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Abstract

Propositional Quantification and Comparison in Modal Logic

by

Yifeng Ding

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Associate Professor Wesley H. Holliday, Chair

We make the following contributions to modal logics with propositional quantifiers and modal
logics with comparative operators in this dissertation:

• We define a general notion of normal modal logics with propositional quantifiers. We
call them normal Π-logics. Then, as was done by Scrogg’s theorem on extensions of
the modal logic S5, we study in general the normal Π-logics extending S5. We show
that they are all complete with respect to their algebraic semantics based on complete
simple monadic algebras. We also show that the lattice formed by these logics is
isomorphic to the lattice of the open sets of the disjoint union of two copies of the
one-point compactification of N with the natural order topology. Further, we show
how to determine the computability of normal Π-logics extending S5Π. A corollary is
that they can be of arbitrarily high Turing-degree.

• Regarding the normal Π-logics extending the modal logic KD45, we identify two im-
portant axioms: Immod : �∀p(�p → p) and 4∀ : ∀p�ϕ → �∀p�ϕ. We argue that
when � is interpreted as the belief operator, we should not accept Immod in the logic
of belief while 4∀ is desirable in settings with full introspection. Then we provide al-
gebraic semantics based on complete well-connected pseudo monadic algebras for �
and ∀p and show that with respect to these algebras, normal Π-logics extending KD45
and 4∀ with a finite list of formulas are complete. We also give a general completeness
theorem for atomic complete well-connected pseudo monadic algebras and a sufficient
condition for the decidability of logics obtained by classes of these algebras, atomic
or not. A special case of these general theorems is that the normal Π-logic of serial,
transitive, and Euclidean Kripke frames, that is, the Kripke frames validating KD45,
is axiomatized by KD45, 4∀, Immod, and ∃p(p ∧ ∀q(q → �(p→ q))) together with the
usual axioms and rules for propositional quantifiers, and this logic is decidable.
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Other than completeness and decidability, we also show that 4∀ is not in the smallest
normal Π-logic extending KD45, using a countermodel based on a possible-world frame
with propositional contingency, and that 4∀ is valid in any complete Boolean algebra
expansion validating KD45.

• For modal logics with comparative operators, we first provide an axiomatization of the
logic of comparing the cardinality of sets, as defined by Cantor. The main technical
contribution is the observation that in a purely comparative language, we can define
finiteness well enough so that an axiomatization can be done by combining the logic
of comparative cardinality for finite sets and the logic of comparative cardinality for
infinite sets. Note that these two logics are very different: the former contains the
axiom of qualitative additivity: |A| ≥ |B| iff |A \ B| ≥ |B \ A| but not the axiom of
absorption: if |A| ≥ |B| and |A| ≥ |C| then |A| ≥ |B ∪ C|, while the latter does the
opposite.

• Then we consider modal logics for comparative imprecise probability. In these logics,
comparisons are made according to a set of probability measures and can be intuitively
read as either “at least as likely as” (symbolized by %) or “more likely than” (symbol-
ized by �). We first disambiguate two interpretations of “more likely than” based on a
set of probability measures and show that the stronger interpretation is not definable
from “at least as likely as” while the weaker sense is. Then, we go on to axiomatize
the logic of imprecise probability in a sequence of languages obtained by adding to the
language with just “at least as likely as”, one by one, the comparative operator � for
“more likely than” (in the stronger sense), a unary operator ♦ for “possibly”, and a
binary operator 〈ϕ〉ψ for “possibly ϕ, and after learning the truth of ϕ, ψ”. We also
comment on the expressivity of these languages and the decidability of the logics in
these languages. In particular, we show that many distinctive features of the imprecise
probability approach of representing the doxastic states of agents, such as the problem
of dilation, are observable at this purely comparative level. Finally, we add a pair of
operators I+

p ϕ and I−p ϕ, intuitively read, respectively, as “after learning the existence
of an actually true new proposition, now named by p, ϕ”, and “after learning the ex-
istence of an actually false new proposition, now named by p, ϕ”. We show that this
pair of operators allow us to formalize a common kind of information dynamics and
will boost the expressivity of the language to a quantitative level.
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Chapter 1

Introduction

This dissertation considers logics in which we can quantify over or compare propositions.
These operations are an essential part of natural languages. For example, in English we
easily find the following sentences:

• “You lied about everything.”

• “She knows more than I do.”

• “That there is no typo in this dissertation is no more likely than two plus two being
five.”

The first two English sentences quantify over propositions salient in contexts, and the last
sentence compares two propositions, that there is no typo in this dissertation and that
2 + 2 = 5, in terms of likelihood. Despite their frequent uses in natural language, a logical
study—especially a model-theoretical study of them—requires a departure from the “classi-
cal” setting in which only the truth values of propositions are modeled. After all, we are not
merely quantifying or comparing truth values when we quantify or compare propositions. To
get a sense of this, note that adding propositional quantifiers to the classical propositional
logic results in only an addition of computational complexity and no gain in expressivity:
any formula with propositional quantifiers can easily be translated to an equivalent for-
mula in classical propositional logic without propositional quantifiers, though typically of
an exponentially longer length. Hence, the booming of the logical studies on propositional
quantifiers and operators comparing propositions came together with the maturation of the
logical studies of modalities, in which an account of propositions as sets of possible worlds
surfaced.

We will treat propositional quantifiers inside modal logics and see how, with propo-
sitional quantifiers, new questions about the philosophical interpretation and mathemati-
cal properties of modalities arise. We will also treat propositional comparisons as modali-
ties/propositional operators. Chapter 2 and Chapter 3 of this dissertation deal with propo-
sitional quantifiers, and Chapter 4 and Chapter 5 are on propositional comparisons. In the
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next two sections, we introduce the background and main results of these chapters. These
chapters are previously published, so in the last section of this introduction, we note the
changes we made when incorporating them in this dissertation.

1.1 Modal Logics with Propositional Quantifiers

Compared to other topics of modal logic, propositional quantifiers have been less investigated.
Their introduction into modal logic was very early, however. In Kripke’s now landmark paper
[114] where he provided a possible-world-based semantics for S5 with first-order quantifiers,
he also mentioned that propositional quantifiers can easily be added as well. Indeed, once we
arrive at possible-world semantics, a natural candidate for representing propositions them-
selves becomes obvious: sets of possible worlds (or equivalently functions from all possible
worlds to {0, 1}).

The most prominent effect of having propositional quantifiers that quantify over all these
sets of worlds is the gain in expressivity. Other things being equal, a more expressive
language is better than a less expressive one, since we can capture more valid reasoning in
the more expressive language, and often the reason we devise a more expressive language is
that we see an intuitively valid reasoning pattern that is not captured in existing languages:
first-order logic versus propositional logic is a case in point. However, expressivity very
often complicates the logic. The complication can be either intuitive/cognitive in that more
complicated axioms must be used or measurable in mathematically precise ways such as
computational complexity and computability. Again, an example of this is the progression
from propositional logic to first-order logic and then to second-order logic. With the increase
in expressivity, we see that the complexity/computability also rises from NP-complete to
recursively enumerable and then to something beyond even the analytical hierarchy and
hence without any recursive axiomatization.

As an example of the extra expressivity offered by propositional quantifiers, consider the
English sentence “there is some truth she doesn’t know.” In the standard Kripke semantics,
the knowledge of an agent is represented by a set of possible worlds; intuitively, this is the
set of possible worlds that are compatible with the knowledge of the agent. Since in different
worlds, the agent may know different things, we use a binary relation R on possible worlds,
so that the set of worlds related to a given world represents the knowledge of the agent in
that given world. Also, we take as primitives a countably infinite set Prop = {p0, p1, p2, · · · }
of atomic propositional variables. Then a Kripke model is a triple 〈W,R, V 〉 where W is
a non-empty set interpreted as a set of possible words, R is a binary relation interpreted
as above, and V is a valuation function assigning to each p ∈ Prop a subset V (p) of W ,
intuitively the set of worlds where p is true. On the language side, with � representing “she
knows that”, the basic propositional modal language L is given by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �ϕ
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with p ∈ Prop. The usual abbreviations, including ♦ as ¬�¬, apply. The truth of formulas
in a model M = 〈W,R, V 〉 is relativized to each possible world in the model and is defined
recursively as follows:

M, w � p ⇐⇒ w ∈ V (p)

M, w � ¬ϕ ⇐⇒ M, w 6� ϕ
M, w � (ϕ ∧ ψ) ⇐⇒ M, w � ϕ and M, w � ψ

M, w � �ϕ ⇐⇒ ∀w′ ∈ R(w),M, w′ � ϕ.

The last clause is equivalent to: M, w � �ϕ iff R(w) ⊆ JϕKM, where JϕKM = {w ∈ M |
M, w � ϕ} and w ∈M means that w ∈ W of M. Intuitively, JϕKM the set of worlds in M
where ϕ is true, which can also be regarded as the proposition expressed by ϕ. We say that
a formula ϕ is valid on a model M if ϕ is true at every world in M.

A well known result on the limit of the expressive power of L is that the truth of the
formulas in L is invariant under bisimulation [19]. In particular, consider the following two
models:

M1 = 〈W1, R1, V1〉 M2 = 〈W2, R2, V2〉
W1 = {0} W2 = {1, 2}
R1 = {〈0, 0〉} R2 = W2 ×W2

V1(p) =

{
W1 if p = p1

∅ if p 6= p1

V2(p) =

{
W2 if p = p1

∅ if p 6= p1.

The two models can be pictured as follows:

0
p1

1
p1

2
p1

M1 M2.

It is easy to verify that M1, 0 and M2, 1 are bisimilar. Hence, for every ϕ ∈ L, M1, 0 � ϕ
iff M2, 1 � ϕ. In other words, L cannot distinguish the two situations. However, in M1,
we cannot find a subset X of worlds that contains the world 0 and yet is not known at 0 by
the agent represented there in the sense that R(0) ⊆ X. InM2, this is easy: {1} contains 1
but R(1) = {1, 2} 6⊆ {1}. This means that we cannot find a formula in L that captures the
meaning of “there is some truth she doesn’t know.” To be more precise, define the language
LΠ with propositional quantifiers by the grammar

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | ∀pϕ
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with p ∈ Prop. As usual, ∃p abbreviates ¬∀p¬. Then, the semantic clause for ∀pϕ is

M, w � ∀pϕ ⇐⇒ ∀X ⊆ W,M[X/p], w � ϕ.

Here M[X/p] is the result of replacing the valuation function V in M by V [X/p], which is
defined by letting V [X/p](p) = X and V [X/p](q) = V (q) for all q ∈ Prop \ {p}. Then, the
above observation is that there is no formula in L that is equivalent to ∃p(p ∧ ¬�p).

For modal logics with propositional quantifiers, we need to be reminded that modal
operators come in different flavors, and hence for different intended interpretations of �,
different restrictions apply to the models. In the above example where � is interpreted
as knowledge, a minimal constraint to be put on R is reflexivity, since one cannot know a
falsity. Kit Fine [54, 55] is the first to systematically study modal logics with propositional
quantifiers in different model classes. His observations include:

• the set of formulas valid on all Kripke models in which R is an equivalence relation is
axiomatizable and in fact decidable;

• the set of formulas valid on all Kripke models in which R is a transitive relation is not
axiomatizable;

• the set of formulas valid on all Kripke models in which R is a symmetric relation is
not axiomatizable;

• the set of formulas valid on all Kripke models is not axiomatizable.

Later literature [102] improved Fine’s result to the following theorem:

Theorem 1.1.1. The set of formulas valid on any class of Kripke models containing all
those in which R is a directed preorder1 is recursively equivalent to full second-order logic.

These results show clearly the cost of the expressivity brought by propositional quantifiers.
Early literature also realized that Kripke models with the semantics requiring that ∀p to

test every set of worlds as a possible valuation of p are not the most general setting for LΠ.
It is easy to see that the following formulas are valid on all Kripke models:

∃p(p ∧ ∀q(q → �(p→ q))), At

∀p�ϕ→ �∀pϕ. Bc

The validity of At is due to the existence of singletons, and the validity of the Bc comes from
exchanging the order of two universal quantifiers. Fine uses models with a distinguished
algebra of sets of possible worlds for ∀p to quantify over to refute At. And to refute Bc, Bull
in [23] and Fine in [55] noted that a variable domain model can be used, while Gabbay in
[65] showed that neighborhood semantics can be used instead.

1R is a directed preorder iff R is reflexive, transitive, and has the Church-Rosser property: for all x, y1, y2,
if xRy1 and xRy2, then there is z with y1Rz and y2Rz.
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To be more precise on the variations of the semantics for ∀p mentioned above, let us
formally introduce the most general possible-world-based semantics for � and ∀p. In this
semantics, we start with a neighborhood model and add to it a domain function that assigns
to each world a family of subsets of worlds for ∀p to quantify over at that world.

Definition 1.1.2. A neighborhood model M is a tuple 〈W,N,P, V 〉 where

• W is a non-empty set;

• N is a neighborhood function from W to ℘(℘(W ));

• P is a domain function from W to ℘(℘(W ));

• V is a valuation function from Prop to ℘(W ).

Truth for formulas in LΠ on M is defined relative to its worlds by:

M, w � p ⇐⇒ w ∈ V (p)

M, w � ¬ϕ ⇐⇒ M, w 6� ϕ
M, w � (ϕ ∧ ψ) ⇐⇒ M, w � ϕ and M, w � ψ

M, w � �ϕ ⇐⇒ JϕKM ∈ N(w)

M, w � ∀pϕ ⇐⇒ ∀X ∈ P (w),M[X/p], w � ϕ.

Validity is defined as usual: ϕ is valid on M if JϕKM = W .
A neighborhood model M = 〈W,N,P, V 〉

• is relational if N is representable by a binary relation R is the sense that for each
w ∈ W , N(w) = {X ⊆ W | R(w) ⊆ X},

• is constant-domain if P is a constant function, and

• is full if for each w ∈ W , P (w) = ℘(W ).

We will call relational neighborhood models just relational models.

Observe that Kripke models can be regarded as full relational models. The interpretation
of ∀p with Kripke domains is also called “the primary interpretation of ∀p” in [23, 113], but
we will call it the standard Kripke semantics. Also, as mentioned above, the refutation of
At can be achieved by using a constant domain function P such that P (w) is an atomless
field of sets of W , and the refutation of Bc can be achieved by either using a neighborhood
function N such that N(w) is not closed under arbitrary intersection, or by using a domain
function P that is not constant.

A major part of the later literature continued on the theme of expressivity and non-
axiomatizability for modal logics with propositional quantifiers. On special classes of Kripke
models, besides Kaminski’s above result in [102], another well-studied one is the class of
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Kripke models with two equivalence relations: [3, 115, 64]. Other special case studies (also
including relevance and intuitionistic logics) of the expressivity and non-axiomatizability of
modal logics with propositional quantifiers include [113, 112, 111, 71, 62]. Among them, [62]
engages with non-constant-domain models. For the expressivity of LΠ on all Kripke models,
[29] provided the following important results:

• Every formula in LΠ is equivalent to one in prenex form: Q1p1Q2p2 · · ·Qnpnχ where
Qi ∈ {∀,∃} and χ is quantifier free.

• For any ϕ ∈ LΠ with its modal depth being md(ϕ), M, w � ϕ iff M≤md(ϕ), w � ϕ,

where M≤md(ϕ)
w is the restriction of M to worlds accessible from w using R in M in

no more than md(ϕ) steps.

• With respect to all Kripke models or all finite Kripke models: ϕ ∈ LΠ is invariant
under bisimulation iff it is equivalent to a formula in L.

• With respect to all transitive Kripke models: every formula of the modal µ-calculus is
equivalent to a formula in LΠ, and a formula in LΠ is bisimulation invariant iff it is
equivalent to a formula of the modal µ-calculus.

• If a formula ϕ in LΠ is equivalent to a formula of the first-order correspondence lan-
guage (with a binary predicate interpreted by R and a unary predicate for each p ∈ Prop
interpreted by V (p)), ϕ is also equivalent to a formula of the first-order correspondence
language with one free variable where every quantifier is bounded by R.

• A class K of pointed Kripke models is definable by a formula in LΠ iff K is definable
by a formula of monadic second-order logic and has finite degree in the sense that there
is d ∈ N such that M, w ∈ K iff M≤d

w , w ∈ K.

Relatedly, [116] and [117] discussed the quantifier alternation hierarchy for LΠ made available
by the prenex form theorem. There is also a cluster of more applied work on propositional
quantifiers: [11, 9, 10, 12, 52, 8, 61]. Note that [11] claimed essentially an axiomatization
result for validities of a multi-modal LΠ on the class of Kripke frames with multiple equiv-
alence relations. This is in contradiction with [3, 115, 64]. The results in [10, 12] are in fact
quite general, with results on expressivity, axiomatization, and non-axiomatizability, and
the authors there mentioned that the aforementioned logic for two equivalence relations is
not axiomatizable, though they did not mention the early work [3, 115] on this topic. It
should be noted that their axiomatizations are all with respect to classes of constant-domain
relational models that include non-full models. Other axiomatization results include [160],
which provided an axiomatization for a very special class of Kripke models based on trees,
and [110], which allows non-full models.

Our contributions to this literature are marked by three features that are largely absent
in the existing literature. First, we aim to provide general studies encompassing more than
just a handful of logics. While it is true that in a given applied setting we may focus on only
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a few logics that make the most sense, the power of the mathematical theory of modal logic
lies in having a unified theory for all the existing and to-be-discovered logics. A nice example
is the Sahlqvist canonicity theorem, a theorem that provides completeness for most normal
propositional modal logics for discussions in epistemology and metaphysics. Second, we
focus on full models while still aiming for positive results whenever possible. The literature
has not seen a new axiomatizability/decidability result for full models for a long time. As
we mentioned, almost all new axiomatizability/decidability results after Fine’s [55] depend
on using non-full models (with the exception of [160] mentioned above). The requirement
on fullness is from what seems to us the most natural reading of ∀p: “no matter what p
means”. While non-full models provide coherent semantics for ∀p, they either do not afford
the same intuitive reading or are hard to construct, and it is significantly harder to judge
the intuitive validity of more complicated formulas involving ∀p that can only quantify over
a rather small set of propositions.

Finally, and perhaps most importantly, we will use algebraic semantics extensively. Al-
gebraic semantics for ∀p was mentioned already by Bull in [23], and a more explicit proposal
can be found in a later non-technical paper [76]. It should be noted that algebraic semantics
predate Kripke’s possible-world based semantics [74], and as [76] argues, they form a very
natural setting for propositional quantifiers. The basic idea is to take propositions directly
as the primary building blocks of a model. Propositions should form a Boolean algebra
under classical logic and every formula should express a proposition in a model. The com-
positional semantic clause for ∀pϕ comes from the reading of ∀p we mentioned: no matter
what p means. As we vary the meaning of p, ϕ mean express different propositions, and ∀pϕ
as we read it should be the “conjunction” of these propositions. In the theory of Boolean
algebra, such a “conjunction” is defined by greatest lower bound, or meet in short. The
formal definition is as follows.

Definition 1.1.3. A Boolean algebra expansion (BAE in short) B is a tuple 〈B,�〉 where
B is a Boolean algebra and � is a function from B to B. We use ‘¬’ and ‘∧’ also for
the complementation and meet in Boolean algebras, and > and ⊥ for the top and bottom
element of B. A BAE is called complete if its Boolean algebra part is complete in the sense
that every set of elements of the Boolean algebra has a meet in it.

Functions V : Prop → B are called valuation functions on B, and when B is complete,
they can be extended to V̂ : LΠ→ B by

V̂ (p) = V (p)

V̂ (¬ϕ) = ¬V̂ (ϕ)

V̂ (ϕ ∧ ψ) = V̂ (ϕ) ∧ V̂ (ψ)

V̂ (�ϕ) = �(V̂ (ϕ))

V̂ (∀pϕ) =
∧
{V̂ [a/p](ϕ) | a ∈ B}.

A formula ϕ is valid on B if V̂ (ϕ) = > for all valuations on B.
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The algebraic semantics above generalize full neighborhood models by the following obser-
vation: for any full neighborhood modelM = 〈W,N,P, V 〉, form the complete (indeed com-
plete and atomic) BAE 〈℘(W ),�〉 where �(X) = {w ∈ W | X ∈ N(w)} for all X ∈ ℘(W ).

Then, for any ϕ ∈ LΠ, V̂ (ϕ) = JϕKM.
Our first contribution is an analogue of the celebrated Scrogg’s theorem [143]. Scrogg’s

theorem establishes a general completeness theorem for all modal logics extending S5, and
we establish similarly a general completeness theorem for all normal Π-logics extending S5Π.
Here, a normal Π-logic is simply a set of formulas in LΠ containing certain axioms and closed
under certain rules that are most clearly valid for reasoning with a normal modality and the
propositional quantifier ∀p that is meant to quantify over all propositions. The modal part of
them is as usual the K axiom: �(ϕ→ ψ)→ (�ϕ→ �ψ) and the necessitation rule: from ϕ
derive �ϕ. The quantificational part is essentially the same as the first-order quantificational
axioms and rules, and we call them Π-principles:

• Dist : ∀p(ϕ→ ψ)→ (∀pϕ→ ∀pψ),

• Inst : ∀pϕ → ϕ[ψ/p], where ψ is substitutable for p in ϕ and ϕ[ψ/p] is the result of
replacing all free occurrences of p in ϕ by ψ,

• Vacu : ϕ→ ∀pϕ, if p is not free in ϕ,

• Univ : from ϕ derive ∀pϕ.

