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A Unified Account of Gaze Following
Hector Jasso, Jochen Triesch, Gedeon Deák, and Joshua M. Lewis

Abstract—Gaze following, the ability to redirect one’s visual at-
tention to look at what another person is seeing, is foundational for
imitation, word learning, and theory-of-mind. Previous theories
have suggested that the development of gaze following in human
infants is the product of a basic gaze followingmechanism, plus the
gradual incorporation of several distinct newmechanisms that im-
prove the skill, such as spatial inference, and the ability to use eye
direction information as well as head direction. In this paper, we
offer an alternative explanation based on a single learning mecha-
nism. From a starting state with no knowledge of the implications
of another organism’s gaze direction, our model learns to follow
gaze by being placed in a simulated environment where an adult
caregiver looks around at objects. Our infant model matches the
development of gaze following in human infants as measured in
key experiments that we replicate and analyze in detail.

Index Terms—Adaptive systems, artificial intelligence, auto-
nomous mental development, behavioral science, cognition,
cognitive science, computational and artificial intelligence, cyber-
netics, emergent phenomena, intelligent systems, learning systems,
multiagent systems, systems, man, and cybernetics.

I. INTRODUCTION

D URING their first two years of life infants transform their
earlier dyadic interactions with adults into new triadic in-

teractions that also include objects [5], [65]. During triadic in-
teractions, infants and adults sometimes simultaneously attend
to the same object. Such episodes of “joint attention” [54] are
a central component of many important social skills, including
protodeclarative and protoimperative pointing [3], [4], social
referencing [25], early vocabulary formation [64], early lan-
guage development [8], and inferring other people’s beliefs, in-
tentions, and plans, i.e., “theory-of-mind” skills [56]. All these
skills are considered crucial for the infant’s entry into the social
world, and for learning to interact and communicate with others
in an increasingly sophisticated manner [52].
Scaife and Bruner first studied joint attention skills in a con-

trolled experimental context [57]. They attempted to find the age
of onset of gaze following, the ability to redirect one’s visual
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attention to look at what another person is seeing. In their para-
digm, an infant and experimenter sat facing each other. After the
experimenter got the infant’s attention, he/she turned to either
the right or the left, as if looking at an object. The researchers
observed whether the infant then turned in the same direction as
the experimenter. Starting at 8 to 10 months, they noted, infants
turned in the same direction more often than chance. Moreover,
age groups from 2 to 14 months showed gradually increasing
reliability. This influential study established that infants are not
completely egocentric, which was a common view at the time.
Other researchers adopted and modified Scaife and Bruner’s

experimental paradigm to investigate more complex aspects of
gaze following, and determine the mechanisms behind its devel-
opment. For example, Butterworth recognized that it is a chal-
lenge for infants to ignore nearby targets that are salient but
are nevertheless not the object of the adult’s gaze. Butterworth
hypothesized that infants must eventually acquire a “geometric
compensation mechanism” in order to extrapolate a line from
the adult’s head and eye direction cues to a specific region of
interest, with the target (salient or not) falling somewhere on
this line [11], [13]. Another example is gaze following based on
eye direction cues, which has been attributed to the acquisition
of a new “shared attention mechanism.” By this, the infant un-
derstands that other people’s attentive states are determined not
by head direction per se but by the direct line of sight from the
eyes themselves [2]. A related idea is that this new representa-
tional mechanism allows the infant to understand other people
as intentional agents [51]. These, and similar accounts, stipu-
late discrete changes in infants’ understanding of other people
as entities with goals and beliefs. If these accounts are valid,
however, the task remains to explicate the nature of infants’ un-
derstanding (e.g., the kinds of representations that are needed),
to specify how development occurs, and to stipulate the role of
experience in the environment as a factor in development.
In this paper, we offer a unified account of gaze following.

Our account is based on a novel computational “infant model”,
which we describe and test. The infant model learns gaze fol-
lowing as it interacts with its environment, deciding where to
look next based on the location of objects as well as the ap-
parent head and eye direction of an adult who is also looking at
objects in the shared environment. First, the infant model learns
to look at salient objects, and with time it learns to take into
account the adult’s head/eye direction cues to direct its looking
behavior. This basic process brings with the progression of gaze
following behaviors described above. The model is based on a
hypothesized “basic set”, which is a small number of generic
phenotypes such as visual preferences, attention-shifting, habit-
uation, and reinforcement learning [19],[61] plus a natural en-
vironment where other agents tend to look at interesting things.
The core theory is that this basic set alone, without any spe-
cialized modules, is sufficient to explain the emergence of basic
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Fig. 1. Modeling the environment. Infant model and caregiver sit facing each
other, with objects placed around them. Here, the caregiver has turned left to
look at an object, while the infant model looks at the caregiver.

gaze following behavior [24].1,2 Overall, our approach is well
suited to answer important questions that have until now begged
explanation, such as “What is the nature of the mechanisms of
gaze following?” and “What factors guide its developmental
schedule?”

II. METHODS

In this section we describe our model in detail. First, we de-
scribe its three primary components: 1) a spatial representation
of the environment; 2) the infant model’s visual system; and 3)
a biologically plausible reinforcement learning algorithm [61],
[19] used by the infant model to decide where to look next. After
discussing these components, we review the training and testing
procedures used.

A. Learning Environment

The environment is simulated as a 2-D plane containing the
infant model, a simulated caregiver, and a number of objects.
The infant model and caregiver are in fixed positions facing each
other with a 40-cm separation between them (see Fig. 1), sim-
ilar to some infant–adult interactions. Objects can be located
anywhere on the plane except in the same location as the in-
fant model or caregiver. The caregiver is not always present
but sometimes “leaves the room.” Time is discretized into 1-s
intervals.
The room contains objects, where is drawn from a

geometric probability distribution with average . These ob-
jects are located randomly around the infant model with dis-
tances taken from a radially symmetric normal probability dis-
tribution with standard deviation of . The visual saliency

1Our model integrates ideas from two previous gaze following models using
the basic set hypothesis. In the first model [14], [67] the environment is a set of
regions occupied by the infant, the caregiver, and targets. But since the regions
are discrete and hold no spatial relationship among each other, the model cannot
be used to replicate spatial aspects of Butterworth’s experiments. The second
model [45] used a spatial representation of the environment using a body-cen-
tered coordinate system. A Hebbian-like learning rule was used to strengthen
the connections between visual inputs and the locations where visual saliency
is encountered as a result of actions. Our model combines the reinforcement
learning approach of the first model with the modeling of spatial aspects of the
second. This has allowed us to replicate a wealth of gaze following phenomena,
as discussed throughout the paper.
2Earlier versions of this model were presented in [37],[39], and [66], with

newer versions successfully replicating results for more experimental setups.

