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Species ranges are shifting in response to climate change, but most predictions
disregard food–web interactions and, in particular, if and how such interactions
change through time. Predator–prey interactions could speed up species range
shifts through enemy release or create lags through biotic resistance. Here, we
developed a spatially explicit model of interacting species, each with a thermal
niche and embedded in a size-structured food–web across a temperature gradi-
ent that was then exposed to warming. We also created counterfactual single
species models to contrast and highlight the effect of trophic interactions on
range shifts. We found that dynamic trophic interactions hampered species
range shifts across 450 simulated food–webs with up to 200 species each over
200 years of warming. All species experiencing dynamic trophic interactions
shifted more slowly than single-species models would predict. In addition,
the trailing edges of larger bodied species ranges shifted especially slowly
because of ecological subsidies from small shifting prey. Trophic interactions
also reduced the numbers of locally novel species, novel interactions and
productive species, thus maintaining historical community compositions
for longer. Current forecasts ignoring dynamic food–web interactions and
allometry may overestimate species’ tendency to track climate change.
1. Introduction
Species ranges are shifting in response to climate change and variability [1–3].
These spatial shifts in species ranges are having an impact on ecosystem func-
tions [4,5] and the provision of ecosystem services with subsequent impacts on
local economies [6]. Most efforts to project how and why species ranges are
shifting have focused on the direct impacts of climate change on individual
species [7–9]. These ‘one at a time’ species projections reveal substantial poten-
tial for reorganized and novel community compositions [10,11]. However,
food–web interactions among species can also affect the rate and direction of
species range shifts [12–14]. A key lesson so far is that competition can keep
species from shifting with warming [12], a prediction recently corroborated
experimentally [15]. However, much less is known about how the combination
of trophic interactions and warming simultaneously affect geographical shifts in
species ranges, despite their anticipated importance [16]. To date, most spatially
explicit studies of species range shifts have not accounted for changes in trophic
interations in a warming world [17–19].

Several food–web characteristics are likely to be important for species range shift
under warming. Empirical evidence suggests that many food–webs are strongly
organized by body size as well as by temperature, particularly those in marine
environments [20,21]. Body size and temperature both mediate organismal meta-
bolic rates and trophic interactions [22]. In these communities, mortality imposed
by predators [23] and competition for prey may prevent novel species from invad-
ing, processes that fall under the term biotic resistance [24–26]. Alternatively, small
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Figure 1. Spatial food–web model. (a) The heterotrophic consumer i feeds on other heterotrophs of smaller sizes and, for some consumers, on the basal resource
(0.01 g). The rate of biomass flow from one species ( j ) to another (i) is determined by search rate (vijx) and handling time (τix), which are functions of local temperature
Tx, species-specific optimal search temperature Ti,opt (see example curve), and predator and prey body sizes (si, sj). Metabolic cost (Dix) is dependent on temperature and
body size. The food–web is spatially coupled across 21 patches with an initial temperature gradient of 4 to 24°C. (b) A snapshot of individual species biomass dis-
tributions across patches before warming (dispersal rate κ = 4.5 × 10− 9 d−1). (c) Time series of species biomass at patch 11, which is at 14°C until year 800 (vertical
black line) and warms to 17°C by year 1000. (d ) A snapshot of individual species biomass distributions across patches after warming. (e–h) Food–webs in four patches
( patches 8 to 11) from colder to warmer temperatures along the gradient. Within-patch species are plotted by optimal search temperature (x) and body size ( y) traits,
with circle area representing biomass (see legend in (h)) and lines representing consumptions above 10− 5 gm−3 d−1 (line width scaled to log of consumption). Species
before warming are shown in blue, and species after warming are shown in red. The blue species in (h) are expected to shift and become the red species in (e) if they
keep up with the thermal shift. Overlapping blue and red species with identical centres within patch are those that remain in the original patch after warming. One
species (sp.1) is labelled for reference across patches and temperature change.
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prey that escape traditional predators—either because predators
are specialists or are the first to decline [27]—may accelerate prey
leading edge shifts more than larger predators, which has been
termed enemy or predator release [28]. Large-scale comparative
studies show ambiguous patterns regarding size or trophic
differences in species range shifts, potentially because hypotheses
have been vague and challenging to test [2,29]. Developing clear
expectations for the influence of food–web interactions on species
range shifts will help with the specification of more precise and
testable hypotheses.