Under this general definition, S5Π is defined as the smallest normal Π-logic that contains
the modal logic S5 in L. In Chapter 2, we provide the following results on normal Π-logics
extending S5Π:

• All normal Π-logics extending S5Π are complete with respect to their complete simple
S5 algebras. These are just complete BAEs 〈B,�〉 where �(b) is the top element of
B if b also is, and is the bottom element of B otherwise. We can view them as slight
generalization of Kripke models with a universal relation (dropping atomicity).

• The normal Π-logics extending S5Π forms a lattice under the subset relation. We show
that this lattice is isomorphic to the lattice, ordered by subset relation again, of the
open sets of the disjoint union of two copies of the one-point compactification of N
with the natural order topology.

• We also show how to determine the computability of normal Π-logics extending S5Π.
A corollary is that they can be of arbitrarily high Turing-degree.

We will also mention that there are non-normal Π-logics extending S5Π. Here a general Π-
logic is defined like normal Π-logics without requiring it to be closed under the necessitation
rule.
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Our next contribution turns to KD45, a logic properly weaker than S5 and with a sig-
nificant practical interpretation: the logic of belief. The expressivity gained with the intro-
duction of propositional quantifiers now bears foundational importance: we find reasoning
principles reflecting foundational properties of belief expressible in LΠ but not in L. We pay
special attention to what we call the principle of immodesty: “I believe that everything I
believe is true.” This principle is easily formalizable in LΠ by

�∀p(�p→ p) Immod

where � is interpreted by belief. We argue that a logic of belief should not treat Immod as a
theorem (though of course the logic can and should determine the consequences of Immod)
and observe that to invalidate Immod while maintaining the validity of KD45, a departure
from the standard Kripke models is in order. Indeed, any relational neighborhood model,
even allowing variable domains, will have difficulty invalidating Immod if we would like the
binary relation interpreting the belief modality � to have the nice first-order properties corre-
sponding to the axioms of KD45, namely seriality, transitivity, and Euclidicity (Euclidicity is
to be blamed here). On the other hand, algebraic semantics can separate Immod from KD45
easily. Essentially, we will identify a class of complete BAEs called complete well-connected
pseudo-monadic BAEs. These are BAEs of the form 〈B,�〉 where there is a proper filter FB
on B such that �b is the top element of B if b ∈ F and is the bottom element of B otherwise.
This F can be regarded as the set of all propositions believed by the agent modeled in this
BAE, and that it is a proper filter correspond to the requirement that one’s belief should be
non-contradictory and closed under logical deduction.

While natural-looking, these well-connected BAEs validate a strengthening of the intro-
spection axiom 4:

∀p�ϕ→ �∀p�ϕ. 4∀

We will argue that 4∀, unlike Immod, can be regarded as a logical principle for belief, though
it is a proper strengthening of 4 : �ϕ → ��ϕ. In fact, we have the following theorem
regarding extending KD45Π, the smallest normal Π-logic containing KD45, by one or more
of Immod, 4∀, and Bc. Here we follow the convention that when putting names of axioms
together with Π, we mean the smallest normal Π-logic containing these axioms.

Theorem 1.1.4. First, 4 ∈ KD45Π4∀. Also,

• Immod 6∈ KD4∀5Π,

• 4∀ 6∈ KD45ΠImmod, and

• KD45ΠBc = KD4∀5ΠImmod.

Consequently, there are exactly 4 logics generated by adding some or none of 4∀, Immod, and
Bc to KD45Π: KD45Π, KD4∀5Π, KD45ΠImmod, KD45ΠBc. They are ordered by inclusion
as follows:
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KD45Π

KD4∀5Π

(KD45Π4∀)

KD45ΠImmod

KD45ΠBc (KD45Π4∀Bc,KD45ΠImmodBc,KD45Π4∀ImmodBc,KD45Π4∀Immod)

Interestingly, algebraic semantics cannot be used to show that 4∀ 6∈ KD45Π, and we will
do this using variable-domain relational models. Indeed, any complete BAE that validates
KD45 also validates 4∀. This raises a natural though underdefined question: what accounts
for the difference between S5 and KD45 that the logic (validities) of complete BAEs validating
S5 is S5Π while the logic of complete BAEs validating KD45 is not KD45Π? While we
could attribute this difference to the derivability of Bc in S5Π and eventually to the axiom
B : ϕ → �♦ϕ that is sufficient for the derivation of Bc, it is not at all clear if this gets to
the heart of the issue: it seems rather difficult to show that the logic of all complete BAEs
validating KB is precisely KBΠ. We leave questions along these lines for future work.

The positive results we offer are general completeness for normal Π-logics generated
by adding one (or a finite list by conjunction) axiom to KD4∀5Π and a general criterion
for determining the decidability of the logic of a class of complete well-connected pseudo-
monadic BAEs. But to avoid unnecessary details for this introduction, we list only some
important special cases:

• The logic, in the language LΠ, of all complete well-connected pseudo-monadic algebras
is KD4∀5Π.

• The logic, in the language LΠ, of all complete well-connected pseudo-monadic algebras
B such that FB is a principal filter (has a minimal element) is KD4∀5ΠImmod.

• The logic, in the language LΠ, of all atomic complete well-connected pseudo-monadic
algebras is KD4∀5ΠAt.

• The logic, in the language LΠ, of all atomic complete well-connected pseudo-monadic
algebras B with FB being principal is KD4∀5ΠAtImmod.

• By the duality between atomic and complete BAEs validating KD45 and Kripke frames
validating KD45, the logic, in the language LΠ, of all Kripke models with a serial,
transitive, and Euclidean relation is KD4∀5ΠAtImmod.

• All of the above logics are decidable.

1.2 Modal Logics for Comparing Propositions

While every binary sentential operator can be regarded in a very general sense as comparing
propositions, we are most interested in operators that compare propositions according to
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their “size”, broadly construed. Such comparisons cannot be truth-functional since the
relative “size” of propositions cannot be deduced from whether they are true or not at a
particular world.

Such comparisons can be viewed as generalizing the usual black-or-white judgments about
necessity in different flavors to graded judgments on “how necessary” they are without com-
mitting to a fixed scale of “grades”. For example, other than fully believing or disbelieving
propositions, we often have more fine-grained belief attitudes such as by how much do we
believe that a proposition is true. These attitudes are important in decision making under
uncertainty, since we often encounter actions whose consequences depend on propositions
that we neither fully believe nor fully disbelieve. A standard way to represent such graded
beliefs is through a Kolmogorov probability function which assigns a real number in [0, 1] to
every proposition and in doing so satisfies certain axioms. But this approach assumes that
[0, 1] (or more generally a closed interval [0, r] of real numbers) is the right scale of grades
to use, and a number of concerns have been raised in this regard:

• Real numbers, in general, are beyond human cognitive capacities. This concern has
a very long tradition ([20, 103, 106, 75, 149]), and Suppes in [149] expressed it as
follows: “almost everyone who has thought about the problems of measuring beliefs
in the tradition of subjective probability or Bayesian statistical procedures concedes
some uneasiness with the problem of always asking for the next decimal of accuracy in
the prior estimation of a probability” (p. 160).

• Real numbers are sometimes also not enough when we have infinitely many proposi-
tions. For example, we cannot have a Kolmogorov probability function P on a un-
countable set W defined on all singletons such that for all w ∈ W , P ({w}) > 0. This
means that there must be possible worlds that are no more likely than the contradic-
tion, if rely only on the function P to decide relative likelihood. This is the famous
problem of regularity [120, 157, 86, 136, 90, 48].

• Also, even for idealized agents without representational and computational constraints,
it has been argued that there are situations where even an idealized agent cannot
rationally uniquely determine a Kolmogorov probability function to account for the
right epistemic attitudes [28, 121, 101, 105].

While a purely comparative approach is not the only way to address the above three
concerns—sets of hyperreal-valued probability functions also work—the comparative ap-
proach is uniquely parsimonious and general: technically, it is only providing a language
that every representation of graded propositional attitude should be able to “speak”. For
example, a Kolmogorov probability function P “speaks” the comparative language in the
most obvious way: a proposition A is at least as likely as a proposition B (both represented
by sets of possible worlds) according to P iff P (A) ≥ P (B). Since this comparative language
is foundational to all representations, the following natural questions are immediate:
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• Given a representation method of graded propositional attitudes, what is its logic
in a comparative language, namely, its comparative logic? The comparative logics,
given the foundational role of comparative languages, should reflect the core theoretical
commitments of the representation method in discussion.

• Given multiple representation methods, how do their comparative logics compare?

• Given a logic in a comparative language, is it the comparative logic of a reasonable
representation method?

While these are not the only questions we will answer (in particular, we will also compare
comparative languages, not just logics in a comparative language), these questions are the
main motivation for our work.

We will offer many languages for propositional comparison in this dissertation, but the
main distinction is whether iterated comparisons are allowed. In Chapter 3, we use a language
that does not allow iteration on comparisons. This is defined by the following 2-layered
grammar

t ::= a | tc | (t ∩ t)
ϕ ::= |t| ≥ |t| | ¬ϕ | (ϕ ∧ ϕ)

where a is in a countably infinite set Φ. Here the first layer defining t generates what
we call set terms and the second layer defines the usual formulas. While set terms can
easily be interpreted as denoting propositions, in Chapter 3, we remain purely mathematical
and only interpret them as denoting subsets of some given set X, with ·c and ∩ standing
for complement with respect to X and intersection instead of negation and conjunction.
This is because we are interested in solving a purely mathematical problem: what is the
comparative logic for comparing the cardinality of sets as Cantor defines it? The difficulty
in this question lies in the fact that finite sets and infinite sets obey very different laws of
cardinality comparison. For a special case, let A, B, and C be non-empty sets such that (1)
A = B ∪C, (2) B ∩C = ∅, and (3) B and C have the same cardinality: there is a bijection
between them. Then if A is finite, A is strictly larger than B and C in terms of cardinality,
but if A is infinite, A then has the same cardinality as B and C do. More generally, finite
sets obey what we call the axiom of qualitative additivity

|s| ≥ |t| ↔ |s ∩ tc| ≥ |t ∩ sc| (1.1)

while failing the axiom of absorption

(|s| ≥ |t| ∧ |s| ≥ |t′|)→ |s| ≥ |t ∪ t′|, (1.2)

but infinite sets do the opposite: they obey the axiom of absorption but fail the axiom of
qualitative additivity. In Chapter 4, we will see how we can almost define finiteness in this
purely comparative language and use that to axiomatize the logic of cardinality comparison.
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In Chapter 5, we consider comparative likelihood. Here, we use a language allowing
iterated comparisons. With a single primitive comparison operator % intuitively read as “at
least as likely as”, we have the basic language L(%) defined by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ % ϕ)

with p ∈ Prop. While iterations are allowed in this language, logically we do not need to pay
much attention to them as we will assume the validity of the following introspection axioms:

(ϕ % ψ)→
(
(ϕ % ψ) % >

)
;

¬(ϕ % ψ)→
(
¬(ϕ % ψ) % >

)
.

These axioms are akin to the axioms 4 and 5 for the unary belief operator. With these
axioms, it can be shown that every formula is logically equivalent to a formula without
iterated comparisons.

As we mentioned, L(%), being a simple language, can be used to compare different
approaches to uncertainty representation. The dominant approach is of course the single-
probability-measure approach. To contrast with what will follow, we call this the precise
probability approach. The comparative logic of this approach is well understood [109, 142,
145]. To define the comparative logic of precise probability, we first turn probability spaces
into models for L(%) as follows:

Definition 1.2.1. A precise probability model (SP model in short) is a tuple 〈W,F , µ, V 〉
where W is a non-empty set, F is a field of sets on W , µ is a finitely additive probability
function defined on F , and V is a valuation function from Prop to F . In other words, an SP
model is simply a probability space plus a valuation function from Prop to events.

Truth for formulas of L(%) on any SP model M = 〈W,F , µ, V 〉 is defined recursively as
follows, where JϕKM = {w ∈ W | M, w � ϕ} as usual:

M, w � p ⇐⇒ w ∈ V (p)

M, w � ¬ϕ ⇐⇒ M, w 6� ϕ
M, w � (ϕ ∧ ψ) ⇐⇒ M, w � ϕ and M, w � ψ

M, w � (ϕ % ψ) ⇐⇒ µ(JϕKM) ≥ µ(JψKM) .

For this definition to work, it must be that for any ϕ ∈ L(%), JϕKM ∈ F , but this is not
hard to show once we observe that Jϕ % ψKM is either ∅ or W . As usual, a formula is valid
on a model if it is true at every world in the model, and is valid on a class of models if it is
valid on every model of the class.

The comparative logic of the precise probability approach is then the set of formulas valid
on all SP models. This set is axiomatized by the following axioms and rules:

• instances of propositional tautologies and the rule of modus ponens
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• the necessitation rule for %: from ϕ derive ϕ % >

(A0) (ϕ % ψ) ∨ (ψ % ψ);

(A1) ϕ % ⊥;

(A2) ϕ % ϕ;2

(A3) ¬(⊥ % >);

(A4)
(
(ϕ1, . . . , ϕn, ϕ

′) ≡ (ψ1, . . . , ψn, ψ
′) % >

)
→
(∧n

i=1(ϕi % ψi))→ (ψ′ % ϕ′)
)
;

(A5) (ϕ % ψ)→
(
(ϕ % ψ) % >

)
;

(A6) ¬(ϕ % ψ)→
(
¬(ϕ % ψ) % >

)
.

The antecedent (ϕ1, . . . , ϕn, ϕ
′) ≡ (ψ1, . . . , ψn, ψ

′) % > of the axiom (A4) uses an abbrevi-
ated symbol≡. Its formal definition can be found on page 148, and intuitively, the antecedent
expresses the idea that with probability 1, the number of true formulas (counting repetition)
in the sequence (ϕ1, . . . , ϕn) is the same as the number of true formulas (counting repeti-
tion) in the sequence (ψ1, . . . , ψn). It is not hard to see that the truth of this at any/all
world(s) in a model M guarantees that

∑n
i=1 µ(JϕiKM) =

∑n
i=1 µ(JψiK)M. The truth of the

consequent of (A4) then follows. It should be noted that the qualitative additivity axiom,
(ϕ % ψ) ↔ ((ϕ ∧ ¬ψ) % (ψ ∧ ¬ψ)) formulated in L(%), is a special case of (A4) with the
help of propositional tautologies, (A2), and the rules. This means that comparing likelihood
is closer to comparing the sizes of finite sets than to comparing the sizes of infinite sets.

This axiomatization also highlights a distinctive feature of the precise probability ap-
proach: it validates the comparability axiom (A0). This feature has been treated as a
decisive reason to reject the precise probability approach. As Keynes [103] expressed it a
century ago:

Is our expectation of rain, when we start out for a walk, always more likely than
not, or less likely than not, or as likely as not? I am prepared to argue that on
some occasions none of these alternatives hold, and that it will be an arbitrary
matter to decide for or against the umbrella. If the barometer is high, but the
clouds are black, it is not always rational that one should prevail over the other
in our minds, or even that we should balance them. (p. 30)

A prominent deviation from the precise probability approach rejecting (A0) is the so-called
imprecise probability approach. The deviation is simple: instead of using a single probability
function, the imprecise probability approach allows a non-empty set of probability functions.
How does an agent compare likelihoods of propositions according to the imprecise probability
approach? The agent will judge a proposition A to be at least as likely as a proposition B
iff all probability functions used to represent the doxastic state of the agent say that A is as

2Axiom (A2) is redundant, but we include (A2) to match [1].
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likely as B. It is now clear how imprecise probability rejects (A0): the set representing an
agent may contain one probability function saying that A is more likely than B and another
probability function saying that B is more likely than B, and taking both into account,
neither is A at least as likely as B, nor is B at least as likely as A.

It would be nice to compare precisely how the comparative logic of imprecise probability
differs from the comparative logic of precise probability. For this, we set up the imprecise
probability semantics for L(%) as follows:

Definition 1.2.2. An imprecise probability model (IP model in short) is a tuple 〈W,F ,P , V 〉
where W is a non-empty set, F is a field of sets on W , P is a non-empty set of finitely additive
probability functions defined on F , and V a valuation function from Prop to F . When P is
a singleton, we also call it an SP model.

Truth for formulas of L(%) on any IP model M = 〈W,F ,P , V 〉 is defined recursively as
follows, where JϕKM = {w ∈ W | M, w � ϕ} as usual:

M, w � p ⇐⇒ w ∈ V (p)

M, w � ¬ϕ ⇐⇒ M, w 6� ϕ
M, w � (ϕ ∧ ψ) ⇐⇒ M, w � ϕ and M, w � ψ

M, w � (ϕ % ψ) ⇐⇒ ∀µ ∈ P , µ(JϕKM) ≥ µ(JψKM).

Validity on SP models and SP model classes is defined as usual.

The logic of IP models in L(%) is axiomatized not long ago in [2], and the axiomatization
can be achieved by the following modifications to the above axiomatization for the logic of
SP models:

• drop the comparability axiom (A0) and

• replace (A4) with the following strengthening of it, which we call (A4’):

(
(ϕ1, . . . , ϕn, ϕ

′, . . . , ϕ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) % >
)
→
( n∧
i=1

(ϕi % ψi))→ (ψ′ % ϕ′)
)
.

That the strengthening is required is shown in [83]. This axiomatization shows that imprecise
probability, at least in the language L(%), is not very far away from precise probability: the
only conceptual change is the invalidation of the comparability axiom.

It is important to note that, while the change in axioms looks simple, the elimination of
the comparability axiom opens a sea of reasoning that was previously vacuous. The most
notable perhaps is the dilation phenomena in imprecise probability where an agent apparently
loses knowledge upon learning a proposition. Such phenomena can be partially represented
in L(%). Consider the following formula where ϕ ≈ ψ abbreviates (ϕ % ψ) ∧ (ψ % ϕ):

(p ≈ ¬p) ∧ ¬(q % ¬q) ∧ ¬(¬q % q). Dilation
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This formula says that p is equally as likely as ¬p, and q and ¬q are incomparable. This
formula is inconsistent in the logic of SP models, but is consistent in the logic of IP models.
Say an agent is correctly described by this formula. Then, what happens if the agent learns
that p↔ q? While we do not have an operator for learning a proposition in L(%), this can
be approximated by comparing propositions in conjunction with the learned proposition.
Indeed, IP models predict, and the axioms of the logic of IP models derives, the following
formula:

¬
(
(p ∧ (p↔ q)) % (¬p ∧ (p↔ q))

)
∧ ¬
(
(¬p ∧ (p↔ q)) % (p ∧ (p↔ q))

)
.

Also, learning the negation of p ↔ q has the same effect—the following formula is also a
logical consequence of Dilation:

¬
(
(p ∧ ¬(p↔ q)) % (¬p ∧ ¬(p↔ q))

)
∧ ¬
(
(¬p ∧ ¬(p↔ q)) % (p ∧ ¬(p↔ q))

)
.

It has been argued that this is a big problem for the imprecise probability approach, since,
according to this argument, if an agent sees that either way (learning either p ↔ q or
¬(p↔ q)) she will believe that p and ¬p are incomparable, she should believe that now, but
in Dilation, she believes that p and ¬p are comparable and equally likely (see [22]).

In Chapter 5, we will formally extend the language L(%) to include a learning operator
and formalize many concrete examples with probabilistic reasoning. But before the intro-
duction of the learning operator, we have two more operators to consider. The first is the
strict comparison operator “more likely than”. The addition of this as a primitive is not
necessary with the precise probability approach, since if there is only one probability func-
tion, for A to be more likely than B (µ(A) > µ(B)) is simply for B to be not at least as
likely as A (µ(B) 6≥ µ(A)). However, with multiple probability functions, there is a strong
sense of “more likely than” and a weaker sense. For A to be more likely than B in the
weaker sense is for A to be at least as likely as B and for there to be a probability function
judging A to be more likely than B. This weaker sense of “more like than” is definable
by “at least as likely as”: just write (ϕ % ψ) ∧ ¬(ψ % ϕ) when we need to say that “ϕ is
more likely than ψ in the weaker sense”. However, a stronger sense of “more likely than”,
defined by requiring unanimous judgment of “more likely than” from the representing prob-
ability functions is not definable with “at least as likely as”. Hence, we will add a symbol
� formalizing this stronger notion of “more likely than” and discuss the logic of IP models
in the resulting language L(%,�). After this, we go on to add an operator ♦ formalizing
the operator “possibly”. While many semantic choices are possible, the semantics for ♦ we
use is that for ♦ϕ to be true, we need one probability function such that when evaluated
with only that probability function, that probability function judges that ϕ has a non-zero
probability. In particular, ♦ϕ is neither equivalent to ¬⊥ % ϕ nor to ϕ � ⊥, since we would
like ♦(p � ¬p) ∧ ♦¬(¬p � p) to be consistent, reflecting the observation that “it’s possible
that raining is more likely than not, but it’s also possible that raining is no more likely than
not raining” does not sound marked. The ♦ operator offers another boost in expressivity,
and we will axiomatize the logic of IP models in the language with ♦ added as well.
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After the introduction of ♦, we introduce the learning operator 〈 〉. It turns out that
the learning operator does not add expressivity, and an axiomatization based on logically
reducing formulas with 〈 〉 to formulas without 〈 〉 is given. Finally, we consider adding a pair
of operators, I+

p and I−p , that introduce a new true proposition or a new false proposition,
respectively. The precise semantics of them will be slightly more complicated, but they
are meant to formalize a very common kind of information dynamics: besides learning the
truth of propositions, we also learn the existence of propositions. For example, we may be
introduced by doctors to the existence of an important gland in our body. Without knowing
the existence of the gland, we cannot even from beliefs, probabilistic or not, about it, and
once introduced to it, we are forced to form some opinions about it. We often find it hard to
form precise opinions, even only probabilistic ones, about propositions with little background
information, but the imprecise probability approach solves this problem elegantly: just take
all probability functions defined on old and new propositions that are compatible with the
existing probability functions defined only on the old propositions. We will formalize this
idea of belief change under the introduction of new propositions and express it using I+

p and
I−p . It turns out that with these new operators, the expressivity of the language becomes
quantitative, and we have to leave the full axiomatization of the logic of IP models in this
language for future work.

