
UC Riverside
UC Riverside Previously Published Works

Title
Distributed and communication-efficient solutions to linear equations with special sparse
structure

Permalink
https://escholarship.org/uc/item/78w3d0wz

Authors
Wang, Peng
Gao, Yuanqi
Yu, Nanpeng
et al.

Publication Date
2022-02-01

DOI
10.1016/j.sysconle.2021.105065

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/78w3d0wz
https://escholarship.org/uc/item/78w3d0wz#author
https://escholarship.org
http://www.cdlib.org/

Distributed and Communication-efficient Solutions to

Linear Equations with Special Sparse Structure

Peng Wanga, Yuanqi Gaob, Nanpeng Yub, Wei Renb, Jianming Lianc, Di
Wua

aPacific Northwest National Laboratory, 902 Battelle Blvd, Richland, 99354, WA, USA
bUniversity of California, Riverside, 900 University Ave, Riverside, 92521, CA, USA
cOak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, 37831, TN, USA

Abstract

In this paper, two distributed and communication-efficient algorithms based
on the multi-agent system are proposed to solve a system of linear equations
with the Laplacian sparse system matrix. One algorithm is based on the
gradient descent method in optimization. In this algorithm, the agents only
share partial information instead of all of their collective state vectors to save
significant communication. The other algorithm is obtained by approximat-
ing Newton’s method for a faster convergence rate. Although it requires twice
as much communication as the first one, it is still communication-efficient
given the low dimension of the information shared among agents. The con-
vergence at a linear rate is proved for both algorithms, and a comprehensive
comparison of their convergence rate, communication burden, and compu-
tation costs is also performed. The proposed algorithms can be applied to
various systems to solve those problems that can be modeled as a system of
linear equations with a Laplacian sparse system matrix. Simulation results
with the electric power system illustrate their effectiveness.

Keywords: distributed method, multi-agent system, linear equations,
power system

1. INTRODUCTION

Solving a system of linear equations, denoted by Ax = b mathematically,
is one of the most fundamental problems in many research fields. With
the emergence of Internet of Things, an increasing amount of sensors and
actuators are being integrated into the networked systems around us. Hence,

Preprint submitted to Systems & Control Letters November 3, 2021

distributed methods to solve a system of linear equations are attracting more
attention from researchers.

Many distributed algorithms to solve Ax = b are proposed in the litera-
ture, e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. These
algorithms assume that each agent knows some rows of the augmented ma-
trix

(
A b

)
. The algorithms in [14, 15, 16, 17, 18, 19] are continuous-time

ones while those in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] are discrete-time
ones. In this paper, we focus on discrete-time distributed algorithms to solve
Ax = b. In [1], a distributed algorithm is proposed for both synchronous and
asynchronous updates under repeatedly jointly strongly connected graphs,
which requires locally feasible initialization. The convergence of the algo-
rithm at a linear rate is also proved in [1]. Ref. [10] extends the results in
[1] by considering the influence of communication and computation delays
and arbitrary initialization. In [2], distributed algorithms are proposed to
find the minimum norm solution to a system of linear equations associated
with weighted inner products. Ref. [9] then broadens the results in [1] and
[2], allowing arbitrary initialization for convergence to a general solution. It
also shows that with special initialization, the distributed algorithms in [9]
can converge to a solution to Ax = b that is closest to a given point. When
Ax = b has a unique solution, a distributed algorithm is designed in [3] to
allow arbitrary initialization with the feedback of the deviation from local
systems of linear equations. The algorithm is proved to converge at a linear
rate. Also, when Ax = b has a unique solution, a distributed algorithm is
proposed in [8] using the subgradient method and the linear convergence rate
is proved. In [5, 6, 7], a distributed algorithm that converges in finite time
is also proposed to solve Ax = b. The algorithm requires agents to share
the information of kernels of local equations with their neighbors, which may
lead to non-robustness. A distributed algorithm to solve Ax = b is proposed
in [4] using M -Fejer mappings and the convergence rates for two special cases
are also specified.

In the literature mentioned above, the agents need to share their estimates
of every entry of the vector x. However, in many applications in which ma-
trix A is sparse and the system is large-scale, the distributed algorithms in
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] will lead to significant communication overhead. In
this case, communication-efficient distributed algorithms to solve Ax = b are
necessary. Communication-efficient distributed algorithms to solve Ax = b
are designed for time-varying undirected graphs in [12] in which each agent
broadcasts the entries of its estimate in a cyclic manner and complete send-

2

ing the whole vector of its estimates in multiple rounds of communication.
The algorithms in [12] reduce the communication burden in each round of
communication, but the total communication burden does not change. A
communication-efficient distributed algorithm is proposed in [11] for general
sparse matrices, but the algorithm in [11] requires the information of common
nonzero parts of agents’ rows and their neighbors’ columns. When matrix
A is Laplacian sparse, the distributed algorithm in [11] requires sharing in-
formation of agents’ common neighbors, which might not be available to the
agents. The algorithms in [12, 11] are extended to directed graphs in [13].

In this paper, we develop communication-efficient distributed algorithms
to solve Ax = b with Laplacian sparse A based on multi-agent systems. Ma-
trices with Laplacian sparse structure can be found in many problems such
as network flow problems in various kinds of systems. In particular, the
power flow problem in a power system involves network matrices with Lapla-
cian sparse property. In our proposed communication-efficient distributed
algorithms, an agent only transmits the parts of x related to itself and its
neighbors, instead of every entry of x as in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] or the
state of their common neighbors as in [11]. In the first proposed algorithm,
only two parts of the vector x are transmitted through each communication
link while in the second proposed algorithm, two parts of x and the corre-
sponding parts of the gradient vector of the system are transmitted. As each
part of x and that of the gradient vector are low dimensional, both algo-
rithms significantly reduce the communication burden. We propose the first
communication-efficient distributed algorithm to solve Ax = b with Lapla-
cian sparse A based on a gradient descent method and prove its convergence
at a linear rate. Then, we propose an accelerated communication-efficient
distributed algorithm based on an approximation to Newton’s method. The
algorithm based on the approximated Newton’s method requires twice as
much communication as the one based on the gradient method. As the infor-
mation communicated between agents is low dimensional, the approximated
Newton-based algorithm is still communication-efficient.

A preliminary version of this paper was presented in [20]. Compared
with [20], Theorem 2 is extended to a more general case in which Ax = b has
multiple solutions. Such an extension requires a totally different proof from
the one shown in [20]. In addition, the detailed proof of Lemma 3, which is
the key to Theorem 1, is presented in this paper. Simulation examples are
also added in this paper to illustrate the efficacy of the proposed algorithms.

The remaining of the paper is organized as follows. In Section 2, the pre-

3

liminaries on graph theory, Laplacian sparse matrix, and power flow problems
are provided. In Section 4, the two communication-efficient distributed algo-
rithms are proposed to solve Ax = b with Laplacian sparse A with a detailed
comparison. Simulation results are presented in Section 6 to illustrate their
effectiveness. Finally, the conclusions can be found in Section 7.

2. Preliminaries

In this section, we provide some preliminaries on the graph theory, which
is necessary for distributed algorithms, Laplacian sparse matrix, which is our
research focus in this paper, and power flow problem, which serve as the
practical application of our research topic.

