencies in nutrient-rich environments. Though it is impossible to claim
that the proposed environmental model accurately reflects the actual conditions that wild
bacteria tolerate, the qualitative agreement between experimentally-observed sporulation
efficiencies and the non-equilibrium policy is encouraging.

7.10.2 Non-equilibrium policy compared to bet-hedging strate-
gies

Bet-hedging background

Suppose that natural selection acts to maximize the long term fitness of an organism. If the
fitness is of the classical Darwinian variety (number of viable progeny), assume that fitness
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is governed by the dynamics

X(t+ 1) = W (t)X(t)

where, without loss of generality, the normalization X(0) = 1 is employed. If W (t) depends
on the organism’s genotype θ, it may be postulated that evolution solves

max
θ

lim
t→∞

X(t)

for the long term fitness problem. Note that the objective J = limt→∞ X(t) is

J = lim
t→∞

t−1∏
i=0

W (i),

and has the same arg max as

JL := log J = log

(
lim
t→∞

t−1∏
i=0

W (i)

)

= lim
t→∞

t−1∑
i=0

logW (i).

If each W (i) = W is an i.i.d. random variable parameterized by θ, then the weak law of
large numbers [228] yields

JL ∼ N (
E {logW} , σ2

)
so maximization of the expected long term fitness is equivalent to maximizing E {logW}.
If W is a discrete random variable with distribution

Pr {W = wi} = pi, i = 1, 2, . . . , n

the long term fitness maximization can be expressed as

θ∗ = argmax
θ

E {logW} = argmax
θ

eE{logW}

since ex is monotone increasing in x [26]. This gives

θ∗ = argmax
θ

eE{logW}

= argmax
θ

e
∑n

i=1 logw
pi
i

= argmax
θ

n∏
i=1

wpi
i
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which is the familiar geometric mean fitness maximization solution. Notice that maximiza-
tion of the geometric mean does not necessarily maximize the mean. For example, if θ1
corresponded to the distribution

Pr {W = 8} = 1

and θ2 corresponded to the distribution

Pr {W = 1} =
1

2

Pr {W = 19} =
1

2
,

then the geometric mean and mean for a random variable with θ1’s distribution are both
8, whereas the geometric mean and mean for a random variable with θ2’s distribution are
4.36 and 10, respectively. Therefore, θ1 corresponds to a higher geometric mean but a lower
mean than θ2.

Corollary 7.10.2. Let two non-negative random variables W1 and W2 have symmetric
(about the mean) densities pW1 and pW2 with cumulative distribution functions FW1 and
FW2, respectively. If

E {W1} = E {W2} = μ

FW1(x) > FW2(x)

for μ < x < 2μ, then

E {logW1} > E {logW2} .
Equivalently, the geometric mean of W1 will be greater than the geometric mean of W2 as
long as pW1 and pW2 are symmetric about their means and pW1 is more concentrated (in a
certain sense) than pW2.

Proof. Since W1 and W2 are non-negative and have symmetric densities, their supports are
necessarily compact. Specifically, W1 and W2 can take on values from 0 to 2E {W1} =
2E {W2} = 2μ.

Preliminarily, the expected value of any function of W1 (or W2) can be simplified to

E {g (W1)} =

∫ 2μ

0

g(x)pW1(x)dx

=

∫ μ

0

g(x)pW1(x)dx+

∫ 2μ

μ

g(x)pW1(x)dx

= −
∫ 0

μ

g(μ− y)pW1(μ− y)dy +

∫ μ

0

g(μ+ y)pW1(μ+ y)dy

=

∫ μ

0

(g(μ− y) + g(μ+ y)) pW1(μ+ y)dy
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where the last equality comes from the fact that pW1(μ− y) = pW1(μ+ y) for 0 < y < μ.
The condition FW1(x) > FW2(x) for μ < x < 2μ leads to

FW1(x) > FW2(x)

⇔
∫ x

0

pW1(t)dt >

∫ x

0

pW2(t)dt

⇔
∫ μ

0

pW1(t)dt+

∫ x

μ

pW1(t)dt >

∫ μ

0

pW2(t)dt+

∫ x

μ

pW2(t)dt

⇔
∫ x

μ

pW1(t)dt >

∫ x

μ

pW2(t)dt

⇔
∫ x−μ

0

pW1(μ+ y)dy >

∫ x−μ

0

pW2(μ+ y)dy

for μ < x < 2μ, with boundary condition∫ μ

0

pW1(μ+ y)dy =

∫ μ

0

pW2(μ+ y)dy =
1

2
.

Together, these imply that any increasing function h(y) bounded between 0 and 1 on the
interval 0 ≤ y ≤ μ results in∫ μ

0

h(y)pW1(μ+ y)dy <

∫ μ

0

h(y)pW2(μ+ y)dy.

Intuitively, the function h(y) weights pW1 the least where the density is relatively large,
while h(y) weights pW2 the most where the density is relatively large.

With this inequality, the following result can be derived: For n = 1, 2, . . .,

E
{
(W1 − μ)2n

}
=

∫ μ

0

(
y2n + (−y)2n

)
pW1(μ+ y)dy

= 2

∫ μ

0

y2npW1(μ+ y)dy

= 2μ2n

∫ μ

0

(
y

μ

)2n

pW1(μ+ y)dy

< 2μ2n

∫ μ

0

(
y

μ

)2n

pW2(μ+ y)dy

= E
{
(W2 − μ)2n

}
.

Note that this implies that the variance of W1 is less than the variance of W2, which is
expected since it is assumed that pW1 is more concentrated around μ than pW2 . Additionally,
for n = 1, 2, . . .,

E
{
(W1 − μ)2n+1} =

∫ μ

0

(
y2n+1 + (−y)2n+1

)
pW1(μ+ y)dy

=

∫ μ

0

(
y2n+1 − y2n+1

)
pW1(μ+ y)dy

= 0.
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i.e. the odd central moments for symmetric densities are zero.
Now, for an analytic function f(x),

E {f (W1)} =

∫ 2μ

0

f(x)pW1(x)dx

=

∫ 2μ

0

[
f(μ) + f ′(μ) (x− μ) +

f ′′(μ)
2

(x− μ)2

+
f ′′′(μ)

6
(x− μ)3 + · · ·

]
pW1(x)dx

= f(μ) + f ′(μ)
∫ 2μ

0

[x− μ] pW1(x)dx+
f ′′(μ)
2

∫ 2μ

0

[x− μ]2 pW1(x)dx

+
f ′′′(μ)

6

∫ 2μ

0

[x− μ]3 pW1(x)dx+ · · ·

= f(μ) +
∞∑
i=1

1

i!

∂if(x)

∂xi

∣∣∣∣
μ

E

{
(W1 − μ)i

}
= f(μ) +

∞∑
n=1

1

(2n)!

∂2nf(x)

∂x2n

∣∣∣∣
μ

E
{
(W1 − μ)2n

}
For the specific case when f(x) = log x,

E {logW1} = log μ+
∞∑
n=1

1

(2n)!

∂2n log x

∂x2n

∣∣∣∣
μ

E
{
(W1 − μ)2n

}
,

where ∂2n log x
∂x2n

∣∣∣
μ
< 0, n = 1, 2, . . ., due to the concavity of log x. W1 and W2 as described in

the hypothesis give

E {logW1} − E {logW2} =
∞∑
n=1

1

2n!

∂2n log x

∂x2n

∣∣∣∣
μ︸ ︷︷ ︸

(−)

[
E
{
(W1 − μ)2n

}− E
{
(W1 − μ)2n

}]︸ ︷︷ ︸
(−)

which implies

E {logW1} > E {logW2}
as desired.

Remark 7.10.3. Corollary 7.10.2 shows that, with everything else held constant, a reduc-
tion in fitness variance may produce a higher geometric mean fitness.

Remark 7.10.4. This corollary does not hold for random variables with non-symmetric
densities. For example, consider

X1 =

{
1 with prob. 0.2
13 with prob. 0.8

X2 =

{
8 with prob. 0.8
21 with prob. 0.2
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In this case, E {X1} = E {X2} = 10.6, var (X1) = 23.04 < 27.04 = var (X2), but
E {logX1} = 2.052 < 2.272 = E {logX2}.

This idea of sacrificing mean fitness in order to increase other measures of fitness un-
derlies the concept of bet-hedging strategies. Though several “definitions” for bet-hedging
strategies exist [233], the most commonly accepted feature of bet-hedging strategies is a
trade-off between an individual’s mean fitness and fitness variance, or geometric mean fit-
ness maximization [50, 193, 219, 242]. This allows an organism to persist in the face of
fluctuating environmental conditions [13, 233], where variation in W is the result of envi-
ronmental variation. Intuitively, a large fitness variance will negatively impact the survival
of an organism because there is a greater probability of zero descendants, an event after
which no progeny will exist [156]. Bet-hedging strategies that maximize an individual’s
geometric mean fitness are typically grouped into two broad classifications: conservative
and diversified [193, 233]. A conservative bet-hedging strategy reduces the variance of an
individual’s fitness at the expense of expected fitness. Examples of this “one bird in the
hand is worth two in the bush” or “safe” strategy are semelparous perennial plants initiating
flowering early in the growth season to avoid the seasons’ end [37, 243], and the investment
in constant, large eggs sizes during each breeding season [193]. A diversified bet-hedging
strategy, on the other hand, probabilistically diversifies the phenotype expression for a sin-
gle genotype. Examples of this “don’t put all of your eggs in one basket” strategy are the
random germination of desert annuals [40], diverse timing of initiation of insect diapause
[210], and variation in clutch sizes or egg sizes [193]. Diversified bet-hedging encompasses
“adaptive coin-flipping” strategies [37, 43, 193], where the probabilistic diversification is a
function of the environment stochasticity [135, 233].

In addition to geometric mean fitness maximization, other commonly accepted charac-
teristics of bet-hedging strategies are:

1. Evolution: Bet-hedging strategies only evolve in unpredictable, temporally variable
environments [13, 50, 233].

2. Genetic characterization: Bet-hedging strategies arise from a single genotype (even
for diversified strategies) [13, 50, 145, 227, 233].

3. System condition: Bet-hedging strategies may give rise to an ESS if the phenotypic
polymorphism in diversified strategies results from a single genotype [50, 193, 210, 233].