1.3 Comparison with the Published Versions

Chapter 2 was published as [40] in AiML 2018 with the title “On the Logics with Proposi-
tional Quantifiers Extending S5Π”. Other than some minor editorial changes, there is one
major change: Theorem 5.4 in the published version is strengthened to Theorem 2.5.4 in
this dissertation where instead of just the sets of the form {1} × (X ∪ {∞}), we now show
that any closed set in S is Turing equivalent to its logic.

Chapter 3 was published as [39] in Journal of Philosophical Logic with the title “On the
Logic of Belief and Propositional Quantification”. Other than the minor editorial changes,
we made the following major changes:

• An analysis of propositionally contingent models, culminating in Proposition 3.2.15
and Theorem 3.2.16 showing that 4∀ is not derivable in KD45Π, is newly added.

• We added proofs for item 3 and 4 in Proposition 4.2 in the published version (now
Proposition 3.4.7).

• In the published version, the extra axiom needed for atomic complete well-connected
pseudo-monadic algebras is z → g. While it looks short, it uses the two extra propo-
sitional constants not seen in LΠ. While they can be defined axiomatically in LΠ,
the definition of g is rather long. In Chapter 3, we show in Proposition 3.5.8 that the
simple At: ∃q∀p(p → �(q → p)) (with � replaced by B for the suggestive notation in
Chapter 3) is in fact logically equivalent to z → g. Recall that At defines atomicity
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on complete simple S5 algebras. So At, while not defining atomicity on complete well-
connected pseudo-monadic algebras (or equivalently complete proper filter algebras to
be defined in Chapter 3), is nevertheless enough for axiomatizing atomicity.

Chapter 4 was published as [41] in The Journal of Symbolic Logic with the title “The
Logic of Comparative Cardinality” and coauthors Matthew Harrison-Trainer and Wesley
Holliday. There is a major editorial change: we make the appendix in the published version
a normal section (Section 4.3). Also, we largely simplified the definition of Fin (compare
Definition 4.7.6 from Chapter 4 to the same in the published version).

Chapter 5 was published as [42] in International Journal of Approximate Reasoning with
the title “Logics of imprecise comparative probability” and coauthors Wesley Holliday and
Thomas Icard. Besides the minor editorial changes made, we fix a mistake in the published
version: the logic IP(%,�,♦) requires the instances of the theorems in IP(%,�) as axioms
(see Definition 5.5.4). We also offer a simple derivation of the 4 axiom �ϕ → ��ϕ in
IP(%,�,♦) after the Definition 5.5.4.
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2.1 Introduction

In this chapter, we study the modal logics with propositional quantifiers extending the well-
studied modal logic S5. Modal logics with propositional quantifiers have been of considerable
interest to many modal logicians since their appearances in Fine’s dissertation [54] and an
early paper by Bull [23]. However, much of the interest is devoted to a few particular systems
(e.g., [115, 112, 9, 11, 17]) and the expressive power under Kripke semantics (e.g., [29, 117,
116, 102, 71, 3, 10]), and there is an obvious lack of general study of classes of such logics.
An exemplary early general study of propositional modal logics is found in Scroggs’s famous
1951 paper [143], and it is our intention here to extend it to modal logics with propositional
quantifiers.

To this end, we must first define, in general, what is a modal logic with propositional
quantifiers. Since we consider here only logics with one modal operator, the language LΠ
defined below suffices.

Definition 2.1.1. Let LΠ be the language with the following grammar

ϕ ::= p | > | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | ∀pϕ

where p ∈ Prop, a countably infinite set of propositional variables.1 Other Boolean connec-
tives, ⊥, and ♦ are defined as usual.

As is common in the general study of modal logics, we take a modal logic with proposi-
tional quantifiers to be a set of formulas satisfying certain closure conditions, which represent
the necessary axioms and rules for connectives with fixed meaning. There are many readings
of the propositionally quantified sentence ∀pϕ, which result in different axioms and seman-
tics (see [55] for example), but here we take the most straightforward reading: “no matter
what proposition p expresses, ϕ.” From a purely logical point of view, this reading should
warrant the following widely accepted principles, which we call the Π-principles :

• All instances of the universal distribution axiom schema: ∀p(ϕ→ ψ)→ (∀pϕ→ ∀pψ).

• All instances of the universal instantiation axiom schema: ∀pϕ → ϕpψ where ψ is
substitutable for p in ϕ, and ϕpψ is the result of this substitution.

• All instances of the vacuous quantification axiom schema: ϕ→ ∀pϕ where p is not free
in ϕ.

• Universalization rule: if ϕ is derivable, then ∀pϕ is derivable.

Then the modal logics with propositional quantifiers, which we call Π-logics in accordance
with [23] and most recently [91], can now be defined.

1In contrast, > is a propositional constant. Later we will have another propositional constant.
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Definition 2.1.2. A Π-logic is a set Λ of formulas in LΠ such that Λ contains all instances of
propositional tautologies and axioms in the Π-principles, and is closed under modus ponens
and the only rule, universalization, in the Π-principles.

A normal Π-logic Λ is a Π-logic that contains the K axiom and is further closed under
necessitation: if ϕ ∈ Λ, then �ϕ ∈ Λ.

For any normal modal logic L in the usual basic modal language, let LΠ be the smallest
(in terms of inclusion) normal Π-logic containing L.

Then, for example, S5Π is the smallest normal Π-logic extending S5, and KΠ is the
smallest normal Π-logic extending K, which is just the smallest normal Π-logic.

Following Scroggs, we address the following questions in this chapter regarding the Π-
logics extending S5Π, the set of which we call NextΠ(S5Π).

General completeness of logics in NextΠ(S5Π) It is well known that S5Π is incomplete
with respect to its Kripke frames where every set of possible worlds counts as a proposition.
This was observed by Fine already in [54] and is in stark contrast to the situation without
propositional quantifiers: as is shown by Scroggs, all modal logics in the basic modal lan-
guage extending S5 are complete with respect to their finite Kripke frames with a totally
connected relation. However, Scroggs’s proof is algebraic in spirit, and indeed, an algebraic
semantics for LΠ based on modal algebras is more natural for the normal Π-logics, given
our straightforward reading of ∀pϕ. Algebraically, ∀pϕ is interpreted as the meet (greatest
lower bound) of all possible semantic values of ϕ when we only vary the valuation of p. In
short, ∀pϕ expresses an arbitrary meet. Dually, ∃pϕ expresses an arbitrary join. For this to
work, however, we need the modal algebras to be complete in the sense that for any set of
elements in the algebra, the meet and join of this set exist. We will show that all logics in
NextΠ(S5Π) are complete with respect to their complete simple S5 algebras, which are just
slight generalization of totally connected Kripke frames (dropping atomicity).

The lattice structure of NextΠ(S5Π) Using the general completeness result, the lattice
structure of NextΠ(S5Π) can be reduced to the lattice structure of classes of algebras defined
by logics in NextΠ(S5Π). We will show from this that the logics in NextΠ(S5Π) correspond to
the closed sets of a Stone space S, which is homeomorphic to the disjoint union of two copies
of the one-point compactification of N with the natural order topology. Then the lattice
〈NextΠ(S5Π),⊆〉 is isomorphic to the lattice of the open sets of S ordered by inclusion.

The computability of logics in NextΠ(S5Π) From the correspondence between the log-
ics and the closed sets, we also obtain that there are logics in NextΠ(S5Π) of arbitrarily
high Turing-degree. While it is known that many natural modal logics with propositional
quantifiers are of very high complexity [55, 102], this shows that we may still need to face
the problem even above S5.
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The non-normal Π-logics extending S5Π We will also show that there are many non-
normal Π-logics extending S5Π, contrary to the situation in the basic modal language, where
all modal logics extending S5 are normal. However, we leave a complete study of the non-
normal Π-logics extending S5Π to future work.

The plan to address these questions is as follows. In § 2.2, we present the semantics for
LΠ and collect the necessary results already appearing in [54] and more recently in [91]. In
§ 2.3, we show that, in terms of validity or theoremhood, every formula in LΠ is equivalent
to a Boolean combination of a few simple formulas. This serves as a good preparation for
§ 2.4, where we construct a topological space S based on all complete simple S5 algebras,
which encodes what classes of algebras are definable in terms of validity by LΠ. Crucially,
S is a Stone space. In § 2.5, we prove all the main results, which make essential use of
the fact that S is a Stone space and, in particular, that S is compact. This allows us to
prove completeness without using the usual Lindenbaum algebra and quotient construction,
though we need to rely on the already proven completeness of S5Π. Finally, we conclude
with related open problems in § 2.6.

2.2 Preliminaries

Recall that a modal algebra is a pair 〈B,�〉 where B is a Boolean algebra and � is a unary
operator on B satisfying �1 = 1 and �(a ∧ b) = �a ∧ �b for any a, b ∈ B. In most cases,
we will conflate the notation of an algebra and its carrier set, and we will take ¬,∧,∨,�
to be the complement, meet, join, and modal operators in modal algebra, despite that they
are also in our formal language LΠ. The usual abbreviations also apply to operations on
modal algebras, including ♦a := ¬�¬a for all a ∈ B. When confusion may arise, we will
use ¬B,∧B,∨B,�B for the operators in a modal algebra B. A modal algebra B is complete
when its Boolean part is a complete Boolean algebra. Then the semantics for LΠ can be
defined as follows.

Definition 2.2.1. For any modal algebra B, a valuation V on B is a function from Prop
to B. When B is complete, any such valuation can then be extended to an LΠ-valuation V̂
from LΠ to B defined recursively by:

1. V̂ (p) = V (p) for all p ∈ Prop;

2. V̂ (>) = 1; V̂ (¬ϕ) = ¬V̂ (ϕ); V̂ (ϕ ∧ ψ) = V̂ (ϕ) ∧ V̂ (ψ); V̂ (�ϕ) = �V̂ (ϕ);

3. V̂ (∀pϕ) =
∧
{V̂ ′(ϕ) | V ′ : Prop → B, V ′ ∼p V }, where we define V ′ ∼p V by V ′(q) =

V (q) for any q ∈ Prop \ {p}.

A formula ϕ ∈ LΠ is valid on a complete modal algebra B, written as B � ϕ, if for all
valuations V on B, V̂ (ϕ) = 1.
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Since we are only interested in Π-logics extending S5Π, we only need modal algebras
validating S5. In fact, we only need a very special class of such modal algebras called simple
S5 algebras.

Definition 2.2.2. A simple S5 algebra is pair 〈B,�〉 where B is a non-trivial Boolean
algebra and � is the unary function on B defined for a ∈ B by

�a =

{
1 if a = 1

0 otherwise.
Then ♦a =

{
1 if a 6= 0

0 otherwise.

Let us denote the class of all simple S5 algebras by sS5A and the class of all complete simple
S5 algebras by csS5A.

Modal algebras validating S5 are also known as monadic algebra (see [77, 78]). However,
in the context of monadic algebras, ♦ and � operators are usually denoted by ∃ and ∀, which
we need for propositional quantifiers. We also remark that our simple S5 algebras are indeed
simple in its general algebraic sense: they have no non-trivial congruence relation. In [47]
(see p.367), these algebras are also referred to as Henle algebras.

To formulate completeness with respect to csS5A, it is natural to use the following Galois
connection:

Definition 2.2.3. For any class C ⊆ csS5A, define Log(C) = {ϕ ∈ LΠ | ∀B ∈ C, B � ϕ}.
We also write Log({B}) as simply Log(B) for any B ∈ csS5A. Conversely, for any set
of formulas Γ ⊆ LΠ, define Alg(Γ) = {B ∈ csS5A | ∀ϕ ∈ Γ, B � ϕ}. Similarly, Alg(ϕ)
abbreviates Alg({ϕ}).

This finishes the semantics for LΠ, and now we march into expanding LΠ, as Fine did
in [54], to LΠMg. This is instrumental for formulating the quantifier elimination on which
completeness for S5Π alone in [54, 91] depends, and all our new results will also need it. In
the following, let N+ be the set of positive natural numbers, and N∞ be the set of natural
numbers plus an infinite element ∞. Also, we will use N∞+ , which has ∞ but not 0.

Definition 2.2.4. ([54]) Define LΠMg by extending the grammar for LΠ with a proposi-
tional constant g (not in Prop) and countably many new unary operators {Mi | i ∈ N+}.
Then, define LMg as the quantifier free fragment of LΠMg, which has the following grammar:

ϕ ::= p | > | g | �ϕ | Miϕ | ¬ϕ | (ϕ ∧ ϕ)

with p ∈ Prop.
For future convenience, we refer to the elements in Prop∪{>, g} in general as propositional

letters, and we define md(ϕ) to be the modal depth of ϕ defined as usual, with Mi’s and �
all treated as modal operators, Free(ϕ) to be the set of free propositional variables in ϕ, and
the quantificational depth of ϕ to be the maximal length of any chain of nested quantifers in
ϕ, analogous to the usual definition in first-order logics.
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Let us also define as in [54] for every α ∈ LΠMg an important formula atom(α):

atom(α) := ♦α ∧ ∀q(�(q → α) ∨�(q → ¬α)) (2.1)

where q ∈ Prop does not occur in α. To fix this choice, we assume that there is an enumeration
of Prop fixed from the outset. Then whenever we need fresh propositional letters in a
definition, the definition picks out the first available propositional variable.

Here g is intended to express the proposition that some atomic proposition is true, and
Miϕ the proposition that ϕ is entailed by at least i many atomic propositions. Hence, g
should be evaluated to the join of the atoms in a modal algebra. But this requires that the
join exists. Let us call a modal algebra separable if the join of its atoms exists. Then we can
give the semantics for LMg and LΠMg on appropriate modal algebras.

Definition 2.2.5. For any separable modal algebra B, define g (or gB when ambiguity
arises) as the join of all atoms of B, and Mi an operator on B as follows:

Mia =

{
1 if there are at least i distinct atoms below a

0 otherwise

for i ∈ N+.
Then, any valuation V on a separable B can be recursively extended to an LMg-valuation

V̂ from LMg to B by the same clauses for Boolean connectives and � as in Definition 2.2.1,
plus the following two clauses:

1. V̂ (g) = gB

2. V̂ (Miϕ) = MiV̂ (ϕ).

If B is furthermore complete, define the LΠMg-valuation extending V̂ by combining
the clauses above and in Definition 2.2.1. It is not hard to see that the LMg-valuation,
LΠ-valuation, and LΠMg-valuation extending V are compatible. Hence by V̂ , we always
mean the defined valuation with the maximal domain. This will be either an LMg-valuation
or an LΠMg-valuation, depending on whether the codomain of V is merely separable or is
complete. We also extend the definition of validity and also the Alg operator to formulas in
LΠMg in the obvious way.

Regarding atom(α), it is intended to express the proposition that α expresses an atomic
proposition. Its definition does not always achieve this intended meaning, but assuming that
it is interpreted on complete simple S5 algebras, this definition indeed singles out atoms in
simple S5 algebras. The proof of this can be found in [91].

Lemma 2.2.6. For any α ∈ LΠMg, any complete simple S5 algebra B, and any valuation
V on B, we have

V̂ (atom(α)) =

{
1 if V̂ (α) is an atom in B

0 otherwise.
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Now to the logics in the language LΠMg. They are obtained by adding two axiom
schemata to define the new operators Mi’s and g by formulas in LΠ.

Definition 2.2.7. For any normal Π-logic Λ, define ΛMg as the smallest normal Π-logic
(with formula variables in the schemata and rules of the definition now ranging over LΠMg)
that contains the following two axiom schemata for each n ∈ N+:

Mnϕ↔ ∃q1 · · · ∃qn(
∧

1≤i<j≤n

�(qi → ¬qj) ∧
∧

1≤i≤n

(atom(qi) ∧�(qi → ϕ))) (M)

g↔ ∃q(q ∧ atom(q)) (g)

where q1, · · · qn ∈ Prop do not occur in ϕ, and q ∈ Prop.

With the help of Lemma 2.2.6, it is not hard to directly observe that both (M) and (g)
are sound. In fact, we have the following theorem, mostly by Fine and Holliday, on which
our new results depend.

Lemma 2.2.8. S5ΠMg is a conservative extension of S5Π. Namely, S5ΠMg ∩ LΠ = S5Π.
Also, S5ΠMg is sound and complete with respect to csS5A.

Proof. For any ϕ ∈ LΠ, if ϕ ∈ S5ΠMg, then we can replace all Mi’s and g in its derivation
by their definitions in Definition 2.2.7. The resulting derivation is in S5Π. Hence ϕ ∈ S5Π.
This shows that S5ΠMg ∩ LΠ ⊆ S5Π. The other direction is trivial. This is observed and
first used by Fine in [54].

It is first shown algebraically in [91] that S5ΠMg is sound and that S5Π is sound and
complete with respect to csS5A. Now for any ϕ ∈ LΠMg that is valid in csS5A, we can first
replace all Mi’s and g in ϕ by their definitions to obtain ψ. Then ϕ ↔ ψ ∈ S5ΠMg. We
know that S5ΠMg is sound on csS5A. So ψ is valid. Then, since ψ ∈ LΠ, ψ ∈ S5Π, which
means ψ ∈ S5ΠMg. By modus ponens, ϕ ∈ S5ΠMg.

The proof of the completeness of S5Π in [91] relies on a fairly intricate quantifier elimina-
tion in S5ΠMg found first by Fine in [54], which says that for any ϕ ∈ LΠ, there is a formula
ψ ∈ LMg such that ϕ ↔ ψ ∈ S5ΠMg. We will also make use of this technical result. In
fact, ψ can be chosen from a much smaller fragment of LMg. Following Fine, we call them
model descriptions and define them now.

Definition 2.2.9. For any ϕ ∈ LΠMg, first define the following abbreviations:

Q0 := ¬M1ϕ; Qiϕ := Miϕ ∧Mi+1ϕ, i ∈ N+; Nϕ := ♦(¬g ∧ ϕ).

For any finite subset P ⊆ Prop, a state description s over P is a conjunction of literals
from P in which every p ∈ P occurs exactly once. We follow the convention that an empty
conjunction is > and an empty disjunction is ⊥. Let 2P be the set of all state descriptions
over P . Then, a model description of degree n over P is a conjunction of:
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1. either g or ¬g;

2. a state description a ∈ 2P ;

3. for each s ∈ 2P , either Mns or some Qis for some i < n;

4. for each s ∈ 2P , either Ns or N¬s.

Lemma 2.2.10 ([54], § 4.2). For any ϕ ∈ LΠ, there exists a qf(ϕ) ∈ LMg such that
ϕ ↔ qf(ϕ) ∈ S5ΠMg. Moreover, qf(ϕ) is a disjunction of model descriptions over Free(ϕ)
of degree 2n where n is the quantification degree of ϕ.

For the construction of qf , the reader can also see the appendix of [91].

2.3 Semantical and syntactical reduction

In this section, we show that for any ϕ ∈ LΠ, any complete simple S5 algebra B, and any
Λ ∈ NextΠ(S5Π), we can construct a formula, which we call basic(ϕ), such that:

• ϕ ∈ Λ iff basic(ϕ) ∈ ΛMg;

• B � ϕ iff B � basic(ϕ);

• basic(ϕ) is a Boolean combination of ♦¬g and Mi> for i ∈ N+.

To facilitate the proof, let us first define a number of useful fragments of LΠ.

Definition 2.3.1. Recall that LMg is the quantifier free fragment of LΠMg. Now, define
the following propositional-variable-free fragments of LMg where i ranges over elements in
N+:

SMg 3 ϕ ::= > | g | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | Miϕ

S≤1Mg 3 ϕ ::= > | g | ♦¬g | Mi> | ¬ϕ | (ϕ ∧ ϕ)

SBasic 3 ϕ ::= > | ♦¬g | Mi> | ¬ϕ | (ϕ ∧ ϕ) .

The S instead of L in their names means “Sentence.” It is not hard to see that SMg collects
all propositional-variable-free formulas in LMg and that S≤1Mg collects some formulas with
modal depth at most 1 in SMg, which are enough for our purposes.

For any ϕ ∈ LΠ, we will construct basic(ϕ) as the following with u and comp to be
defined:

basic(ϕ) = comp(�qf(u(ϕ))).

First, u(ϕ) is the universal closure of ϕ, which is ∀p1∀p2 · · · ∀pnϕ where p1, p2, · · · , pn enu-
merate the free propositional variables in ϕ. And recall that qf returns the result of quan-
tifier elimination. Since u(ϕ) has no free propositional variable, according to Lemma 2.2.10,
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qf(u(ϕ)) ∈ SMg is a disjunction of model descriptions of some finite degree over ∅. From
Definition 2.2.9, we can see that all model descriptions of degree n over ∅ are of the form

±g ∧Mi> ∧ ¬Mi+1> ∧±♦¬g or ± g ∧Mn> ∧±♦¬g

where i < n, ± stands for ¬ or nothing, and M0> for >. In short, qf(u(ϕ)) is a Boolean
combination of g, Mi> for i ∈ N+, and ♦¬g, and hence is in S≤1Mg.