for each object has a value taken from an exponential prob-
ability with average . The configuration of objects changes
after a number of time steps taken from a geometric proba-
bility function with average , with a new number of
objects and their locations and saliencies drawn from proba-
bilities as described earlier. This simulates a dynamic world
of varied-saliency objects that the infant model and caregiver
can look at. Additionally, the caregiver will be present only for
a number of time steps corresponding to a geometric proba-
bility function with average , after which she will not
be present in the room (i.e., “leaves the room”). She will return
to continue interacting with the infant model after a number of
time steps drawn from another geometric probability function
with average . This is meant to simulate the fact that in-
fants carry out a certain amount of visual exploration of their
environment without other people present.
During any time step, the infant model and the caregiver

can change their gaze direction. captures the direction to-
wards which the infant model is looking (where cor-
responds to the infant model looking towards the caregiver’s
location), while and capture the caregiver’s head and
eye direction respectively (where corresponds to
the caregiver’s head turned towards the infant model, and simi-
larly for ). Variables hold the angle of object from the
infant model’s point of view, and do not change when the infant
model’s heading changes.
Similar to is the caregiver’s visual saliency as per-

ceived by the infant model. This value is temporarily decreased
to half when the caregiver is not looking at the infant model,
modeling infants’ preference for looking at gaze directed at
them rather than diverted elsewhere [23], [62]. is the infant
model’s visual saliency as perceived by the caregiver ( along
with will drive the caregiver’s visual attention, as described
below). (Default values and ranges for all learning environment
parameters as well as other parameters of the model to be de-
scribed next are listed in the top section of Table I).

B. Infant Visual System

The infant model’s visual input is processed by three different
systems (Fig. 2, left): a saliency map ; a head direction de-
tector ; and an eye direction detector .
The saliency map indicates the presence

of visual saliency in a body-centered coordinate system with
96 different regions in space, along 24 heading ranges and 4
depth ranges. Our assumption of a body-centered representa-
tion is a convenient simplification that frees us from having
to model how the infant brain computes various coordinate
transformations.
Values for elements of of are derived from saliency

values of the caregiver and objects corresponding to the loca-
tion (heading and depth) of these elements. Both the objects
and the caregiver have to be within the infant model’s field of
view (FOV) , where
FOV is the extent of the visible area with respect to the infant
model’s gaze direction) to be added to their corresponding
. Previously, these values are foveated and habituated, as

discussed next.
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TABLE I
OVERVIEW OF MODEL PARAMETERS, THEIR ALLOWED RANGES, AND DEFAULT VALUES

Fig. 2. (Left) Details of the infant model’s visual system. (Right) Details of the actor-critic reinforcement learning model. Features calculated from the saliency
map , caregiver head direction , and caregiver eye direction are combined into [visual input vector, ], multiplied by
[weight vector, ], and added into [so that ], resulting in an estimate of the value of the present

state. is also multiplied by (a matrix with as many rows as there are actions and as many columns as there are input features) and added into [so that
], where values in correspond to locations in space, as shown in the figure. The action will consist of looking at a location in space, generally

the one corresponding to the highest value in .

Foveation causes perceived saliency to decay as it falls out-
side the infant model’s center of vision, according to the fol-
lowing formula (based on the contrast sensitivity function pro-
posed by Daly et al. [18]):

where is the eccentricity in visual angle of the object or care-
giver, and is a constant that defines how the sensitivity di-
minishes with eccentricity. is set to 0.24 based on a fit on
data sets from Virsu and Rovamo [68] and Johnston [42]. The
offset of 0.2, added based on gaze-following experimental re-
sults where a distracter object at the periphery of vision captures
the attention of the infant model, prevents values from decaying

to close to zero when objects are in peripheral vision (i.e., “in
the corner of the eye”).
The infant model habituates separately to each object, with a

formula proposed by Stanley [71] where perceived input decays
in an exponential fashion with time

where is object ’s habituated saliency at time and
its original dishabituated saliency; is equal to if the
infant model is looking at object at time and 0 otherwise;
is a time constant that specifies the rate of habituation (a smaller

resulting in faster habituation); and controls the level
of long-term habituation. A similar formula applies for and
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Fig. 3. Selecting an action. The room configuration as well as memory traces in the infant model’s visual system result in values for (saliency map), (head
direction detector), and (eye direction detector). , and contain values, that are multiplied with each row in , resulting in values for ,
where each value in correspond to one of the 64 locations in space. The actual probability of looking at a particular location is stored in vector . Probabilities
thus correspond to a softmax selection of the highest value in . The maximum value has the highest probability of being chosen, but with some probability of
choosing other actions with high value in .

, the habituated saliencies of the caregiver and the infant
model , respectively.
The complete formula for calculating each element of

within the infant model’s FOV is thus the sum of the habitu-
ated foveated saliencies of all objects that fall within ’s range
(heading and depth), plus the habituated foveated saliency of
the caregiver if it falls within its range: , where

and if lies within the
range of and zero otherwise, being the
angular distance of the object from the center of vision, and

if the caregiver is present and falls within the
range of and zero otherwise. will always be zero because
the caregiver is positioned in front of the infant model at 0 .
For elements of outside the infant model’s FOV, the per-

ceived saliency is zero, but the infant model’s visual system cal-
culates the new value of as a fraction of whatever previous

value it had. This is done by multiplying the previous value of
by a constant ( ; see Table I) and having the re-

sulting number be the new value of . This “memory decay”
factor enables the model to temporarily remember recently ob-
served states of the world. The top section of Fig. 3 shows an
example setting and the resulting value of .
The head direction detector indicates

24 possible caregiver head directions as perceived by the infant
model. If the caregiver is present and the infant model is looking
at her, the value of each is calculated according to an expo-
nential decay, so that the closer is to the caregiver’s heading

, the higher its value. If the infant model is not looking at
the caregiver, then the values of decay as in the calculation of
earlier.
The exact formula for calculating when the caregiver is

present and the infant model is looking towards her



JASSO et al.: A UNIFIED ACCOUNT OF GAZE FOLLOWING 261

is: , where is the decay factor,
described below, and is the angle corresponding to heading
’s center .
All are normalized (using linear scaling), so that the sum of
all add to 1 .When the caregiver is not present
or the infant model is not looking at her, the infant model’s vi-
sual system calculates the new value of as a fraction of what-
ever previous value it had, by multiplying by the same as
above, resulting in a similar “memory decay” as above. The top
section of Fig. 3 shows an example setting and the resulting
value of .
Adults can detect differences in the gaze direction of others