Here, we have developed a dynamic and spatially explicit
food–web model that is based on allometric and metabolic
relationships. We use this model to develop new theory and
insight into how trophic interactions, and their re-organization
through time and space, affect species range shifts under warm-
ing. Multi-species food–webs (not just food chains [30]) of
multiple trophic levels can emerge in this model from dispersal
and the differences among species in body sizes and thermal pre-
ferences (see [10]). To complement this model, we also created a
set of single-species counterfactual models to clarify expectations
in the absence of dynamic trophic interactions. Our results reveal
that trophic interactions slowdown the rate of species range shifts,
suggesting that most studies of future range shifts overestimate
how well species will track changing climates.
2. Methods
To explore the influence of species interactions on species
range shifts, we developed a discrete-time and discrete-space
food–web model (equation (2.1)). This food–web model
was initialized with a basal resource with body size 10−2 g
and N = 200 heterotroph species distributed across 21 spatial
patches x. Temperature across patches at time t = 0 spanned 4
to 24°C (1°C per patch) to roughly represent a transect from
pole to equator (figure 1a). Each patch was a square with
sides measuring 471 km. Each species was assigned a body
size si (log10-uniformly random between 100 and 106 g) and opti-
mal temperature for searching prey Ti,opt (uniformly random
between 0 and 34°C). Heterotrophs from species i in patch x of
biomass Bix consumed the basal resource (which is described in
more detail below) and other species with efficiency λ and at
rate fijx that depended on relative predator (i) – prey ( j ) body
sizes [31], while also experiencing a body size- and tempera-
ture-dependent metabolic cost Dix [32] and while dispersing to
each adjacent patch at a rate κ d−1 (or fraction of biomass dis-
persed per day). The cross-patch dispersal rate κ was related to
the diffusion coefficient m (table 1: T3), which was varied at
the same levels across all species for the simulation experiments
(table 2). Empirical observation support no or even negative
relationships between body size and dispersal or correlates of
dispersal [45,46], including no correlation between offspring
size and pelagic larval duration [47]. Even though swim speed
increases with size [35], it remains unclear how linear speed
translates into dispersal because species have different ten-
dencies to return home. Nevertheless, we also relaxed the
assumption of size-independent dispersal in a sensitivity test
(see eqn A2 in the electronic supplementary material,
appendix A). For the main results, we used κ values of 0, 4.5 ×
10−12, 4.5 × 10−9, 4.5 × 10−6, 4.5 × 10−5 and 4.5 × 10−4 d−1. Disper-
sal rates above these generated unrealistic results. For simplicity,
we labelled dispersal rates in figures only by magnitudes



Table 1. Food–web model equations. (Bold symbols are parameters that we vary in this study. Table 2 for additional definitions. References for each equation
are shown in the first column. Indices i, j and k refer to species identity, and x refers to patch location. The electronic supplementary material, appendix A
provides further explanations to the model specifications and choices.)

definition equation units

(T1) change in basal resource [33] DB0x
Dt

¼ F(B0max � B0x )�
XN
j¼1

B jx f j0xðB0xÞ
gm�3 d�1

(T2) functional response [34]
fijx (B jx ) ¼

vijxB2jx
1þ tix

PN
k=i vikxB

2
kx

d�1

(T3) dispersal rate to adjacent patches k ¼ m
A

d�1

(T4) active metabolic cost [32,35]
Dix ¼ CW!d�1 ,iexp aD þ bDln(si)�

Ea
k(Tx þ 273)

þ cgi

� �
d�1

(T5) conversion from watts to d−1
CW!d�1 ,i ¼ Cd!s

Ecsi

sJ�1 d�1

(T6) search rate of species i for species j [12] vijx ¼ fij vi,maxvix=Br m6 d�1 g�2

(T7) handling time (species i) [36]
tix ¼ l

�Pix,max þ Dix

d

(T8) metabolic cost factor from swimming [35] cgi ¼ Resgi

(T9) maximum search rate at reference prey

density [35]
vi,max ¼ Fhpl2i gi

si

m3 d�1 g�1

(T10) feeding kernel [37]
fij ¼

exp(�(log10si � log10sj � Mi)
2=2s2)ffiffiffiffiffiffi

2p
p

s

(T11) maximum production rate [36] �Pix,max ¼ 1000� 10aP

365si

si
1000

� �bP

exp
�Ea

k(Tx þ 273)