Now we construct comp as a function that simplifies a boxed modal description over ∅
to a formula in SBasic in a provably equivalent way.

Lemma 2.3.2. For any ψ a disjunction of model descriptions of degree n over ∅, there is
a formula comp(�ψ) ∈ SBasic such that �ψ ↔ comp(�ψ) ∈ S5ΠMg.

Proof. Let pos be the number of model descriptions in ψ where g appears positively and neg
the number of model descriptions in ψ where g appears negatively. For any 1 ≤ i ≤ pos, let
αi be the result of deleting the conjunct g in the ith model description in ψ where g appears
positively, and similarly define βi for 1 ≤ i ≤ neg, where we need to delete the ¬g conjunct.

Let α =
∨

1≤i≤pos αi and β =
∨

1≤i≤neg βi, which are now Boolean combinations of Mi>’s
and ♦¬g. Then obviously ψ ↔ ((g ∧ α) ∨ (¬g ∧ β)) and �ψ ↔ �((g ∧ α) ∨ (¬g ∧ β)) are in
S5ΠMg using propositional tautologies and normality. Let us write for any ϕ1, ϕ2 ∈ LΠMg,
ϕ1 ≡S5ΠMg ϕ2 iff ϕ1 ↔ ϕ2 ∈ S5ΠMg. Then we have

�ψ ≡S5ΠMg �((g ∧ α) ∨ (¬g ∧ β)) (2.2)

≡S5ΠMg �((g ∨ ¬g) ∧ (g ∨ β) ∧ (¬g ∨ α) ∧ (α ∨ β)) (2.3)

≡S5ΠMg �(g ∨ ¬g) ∧�(g ∨ β) ∧�(¬g ∨ α) ∧�(α ∨ β) (2.4)

≡S5ΠMg �(g ∨�β) ∧�(¬g ∨�α) ∧�(�α ∨�β) (2.5)

≡S5ΠMg (�g ∨�β) ∧ (�¬g ∨�α) ∧ (�α ∨�β) (2.6)

≡S5ΠMg (�g ∨ β) ∧ (�¬g ∨ α) ∧ (α ∨ β) (2.7)

≡S5ΠMg (¬♦¬g ∨ β) ∧ (¬M1> ∨ α) ∧ (α ∨ β). (2.8)

In the above chain of provable equivalences, (5), (7), and (8) require more explanation. Note
that in S5ΠMg, we have �∀pϕ ≡S5ΠMg ∀p�ϕ, and dually, ♦∃pϕ ≡S5ΠMg ∃p♦ϕ. With all
the axioms in S5, and also the axiom (M) defined in Definition 2.2.7, Mi> ≡S5ΠMg �Mi>.
Then, α ≡S5ΠMg �α and β ≡S5ΠMg �β, since α and β are Boolean combinations of Mi> and
♦¬g. Thus we have (5) and (7). For (8), some manipulation of axioms (g) and (M) gives us
�¬g ≡S5ΠMg ¬M1>. The rest of the equivalences are standard S5 reasoning. We can then
define basic(�ψ) to be the right hand side in (8), which is provably equivalent to �ψ and is
in SBasic.

Now we show that for any ϕ ∈ LΠ, basic(ϕ) has the required properties.

Lemma 2.3.3. For any ϕ ∈ LΠ and Λ ∈ NextΠ(S5Π), ϕ ∈ Λ iff basic(ϕ) ∈ ΛMg.
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Proof. Since ΛMg is a conservative extension of Λ (by Lemma 2.2.8), ϕ ∈ Λ iff ϕ ∈ ΛMg.
Using universalization and also universal instantiation, ϕ ∈ ΛMg iff u(ϕ) ∈ ΛMg. Since Λ ∈
NextΠ(S5Π), ΛMg extends S5ΠMg. Together with the quantifier elimination result in Lemma
2.2.10, qf(u(ϕ)) ↔ u(ϕ) ∈ ΛMg. Thus u(ϕ) ∈ ΛMg iff qf(u(ϕ)) ∈ ΛMg. By necessitation
and also the T axiom derivable in S5, qf(u(ϕ)) ∈ ΛMg iff �qf(u(ϕ)) ∈ ΛMg. Finally, due
to Lemma 2.3.2 and the fact that qf(u(ϕ)) is indeed a disjunction of model descriptions
of some finite degree over ∅, we have basic(ϕ) = comp(�qf(u(ϕ))) ↔ �qf(u(ϕ)) ∈ ΛMg.
Thus basic(ϕ) ∈ ΛMg iff �qf(u(ϕ)) ∈ ΛMg. Connecting all the equivalences, ϕ ∈ Λ iff
basic(ϕ) ∈ ΛMg.

On the semantical side, we first make an easy observation.

Lemma 2.3.4. For any complete (resp. separable) modal algebra B and any ϕ ∈ LΠMg

(resp. LMg) such that Free(ϕ) = ∅, for any two valuations V and V ′ on B, V̂ (ϕ) = V̂ ′(ϕ).

Due to this observation, we define for any separable modal algebra B, a fixed trivial
valuation VB which maps every p ∈ Prop to 1B. Then B � ϕ iff V̂B(ϕ) = 1B for any
ϕ ∈ LMg (or LΠMg when B is complete) such that Free(ϕ) = ∅.

Then we can prove the semantical requirement for basic.

Lemma 2.3.5. For any ϕ ∈ LΠ and any complete simple S5 algebra B, B � ϕ iff B �
basic(ϕ).

Proof. First consider the following chain of equivalences:

B � ϕ iff B � u(ϕ) by the definition of validity

iff V̂B(u(ϕ)) = 1 by the definition of validity

iff V̂B(qf(u(ϕ))) = 1 B validates S5ΠMg, and

u(ϕ)↔ qf(u(ϕ)) ∈ S5ΠMg

iff V̂B(�(qf(u(ϕ)))) = 1 �1 = 1 and �a 6= 1 if a 6= 1

iff V̂B(comp(�(qf(u(ϕ))))) = 1 B validates S5ΠMg, and

Lemma 2.3.2

Note that basic(ϕ) must have no free propositional variable. This is because basic(ϕ) =
comp(�qf(u(ϕ))), Free(u(ϕ)) = ∅, and neither qf nor comp introduces new free variables.

Then by the observation in the previous lemma, B � basic(ϕ) iff V̂B(basic(ϕ)) = 1. Con-
necting all the equivalences, B � ϕ iff B � basic(ϕ).

2.4 Types and type space

In the last section, we have shown that many formulas are equivalent in terms of validity or
theoremhood. In this section, we do the same to the algebras: many algebras are equivalent
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in terms of the formulas in LΠ they validate. This equivalence relation can in fact bring
csS5A from a class to a countable set, which we will call the type space. Then, to study
the classes of algebras definable by formulas in LΠ, we can just study the sets of types of
the algebras in those classes. This in turn gives us a topology on the type space. Now
we start with the definition of the types, which is in fact a much simplified version of the
famous Tarski invariant for Boolean algebras (see § 5.5 in [31]), due to the completenss of
the algebras we are interested in.

Definition 2.4.1. For any complete simple S5 algebra B, its type t(B) is a pair 〈t0(B), t1(B)〉
where

t0(B) =

{
1 if g 6= 1

0 if g = 1,
t1(B) =

{
i ∈ N if B has exactly i atoms

∞ if B has infinitely many atoms.
(2.9)

Recall that g of B is the join of its atoms. Hence, t0 says whether this algebra contains an
atomless part, and t1 counts the atoms it has. Let S be the set of all types of complete
simple S5 algebras, the type space.

Proposition 2.4.2. S = ({0, 1} × N∞)\{〈0, 0〉}.

Proof. Clearly, S ⊆ {0, 1} ×N∞ as any type is a pair 〈t0, t1〉 where the first component can
only be 0 or 1 and the second component can only be a natural number of ∞. Also, if the
type of a complete simple S5 algebra A is 〈0, 0〉, then A has no atom and also no atomless
part, which means A is trivial and thus not a complete simple S5 algebra in our Definition
2.2.5. So we have shown the inclusion from left to right. Now to the other direction. The
right-hand-side can be decomposed into three parts:

• 〈0, n〉 for n ∈ N∞+ . Types of this form can be realized by the Boolean algebra Bn of the
powerset of a set of n elements, supplemented with � defined as in Definition 2.2.5.
When n =∞, we can use the powerset of N.

• 〈1, 0〉. To realize this type, take the countable free Boolean algebra B. It is well
known that B is atomless, but not complete. However, we can take the MacNeille
completion B+ of B, a complete Boolean algebra (unique up to isomorphism) such
that B embeds into and that every element of B+ is a join of images of elements of B.
For a construction of this B+, see [73], Chap. 25. Then B+ is complete and atomless,
as if there is an atom, it must be the image of an atom of B, but B is atomless. Now
turn B+ to a simple S5 algebra by defining � as in Definition 2.2.5. Then B+ has type
〈1, 0〉.

• 〈1, n〉 for n ∈ N∞+ . Consider the product of B+ and Bn with � again defined as above.
It is not hard to see that it has an atomless part: g of this algebra is 〈1, 0〉. It also has
n many atoms, listed by 〈0, a〉 where a range over atoms in Bn. Thus this simple S5
algebra has type 〈1, n〉.
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Hence we realized all types in the right-hand-side. So the inclusion from right to left is also
shown.

Now we define the equivalences between algebras. Then we will show that types capture
this equivalence relation.

Definition 2.4.3. For any two complete simple S5 algebras A,B, and any L ∈ {LΠ,SBasic}
we say A ≡L B if for any sentence ϕ ∈ L, A � ϕ iff B � ϕ.

Lemma 2.4.4. For any two complete simple S5 algebras A,B, A ≡LΠ B iff A ≡SBasic B.

Proof. Immediate from Lemma 2.3.5.

Lemma 2.4.5. For any two complete simple S5 algebras A,B, t(A) = t(B) iff A ≡SBasic B.
Hence, together with Lemma 2.4.4, t(A) = t(B) iff A ≡LΠ B.

Proof. Recall that for all ϕ ∈ SBasic and any complete simple S5 algebra A, A � ϕ iff
V̂A(ϕ) = 1, because Free(ϕ) = ∅. Also notice that for ϕ = ♦¬g or Mi> for any i ∈ N+,

V̂A(ϕ) is either 0 or 1. Since SBasic consists of all and only the Boolean combinations of

these formulas, for any ϕ ∈ SBasic, V̂A(ϕ) ∈ {0, 1}. This means either A � ϕ or A � ¬ϕ.
Now suppose t(A) = t(B). Then, conflating 1A and 1B, and also 0A and 0B, we can

easily verify that V̂A(♦¬g) = V̂B(♦¬g) and that for all i ∈ N+, V̂A(Mi>) = V̂B(Mi>).
Then a simple induction propagates these equalities to all ϕ ∈ SBasic. Thus we see that if
t(A) = t(B), then A ≡SBasic B.

On the other hand, if t(A) 6= t(B), then there are two cases:

• t1(A) 6= t1(B). In this case, ♦¬g distinguishes the two algebras.

• t2(A) 6= t2(B). Let n be the smaller number among them. Then n ∈ N, n + 1 ∈ N+,
and ¬Mn+1 distinguishes the two algebras.

Hence, if t(A) 6= t(B), then A 6≡SBasic B.

Due to this lemma, the function t can be seen as the quotient map from csS5A to
csS5A/≡LΠ. This means that the Galois connection between csS5A and LΠ by Alg and
Log can be reduced to the following Galois connection between S and LΠ.

Definition 2.4.6. For any type s ∈ S and any ϕ ∈ LΠ, let us write s � ϕ just in case for
any A ∈ csS5A such that t(A) = s, A � ϕ.

Then define Type(Γ) for every Γ ⊆ LΠ as {s ∈ S | ∀ϕ ∈ Γ, s � ϕ}, with Type(ϕ) again
abbreviating Type({ϕ}). In the other direction, define Log(T ) for any subset T of S as
{ϕ ∈ LΠ | ∀s ∈ T, s � ϕ}, with Log(s) abbreviating Log({s}) for any s ∈ S as well.

Then, we can collect the following easy but useful observations.

Lemma 2.4.7. For any Γ ⊆ LΠ, ϕ, ψ ∈ SBasic:
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• Alg(Γ) = t−1(Type(Γ)), t(Alg(Γ)) = Type(Γ), and then Log(Type(Γ)) = Log(Alg(Γ));

• Type(Γ) =
⋂
{Type(ϕ) | ϕ ∈ Γ};

• Type(¬ϕ) = S \ Type(ϕ), Type(ϕ ∧ ψ) = Type(ϕ) ∩ Type(ψ).

Using this lemma, we can study the following topology that will be important to us for
both general completeness and the lattice structure of NextΠ(S5Π).

Definition 2.4.8. Let S be the topological space with the type space S as the underlying
set and {Type(ϕ) | ϕ ∈ LΠ} as basic opens.

Lemma 2.4.9. S is a Stone space, homeomorphic to the disjoint union of two copies of the
one-point compactification of N with the usual order topology.

Proof. From Lemma 2.3.5, the basic opens of S are just sets in {Type(ϕ) | ϕ ∈ SBasic}.
By the third bullet in Lemma 2.4.7, we know that {Type(ϕ) | ϕ ∈ SBasic} is a field of sets
on S. Thus S is zero-dimensional. To see that S is Hausdorff, take two different s1, s2 ∈ S.
Recall that S is t(csS5A). So we can find two complete simple S5 algebras B1 and B2 such
that t(B1) = s1 and t(B2) = s2. Then, by Lemma 2.3.5, B1 6≡SBasic B2. So we can find a
formula ϕ ∈ SBasic such Type(ϕ) that separates B1 and B2. So S is Hausdorff.

To show that S is compact, we need a more detailed analysis of {Type(ϕ) | ϕ ∈ SBasic}.
First, note that Type(♦¬g) = {1} × N∞, Type(¬♦¬g) = {0} × N∞+ , and they partition S
into two parts. Let us name them by S1 and S0 respectively. Hence S is the disjoint union
of S1 and S0 defined as the subspaces of S on S1 and S0 respectively. So we only need to
show that they are both compact. On S1, the basic clopens are now Boolean combinations
of Type(Mi) for i ∈ N+ and Type(♦¬g), all restricted to S1. But Type(♦¬g) = S1. Then
the clopens are actually the field of sets on S1 generated by {Type(Mn) ∩ S1 | n ∈ N} =
{{〈1, i〉 | n ≤ i ≤ ∞} | n ∈ N}. Hence it is not hard to see that S1 is just (homeomorphic
to) the one-point compactification of the order topology on N. The situation for S0 is almost
the same, except that the space is on N∞+ . But it is still homeomorphic to the one-point
compactification of N.

2.5 Main results

Now we are prepared to prove the main results regarding Π-logics extending S5Π. Let us
start with the general completeness.

Theorem 2.5.1. For any Λ ∈ NextΠ(S5Π), Λ = Log(Alg(Λ)).

Proof. As is shown in Lemma 2.4.7, Log(Alg(Λ)) = Log(Type(Λ)). Also, it is trivial that
Λ ⊆ Log(Type(Λ)). Hence we just need to show that, for any ϕ ∈ LΠ, if ϕ ∈ Log(Type(Λ)),
then ϕ ∈ Λ.
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Let us assume the antecedent. Then for any s ∈ Type(Λ), s � ϕ. In other words,
Type(ϕ) ⊇ Type(Λ). As we observed in Lemma 2.4.7, Type(Λ) =

⋂
{Type(ψ) | ψ ∈ Λ}. By

Lemma 2.3.5, Type(ψ) = Type(basic(ψ)). Note also that ψ ∈ Λ iff basic(ψ) ∈ ΛMg, which is
shown in Lemma 2.3.3. Thus the set {Type(ψ) | ψ ∈ Λ} ⊆ {Type(ψ) | ψ ∈ ΛMg ∩ SBasic}.
On the other hand, for any ψ ∈ ΛMg ∩SBasic, using the axioms defining Mi and g, there is
a ψ′ ∈ LΠ such that ψ ↔ ψ′ ∈ ΛMg. This means that ψ′ is in ΛMg, hence also in Λ, and
that Type(ψ) = Type(ψ′), using Lemma 2.2.8. Hence {Type(ψ) | ψ ∈ Λ} = {Type(ψ) | ψ ∈
ΛMg ∩ SBasic}, which we now call F .

Now this is a filter of basic clopens in S for the following reasons.

• For any X, Y ∈ F , we can find α, β ∈ ΛMg ∩ SBasic such that X = Type(α) and
Y = Type(β). Now α∧β ∈ ΛMg∩SBasic, since ΛMg has all propositional tautologies
and modus ponens. Hence X ∩ Y = Type(α) ∩ Type(β) = Type(α ∧ β) ∈ F .

• Recall that the basic clopens in S are just {Type(β) | β ∈ SBasic}. For any X ∈ F
and any basic clopen Y such that X ⊆ Y , we first find α ∈ ΛΠMg ∩ SBasic and
β ∈ SBasic such that X = Type(α) and Y = Type(β). Then note that Type(α →
β) = (S \ X) ∪ Y = S, since X ⊆ Y . Then by the completeness of S5ΠMg (Lemma
2.2.8), α → β ∈ S5ΠMg. Then by modus ponens in ΛMg, which extends S5ΠMg as
Λ extends S5, β ∈ ΛMg. Remember that β ∈ SBasic. Hence β ∈ ΛMg ∩ SBasic and
Y = Type(β) ∈ F .

Thus we have Type(Λ) = ∩F , a filter of basic clopens in S, and we assumed that
Type(ϕ) ⊇ Type(Λ). Take basic(ϕ). We have Type(basic(ϕ)) = Type(ϕ) and that it is basic
clopen in S. We have shown that S is a Stone space in Lemma 2.4.9. Hence by compactness,
there is actually an element Z ∈ F such that Type(ϕ) ⊆ Z. By the definition of F , we can
find a ψ ∈ ΛMg ∩ SBasic such that Z = Type(ψ). Then Type(ψ → basic(ϕ)) = S. By
completeness again, we have ψ → basic(ϕ) ∈ S5ΠMg and thus also ΛMg. Then, since ψ is
taken in ΛMg, basic(ϕ) ∈ ΛMg. By Lemma 2.3.3, ϕ ∈ Λ. This finishes the completeness of
Λ.

Then we describe the lattice structure of NextΠ(S5Π).

Theorem 2.5.2. The lattice 〈NextΠ(S5Π),⊆〉 is isomorphic to the lattice of the open sets
of S. The isomorphism is Λ 7→ S \ Type(Λ), or in the other direction, X 7→ Log(S \X).

Proof. It is shown in the proof of Theorem 2.5.1 that for any Λ ∈ NextΠ(S5Π), Type(Λ)
is the intersection of a filter of the basic opens of S. By the basic theory of Stone spaces,
this means that Type(Λ) is always a closed set in S. Also, for any Λ1,Λ2 ∈ NextΠ(S5Π),
obviously Λ1 ⊆ Λ2 iff Type(Λ1) ⊇ Type(Λ2). This means that, if we can establish that for
every closed set X ⊆ S, there is a Λ ∈ NextΠ(S5Π) such that X = Type(Λ), then the lattice
structure of NextΠ(S5Π) is precisely the inverse lattice of the closed sets of S, or just the
lattice of the open sets of S, and the isomorphism will be given by Λ 7→ S \ Type(Λ).
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Now take an arbitrary closed set X in S. Then Log(X) ∈ NextΠ(S5Π) as it is the set of
formulas in LΠ valid on a class of complete simple S5 algebras. Then what remains to be
shown is that Type(Log(X)) = X. Again, the direction X ⊆ Type(Log(X)) is trivial. Now
take an arbitrary type s ∈ S \X. Then we just need to show that s 6∈ Type(Log(X)). Since
S is a Stone space, X is closed, and s 6∈ X, we know that s and X can be separated by a
basic clopen. Then, we can find a ϕ ∈ SBasic such that X ⊆ Type(ϕ) but s 6∈ Type(ϕ).
But then, ϕ ∈ Log(X). Since Type(Log(X)) =

⋂
{Type(ψ) | ψ ∈ Log(X)}, we see that

s 6∈ Type(Log(X)). This finishes the proof.

Since we have shown in the process of proving Theorem 2.4.9 that S is isomorphic to the
disjoint union of two copies of the one-point compactification of N, we have the following
corollary.

Corollary 2.5.3. The lattice 〈NextΠ(S5Π),⊆〉 is isomorphic to the lattice of open sets of
the disjoint union of two copies of the one-point compactification of N, which is further
isomorphic to the lattice of filters of the direct product of two copies of the field of finite and
cofinite sets in N.

Another corollary of this characterization of all logics in NextΠ(S5Π) is that, in terms of
computability, there are arbitrarily complex logics (coded as sets of natural numbers in some
natural way). More precisely, for any X ⊆ N, there is a Λ ∈ NextΠ(S5Π) such that X and
Λ are Turing-equivalent. But we prove a more general result regarding the Turing-degree of
a logic in NextΠ(S5Π).

Theorem 2.5.4. We fix a natural encoding of N∞ and LΠ in N with the usual operations
such as forming pairs or conjunctions computable. Then, For any Λ ∈ NextΠ(S5Π), Λ is
Turing-equivalent to Type(Λ).

Proof. Let Λ be in NextΠ(S5Π). To show that Λ and Type(Λ) are Turing-equivalent, we
need to show that they can be reduced to each other. Crucially, we are not looking for a
uniform reduction here, and the reduction algorithms depend on the following two questions:

• Is 〈0,∞〉 ∈ Type(Λ) or not?