2.1. Graph Theory

An M -th order undirected graph, denoted by G(V,E), is composed of a
vertex set V = {1, · · · ,M} and an edge set E ⊆ V × V . We use the pair
(j, i) to denote the edge between the j-th vertex and i-th vertex. We suppose
that (i, i) /∈ E, ∀i ∈ V . We say that j is a neighbor of i if there is an edge
between i and j. The neighbor set Ni of vertex i is composed of the neighbors
of the i-th vertex, i.e., Ni = {j : (j, i) ∈ E}. The number of the i-th vertex’s
neighbors is denoted by |Ni|. The Laplacian matrix L = [lij]M×M ∈ RM×M

associated with the graph G is defined such that

lij =

1, j ∈ Ni

−|Ni|, j = i;

0, otherwise.

A path between i and j is a sequence of edges (i, i1), (i1, i2), · · · , (ip, j). An
undirected graph is connected if, for every pair of vertices i and j (i 6= j),
there is a path between them.

2.2. Laplacian Sparse Matrix

In this work, we assume that matrix A has the following special sparse
structure.

Definition 1 (Laplacian sparse matrix). A matrix A has the Laplacian
sparse structure of an undirected graph G if aij 6= 0 only if i and j are
neighbors in G or i = j, i.e., lij 6= 0, where aij is the (i, j)-th entry of the

4

matrix A. A block matrix A has the Laplacian sparse structure of a graph G
if Aij is a nonzero matrix only if i and j are neighbors in G or i = j, i.e.,
lij 6= 0, where Aij is the (i, j)-th block of matrix A.

Remark 1. In many engineering systems, the graph G emerges from the com-
munication network while matrix A is dependent on the network of physical
connection, e.g., connection by electricity wires in a power system. In Defi-
nition 1, when lij is zero, aij (or Aij) must be zero; but when lij is nonzero,
aij (or Aij) may be zero or nonzero. This allows us to apply the results in
this paper to some problems in which the communication network differs from
the physical network. For example, in a power system, the communication
network may consist of regional centers which are in charge of many buses in
a region while the physical network is composed of each bus. The Laplacian
of the communication network does not have the same sparse structure as
the power network. However, if there exists a communication link between
regional centers that have physically connected buses, the results in this paper
can be applied.

A matrix that has the Laplacian sparse structure of a graph G is also
called a Laplacian sparse matrix for simplicity if the graph G is clear from
the context.

2.3. Power Flow Problem

Laplacian sparse matrices are common in many problems, e.g., power flow
problems. In power flow problems, the nodal admittance matrix of a power
system has a Laplacian sparse structure if the communication topology is the
same as the physical one. Also, the Jacobian of the power flow equations,
though more complex, can be regarded as a Laplacian sparse matrix.

The power flow problem is very fundamental in the steady-state anal-
ysis of electrical power systems. The power flow problem is typically for-
mulated as solving a system of nonlinear equations, known as the power
flow equations. Laplacian sparse matrices emerge in numerical solutions
to power flow equations, e.g., the Newton-Raphson method. We will give
a brief introduction to single-phase power flow problems and the Newton-
Raphson method. A comprehensive description of power flow problems and
the Newton-Raphson method can be found in [21].

Consider an electrical network modeled by a weighted graph G = (V , E ,W),
where V is a set of nodes, E a set of links representing transmission/distribution

5

lines, and W a set of weights associated with E . The value of w ∈ W de-
pends on the electrical characteristics of the link, e.g., the impedance of the
conductor.

Let vi be the nodal voltage of node i, si be the net complex power injection
at node i, and Y be the nodal admittance matrix. Notice that Y has the
same sparse structure as the Laplacian matrix of G and is thus a Laplacian
sparse matrix.

Let vi = |vi|eθi , si = pi + qi, and Y = G+ B, where is the imaginary
unit, |vi| is the nodal voltage magnitude, θi is nodal voltage angle, pi is
net active power injection, qi is the net reactive power injection, G is the
conductance matrix, and B is the susceptance matrix. Let

pi(x) =
∑|V|

k=1 |vi||vk|(Gik cos θik +Bik sin θik),

qi(x) =
∑|V|

k=1 |vi||vk|(Gik sin θik −Bik cos θik),
(1)

where Gik and Bik are the (i, k)-th entry of matrices G and B, respectively,
θik = θi− θk is the nodal voltage angle difference between nodes i and k, and
x = (|v2|, |v3|, · · · , |v|V||, |θ2|, |θ3|, · · · , |θ|V||)T . As matrix Y has the Laplacian
sparse structure of G, so do G and B. Thus, if nodes i and k are not con-
nected, Gik and Bik are both zero. The power flow problems can be solved
through solving the following equations

pi(x)− pi = 0, i = 2, 3, · · · , |V|,
qi(x)− qi = 0, i = 2, 3, · · · , |V|.

(2)

In the Newton-Raphson method, (2) is iteratively solved. In each iterative
step, we need to solve a system of linear equations as follows:

−J∆x = y (3)

where J is the Jacobian matrix of the functions in (2), y is a constant related
to (1) in each step.

The Jacobian matrix can be partitioned as

J =

(
Jpθ Jp|v|
Jqθ Jq|v|

)
, (4)

where

Jpθ =
∂p(x)

∂θ
, Jp|v| =

∂p(x)

∂|v|
, Jqθ =

∂q(x)

∂θ
, Jq|v| =

∂q(x)

∂|v|
.

6

When Gik and Bik are zero, the (i, k)-th entries of Jpθ, Jp|v|, Jqθ, and Jq|v|
are zero, and thus they have the same sparse structure as matrices G or B.
As G and B have the Laplacian sparse structure of G, Jpθ, Jp|v|, Jqθ, Jq|v| also
have the Laplacian sparse structure of G.

Remark 2. Each entry of J can be computed locally. In the first block Jpθ,
its entries in the (i, j)-th sub-block depend only on the voltage magnitudes and
phase angles of the i-th agent and the j-th agent, the conductance Gij and the
susceptance Bij between them, which are all local information. The entries in
other blocks Jp|v|, Jqθ, Jq|v| can similarly be computed with local information.
Thus, all entries of J can be computed locally.

3. Problem Formulation

Suppose that we have a group of M agents that form the vertex set V
and communication links between the agents that form the edges between
the vertices. The agent network can be represented by a graph G(V,E). For
graph G, we have the following assumption:

Assumption 1. The communication topology of the agent network is fixed,
undirected, and connected.

Remark 3. Fixed, undirected, and connected graphs exist in many engi-
neering problems. For example, in a smart grid, the sensors to measure
the electrical quantities, e.g., voltages, are installed in fixed locations. The
communication channel between each pair of sensors is bidirectional, i.e.,
undirected. The communication topology of the sensor network will be fixed,
undirected, and connected.

Assumption 2. The system matrix A has the Laplacian sparse structure of
the communication graph of the agent network.

Each agent knows some rows Ai, i ∈ V of A and the corresponding entries
bi in b. All the agents work together to obtain a solution to Ax = b. Matrix
A is assumed to have a Laplacian sparse structure of G as in Definition 1.

Let A(i) be the nonzero part in Ai, x
(i) the corresponding parts in x,

and L(i) the nonzero parts of Li, where Li is the i-th row of the Laplacian
matrix L. Then the local equations Aix = bi is equivalent to A(i)x(i) = bi.