[1], [16], [28], with an acuity of just 1.4 at a distance of just
over 1 m [16]. However, the development of this sensitivity
during infancy has not been systematically studied. Very young
infants can differentiate between direct and averted gaze [23].
In gaze following experiments [11], [13] infants can distinguish
between right and left-facing head directions at around 6months
of age, and by 12 months they can discriminate a 25 difference
in gaze direction to two objects [34]. This progression is cap-
tured in the model by making decrease linearly with time
(see Table I). We do not explore the nature of the mechanism be-
hind this increase in sensitivity, leaving this for further research.
However, we do not discard a developmental learning-based
process akin to the gaze following model presented here.
The eye direction detector is similar to
, but computed with the caregiver’s eye direction instead
of head direction , and with instead of (as above,
this reflects the infant model’s limited memory for this informa-
tion). The values of and (see Table I) were chosen to re-
flect that infants improve their estimates of head direction faster
than their estimates for eye direction, because the latter requires
greater acuity. Additionally, when the infant model is looking
at the caregiver but she is turning her head back ( or

), all values are set to zero. This reflects the fact
that when the caregiver is facing backwards with respect to the
infant model, the eyes are not visible. The top section of Fig. 3
shows an example setting and the resulting value of .
The output of the infant model’s visual system at time com-

bines the saliency map and the head and eye direction represen-
tations into one vector . This vector
has dimensions.

C. Reinforcement Learning

At each time step, the output of the visual system de-
scribed above is used as input to a standard actor-critic rein-
forcement learning system [19], [61] that decides where the in-
fant model will look next.
The critic part of the actor-critic reinforcement learning al-

gorithm (see Fig. 2, upper right) estimates the value of being
in the present state of the world. We use a simple linear model

, where
is a weight vector. It is updated each time step according to the
standard gradient descent rule [19]

In this, , also called temporal difference error, is defined as

where is the reward at time which corresponds to the
saliency of the new location being looked at, the es-
timated value of the new state reached after taking the action,
and is a parameter, also called a “discount factor,” that speci-
fies how much into the future do we want the agent to look into
when measuring the effect of the action being taken. A value of
0 means that only the reward obtained immediately after the ac-
tion will be taken into consideration. A value of 1 is only valid
in tasks where there is a start state and an end state. Since our
infant model does not have an end state, and the environment is
fairly nonstatic, we choose a value of 0.1.
The actor part of the reinforcement learning algorithm (see

Fig. 2, lower right) specifies the motor action to be taken that
will direct the infant model’s attention to one of 24 possible
different headings (i.e., directions) H and one of four different
depths (i.e., distances) D, with a total of different
possible actions (

m, 1.0 m, 1.45 m, ), where is the action, and
and are the heading and depth, respectively, where atten-

tion is directed. At each time step, the action is chosen proba-
bilistically according to the softmax decision rule [19]

with being the action value parameter for action
for the present state and calculated every time step from

, where is a matrix with as many rows
as there are actions and as many columns as there are input
features (see Fig. 3 for an illustration of ), and is the vector
with the input features from the visual system as described
above. In the formula, the higher the value of , the higher
the chances of selecting action . The softmax selection for-
mula works as follows. For very high values of , one always
chooses the action with the maximum value; for low , one
chooses the uniformly at random among all actions; and for
intermediate , the selection is something in between, thus, it
is a “soft” form of selecting the maximum.
After an action is taken, is updated according to a formula

that is similar to the one used to update the critic’s weights

for all elements of , where and correspond to the partic-
ular element of being updated ( corresponding to an action
and to a feature; see Fig. 3 for an illustration), is the action
that was taken, is the same learning rate as above, is the
value of the temporal difference error as calculated by the critic
above, is the probability of taking action at this time
step as calculated in the softmax formula, being defined as
1 if , 0 otherwise (so that it will only be 1 if matches
the actual action taken), and is the value of corre-
sponding to .
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D. Training and Testing

The simulation is run for training steps, where each
time step corresponds to one second, as noted above. During
this process, the infant model selects an action at the end of each
time step, based on the state produced by the simulation envi-
ronment and the caregiver, and as mediated by the reinforce-
ment learning algorithm described above. The caregiver in turn
always looks at the most salient point in the room (involving ha-
bituation-mediated values of and ). The caregiver’s per-
ceived saliencies are mediated by the same foveation and habit-
uation mechanisms (with identical parameters) as in the infant
model’s visual system. The caregiver’s head direction is slightly
offset from that of the eyes according to a Gaussian distribution
with and . This offset is recalculated for every
gaze shift of the caregiver. This reflects the fact that eyes and
head are not always perfectly aligned, and corresponds to values
observed in naturalistic settings [32]. During this training phase,
the weights of the critic and actor are updated every time step,
as described above.
Training is stopped after a number of time steps, to observe

the infant model’s reaction to different configurations of the
room. (These “experiments” are described in the following
sections in detail). One of the advantages of the model is that it
can be tested extensively, and we typically did 200 repetitions
for each different test setup so as to properly establish results.
During testing, learning (i.e., updating of weight values) is
“frozen”, otherwise the extensive number of tests we perform
would bias the infant model towards the test setups used (this
is not an issue for real experiments, where infants are tested
with a low number of repetitions). After all testing is carried
out, training is resumed by returning the environment to its pre-
vious configuration and continuing with the training schedule
described above.

III. RESULTS

A. Basic Emergence of Gaze Following

The first thing the model learns is to look preferentially at lo-
cations with high saliency. Although simple, this relationship
between the saliency of specific locations and the reward re-
sulting from looking at those locations is not a prior state of
the model, but instead must be learned. The large diagonal, at
the left part of in Fig. 3, shows the result of this learning. A
nonzero saliency at location will mostly add, through ,
to the element of corresponding to action , eventually
increasing the probability of looking at precisely that location
. Before learning, however, all values are zero. This reflects
the fact that human infants also take time to develop saliency
preferences. For example, they consistently saccade to stimulus
contours at 14 weeks, but not at 2 weeks of age [6]. Although
there are a few findings of weak visual stimulus preferences in
infants within hours or several days of birth [41], [59], there is
no evidence that these preferences are spatially specific; rather,
stimuli that fall into the visual field might elicit different looking
times. Such studies therefore demonstrate slightly differentiated
values for different stimuli within several hours or days of pos-
tuterine visual experience, but not differentiated spatial bind-
ings. Moreover, even a low-power machine vision system can

learn to discriminate classes of salient stimuli within a few min-
utes of visual experience [9], so even the initial stimulus values
can be set very rapidly. For these reasons, the choice to start the
initial spatial-value matrix at zero is not inconsistent with avail-
able developmental evidence.
The smaller diagonals, on the right part of in Fig. 3, cor-