• Is 〈1,∞〉 ∈ Type(Λ) or not?

This means we have four cases. Let us consider first the case where neither 〈0,∞〉 nor 〈1,∞〉
is in Type(Λ). Recall that Type(Λ) is a closed set in S. Hence, Type(Λ) is now finite and
computable, and we only need to reduce Λ to Type(Λ) as the other direction is trivial. To
decide whether an input formula ϕ is in Λ or not, recall that by Lemma 2.4.7 and Theorem
2.5.1, Λ = Log(Type(Λ)). This means we only need to check if Type(Λ) ⊆ Type(ϕ). Also,
note that by computing basic(ϕ) and putting it into disjunctive normal form, we can compute
a finite presentation of Type(ϕ) since it is a finite union of intervals in {0}×N∞+ or {1}×N∞.
Hence, to test if Type(Λ) ⊆ Type(ϕ), we only need to check for every element in Type(Λ)
(only finitely many such checks are needed) if it is in Type(ϕ).
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For the other three cases, we first show how to reduce Type(Λ) to Λ. Note that in each
case, we only need to answer if an element in Sfin = ({0} × N+) ∪ ({1} × N) is in Type(Λ),
since whether 〈0,∞〉 or 〈1,∞〉 is in Type(Λ) is already answered by the discussion by cases
and the answers can be hardwired into the final algorithm computing Type(Λ). Then it is
enough to observe that for each 〈i, n〉 ∈ Sfin, where M−1> and M0> are defined by >:

• if i = 0, then 〈i, n〉 ∈ Type(Λ) iff the formula �g → (¬Mn−1> ∨Mn+1>) is not in Λ
since Type(�g → (¬Mn−1> ∨Mn+1>)) = S \ 〈0, n〉, and

• if i = 1, then 〈i, n〉 ∈ Type(Λ) iff the formula ♦¬g → (¬Mn−1> ∨Mn+1>) is not in Λ
since Type(♦¬g → (¬Mn−1> ∨Mn+1>)) = S \ 〈1, n〉.

Now we show how to reduce Λ to Type(Λ). Note that our algorithm will depend on the
above two questions. Let ϕ be an input formula. The general strategy is to test first whether
Type(Λ)0 = Type(Λ)∩{0}×N∞+ is a subset of Type(ϕ)0 = Type(ϕ)∩{0}×N∞+ , and then test
whether Type(Λ)1 = Type(Λ) ∩ {1} × N∞ is a subset of Type(ϕ)1 = Type(ϕ) ∩ {1} × N∞.
Clearly, ϕ ∈ Λ iff both tests return an positive answer. To decide whether Type(Λ)0 ⊆
Type(ϕ)0:

• If 〈0,∞〉 is in Type(Λ), the algorithm checks if the intervals in Type(ϕ) contains an
interval with ∞ being the right endpoint. If not, then Type(Λ)0 is not a subset of
Type(ϕ)0 since 〈0,∞〉 6∈ Type(ϕ)0. If Type(ϕ)0 does contain an interval of the with
∞ being the right endpoint, let 〈0, n〉 be its left endpoint. Then for every m ∈ N+

from 0 to n − 1, we test if either 〈0,m〉 6∈ Type(Λ)0 or 〈0,m〉 ∈ Type(ϕ). If the
answer is positive for all such m, we know that Type(Λ)0 ⊆ Type(ϕ)0, and otherwise
Type(Λ)0 6⊆ Type(ϕ)0, resulting in ϕ 6∈ Λ.

• If 〈0,∞〉 is not in Type(Λ), then using the topology of S and the fact that Type(Λ)
is closed, our algorithm can check for every element in Type(Λ)0 if it is in Type(ϕ)0

(computable from ϕ) since Type(Λ)0 in this case is a finite set.

The way to decide whether Type(Λ)1 ⊆ Type(ϕ)1 is completely analogous.

Corollary 2.5.5. For any set X ⊆ N, there is a Λ ∈ NextΠ(S5Π) that is Turing-equivalent
to X.

Proof. Note that X+ = {〈1, n〉 | n ∈ X} ∪ {〈1,∞〉} is a closed set in S. Letting Λ =
Log(X+), as we have shown in the proof of Theorem 2.5.2, X+ = Type(Λ). Hence, by
Theorem 2.5.4, Λ and X+ are Turing-equivalent. But clearly, X is Turing-equivalent to X+.
So Λ is Turing equivalent to X.

Regarding the non-normal Π-logics extending S5Π, we limit ourselves to merely point out
that there are many such logics. Algebraically, non-normal modal logics come from matrices
(see §1.5 of [108]), which are algebras of propositions with a set of designated truth values. To
exhibit a non-normal Π-logic extending S5Π, we can use just one particular structure. Let B
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be the complete simple S5 algebra whose Boolean part is the direct product of the powerset
algebra of N and the MacNeille completion of the free Boolean algebra with countably many
generators. Note that t(B) = 〈1,∞〉. Now consider the following set:

Λ = {ϕ ∈ LΠ | ∀V : Prop→ B, V̂ (ϕ) ≥ g}.

It is not hard to see that Λ ⊇ Log(B), as the latter collects formulas whose valuation stay
at 1, hence necessarily above g. Also, Λ is a Π-logic. In particular, universalization is valid
because if ϕ only evaluates to elements above (non-strictly) g, then ∀ϕ evaluates to the meet
of those elements above g, which must stay above g. Moreover, ∃q(q ∧ atom(q)) ∈ Λ, as
this formula evaluates precisely to g. However, �∃q(q ∧ atom(q)) is not in Λ, since �g is
⊥, because g 6= 1 in B: there is an atomless part in B. This means we obtained a non-
normal Π-logic extending a normal Π-logic Log(B) which has no proper consistent normal
extension: the only closed proper subset of {B} in S is ∅. Obviously, for any complete
simple S5 algebra B that has both a non-trivial atomless part and a non-trivial atomic part,
we can obtain a non-normal Π-logic in the same fashion. We could also use the requirement
that V̂ (ϕ) ≥ ¬g, which will result in non-normal Π-logics including ¬g but not �¬g.

2.6 Conclusion

In this chapter, we investigated Π-logics extending S5Π. In particular, we see that complete
simple S5 algebras are semantically adequate for all normal Π-logics extending S5Π, that the
lattice of these normal Π-logics is isomorphic to the lattice of the open sets of the type space
S that is homeomorphic to the disjoint union of two copies of the one-point compactification
of N, that they can have arbitrarily high Turing-degree, and that they do not exhaust all
the Π-logics extending S5Π as there are non-normal ones.

A major unresolved problem though, is the characterization of all Π-logics, instead of only
the normal ones, extending S5Π. We conjecture that a similar strategy can be used, though
we need to be more careful about the choice of types. With an informative characterization,
we may also be able to find a simple syntactical condition for a Π-logic extending S5Π to
be normal and describe how the normal ones are distributed in the lattice of all Π-logics
extending S5Π.

Finally, we ask whether there is a way to prove all the results, especially the completeness
of S5Π and stronger Π-logics, without using explicitly quantifier elimination. That this is
important is because for many modal logics L, there is little hope that one can obtain a
manageable quantifier elimination for LΠ. Hence, we need some technique that can be more
easily generalized.
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3.1 Introduction

In this chapter, we consider extending the modal logic KD45, commonly taken as the base-
line system for belief, with propositional quantifiers that can be used to formalize natural
language sentences such as “everything I believe is true” or “there is something that I neither
believe nor disbelieve.” Our main results are axiomatizations of the logics with propositional
quantifiers of natural classes of complete Boolean algebras with an operator (BAOs) vali-
dating KD45. Among them is the class of complete, atomic, and completely multiplicative
BAOs validating KD45. Hence, by duality, we also cover the usual method of adding propo-
sitional quantifiers to normal modal logics by considering their classes of Kripke frames. In
addition, we obtain decidability for all the concrete logics we discuss.

The present work can be seen as sitting at the intersection of two strands of literature:
the doxastic logic literature, since we are extending KD45, and the literature on modal logics
with propositional quantifiers, since we are extending with propositional quantifiers. In both
bodies of literature, algebraic approaches are not particularly popular. Moreover, KD45
was not discussed in the literature of modal logics with propositional quantifiers until very
recently [12]. To explain our motivation and potential contribution to the two bodies of
literature in more detail, we use two subsections below.

3.1.1 Dubious principles and possible-world semantics

Since Hintikka [88], modal logic has been indispensable for the study of intensional propo-
sitional operators like knowledge and belief. For the belief case, the system KD45 arose
naturally as a baseline system. The reason may be that KD45 puts together the properties
that we immediately recognize as what an ideal agent’s belief (or an agent’s ideal belief)
should have: logical omniscience, consistency, and full introspection. Indeed, the modal rule
and axioms in the standard axiomatization of KD45 can be matched precisely to these prop-
erties: the necessitation rule and K to logical omniscience, D to consistency, and 4 and 5 to
introspection. The attitudes toward these idealizations vary (see, for example, more friendly
views in [159] and Section 1.3 of [25] and much less friendly views in [148]), but the system
KD45 remains central (for its most recent appearance, see [5] but also [6]).

Coming along with the syntactical formalism of modal logic is the possible-world seman-
tics based on possible-worlds and accessibility relations (namely Kripke frames). The use of
possible-world semantics is perhaps mainly fueled by the correspondence and completeness
results for most philosophically interesting modal formulas. When deciding which axioms to
use, if we accept that possible-world semantics in general is appropriate, we may first find out
the axioms’ corresponding frame conditions. To quote David Lewis in [122, p. 19], “instead
of asking the baffling question whether whatever is actual is necessarily possible, we could
try asking: is the relation R symmetric?” When we already have a strong intuition on which
logic is the most appropriate (for whatever purpose), we may still want to use possible-world
models to succinctly represent a consistent set of formulas describing a situation and then
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guide our syntactic reasoning in that situation. Completeness guarantees that this is always
possible.

For the belief case, if we are not venturing below K, the standard possible-world semantics
based on Kripke frames is always appropriate by Sahlqvist’s completeness theorem [19, §
5.6], since the relevant axioms are D, 4, and 5, which are all Sahlqvist formulas. Moreover,
all modal logics extending KD45 are Kripke-complete in the sense that they are complete
with respect to the classes of Kripke frames on which they are valid [144]. Even with the
addition of dynamic operators as in [16], semantics based on possible-worlds is still largely
appropriate, and many such extensions start with possible-world semantics. While it is well
known that there are Kripke incomplete logics [96], meaning that no classes of Kripke frames
can validate precisely the theorems in those logics, perhaps, when studying belief operators,
Kripke frames are always enough for us, and there is nothing that can “banish” us from, to
borrow from David Lewis again, “a doxastic logician’s paradise”?

As another way of extending the language of Doxastic logic, consider propositional quan-
tifiers. While we naturally quantify over propositions in both ordinary and philosophical
discourses about belief, the addition of propositional quantifiers is not given much attention
in the literature. Can we repeat the success story of the Kripke semantics here again, or are
we in the situation that, with propositional quantifiers, we gain enough expressivity so that
Kripke frames with their well-documented quirks in the literature on Kripke incompleteness
lead to unwanted validities? Note that if there are formulas in the extended language such
that, on the one hand, they are valid on Kripke frames validating a logic L, and on the other
hand, we have strong reasons to at least treat them as optional and study and use extensions
of L without them, Kripke frames must go.

Indeed, a number of new principles about belief that seem conceptually significant are
formalizable in the extended language.

• “One believes that everything one believes is true” is formalized as B∀p(Bp→ p).

• “If no matter what p stands for, one believes that ϕ, then one believes that no matter
what p stands for, ϕ” is formalized as ∀pBϕ→ B∀pϕ.

• “There is a proposition that the agent takes to be consistent and to settle everything”
can be formalized as ∃q(B̂q ∧ ∀p(B(q → p) ∨ B(q → ¬p))).

Conceptually, then, we can ask: if we would like to take all the idealizations encoded in
KD45 on board, should we also adopt or are we already committed to some of the principles
above, once we add propositional quantifiers into our language?

Let us focus on the first principle, which we call Immod: “one believes that everything
one believes is true.” Even for idealized agents or idealized beliefs, as axiomatized by KD45,
it seems that Immod should not be included in a logic of belief. After all, the idealizations
we are granting here are only about logic and introspection and do not warrant the truth
of the uncertain beliefs that we choose to believe. Immod should be distinguished from “for
every proposition p, one believes that if she believes that p then p” (with the “if ... then
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...” here being the material implication). This principle, when formalized as ∀p(B(Bp→ p)),
is merely the universalization of a simple consequence of the negative introspection axiom.
The crucial difference between this principle and Immod is that Immod says that one believes
the totality of one’s belief to be true, while ∀pB(Bp→ p) says only that for every proposition
p, when considered individually, one believes that if p is believed, then p is true.

More concretely, we can take an agent who has credences about a real number x randomly
generated (perhaps by an unending sequence of fair coin flips) from the interval [0, 1]. For
all measurable X ⊆ [0, 1], the agent’s credence that x ∈ X is just the measure of X. In
addition, in this simple example, it seems not against our intuitive understanding of the
concept of outright belief that the agent can simply believe precisely those propositions with
credence 1.1 Then, for all a ∈ [0, 1], the agent believes that x ∈ [0, 1] \ {a} since [0, 1] \ {a}
is measure 1. However, the agent does not believe that for all a ∈ [0, 1], x ∈ [0, 1] \ {a} since⋂
a∈[0,1]([0, 1] \ {a}) = ∅, which is not measure 1. Hence the agent in this situation does not

believe that all her beliefs are true.
The above of course does not constitute a decisive argument that Immod is not valid

for ideal agents or ideal beliefs axiomatized by KD45. But we hope that at least we have
demonstrated some interest that people might have in considering a logic without Immod.
On the semantic side, though, as we will show in Section 3.2, if we adopt the standard
possible-world semantics, Immod as formalized by B∀p(Bp→ p) is valid on any Kripke frame
that validates KD45. Indeed, it is valid so long as the accessibility relation is shift-reflexive,2

regardless of which domain of propositions (as represented by subsets of possible-worlds) we
choose for the propositional quantifiers to range over and regardless of whether the domain
varies from world to world. In other words, if we constrain ourselves with the standard
possible-world semantics, the space of logics between KD45 and KD45 plus Immod is closed
to us.

To allow for modesty above KD45, we will turn to algebraic semantics. In algebraic
semantics, propositions, instead of possible worlds, are first-class citizens that naturally
form Boolean algebras when ordered by logical strength. Then, propositional quantifiers
are interpreted in these algebras of propositions by the meet operation since, intuitively, for
example, “everything I believe is true” is the conjunction of all instances of “if I believe that
p then p.” Specifically, we will use what were used in the first algebraic semantics for a KD45
belief operator in [152]: proper filter algebras, except that we will consider only those whose
underlying Boolean algebra is complete3 in the sense that arbitrary, not just finite, meets
and joins exist. We believe there can be an independent metaphysical argument for why the
Boolean algebra of propositions should at least be complete, but we leave this for another
occasion. For our purposes, the completeness condition is merely a condition with which

1Note that this does not rely on the agent’s belief being reduced to credence in any way. However, see
[32].

2A binary relation R is shift-reflexive if and only if for all x and y, xRy implies yRy. Shift-reflexivity
follows from Euclidicity, the first-order correspondence of the axiom 5.

3Since the word “complete” is also used for saying that a logic is complete, we sometimes use “lattice
complete” to express this idea.
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we can show, in a way that does not use any special property of the belief operator B, that
all formulas, including those like ∀pϕ, have well-defined semantic values. In other words,
lattice completeness is a language-and-logic-blind condition guaranteeing that our algebraic
semantics works.

While proper filter algebras allow modesty, they are not completely conceptually innocent
beyond KD45 though. A strengthened introspection axiom, which we call 4∀, is valid on
these algebras. This new axiom 4∀ intuitively reads: if the agent believes every instance of
ϕ, then the agent believes that she believes every instance of ϕ. In the formal language to
be introduced in full later, 4∀ is ∀pBϕ → B∀pBϕ. However, unlike Immod, we find 4∀ well-
motivated, especially when we are considering extending KD45. Typically, and especially
under idealization, we take our judgment about our internal state, like believing ϕ or not, as
infallible. If so, it is not just that we are in a position to believe that we believe ϕ when we
do believe ϕ. The aggregation of arbitrarily many such infallible judgments is still infallible
(contrary to a large aggregation of credence 1 yet fallible propositions) and to be believed
by us (or idealized versions of us). The formula 4∀ precisely formalizes this reasoning step.

Corresponding to this idea is the fact that a proper filter algebra works by keeping a
proper filter of propositions in the underlying Boolean algebra as the filter of “believed
propositions” and interprets Bϕ to either the top element or the bottom element depending
on whether ϕ is interpreted as a “believed proposition” or not. If the proposition expressed
by ϕ is “believed”, then Bϕ is interpreted as the top element and otherwise the bottom
element. More technically, proper filter algebras can be understood as Boolean algebras
with an operator that validate KD45 and also has the special property that the operator
sends propositions to either the top element or the bottom element. Intuitively, then, from
the agent’s perspective, a formula Bϕ is as true as tautologies are once true and is as false
as contradictions are once false.4 Hence, it is not hard to check that 4∀ is valid, since we are
essentially only considering the two-element Boolean algebra once we treat Bϕ as a whole.

But will this class of complete proper filter algebras validate any other formulas whose
interpretation might be unwelcome? Our axiomatization suggests that the answer is no.
We will show that the logic of complete proper filter algebras is axiomatized by KD4∀5Π,
obtained by adding to KD45 the usual Π-principles, namely those axioms about proposi-
tional quantifiers that are analogous to the axioms about first-order quantifiers, and then
strengthening 4 to 4∀. Since the Π-principles encode only the quantificational axioms, like

4Of course a tautology like p → p and a formula like Bp have different truth conditions, regardless of
whether Bp is true or not. So the proper filter algebras we consider are not representing propositions obtained
by way of metaphysical (or a priori) equivalence where two sentences ϕ and ψ express the same proposition
iff necessarily (or a priori) ϕ and ψ are either both true or both false. The proper filter algebras represent
algebras of propositions obtained for a particular agent in a particular situation by stipulating that two
sentences ϕ and ψ express the same proposition iff the agent is certain in that situation that either ϕ and ψ
are both true or both false. For those who are unsatisfied with the restrictedness of proper filter algebras, we
will show that we can, without changing the logic, consider all complete Boolean algebras with an operator
validating KD45. In this way, we can be more neutral on what count as “propositions”. However, it is
non-trivial to see that 4∀ is valid on all such algebras, and we devote the whole of Section 3.3 to this issue.
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instantiation and universalization, the only conceptual leap in this axiomatization is from 4
to 4∀.

3.1.2 Axiomatizability for modal logics with propositional
quantifiers

Now we turn to a more technical side and connect our work to the literature on modal logics
with propositional quantifiers. The systematic technical study of propositional quantifiers is
arguably initiated in Fine’s dissertation [54], though already in Kripke’s [114], propositional
quantifiers are discussed. Also around the same time as Fine’s dissertation were Bull’s [23]
and Gabbay’s [65]. Soon after his dissertation, Fine summarized and extended his results in
[55]. From these early papers, we can already see a wide range of semantic choices, especially
about the domain of propositions that ∀p can quantify over (which is naturally encoded in
general frames). Bull and Gabbay in the above-cited papers also identified two ways to refute
Barcan’s schema ∀p�ϕ→ �∀pϕ through varying the domain of propositions for quantifiers
across possible-worlds and through generalizing accessibility relations to neighborhood func-
tions. In a completely non-technical paper [76], we also saw perhaps the earliest proposal of
treating ∀p as quantifying directly over objects in a lattice of propositions, a proposal per-
haps inspired by the philosophical stance defended in that paper. Since then, there has been
a steady stream of interest devoted to this topic, with general theoretical results focusing on
expressive power under the standard possible-world semantics ([102, 116, 117, 29]), specific
results mostly establishing non-axiomatizability ([3, 115, 111, 62, 64, 113, 110, 71, 160]) with
the exception of [110] and [160], and more application-oriented works: [11, 9, 10, 12, 52, 8,
61].

A remarkable phenomenon when studying unimodal logic with propositional quantifiers
on Kripke frames, where every set of possible-worlds counts as a proposition that ∀p can
quantify over, is the seeming existence of what we call an “axiomatizability boundary”: there
seems to be a line in the order structure of classes of Kripke frames of usual normal modal
logics such that, below this line, the logics of those classes of frames with propositional
quantifiers are extremely complex (often recursively equivalent to full second-order logic)
and non-axiomatizable, while above this line, the logics with propositional quantifiers are
suddenly decidable. Of course, we need to define what is “usual” for this “axiomatizability
boundary” concept to make sense. A very preliminary step is to consider first the lattice of
Kripke frame classes corresponding to the logics in the modal logic cube. We see that Fine’s
1970 paper [55] sets the boundary between S4 and S5 and between B and S5. Kaminski’s
result [102] pushes the boundary further from S4 to S4.2. However, where the boundary
lies in the direction from S5 to KD45 and KB5 remained open. In this chapter, we will
show that the boundary can be pushed from the decidable side to KD45: the logic with
propositional quantifiers of Kripke frames validating KD45 is decidable.

We may just focus on Kripke frames if we are only aiming at pushing the axiomatizability
boundary. But also hard to ignore in this literature is a severe lack of an algebraic approach
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Figure 3.1: The frame class cube. Darker shade means the corresponding logic with propo-
sitional quantifiers is non-axiomatizable. No shade means decidability established, and light
shade means decidability unknown.