� �
d�1

(T12) swim speed [35]
gi ¼

1:0Cd!ss
bg

i

100

m d�1

(T13) body length [38]

li ¼
si
al

� �1=bl

100

m

(T14) log10 mean predator–prey mass ratio [31] Mi ¼ aR þ bRlog10si
(T15) skew normal function [12]

vix ¼ u exp � (Tx � Ti,opt � Toset )
2

2w2
T

� �
1þ erf j

Tx � Ti,opt � Tosetffiffi
2

p
wT

 ! !
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(omitting the 4.5 multiplier). κ was set to zero at both ends of the
patch array.

DBix

Dt
¼ Bixðtþ 1Þ � BixðtÞ

Dt
¼
XN

j¼0;j=i

½lBixfijxðBjxÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{consumption

�BjxfjixðBixÞ�
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{predation

� DixBix

zfflffl}|fflffl{metabolism

� 2kBix

zfflffl}|fflffl{emigration

þ
X

y¼x+1
kBiy

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{immigration

ðgm�3 d�1Þ: ð2:1Þ
The basal resource grew chemostatically without temperature
dependence (table 1: T1) and an initial biomass equal to the maxi-
mum biomass of 5 gm−3, which is around the upper bound of
global mesozooplankton estimates (after wet weight conversion)
[39]. It may be reasonable to assume that basal growth and maxi-
mum biomass are relatively temperature independent compared
to individual heterotrophs (fishes), since organisms of around
10−2 g in size have similar biomass across latitude [39]. We do
not address complexity at or below the basal level; instead we



Table 2. Parameter definitions. (Bold symbols are parameters that we vary in our analyses. Values in parentheses are the alternative parameter values, with †
to indicate the value used in the electronic supplementary material, figure S4 (other alternative values are shown in the electronic supplementary material,
figures S5–S7). See in the electronic supplementary material, appendix A.)

symbol definition value

A patch area (m2) 471, 4292

αD body size to metabolic rate power-law constant 18.47 [32]

αl body length-mass power-law constant 0.012 [38]

αP body size to biomass production power-law constant 10.85 [36]

αR body size to predator–prey mass ratio power-law constant 2.66 (2.08†, 2.37, 2.95, 3.24) [31]

βD body size to metabolic rate scaling exponent 0.71 [32]

βγ body size-swim speed scaling exponent 0.13 [35]

βl body length-mass scaling exponent 3 [38]

βP body size to biomass production scaling exponent 0.761 [36]

βR body size-predator–prey mass ratio scaling exponent 0.24 [31]

B0max maximum basal biomass (g m−3) 5 [39]

Br reference prey biomass (g m−3) 1

Cd→ s conversion factor from days to seconds (s d−1) 86 400

Ea activation energy (eV) 0.63 (0.57, 0.6, 0.66, 0.69†) [32]

Ec energetic content of organisms (Jg−1) 7000 [40]

F basal chemostatic dilution rate (d−1) 0.0075 [41]

Fh fraction of time hunting 0.26 (0.13†) [42]

k Boltzmann’s constant (eV°C−1) 8.62 × 10−5

λ consumption efficiency 0.4 (0.2†) [43]

m diffusion coefficient (m2 d−1) 0, 1, 103, 106, 107, 108

N number of heterotroph species 200

σ width of feeding kernel 0.569 [37]

PN per cent of prey inedible 0 (10, 20†, 30, 40, 50)

Res coefficient for swimming cost (day/m) 3.47 × 10−5 [35]

s body mass (g) 0.01, 101–106

Tx local temperature (°C) 4–24 (+3)

Ti,opt optimal search temperature (°C) for species i 0–34

Toset optimal search temperature offset to align the skew normal mode with Ti,opt (°C) 0.435

wT search performance standard deviation (°C) 0.884 [44]