Note that a mixed ESS based on genetic polymorphism is not a bet-hedging strategy because
some phenotypes may be worse than others, resulting in a lower geometric mean fitness for
a portion of the population [210, 233]. This population is therefore not at equilibrium, as
the population with lower fitness will become extinct.

Strategies that seem to hedge one’s bets but are not typically considered bet-hedging
are [233]:

1. Facultative development or behavioral adjustments of a phenotype in response to the
current/predicted state of the environment (adaptations directly in response to the
(predictable) environment);
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2. Adjustments of a parameter to maximize fitness under uncertainty (over-designing for
average conditions); and

3. Genetic polymorphism maintained by spatial heterogeneity of the environment, or by
frequency-dependent selection (does not reduce the variance of an individual’s fitness).

Examples of these strategies include E. coli ’s pre-induction of genes needed to cope with
low oxygen levels in response to temperature increases that normally precede indigestion
(Pavlovian conditioning for anticipated future events) [181], bone thicknesses in excess of
those needed for average daily loads [233], and genetic variation maintained by spatial en-
vironmental heterogeneity combined with low migration/gene flow rates [106], respectively.

Though it may seem that bet-hedging is equivalent to risk averse behavior [210], this is
not the case. It was shown by Samuelson [228] that maximization of the expected geometric
mean of a random variable does not imply maximization of the expected (concave) utility
of the same random variable. Corollary 7.10.5 provides a result on the converse of this
statement.

Corollary 7.10.5. Risk averse behavior is not sufficient for a strategy to be a bet-hedging
strategy.

Proof. The claim will be shown by a counterexample to the statement “risk averse behavior
is sufficient for a strategy to be a bet-hedging strategy.”

Recall that a concave utility function is necessary and sufficient to give rise to risk averse
behavior for all risky prospects [177], and a bet-hedging strategy is commonly accepted to
maximize the geometric mean of the risky prospects (see above).

Suppose two risky prospects are (using the notation introduced in Section 7.10.2)

W1 = (1 + Δ1, p; 1−Δ1, 1− p)

W2 = (1 + Δ2, p; 1−Δ2, 1− p)

where 1 > Δ1 > Δ2 > 0 and p > 1
2
. If the model for population growth is

X(t+ 1) = W (t)X(t)

where X(0) = 1, the expected fitness is maximized by choosing W (t) = W1 since E {W1} >
E {W2}. Assume, however, that the expected utility is greater for prospect W2 than for
prospect W1:

pu (1 + Δ2) + (1− p)u (1−Δ2) > pu (1 + Δ1) + (1− p)u (1−Δ1) .

where u(x) is the utility of outcome x. It will be shown that the geometric mean of the
fitness corresponding to W1 is not necessarily lower than the geometric mean of fitness
corresponding to W2.

The prospects

W1 = (1.12, 0.553; 0.88, 0.447)

W2 = (1.08, 0.553; 0.92, 0.447)
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(Δ1 = 0.12, Δ2 = 0.08, p = 0.553) with the concave utility function u(x) = log(x − 0.1)
satisfy

pu (1 + Δ1) + (1− p)u (1−Δ1) = 0.553 log(1.02) + 0.447 log(0.78)

= −1.001

< −.0999

= 0.553 log(0.98) + 0.447 log(0.82)

= pu (w +Δ2) + (1− p)u (w −Δ2) ,

but the geometric means of the prospects are

(1 + Δ1)
p (1−Δ1)

1−p = 1.020.5530.780.447

= 1.0055

> 1.0053

= 1.080.5530.920.447

= (1 + Δ2)
p (1−Δ2)

1−p .

Therefore, risk averse behavior does not in general imply maximization of the geometric
mean.

Remark 7.10.6. This is a different result than Corollary 7.10.2 because the expected values
of the prospects are not equal. This shows that it is possible to have a policy with higher
mean fitness, higher variance, and higher geometric fitness.

Non-equilibrium policy and bet-hedging

The idea presented in Corollary 7.10.5 can be shown to be consistent with the non-
equilibrium policy derived in Section 7.10. It was shown that the “choice” of the non-
equilibrium policy over the optimal policy exhibited risk-sensitive behavior, but this does
not imply that the non-equilibrium policy is a bet-hedging strategy. Notably, if ε � 1, the
choice of the non-equilibrium policy does not maximize the geometric mean of the organism’s
fitness (number of offspring).

The non-equilibrium policy can be examined for two cases:

1. E {ε(k)} < 0: In this case, the non-equilibrium policy calls for a lower expected fitness
and a higher fitness variance than the other prospect (highest expected fitness and
lowest fitness variance). This is not consistent with a typical bet-hedging strategy,
which trades off a reduction in expected fitness with a reduction in fitness variance.
The optimal policy (all spores) more closely resembles a conservative bet-hedging
strategy due to its “one bird in the hand is worth two in the bush” characterization
[233], though without the decrease in expected fitness that accompanies a true bet-
hedging strategy.
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2. E {ε(k)} > 0: In this case, the non-equilibrium policy calls for a lower expected
fitness and a lower fitness variance than the other prospect (highest expected fitness
and highest fitness variance). Though it may seem to be a diversified bet-hedging
strategy, notice that the geometric mean of the fitness for any strategy is

GM = eE{logA(k+1)} = (A(k) + ΔA(k)ε)
q

p+q (A(k)−ΔA(k)ε)
p

p+q

= A(k)

(
1 +

ΔA(k)

A(k)
ε

) q
p+q

(
1− ΔA(k)

A(k)
ε

) p
p+q

where ΔA(k) := 1
ε(k)

(A(k + 1)− A(k)). Normalizing by A(k) and defining δ :=
ΔA(k)
A(k)

ε, the geometric mean becomes

GM = (1 + δ)
q

p+q (1− δ)1−
q

p+q .

Notice that

GM =

{
1 if δ = 0
0 if δ = 1

but GM is not monotonically decreasing in δ. In particular,

∂

∂δ
GM

∣∣∣∣
δ=0

=
q

p+ q

(
1− δ

1 + δ

)1− q
p+q

∣∣∣∣∣
δ=0

−
(
1− q

p+ q

)(
1 + δ

1− δ

) q
p+q

∣∣∣∣∣
δ=0

=
q

p+ q
−
(
1− q

p+ q

)
= 2

q

p+ q
− 1

> 0

where the inequality comes from E {ε(k)} > 0 ⇒ q > p ⇒ q
p+q

> 1
2
. Thus, for small

δ, GM increases with increasing δ. If ε � 1, then δ � 1, so this behavior applies to
the analysis of the non-equilibrium policy.

Since ΔA(k) is greater for the optimal policy than the non-equilibrium policy, the
geometric mean of the fitness corresponding to the non-equilibrium policy is smaller
than the geometric mean for the optimal policy. Therefore, the non-equilibrium policy
does not maximize the geometric mean of the fitness, so it cannot be a bet-hedging
strategy.

Despite this crucial difference, the non-equilibrium policy is similar to a bet-hedging
strategy in other ways, as summarized in Table 7.1. The generality of the proposed evolu-
tionary dynamics model allows the non-equilibrium policy to originate from a single geno-
type, which is consistent with bet-hedging strategy. Both strategies also arise from temporal
environmental variability, though the non-equilibrium policy results from transitioning be-
tween ESSs (as opposed to a bet-hedging strategy, which is an equilibrium policy).
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Table 7.1: Characteristics of bet-hedging strategies and the derived non-

equilibrium strategy

Necessary En-
vironmental
Condition

Genetic
Characterization

System Condi-
tion with Strat-
egy

Quantity
Maximized

Bet-hedging
strategy

Temporal
variability

Single genotype Evolutionary
stable

Geometric
mean
fitness

Non-equilibrium
strategy

Temporal
variability

Single or multi-
ple genotypes

Non-
equilibrium

Value of fitness

Thus, though superficially resembling a bet-hedging strategy, the derived non-
equilibrium policy is not consistent with the commonly accepted definition of a bet-hedging
strategy. The most glaring difference is the non-equilibrium policy’s failure to increase the
geometric mean fitness over the optimal, ESS policies. Therefore, in the proposed modeling
framework, the non-equilibrium policy does not mitigate the probability of extinction, as
expected. This fact was due to the small ε assumption, which provides a foundation for the
major drawbacks of this analysis.

7.11 Concluding remarks

This chapter examined the special case of two competing populations with identical birth
and death rates. This condition was necessary because it allowed the coexistence of the two
competing populations, which permitted the behavior of an “aggressive” policy (< 100%
sporulation) to be examined. BIBO stability of this model was analytically proved based
on the coefficients of power series expansion in the nutrient supply, where it was inductively
shown that they were all bounded. Though the identical birth and death rates assumption
resulted in non-unique steady states, an approximation was used to track population changes
from one steady state to another. These population changes were dependent on both pop-
ulations’ steady state sporulation efficiencies, and the optimal efficiencies were found using
game theory tools. Since these optimal policies depended on the sign of the nutrient change,
an environmental model that alternates between positive and negative nutrient changes was
introduced. With a natural selection-based evolutionary model describing the dynamics
of the population-average sporulation efficiency, a non-equilibrium policy was derived that
depended on the expected value of the nutrient change. Generally, an environment with a
increasing (on average) nutrient infusion will select for a low sporulation efficiency, while an
environment with a decreasing (on average) nutrient infusion will select for a high sporu-
lation efficiency. The “choice” of the non-equilibrium policy over the optimal policies was
examined in the framework of prospect theory, where it was found to be optimistic and
risk seeking when nutrient infusion decreases (on average), and pessimistic and risk averse
when nutrient infusion increases (on average). Finally, the derived non-equilibrium policy
was compared to the general class of bet-hedging strategies, where it was concluded that
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the non-equilibrium policy is not a bet-hedging strategy. In particular, the non-equilibrium
policy does not diminish the probability of extinction.