7

For clarity of notation, let A
(i)
j denote the part (i.e., entry or block) of A(i)

which corresponds to the j-th part of Ai, x
(i)
j denote the part of x(i) which

corresponds to the j-th part of x. In the rest part of the paper, x
(i)
i is referred

to as the i-th agent’s state, x(i) as the i-th agent’s augmented state, x
(i)
j as

the i-th agent’s estimate on j-th agent’s state, and x as the collective state.

Example 1. Consider a network G composed of four agents with the follow-
ing Laplacian matrix,

L =

−1 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1

 ,

and the following matrix A with Laplacian sparse structure of G,

A =

1 3.4 0 0

0.8 5 −9 0
0 −6.23 −3 6
0 0 −5 −0.96

 .

If each agent owns one row of A, then A(1) = (1 3.4), A(2) = (0.8 5 −9),

A(3) = (−6.23 −36), A(4) = (−5 −0.96), A
(1)
1 = 1, and A

(1)
2 = 3.4. Cor-

respondingly, x(1) = (x1 x2)
T , x(2) = (x1 x2 x3)

T , x(3) = (x2 x3 x4)
T , and

x(4) = (x3 x4)
T , x

(3)
2 = x2, x

(3)
3 = x3, and x

(3)
4 = x4. L(1) = (−1 1),

L(2) = (1 −2 1), L(3) = (1 −2 1), and L(4) = (1 −1).

If solving Ax = b is formulated as the following distributed optimization
problem,

minimize
1

2

∑
i∈V

‖Aixi − bi‖2

subject to xi = xj, ∀i, j ∈ V,

then, under Assumption 1 and the Laplacian sparse structure of A, it is
equivalent to solving

minimize f =
1

2

∑
i∈V

‖A(i)x(i) − bi‖2

subject to x
(i)
i = x

(j)
i , x

(j)
j = x

(i)
j , (i, j) ∈ E,

(5)

8

which can be easily proved as follows. If x? is a solution to Ax = b, it is obvi-
ous that x(i) =

(
x?j
)
j∈Ni∪{i}

, ∀i ∈ V , is also an optimal solution to (5). If x(1),

x(2), · · · , x(M) form a solution to (5), denoted x? =
(
x
(1)T
1 x

(2)T
2 · · · x(M)T

M

)T
,

for any the i-th agent, we have x?j = x
(j)
j = x

(i)
j , ∀j ∈ Ni. So, x(i) =(

x?j
)
j∈Ni∪{i}

. Notice that A has the Laplacian sparse structure. Thus, we

have that Aix
? = A(i)x(i) = bi.

We can then transfer the constrained optimization problem in (5) to an
unconstrained optimization problem with penalty functions as follows. Let

fp =
1

2

(∑
i∈V

∥∥A(i)x(i) − bi
∥∥2

+
∑

(i,j)∈E

(∥∥∥x(i)i − x(j)i ∥∥∥2 +
∥∥∥x(j)j − x(i)j ∥∥∥2)

 .

(6)

If Ax = b has solutions, (5) is equivalent to the following,

minimize fp. (7)

If Ax = b has solutions, the solutions to (5) and (7) are those satisfying

that A(i)x(i) = bi, ∀i ∈ V and x
(i)
i = x

(j)
i , x

(j)
j = x

(i)
j , ∀(i, j) ∈ E. So (5) is

equivalent to (7).

Remark 4. In many applications in which Ax = b does not have a solution,
we may be interested in finding a least-squares solution. We can add a weight
to the consensus item in (6) to obtain an approximated least-squares solution.
Or we may explore other formulations for an exact least-squares solution.

4. Communication-efficient Algorithms

In the following, we will propose two communication-efficient distributed
algorithms to solve Ax = b by solving (7). The first algorithm is based on the
gradient descent method while the second one on an approximated Newton’s
method, which converges faster than the first one. The first algorithm only
requires communication of two parts of the vector x through each communi-
cation link while the second algorithm also requires the communication of the

9

two corresponding parts of the gradient vector. For simplicity, it is supposed

that dim
(
x
(i)
i

)
= 1, ∀i ∈ V , i.e., the state of every agent is a scalar, where

dim (·) represents the dimension. It is not difficult to extend the results to
the case in which different agents have states of different dimensions.

4.1. Algorithm Based on Gradient Descent Method

In this subsection, a communication-efficient distributed algorithm to
solve Ax = b is developed based on the gradient descent method with con-
stant step size, and its convergence at a linear rate1 is proved. First, the
gradient descent method with constant step size α is applied to (7). For the
gradient of fp, we have that

∂fp
∂x(i)

= A(i)T
(
A(i)x(i) − bi

)
+
∑
j∈Ni

((
x
(i)
i − x

(j)
i

)
e
(i)
i +

(
x
(i)
j − x

(j)
j

)
e
(i)
j

)
,

(8)

where e
(i)
j = (0 · · · 0 1 0 · · · 0)T with the position of 1 located at the i-th

agent’s local index of j. In addition,

dim
(
e
(i)
j

)
=

∑
j∈Ni∪{i}

dim
(
x
(i)
j

)
= dim

(
x(i)
)
.

Let

x =
(
x(1)T x(2)T · · · x(M)T

)T
(9)

be a stack of all agents’ augmented states and

∇f(x) =

((
∂fp
∂x(1)

)T (
∂fp
∂x(2)

)T
· · ·

(
∂fp
∂x(M)

)T)T

. (10)

be a stack of the gradients. From the gradient descent method

x(k + 1) = x(k)− α∇f(x(k)),

1A sequence {yk} is said to converge to y? at a linear rate if there exists a constant
0 < C < 1, a > 0, and N > 0 such that ‖y(k) − y?‖ ≤ aCk,∀k > N , where ‖ · ‖ can be
any norm.

10

it can be obtained for the i-th agent,

x(i)(k + 1) =x(i)(k)− αA(i)T
(
A(i)x(i)(k)− bi

)
− α

∑
j∈Ni

(
x
(i)
i (k)− x(j)i (k)

)
e
(i)
i

− α
∑
j∈Ni

(
x
(i)
j (k)− x(j)j (k)

)
e
(i)
j ,

(11)

where α is the step size to be selected.

Remark 5. Compared to the algorithms in the literature [1, 2, 3, 4, 8, 9, 10],
the algorithm in (11) can significantly reduce communication. In the algo-
rithms to solve linear equations in [1, 2, 3, 4, 8, 9, 10], the agents need
to communicate their estimates on every entry of the collective state vector
x, which requires significant communication resources for large-scale systems
and leads to significant communication overhead for sparse systems. In con-
trast, in (11), the agents need to communicate their estimates on two parts
of the collective state vector x no matter how large the network size is, which
saves communication resources. In the example of the single-phased power
flow problems introduced in Section 2.3 in which each agent is assigned with a
voltage magnitude and a phase angle, the i-th agent needs to transmit to j-th
agent its estimate on the voltage magnitudes and phase angles of all agents
in the algorithms in [1, 2, 3, 4, 8, 9, 10] while the i-th agent only transmits to
j-th agent its estimates on the voltage magnitudes and phase angles assigned
to i-th and j-th agents in (11), if i-th and j-th agents are neighbors. The
dimension of the transmitted vector in each communication channel in the
algorithms in [1, 2, 3, 4, 8, 9, 10] is (2×network size) while it is 4 no matter
how large the network size is in (11). As a result, the gradient-based algo-
rithm in (11) saves communication compared to those in [1, 2, 3, 4, 8, 9, 10].
Also, compared with [11], (11) does not require sharing estimates of the states
of their common neighbors under Assumption 1 while the method in [11] re-
quires the information of the agents’ common neighbors, which may not be
available. As a result, (11) needs less communication between agents than
the method in [11].