θ search rate scaling factor so that skew normal function is 1 at Ti,opt 0.622

j thermal performance skew −2.7 [12]
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aim for a stable representation of this food–web component. Het-
erotroph species consumed according to a Type III functional
response ( fijx) (table 1: T2) with search rate vijx and handling
time τix [34] (table 1: T6 and T7). We chose a Type III because of
its stabilizing properties that generate realistic food–web complex-
ity and species richness [48]. The search rate vijx of predator i on
prey j was a skew normal function of temperature Tx (table 1:
T15) such that consumers could not feed if they were far from
their optimal temperature. Production of a species was defined
as consumption minus predation across all patches, which equal-
led the rate of biomass loss to predation (see eqn A3 in
the electronic supplementary material, appendix A). Table 1 con-
tains the detailed equations and table 2 provides definitions,
values and references for parameters corresponding to a typical
ectotherm marine food–web. A detailed explanation of the
equations in table 1 is provided in the electronic supplementary
material, appendix A. In summary, metabolic cost rises with size
and temperature, handling time decreases with predator size
and temperature, and search rate decreases with predator size
and is maximized at preferred prey size and temperature
(figure 1a).

The model was run forward at daily timesteps for 1600 to
2400 years (varied randomly to avoid phase effects of any poten-
tial cycles) with stationary temperatures. This ‘spin-up’ phase
was used so that population dynamics settled into a quasi-equi-
librium, similarly to how Earth System Models are initialized
[49]. The daily timesteps are comparable to other large marine
ecosystem models [50], which not only accounts for the short
generation time of smaller organisms, but also describes feeding
and metabolism dynamics. After this spin-up period, which was
observed to maintain stable biomass trajectories across a reason-
ably high species diversity of three trophic levels, gradual
warming was imposed as a 3°C warming over 200 years at all
patches (figure 1b,c). The warming scenario was in line with
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current ocean warming projections [51]. We replicated these
simulations 40 times with independent log-uniformly random
initial biomass for each species and patch between 2.2 × 10−15

and 2.2 × 10−10 gm−3.
During the simulations, we recorded shifts in the centroid of

each species’ range (a species’ average location weighted by bio-
mass), leading range edge (2.5th quantile of biomass starting
from the coldest patch), trailing range edge (97.5th quantile bio-
mass) and range size (patches from leading to trailing edge).
Given the spatial gradient in temperatures, isotherms shifted
three patches towards the cold region, so a 100% range shift cor-
responded to a three-patch shift. We also recorded the percentage
of the local species and species pairs that were novel or that were
extirpated after warming, with the presence meaning a local bio-
mass above the floating-point error (2.2 × 10−16 gm−3 in Matlab).
The percentage of novel species pairs was 100 times the global
number of species pairs that were found together in any patch
after but not before warming, divided by the sum of coexisting
pairs after warming. The percentage of extirpated species pairs
was 100 times the global number of species pairs that were
found together in any patch before warming but lost after warm-
ing, divided by the sum of coexisting pairs before warming. For
size-specific analyses, we divided the results into small species
(102 to 103 g body-weight) and large species (105 to 106 g body-
weight). Species with leading edges in the coldest three patches
before warming were omitted from the analyses to avoid edge
effects, since these species would run out of room to track a
3°C warming.

For comparison, we fit counterfactual single-species models
to species biomass outcomes during the no-warming spin-up
period in the food–web models, except that dynamic trophic
interactions were removed (equation (2.2)). These models capture
the single-species equivalent of dynamics in food–webs, which
can then be used to project what is expected if only species
characteristics and not food–web interactions respond dynami-
cally to warming. Each species experienced metabolic costs and
relative intrinsic growth just as specified in the food–web
models. However, temporally constant maximum (intrinsic)
growth rates (ri) and self-competition (ai) rates were specified
instead of dynamic consumption and predation terms, consistent
with a single-species model:

D~Bix

Dt
¼ ~Bix(rivix �Dix � ai~Bix) ðgm�3 d�1Þ: ð2:2Þ

Biomass was labelled with tilde to distinguish the counterfac-
tual projections from the food–web outcomes. We included a
skew normal function vix of temperature Tx (table 1: T15) so
that realized growth rate declined to zero if species were far
from their optimal temperature. To estimate the two parameters
ri and ai that best matched the species in the food–web models,
we needed to match long-run production in addition to biomass
(two equations to solve for two parameters). We defined pro-
duction ~Pix in the model as growth minus metabolic cost and a
portion (1/c) of intraspecific competition. We partitioned intras-
pecific competition this way because, by definition, competition
can come from either suppressed birth and growth or increased
mortality, the latter being interpreted here as production through
a loss effect attributed to conspecifics.