(until very recently; [91], [97], and [40]). In particular, when propositional quantifiers are
added to a modal logic L in the basic language, this is usually done by considering some
class of Kripke frames on which L is valid and then generating the logic with propositional
quantifiers of this class of Kripke frames. The main variability is in changing the domain of
propositions for the propositional quantifiers to quantify over, and this is often achieved by
considering general frames whose underlying Kripke frames are frames of L. Then in a general
frame, the domain for interpreting propositional variables and for propositional quantifiers is
naturally the set of admissible propositions. A problem with this approach, however, is that
when we take ∀p to mean “no matter what p stands for,” which is the interpretation we are
interested in here, the semantics must validate the full instantiation axiom ∀pϕ → ϕ[ψ/p]
where ϕ[ψ/p] is the result of substituting p with ψ (with necessary renaming of bound
propositional variables). In general frames, validating the full instantiation axiom often
involves putting a so-called “closed under formula” condition, which seems to be dependent
on the choice of L.

In the algebraic semantics for propositional quantifiers, the lattice completeness of an
algebra of propositions ensures the well definedness of the semantic value of all formulas
and the validity of the full instantiation axioms. While the lattice completeness condition
is usually not necessary for this purpose, it is blind to the choice of language and logic.
The semantics also directly models the intended interpretation of ∀p: the semantic value
of ∀pϕ on an algebra is the meet of all the possible semantic values of ϕ as we reevaluate
p to all elements in the algebra. Hence, the algebraic method, in contrast to the above
possible-world-based method, of adding propositional quantifiers to L is to take the logic, in
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the language extended with propositional quantifiers, of the complete Boolean algebras with
operators validating L. One can then investigate the result of imposing atomicity and/or
complete multiplicativity. In particular, if both conditions are imposed, we recover the
version of possible-world-based method of extension where all subsets count as propositions.

The algebraic approach poses also a series of natural open questions, and we will list some
in the concluding section of this chapter. An example, relating to the above phenomenon of
the “axiomatizability boundary”, is this: how would a shift from Kripke frames to complete
BAOs affect the boundary? Will the boundary move or even blur in the sense that we
will see logics undecidable yet not as complex as theories like the second-order theory of
arithmetic? In all the proofs of non-axiomatizability, atomicity is at least implicit in the
set-up, if not directly used. It is not our ambition here to settle questions at this level of
generality though. Our aim is merely to initiate this program by focusing on a very special
case: the case of extending KD45 with propositional quantifiers in an algebraic way. And we
obtain the following results from a few more general theorems that we will establish along
the way:

• If we consider all complete BAOs validating KD45, the resulting logic is KD4∀5Π. Note
that in principle we can consider the wider class of BAOs which happen to make
the semantics well-defined and also validate KD45. In particular, the Lindenbaum
algebra of KD45Π is such an algebra. So if we drop the lattice completeness condition,
we get KD45Π. We will show using propositionally contingent frames to show that
KD45Π ( KD4∀5ΠImmod. Then it follows that lattice completeness is not inert: it
strengthens 4 into 4∀.

• Imposing complete multiplicativity of B amounts to adding Immod (or Barcan’s schema)
to KD4∀5Π.

• Imposing atomicity amounts to adding the axiom At = ∃p(p ∧ ∀q(q → B(p → q))) to
KD4∀5Π.

• Hence, if both conditions are imposed, the resulting logic is KD4∀5ΠImmodAt. By
duality theory, then, this is the logic of serial, transitive, and Euclidean Kripke frames.

• Finally, all the logics above are decidable. Hence the “axiomatizability boundary” is
pushed to KD45 and does not change when we switch from Kripke frame to complete
BAOs.

3.1.3 Organization

The rest of the chapter is organized as follows. In section 3.2, we formally define the language
and algebraic semantics, and then introduce the necessary axioms and systems with some of
their logical relations; we then show how the algebraic semantics can invalidate Immod while
to a certain extent possible-world-based semantics cannot. However, we show that 4∀ can be
invalidated using this kind of semantics once we allow propositional contingentism. In section
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3.3, we show that 4∀, and hence also the logic KD4∀5Π, are valid on all complete algebras
validating KD45 (complete KD45 algebras). In section 3.4, we show that KD4∀5Π is complete
with respect to the class of all complete proper filter algebras. Since complete proper filter
algebras are also complete KD45 algebras, KD4∀5Π axiomatizes the logic of both complete
KD45 algebras and complete proper filter algebras and also any class of algebras in between.
This is the longest section of the chapter, in which we need to prove two technical lemmas.
The first lemma is an analog of the quantifier elimination used to show the completeness of
S5Π by Fine. While we do not need a full quantifier elimination, we need to show that the
quantifiers can be separated from unmodalized propositional variables and pulled out from
the scopes of modal operators so that we can translate formulas into a first-order language
about Boolean algebras with two named elements. The second lemma at its core says that
the first-order logic of the quotients of complete Boolean algebras is just the first-order logic
of Boolean algebras. While this seems to be a natural proposition of independent interest,
to the best of our knowledge, it has not been shown previously. In section 3.5, we extract
more results from the proofs in Section 3.4 and establish two general completeness theorems.
From them, the logics resulting from imposing atomicity and complete multiplicativity to
algebras naturally follow. We then show a general decidability theorem, from which the
decidability of all the particular logics discussed follows. In the last section, Section 3.6, we
conclude with directions of future research.

3.2 Syntax, semantics, logics, and the problem of

Immod

The propositional language with a belief operator and propositional quantifiers is defined as
follows.

Definition 3.2.1. Define the language LΠ by the following grammar:

ϕ ::= p | > | ¬ϕ | (ϕ ∧ ϕ) | Bϕ | ∀pϕ

where p ∈ Prop, a set of propositional variables.5 We adopt the usual abbreviations, and in
particular we frequently write ⊥ for ¬>, B̂ for ¬B¬, and ∃p for ¬∀p¬. The free and bound
occurrences of propositional variables are defined as in first-order logic. As is common in
first-order logic, we write ϕ(p) to note that ϕ(ψ) is then the result of replacing the free
occurrences of p in ϕ by ψ with necessary renaming of bound variables.

Now we turn to semantics. Algebraic semantics starts with a Boolean algebra of propo-
sitions, and every formula will be evaluated to one of the propositions in it. If we define
Boolean algebras simply by the laws of conjunction and negation, then the semantics seems
to lack motivation independent of the logic we want it to generate. However, it is also well

5In contrast, > can be viewed as a propositional constant.
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known (see Chap. 4 of [34]) that they can be equivalently defined as partial orders with great-
est lower bounds (meets), least upper bounds (joins), and complements, or more specifically,
complemented distributive lattices. Thus, a Boolean algebra can be seen as representing
propositions that form a complemented distributive lattice once ordered by their strength.
Then >, ∧, ∨, and ¬ are interpreted uncontroversially as the top element, the meet (greatest
lower bound) operation, the join (least upper bound) operation, and the complementation
operation, respectively.

In the same fashion, ∀pϕ should express the proposition that is the meet of all propositions
expressible as ϕ while the proposition expressed by p ranges over all propositions in the
algebra. Since there are possibly infinitely many such propositions expressible by ϕ, we
make a further assumption about the Boolean algebra of propositions we study here: they
must be complete in the sense that every set of elements has a meet. As for the belief
operator, the most general representation we can have is to use an arbitrary function on
each algebra of propositions. But since our concern here is to study the logics of belief
at least as strong as KD45, we need to make corresponding assumptions on this function
representing the belief operator. The following definition summarizes the assumptions we
make.

Definition 3.2.2. A KD45 algebra is a pair B = 〈B,�〉 where

• B is a non-trivial Boolean algebra with > being its top element, ¬ its complementation
operation, and ∧ its meet relation, and

• � is a unary function on B such that for all a, b ∈ B,

�> = >, �(a ∧ b) = �a ∧�b, ¬�¬> = >, �a = ��a, and ¬�a = �¬�a.

When we need to distinguish the operations from different algebras, we will subscript the
operations by the algebra they are from. For example, we may write ∧B for the meet
operation of the Boolean algebra part of B or write ∧B for the meet operation of B. We also
write ≤, possibly with subscripts, for Boolean lattice orderings. We will frequently write
x ∈ B instead of x ∈ B, which is already an abbreviation of x being in the carrier set of B.
The usual abbreviations for ∨,→,↔,⊕, \,⊥, and ♦ apply too.

A complete KD45 algebra is a KD45 algebra whose Boolean algebra part is a complete
Boolean algebra. We use

∧
and

∨
for arbitrary meets and joins in complete Boolean algebras.

Again, subscripts are added and dropped as needed.

Then the language LΠ can be interpreted on any complete KD45 algebra. To express
semantic substitution, for any function f : X → Y and any x ∈ X and y ∈ Y , we write
f [y/x] for the function that is identical to f except that f [y/x](x) = y. This notation will
be used by all the semantics we define in this chapter.

Definition 3.2.3. For any complete KD45 algebra B, a valuation θ on B is a function from
Prop to B. Then a valuation θ on B can be uniquely extended to θ̃ : LΠ→ B recursively by
the following clauses:



CHAPTER 3. LOGICS OF BELIEF AND PROPOSITIONAL QUANTIFIERS 46

• θ̃(p) = θ(p);

• θ̃(¬ϕ) = ¬θ̃(ϕ), θ̃(ϕ ∧ ψ) = θ̃(ϕ) ∧ θ̃(ψ), and θ̃(>) = >;

• θ̃(Bϕ) = �θ̃(ϕ);

• θ̃(∀pϕ) =
∧
a∈B θ̃[a/p](ϕ).

A formula ϕ ∈ LΠ is valid in a complete KD45 algebra B if for all valuations θ on B,
θ̃(ϕ) = >; otherwise we call it refutable in B. A formula ϕ is valid on a class of complete
KD45 algebras if ϕ is valid on each member of that class, and a set of formulas is valid on
a class whenever every formula in the set is valid on the class. As usual, validity is denoted
by �.

One problem with the Definition 3.2.3 is that it is very general, and little structure of
these complete KD45 algebras is revealed in the definition. While we will study them in
detail in Section 3.3, we now introduce a very concrete semantics whose structures in which
we evaluate formulas can be seen as directly modeling doxastic scenarios of ideal agents.

Definition 3.2.4. A proper filter algebra B is a pair 〈B,F 〉 where B is a Boolean algebra
and F is a proper filter of that Boolean algebra. A complete proper filter algebra is a proper
filter algebra whose Boolean algebra part is a complete Boolean algebra. We will write FB
if the context is not clear enough.

Definition 3.2.5. For any complete proper filter algebra B = 〈B,F 〉, a valuation θ is a
function from Prop to B. Any valuation θ on B extends to an LΠ−valuation θ̃ : LΠ → B
given by:

• the same clauses for propositional variables p ∈ Prop, connectives >,¬,∧, and ∀p as
in Definition 3.2.3, and

• θ̃(Bϕ) = > when θ̃(ϕ) ∈ F and otherwise θ̃(Bϕ) = ⊥.

The concept of validity is defined as in Definition 3.2.3.

As we have discussed, a proper filter algebra can be seen as representing the propositions
individuated by equivalence up to subjective certainty in a concrete doxastic scenario, with
the proper filter representing the believed propositions in the scenario. That the believed
propositions should form a proper filter comes from the assumption that the agent is logically
competent and never believes in blatantly false propositions. That θ̃(Bϕ) is always either >
or ⊥ depending on whether θ̃(ϕ) is in the filter of believed propositions or not comes from
the assumption that the agent is sufficiently introspective. Proper filter algebras were first
seen in [152] as models for beliefs.

The connection between proper filter algebras and KD45 algebras is this: proper filter
algebras naturally correspond to those KD45 algebras whose � operator’s range is {>,⊥}.
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In [18], KD45 algebras are called pseudo-monadic algebras, and those with the said property
are called well-connected ones, so here we call the above property well-connectedness too.

The correspondence can be easily specified. For any proper filter algebra 〈B,F 〉, we can
define a �F by �Fa = > if a ∈ F and ⊥ otherwise. Then 〈B,�F 〉 is the well-connected
KD45 algebra corresponding to 〈B,F 〉. Conversely, given a well-connected KD45 algebra
〈B,�〉, we can define F� = {a ∈ B | �a = >}. Then, 〈B,F�〉 is the corresponding proper
filter algebra. It is easy to verify that these two constructions are both bijections and are
inverse of each other. Moreover, the semantic value of every formula is preserved for any
valuation θ when we replace either a � operator by the corresponding filter F� or vice versa.
We can also show that the correspondence is a natural isomorphism between the category
of proper filter algebras and the category of well-connected KD45 algebras. But for our
purposes, this step is unnecessary.

With the semantics of interest defined, we now move on to define logics. The interpre-
tation of ∀pϕ above in the algebraic semantics is informed by its intended reading: “for all
proposition p, ϕ.” Given this reading, even without formal semantics, the following axiom
schemas and rules for propositional quantifiers, which we call the Π-principles, should be
most certain:

• Dist : ∀p(ϕ→ ψ)→ (∀pϕ→ ∀pψ),

• Inst : ∀pϕ → ϕ[ψ/p], where ψ is substitutable for p in ϕ and ϕ[ψ/p] is the result of
replacing all free occurrences of p in ϕ by ψ,

• Vacu : ϕ→ ∀pϕ, if p is not free in ϕ,

• Univ : whenever ϕ is a theorem, ∀pϕ is also a theorem.

Just like a normal modal logic in full generality is defined as a set of formulas that contains
all instances of propositional tautologies and the K axiom schema and is closed under the
necessitation and modus ponens rules, we can similarly define normal Π-logics.

Definition 3.2.6. A normal Π-logic in a language L ⊇ LΠ is a set of formulas in L that
contains all instances of propositional tautologies, K for B, and the Π-principles, and is closed
under the necessitation rule Nec for B, the universalization rule Univ for ∀p for all p ∈ Prop,
and modus ponens.

We will only consider normal Π-logics. When we put names of axiom schemas with K
and Π together, we always mean the smallest normal Π-logic containing all instances of those
axiom schemas. The ambient language should be clear from the context. For example, in this
section we can write KΠ for the smallest normal Π-logic and write KD45Π for the smallest
normal Π-logic in LΠ containing all instances of D, 4, and 5. In a later section where we
prove the main completeness theorem, we will consider extended languages.
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KD45Π

KD4∀5Π

(KD45Π4∀)

KD45ΠImmod

KD45ΠBc (KD45Π4∀Bc,KD45ΠImmodBc,KD45Π4∀ImmodBc,KD45Π4∀Immod)

Figure 3.2: Normal Π-logics extending KD45Π generated by 4∀, Immod, and Bc.

Now that the syntax, semantics, and Π-logics are all formally defined, recall the three
principles about belief we have seen in Section 3.1:

Immod : B∀p(Bp→ p), Bc : ∀pBϕ→ B∀pϕ, 4∀ : ∀pBϕ→ B∀pBϕ.

Now we may have 8 normal Π-logics extending KD45Π by choosing which ones of the above
three axiom schemas to add. But the following observation is immediate.

Proposition 3.2.7. KD45Π4∀ = KD4∀5Π and KD45ΠBc = KD4∀5ΠImmod.

Proof. For the first equality, it is enough to show that we can prove all instances of 4 in
KD4∀5Π. But for any ϕ, letting p be a propositional variable not free in ϕ, we have the
following derivation:

1. Bϕ→ ∀pBϕ [Vacu]

2. ∀pBϕ→ B∀pBϕ [4∀]

3. B∀pBϕ→ BBϕ [Inst, K, modus ponens ]

4. Bϕ→ BBϕ [modus ponens ]

To show that KD45ΠBc = KD4∀5ΠImmod, it is enough to notice that KD45Π easily derives
the following implications:

• (∀pBBϕ→ B∀pBϕ)→ (∀pBϕ→ B∀pBϕ),

• (∀pB(Bp→ p)→ B∀p(Bp→ p))→ B∀p(Bp→ p),

• ((∀pBϕ→ B∀pBϕ) ∧ B∀p(Bp→ p))→ (∀pBϕ→ B∀pϕ).

This proposition shows that there can be at most 4 different normal Π-logics extending
KD45Π: KD45Π itself, KD4∀5Π, KD45ΠImmod, and KD45ΠBc. If they are all different, then
we will have the simple 4-element Boolean algebra as shown in Figure 3.2. But are they all
different?

With the algebraic semantics above, we can easily show that KD4∀5Π 6` Immod, matching
our intuition in the introduction that Immod is refutable even for ideally introspective agents.
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Then we see that KD4∀5Π is strictly below KD45ΠBc, and consequently KD45Π must also
be strictly below KD45ΠImmod by some simple Boolean reasoning. Thus with algebraic
semantics, we can at least distinguish the lower left part from the upper right part. To
show that KD4∀5Π 6` Immod, we only need a soundness theorem and countermodel. The
soundness theorem is easy.

Theorem 3.2.8. For any ϕ ∈ KD4∀5Π, ϕ is valid on all complete proper filter algebras.

Proof. The only interesting axiom here is 4∀. Pick an arbitrary complete proper filter algebra

B and a valuation θ on it. Now for any a ∈ B, θ̃[a/p](Bϕ) is either > or ⊥. If there is an

a ∈ B such that θ̃[a/p](Bϕ) = ⊥, then θ̃(∀pBϕ) = ⊥. Then trivially θ̃(∀pBϕ→ B∀pBϕ) = >.
On the other hand, if no such a exists, then θ̃(∀pBϕ) = >, and hence θ̃(B∀pBϕ) = >. Then
trivially θ̃(∀pBϕ→ B∀pBϕ) = >. So θ̃(∀pBϕ→ B∀pBϕ) = > is valid either way.

To refute Immod in a countermodel, we first make the following useful and intuitive
observation. It is intuitive because ∀p(Bp → p) says that “everything the agent believes is
true,” and the filter FB of a proper filter algebra represents the set of propositions the agent
believes.

Proposition 3.2.9. For any complete proper filter algebra B and any valuation θ on it,
θ̃(∀p(Bp→ p)) =

∧
FB.

Proof. If θ̃(p) ∈ FB, then θ̃(Bp) = >, and hence θ̃(Bp→ p) = θ̃(p) = θ(p). If θ̃(p) 6∈ FB, then

θ̃(Bp) = ⊥, and hence θ̃(Bp→ p) = >. Thus {θ̃[a/p](Bp→ p) | a ∈ B} is precisely FB (note
that > must be in FB). Then θ̃(∀p(Bp→ p)) is the meet of this set, i.e.,

∧
FB.

Given this observation, to refute Immod = B∀p(Bp→ p), we only need to find a complete
proper filter algebra B such that the meet of FB is not in FB: it is a non-principal filter.

Proposition 3.2.10. Immod is not valid on all complete proper filter algebras.

Proof. Let B be a complete proper filter algebra where its Boolean algebra is ℘(N), and its
filter FB is the set of all cofinite sets. Fix an arbitrary valuation θ. Clearly

∧
FB = ∅, the

bottom element. Using the previous proposition, θ̃(∀p(Bp → p)) = ⊥, but ⊥ 6∈ FB. Thus
θ̃(Immod) = ⊥.

In fact, in this algebra, θ̃(∃p(Bp ∧ ¬p)) = > ∈ FB, so θ̃(B∃p(Bp ∧ ¬p)) = >. In other
words, this agent believes that there is a proposition she falsely believes.

Now we show the difficulty of invalidating Immod using possible-world-based semantics.
The following semantics allow the full generality of propositional contingency in the sense
that each possible-world has its own domain of propositions.

Definition 3.2.11. A propositionally-contingent frame (PC frame in short) is a tuple F =
〈W,R, P 〉 where W is a non-empty set, R is a binary relation, and P is a function from W
to ℘(℘(W )). We may abuse notation and write “w ∈ F” for “w ∈ W”.
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A PC model based on F is a tuple M = 〈F,w, V 〉 where w ∈ W and V is a valuation
function from Prop to ℘(W ). It is a proper PC model if V only takes value in P (w).

For any formula ϕ ∈ LΠ and any PC model 〈F,w, V 〉, the truth of ϕ at 〈F,w, V 〉 is
defined inductively as follows:

〈F,w, V 〉 � p ⇐⇒ w ∈ V (p);

〈F,w, V 〉 � ¬ϕ ⇐⇒ 〈F,w, V 〉 6� ϕ;

〈F,w, V 〉 � ϕ ∧ ψ ⇐⇒ 〈F,w, V 〉 � ϕ and 〈F,w, V 〉 � ψ;

〈F,w, V 〉 � Bϕ ⇐⇒ for all w′ ∈ R(w), 〈F,w′, V 〉 � ϕ;

〈F,w, V 〉 � ∀pϕ ⇐⇒ for all X ∈ P (w), 〈F,w, V [X/p]〉 � ϕ.

Here R(w) = {w′ ∈ W | wRw′}.
Finally, ϕ is valid on a PC frame F if ϕ is true at all proper PC models based on F :

〈F,w, V 〉 � ϕ for all w ∈ F and V : Prop→ P (w).

Note that, to be fully general, we disregarded any notion of “coherence” one might want
to impose on the P part of F (see [63] for some natural restrictions for F ); we did not
even require that P (w) is a field-of-sets. Also note that validity is defined by proper PC
models. Without restricting to proper PC models, the validity of even the most mundane
instantiation axiom ∀pϕ→ ϕ when p is free in ϕ will be subject to great difficulty, and the
validity of a formula with free variables may be different than the validity of its universal
closure. However, our discussion below about Immod does not turn on the choice of proper
PC models over all PC models since Immod has no free variables.