respond to the learning of gaze following. Shown are the final
states of the diagonals, when gaze following has been fully
learned. Although these diagonals start to form from the very
first training steps, they take longer to develop than the saliency-
related larger diagonal described above. The reason for this is
that the caregiver’s head and eye direction predict reward for
looking at a given location, but with much less certainty than
direct saliency itself. Instead, there are several possible loca-
tions with visual reward for a particular head or eye direction,
which are collectively located in the path consistent with the
caregiver’s head and eye direction.
Learning to look at saliencies is therefore easier to learn

than gaze following. However, it is a prerequisite for it. If the
infant model did not know about the value of looking at salient
locations, then gaze following could only be learned in episodes
where the infant model incidentally looks at the caregiver, and
immediately afterwards incidentally looks at the object the
caregiver is looking at. But once looking at salient objects has
been learned, then the caregiver will naturally attract the infant
model’s visual attention, and after habituation has taken place,
the infant model will likely look at salient objects in the room,
making it more likely that the next target will be the same one
that the caregiver is looking at, thus facilitating the acquisition
of an abstract gaze-following policy. Note too, that this does
not apply to situations where the caregiver is looking at an
object behind the infant model, which would be outside the
infant model’s FOV since it is looking at the caregiver. Instead,
after habituating, the infant model would likely either look at
any object within view, or explore to a random location in the
room. This makes gaze following to objects behind the infant
model take longer to develop, as described in the next sections.
Fig. 4 illustrates two examples of at the end of training, for

different states of the world. Here, the infant model, caregiver,
and objects are superimposed on a representation of the world,
divided into all possible looking locations. In the left-side illus-
tration, two objects within the infant model’s FOV create dark
tones (high values) in their corresponding locations, with the
bigger one corresponding to a darker tone because of its higher
saliency. Since the infant model is looking at the caregiver, lo-
cations in the caregiver’s line of sight are of a darker tone, in-
cluding locations outside the infant model’s FOV, even when
there are no objects there. Other locations not corresponding to
these two objects or the caregiver’s line of sight are lighter-col-
ored, and not entirely uniform because of small fluctuations in
the stochastic learning of . The infant model will thus likely
choose to look at either of the objects or one of the locations
within the caregiver’s line of sight, with a small probability
(how small depending on temperature) of looking elsewhere in
the room. The right illustration shows two objects outside the
infant model’s FOV not activating , and two objects with sim-
ilar saliency in the infant model’s FOV activating two locations
in . Since one of these locations is also within the caregiver’s
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Fig. 4. Illustration of values of for two different states of the world.

line of sight, it has a darker tone than the other, and will likely
be selected over the other one, resulting in gaze following. The
scale for , from to 0.1, is not absolute. In other phases
of learning, ’s values could have other ranges. The range used,
thus, is only for illustration purposes.

B. Mechanisms Improving Spatial Aspects of Gaze Following

Butterworth’s theory of gaze following development [10]
posited progressive and discrete accumulation of processing
mechanisms, including a salience-based ecological mechanism,
a spatially allocentric geometric mechanism, and a mentalistic
representational mechanism. In this section, we describe in de-
tail the two gaze following experiments that Butterworth used
to postulate the existence of these mechanisms. By replicating
these experiments in our simulation, we show that our infant
model elicits the succession of infant behaviors that suggested
these mechanisms, but without ever requiring any qualitatively
new mechanisms.
1) Emergence of the Geometric Compensation Stage: We

begin with the second mechanism proposed by Butterworth, be-
cause the first is a reactive exogenously generated response to
salient stimuli, corresponding roughly to the starting state of our
model. Butterworth carried out a series of experiments, the re-
sults of which led him to propose a putative “geometric com-
pensation mechanism,” which would allow the infant to disre-
gard distracter objects between the caregiver and the object to
which she attends [11], [13]. In these experiments, Butterworth
and colleagues placed salient targets at specific locations in an
otherwise boring room. During each trial the caregiver looked
at the infant and then turned toward one of the targets. Four tar-
gets were displayed during every trial, with two on each side
of the room along the wall, as shown in the part of Fig. 5 la-
beled “4-Target.” In the first three variations of the experiment
(top row) the correct target is first along the infant’s scan path
when compared to the other target on the same side of the room.
The correct target could be at either 30 , 60 , or 90 (abso-
lute values) from infant’s midline. In the last three variations
(bottom row) the target is second along the scan path, at either
90 , 120 , or 150 from midline. We will refer to these settings,
as “30 ”, “60 ”, “90 -first”, “90 -second”, “120 ”, and “150 ”.
(Note that only the 90 target occurs in both first and second po-
sition; this becomes an important distinction. All other locations
are only first or only second on the infant’s scan path when ro-
tating from midline.)

In these studies, each trial type, as defined by a particular
target location, was repeated twice, once for each side of the
room (four times for the 90 locations: two trials for 90-first;
two for 90-second). They defined a correct response as looking
at plus or minus 30 around the correct target, and a wrong re-
sponse as looking within 30 of the incorrect target on the same
side of the room. Non-codable responses were coded if the in-
fant made no response within six seconds, or looked at up or
down. A final category of responses, omitted from the calcula-
tion of scores, included looking at the opposite side of the room
or (though not described by Butterworth) looking at no-target
locations (i.e., the wall) on the correct side of the room.
Fig. 6 shows a plot of the accuracy scores we calculated based

on Butterworth’s reported results (the origin was set to 0months,
for comparison with the figure on the right, described below).
This score is calculated as the number of correct responses over
the sum of correct plus wrong responses. Results show that at all
ages, infants reliably follow gaze when the correct target is po-
sitioned first along the scan path (30 and 60 trials). When the
correct target is first along the scan path at 90 (but still within
the FOV when looking at the caregiver), 6-month-olds stop at
the distracter object about half the time, 12-month-olds disre-
gard the distracter more often, and 18-month-olds follow gaze
correctly, disregarding the distracter altogether. When the cor-
rect target is second along the scan path at 120 or 150 (now
outside the visual field), at no age did infants reliably follow
gaze. Butterworth interpreted these results as indicating that in-
fants by 6 months follow gaze only via an “ecological mecha-
nism,” which also causes them to be distracted by other objects
along the scan path.With time, they are able to disregard the dis-
tracter object through a “geometric compensation mechanism,”
but only in the “90 second along the scan path” variation. In
the other second-target trials, however, where the target is out-
side the infant’s visual field, infants have even more difficulty
disregarding the distracter within their visual field.
2) Modeling the “Geometric Stage”: Our simulation was in-

tended to replicate the spatial layout and trials of Butterworth’s
experiments. The saliency of all objects was set to 1, corre-
sponding to objects of an average saliency. At the beginning of
every trial, the infant model looked at the caregiver ,
and the caregiver’s heading ( and in tandem) was set to
look towards the object specified by the particular trial. Each
trial was run for 6 time steps, equivalent to the six seconds used
in the experimental paradigm described earlier. During this time
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Fig. 5. Butterworth’s 4-target and 2-target settings. Gray area represents space outside the infant’s FOV. (Top row) 4-target setting: Target first along the scan
path, at 30 (left), 60 (middle), or 90 (right). (Bottom row) 4-target setting: Target second along the scan path, at either 90 (left), 120 (middle), or 150 (right).
(Top row) 2-target setting: Target within the infant’s FOV, at 30 (left), 60 (middle), or 90 (right) from the infant’s midline. (Bottom row) 2-target setting: Target
outside the infant’s FOV, at 120 (left), or 150 (right).