~Pix ¼ ~Bix rivix �Dix � ai
c
~Bix

� �
(gm�3 d�1): ð2:3Þ

In this formulation, c controls whether competition results in
production owing to increased mortality (c =∞), no production
owing to suppressed birth (c = 1, which also implies no net pro-
duction in equation (3.3)), or somewhere in between. For each
species i from the food–web simulations, we recorded the aver-
age biomass and average production (consumption minus
metabolism) from the transient no-warming period of the
food–web simulation. We then fit the model’s equilibrium bio-
mass (from solving equation (2.2)) and production (equation
(3.3)) against these modelled data after fixing c for all species.
We repeated this across a range of c to find the value that pro-
duced the closest match between the aggregate community
biomass and production and the food–web’s total biomass and
production (minimum sum of squares divided by each variable’s
magnitude) (electronic supplementary material, table S1). This
phenomenological single-species model resembles what a scien-
tist might do with historical data if trying to project single-
species shifts during the warming period. This model can also
be understood as a counterfactual to the food–web model, one
with similar species biomasses and productions but with
dynamic trophic interactions taken out (electronic supplemen-
tary material, figure S2). The sensitivity of the single-species
projections to parameterization was tested using two alternative
values of c that underestimated and overestimated production
(electronic supplementary material, table S1), which should,
respectively, underestimate and overestimate intrinsic growth
rate, a key parameter that could influence shifting rates.

We explored the sensitivity of our food–web results by also
using alternative values for the reference predator–prey mass
ratio αR, the activation energy Ea, the fraction of time hunting
Fh, the consumption efficiency λ (table 2) and the size depen-
dence of dispersal rate κ. These alternative values included,
respectively, the lower end of αR [31], the Ea corresponding to
all organisms rather than ectotherms only [32], half of the orig-
inal Fh [42], half of the original λ [43] and a κ that increased
with size based on swim speed [35] (electronic supplementary
material, appendix A). We also explored randomly defining
PN= 10 to 50% of all prey as inedible independently for each
predator, which increased specialization and the potential for
enemy release of prey (table 2). Higher specialization led to
food–web collapse. Finally, we conducted fine-resolution sensi-
tivity analyses on αR, Ea and κ (table 2). For each alternative
parameter value, 10 replicates were run at the mean dispersal
rate of 10−12 d−1. In summary, 21 × 10 food–webs were simulated
for sensitivity tests, bringing the total simulations including
those in the main analysis to 450 food–webs.
3. Results
Under warming, the food–web model revealed aggregate
biomass shifting towards the colder regions, as expected
(figure 1b,d). Snapshots of food–web structure (mapped by
the two traits of body size and optimal search temperature)
over space and time revealed that some part of the original
local communities (blue in figure 1h) shifted together
(shown as red in figure 1e), while other species shifted
less or even stayed in their original patches to rewire incom-
ing communities (overlapping blue and red species in
figure 1e). There is also evidence of enemy release, as one
species moved from low biomass in its original patch (sp. 1
in figure 1h) to high biomass (figure 1f,g). Even though
larger predators of sp. 1 were present in its new thermally
optimal patch (figure 1e), they were saturated by the avail-
ability of other prey that were at a more optimal size
for foraging.