A lot of standard questions can be asked about this semantics. But for now, observe that
for any PC frame F = 〈W,R, P 〉, if R is shift-reflexive, meaning that every world in R(w) is
reflexive for all w ∈ W , then F validates Immod. To see this, first note that for every w in
W such that wRw and any valuation V , 〈F,w, V 〉 � Bp → p simply by the truth clause of
B. Hence ∀p(Bp→ p) is also always true on reflexive points by the truth clause of ∀p. Then,
it is clear again from the truth clause of B that for any w ∈ W such that every w′ ∈ R(w) is
reflexive, 〈F,w, V 〉 � B∀p(Bp→ p). Thus, if R is shift-reflexive, Immod is validated. And in
showing this, P is totally unused.

Does the above argument show that possible-world semantics is totally unusable if we
want to model scenarios where Immod is false? If one is looking for intuitive and “clean” mod-
els, then the argument does suggest that possible-world semantics is not useful. The success
of possible-world semantics is partly due to the easy first-order conditions corresponding to
natural axioms. For the doxastic logic case, D, 4, and 5 correspond to seriality, transitivity,
and Euclidicity, respectively. And from Euclidicity alone, shift-reflexivity follows. The above
argument shows that if we want to model failure of Immod while validating KD45, we need
to give up the appealing correspondence theory in the standard possible-world semantics.
Nevertheless, this semantics can be of great use. First, we conjecture that with carefully
chosen P and R, we can refute Immod while validating KD45Π, though, it is likely that the
R relation in that PC frame cannot be interpreted in a meaningful way. Second, we show
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here that this semantics can be used to invalidate 4∀ while validating KD45Π and Immod.
Hence, 4∀ is not derivable in KD45Π (indeed, KD45ΠImmod), and Figure 3.2 is a complete
description of the normal Π-logics extending KD45Π generated by 4∀, Immod, and Bc.

We will use the PC frame F¬4∀ = 〈W,R, P 〉 where

W = {0, 1, 2}
R = {〈0, 1〉, 〈0, 2〉, 〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉}

P (0) = {∅, {0}, {1, 2}, {0, 1, 2}}
P (1) = P (2) = ℘(W ).

Here, world 0 sees the equivalence class formed by 1 and 2, and the R relation is serial,
transitive, and Euclidean. This means that KD45 and Immod as we commented above are
automatically valid. To see that 4∀ is invalid, consider the formula ϕ = ∀pB(Bp∨B¬p). Since
P (0) contains only the sets that cover either all or none of {1, 2} = R(0), it is easy to see
that 〈F¬4∀ , 0, V 〉 � ϕ for any valuation V . However, 〈F¬4∀ , 0, V 〉 6� Bϕ, since P (1) contains
the set {1} and as a result 〈F¬4∀ , 1, V 〉 6� ∀pB(Bp ∨ B¬p).

Now we are left with showing that F¬4∀ validates the Π-principles, and obviously the only
difficulty here is Inst. The validity of this axiom requires that there are enough propositions:
essentially, it says that at any world, all propositions expressible by a formula exist, since its
dual form is ϕ[ψ/p]→ ∃pϕ. Here we give a sufficient condition for the validity of Inst. The
condition is related to the coherence conditions in [63]. To formulate the condition, we first
define automorphisms on PC frames.

Definition 3.2.12. Let F = 〈W,R, P 〉 be a PC frame. Then an automorphism π of F is a
function π : W → W such that:

• π is a permutation of W (injective and surjective);

• where π[X] = {π(x) | x ∈ X} for any X ⊆ W , for any w ∈ W , R(π(w)) = π[R(w)];

• where π[A] = {π[X] | X ∈ A} for any A ⊆ ℘(W ), for any w ∈ W , P (π(w)) = π[P (w)].

Let Aut(F ) be the group of all automorphisms of F .

For the last bullet point of the above definition, note that for any field-of-sets A on W
and any permutation π on W , π[A] is also a field-of-sets, though in full generality, P (w) may
not even be a field-of-sets. Now we show that automorphisms preserve the truth value of
formulas.

Proposition 3.2.13. Let F = 〈W,R, P 〉 be a PC frame and π ∈ Aut(F ). Then, for any
formula ϕ ∈ LΠ, any w ∈ W , and any valuation V : Prop→ ℘(W ),

〈F,w, V 〉 � ϕ ⇐⇒ 〈F, π(w), π ◦ V 〉 � ϕ.

Here π ◦ V is defined by (π ◦ V )(p) = π[V (p)] for any p ∈ Prop.
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Proof. By induction on ϕ. The atomic case where ϕ is a propositional variable or constant
is easy: 〈F,w, V 〉 � p iff w ∈ V (p) iff π(w) ∈ π[V (p)] iff π(w) ∈ (π ◦ V )(p).

For the modal case, the following chain of equivalence is clear:

〈F,w, V 〉 � Bϕ ⇐⇒ for all w′ ∈ R(w), 〈F,w′, V 〉 � ϕ
⇐⇒ for all w′ ∈ R(w), 〈F, π(w′), π ◦ V 〉 � ϕ
⇐⇒ for all w′ ∈ π[R(w)], 〈F,w′, π ◦ V 〉 � ϕ
⇐⇒ for all w′ ∈ R(π(w)], 〈F,w′, π ◦ V 〉 � ϕ
⇐⇒ 〈F,w′, π ◦ V 〉 � Bϕ.

For the propositional quantification case, the strategy is the same.

〈F,w, V 〉 � ∀pϕ ⇐⇒ for all X ∈ P (w), 〈F,w, V [p 7→ X]〉 � ϕ
⇐⇒ for all X ∈ P (w), 〈F, π(w), π ◦ (V [p 7→ X])〉 � ϕ
⇐⇒ for all X ∈ P (w), 〈F, π(w), (π ◦ V )[p 7→ π[X]]〉 � ϕ
⇐⇒ for all X ∈ π[P (w)], 〈F, π(w), (π ◦ V )[p 7→ X]〉 � ϕ
⇐⇒ for all X ∈ P (π(w)), 〈F, π(w), (π ◦ V )[p 7→ X]〉 � ϕ
⇐⇒ 〈F, π(w), (π ◦ V )〉 � ∀pϕ.

The Boolean cases are trivial.

Now we formulate the sufficient condition with some helpful definitions.

Definition 3.2.14. Let F = 〈W,F, P 〉 be a PC frame. For any subgroup G of Aut(F ), we
define its orbit-closed field-of-sets OF (G) by

OF (G) = {X ⊆ W | for any π ∈ G, π[X] = X}.

Using general group theory, it can be shown that OF (G) is precisely the field-of-sets gener-
ated by arbitrary unions from the orbits of G, and hence OF (G) is a complete and atomic
Boolean algebra.

Also, for any w, we define Aut(F )w as the subgroup of all automorphisms in Aut(F ) that
fix every set in P (w):

Aut(F )w = {π ∈ Aut(F ) | π[X] = X for all X ∈ P (w)}.

Finally, F is propositionally rich if for any w, P (w) ⊇ OF (Aut(F )w).

Proposition 3.2.15. For any PC frame F = 〈W,R, P 〉, if F is propositionally rich, then F
validates Inst. Hence, propositionally rich PC frames validate the minimal normal Π-logic.
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Proof. Let ϕ and ψ be formulas such that ψ is substitutable for p in ϕ. Also, assume that
〈F,w, V 〉 � ∀pϕ where 〈F,w, V 〉 is a proper PC model, that is V : Prop → P (w). Then we
only need to show that 〈F,w, V 〉 � ϕ[ψ/p].

First, it is a standard exercise, similar to its counterpart in first-order logic, to show that
〈F,w, V 〉 � ϕ[ψ/p] iff 〈F,w, V [p 7→ JψKF,V ]〉 � ϕ where JψKF,V = {w ∈ W | 〈F,w, V 〉 � ψ}.
But since 〈F,w, V 〉 � ∀pϕ, we have that for any X ∈ P (w), 〈F,w, V [p 7→ X]〉 � ϕ. Thus
it is enough to show that JψKF,V ∈ P (w). Since P (w) ⊇ OF (Aut(F )w) by propositional
richness, it is enough to show that JψKF,V ∈ OF (Aut(F )w). But this is true given the
invariance of the truth of ψ under automorphisms of F . For any π ∈ Aut(F )w and any
w ∈ W , w ∈ JψKF,V iff π(w) ∈ JψKF,π◦V by Proposition 3.2.13. Since V ’s range is in P (w)
and π ∈ Aut(F )w, π ◦ V = V . Thus, w ∈ JψKF,V iff π(w) ∈ JψKF,V for any w ∈ W . This
means that JψKF,V = π[JψKF,V ]. So JψKF,V ∈ OF (Aut(F )w) and is in P (w).

Now we verify that F¬4∀ is propositionally rich. First, Aut(F¬4∀) has only two elements:
the identity function id, and the permutation f that exchanges 1 and 2. Then note that
Aut(F¬4∀)0 = Aut(F¬4∀), since P (0) = {∅, {0}, {1, 2}, {0, 1, 2}}, all of which are fixed by
exchanging 1 and 2. Indeed, P (0) contains precisely those sets that are fixed by exchanging
1 and 2. This means that P (0) ⊇ OF (Aut(F¬4∀)0). Also, Aut(F¬4∀)1 = Aut(F¬4∀)2 = {id},
but this is not important since P (1) and P (2) are as large as possible already, being both
℘({0, 1, 2}). Trivially, P (1) ⊇ OF (Aut(F¬4∀)1) and P (2) ⊇ OF (Aut(F¬4∀)2). Thus, we
verified that F¬4∀ is propositionally rich. Hence, letting Γ be the set of formulas in LΠ valid
in F¬4∀ , Γ ⊇ KD45ΠImmod, and 4∀ 6∈ Γ. Thus:

Theorem 3.2.16. 4∀ 6∈ KD45ΠImmod, and there are exactly 4 logics generated by adding
some or none of 4∀, Immod, and Bc to KD45Π: KD45Π, KD4∀5Π, KD45ΠImmod, KD45ΠBc.

3.3 Soundness of 4∀ on complete KD45 algebras

In the last section, we have seen how complete proper filter algebras can be used to separate
Immod from KD4∀5Π and hence separate KD45ΠImmod and KD45ΠBc from KD45Π and
KD4∀5Π. We have also seen that complete proper filter algebras validate 4∀ using the special
property that the B operator always brings semantic values to either the top element or the
bottom element.

While we separated 4∀ from KD45Π using possible-world semantics with propositional
contingency, it is also natural to ask whether we can do the same using algebraic semantics
based on complete Boolean algebras at all. That is, whether we can refute 4∀ if we do not
assume the above special property about B. In this section, we show that we cannot. In
fact, 4∀, and hence KD4∀5Π, are valid on all complete KD45 algebras. For this, we need to
extract more structure from complete KD45 algebras and view the algebraic semantics from
a different perspective.

Definition 3.3.1. For any KD45 algebra B, let fp(B) be the set {a ∈ B | a = �a}.
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Lemma 3.3.2. For any KD45 algebra B, fp(B) has the following properties.

• First, fp(B) = {�a | a ∈ B} = {♦a | a ∈ B}.

• Second, fp(B) is a subalgebra of B. That is, fp(B) is closed under the complementation,
the meet operation, and trivially the � operator of B.

• Third, while 〈fp(B),>B,¬B,∧B〉 is a complete Boolean algebra, it is not always a regular
Boolean subalgebra of B. In other words, when ordered as in B by ≤B, fp(B) form a
complete Boolean lattice whose complementation operation and finite meet operation
are the same as in B. However, it is not always the case that fp(B) is closed under
arbitrary meets in B.

Proof. The first two points follow directly from the definition of KD45 algebras. For the
third point, one can easily verify that the join of X ⊆ fp(B) within fp(B) is �

∨
BX. To see

that for every x ∈ X, x ≤ �
∨
BX, note that since X ⊆ fp(B), x = �x. Note also that � is

monotone. Hence, given that x ≤
∨
BX, �x ≤ �

∨
BX. Thus, x ≤ �

∨
BX. Now suppose

y ∈ fp(B) and for all x ∈ X, y ≥ x. Then y ≥
∨
BX. And then y = �y ≥ �

∨
BX. Hence

�
∨
BX is the least upper bound of X in fp(B).

An example where the join of a subset of fp(B) in B is not in fp(B) is given below.

Definition 3.3.3. Let N be the set of non-principal ultrafilters in ℘(N) and W = N t N .
For any A ⊆ N, define N (A) = {f ∈ N | A ∈ f}. Then for any subset X ⊆ W , define �X
by: �X = (X ∩ N) ∪N (X ∩ N). Finally, let BN = 〈〈℘(W ),W,W \ ·,∩〉,�〉.

Proposition 3.3.4. BN is a complete KD45 algebra. Moreover, fp(BN) is not closed under
arbitrary join in BN.

Proof. Clearly BN is complete since the Boolean algebra base is a powerset algebra. Now
we show that � satisfies all the relevant properties. Pick arbitrary X, Y ∈ BN, and let
X0 = X ∩ N, X1 = X ∩N , Y0 = Y ∩ N, Y1 = Y ∩N .

• �X ∩�Y = (X0∪N (X0))∩ (Y0∪N (Y0)) = (X0∩Y0)∪ (X0∩N (Y0))∪ (Y0∩N (X0))∪
(N (X0)∩N (Y0)) = (X0 ∩ Y0)∪N (X0 ∩ Y0) = �(X0 ∩ Y0). Here we used the fact that
an ultrafilter contains X0 and Y0 iff it contains X0 ∩ Y0.

• �∅ = ∅ ∪N (∅) = ∅.

• ��X = �(X0∪N (X0)) = ((X0∪N (X0))∩N)∪N ((X0∪N (X0))∩N) = X0∪N (X0) =
�X.

• ¬�X = ¬(X0∪N (X0)) = (N\X0)∪(N \N (X0)) = (N\X0)∪N (N\X0) = (¬X∩N)∪
N (¬X ∩ N) = �¬X. Hence by the previous part �¬�X = ��¬X = �¬X = ¬�X.

Thus, BN is a complete KD45 algebra. Note also that for every n ∈ N, {n} ∈ fp(BN).
However, N =

⋃
n∈N{n} is not in fp(BN).
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Semantically, every formula obtained by combining propositional variables with propo-
sitional operators (Boolean or modal) and propositional quantifiers defines a function from
valuations in BProp to B. Now we study these functions.

For simplicity and clarity, we fix an arbitrary complete KD45 algebra B and define V =
BProp. Greek letters “θ” and “γ” are used to denote valuations in V and “f” and “g” are
used to denote functions from valuations in V to B. We also use the notations from lambda
calculus to define functions.

The following definition then defines the meaning of the operators in terms of how they
generate functions from BProp to B.

Definition 3.3.5. First, for every p ∈ Prop, define [p] = λθ ∈ V, θ(p). Then, for any
f, g : V → B and p ∈ Prop, define:

f ∧ g = λθ ∈ V, f(θ) ∧ g(θ);

¬f = λθ ∈ V,¬f(θ);

�f = λθ ∈ V,�f(θ);

∀pf = λθ ∈ V,
∧
{f(θ[a/p]) | a ∈ B}.

Then f ∨ g, f → g, f ↔ g, f ⊕ g, ♦f , and ∃pf are defined in the obvious way. We call the
set of functions generated by ¬, ∧, �, and ∀p for all p ∈ Prop from {[p] | p ∈ Prop} the set
of definable functions on B.

The above definition also gives us an alternative way to define the semantics for LΠ.

Definition 3.3.6. Recall that we have defined [p] = λθ ∈ V, θ(p). We can then extend this
notation to all formulas in LΠ inductively in the obvious way:

[¬ϕ] = ¬[ϕ];

[ϕ ∧ ψ] = [ϕ] ∧ [ψ];

[Bϕ] = �[ϕ];

[∀pϕ] = ∀p[ϕ].

Proposition 3.3.7. For any ϕ ∈ LΠ, θ̃(ϕ) = [ϕ](θ) for all θ ∈ V .

Now we identify two properties of these functions from V to B that are important to us.

Definition 3.3.8. For any f : V → B, we say that f is fixed if its range is in fp(B) (that is,
�f = f); and we say that f is local if for any p ∈ Prop and θ ∈ V ,

if b ≤ a1 ↔ a2, then b ≤ f(θ[a1/p])↔ f(θ[a2/p]),

for all b ∈ fp(B) and a1, a2 ∈ B.
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The intuition behind locality is that for f to be local, what f is below a fixpoint b ∈ fp(B)
(namely what f ∧ b is) should only depend on what the arguments are below b (namely what
θ(p)∧b is for all p ∈ Prop). The above definition formalizes this intuition because in Boolean
algebras, x ≤ y ↔ z iff x ∧ y = x ∧ z.

But why are these two properties important to us? Recall that what we are trying to
show here is that ∀pBϕ → B∀pBϕ is valid on B. If we can show that [∀pBϕ] is fixed, which
means that [∀pBϕ] = �[∀pBϕ], then we are done. This is because, with [∀pBϕ] being fixed,
for any θ ∈ V ,

θ̃(∀pBϕ) = [∀pBϕ](θ) = (�[∀pBϕ])(θ) = [B∀pBϕ](θ) = θ̃(B∀pBϕ).

Obviously, then, θ̃(∀pBϕ→ B∀pBϕ) = >. So our goal is now reduced to showing that [∀pBϕ]
is fixed. Note that [∀pBϕ] = ∀p�[ϕ]. It is trivial to see that �[ϕ] is fixed. So one might
hope that we can show that whenever f is fixed, ∀pf is also fixed, and then claim victory.
However, this is in general false, given the example we produced in Definition 3.3.3 above
showing that the set of fixpoints fp(B) is in general not closed under arbitrary meets. One
can construct an f whose range (when we vary the p coordinate of the input valuation)
is precisely a set of fixpoints in fp(B) whose meet is not in fp(B). Then ∀pf is not fixed.
What is missing in this strategy of showing that ∀pf is fixed whenever f is fixed is precisely
locality. We will show first that [Bϕ] must be local in addition to being fixed. We will then
show that if f is fixed and local, then ∀pf is fixed and local.

To show that [Bϕ] is local, the following lemma, showing in fact that all definable functions
are local, suffices.

Lemma 3.3.9. We have the following closure properties for local functions.

• Projection functions of the form [p] for some p ∈ Prop are local.

• Local functions are closed under Boolean combinations: if f, g : V → B are local, then
f ∧ g and ¬f are both local.

• Local functions are closed under �.

• Local functions are closed under ∀p for all p ∈ Prop.

Hence, all definable functions are local.

Proof. The first two points are easy. For the third, consider �f where f is local. Then for
a b ∈ fp(B), we need to show that

if b ≤ a1 ↔ a2, then b ≤ �f(θ[a1/p])↔ �f(θ[a2/p]).

Given that f is local, when b ≤ a1 ↔ a2, b ≤ f(θ[a1/p])↔ f(θ[a2/p]). Box both sides (using
that � is monotone), and we see that

b = �b ≤ �(f(θ[a1/p])↔ f(θ[a2/p])) ≤ �f(θ[a1/p])↔ �f(θ[a2/p]).
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The first equality is due to that b ∈ fp(B), and the last inequality is by the normality of �:
it commutes with finite meets, and �(x→ y) ≤ �x→ �y.

Now, for the fourth point, consider ∀pf where f is local. In this case, we need to work
with an arbitrary q ∈ Prop, an arbitrary b ∈ fp(B), and arbitrary a1, a2 ∈ B such that
b ≤ a1 ↔ a2, and show that

b ≤
∧
{f(θ[a1/q][c/p]) | c ∈ B} ↔

∧
{f(θ[a2/q][c/p]) | c ∈ B}.

If q = p, then this is trivially true (the right-hand-side of the inequality is >). So we now
consider the case when q 6= p, in which case θ[a1/q][c/p] = θ[c/p][a1/q] and θ[a2/q][c/p] =
θ[c/p][a2/q]. For simplicity, let θc = θ[c/p]. Since we assumed that f is local, by definition,
we have the following for all c ∈ B:

b ≤ f(θc[a1/q])↔ f(θc[a2/q]).

Thus, b ≤
∧
{f(θc[a1/q]) ↔ f(θc[a2/q]) | c ∈ B}. Hence, all we need now is the following

simple principle on complete Boolean algebras:∧
{f(θc[a1/q])↔ f(θc[a2/q]) | c ∈ B} ≤∧

{f(θc[a1/q]) | c ∈ B} ↔
∧
{f(θc[a2/q]) | c ∈ B}.

To see that in general,
∧
i∈I(xi ↔ yi) ≤

∧
i∈I xi ↔

∧
i∈I yi, note that it is enough to show that∧

i∈I(xi ↔ yi) ∧
∧
i∈I xi ≤

∧
i∈I yi and symmetrically that

∧
i∈I xi ↔ yi ∧

∧
i∈I yi ≤

∧
i∈I xi.

Both of them are easy.

That [Bϕ] is fixed is immediate from the following lemma.

Lemma 3.3.10. We have the following closure properties for fixed functions.

• For any f : V → B, �f is fixed.

• Fixed functions are closed under Boolean combinations.

• Not all fixed functions are closed under ∀p.

Proof. Immediate from Lemma 3.3.2.

The only missing piece then is the following lemma.

Lemma 3.3.11. Fixed local functions are closed under ∀p. That is, if f is fixed and local,
then ∀pf is also fixed and local, for any p ∈ Prop.
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Proof. Pick an arbitrary fixed and local f : V → B. Since fixed local functions are closed un-
der Boolean combinations and local functions are closed under ∀p, without loss of generality,
we only need to show that ∃pf is also fixed.