There are several drawbacks with the analysis performed in this chapter. Perhaps most
glaring are the effects of the small ε assumption. Three inconsistencies with expected
behavior arise because only small changes are allowed in the nutrient supply:

1. The purpose of sporulation: It was shown in Chapter 4 that sporulation may have
evolved to deal with catastrophic environmental conditions. However, when |ε(k)| �
e, catastrophic changes cannot be modeled. In this setting, the supposed main benefit
of sporulation is not revealed, and the biological application of results based on this
restriction may be questioned. This drawback is emphasized in Section 7.10.2, where
it was shown that a population with spores has a lower geometric mean fitness than
a population without spores, i.e. spores do not decrease the probability of extinction.
Clearly, this result is not consistent with the main purpose of sporulation, and it was
directly a result of |ε(k)| being small (a large |ε(k)| will give the desired result). Many
researchers have labeled sporulation as a bet-hedging strategy [57, 145, 257], which
seems to be more consistent with the physiological characterization of a bacterial
spore.

2. Sporulation efficiency as a function of f : Though mentioned in Section 5.4, there is a
valid argument for parameterizing the sporulation and germination rates as functions
of f , not f

X1+X2
. This will allow the sporulation efficiency to be dependent on nutrient

level, which agrees with the expectation that more spores should be formed as nutrient
levels drop [76, 184, 224, 245]. However, due to the small |ε(k)| assumption, these
changes to the sporulation and germination rates do not affect the results (see the end
of Section 7.5). The optimal policies may be significantly different and more similar
to experimental results with these different rate dependencies.

3. Adiabatic conditions: Though it is still possible to model large changes in nutrient
influx as a series of several small changes, this approximation will not capture the
interesting transient response of large changes in nutrient supply. This is important
because the transient response is where the benefit of a vegetative population is re-
vealed, which is how we arrived at a competing populations model in the first place.
Adiabatic conditions may also lead to a reduced biological relevance of the derived
ESSs (see below).

These inconsistencies cannot be ignored, and much time was spent trying to drop the small
|ε(k)| assumption. However, without this assumption, a closed-form solution describing
changes between two successive steady states could not be found. Therefore, the assumption
was retained out of necessity and the desire to derive clean, analytical (non-numerical)
results.

Another drawback of the analysis is that the derived ESSs may not be consistent with
experimental findings. In the situation where ε(k) < 0, it might be expected that the
reduction in the carrying capacity of the environment is converted to spores, so there is no
decrease in total population number. However, unlike the derived ESS (100% sporulation),
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this policy allows the population to be more sensitive to increases in nutrient influx. Thus,
this policy seems to be able to invade a population of organisms adopting the derived ESS.
This discrepancy is the result of the sporulation and germination rate dependencies and the
assumed one-step optimization horizon. Changing the rate dependencies to f would allow
non-constant sporulation efficiencies (see above), and increasing the horizon over which the
payoffs are calculated will account for decreases in nutrient influx followed by increases.
Though increasing the optimization horizon may result in more intuitive ESSs, the one-step
horizon was chosen because it is analytically tractable. With a longer horizon, the payoffs
become density dependent, which may lead to complex stable strategies that may depend
on initial population conditions [62, 107, 112]. This would be unavoidable with a longer
horizon because the fair-game assumption cannot be enforced at each time step, since it
would negate the whole purpose of using a longer horizon in the first place. In addition to
density dependent payoff functions, longer horizons for the random environment would not
have clean, closed-form ESSs due to the fact that the approximated populations at k+1 are
nonlinear in the populations at k. Therefore, the one-step horizon was retained due to the
convenient application of the fair-game assumption and the clean expected payoff function.
This simplification comes at the expense of ESSs that may not agree with intuition.

Finally, the competing populations model with identical birth and death rates is not
able to capture a particular, possibly important behavior. With a constant nutrient influx
(ε(k) ≡ 0), it is expected that mutation and selection in both populations will lead to
changes in the steady state numbers for both population sizes. Though the restriction of
equal birth and death rates precludes the possibility of competitive exclusion, competitive
interactions that change steady state numbers would be an interesting feature to model.
There is evidence that this occurs in natural ecosystems with nearly constant environmental
conditions, as mentioned in Section 7.8.1. However, the proposed model does not allow any
changes when ε(k) ≡ 0, once a steady state is established.

There is a clear need to modify the proposed model so the results have more biological
relevance. In order to start addressing the obvious drawbacks mentioned above, a method-
ology must be developed to find the solution to the nonlinear differential equations for large
changes in nutrient supply. Though it may not be possible to allow large ε(k) for this
particular model structure, it must be a prerequisite for any subsequent sporulation model
focusing on the sporulation decision policy. Large changes in nutrient influx will allow
the incorporation of changing sporulation efficiencies in response to absolute nutrient level,
which may give rise to more intuitive and meaningful ESSs. If the steady state relationships
are simple enough, the effect of payoff horizon length can also be examined. Though there
are likely many additional ways to improve the biological relevance of the results, these
areas seem to be the most critical.

155



Chapter 8

Conclusion

The material presented in this dissertation addressed the general research aims presented
in Chapter 1. Using a B. subtilis research platform, reasons for the existence of sporula-
tion, the optimal sporulation policies under different environmental conditions, and some
characteristics and comparisons between the optimal and observed policies were conjectured
using a framework of evolutionary optimality. Elucidating these research goals necessitated
the development of various population-level sporulation models and a few mathematical re-
sults. Although many of the mathematical results were only proved for the specific models
in this dissertation, many of the general results should be valid for many similar sporula-
tion models. This would increase the biological significance of the presented work, which is
admittedly limited due to tractability constraints and the desire for analytical cleanliness.
However, if an actual colony of B. subtilis was well approximated by the proposed models,
then the results of this research would be very intriguing from a biological point of view.
In particular, the optimistic and risk seeking versus pessimistic and risk averse characteri-
zations of bacterial behavior would provide a fascinating account of the effects of evolution
on a simple organism.

Nonetheless, there are significant criticisms of the presented research. Aside from the
specific remarks in the last sections of Chapters 3–7, there are some potential pitfalls that
must be considered in the assumed modeling and analysis framework. Most conspicuous is
the validity of the evolutionary optimality framework and the associated question “does evo-
lution maximize fitness?” It is beyond the scope of this dissertation to provide an exhaustive
list of examples to support or refute the fitness maximization assumption, but even if it was
true, evolutionary optimality may be difficult to observe. Unless the experimental conditions
are very similar to the environment in which an organism evolved, optimality would not be
exhibited in the resulting behavioral mechanisms. For example, a population of microbes
adapted to high density growth will have a low fitness in low density growth environments
since they are specialists in resources exploitation instead of high replication rate [25]. It
is possible to ensure that the experimental setting is reflective of the evolutionary environ-
ment by evolving the bacteria in the experimental environment for many generations, which
would require a burn in time on the order of years for B. subtilis [166, 168]. However, even
if we could observe an evolutionary optimal behavior in the correct environmental setting,
corroborating theoretical findings with experimental results would still be difficult. There is
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a large gap between experimental and modeling conditions, especially when dealing with nu-
trient availability. Since there is no easy way to measure nutrient conditions in vivo, model
validation and parameter estimation are not reliable. The appropriateness of any proposed
sporulation model is therefore questionable, which may contribute to biologically-useless
results. Finally, even if all of the aforementioned issues were resolved, new mathematical
tools would need to be developed to deal with the analytical challenges of finding solutions
to nonlinear differential equations. The research in Chapter 7 was able to work around this
by imposing small changes in the input, but as mentioned in Section 7.11, this is probably
not appropriate for a real sporulation situation.

The work presented in this dissertation provided only a small sampling of the possible
ways to study B. subtilis decision policies– there are many directions for future work. Be-
sides addressing the general criticisms in the preceding paragraph and the remarks at the
ends of Chapters 3–7, it would be interesting to examine sporulation in the context of other
B. subtilis survival strategies such as natural competence, degradative enzyme synthesis,
chemotaxis, and motility. These are all interrelated subsystems that are expressed in re-
sponse to nutrient limitation [184], and examination of more survival strategies will lead to
a more holistic point of view in the resulting analysis. It will also provide a better reason
for the evolution of sporulation since the environmental niche that is addressed by sporu-
lation will be highlighted and isolated. Studying B. subtilis survival by only considering
sporulation is similar to examining the safety of an aircraft based only on aileron design;
though some interesting results may emerge, a true appreciation and appraisal of aircraft
safety can only be made by considering all of the safety mechanisms. The effects of the other
survival subsystems on sporulation (and vice versa) are always considered by a researcher
with sufficient domain knowledge, but explicitly including them in the modeling and anal-
ysis will provide a better understanding of the role of this survival strategy. The work in
this dissertation only scratched the surface of a complete quantitative characterization of
sporulation, and it is obvious that there are a considerable number of criticisms that need
to be addressed and work to be done.

Perhaps more than most other organisms, bacteria like B. subtilis are often the focus
of quantitative studies due to their relatively well-understood behavior, ease of genetic
manipulation, and short experimental turnaround time. However, bacteria only represent a
fraction (albeit very large) of the lifeforms on earth [267], and they are definitely not the only
ones which are interesting to study from a control theory perspective (see Sections 1.1 and 1.2
for some examples). In fact, control systems in the Animal kingdom may be more interesting
because we are more familiar with the organisms and can more easily relate to them. Though
potentially more difficult to analyze quantitatively, biological systems from other domains
still harbor feedback systems based on environmental sensing and suitable responses to
ensure survival. In this respect, the control-based ideas and analysis methods utilized in
this dissertation should be applicable to the study of many other biological organisms and
systems. Integral control, for example, is likely ubiquitous in biological systems, underlying
processes such as homeostatic control, sensor adaptation, and evolutionary adaptation [46,
276].

Control theory is but one of many engineering disciplines from which to study biological
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organisms. Though interesting due to their pervasiveness in biological systems, feedback
control principles are often not the appropriate lens to look through. For example, the
analysis of biocompatibility, mechanical properties, degradation, or responsiveness for tissue
engineering, stent design, or dental implant manufacturing requires a materials science point
of view [148]; analysis of blood flow through arteries in search of fluid conditions that are
associated with and contribute to atherosclerotic disease requires a fluid mechanics point
of view [144]; and understanding the design of hearing and acoustic-producing apparatuses
(such as ears or throats) requires an acoustic engineering and vibration theory point of view
[77]. Just as the design of a passenger airplane requires the interdisciplinary collaboration
of several engineers, a thorough analysis of a biological system requires ideas from many
engineering fields. This comprehensive perspective is needed to appreciate the intricacy and
sophistication of biological systems and organisms, which are truly marvels of engineering
design.
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Appendix A

Numerical values for αi(t)
parameterizations

The data used in the following calculations comes from the following experiments, which
were B. subtilis strain 168 resuspension experiments in SM.