Range sizes before warming averaged from 1.4 to 5.2
patches as dispersal rate increased from 0 to 10−4 (with a
larger increase for larger species; electronic supplementary
material, figure S1), corresponding to distances of 1000 to
4000 km that are typical for marine species [52]. On average,
species’ centroids, leading edges and trailing edges tracked
thermal shifts more closely at higher dispersal rates
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Figure 2. Range shifts and assemblage changes. Solid lines indicate averages across 40 replicates from the food–web model after warming, while dashed lines
indicate corresponding counterfactual single-species projections. Shades are 95% confidence bounds assuming normal error. Dots show individual simulations and
are jittered on the x-axis to improve readability. Red indicates species of size 105 to 106 g, cyan indicates species of size 102 to 103 g, and blue indicates all sizes. For
coexisting pairs, magenta indicates pairs that contain one small (102 to 103 g) and one large (105 to 106 g) species. (a) Centroid shift measured as the percentage of
the distance that isotherms shifted. (b) Range contraction. (c) Leading edge range shift measured relative to isotherm shifts. (d ) Trailing edge range shift measured
relative to isotherm shifts. (e) Percentage of species locally novel, with 100% corresponding to all species after warming being absent in each patch initially.
( f ) Percentage of coexisting pairs novel, with 100% corresponding to all species pairs after warming being unpaired initially. (g) Percentage of species locally
extirpated, with 100% corresponding to all species initially in each patch being absent after warming. (h) Percentage of coexisting pairs lost, with 100%
corresponding to all initial species pairs being absent after warming.
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(figure 2a,c,d, solid blue curves). Species range sizes, on the
other hand, on average contracted for slow dispersal rates
and expanded for rapid dispersal rates (figure 2b, solid
blue curve).

Across body sizes, all species exhibited similar leading
edge shifts (figure 2c solid curves), but centroids and trailing
edges shifted much more for small (102 to 103 g body-weight)
than large (105 to 106 g body-weight) sized species (figure 2a,
d solid cyan versus red curves). These differences in trailing
edge dynamics for large and small species meant that
ranges among small species contracted at slow dispersal
rates, while large species ranges expanded at all but zero dis-
persal rates.

In the food–web model, locally novel species and novel
species pairs (pairs that coexist in any patch) were more
common at intermediate dispersal rates (figure 2e,f solid
blue curves). By contrast, the highest percentage of species
experienced local extirpation and the highest percentage of
historical species pairs were lost at low dispersal rates
(figure 2g,h solid blue curves). Large species were more
likely to begin coexisting with novel species than were
small species (figure 2f solid cyan versus red curves), consist-
ent with the lag in trailing edge range shifts among large
species. Small species were more likely to be locally extir-
pated than were large species, also consistent with lags in
large species’ trailing edges (figure 2g solid cyan versus red
curves). Similarly, historical pairs of coexisting small species
were more likely to be lost than pairs of large species at
low dispersal rates (figure 2h solid cyan versus red curves).

The single-species counterfactual models suggested that, in
the absence of dynamic predator–prey interactions, all species
would closely match the thermal shift even at the lowest non-
zero dispersal rate (figure 2a,c,d dashed curves). In addition,
single-species models only predicted substantial range contrac-
tions for a zero dispersal rate (figure 2b dashed curves).
Compared to the food–web model, single-species models
over-predicted the distance that species shifted (figure 2e,g,h)
and under-predicted changes in range size (figure 2f ).
Single-species models also over-predicted the percentage of
locally novel species and of novel species pairs as compared
to the full food–web dynamics (figure 2e,g). Finally, single-
species models failed to resolve the large differences among
body sizes in distance shifted, unlike for the food–web
models in which larger species tended to shift their trailing
edge less and expand range size more (figure 2). The lack of
body size differences in range shifts appeared even though
the single-species model assumed that intrinsic growth rate ri
was a decreasing function of size across all simulations
(equation (2.2)), consistent with metabolic theory that was
also embedded in the food–web model.

Community aggregate statistics showed differences in
overall stock, flow and diversity metrics between food–web
and single-species projections under warming. Community
biomass and production increased in the food–web model
after warming at dispersal rates higher than 10−12 d−1 (elec-
tronic supplementary material, figure S3A and B). By
contrast, the single-species model projected on average little
to no changes to biomass and production after warming,
along with large differences in production changes across
replicates. However, these food–web changes were
accompanied by a greater number of species that became
unproductive (production < 0) after warming, whereas the
single-species model showed no increase in unproductive
species at all non-zero dispersal rates (electronic supplemen-
tary material, figure S3C). Since production is consumption
minus metabolic cost, and all other terms (not counting
migration since production here is computed globally) contrib-
uted negatively to net growth in equation (2.1), any existing
unproductive species were on extinction trajectories—
although they may have had non-extinction equilibria,
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especially if temperatures stabilized again during the pro-
tracted transient periods [53]. In any case, the modelled
food–webs had a longer transient approach to equilibrium
than single-species projections. Community composition was
also impacted by food–webs, which showed a decline in
mean body size not predicted by single-species projections
(electronic supplementary material, figure S3D). In terms of
biodiversity metrics, both food–web and single-species projec-
tions agreed only a few global extinctions would occur at non-
zero dispersal rates (electronic supplementary material, figure
S3E). Average alpha diversity, or local richness, showed an
increase at intermediate dispersal rates and a decrease other-
wise (electronic supplementary material, figure S3F).