For the performance of (11), we have the following result:

Theorem 1. If the system of linear equations Ax = b has solutions and A is
Laplacian sparse of the agent network, x(i)(k), ∀i ∈ V in (11) converges at a

11

linear rate to the optimal solution set of (7) if 0 < α < 2/λmax(∇2(fp)), where
∇2(fp) is the Hessian of fp which is defined in (6) and λmax(·) represents the
maximal eigenvalue. Let

x?(k) =
(
x
(1)T
1 (k) x

(2)T
2 (k) · · · x(M)T

M (k)
)T

(12)

be the collection of all agents’ estimates of their states. Then x?(k) converges
to a solution to Ax = b.

The proof of Theorem 1 can be found in the appendix.

Remark 6 (A distributed method to select step size). The upper bound
of α in Theorem 1 depends on λmax(∇2fp), which cannot be calculated in
a distributed way. However, we can obtain another upper bound of α in a
distributed way, which is more conservative than that in Theorem 1. Let
H = ∇2fp. Then, the diagonal and off-diagonal blocks of H can be calculated
as follows:

Hii =
∂2fp
∂x(i)2

= A(i)TA(i) +
∑
j∈Ni

e
(i)
i e

(i)T
i + e

(i)
j e

(i)T
j

= A(i)TA(i) + diag(|L(i)|)

(13)

and for i 6= j

Hij =
∂2fp

∂x(i)∂x(j)
=

{
−e(i)i e

(j)T
i − e(i)j e

(j)T
j , j ∈ Ni,

0, j /∈ Ni,
(14)

where diag(|L(i)|) is a diagonal matrix whose diagonal entries are the absolute
values of L(i), which is composed of the nonzero entries of the i-th row of the
Laplacian matrix L. Let A = diag(A(i)TA(i)) be the block diagonal matrix of
which the diagonal blocks are A(i)TA(i). The eigenvalues of A are those of
A(i)A(i)T and 0. Let B = H − A. The diagonal blocks of B are diag(|L(i)|)
and the off-diagonal blocks are as computed in (14). From Gersgorin discs
theorem [22], λmax(B) ≤ 2 maxi |Ni|. Both A and B are real symmetric and
thus Hermitian. From Weyl’s inequalities [22],

λmax(H) ≤ λmax(A) + λmax(B)

= max
i∈V

λmax

(
A(i)A(i)T

)
+ 2 max

i∈V
|Ni|.

12

Therefore,

2

λmax(H)
≥ 2

maxi∈V λmax (A(i)A(i)T) + 2 maxi∈V |Ni|
.

As a result, the step size can be selected as

0 ≤ α ≤ 2

maxi∈V λmax (A(i)A(i)T) + 2 maxi∈V |Ni|

in order to guarantee the convergence of (11). Note that maxi∈V λmax

(
A(i)A(i)T

)
and maxi∈V |Ni| can be obtained via maximum consensus algorithms in a dis-
tributed way.

4.2. Algorithm Based on Approximated Newton’s method

In the above, a communication-efficient distributed algorithm was pro-
posed. However, we find in some simulation examples that it is slow. In
this subsection, we will propose an accelerated distributed algorithm to solve
Ax = b by minimizing (6) based on an approximated Newton’s method.

The centralized Newton’s method to minimize fp is

x(k + 1) = x(k)−
(
∇2fp(x(k))

)−1∇fp(x(k)).

For notational simplicity, denote H = ∇2fp(x(k)) and g(k) = ∇fp(x(k)).
Note that H is a constant matrix for fp in (6).

The gradient of fp is computed in (8) and the diagonal and off-diagonal
blocks of the Hessian of fp are computed in (13) and (14), respectively. As
we do not find any method to compute the inverse of the Hessian of fp in a

distributed way, we will next approximate it. Let Di = γi
∂2fp
∂x(i)2

, where γi > 1
is a constant, and D = diag(D1, · · · , DM). Also, let F = H −D. Then,

Fij =

(1− γi)

(
A(i)TA(i) + diag(|L(i)|)

)
, i = j,

−e(i)i e
(j)T
i − e(i)j e

(j)T
j , j ∈ Ni,

0, otherwise

(15)

and F is Laplacian sparse. As H = D + F ,

H−1 = (D + F)−1

= D−
1
2 (I +D−

1
2FD−

1
2)−1D−

1
2

≈ D−
1
2 (I −D−

1
2FD−

1
2)D−

1
2

= D−1 −D−1FD−1

13

Replacing the inverse of the Hessian in Newton’s method with its approx-
imation, we obtain the following distributed approximated Newton-based
algorithm to solve Ax = b:

x(k + 1) = x(k)− (D−1 −D−1FD−1)g(k), (16)

where x is defined in (9) and g(k) = ∇f(x(k)). For the i-th agent, its
estimate x(i) evolves as

x(i)(k + 1)

= x(i)(k)−

D−1i gi(k)−D−1i
∑

j∈Ni∪{i}

FijD
−1
j gj(k)

 .
(17)

Remark 7. An approximated Newton’s algorithm to solve distributed op-
timization problems can be found in [23], which requires the local objective
functions to be strongly convex. But in our problem, the local objective func-
tions 1

2
‖A(i)x(i)− bi‖ are not strongly convex. Thus, the analysis in [23] does

not apply to the problem in this paper.

The convergence of x in (16) or x(i) in (17) is summarized in the following
theorem.

Theorem 2. Suppose that the system of linear equations Ax = b has solu-
tions and A is Laplacian sparse. Then under Assumption 1, x(i)(k), ∀i ∈ V
in (17) converges at a linear rate to the optimal solution set of (7). Hence,
x?(k) as defined in (12) converges to a solution to Ax = b.

As the convergence of x?(k) follows the convergence of x(i)(k), we will
focus on the proof of the convergence of x(i)(k) at a linear rate to the optimal
point of (7).

Proof. Let
(
A(i)T bi

)
represent

((
A(1)T b1

)T · · · (A(M)T bM
)T)T

for notational

simplicity. It is easy to verify that

g(k) = Hx(k)−
(
A(i)T bi

)
. (18)

Let x? be an optimal solution to (7), then

g(x?) = 0. (19)

14

Combining (16) and (18), we obtain that

x(k + 1)

= x(k)−
(
D−1 −D−1FD−1

)
g(k)

= x(k)−
(
D−1 −D−1FD−1

) (
Hx(k)−

(
A(i)T bi

))
= x(k)−

(
D−1 −D−1FD−1

)
Hx(k)

+
(
D−1 −D−1FD−1

) (
A(i)T bi

)
=
(
I −

(
D−1 −D−1FD−1

)
H
)
x(k)

+
(
D−1 −D−1FD−1

) (
A(i)T bi

)
,

where x is defined in (9). Let e(k) = x(k)− x?. Then it follows that

e(k + 1) = x(k + 1)− x?

=
(
I −

(
D−1 −D−1FD−1

)
H
)

(x(k)− x?)