1. 090731 49 82 86, Point 04 (JT082). This is denoted Experiment 1 in the sequel.

2. 090810 49 82 86, Point 02 (JT082). This is denoted Experiment 2 in the sequel.

A.1 Estimating α4

Under conditions of “high” food, the death rate α1 ≈ 0 and the sporulation rate α2 ≈ 0.
Assuming that no spores are in the colony, the number of vegetative cells can then be written
as

X(t) = eα4tX(0),

and the doubling time of the vegetative cells can be used to find the maximum growth
rate. In Experiments 1 and 2, the colonies exhibit exponential growth for a short time
before sporulation, with a doubling time of ≈ 1 hour. This gives the value of α4 = ln 2. I
arbitrarily assigned f

X
= 10 at this value of α4.

The doubling times in Experiments 1 and 2 do not reflect the minimum doubling times
for B. subtilis. Others have reported doubling times as small as 20 minutes [200]. I will
saturate the growth rate for this smaller doubling time to complete the α4 parameterization.

A.2 Estimating α1

As f
X

→ 0, we expect that α4 → 0 and α3 → 0. The death rate can be estimated by
assuming no sporulation (so the cells actually die) and looking at the number of vegetative
cells at “low” food:

X(t) = e−α1tX(0).
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After about 3
α1

hours, the colony will be extinct. Since colony extinction data is impossible
to find for B. subtilis, I assume that a cell can survive one cell cycle under conditions of
extreme nutrient deprivation before perishing. Note that cell cycle time is variable and
depends on nutrient level [264, 27, 279, 278]; the more nutrients, the shorter the cell cycle,
and vice versa. Experiments 1 and 2 suggest that the cell cycle length is ≈ 10 hours when
nutrients are scarce. The maximum death rate is therefore 3

10
.

The value of f
X

at which no death occurs can be estimated from Experiments 1 and 2. In
both of these experiments, the minimum cell cycle time (which I assume corresponds to the
maximum f

X
in the experiment) corresponds to a value of f

X
that is ≈ 10× larger than the

value of f
X

at which vegetative cell death begins to be observed. Therefore, I will assume

α1 = 0 for f
X

≥ 1.

A.3 Estimating α2

When nutrients are limited, the dynamics for spore formation are

Ṡ = α2X.

The spore number data from Experiments 1 and 2 were collected assuming a spore is formed
when the prespore appears, which may potentially occur several hours after the actual com-
mitment to sporulation (when, for example, SpoIIA∼P crosses some threshold). However,
when the cell cycle times are relatively short, this delay does not introduce much error in the
data. The earliest sporulation times must therefore be used from the data in Experiments 1
and 2, since the cell cycle times are shortest (relatively) during this first wave of sporulation.

For Experiment 1, for 10.5 ≤ t ≤ 12.5,

Ṡavg ≈ 40

Xavg ≈ 160

⇒ α2 = 0.25.

For Experiment 2, for 7.5 ≤ t ≤ 9.5,

Ṡavg ≈ 25

Xavg ≈ 100

⇒ α2 = 0.25.

Both of these time periods correspond to ≈ 0.5 of the population committing to sporulation
at some point during their cell cycles, which means that this estimate for α2 corresponds to
one-half of the maximum sporulation rate.

A.4 Estimating α3

I do not know much about spore germination dynamics except that the process occurs rela-
tively quickly (Adam Arkin says it occurs on the order of minutes). I will set the maximum
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spore germination rate equal to the maximum birth rate by making the assumption that
the germination process takes one cell cycle to complete.
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Appendix B

Competing populations stability

B.1 Proof of Theorem 6.4.1

Without loss of generality, assume c1 < c2.

Theorem. If X1, X2, S1, S2, and f are non-negative, the birth, death, sporulation, and
germination rates are positive over a nonempty set of values of f

X1+X2
and finite, and γ � 1,

then Equilibrium 1 is locally stable and Equilibrium 2 is locally unstable.

Proof. The proof will examine the stability of the linearized systems governing the dynamics
of small deviations from Equilibria 1 and 2.

The positive rate assumption implies that u1,i > 0, u4,i > 0, uj > 0, i = 1, 2 and j = 2, 3.
Assume ci ≤ min {θ1, θ2, β1, β2}, i = 1, 2. The linearized dynamics around an equilibrium

point
(
X1, X2, S2, S2, f

)
are

d

dt

⎡⎢⎢⎢⎢⎣
δX1

δX2

δS1

δS2

δf

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
a11 a12 a13 0 a15
a21 a22 0 a24 a25
a31 a32 a33 0 a35
a41 a42 0 a44 a45
a51 a52 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

δX1

δX2

δS1

δS2

δf

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0
0
0
0
1

⎤⎥⎥⎥⎥⎦ δe

where

a11 =

(
u4,1

l4,1
+

u1,1

l1,1
+

u2

θ1

)
c

X2

X1 +X2

− (u1,1 + u2)− u3

β1

c
S1

X1 +X2

a12 = −
(
u4,1

l4,1
+

u1,1

l1,1
+

u2

θ1

)
c

X1

X1 +X2

− u3

β1

c
S1

X1 +X2

a13 =
u3

β1

c

a15 =

(
u4,1

l4,1
+

u1,1

l1,1
+

u2

θ1

)
X1

X1 +X2

+
u3

β1

c
S1

X1 +X2
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a21 = −
(
u4,2

l4,2
+

u1,2

l1,2
+

u2

θ2

)
c

X2

X1 +X2

− u3

β2

c
S2

X1 +X2

a22 =

(
u4,2

l4,2
+

u1,2

l1,2
+

u2

θ2

)
c

X1

X1 +X2

− (u1,2 + u2)− u3

β2

c
S2

X1 +X2

a24 =
u3

β2

c

a25 =

(
u4,2

l4,2
+

u1,2

l1,2
+

u2

θ2

)
X2

X1 +X2

+
u3

β2

c
S2

X1 +X2

a31 = u2 − u2

θ1
c

X2

X1 +X2

+
u3

β1

c
S1

X1 + S2

a32 =
u2

θ1
c

X1

X1 +X2

+
u3

β1

c
S1

X1 +X2

a33 = −u3

β1

c

a35 = −u2

θ1

X1

X1 +X2

− u3

β1

S1

X1 +X2

a41 =
u2

θ2
c

X2

X1 +X2

+
u3

β2

c
S1

X1 +X2

a42 = u2 − u2

θ2
c

X1

X1 +X2

+
u3

β2

c
S2

X1 + S2

a44 = −u3

β2

c

a45 = −u2

θ2

X2

X1 +X2

− u3

β2

S2

X1 +X2

a51 = a52 = −γ

and c = f

X1+X2
.

If the characteristic equation for the linearized A matrix is

−λ5 + l4λ
4 + l3λ

3 + l2λ
2 + l1λ+ l0 = 0,

then necessary and sufficient conditions for all of A’s eigenvalues to have negative real part
are:

1. b1 = l3 +
l2
l4
< 0; and

2. c1 = l2 − l4
b2
b1

< 0, where b2 = l1 +
l0
l4
; and
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3. d1 = b2 − b1
l0
c1

< 0; and

4. l0 < 0; and

5. l4 < 0,

which were obtained from the standard Routh array. Since a13 = −a33, a24 = −a44, and
a51 = a52 =: a5, the expressions for the coefficients of the characteristic polynomial are

l0 = a33a44a5 {a35[a41 − a42 + a21 − a22] + a45[a32 − a31 + a12 − a11]

+a25[a32 − a31 + a12 − a11] + a15[a41 − a42 + a21 − a22]}
l1 = a33a44[a32a41 − a31a42 + a21a32 − a31a22 + a41a12 − a11a42 + a12a21 − a11a22]

− a33a5a25[a32 − a31 + a11 − a12]− a33a5a35[a21 − a22]

− a44a5a15[a41 − a42 + a21 − a22] + a44a5a25[a11 − a12]

− a44a5a45[a12 − a11] + a33a15a5[a22 − a21]

+ a33a44a5[a25 + a45 + a15 + a35]

l2 = a33[−a21a32 − a5a35 + a31a22 + a11a22 − a5a15 − a21a12 − a5a25]

+ a44[a42a11 − a5a45 − a12a41 + a11a22 − a5a15 − a21a12 − a5a25]

+ a33a44[a31 + a42 + a11 + a22] + a5[a12a25 + a21a15 − a22a15 − a25a11]

l3 = −a33[a31 + a22 + a11]− a44[a42 + a11 + a22]− a11a22 − a33a44

+ a5[a15 + a25] + a21a12

l4 = a11 + a22 + a33 + a44

Note that, by inspection, l4 < 0.
For Equilibrium 1, it will be shown that all of the stability conditions are true. For

Equilibrium 2, it will be shown that at least one condition is violated.

1. Equilibrium 1: The equilibrium point is

(
X1, X2, S1, S2, f

)
=

(
e

γ
, 0,

α2,1(c1)

α3,1(c1)
X1, 0, c1X1

)
where

c1 =
f

X1

=
u1,1

u4,1

l4,1
+ u1,1

l1,1

.

Since c1 < c2,

α4,2(c1)− α1,2(c1) < 0

⇔
(
u4,2

l4,2
+

u1,2

l1,2

)
c1 < u1,2. (B.1)
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The entries of the A matrix are

a11 = −(u1,1 + u2)− u3

β1

c1
S1

X1

a12 = −
(
u4,1

l4,1
+

u1,1

l1,1
+

u2

θ1

)
c1 − u3

β1

c1
S1

X1

a13 =
u3

β1

c1

a15 =

(
u4,1

l4,1
+

u1,1

l1,1
+

u2

θ1

)
+

u3

β1

S1

X1

a21 = 0

a22 =

(
u4,2

l4,2
+

u1,2

l1,2
+

u2

θ2

)
c1 − (u1,2 + u2)

a24 =
u3

β2

c1

a25 = 0

a31 = u2 +
u3

β1

c1
S1

X1

a32 =
u2

θ1
c1 +

u3

β1

c1
S1

X1

a33 = −u3

β1

c1

a35 = −u2

θ1
− u3

β1

S1

X1

a41 = 0

a42 = u2 − u2

θ2
c1

a44 = −u3

β2

c1

a45 = 0

where u2 − u2

θi
c1 ≥ 0, i = 1, 2, by the assumption that c1 ≤ min{θ1, θ2}. With these

expressions, the conditions for stability can now be checked.