the caregiver’s heading did not change, and the infant model fol-
lowed the actions specified by its action-selection algorithm, as
described earlier.
Trials were scored as follows. Correct responses were those

where the infant model’s attention (heading) shifted from ini-
tially looking at the caregiver directly to looking at the target,
or to a heading immediately to the right or the left of the
target. This corresponds to looking at the target plus or minus
22.5 , which is slightly stricter than the 30 used by Butter-
worth. Wrong responses were those where the infant model
looked at the correct side of the room but at the incorrect
target. If during the trial’s time steps the infant model did
not shift gaze, the response was considered noncodable. Re-

sponses where the infant model either looked at the wrong
side of the room or at empty space on the correct side of
the room were omitted, as in Butterworth’s studies. These re-
sponses were quite infrequent in the infant model, as in the
original studies of real infants.
After every 1 500 000 time steps, learning was suspended (to

avoid over-training) and each of the six 4-target trial types was
performed 200 times (100 times on each side of the room).
Fig. 6 shows the results for the complete training, i.e., for the
whole 1500 000 time steps (for more detailed results, see [36]).
These results correspond to five models that were trained and
tested separately, each with its own random action-selection
seed, and with an initially blank state of the world (i.e., all values
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Fig. 6. Results for the 4-target setting. (Top) Butterworth’s results.
(Bottom)Model’s results (error bars indicate standard errors after 5 repetitions).

in array were zero). At time steps, no learning has taken
place, so that the results reflect random actions.
We can see that the accuracy of following to the 30 , 60 , and

90 -first targets is close to 100%, similar to what Butterworth
reports for those setups (compare with Fig. 6, top). The infant
model progressively increases the accuracy for the 90 -second
targets, qualitatively similar to the increase of accuracy reported
by Butterworth. However, note that this target is learned some-
what sooner, relative to the other locations, than it was by the
infants in Butterworth’s studies, Finally, for the 120 and 150
settings, the infant model never reaches the point of reliably fol-
lowing gaze, similar to the findings reported by Butterworth.
The infant model’s progress in the “90 -second” setting,

which Butterworth attributes to the incorporation of the geo-
metric compensation mechanism, is explained as follows.
Initially, foveation makes the 30 target more salient than the
90 target. But because the caregiver is looking at the 90
target, the emerging association of the head/eye state even-
tually balances the probability of selection between the two
targets. What then causes the preference for the 90 target is the
decay in and , the parameters that define how “fuzzy”
the representation of the caregiver’s head/eyes direction is in

. As and diminish, the values of and reflect
the caregiver’s head and eye direction more precisely. The
increasing probability of gaining reward by highly valuing the
head and eye cues eventually “wins” over the saliency of the
30 target; thus, the infant model shifts to prefer looking at the
90 target. Note that the accuracy at 12 months in [11] is around

30%, contrasting with the results in Butterworth and Jarrett
[13] of around 70% at 12 months, and 50% at 6 months for a
similar setup. Our model could explain this disparity in results
as due to differences in target saliency. In fact, Butterworth
and Cochran’s targets were blue stars on a yellow background,
whereas Butterworth and Jarrett’s were simply yellow squares.
It is reasonable to presume that the former were more salient,
consistent with our explanation. (However, without an exper-
imental comparison we cannot assume that the former were
functionally more salient to infants than the former.)
The model also can explain why in the 120 and 150 trials

gaze is followed seldom and late. The saliency of the distracter
can override the cue value of the caregiver’s head and eyes di-
rection, because the foveation offset does not let saliency drop
to values too close to zero when the distracter is positioned at
30 and 60 , respectively. This is illustrated by repeating the
4-target setting with the target at 120 (Fig. 5, bottom row,
middle) with different values for the object saliencies. Although
both target and distracters vary in saliency, the target (and the
distracter on the other side of the room) is not visible to the in-
fant model. The saliency of the visible distracter changes the re-
sults of the experiments, as shown in Fig. 7. Decreasing object
saliencies helps the infant model disregard the distracter (object
saliencies of 0 and 0.5), whereas increasing the object saliencies
causes the infant model to always look at the distracter instead
(object saliencies of 1.5 and 3.0). This was observed by [31],
who noted an almost 100% likelihood of attending to the first
target along the scan path (the distracter on the same side of the
room as the target) when the saliency of targets was increased
by setting them in motion.
Another possible contributor to this effect is the informa-

tiveness of the caregiver’s head and eye cues. When the infant
model turns too far away from the caregiver (i.e., to the 120 or
150 targets), the caregiver’s head and eyes are out of view, and
their information value, relative to the infant model’s learning
state, is minimized. Experiment 2 in [20] found that infants’ ten-
dency to ignore targets behind them is partly due to the reduced
salience of the caregiver’s head and eye cues. In addition, [13]
found that 6-month-olds’ gaze-following drops off when they
must turn more than 90 to 135 away from their mother’s face.
These findings also are consistent with the model.
3) Emergence of the Representational Stage: In Butter-

worth’s 2-target setting experimental paradigm [11], [13],
targets were positioned two at a time, one on each side of the
room along the wall, as shown in the part of Fig. 5 labeled
“2-Target.” In the first three variations of the experiment (top
row), targets were set at either 30 , 60 , or 90 from the infant’s
midline. These locations are within the infant’s FOV. In two
other variations (bottom row), the targets were set at either
120 or 150 . These locations are outside the infant’s FOV.
Butterworth posited that the three first setups (30 , 60 , and
90 ) do not require the infant any kind of representation of
space not immediately seen, and that following gaze at the last
two setups (120 and 150 ) would only make sense when the
infant realizes that there is space besides the immediately seen,
and that an object might be there.
Scoring for this setting is similar to the one used for the

4-target experiments, except that instead of wrong responses
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Fig. 7. Effect of varying object saliencies in the 4-target, 120 setting. Increasing the saliency causes the infant model to look at the distracter, resulting in a low
score (accuracy) for this setting. But with a low target saliency, the infant model is able to disregard the distracter and achieve a high accuracy. Note that the result
for is the same as that of Fig. 6, 120 .