+
(
I −

(
D−1 −D−1FD−1

)
)H
)
x?

+
(
D−1 −D−1FD−1

) (
A(i)T bi

)
− x?

=
(
I −

(
D−1 −D−1FD−1

)
H
)

(x(k)− x?)

−
(
D−1 −D−1FD−1

) (
Hx? −

(
A(i)T bi

))
.

On the other hand, it follows from (18) and (19) that Hx? −
(
A(i)T bi

)
= 0.

Combining with the fact that

I −
(
D−1 −D−1FD−1

)
H

= I −
(
D−1 −D−1FD−1

)
(D + F)

= I −
(
I −D−1F +D−1F −D−1FD−1F

)
= D−1FD−1F,

we obtain that

e(k + 1) =
(
I −

(
D−1 −D−1FD−1

)
H
)
e(k)

= D−1FD−1Fe(k).
(20)

To prove the convergence of x(i)(k) to the optimal point of (7) at a linear
rate, it is sufficient to prove the following.
S1) The spectral radius of D−1FD−1F is less than or equal to 1, that is,

ρ(D−1FD−1F) ≤ 1. Furthermore, 1 is the only eigenvalue lying on the
unit circle.

15

S2) The eigenvalue 1 of D−1FD−1F has the same algebraic and geometric
multiplicity.

S3) The eigenvectors of D−1FD−1F associated with eigenvalue 1 are in the
kernel of H.

For notational simplicity, denote eigλ(S) = {y|Sy = λy}, where λ is an
arbitrary real number. Then S3) is equivalent to eig1(D

−1FD−1F) ⊂ ker(H).
It follows from S1) and S2) that e converges to a vector in eig1(D

−1FD−1F),
which is denoted as e(∞). x then converges to x(∞) = e(∞) + x?. From
S3), He(∞) = 0. Then

g(∞) = H (e(∞) + x?)−
(
A(i)T bi

)
= 0.

Therefore, x in (16) or x(i) in (17) converges to a solution to (7). Then, it
follows from the linear dynamics of e that the convergence is at a linear rate.
In the following, we will prove S1), S2) and S3), respectively.

Proof of S1) As ρ(D−1FD−1F) = ρ(D−1F)2, what we need to show is
that ρ(D−1F) ≤ 1. As

D−1F = D−
1
2 (D−

1
2FD−

1
2)D

1
2 ,

we have that ρ(D−1F) = ρ
(
D−

1
2FD−

1
2

)
. Next, we prove that

ρ
(
D−

1
2FD−

1
2

)
≤ 1,

which is equivalent to

D−
1
2FD−

1
2 − I ≤ 0

D−
1
2FD−

1
2 + I ≥ 0.

(21)

Note that (21) is valid if the following equations hold,

D−
1
2FD−

1
2 − I < 0

D−
1
2FD−

1
2 + I ≥ 0.

(22)

Multiplying D
1
2 at both sides of (22), we obtain that

D − F > 0, (23a)

F +D ≥ 0. (23b)

16

(23b) holds because F + D = H and H is the Hessian of a non-negative
function (6) and thus positive semidefinite. For (23a), Let FN be a matrix
such that

FNij =

{
Hii, j = i,

−Hij, j 6= i.

andD(γ) be a block diagonal matrix such that its diagonal blocks are 2(γi−1)
γi

Di,
∀i ∈ V . Then, D − F = D(γ) + FN . It is easy to verify that FN is the
Hessian of the summation of the following,

1

2

∑
i∈V

∥∥A(i)x(i) − bi
∥∥2

and ∑
(i,j)∈E

(∥∥∥x(i)i + x
(j)
i

∥∥∥2 +
∥∥∥x(j)j + x

(i)
j

∥∥∥2) .
Thus, FN is symmetric and positive semi-definite. Notice that Dii > 0 and
γi > 1, we have that D(γ) > 0 and thus D − F = D(γ) + FN > 0 and

(23a) holds. Multiplying by D−
1
2 both sides of (23a), we obtain the first

inequality in (22). So ρ(D−1FD−1F) = ρ(D−1F)2 ≤ 1. Also, as D−
1
2FD−

1
2

is symmetric, all its eigenvalues are real and thus the eigenvalues of D−1F
are also real. So, the eigenvalues of D−1FD−1F , as the squares of those of
D−1F , are real and non-negative. Therefore, 1 is the only eigenvalue lying
on the unit circle.

Proof of S2) Notice that (23a) implies that D−1F does not have any
eigenvalues equaling 1. So the algebraic multiplicity of the eigenvalue 1 of
D−1FD−1F is the same as that of the eigenvalue−1 of D−1F and D−

1
2FD−

1
2 .

From (23b), the algebraic multiplicity of the eigenvalue 1 of D−
1
2FD−

1
2 is the

same as that of the eigenvalue 0 of F+D which equals H. As H is symmetric,
its eigenvalues have the same algebraic and geometric multiplicity. So, if we
can show that the geometric multiplicity of eigenvalue 1 of D−1FD−1F is
the same as that of eigenvalue 0 of H, we can show that the eigenvalue 1 of
D−1FD−1F has the same algebraic and geometric multiplicity. This will be
shown in the proof of S3) together with showing that the eig1(D

−1FD−1F) =
eig0(H), where eig0(H) is ker(H).

Proof of S3) To prove S3), a stronger result is first proved that ker(H) =
eig1(D

−1FD−1F), which is equivalent to proving eig1(D
−1FD−1F) ⊂ ker(H)

17

and ker(H) ⊂ eig1(D
−1FD−1F). First, we have that

D−1FD−1F = D−1FD−1(H −D) = D−1FD−1H −D−1F.

If D−1FD−1Fx = x, then

D−1FD−1Fx = D−1FD−1Hx−D−1Fx = x.

Multiplying D on both sides of the second equal sign, we obtain that

FD−1Hx− Fx = Dx,

and thus
FD−1Hx = Fx+Dx = Hx.

Let y = Hx, then FD−1y = y. Let z = D−1y, Fz = Dz, i.e., (D − F)z = 0.
As D − F is positive definite from (23a) and thus invertible, z = 0 and
y = Hx = 0. eig1(D

−1FD−1F) ⊂ ker(H) is proved. Second, if Hx = 0, then
(D + F)x = 0, then Dx = −Fx and D−1Fx = −x, then D−1FD−1Fx =
−D−1Fx = x. ker(H) ⊂ eig1(D

−1FD−1F) is proved.
It follows from the above that S1)-S3) are proved and, as a result, x in

(16) converges to the optimal solution to (7) and x? in (12) converges to a
solution to Ax = b. As (12) is linear, the convergence is at a linear rate.

Remark 8. The following approximation(
I +D−

1
2FD−

1
2

)−1
≈ I −D−

1
2FD−

1
2

is used when deriving H−1 in the approximated Newton’s algorithm. In gen-
eral, D−

1
2FD−

1
2 needs to be small (e.g., its norm is less than one) to make

sense of the approximation. But the convergence analysis of the proposed
approximated Newton-based algorithm does not depend on how close this ap-
proximation is. In the proof of Theorem 2, the convergence of the approx-
imated Newton-based algorithm is proved through that of a linear dynamic
system.