(a) l0 < 0:
Plugging in the A matrix zero elements into the expression for l0 yields:

l0 = a33a44a5 {a35[−a42 − a22] + a15[−a42 − a22]}
= − a33︸︷︷︸

(−)

a44︸︷︷︸
(−)

a5︸︷︷︸
(−)

(a35 + a15)︸ ︷︷ ︸
(+)

(a42 + a22)︸ ︷︷ ︸
(−)

< 0
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since

a35 + a15 =
u4,1

l4,1
+

u1,1

l1,1

a22 + a42 =

(
u4,2

l4,2
+

u1,2

l1,2

)
c1 − u1,2

which are positive and negative, respectively, because of the non-negative rate
assumption and Equation B.1.

(b) b1 = l3 +
l2
l4
< 0:

First, note that l4 < 0 by inspection (since a11 < 0, a22 < 0, a33 < 0, and
a44 < 0). The condition b1 < 0 is therefore equivalent to showing that

l3l4 > −l2.

To show this, suppose it is not true, l3l4 ≤ −l2. Then, after plugging in the
values of the elements of the A matrix and canceling several terms, the following
inequality is obtained:

a11a33u1,1 − a211(a22 + a44)− a11a33(a22 + a44) + a11a15a5 − a11a22(a22 + a44)

− a22a33(a22 + a44)− a22a44(a22 + a42) + a233u1,1 − a11a33(a22 + a44)

− a233(a22 + a44) + a5a33

(
u2

θ1
+

u3

β1

S1

X1

)
− a11a44(a22 + a44)

− a33a44(a22 + a44)− a244(a22 + a42) ≤ 0

but since

a22 + a44 =

(
u4,2

l4,2
+

u1,2

l1,2
+

u2

θ2

)
c1 − (u1,2 + u2)− u3

β2

c1

=

[(
u4,2

l4,2
+

u1,2

l1,2

)
c1 − u1,1

]
−
[
u2 − u2

θ2
c1

]
− u3

β2

c1

< 0

due to the non-negative rate assumption and Equation B.1, and since it was
previously shown that a22+a42 < 0, then all of the terms on the left hand side of
the inequality are positive. This leads to a contradiction in the inequality, which
implies that

b1 < 0.

(c) c1 = l2 − l4
b2
b1

< 0:
Plugging in the expressions for b1 and b2 leads to the condition that needs to be
proved, in terms of the coefficients of the characteristic polynomial:

l2 − l4
l1 +

l0
l4

l3 +
l2
l4

< 0.
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Since b1 < 0 ⇒ l3l4 + l2 > 0, this condition is equivalent to

l2(l3l4 + l2)− l4(l1l4 + l0) < 0

⇔ l22 − l1l
2
4 < −l2l3l4 + l0l4.

Invoking the assumption that γ � 1 will simplify the algebra while checking this
condition. As −γ = a5 → 0− (from the negative direction), the coefficients of
the characteristic polynomial are

l0 → 0−

l1 → u1,1a33a44(a22 + a42)

l2 → −u1,1a33(a22 + a44) + a11a44(a22 + a42) + a33a44(a22 + a42)

l3 → u1,1a33 − a11(a22 + a44)− a33(a22 + a44)− a44(a22 + a42)

l4 = a11 + a22 + a33 + a44.

With this simplification, we can verify that the inequality l22− l1l
2
4 < −l2l3l4+ l0l4

holds. To do so, suppose it does not hold, l22 − l1l
2
4 ≥ −l2l3l4 + l0l4 . Then, after

several cancellations, the hypothesis yields

− u1,1a33a44(a22 + a42)l
2
4 ≥ −u1,1a33(a11 + a33)l2 + (a11 + a33)(a22 + a44)l2l4

+ a44(a22 + a44)(a22 + a42)l2

⇔ − 2u1,1a33a44(a22 + a42) ≥ u2
1,1a

2
33 + a244(a22 + a42)

2

− u1,1a33(a11 + a33)(a22 + a44)

− u1,1a33(a22 + a42)(a22 + a44)

+ (a11 + a33)
2(a22 + a42)a44

+ (a11 + a33)(a22 + a44)(a22 + a42)a44,

but further cancellations yields the equivalent inequality

0 ≥ u2
1,1a

2
33 + a244(a22 + a42)

2 − u1,1a33(a11 + a33)(a22 + a44)

− u1,1a33(a22 + a42)(a22 + a44) + (a211 + a233)(a22 + a42)a44

−
(
u2 +

u3

β1

c1
S1

X1

)
2a33a44(a22 + a42)

+ (a11 + a33)(a22 + a44)(a22 + a42)a44.

All of the terms on the right hand side of the inequality are positive, which is a
contradiction. Therefore, with the additional assumption that γ � 1, we have
shown that

c1 < 0.
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(d) d1 = b2 − b1
l0
c1

< 0:
Plugging in the expressions for b1, b2, and c1 gives an equation for d1 in terms of
the coefficients of the characteristic polynomial.

d1 =

(
l1 +

l0
l4

)
−
(
l3 +

l2
l4

)
l0

l2 − l4
l1+

l0
l4

l3+
l2
l4

=
(l1l4 + l0)[l2l3l4 + l22 − l1l

2
4 − l0l4]− (l3l4 + l2)[l0l3l4 + l0l2]

l4[l2l3l4 + l22 − l1l24 − l0l4]

which is extremely difficult to deal with analytically. However, under the as-
sumption that γ � 1, this expression simplifies considerably to

d1 → l1

as γ → 0. Therefore, it suffices to check if l1 < 0 for the remaining stability
condition.

Plugging in the elements of the A matrix for Equilibrium 1 into the expression
for l1 gives

l1 = −a33a44a31(a22 + a42)− a33a44a11(a22 + a42) + a33a5a22(a35 + a15)

+ a44a5a15(a22 + a42) + a33a44a5(a15 + a35)

= (a22 + a42)[−a33a44(a31 + a11) + a44a5a15] + (a15 + a35)a33a5(a22 + a44)

= (a22 + a42)︸ ︷︷ ︸
(−)

[−a33a44(−u1,1)︸ ︷︷ ︸
(+)

+a44a5a15︸ ︷︷ ︸
(+)

] +

(
u4,1

l4,1
+

u1,1

l1,1

)
︸ ︷︷ ︸

(+)

a33a5︸ ︷︷ ︸
(+)

(a22 + a44)︸ ︷︷ ︸
(−)

< 0,

Thus, if γ � 1, then this condition is equivalent to

d1 < 0.

Since all of the Routh conditions are satisfied, the linearized system’s A matrix has
eigenvalues in the left half plane. Therefore, Equilibrium 1 is locally stable.

2. Equilibrium 2: The equilibrium point is

(
X1, X2, S1, S2, f

)
=

(
0,

e

γ
, 0,

α2,2(c2)

α3,2(c2)
X2, c2X2

)
where

c2 =
f

X2

=
u1,2

u4,2

l4,2
+ u1,2

l1,2

.
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Since c1 < c2,

α4,1(c2)− α1,1(c2) > 0

⇔
(
u4,1

l4,1
+

u1,1

l1,1

)
c2 > u1,1. (B.2)

The entries of the A matrix are

a11 =

(
u4,1

l4,1
+

u1,1

l1,1
+

u2

θ1

)
c2 − (u1,1 + u2)

a12 = 0

a13 =
u3

β1

c2

a15 = 0

a21 = −
(
u4,2

l4,2
+

u1,2

l1,2
+

u2

θ2

)
c2 − u3

β2

c2
S2

X2

a22 = −(u1,2 + u2)− u3

β2

c2
S2

X2

a24 =
u3

β2

c2

a25 =

(
u4,2

l4,2
+

u1,2

l1,2
+

u2

θ2

)
+

u3

β2

S2

X2

a31 = u2 − u2

θ1
c2

a32 = 0

a33 = −u3

β1

c2

a35 = 0

a41 =
u2

θ2
c2 +

u3

β2

c2
S2

X2

a42 = u2 +
u3

β2

c2
S2

X2

a44 = −u3

β2

c2

a45 = −u2

θ2
− u3

β2

S2

X2
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where u2 − u2

θi
c2 ≥ 0, i = 1, 2, by the assumption that c2 ≤ min{θ1, θ2}. With

these expressions, it will be shown that at least one condition for stability is violated;
specifically, it will be shown that l0 > 0.

Plugging in the elements of the A matrix into the expression for l0 yields

l0 = a33a44a5 {−a45a31 − a25a31 − a45a11 − a25a11}
= −a33a44a5(a25 + a45)(a11 + a31),

where

a25 + a45 =

(
u4,2

l4,2
+

u1,2

l1,2
+

u2

θ2

)
+

u3

β2

S2

X2

− u2

θ2
− u3

β2

S2

X2

=

(
u4,2

l4,2
+

u1,2

l1,2

)
> 0

a11 + a31 =

(
u4,1

l4,1
+

u1,1

l1,1
+

u2

θ1

)
c2 − (u1,1 + u2) + u2 − u2

θ1
c2

=

(
u4,1

l4,1
+

u1,1

l1,1

)
c2 − u1,1

> 0

where the last inequality comes from Equation B.2. Therefore,

l0 = −a33a44a5︸ ︷︷ ︸
(+)

(a25 + a45)︸ ︷︷ ︸
(+)

(a11 + a31)︸ ︷︷ ︸
(+)

> 0,

which implies that the linearized A matrix has at least one eigenvalue in the right
half plane (at least one sign change in the first column of the Routh array). Thus,
Equilibrium 2 is locally unstable.

It can be showed that the stability claims are valid even if the sporulation and/or ger-
mination rates are saturated (ci > min{θ1, θ2, β1, β2}). Note that the signs of the elements
of A are invariant under different values of sporulation and germination parameters by
inspection, so I will omit showing these claims in the sequel.