Fig. 8. Results for the 2-target setting. (Top) Butterworth’s results. (Bottom) Model’s results (error bars indicate standard errors after 5 repetitions).

being defined as looking at plus or minus 30 around the in-
correct target on the same side of the room, they were defined
as looking at another location on the same side of the room as
the target.
The results are presented in Fig. 8. Infants age 6 months and

older turned when the target was within their FOV (angles of
30 , 60 , and 90 ). However, not until 18 months of age did they
consistently follow gaze to targets outside their FOV (targets at
120 and 150 ).
Butterworth interpreted these results as the infant incorpo-

rating a “representational mechanism” on top of the earlier eco-
logical and geometric mechanisms. This new mechanism al-
lows it to understand that objects can exist even when the infant

cannot see them. By eliminating the distracter object, Butter-
worth tested this understanding more cleanly. The results sug-
gest that either a representational mechanism, or some other ef-
fect, renders infants unable to follow gaze to unseen objects until
some months after they have started to follow gaze to peripheral
locations.
4) Matching the Representational Stage: We conducted new

simulations to determine if the infant model could, through the
same single learning mechanism, replicate the results from But-
terworth’s 2-target experiments. Each of the five trial types were
repeated 200 times (100 times on each side of the room). The
scoring system was the same as was used earlier. In Fig. 8, we
can see that the accuracy of the 30 , 60 , and 90 trials in the
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2-target setting is always close to 100%, similar to what But-
terworth reports for those settings (compare with Fig. 8, top)
Themodel progressively increases the accuracy for the 120 and
150 trials, with 120 trials always slightly more accurate than
150 trials, but both approaching 100% by the end of training,
as in the results reported by [11]. Thus, the infant model exhib-
ited similar behavior as the human infants, which Butterworth
explained as coming from a new mentalistic “representational”
mechanism. However, no additional mechanism was added to
the model.
The infant model’s progression in the 120 and 150 settings

is explained as follows. Initially the infant model will learn to
look at salient locations (see Section II). After this, its typical be-
havior will be to shift attention among the salient objects within
view, including the caregiver. In this process, when the infant
model looks at the caregiver and eventually habituates, it will
look at another object within its FOV. These objects will lie in
the white area of Fig. 5. After many repetitions of this behavior,
the infant model will learn to follow gaze to objects in the white
area. Gaze following to objects in the gray area will typically
be learned when the infant model, after habituating to the care-
giver, “explores”, shifting its gaze to a random location in the
room, which in some cases turns out to be an object within the
caregiver’s line of sight. This, however, will happen rarely when
there are other objects within the infant model’s FOV that could
capture its attention, and these “lost opportunities” for gaze fol-
lowing make this kind of gaze following slower to learn than
gaze following to the white area.
5) Discussion: Butterworth designed these experiments to

highlight spatial aspects of gaze following, positing geometric
and mentalistic representational mechanisms emerging progres-
sively to supplement the more basic, saliency-driven ecological
mechanism. Our model explains the gradual improvements at-
tributed to those later mechanisms through a unified biologically
plausible learning process. Butterworth’s three-mechanism ex-
planation is less parsimonious in that it requires additional ex-
planations of how the mechanisms emerge and how they be-
come integrated during development. Moreover, the model we
propose assumes only a set of phenotypes that are very gen-
eral, and, critically, easily demonstrable in fairly young infants.
Those phenotypes are therefore known to be available to infants
as they start learning the significance of social cues. They in-
clude, for example, foveation, saliency-based preferences, at-
tention-shifting, reinforcement learning, and habituation. Our
simulations show that these general and known traits, in the
context of a structured environment, are sufficient to explain
complex social behaviors, without positing additional special-
ized social-cognitive spatial or mentalistic mechanisms.

C. Mechanisms Supporting “True Gaze Following”

Infants gradually incorporate the caregiver’s eye direction
cue in addition to the head direction cue during gaze following.
This transition is said to be an indication of a qualitatively dif-
ferent kind of gaze following stemming from a “true under-
standing” of others as agents with intentions. In this section we
simulate one of the most sophisticated experiments designed to
detect this transition, and show that our system goes through the
same transition without the need for additional mechanisms.

Fig. 9. Experimental conditions set up by Corkum and Moore [17]. ( )
Both head and eyes turn. (H only) Head turns. (E only) Eyes turn. ( ) Head
turns in one direction, eyes in the opposite direction.

1) Emergence of Use of Eye Direction Cues: While the head
direction of others is easier to discern over eye direction be-
cause of the relative size of the head over the eyes, the eyes
give the correct indication of where others are seeing. Corkum
and Moore [17] performed a set of experiments designed to de-
termine at what age infants from 6 to 19 months give priority to
eye direction cues over head direction cues, thus indicating the
transition to “true gaze following”. In their experiments, infant
and caregiver sat facing each other, with no targets present. Four
different setups were used: 1) ; 2) H; 3) E; and 4) (see
Fig. 9). In the condition, the caregiver turned both head
and eyes 60 from midline. In the H condition, only the care-
giver’s head turned, while her eyes remained directed towards
the infant. In the E condition, only the caregiver’s eyes turned
while the head remained pointed towards the infant. Finally, in
the condition, the caregiver’s head turned 30 to one side
of the room, and her eyes turned 30 to the other side (this held
constant the 60 displacement of head and eye direction). Gaze
following scores were calculated by adding for each turn to
the correct side, for each turn to the incorrect side, and 0
for continuing to look at the caregiver (i.e., nonresponses). The
“correct side” was defined in the condition as the side
towards which the caregiver’s head turned, to assess preference
for head direction over eye direction cues. However, E condi-
tion scores were based on eye-following, to assess sensitivity to
eye direction alone. Corkum and Moore’s observations were as
follows: 1) from 6 to 10 months of age, no gaze following was
found; 2) at 12 to 13 months, some infants followed gaze, based
primarily on head direction; 3) at 15 months infants followed
gaze, based primarily on head direction but with some sensi-
tivity to eye direction; 4) at 18 to 19 months, an effect of the eye
cue was found, but not when head and eye orientations were
in opposition. Corkum and Moore argue that the discrepancy
between their results at 18 months and those of [47] and [13],
who found gaze following based on eye direction alone, can
be explained by procedural differences. The previous studies
presented eye-only trials in separate blocks, which might have
enhanced their saliency, relative to randomized blocks (where
head cues are available in many trials), such as in Corkum and
Moore’s design. Also, although Corkum and Moore did not find
a difference between the and the H variations before 18
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Fig. 10. Simulation results for head versus eye cue experiments.