5. Algorithm Comparison

In this section, we make a brief comparison between existing algorithms
and the proposed algorithms on the communication burdens. In addition, a

18

Table 1: Communication requirement per link

Algorithm Communication burden
[1, 2, 3, 4] 2× network size

[11] 2+number of common neighbors
Gradient-based 2

Approximated Newton-based 4

comparison between the gradient-descent-based algorithm (11) and the ap-
proximated Newton-based algorithm (17) on the convergence rate and com-
putation costs is also made in this section.

A comparison among different algorithms on the communication burden
per link is made in Table 1 for a Laplacian sparse matrix on condition that
the state of each agent is a scalar. The communication quantity for each link
of the proposed gradient-based and approximated Newton-based algorithms
is constant and does not change with system size or local network structure.

For the two proposed algorithms (11) and (17), although a quantitative
convergence rate is not available, we find through simulations that the ap-
proximated Newton-based algorithm (17) converges much faster than the
gradient-descent-based algorithm (11).

Remark 9. No quantitative results on the faster convergence of the approxi-
mated Newton-based algorithm are obtained in this paper. The difficulty to ob-
tain such quantitative results is caused by the difficulty to compare the eigen-
values of the two matrices with those of their product. The convergence of
the gradient-based algorithm is equivalent to that of (28) and the convergence
of the approximated Newton-based algorithm is equivalent to that of (20),
where H is the Hessian of the objective matrix with H = D + F. Thus, the
convergence rate of the gradient-based algorithm is determined by max{|1 −
αλmin(H)|, |1− αλmax(H)|} and that of the approximate Newton-based algo-
rithm is determined by max{|λmin(D−1FD−1F)|, |λmax(D

−1FD−1F)|}. The
eigenvalues of D−1FD−1F are the squares of those of D−1F . D−1F is sim-
ilar to the symmetric matrix D−

1
2FD−

1
2 of which the eigenvalues are all

real. Thus, the eigenvalues of D−1F are all real, and thus the eigenvalues of

19

D−1FD−1F are non-negative. Then,

max
{∣∣λmin

(
D−1FD−1F

)∣∣ , ∣∣λmax

(
D−1FD−1F

)∣∣}
= λmax

(
D−1FD−1F

)
= max

{
λ2max

(
D−1F

)
, λ2min

(
D−1F

)}
.

Also, D−1F = D−1(H − D) = −(I − D−1H). Therefore, the convergence
rate of the approximated Newton-based algorithm is determined by the square
of the eigenvalues of I −D−1H. However, we do not know the relationship
between the eigenvalues of H and D−1H. Thus, we cannot compare the
eigenvalues of D−1FD−1F and I − αH.

The communication burden of the approximated Newton-based algorithm
doubles that of the gradient-descent-based algorithm in each iteration. We
already know that the i-th agent in (11) only requires two parts, i.e., x

(j)
i

and x
(j)
j through the communication link (j, i). In (17), let v(j) = D−1j gj(k).

If j ∈ Ni, Fij = −e(i)i e
(j)T
i − e

(i)
j e

(j)T
j . Then, the i-th agent only requires

v
(j)
i and v

(j)
j besides x

(j)
i and x

(j)
j . The algorithm based on the approximated

Newton’s method thus requires twice as much communication as that based
on the gradient descent method. As the dimensions of x

(j)
i and x

(j)
j are

usually very low in spite of the scale of the whole system, the algorithm
based on the approximated Newton’s method is still communication-efficient.

For example, in three-phase power flow problems, dim
(
x
(j)
i

)
, dim

(
x
(j)
i

)
,

dim
(
v
(j)
i

)
, and dim

(
v
(j)
j

)
are all at most three, so what is transmitted from

agent j to i is at most twelve scalars no matter how large the system is.
The approximated Newton-based algorithm defined in (17) has a higher

computation cost than the gradient-descent-based algorithm (11). First, both
algorithms need to calculate gi(k) and perform the subtraction between two
vectors of dim

(
x(i)
)

dimension. Second, the i-th agent in (17) needs to
perform more computations including
1) the computation of Di = A(i)TA(i) + diag(|L(i)|), a symmetric matrix of

dim
(
x(i)
)

dimension, which can be done at the initialization step;

2) the inverse of D−1i , a symmetric matrix of dim
(
x(i)
)

dimension, which
can be done at the initialization step;

3) the multiplication of D−1i and gi(k) per iteration;

4) the summation of |Ni| vectors, v
(j)
i , of dim

(
x
(i)
i

)
dimension per iteration.

20

Figure 1: Illustration of IEEE 13-node test feeder.

It can be seen that the extra computational burdens associated with (17)

greatly depend on the values of dim
(
x(i)
)

and dim
(
x
(i)
i

)
. In many practical

problems, their values are usually very small in spite of the large system
size. Take the three-phase power flow problem for example. The value of

dim
(
x
(i)
i

)
is at most three and dim

(
x(i)
)

at most 3|Ni|, which is also small

due to the sparse physical connections in the real-world systems. However,
since (17) usually converges much faster than (11), the total communication
and computation costs of (17) may be lower than those of (11).

6. Simulation Studies

In this section, simulation studies are carefully conducted to evaluate
and illustrate the effectiveness of the proposed communication-efficient dis-
tributed algorithms that are defined in (11) and (17), respectively. We ap-
plied both algorithms to solve a system of linear equations (3) that is required
by each iteration of the Newton-Raphson method. The Newton-Raphson
method is widely used to compute the three-phase unbalance power flow
problem in (2). The testing system is the IEEE 13-node test feeder [24]
as shown in Fig. 1, where each line represents the electricity wire between
the neighboring nodes. There is a switch between nodes 671 and 692 and
a transformer between nodes 633 and 634. The line impedance and nodal
power data can be found in [24].

In our simulation studies, we treat each node as an agent and assume
that the communication network and the physical network share the same
topology. The collective state of all agents consists of the magnitudes and

21

Figure 2: Norms of Estimation Errors.

phase angles of the complex voltages of all nodes. As the nodes may be
of one-phase, two-phase, or three-phase, different agents have state vectors
of different dimensional. The Jacobian matrix (4) consists of four blocks.
Every block has the same sparse structure as the nodal admittance matrix
of the power system and thus is Laplacian sparse. The Jacobian matrix
is more complex than a Laplacian sparse matrix. However, we can still
solve the system of linear equations in (3) with the algorithms in (11) and
(17) because the Jacobian matrix, though consisting of four Laplacian sparse
blocks, requires the same information flow as the nodal admittance matrix of
the system. Each agent (or each node in the power system) knows the rows
of the Jacobian matrix J which is generated from its active power equation
and reactive power equation in (2). At each iterative step, each agent share
with its neighbors its estimates on the voltage magnitudes and phase angles
of itself and that neighbor.

The respective convergence results of the proposed algorithms are shown
in Fig. 2. The step size α for the gradient-descent-based algorithm in (11)
is chosen as 0.00002, and it is tested that if α = 0.00003, the algorithm (11)
diverges. So α = 0.0002 might be very close to the largest step size that
makes (11) converge in this example. The coefficient γi for the approximated
Newton-based algorithm in (17) is selected to be 2. The error is defined as
x?(k)−xsol, where x?(k) is defined in (12), xsol is the solution to the problem
obtained from a centralized method, and k is the iteration step. Note that in
Fig. 2, the vertical axis is in the logarithmic scale. It can be observed that i)
both algorithms can find the solution to the problem because the logarithmic

22

error norms decrease to a negative value and the error norms become very
close to zero when the algorithms are terminated; ii) the error norms of both
algorithms converge at a linear rate because the shapes of both curves are
close to a straight line as iteration continues; iii) the approximated Newton’s
algorithm converges faster than the gradient descent one.