1. Equilibrium 1:

(a) l0 < 0:
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This condition relied on the fact that a15 + a35 > 0 and a22 + a42 < 0. Note that

a15 =

(
u4,1

l4,1
+

u1,1

l1,1

)
+ I {c1 < θ1} u2

θ1
+ I {c1 < β1} u3

β1

S1

X1

a35 = −I {c1 < θ1} u2

θ1
− I {c1 < β1} u3

β1

S1

X1

a22 =

(
u4,2

l4,2
+

u1,2

l1,2

)
c1 − u1,2 − I {c1 < θ2}

(
u2 − u2

θ2
c1

)
a42 = I {c1 < θ2}

(
u2 − u2

θ2
c1

)
where I {·} is the indicator function. Thus, it is still true that

a15 + a35 =

(
u4,1

l4,1
+

u1,1

l1,1

)
> 0a22 + a42 =

(
u4,2

l4,2
+

u1,2

l1,2

)
c1 − u1,2 < 0,

where the second inequality comes from Equation B.1.

(b) b1 = l3 +
l2
l4
< 0:

This condition was verified from a11 + a31 = −u1,1, a22 + a44 < 0, and a15 −(
u4,1

l4,1
+ u1,1

l1,1

)
≥ 0. Note that

a11 = −u1,1 − I {c1 < θ1}u2 − I {c1 < β1} u3

β1

c1
S1

X1

a31 = I {c1 < θ1}u2 + I {c1 < β1} u3

β1

c1
S1

X1

a44 = −I {c1 < β2}
[
u3

β2

c1 − u3

]
− u3

The desired equalities and inequalities still hold:

a11 + a31 = −u1,1 − I {c1 < θ1}u2 − I {c1 < β1} u3

β1

c1
S1

X1

+ I {c1 < θ1}u2

+ I {c1 < β1} u3

β1

c1
S1

X1

= −u1,1

a22 + a44 =

(
u4,2

l4,2
+

u1,2

l1,2

)
c1 − u1,2 − I {c1 < θ2}

(
u2 − u2

θ2
c1

)
− I {c1 < β2}

[
u3

β2

c1 − u3

]
− u3

< 0
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and

a15 −
(
u4,1

l4,1
+

u1,1

l1,1

)
= I {c1 < θ1} u2

θ1
+ I {c1 < β1} u3

β1

S1

X1

≥ 0.

(c) c1 = l2 − l4
b2
b1

< 0:
In addition to the previous inequalities, the only additional condition needed is

a11 ≤ −u1,1

which is readily obtained by inspection.

(d) d1 = b2 − b1
l0
c1

< 0:
The previous inequalities are enough to verify that this condition still holds.

Thus, Equilibrium 1 is still locally stable even when the sporulation and/or germina-
tion rates have saturated.

2. Equilibrium 2: In order to show that l0 > 0 even when the sporulation and/or
germination rates have saturated, we simply need to prove that a25 + a45 > 0 and
a11 + a31 > 0. Note that

a25 =

(
u4,2

l4,2
+

u1,2

l1,2

)
+ I {c2 < θ2} u2

θ2
+ I {c2 < β2} u3

β2

S2

X2

a45 = −I {c2 < θ2} u2

θ2
− I {c2 < β2} u3

β2

S2

X2

a11 =

(
u4,1

l4,1
+

u1,1

l1,1

)
c2 − u1,1 − I {c2 < θ1}

[
u2 − u2

θ1
c2

]
a31 = I {c2 < θ1}

[
u2 − u2

θ1
c2

]
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It is still true that

a25 + a45 =

(
u4,2

l4,2
+

u1,2

l1,2

)
+ I {c2 < θ2} u2

θ2
+ I {c2 < β2} u3

β2

S2

X2

− I {c2 < θ2} u2

θ2
− I {c2 < β2} u3

β2

S2

X2

=

(
u4,2

l4,2
+

u1,2

l1,2

)
> 0

a11 + a31 =

(
u4,1

l4,1
+

u1,1

l1,1

)
c2 − u1,1 − I {c2 < θ1}

[
u2 − u2

θ1
c2

]
+ I {c2 < θ1}

[
u2 − u2

θ1
c2

]
=

(
u4,1

l4,1
+

u1,1

l1,1

)
c2 − u1,1

> 0

from Equation B.2. Therefore, Equilibrium 2 remains locally unstable.

B.2 Stability of (0, 0, 0, 0, f (t)) for different birth/death

rates

Theorem B.2.1. If the birth, death, sporulation, and germination rates are positive over a
nonempty set of values of f

X1+X2
and finite, then the point (0, 0, 0, 0, f(t)) is locally unstable.

Proof. Suppose that the point (0, 0, 0, 0, f(t)) is perturbed to (δX1, δX2, δS1, δS2, f(t)),
where f(t) > 0 and the perturbed states are very small (so f

X1+X2

 1). The dynam-

ics after this perturbation are (note that X1 = δX1, etc.)

d

dt

⎡⎢⎢⎢⎢⎣
X1

X2

S1

S2

f

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
u4,1 0 u3 0 0
0 u4,2 0 u3 0
0 0 −u3 0 0
0 0 0 −u3 0
−γ −γ 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

X1

X2

S1

S2

f

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0
0
0
0
1

⎤⎥⎥⎥⎥⎦ e

from which it is easy to obtain the characteristic equation for the linearized A matrix:

λ(λ− u4,1)(λ− u4,2)(λ+ u3)
2.

Since u4,i > 0, i = 1, 2, the point (0, 0, 0, 0, f(t)) is locally unstable.
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B.3 Proof of Theorem 7.4.8

Theorem. If S1,0, S2,0, and f0 are non-negative, X1,0 and X2,0 are positive, the birth, death,
sporulation, and germination rates are positive over a nonempty set of values of f

X1+X2
and

finite, and γ � 1, then System (7.1) is BIBO stable.

Proof. System (7.1) is

ẋ = A1x+B1 (7.1)

where

A1 =

⎡⎢⎢⎢⎢⎣
a11 a12 a13 0 a15
a21 a22 0 a24 a25
a31 a32 a33 0 a35
a41 a42 0 a44 a45
a51 a52 0 0 0

⎤⎥⎥⎥⎥⎦

B1 =

⎡⎢⎢⎢⎢⎣
0
0
0
0
1

⎤⎥⎥⎥⎥⎦
and the elements of A1 are

a11 =

(
u4

l4
+

u1

l1
+

u2

θ1

)
c

X2,0

X1,0 +X2,0

− (u1 + u2)− u3

β1

c
S1,0

X1,0 +X2,0

a12 = −
(
u4

l4
+

u1

l1
+

u2

θ1

)
c

X1,0

X1,0 +X2,0

− u3

β1

c
S1,0

X1,0 +X2,0

a13 =
u3

β1

c

a15 =

(
u4

l4
+

u1

l1
+

u2

θ1

)
X1,0

X1,0 +X2,0

+
u3

β1

S1,0

X1,0 +X2,0

a21 = −
(
u4

l4
+

u1

l1
+

u2

θ2

)
c

X2,0

X1,0 +X2,0

− u3

β2

c
S2,0

X1,0 +X2,0

a22 =

(
u4

l4
+

u1

l1
+

u2

θ2

)
c

X1,0

X1,0 +X2,0

− (u1 + u2)− u3

β2

c
S2,0

X1,0 +X2,0

a24 =
u3

β2

c

a25 =

(
u4

l4
+

u1

l1
+

u2

θ2

)
X2,0

X1,0 +X2,0

+
u3

β2

S2,0

X1,0 +X2,0
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a31 = u2 − u2

θ1

X2,0

X1,0 +X2,0

+
u3

β1

c
S1,0

X1,0 +X2,0

a32 =
u2

θ1
c

X1,0

X1,0 +X2,0

+
u3

β1

c
S1,0

X1,0 +X2,0

a33 = −u3

β1

c

a35 = −u2

θ1

X1,0

X1,0 +X2,0

− u3

β1

S1,0

X1,0 +X2,0

a41 =
u2

θ2
c

X2,0

X1,0 +X2,0

+
u3

β2

c
S2,0

X1,0 +X2,0

a42 = u2 − u2

θ2

X1,0

X1,0 +X2,0

+
u3

β2

c
S2,0

X1,0 +X2,0

a44 = −u3

β2

c

a45 = −u2

θ2

X2,0

X1,0 +X2,0

− u3

β2

S2,0

X1,0 +X2,0

a51 = a52 = −γ

and c = f0
X1,0+X2,0

. Note the following identities, which will be used throughout the remainder
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of this proof.

a11 = a12 −
(
u2 − u2

θ1
c

)
(B.3)

a22 = a21 −
(
u2 − u2

θ2
c

)
(B.4)

a31 = a32 +

(
u2 − u2

θ1
c

)
(B.5)

a42 = a41 +

(
u2 − u2

θ2
c

)
(B.6)

a15 + a35 =

(
u4

l4
+

u1

l1

)
X1,0

X1,0 +X2,0

(B.7)

a25 + a45 =

(
u4

l4
+

u1

l1

)
X2,0

X1,0 +X2,0

(B.8)

a21 + a41 = −
(
u4

l4
+

u1

l1

)
c

X2,0

X1,0 +X2,0

(B.9)

a12 + a32 = −
(
u4

l4
+

u1

l1

)
c

X1,0

X1,0 +X2,0

(B.10)

a42 + a22 = −
(
u4

l4
+

u1

l1

)
c

X2,0

X1,0 +X2,0

(B.11)

a11 + a31 = −
(
u4

l4
+

u1

l1

)
c

X1,0

X1,0 +X2,0

(B.12)

a11a32 − a12a31 = (a12 − a32)

(
u2 − u2

θ1
c

)
(B.13)

Additionally, note that a24 = −a44 and a13 = a33.
The characteristic equation for A1 is

−λ5 + l4λ
4 + l3λ

3 + l2λ
2 + l1λ+ l0 = 0,

where the coefficients are identical to the general case in the proof for Theorem 6.4.1. The
term l0 is

l0 = a33a44a5 {a35[a41 − a42 + a21 − a22] + a45[a32 − a31 + a12 − a11]

+a25[a32 − a31 + a12 − a11] + a15[a41 − a42 + a21 − a22]}

where the aforementioned identities (Equations (B.3)-(B.6)) can be used to simplify the
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terms in the curly brackets. Specifically,

a25[a32 − a31 + a12 − a11] = a25

[
−
(
u2 − u2

θ1
c

)
+

(
u2 − u2

θ1
c

)]
= 0

a15[a41 − a42 + a21 − a22] = a15

[
−
(
u2 − u2

θ2
c

)
+

(
u2 − u2

θ2
c

)]
= 0

a35[a41 − a42 + a21 − a22] = a35

[
−
(
u2 − u2

θ2
c

)
+

(
u2 − u2

θ2
c

)]
= 0

a45[a32 − a31 + a12 − a11] = a45

[
−
(
u2 − u2

θ1
c

)
+

(
u2 − u2

θ1
c

)]
= 0

so l0 = 0. The characteristic equation can therefore be written as

λ
(−λ4 + l4λ

3 + l3λ
2 + l2λ+ l1

)
= 0,

which means that A1 has an eigenvalue at 0.
The remaining eigenvalues of A1 can be analyzed by the equation

−λ4 + l4λ
3 + l3λ

2 + l2λ+ l1 = 0,

for which the Routh array gives necessary and sufficient conditions for all roots to have
negative real part:

1. l4 < 0; and

2. l1 < 0; and

3. b1 = l3 +
l2
l4
< 0; and

4. c1 = l2 − l4
l1
b1

< 0.