Metrics of trophic level in conjunctionwith diversity suggest
that themodel generated qualitatively realistic food–webs. At all
non-zero dispersal rates, local richness was much higher than
mean and maximum trophic levels of 2.6 and 3 with 1 being
the basal level, which remained similar before and after warm-
ing (electronic supplementary material, figure S3G and H).
This result meant that multiple species shared similar trophic
levels and formed food–webs rather than food chains. With no
dispersal, simple food–webs of about five species spanning
twoheterotrophic levels still emerged initially, but afterwarming
they approached food chains (two species). These results gave
confidence that our model effectively captured known features
of natural food–webs.

The single-species shift projections were insensitive to
alternative values of the parameter c that controlled production
(see the electronic supplementary material, table S1; results
indistinguishible from figure 1). Sensitivity analyses that
changed the portion of potential prey being inedible PN for
each species (i.e. more specialists when PN> 0), the activation
energyEa, the reference predator–preymass ratio αR, the fraction
of time hunting Fh, the consumption efficiency λ (table 2) and
size-dependent dispersal rate κ (electronic supplementary
material, appendix A) affected the magnitude of shifts and
assemblage changes, but they had little to no impact on the
ordering of the changes by body size or food–web versus
single-species models (electronic supplementary material,
figures S4–S8). The notable exceptions were in leading edge
shifts, for which low activation energy, low or high predator–
prey mass ratios, and high levels of inedible prey reversed the
trends from being slightly lower to slightly higher for smaller
species relative to larger species (electronic supplementary
material, figures S5C, S6C and S7C). In terms of magnitude of
shifts, the results were most sensitive to activation energy, with
values lower than expected for marine ecosystems creating
species shifts that were quite similar to single-species projections
(electronic supplementary material, figure S4F). The sensitivity
tests suggested that food–web interactions generally impede
species range shifts under warming, andmore so for large pred-
atory species, across plausible assumptions about food–web
structure and dispersal rates.
4. Discussion
We developed a spatially explicit food–web model and a set
of single-species counterfactual models to explore the role of
species interactions in either facilitating or hindering species
range shifts in a warming world. The results of the food–
web model revealed that dynamic trophic interactions overall
hamper species’ abilities to shift their spatial distributions in
response to warming temperatures at both leading and trail-
ing range edges. In addition, trophic interactions created
differences among species of different trophic levels, with
larger bodied top predators persisting longer than smaller
prey in historical habitats. These delayed extirpations created
a lag in the trailing edge shift and an overall range expansion
for these large species. By contrast, smaller bodied species
experienced a contraction in their spatial distributions.
Diversity, range size, trophic level outcomes and snapshots
of species relationships all resembled qualitative features of
real food–webs. These results highlight the importance
of accounting for both spatial dispersal and trophic inter-
actions when considering the impact of climate change on
species ranges and assemblages.

Dynamic trophic interactions slowed species’ range shifts
compared to expectations from single-species models. This
result complements previous theoretical studies showing that
competition can limit range shifts [12,23] and suggests that
biotic resistance processes [25,26] are likely to be stronger
than enemy release effects on range shifts [28]. We found
this pattern even when a high portion of potential prey were
inedible, a scenario that allowed for more opportunities to
escape enemies. High levels of inedible prey did lead to greater
leading edge shifts among smaller as compared to larger
species, as expected from enemy release, but this did not
alter the overall shift lags imposed by food–webs. Our results
also complement models suggesting that competition among
predators for prey will slow down range shifts [54]. In
nature, it is difficult to isolate food–web effects, but one
approach is to compare communities in protected areas with
those not in such areas, with protection generally preserving
stronger predation processes. In temperate reef communities
protected from fishing, for example, high-trophic-level species
are more abundant than in unprotected communities [25].
Despite warming water, these protected communities had
fewer biodiversity changes and fewer colonizations by novel
species, as compared to unprotected communities [25]. The
example appears to support the theoretical prediction that
natural food–web interactions would slow range shifts.