7. Conclusions

In this paper, two communication-efficient distributed algorithms were
proposed based on multi-agent systems. The algorithms can be applied to
various systems, e.g., power systems. The first algorithm was based on the
gradient descent method while the second one was based on an approxima-
tion to Newton’s method. In the gradient-descent-based algorithm, only the
entries of the collective state vector which corresponds to each agent itself and
one of its neighbors, instead of every entry of the collective state vector, were
communicated through a communication link. In the approximated Newton-
based algorithm, the corresponding entries in the gradient vector were also
communicated. It was proven that both algorithms converged at a linear
rate, while the approximated Newton-based algorithm converged faster than
the gradient-descent-based algorithm at the price of heavier computation and
communication burdens. The effectiveness of both algorithms was confirmed
and illustrated by applying them to solve the three-phase unbalanced power
flow problem in power systems through simulation studies.

In this paper, the proposed two algorithms have been developed under the
assumption of synchronous communication. In other words, all the necessary
communications at each iteration occur simultaneously. In some real-world
applications, it may be difficult to coordinate all the agents at the same
time and ensure them to communicate simultaneously. It becomes neces-
sary to accommodate the inevitable asynchronous update and allow individ-
ual communication channels to be activated according to their own clocks.
Therefore, our future work will focus on the design of communication-efficient
distributed algorithms with asynchronous updates.

8. Proof of Theorem 1

When Ax = b has a unique solution, fp is strongly convex, and the
convergence at a linear rate of (11) is a direct result of Theorem 2.1.14 in

23

[25]. But when Ax = b has multiple solutions, fp in (6) is not strongly
convex, and thus the results in [25] cannot be used to prove Theorem 1.

In order to prove Theorem 1 when Ax = b has multiple solutions, we need
the following lemmas.

Lemma 1. Let S be symmetric and positive semi-definite. Let U = (U1 U2)

be the orthogonal matrix and Λ =

(
Λ1

0

)
be the diagonal matrix such that

S = UΛUT = U1Λ1U
T
1 , where Λ1 is a diagonal matrix with positive diagonal

entries. Let z = UTy, then the following statements are equivalent:
1) Sy = 0,
2) U1Λ1U

T
1 y = 0,

3) Λz = 0.

Proof. As S = U1Λ1U
T
1 , 1) and 2) are equivalent. Note that Sy = UΛUTy =

UΛz. As U is orthogonal and thus invertible, Sy = 0 is equivalent to Λz = 0,
and thus 1) and 3) are equivalent. As a result, 1), 2), and 3) are equivalent.

Lemma 2. Let v be the projection of y0 onto the hyper-plane {y|Cy = d}
and C be row full rank. Then

v = y0 − CT
(
CCT

)−1
(Cy0 − d),

and
‖v − y0‖2 = (Cy0 − d)T

(
CCT

)−1
(Cy0 − d).

It is straightforward to see that v = argmin{y:Cy=d}
1
2
‖y − y0‖2. With the

Karush–Kuhn–Tucker (KKT) condition, Lemma 2 can be readily proved and
is thus omitted.

Lemma 3. Let S be a nonzero symmetric positive semi-definite matrix and
f(y) = 1

2
yTSy. Let Y ? = argmin f(y) = {y? : Sy? = 0} be the optimal set

of f(y). Then the gradient descent method y(k + 1) = y(k) − α∇f(y(k)) =
y(k)−αSy(k) converges to Y ? at a linear rate provided that 0 < α < 2

λmax(S)
,

where λmax(S) is the maximum eigenvalue of S.

Proof. Let y?(k) = argminy?∈Y ? ‖y(k) − y?‖ as the closest optimal point to
y(k) with Y ? = {y? : Sy? = 0} = {y? : U1Λ1U

T
1 y

? = 0}, where U1 is defined
in Lemma 1. Let C = U1Λ1U

T
1 in Lemma 2. It follows that

‖y(k)− y?(k)‖2 = (y(k)− y?(k))TU1U
T
1 (y(k)− y?(k)). (24)

24

Then,

‖y(k + 1)− y?(k + 1)‖2

≤ ‖y(k + 1)− y?(k)‖2

= ‖y(k)− αSy(k)− y?(k)‖2

= ‖y(k)− y?(k)‖2 + α2y(k)TSTSy(k)

− 2(y(k)− y?(k))TSy(k).

As Sy?(k) = 0, it follows that

y(k)TSTSy(k) = (y(k)− y?(k))TSTS(y(k)− y?(k))

and
(y(k)− y?(k))TSy(k) = (y(k)− y?(k))TS(y(k)− y?(k)).

Thus,

‖y(k + 1)− y?(k + 1)‖2

≤ ‖y(k)− y?(k)‖2

+ α2(y(k)− y?(k))TSTS(y(k)− y?(k))

− 2(y(k)− y?(k))TS(y(k)− y?(k)).

Let z and Λ be defined as in Lemma 1. Then,

‖y(k + 1)− y?(k + 1)‖2

≤ ‖y(k)− y?(k)‖2

+ α2(z(k)− z?(k))TΛ2(z(k)− z?(k))

− 2α(z(k)− z?(k))TΛ(z(k)− z?(k))

= ‖y(k)− y?(k)‖2

+ (z(k)− z?(k))T (α2Λ2 − 2αΛ)(z(k)− z?(k)).

As

z(k)− z?(k) = UT (y(k)− y?(k)) =

(
UT
1 (y(k)− y?(k))

UT
2 (y(k)− y?(k))

)
,

then,

(z(k)− z?(k))T (α2Λ2 − 2αΛ)(z(k)− z?(k))

= [UT
1 (y(k)− y?(k))]T (α2Λ2

1 − 2αΛ1)[U
T
1 (y(k)− y?(k))].

25

As 0 < α < 2/λmax(S) = 2/λmax(Λ1) and λmax(Λ1) > 0, 0 < αλmax(Λ1) < 2.
Thus, (αλmax(Λ1))

2−2αλmax(Λ1) < 0. Similarly, (αλmin(Λ1))
2−2αλmin(Λ1) <

0.
Let λ(Λ1) be any eigenvalue of Λ1. We have that

α2λ(Λ1)
2 − 2αλ(Λ1)

= (αλ(Λ1))
2 − 2αλ(Λ1)

≤ max
{

(αλmin(Λ1))
2 − 2αλmin(Λ1) ,

(αλmax(Λ1))
2 − 2αλmax(Λ1)

}
< 0.

Denote

λ̄ = max
{

(αλmin(Λ1))
2 − 2αλmin(Λ1) ,

(αλmax(Λ1))
2 − 2αλmax(Λ1)

}
.

Then it can be obtained that

(z(k)− z?(k))T (α2Λ2 − 2αΛ)(z(k)− z?(k))

≤ λ̄
(
UT
1 (y(k)− y?(k))

)T (
UT
1 (y(k)− y?(k))

)
= λ̄(y(k)− y?(k))TU1U

T
1 (y(k)− y?(k))

= λ̄ ‖y(k)− y?(k)‖2 ,

where the last equality results from (24).
Thus,

‖y(k + 1)− y?(k + 1)‖2

≤ ‖y(k)− y?(k)‖2 + λ̄‖y(k)− y?(k)‖2

≤ (1 + λ̄)‖y(k)− y?(k)‖2.