months, [15] found a difference at 14 months, perhaps due to
testing more infants (32 versus 12), or because they used a dif-
ferent procedure.
2) Matching the Use of Eye Direction Cues: Corkum and

Moore’s simulations were replicated as follows. As in their ex-
periments, no targets were used. At the beginning of every trial,
the infant model looked at the caregiver and the caregiver’s head
and eye orientations were set as specified by the particular con-
dition. Each trial was run for time steps, during which the
adult’s head and eye direction did not change, and the infant
model responded based on its action-selection algorithm. Trials
were scored as in Corkum and Moore’s study.
These tests were run after every 1 500 000 time steps, im-

mediately after the ones described above for the replication of
Butterworth’s 4-target and 2-target setups. Each of the four trial
types was repeated 200 times (100 times on each side of the
room). Fig. 10 shows the results. At 4.5 million time steps, we
can see an above-zero score in the condition, this score
being somewhat higher than in the H and clearly higher than in
the E condition. This matches Corkum & Moore’s observation
that at 15 months of age infants follow gaze based primarily on
head direction and with some sensitivity to eye direction, with
the distinction that while they did not find a difference between
the and the H condition, we did. This might be explained
by our larger number of trials (200 versus 4), but it also seems
like the “age range” in our simulation went much further than 18
months. Note that around (12 million) steps, eye-direc-
tion begins to be used more reliably than head direction, which
is of course what humans eventually learn.
There are some differences between the human and model

performance. For example, the rise in effect of head-only cues
in the model, around the time that response reaches
asymptote, was not seen in infants. Infants also never showed
the distinction between E and conditions that emerges in
the model around 3-m steps. However, it should be noted that
studies of infants have yielded somewhat different results, de-
pending on methods, so there are clearly some salience and at-
tention-recruiting factors that are not yet understood. Overall,
however, our infant model shows a progressive influence, and
eventual dominance, of eye direction cues, without requiring ad-
ditional qualitatively different mechanisms.
3) Measuring Looking Time and Checking Behavior:

Tomasello [63] suggested that as infants progress in their

gaze following skills, they should develop a mentalistic un-
derstanding of gaze following. He further argued that the
most compelling evidence of this would be: 1) looking longer
at objects looked at by the caregiver; and 2) alternate gaze
between caregiver and her/his object of attention. Although
Tomasello did not test these claims, Flom and Pick [26] found
that 18-month-olds look for longer periods at an object that the
caregiver is looking at, when the caregiver verbally instructs
the infant to do so. Because the caregiver’s voice is itself
an auditory stimulus that might attract the infant’s attention,
the fact that they look during her verbalizations suggests that
infants are influenced by the “meaning” of her words: the
message to redirect attention. Related findings were reported
by [21]. Moreover, [46] and [49] found that toddlers, as well
as enculturated adult chimpanzees, tend to alternate gaze to an
adult if they are also pointing at something to show or request
it. This evidence that apes and human children alternate gaze
when trying to direct another’s attention is consistent with
Tomasello’s claim that alternation is related to mentalistic uses
of attention-sharing.
An alternative possibility is that longer shared-gaze episodes,

and gaze alternation, emerge from the learning process of agents
with the basic set of phenotypes specified in the model, within a
structured social environment. To investigate this, we included
in the tests a setup similar to Corkum and Moore’s ex-
periment but using a target of saliency of 1 (as opposed to no
target). For trials where the infant model looks at the object
after habituating to the caregiver (i.e., trials with successful gaze
following), we observed how long it looks at the object before
looking elsewhere. Fig. 11 left shows that with time the infant
model looks at the target longer, with an eventual leveling off.
The model explains this increase in looking time from an

early bias towards exploration. This bias causes the infant model
to “keep exploring” even when it is already looking at a salient
object. With time, as exploitation kicks in (because values of
diverge from their initial zero values), the infant model will

more effectively exploit learned rewards (i.e., salient targets).
The infant model will always eventually look away, thereby re-
stricting looking time. This is due to the habituation routine,
which systematically reduces the salience of the attended target
over time. Therefore, the infant model’s exploration versus ex-
ploitation dynamics is the main causation of the increase in
the time that the infant model looks at the object, and not the
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Fig. 11. (Left) Average time looking at target. (Right) Average number of gaze alternations.

fact that the caregiver is looking at the object. In other words,
the observed behavior does not require the additional claim by
Tomasello that infants take a special interest in an object if
someone else is looking at it. Thus, our model predicts that
during some period as infants have learned gaze-following, their
looking time to salient target will increase, without regard to a
caregiver’s intentions.
We also examined, in the same experiment, whether the infant

model would alternate gaze between the caregiver and object.
For this, we measured the average number of gaze alternations
from the caregiver to the target and back, with no intermediate
looks to other directions (i.e., if the infant model looks else-
where, we stopped counting). The right side of Fig. 11 shows
that over time, the infant model does more gaze alternations,
and this number eventually levels off (note the different time
scale with respect to the left side of Fig. 11).
The model explains gaze alternations as stemming from the

dynamics of habituation. When the infant model gets “bored”
of looking at the caregiver, it looks in the direction of the object
(because it is salient and because the caregiver is looking at it).
As the infant model habituates to the object, it also dishabitu-
ates to the caregiver (because the caregiver is no longer in the
infant model’s focus of attention), so that once it gets “bored”
of looking at the object, it looks in the direction of the care-
giver again (note that in this setup, when looking at one object
the caregiver is within sight but the other object is out of sight).
This process would repeat itself indefinitely, but since actions
are chosen probabilistically, there is always a chance that the
infant model will look somewhere else (i.e., explore instead of
exploit), thus breaking the cycle. The number of alternations
increases over time for the same reason that looking times to
objects increase. Exploration diminishes as the infant models
learned action-policies permit exploitation, so the alternation
cycle become longer and/or less frequent.
4) Discussion: As in the previous section, we have shown

that specific gaze following behaviors seen in infants also
emerge in a fairly simple model, without adding any new
mechanisms beyond a small set of infant phenotypes and
ecological conditions that are known to exist for some months
before infants begin following gaze. The findings of growing
sensitivity to eye cues, and increasing gaze-alternation, are

particularly relevant because previous explanations for these
behaviors have incorporated a “theory-of-mind” [56]. Of
course, these results in no way suggest that primitive mental-
istic inferences do not occur during the first two to three years.
However, they suggest that there is no compelling reason to
attribute even late-emerging gaze-following behaviors to such
inferences.