Smaller species shifted more than larger species in
terms of centroids and trailing edges, resulting in range
contraction across a wide range of dispersal rates that
contrasted with range expansion for larger species. This
difference could occur because smaller species have higher
metabolic rates, faster generation times, and therefore faster
extirpation from patches that are no longer suitable owing
to warming. However, our counterfactual single-species
model that also incorporated higher metabolic rate in smaller
species did not show a large difference in shift patterns
across size, suggesting that a size-metabolism explanation is
not sufficient.

Instead, food–web interactions are a stronger explanation
for the lag among larger bodied species. Smaller species
preyed to a greater extent upon a basal resource that was
not temperature sensitive. Consequently, the primary limit
on small heterotrophs’ growth was their own temperature-
sensitive search rate. In nature, small marine organisms that
heterotrophs depend on may indeed be relatively tempera-
ture insensitive owing to high species diversity [55] and
genetic diversity [56] that assist in adaptation to changing
conditions. However, nutrient and ecosystem dynamics also
modulate small organisms in nature, which we did not exam-
ine in our model [57]. By contrast, larger species near their
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trailing range edge were subsidized by novel prey that
expanded into new habitat (despite also facing the same
temperature-dependent feeding limitations that smaller
species experienced). The increase that we observed in com-
munity biomass and production in food–webs after
warming probably reflects the same process. Since large
species had no production (they were not consumed), the
increase in community production can be attributed to smal-
ler species. This influx of smaller species as prey at the
trailing edges of large species would have helped prevent
predator extirpation. This phenomenon may be further
amplified if prey defence evolution is also considered, since
prey are likely to be naïve to novel predators [58].

The ecological subsidy from colonizing species that benefits
top predators would not appear in closed food–webs without
the possibility of colonization. Closed food–webs generally
suggest that top predators are the most vulnerable to changing
climate [27]. The persistence of large predators in their histori-
cally occupied patches, in turn, imposed a top-down control
that slowed the rate of colonization by small prey relative to
models without food–web interactions. This effect is consistent
with previous findings that predators have larger effects near
species range edges [59]. These predicted differences among
species also align with empirical studies that find faster shifts
in species centroids among small species [2,60].

Although warming led to novel local assemblages (coex-
isting species pairs) in both the trophic and single-species
models, the presence of dynamic trophic interactions led to
fewer ecologically novel species assemblages. This finding
is contrary to effects from competitive interactions, which
predicted more novel assemblages [12]. Changes in local
and global richness were generally small and similar between
food–web and single-species projections. The extinction pat-
tern differs from previous theoretical works, which found
extinction to be exacerbated by competitive species inter-
actions [61]. These results highlight important differences in
the ecological consequences of competitive versus trophic
interactions for range shifts and future communities.

Even though lags in range shifts persisted over 200 years
of warming in our simulations, the increase in non-
productive species among warming food–webs suggested
that some species, particularly large species, may eventually
have experienced more rapid extirpation at their trailing
edges. Compared to the single-species model, the food–web
model suggested longer transient dynamics [53] and extinc-
tion debt [62], making non-equilibrium phenomena more
important than in hypothetical non-trophic communities.

Wemodelled food–webs across a size range that corresponds
to heterotrophic, size-structured food–webs characteristic of
marine fish communities, which have been a common focus in
ecological modelling [40]. However, size- and temperature-
depedent metabolic theory can be extended to smaller sizes,
including the basal planktonic class [63]. Future research incor-
porating a larger size range in food–web models would
introduce both computational and theoretical challenges because
of different generation times and error propagation from low- to
high-trophic levels. However, the proper inclusion of smaller
organismswould also clarify the role of bottom-up contributions
to geographical shifts [64].Whilewe saw that size dependence of
dispersal across species did not appreciably affect range shift pat-
terns, differences across life stages may mediate trophic
interactions, which can be addressed through individual based
orage-structuredmodelling.Moving forward, range shift projec-
tions will be more informative when human action [65] and
genetic evolution [61] are coupled with ecological dynamics.

Our results show that projecting species range shifts
based on single-species distribution models [9] will probably
overestimate any given species’ tendency to keep track with
climate change. Thus, dynamic trophic interactions and
body size are important factors for ecological projections
under changing environments.
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