Note that λ̄ < 0, y(k), k = 1, 2, 3, · · · converges to Y ? at a linear rate.
Hence, (11) converges to X? at a linear rate.

The proof of Theorem 1 when Ax = b has multiple solutions follows from
Lemma 3.

26

Proof of Theorem 1. Notice that fp in (7) is quadratic. So fp can be refor-
mulated as

fp =
1

2
(x− x?)TH(x− x?) (25)

=
1

2
eTHe, (26)

where H is the Hessian of fp, x
? is an optimal point of fp, and e = x− x?.

The optimal set of (25) is X? = {x : H(x− x?) = 0}.
The gradient descend method to optimize (25) is

x(k + 1) = x(k)− αH(x(k)− x?). (27)

Note that H(x(k) − x?) is the gradient of fp. Thus, (27) can be calculated
without any knowledge of the optimal point x?. Subtracting x? from both
sides of (25), it can be obtained that

e(k + 1) = e(k)− αHe(k), (28)

which is the gradient descent step to optimize (26). From Lemma 3, e(k)
converges to the set {e : He = 0} at a linear rate. x(k) = x? + e(k) then
converges at a linear rate to the set {x : Hx = Hx?}, which is the optimal
set minimizing (25), or equivalently, (6).

References

[1] S. Mou, J. Liu, A. S. Morse, A distributed algorithm for solving a linear
algebraic equation, IEEE Transactions on Automatic Control 60 (11)
(2015) 2863–2878.

[2] P. Wang, W. Ren, Z. Duan, Distributed minimum weighted norm so-
lution to linear equations associated with weighted inner product, in:
2016 IEEE 55th Conference on Decision and Control (CDC), 2016, pp.
5220–5225. doi:10.1109/CDC.2016.7799068.

[3] L. Wang, D. Fullmer, A. S. Morse, A distributed algorithm with an
arbitrary initialization for solving a linear algebraic equation, in: 2016
American Control Conference (ACC), 2016, pp. 1078–1081.

27

[4] P. Wang, W. Ren, Z. Duan, Distributed algorithm to solve a system of
linear equations with unique or multiple solutions from arbitrary initial-
izations, IEEE Transactions on Control of Network Systems 6 (1) (2019)
82–93. doi:10.1109/TCNS.2018.2797805.

[5] F. Pasqualetti, R. Carli, F. Bullo, Distributed estima-
tion via iterative projections with application to power net-
work monitoring, Automatica 48 (5) (2012) 747 – 758.
doi:http://dx.doi.org/10.1016/j.automatica.2012.02.025.

[6] F. Pasqualetti, R. Carli, A. Bicchi, F. Bullo, Distributed es-
timation and detection under local information, IFAC Proceed-
ings Volumes 43 (19) (2010) 263 – 268, 2nd IFAC Workshop
on Distributed Estimation and Control in Networked Systems.
doi:http://dx.doi.org/10.3182/20100913-2-FR-4014.00032.

[7] F. Pasqualetti, R. Carli, F. Bullo, A distributed method for state estima-
tion and false data detection in power networks, in: 2011 IEEE Interna-
tional Conference on Smart Grid Communications (SmartGridComm),
2011, pp. 469–474. doi:10.1109/SmartGridComm.2011.6102368.

[8] K. You, S. Song, R. Tempo, A networked parallel algorithm
for solving linear algebraic equations, in: 2016 IEEE 55th Con-
ference on Decision and Control (CDC), 2016, pp. 1727–1732.
doi:10.1109/CDC.2016.7798514.

[9] X. Wang, S. Mou, D. Sun, Improvement of a distributed algorithm for
solving linear equations, IEEE Transactions on Industrial Electronics
64 (4) (2017) 3113–3117. doi:10.1109/TIE.2016.2636119.

[10] J. Liu, S. Mou, A. S. Morse, Asynchronous distributed algorithms for
solving linear algebraic equations, IEEE Transactions on Automatic
Control 63 (2) (2018) 372–385. doi:10.1109/TAC.2017.2714645.

[11] S. Mou, Z. Lin, L. Wang, D. Fullmer, A. Morse, A distributed algorithm
for efficiently solving linear equations and its applications (special issue
jcw), Systems & Control Letters 91 (2016) 21 – 27.

[12] J. Liu, X. Gao, T. Başar, A communication-efficient distributed algo-
rithm for solving linear algebraic equations, in: 2014 7th International

28

Conference on NETwork Games, COntrol and OPtimization (NetG-
Coop), 2014, pp. 62–69.

[13] J. Liu, B. D. O. Anderson, Communication-efficient distributed algo-
rithms for solving linear algebraic equations over directed graphs, in:
2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp.
5360–5365. doi:10.1109/CDC42340.2020.9304062.

[14] G. Shi, B. D. O. Anderson, U. Helmke, Network Flows that Solve Linear
Equations, ArXiv e-prints (Oct. 2015). arXiv:1510.05176.

[15] B. D. O. Anderson, S. Mou, A. S. Morse, U. Helmke, Decentralized
gradient algorithm for solution of a linear equation, ArXiv e-prints (Sep.
2015). arXiv:1509.04538.

[16] M. Yang, C. Y. Tang, A distributed algorithm for solving general linear
equations over networks, in: 2015 54th IEEE Conference on Decision
and Control (CDC), 2015, pp. 3580–3585.

[17] J. Liu, X. Chen, T. Basar, A. Nedic, A continuous-time distributed
algorithm for solving linear equations, in: 2016 American Control Con-
ference (ACC), 2016, pp. 5551–5556.

[18] J. Zhou, X. Wang, S. Mou, B. D. O. Anderson, Finite-time distributed
linear equation solver for minimum l1 norm solutions, arXiv preprint
arXiv:1709.10154 (2017).
URL http://arxiv.org/abs/1709.10154

[19] X. Wang, S. Mou, B. D. O. Anderson, A double-layered frame-
work for distributed coordination in solving linear equations, CoRR
abs/1711.10947 (2017). arXiv:1711.10947.
URL http://arxiv.org/abs/1711.10947

[20] P. Wang, Y. Gao, N. Yu, W. Ren, J. Lian, D. Wu, Communication-
efficient distributed solutions to a system of linear equations with lapla-
cian sparse structure, in: 2018 IEEE Conference on Decision and Control
(CDC), 2018, pp. 3367–3372.

[21] A. Bergen, V. Vittal, Power Systems Analysis, Prentice Hall, 2000.

29

[22] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University
Press, 1985, cambridge Books Online.
URL http://dx.doi.org/10.1017/CBO9780511810817

[23] A. Mokhtari, Q. Ling, A. Ribeiro, Network newton distributed optimiza-
tion methods, IEEE Transactions on Signal Processing 65 (1) (2017)
146–161. doi:10.1109/TSP.2016.2617829.

[24] IEEE PES AMPS DSAS Test Feeder Working Group, IEEE 13 Node
Test Feeder.
URL https://site.ieee.org/pes-testfeeders/resources/

[25] I. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, Mathematics and its applications, Kluwer Academic Publishers,
2004.

30