Note that the condition l4 < 0 is satisfied by inspection. It will be shown that the coefficients
of the characteristic equation satisfy the remaining conditions, so all of the eigenvalues of
A1 are in the closed left half plane.

1. l1 < 0:
The expression for l1 is

l1 = a33a44[a32a41 − a31a42 + a21a32 − a31a22 + a41a12 − a11a42 + a12a21 − a11a22]

− a33a5a25[a32 − a31 + a11 − a12]− a33a5a35[a21 − a22]

− a44a5a15[a41 − a42 + a21 − a22] + a44a5a25[a11 − a12]

− a44a5a45[a12 − a11] + a33a15a5[a22 − a21]

+ a33a44a5[a25 + a45 + a15 + a35]
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which can be simplified considerably using Equations (B.3) – (B.6) to

l1 = −a33a5

(
u2 − u2

θ2
c

)
(a35 + a15)− a44a5

(
u2 − u2

θ1
c

)
(a45 + a25)

+ a33a44a5(a45 + a25 + a35 + a15)

= −a5

(
u4

l4
+

u1

l1

)[
a33

(
u2 − u2

θ2
c

)
X1,0

X1,0 +X2,0

+a44

(
u2 − u2

θ1
c

)
X2,0

X1,0 +X2,0

− a33a44

]
where the second equality was obtained by application of Equations (B.7) and (B.8).
Plugging in the values of a33, a44, and a5 gives the result

l1 = −γ

(
u4

l4
+

u1

l1

)(
u2 − u2

θ1
c

)(
u2 − u2

θ2
c

)
·
[
X1,0X2,0

S1,0S2,0

+
X2

1,0

S1,0 (X1,0 +X2,0)
+

X2
2,0

S2,0 (X1,0 +X2,0)

]
which is less than zero under the conditions of the theorem. Note that the algebra and
identities will be altered if Xi,0 or Si,0, i = 1, 2, are zero, or if c > min{θ1, θ2, β1, β2},
but the inequality is still valid.

2. b1 = l3 +
l2
l4
< 0:

First, l2 is

l2 = a33[−a21a32 − a5a35 + a31a22 + a11a22 − a5a15 − a21a12 − a5a25]

+ a44[a42a11 − a5a45 − a12a41 + a11a22 − a5a15 − a21a12 − a5a25]

+ a33a44[a31 + a42 + a11 + a22] + a5[a12a25 + a21a15 − a22a15 − a25a11]

= a5

[
a33a45 − a33

(
u4

l4
+

u1

l1

)
+ a44a35 − a44

(
u4

l4
+

u1

l1

)
− a35

(
u2 − u2

θ2
c

)
− a45

(
u2 − u2

θ1
c

)
+

(
u4

l4
+

u1

l1

)[(
u2 − u2

θ2
c

)
X1,0

X1,0 +X2,0

+

(
u2 − u2

θ2
c

)
X2,0

X1,0 +X2,0

]]
− l1c

a5

= a5

[
a33

(
a45 −

(
u4

l4
+

u1

l1

))
+ a44

(
a35 −

(
u4

l4
+

u1

l1

))
+a15

(
u2 − u2

θ2
c

)
+ a25

(
u2 − u2

θ1
c

)]
− l1c

a5

= D2 − l1c

a5
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where the “simplified” form was obtained with the help of Equations (B.3) – (B.10),
and D2 < 0 since a45 < 0, a35 < 0, a15 > 0, and a25 > 0.

Next, l3 is

l3 = −a33[a31 + a22 + a11]− a44[a42 + a11 + a22]− a11a22 − a33a44

+ a5[a15 + a25] + a21a12

= D3 − l1

a5

(
u4

l4
+ u1

l1

)
where

D3 = −a33

[
a31 + a22 + a11 +

(
u2 − u2

θ2
c

)
X1,0

X1,0 +X2,0

]
− a44

[
a42 + a11 + a22 +

(
u2 − u2

θ2
c

)
X1,0

X1,0 +X2,0

]
− a11a22 − a33a44 + a5[a15 + a25] + a21a12

= −a33

[
−u1 − u2

X2,0

X1,0 +X2,0

− u3

β2

c
S2,0

X1,0 +X2,0

]
− a44

[
−u1 − u2

X1,0

X1,0 +X2,0

− u3

β1

c
S1,0

X1,0 +X2,0

]
− a11a22 − a33a44 + a5[a15 + a25] + a21a12

< 0

since all of the terms are negative except for a12a21, but

−a11a22 + a12a21 = −
(
u2 − u2

θ1
c

)(
u2 − u2

θ2
c

)
−
(
u2 − u2

θ2
c

)[(
u4

l4
+

u1

l1
+

u2

θ1

)
c

X1,0

X1,0 +X2,0

+
u3

β1

c
S1,0

X1,0 +X2,0

]
−
(
u2 − u2

θ1
c

)[(
u4

l4
+

u1

l1
+

u2

θ2

)
c

X2,0

X1,0 +X2,0

+
u3

β2

c
S2,0

X1,0 +X2,0

]
< 0

The sign of the quantity D2 + l4D3 will be of interest shortly. The claim is that
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D2 + l4D3 > 0. To show this, suppose not. Then,

D2 + l4D3 ≤ 0

⇔ 0 ≤ a5

(
u2 − u2

θ1
c

)[(
u4

l4
+

u1

l1
+

u2

θ1

)
X1,0

X1,0 +X2,0

+
u3

β1

S1,0

X1,0 +X2,0

]
+ a5

(
u2 − u2

θ2
c

)[(
u4

l4
+

u1

l1
+

u2

θ2

)
X2,0

X1,0 +X2,0

+
u3

β2

S2,0

X1,0 +X2,0

]
(u1 + u2)a5

[(
u4

l4
+

u1

l1

)
+

u2

θ1

X1,0

X1,0 +X2,0

+
u3

β1

S1,0

X1,0 +X2,0

+
u2

θ2

X2,0

X1,0 +X2,0

+
u3

β2

S2,0

X1,0 +X2,0

]
+ a5

u3

β1

c

[
+
u2

θ1

X1,0

X1,0 +X2,0

+
u3

β1

S1,0

X1,0 +X2,0

]
+ a5

u3

β2

c

[
+
u2

θ2

X2,0

X1,0 +X2,0

+
u3

β2

S2,0

X1,0 +X2,0

]
− l4

u3

β1

c

[
−u1 − u2

X2,0

X1,0 +X2,0

− u3

β2

c
S2,0

X1,0 +X2,0

]
− l4

u3

β2

c

[
−u1 − u2

X1,0

X1,0 +X2,0

− u3

β1

c
S1,0

X1,0 +X2,0

]
− l4[a12a21 − a11a22]

which is a contradiction since all of the terms on the right hand side of the inequality
are non-negative (recall that −a11a22 + a12a21 < 0), with at least one term strictly
positive. Therefore, D2 + l4D3 > 0

Now, to show that l3 +
l2
l4
< 0, suppose not; that is, suppose that l3 +

l2
l4
≥ 0. Then,

− l3l4 ≥ l2

⇔ − l4D3 +
l1l4

a5

(
u4

l4
+ u1

l1

) ≥ D2 − l1c

a5

⇔ l1

⎡⎣ l4 + u1

a5

(
u4

l4
+ u1

l1

)
⎤⎦ ≥ D2 + l4D3

where l4 + u1 < 0 (by inspection), a5 < 0, and l1 < 0. This leads to a contradiction
because the inequality states that a negative number is greater than or equal to a
strictly positive number. Therefore, b1 = l3 +

l2
l4
< 0.

3. c1 = l2 − l4
l1
b1

< 0:
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This condition can be expressed as

l2 − l24
l1

l2 + l3l4
< 0

⇔ l2(l2 + l3l4) < l24l1

⇔ l2(l2 + l3l4)

l1
> l24

since b1 < 0 ⇒ l2 + l3l4 > 0 and l1 < 0. Substituting in expressions from the previous
condition gives

1

l1

(
D2 − l1c

a5

)⎛⎝D2 − l1c

a5
+

⎛⎝D3 − l1

a5

(
u4

l4
+ u1

l1

)
⎞⎠ l4

⎞⎠ > l24

⇔ 1

l1

(
D2 − l1c

a5

)(
D2 + l4D3 − l1

a5

(
u1 + l4
u4

l4
+ u1

l1

))
> l24

Now, to show that l2 − l4
l1
b1

< 0, suppose not. Then,(
D2 − l1c

a5

)(
D2 + l4D3 − l1

a5

(
u1 + l4
u4

l4
+ u1

l1

))
≤ l24

⇔ D2

l1
(D2 + l4D3)− c

a5
(D2 + l4D3)− D2

a5

(
u1 + l4
u4

l4
+ u1

l1

)
+

l1c

a25

(
u1 + l4
u4

l4
+ u1

l1

)
≤ l24

where every term on the left hand side of the inequality is positive. Invoking the
assumption that γ � 1, notice that

l1c

a25

(
u1 + l4
u4

l4
+ u1

l1

)
∼ − 1

a5

since l4 is independent of γ. Therefore, for some γ small enough, the inequality is
violated. This contradiction leads to the conclusion that c1 = l2 − l4

l1
b1

< 0.