IV. CONCLUSION

We presented a computational model of the development of
gaze following. Our model rests on the “basic set hypothesis,”
which states that a small number of generic ingredients such as
visual preferences, habituation, reinforcement learning, and a
proper learning environment are sufficient to explain the emer-
gence of gaze following skills. It is not necessary to postulate
an ever-increasing set of new mechanisms to explain the pro-
gressive refinement of infant behavior. A small set of generic
ingredients is sufficient to explain major aspects of the develop-
ment of gaze following during the first 18 months.
Learning as a general mechanism for the development of

gaze following was first proposed by [53], and our model
backs up this conjecture. The first model based on the basic
set hypothesis was developed by [67], and pertained to the
basic gaze following skill. But space was modeled as discrete
locations, with no particular relation between them. By using
a 2-D representation of space, which also implied simulating a
basic visual input system, our model replicates the geometric
and representational stages of gaze following. We do not posit
additional mechanisms for that. Instead, we further exploit
learning as an explanatory basic mechanism. Preprogrammed
models of gaze following such as Cog [7] and Infanoid [44],
[43] cannot take advantage of learning. Instead, additional
programming would be needed to implement more complex
forms of gaze following. Of the computational/robotic models
of gaze following that are based on learning, such as [27], [33],
[55], [30], and [60], learning is used only to explain the basic
skill of gaze following. Ideally, their models should be able to
replicate, without modification, further stages of gaze following
as our model does. However, this has not been attempted suc-
cessfully yet. Maybe it was assumed, as Butterworth and others
did, that learning only pertained to basic gaze following, and
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that subsequent stages did not indicate an improvement of gaze
following per se, but of other mechanisms instead. In contrast,
our approach has been to assume that where development in
a skill happens, learning should be explored as a central ex-
planation for its appearance as well as for its development. In
other words, introduction of additional “mechanisms” should
be avoided in favor of the use of learning to explain the further
development of the basic skill. For example, Moore [72] be-
lieved that the use of eye direction cues over head direction cues
could not be explained by learning, but instead belonged to the
set of “theory-of-mind” skills. Our model showed that learning
indeed can explain the development of this skill, without trying
to integrate some kind of “theory-of-mind” module. And,
further in this direction, why not use the basic set hypothesis to
model “theory-of-mind” skills? In fact, we have already used it
to model social referencing [38], where infants learn to consult
the expression of adults before interacting with novel objects.
The development in the attribution of false beliefs to others
in the false-belief task, for example, might also be subjected
to modeling using the same approach. Other visual attention
skills observed in infants could also be amenable to similar
learning-based approaches, such as the active information
selection observed in infants, a strategy that helps them cope
with uncertainty and ambiguity in their environment [70].
Beyond this, the value of the model lies in the predictions

it makes. Our model previously predicted the emergence of a
new class of mirror neurons for gaze-following emerging in its
premotor layer [66].3 Such kinds of mirror neurons have in-
deed been recently found in macaque monkeys4 [58]. This lends
strong support to our model as a viable candidate for a mecha-
nistic account of the emergence of gaze following.
We originally posed two questions, and will now try to

address these. Our response to the question “What is the nature
of the mechanisms of gaze following?” is that we believe
that the gradual reinforcement-based learning of our model
is a satisfactory explanation. Our model not only acquires
basic gaze following, but also shows progressive refinement
that fits human behavioral findings. Our simulations replicate
some classic findings of cumulative changes in gaze following
ability. Although such changes may seem categorical and
have been associated with different “mechanisms,” our model
produces these categorical changes via gradual adaptations in
its connection weights. Such an account based on well-studied
generic learning mechanisms is attractive due to its simplicity
and parsimony.
To the question “What factors guide the developmental

schedule of gaze following?” our answer is that detectable
structure of events in the social environment affords oppor-
tunities for learning. Note that while our model makes some
aspects of this learning explicit (changes in how sensory states
get mapped onto gaze shifts), other aspects have been treated
only implicitly (such as the progressive improvement of the

3The model used in [66] corresponds to an earlier version, with the same
architecture and learning mechanism as the one presented here but with minor
differences ( and were not yet introduced, and parameter values differ
slightly) The same mirror neuron-like properties found in that model are present
in the model shown here.
4Compare Fig. 6 in [66] with Fig. 2 in [58].

infant’s ability to estimate the orientation of the caregiver’s
eyes and head).
The proof of possibility that a “basic set” of general-purpose

elements can lead to a variety of gaze following behaviors also
obviates some assumptions about representation made by prior
models. Our model does not understand others as intentional
agents, or analogize its own actions and the caregiver’s (as in
simulation theory [50]). In fact there is no explicit representa-
tion of “self,” of intentions, of the caregiver as a separate entity,
or of the caregiver’s intentions or thoughts or beliefs. Nonethe-
less, our model does eventually follow gaze to out-of-sight tar-
gets, learn to weight eye direction cues over head direction cues,
and do gaze alternation—all of which have been interpreted as
signs of a new ability to represent “intersubjectivity.” Given our
results, then, we can conclude that these phenomena do not nec-
essarily reveal a new “intersubjective” understanding of others.
Of course, we cannot disconfirm that possibility, but they are
not strictly necessary to explain the behavior. In addition, we
do not rule out that the gaze-following behaviors that emerge
in our model could be foundational for more sophisticated un-
derstanding of others. After all, reacting to others’ gaze and es-
tablishing joint attention is a kind of understanding of other’s
attention, albeit not a discretely conceptual or theoretical one. It
is an embodied understanding–embodied, that is, in behavioral
tendencies that gradually emerge from learned values of associ-
ations between observations and subsequent actions. How this
implicit embodied knowledge could be utilized in the develop-
ment of a more sophisticated understanding of others is a topic
for future research. However, we would emphasize the neces-
sity of a structured environment in this process.
It should be noted that our model does not include as input the

caregiver’s body, hands, and voice, which play a part in gaze fol-
lowing. However, [21], [20], and [26] found that parents’ verbal
exhortations modestly add to the efficacy of gaze- and point-fol-
lowing, but do not qualitatively change any patterns. Also, [48]
added hand-and-arm motions to the parent model, and the initial
findings suggested that a reinforcement learning model could
learn gaze-following routines, even in this more complex envi-
ronment.
While the model was primarily tested on Butterworth’s and

Corkum and Moore’s experimental setups, it can also be tested
on similar setups, such as the varied configurations of target
setups used by [22], or the ones done by [12] using targets
with small degrees of separation. This would lend validity to
the general architecture used, making sure that we are not over-
generalizing with our solution. And while we believe that our
model makes a strong case for eliminating additional unneces-
sary mechanisms in favor of a learning-based explanation, many
of its parameters and corresponding values were based on their
utility for replicating experimental results of interest. These pa-
rameters could be tuned using results from new studies based
on eye-tracking software that have given more detailed mea-
surements of gaze following behavior [34], [29].
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