In summary, we have shown that the equation

−λ5 + l4λ
4 + l3λ

3 + l2λ
2 + l1λ+ l0 = 0

has one root at the origin and the remaining roots have negative real part.
This is not sufficient for BIBO stability. For example, the system

ẋ =

[
1 0
0 0

]
x+

[
0
1

]
u

has an A matrix with eigenvalues in the closed left half plane, but it is not BIBO stable
(the state integrates the input).
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In order to establish BIBO stability for System (7.1), it will be shown that there is
pole-zero cancellation at the origin.

The transfer function from the input to the states for System (7.1) is

H(s) = (sI − A1)
−1 B1

=

⎡⎢⎢⎢⎢⎣
H1(s)
H2(s)
H3(s)
H4(s)
H5(s)

⎤⎥⎥⎥⎥⎦ 1

det(sI − A1)

=

⎡⎢⎢⎢⎢⎣
H1(s)
H2(s)
H3(s)
H4(s)
H5(s)

⎤⎥⎥⎥⎥⎦ 1

s(−s4 + l4s3 + l3s2 + l2s+ l1)

which is the last column of (sI−A1)
−1 due to the structure of B1. For Hi(s), i = 1, 2, . . . , 5,

it will be shown that there is a zero at the origin.

1. H1(s):

H1(s) = a24 [a12a45(s− a33)− a13a35a42 − a15a42(s− a33) + a45a13a32]

− (s− a44) [−a13a25a32 − a15(s− a22)(s− a33)]

− (s− a44) [−a12a25(s− a33)− a13a35(s− a22)]

= h13s
3 + h12s

2 + h11s+ h10

The coefficient in front of the s0 term, h10, is

h10 = a24 [−a12a45a33 − a13a35a42 + a33a15a42 + a45a13a32]

a44 [−a13a25a32 − a15a22a33 + a12a25a33 + a22a13a35]

= a33a44 [−(a22 + a42)(a15 + a35) + (a45 + a25)(a12 + a32)]

= a33a44

[
−(a21 + a41)

(
u4

l4
+

u1

l1

)
X1,0

X1,0 +X2,0

+

(
u4

l4
+

u1

l1

)
X2,0

X1,0 +X2,0

(a12 + a32)

]
= a33a44

(
u4

l4
+

u1

l1

)2
[

X1,0X2,0

(X1,0 +X2,0)
2 − X1,0X2,0

(X1,0 +X2,0)
2

]
= 0

where the third equality was obtained from Equations (B.3)–(B.8) and the fourth
equality was obtained from Equations (B.9)–(B.10). Therefore,

H1(s) = s
(
h13s

2 + h12s+ h11

)
has a zero at the origin.
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2. H2(s):

H2(s) = −a24 [−a45(s− a11)(s− a33)− a13a35a41 − a15a41(s− a33) + a13a31a45]

− (s− a44) [−a31a13a25 + a15a21(s− a33)]

− (s− a44) [+a25(s− a33)(s− a11) + a13a21a35]

= h23s
3 + h22s

2 + h21s+ h20

The coefficient in front of the s0 term, h20, is

h20 = −a24 [−a11a45a33 − a13a35a41 + a33a15a41 + a45a13a31]

− a44 [−a13a25a31 − a15a21a33 + a11a25a33 + a21a13a35]

= a33a44 [−(a25 + a45)(a11 + a31) + (a41 + a21)(a15 + a35)]

= a33a44

(
u4

l4
+

u1

l1

)2
[

X1,0X2,0

(X1,0 +X2,0)
2 − X1,0X2,0

(X1,0 +X2,0)
2

]
= 0

where the third equality was obtained from Equations (B.7)–(B.9) and (B.12). There-
fore,

H2(s) = s
(
h23s

2 + h22s+ h21

)
has a zero at the origin.

3. H3(s):

H3(s) = a24 [a32a45(s− a11)− a12a35a41 − a15a31a42 + a15a32a41]

+ a24 [−a35a42(s− a11) + a45a12a31]

− (s− a44) [−a35(s− a11)(s− a22)− a12a25a31 − a15a21a32]

− (s− a44) [−a15a31(s− a22)− a25a32(s− a11) + a35a12a21]

= h33s
3 + h32s

2 + h31s+ h30

The coefficient in front of the s0 term, h30, is

h30 = a44 [a11a32a45 + a12a35a41 + a15a31a42 − a15a32a41 − a11a35a42 − a45a12a31

−a11a22a35 − a12a25a31 − a15a21a32 + a15a31a22 + a25a32a11 + a35a12a21]

= a44 [(a11a32 − a12a31)(a45 + a25) + (a12a35 − a15a32)(a41 + a21)]

+ a44 [(a15a31 − a11a35)(a22 + s42)]

= a44

(
u4

l4
+

u1

l1

)
c2

X2,0

X1,0 +X2,0

(
u2 − u2

θ1
c

)[
−
(
u4

l4
+

u1

l1

)
X1,0

X1,0 +X2,0

−2
u2

θ1

X1,0

X1,0 +X2,0

− 2
u3

β1

S1,0

X1,0 +X2,0

+

(
u4

l4
+

u1

l1
+

u2

θ1

)
X1,0

X1,0 +X2,0

+
u3

β1

S1,0

X1,0 +X2,0

+
u2

θ1

X1,0

X1,0 +X2,0

+
u3

β1

S1,0

X1,0 +X2,0

]
= 0
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where the third equality was obtained from Equations (B.3), (B.5), (B.8), (B.9),
(B.11), and (B.13). Therefore,

H3(s) = s
(
h33s

2 + h32s+ h31

)
has a zero at the origin.

4. H4(s):

H4(s) = a13 [−a21a32a45 + a41a35(s− a22)− a25a31a42 + a25a32a41]

+ a13 [a35a42a21 − a31a45(s− a22)]

− (s− a33) [−a45(s− a11)(s− a22)− a12a25a41 − a15a21a42]

− (s− a33) [−a41a14(s− a22) + a12a21a45 − a25a42(s− a11)]

= h43s
3 + h42s

2 + h41s+ h40

The coefficient in front of the s0 term, h40, is

h40 = a33 [a21a32a45 + a41a35a22 + a25a31a42 − a25a32a41 − a21a35a42 − a45a22a31

−a11a22a45 − a12a25a41 − a15a21a42 + a15a41a22 + a12a21a45 + a25a42a11]

= a33

(
u4

l4
+

u1

l1

)
X1,0

X1,0 +X2,0

[a45c(a22 − a21) + a25c(a41 − a42)

+a41

(
a21 −

(
u2 − u2

θ2
c

))
− a21a42

]
= a33

(
u4

l4
+

u1

l1

)
X1,0

X1,0 +X2,0

(
u2 − u2

θ2
c

)
[−c(a25 + a45)− (a21 + a41)]

= a33

(
u4

l4
+

u1

l1

)2
X1,0

X1,0 +X2,0

(
u2 − u2

θ2
c

)[
−c

X2,0

X1,0 +X2,0

+ c
X2,0

X1,0 +X2,0

]
= 0

where the second equality was obtained from Equations (B.4), (B.7), (B.10), and
(B.12), the third equality was obtained from Equations (B.4) and (B.6), and the
fourth equality was obtained from Equations (B.8)–(B.9) . Therefore,

H4(s) = s
(
h43s

2 + h42s+ h41

)
has a zero at the origin.

5. H5(s):

H5(s) = a33 [a21a32(s− a44)− a24a31a42 + a31(s− a22)(s− a44) + a24a32a41]

− (s− a44) [(s− a11)(s− a22)(s− a44)− a12a24a41]

− (s− a44) [−a24a42(s− a11)− a12a21(s− a44)]

= h54s
4 + h53s

3 + h52s
2 + h51s+ h50
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The coefficient in front of the s0 term, h50, is

h50 = a33a44 [−a21a32 + a31a42 − a32a41 + a31a22]

+ a33a44 [a11a22 − a12a41 + a42a11 − a12a21]

= a33a44 [(a22 + a42)(a11 + a31)− (a41 + a21)(a32 + a12)]

= a33a44c
2

(
u4

l4
+

u1

l1

)2
[

X1,0X2,0

(X1,0 +X2,0)
2 − X1,0X2,0

(X1,0 +X2,0)
2

]
= 0

where the third equality was obtained from Equations (B.9)–(B.12). Therefore,

H5(s) = s
(
h54s

4 + h53s
3 + h52s

2 + h51

)
has a zero at the origin.

Thus, the transfer function from the input to the states for System (7.1) is

H(s) = (sI − A1)
−1 B1

=

⎡⎢⎢⎢⎢⎣
H1(s)
H2(s)
H3(s)
H4(s)
H5(s)

⎤⎥⎥⎥⎥⎦ 1

s(−s4 + l4s3 + l3s2 + l2s+ l1)

=

⎡⎢⎢⎢⎢⎣
s (h13s

2 + h12s+ h11)
s (h23s

2 + h22s+ h21)
s (h33s

2 + h32s+ h31)
s (h43s

2 + h42s+ h41)
s (h54s

4 + h53s
3 + h52s

2 + h51)

⎤⎥⎥⎥⎥⎦ 1

s(−s4 + l4s3 + l3s2 + l2s+ l1)

=

⎡⎢⎢⎢⎢⎣
h13s

2 + h12s+ h11

h23s
2 + h22s+ h21

h33s
2 + h32s+ h31

h43s
2 + h42s+ h41

h54s
4 + h53s

3 + h52s
2 + h51

⎤⎥⎥⎥⎥⎦ 1

−s4 + l4s3 + l3s2 + l2s+ l1
.

Since it was shown that the roots of the polynomial

−s4 + l4s
3 + l3s

2 + l2s+ l1 = 0

have negative real part, System (7.1) is therefore BIBO stable.
The conclusion still holds for c ≥ min{θ1, θ2, β1, β2}. Though several of the useful

identities are altered (e.g. Equation (B.3) will be a11 = a12 if c > θ1 and Equation (B.6)
will be a42 = a41 if c > θ2), the important inequalities derived throughout this proof are
easily checked to remain valid.
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