The idea is the following. Pick an arbitrary θ ∈ V . Then we show that (∃pf)(θ) in
fact has a witness: there exists c ∈ B such that (∃pf)(θ) = f(θ[c/p]). Since f is fixed,
f(θ[c/p]) ∈ fp(B). So, (∃pf)(θ), being just f(θ[c/p]), is in fp(B). Since θ is arbitrarily
chosen, this shows that ∃pf is fixed. As a consequence, �∃pf = ∃pf .

Hence, let us fix an arbitrary θ ∈ V and from now on write f(a) for f(θ[a/p]). Since f
is fixed and local, we know that:

• For any a ∈ B, f(a) ∈ fp(B).

• For any b ∈ fp(B) and any a, a′ ∈ B such that b ≤ a↔ a′, b ≤ f(a)↔ f(a′).

Our goal, then, is to show that there is a c ∈ B such that f(c) =
∨
{f(a) | a ∈ B}.

To this end, let F = {f(a) | a ∈ B}. We will show soon that F as a poset (with ≤
inherited from B) has the following two properties:

• (Directed) For any a, b ∈ F , there is a c ∈ F such that a, b ≤ c.

• (Chain) For any ascending chain 〈ai〉i≤κ in F , there is t ∈ F such that for all i < κ,
ai ≤ t.

From these two conditions, it is easy to see that F has an x that is the greatest in F . By
Zorn’s lemma, F has a maximal element. By (Directed), the maximal element given by
Zorn’s lemma must also be the greatest element of F . Hence, the join of F is in F . Then,
anything in f−1(

∨
F ) can serve as the witness for (∃pf)(θ) =

∨
F .

Now we show the two properties. For (Directed), note that F ⊆ fp(B) since f is fixed.
Thus, if we pick b1, b2 ∈ F and a1, a2 ∈ B such that f(a1) = b1 and f(a2) = b2, we can
apply locality here. Indeed, let a = (a1 ∧ b1) ∨ (a2 ∧ (b2 \ b1)). Note that b2 \ b1 ∈ fp(B).
It is also easy to see that b1 ≤ a ↔ a1 and b2 \ b1 ≤ a ↔ a2. Then, b1 ≤ f(a) ↔ f(a1)
and b2 \ b1 ≤ f(a) ↔ f(a2). However, by the way we picked a1 and a2, b1 ≤ f(a1) and
b2 \ b1 ≤ f(a2). Thus, b1 ≤ f(a), and b2 \ b1 ≤ f(a), and b1 ∨ b2 ≤ f(a) ∈ F .

For (Chain), we can use the same strategy. Pick an ascending chain 〈bi〉i≤κ in F for some
cardinal κ with a corresponding sequence 〈ai〉i<κ such that f(ai) = bi for all i < κ. Then
inductively define 〈ci〉i<κ by

c0 = a0 ∧ b0;

ci+1 = ci ∨ (ai+1 ∧ (bi+1 \ bi));

cλ =

(∨
i<λ

ci

)
∨

(
aλ ∧

(
bλ \ f

(∨
i<λ

ci

)))
.

By an easy induction, we can see that for all i < κ, ci ≤ bi, (note that (aλ∧(bλ\f(
∨
i<λ ci))) ≤

bλ) and that 〈ci〉i<k is an ascending chain). Less easy is the following:
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(1) For all λ ≤ κ,
∨
i<λ bi ≤ f(

∨
i<λ ci).

We use strong induction here, and the base case is trivial. Now suppose as (IH) that for all
δ < λ,

∨
i<δ bi ≤ f(

∨
i<δ ci). Then our only goal is to show that

∨
i<λ bi ≤ f(

∨
i<λ ci).

• Say λ = α + 1. Then
∨
i<λ bi = bα and

∨
i<λ ci = cα since 〈bi〉i<κ and 〈ci〉i<κ are both

ascending chains. Hence we are just showing that bα ≤ f(cα). Now there are two cases.

– Say α = β + 1. Then cα = cβ ∨ (aα ∧ (bα \ bβ)). By (IH) applied to α, bβ =∨
i<α bi ≤ f(

∨
i<α ci) = f(cβ). Note also that bβ ≤ cβ ↔ cα and bα \bβ ≤ aα ↔ cα.

By locality, then, bβ ≤ f(cβ) ↔ f(cα) and bα \ bβ ≤ f(aα) ↔ f(cα). However,
by (IH) and the way we picked aα, bβ ≤ f(cβ) and bα \ bβ ≤ bα ≤ f(aα). Thus
bβ ≤ f(cα) and bα \ bβ ≤ f(cα). Thus bα ≤ f(cα).

– Say α is a limit ordinal. For convenience let cβ =
∨
i<α ci and bβ = f(cβ). Here

bβ ∈ fp(B) since f is fixed. By definition, cα = cβ ∨ (aα ∧ (bα \ bβ)). Now we can
apply the same strategy again to show that bα ≤ f(cα).

• Then we consider the interesting case where λ is a limit ordinal. What we need to
show here is that

∨
i<λ bi ≤ f(

∨
i<λ ci), which means for all j < λ, bj ≤ f(

∨
i<λ ci). To

show this, pick an arbitrary j < λ. Then consider bj ∧
∨
i<λ ci. Here we claim that

this is just cj. First, bj ∧
∨
i<λ ci =

∨
i<λ(bj ∧ ci). (This distributivity law holds on any

complete Boolean algebra.) Also, for i ≤ j, bj ∧ ci = ci since ci ≤ bi for all i < κ. Since
〈ci〉i<κ is ascending,

∨
i≤j(bj ∧ ci) = cj. Thus we only need to show that for all i such

that j ≤ i < λ, bj ∧ ci = cj. Obviously we need to do this by induction. The base case
where i = j is trivial (again, by ci ≤ bi). For the inductive step:

– bj∧ci+1 = (bj∧ci)∨(bj∧ai+1∧(bi+1\bi)) = (bj∧ci)∨(ai+1∧bi+1∧¬bi∧bj) = bj∧ci =
cj. Here the first equality is by distributivity, the second by simple Boolean
reasoning, the third by the fact that j < i and hence bj ≤ bi and bj ∧ ¬bi = ⊥,
and the fourth by the induction hypothesis.

– For a limit ordinal k between j and λ, bj ∧ ck = (bj ∧
∨
i<k ci) ∨ (bj ∧ ak ∧

(bk \ f(
∨
i<k ci))). Now, by the induction hypothesis that for all i such that

j ≤ i < k, bj ∧ ci = cj, we get that bj ∧
∨
i<k ci = cj. Recall that we are

inside another induction with (IH) assumed. Applying (IH) to k, we get that
bj ≤

∨
i<k bi ≤ f(

∨
i<k ci). Hence, bj ∧ ak ∧ (bk \ f(

∨
i<k ci)) = ⊥, and bj ∧ ck = cj.

So, we have shown that bj ∧
∨
i<λ ci = cj. Adding this to the fact that cj ≤ bj,

bj ≤
∨
i<λ ci ↔ cj. By locality, bj ≤ f(

∨
i<λ ci) ↔ f(cj). But bj ≤ f(cj) since we can

apply (IH) to j + 1. Thus, bj ≤ f(
∨
i<λ ci), and we are done here.

Now we put the three lemmas together to prove the main theorem of this section.

Theorem 3.3.12. For any ϕ ∈ LΠ and any complete KD45 algebra B, 4∀ = ∀pBϕ→ B∀p�ϕ
is valid on B.
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Proof. Let B be an arbitrary complete KD45 algebra. Then all the definitions, propositions,
and lemmas in this section apply to B. A straightforward induction shows that [Bϕ] as
defined in Definition 3.3.6 is a definable function from V to B according to Definition 3.3.5.
By Lemma 3.3.9, it is local. Since [Bϕ] = �[ϕ], by Lemma 3.3.10, it is fixed. Thus,
by Lemma 3.3.11, [∀pBϕ] = ∀p[Bϕ] is also fixed as [Bϕ] is both fixed and local. Thus,
[∀pBϕ] = �[∀pBϕ] = [B∀pBϕ], and hence [∀pBϕ → B∀pBϕ] = [∀pBϕ] → [B∀pBϕ] = [∀pBϕ] →
[∀pBϕ], which is constantly > since in any Boolean algebra and for any element x in it,
x → x is the top element. Then, according to Proposition 3.3.7, for any valuation θ on B,
θ̃(4∀) = θ̃(∀pBϕ→ B∀pBϕ) = [4∀](θ) = >. Hence, 4∀ is valid on B.

Before we move on to the next section, let us briefly reflect on what this theorem tells us.
First, we see that to separate 4∀ from KD45Π using algebraic semantics, we need to drop the
completeness assumption. The difficulty here is that it is not known which meets and joins
we need to make the semantics for all formulas with propositional quantifiers well defined.
One trivial way to get a KD45 algebra on which the semantics is well defined is to use the
Lindenbaum algebra of KD45Π. However, showing that 4∀ in this algebra does not evaluate
to > is plainly equivalent to showing that KD45Π does not prove 4∀, so this is hardly making
any progress. What we need here is a less abstract way to build KD45 algebras on which
the semantics is well defined, and this seems to require a less abstract sufficient condition
for the well-definedness of the semantics that is strictly weaker than lattice completeness.
Another way is to use the semantics with propositional contingency as we sketched at the
end of Section 3.2. The difficulty there seems to be validating the Π-principles.

Second, we mentioned in Lemma 3.3.2 that there is a complete KD45 algebra B such
that fp(B) is not closed under arbitrary meets in B. If we examine the syntactical structure
of 4∀ = ∀pBϕ → B∀pBϕ, it seems that 4∀ is a candidate formula whose validity on a KD45
algebra B would correspond to the condition that fp(B) is closed under arbitrary meets. After
all, as we vary the valuation of p, Bϕ picks up a subset of fp(B). Then the validity of 4∀ says
that this meet is below6 the � of this meet, which then implies, with a bit of manipulation
like what we did in Lemma 3.3.2, that this meet is also a fixpoint. Of course, this is not to
be: while the validity of 4∀ entails that some meets of fixpoints are still fixpoints, it does not
correspond to the condition that the set of fixpoints is closed under arbitrary meets. What is
at work here is that the expressivity constraint of the language is also a constraint on which
sets of fixpoints Bϕ can pick up.

Can there be a way to syntactically capture the condition that the set of fixpoints is
closed under arbitrary meets? One way is to add uninterpreted propositional operators. For
example, let LΠO be the language extending LΠ with a unary operator O. Then, a valuation
θ assigns not only an element in B to each propositional variable, but also a unary function
on B to O. The semantics of the formulas in LΠO under valuation θ can be defined in the
obvious way. Then, the validity of ∀pBOp→ B∀pBOp on B corresponds to fp(B) being closed
under arbitrary meets. We leave further investigation of this formalism as future work.

6Through out this chapter, we use “below” in the weak sense when talking about elements in lattices.
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3.4 Completeness of KD4∀5Π with respect to complete

proper filter algebras

In this section, we show the following completeness theorem.

Theorem 3.4.1. For any ϕ ∈ LΠ, if ϕ is valid on all complete proper filter algebras, then
ϕ ∈ KD4∀5Π.

Like most completeness proofs, we can show instead that any non-theorem ϕ of KD4∀5Π
is refuted by a complete proper filter algebra. Then, one strategy particularly suitable for
algebraic semantics, also used in [91], is the following:

• Construct the Lindenbaum-Tarski algebra B of KD4∀5Π. Automatically, B is a KD45
algebra, and ϕ is evaluated to a non-top element in B by a naturally defined valuation.

• Transform B into a complete proper filter algebra C while keeping ϕ evaluated to a
non-top element. The transformation is typically by first turning B into a proper filter
algebra and then using a construction like MacNeille completion.

The problem with this approach is that neither of the standard methods of constructing Mac-
Neille completions of Boolean algebra with operators, namely the lower and upper MacNeille
completions (see [70] or [82]), can be used here. Since proper filter algebras correspond to
well-connected KD45 algebras, we can directly use the definition of lower or upper MacNeille
completion. However, the upper MacNeille completion of a well-connected KD45 algebra is
not necessarily a KD45 algebra (we leave this to the reader; the proper filter algebra based
on the finite-cofinite algebra in the proof of Proposition 3.4.3 below can be used to show this
as well). The lower MacNeille completion construction does preserve the property of being
well-connected and KD45. When translated to proper filter algebras, we get the following
definition.

Definition 3.4.2. The lower MacNeille completion B of a proper filter algebra B = 〈B,F 〉
is 〈B, ↑F 〉 where B is the MacNeille completion of B (which can be assumed to have B as
a subalgebra) and ↑F = {a ∈ B | ∃b ∈ F, b ≤B a}.

Intuitively, the lower MacNeille completion of a proper filter algebra is obtained by first
completing the Boolean algebra part and then extending the original filter minimally to be a
filter in the completed Boolean algebra. The problem with the lower MacNeille completion
construction is that it may change the semantic value of a sentence from a non-top element
to the top element. This means that invalidity, or equivalently refutability, is not preserved.

Proposition 3.4.3. There is a sentence ϕ ∈ LΠ and a proper filter algebra B such that ϕ
is invalid in B but is valid in the lower MacNeille completion B.
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Proof. Let B be the Boolean algebra of finite or cofinite subsets of N and F the set of cofinite
sets of N. Then B = 〈B,F 〉 is a proper filter algebra. The lower MacNeille completion B is
then 〈℘(N), F 〉 where ℘(N) is the powerset algebra of N. Note that, importantly, the lower
MacNeille completion does not change F .

Let ϕ be ∃p(¬Bp ∧ ¬B¬p). For any valuation θ on B, θ̃(ϕ) is ⊥, since θ̃(p) ∈ B is either
finite or cofinite, and thus either θ̃(p) or θ̃(¬p) is cofinite. Then either θ̃(¬Bp) or θ̃(¬B¬p)
is ⊥. This means that θ̃(ϕ) = ⊥. Now, let θ be a valuation on B such that θ(p) is the set
of even numbers. Then θ(p) is infinite and coinfinite. Hence θ̃(¬Bp ∧ ¬B¬p) is >, and so
θ̃(ϕ) = >. Since ϕ is a sentence with no free variables, this means that ϕ is valid on B.

The lesson from the above example is that, to preserve the invalidity of ∃p(¬Bp∧¬B¬p),
we need to extend F , the filter of cofinite sets, into an ultrafilter. However, there seems to
be no canonical way to do this: every ultrafilter seems as good as any other. It seems that
to prove the completeness of KD4∀5Π, we need a more detailed analysis of both the algebras
and the system itself.

Our approach is based on the following observation: every complete proper filter algebra
B = 〈B,F 〉 has a natural quotient Boolean algebra B/F , and a belief formula in the form
of Bϕ, where ϕ contains only Boolean connectives, is asserting that ϕ evaluates to the top
element in the quotient B/F . Hence, Bϕ is talking about the quotient algebra B/F . With
propositional quantifiers, LΠ can in fact talk about B/F in a first-order way.

Given this observation, we have the following strategy, where we focus on just the sen-
tences since for any formula, it is valid if and only if its universal closure, the result of
bounding all free variables with universal quantifiers, is valid:

• For a sentence ϕ in LΠ that is valid in all complete proper filter algebras, find a
corresponding ψ in a first-order language for Boolean algebras. This ψ will be valid on
all natural quotient Boolean algebras of all complete proper filter algebras.

• Show that if a first-order sentence is valid on all natural quotient Boolean algebras
of complete proper filter algebras, then it is in fact valid on all non-trivial Boolean
algebras. Consequently, ψ will have a proof in the usual first-order logic for all non-
trivial Boolean algebras.

• Translate the first-order proof of ψ into a proof of ϕ in KD4∀5Π.

The main difficulties of implementing this strategy lie in the first two steps. First, in fact,
not every sentence ϕ ∈ LΠ can be translated into a first-order sentence to be evaluated on
the natural quotient Boolean algebras. The reason is that a sentence in LΠ can be evaluated
to a proposition that is neither top nor bottom, yet a first-order sentence can only be true
or false. To cope with this, several auxiliary languages will be introduced, so that we can
separate the translatable part and the non-translatable part of a sentence in LΠ. It turns
out that the non-translatable part is well behaved, so we can proceed with them.

In the second step, a theorem about the natural quotients of complete proper filter
algebras is needed. Essentially, it has to be shown that the non-trivial quotients of complete
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Boolean algebras are general enough to validate only those first-order formulas that are valid
in all non-trivial Boolean algebras. In other words, the first-order logic of the non-trivial
quotients of complete Boolean algebras is precisely the first-order logic of all non-trivial
Boolean algebras. While the first-order logic remains the same, it should be mentioned here
that there are interesting special properties of quotients of complete Boolean algebras, e.g.,
countable separation property (see [107], Lemma 5.27). Previous results about the quotients
of complete Boolean algebras include [123], [45], and [153]. We will extend the result in [153]
to fulfill our purpose.

The rest of this section is split into four subsections. In §3.4.1, we define a number of
auxiliary languages, their semantics, and translations between some of them. In §3.4.2, we
show how the completeness of KD4∀5Π follows from two lemmas resolving the two difficulties
mentioned above. Then, the next two subsections, §3.4.3 and §3.4.4, are devoted to the two
lemmas, respectively.

3.4.1 Auxiliary languages, semantics, and translations

Definition 3.4.4. Let LΠzg denote the language extending LΠ with two new propositional
constants z and g. For more readability, we sometimes use overline instead ¬ for the negation
of formulas and omit the ∧ in a conjunction of literals. Now we define the following languages:

BL : t ::= p | > | ¬t | (t ∧ t) where p ∈ Prop;

BLzg : ϕ ::= z | g | p | > | ¬ϕ | (ϕ ∧ ϕ) where p ∈ Prop;

LBΠzg : ϕ ::= Bt | ¬ϕ | (ϕ ∧ ϕ) | ∀pϕ where t ∈ BLzg, p ∈ Prop.

Very roughly speaking, z and g will be used to capture the non-translatable part, and
LBΠzg will be the translatable part. Recall that the main difficulty of translating LΠ to a
first-order logic is that there are sentences in LΠ that evaluate to some intermediate propo-
sition in some complete proper filter algebra. We will effectively show later that the Boolean
combinations of z and g exhaust all possible semantic values that a sentence in LΠ can take,
and eventually every formula in LΠ is provably equivalent to a Boolean combination of z,
g, and formulas in LBΠzg. It will be shown later in this section that LBΠzg is translatable
to a first-order language.

The next definition fixes the interpretation of the new constants z and g.

Definition 3.4.5. For any complete proper filter algebra B = 〈B,F 〉, define zB, gB by

zB =
∧

F,

gB =
∨
{a ∈ B | a is an atom and a ≤ zB}.

The subscripts of zB and gB may be dropped if the context of which algebra we are talking
about is clear.
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For any valuation θ on B, we then extend it uniquely to a LΠzg-valuation θ̃ : LΠzg→ B,
using the definition in Definition 3.2.5 plus two more clauses for z and g: θ̃(z) = z and
θ̃(g) = g.

Under this semantics, g and zg are semantically equivalent, but g and zg are not. For
symmetry, we will mostly use zg instead of g to contrast zg.

It is important to see that for every complete proper filter algebra B, zB and gB are
expressible in LΠ. For this, we introduce a few more abbreviations.

Definition 3.4.6. Define the following abbreviations:

〈z〉ϕ = B̂(z ∧ ϕ);

[z]ϕ = B(z→ ϕ);

at(ϕ) = 〈z〉ϕ ∧ ∀q([z](ϕ→ q) ∨ [z](ϕ→ ¬q)).

Here q is some variable not free in ϕ.

Proposition 3.4.7. For any complete proper filter algebra B and valuation θ:

1. θ̃(〈z〉ϕ) = θ̃(¬[z]¬ϕ).

2. θ̃(〈z〉ϕ) and θ̃([z]ϕ) are either > or ⊥.

3. θ̃([z]ϕ) = > if and only if θ̃(ϕ) ≥ z. In other words, θ̃([z]ϕ) = > if and only if
θ̃(ϕ) ∧ z = z.

4. θ̃(〈z〉ϕ) = > if and only if z ∧ θ̃(ϕ) is not ⊥.

5. θ̃(at(ϕ)) = θ̃(〈z〉ϕ ∧ ¬∃q(〈z〉(ϕ ∧ q) ∧ 〈z〉(ϕ ∧ ¬q))) where q is not free in ϕ.

6. θ̃(at(ϕ)) is either > or ⊥. It is the former if and only if z ∧ θ̃(ϕ) is an atom in (the
Boolean algebra part of) B.

7. z = θ̃(∀p(Bp→ p)).

8. g = θ̃(∀p(Bp→ p) ∧ ∃p(p ∧ at(p)).

Proof. The third item is not completely obvious, and we prove it here. Recall that θ̃([z]ϕ) =
> iff (z → θ̃(ϕ)) ∈ F . For one direction, suppose that z ≤ θ̃(ϕ). Then (z → θ̃(ϕ)) = >.
Since F is a filter, (z → θ̃(ϕ)) ∈ F . For the other direction, suppose that (z → θ̃(ϕ)) ∈ F .
Note that z is the meet of F . So z ≤ (z → θ̃(ϕ)). By the theory of Boolean algebra, this
means that z ∧ ¬(z → θ̃(ϕ)) = ⊥. Simplifying the left-hand-side, we have z ∧ ¬θ̃(ϕ) = ⊥.
So z ≤ θ̃(ϕ). The fourth item follows from the third item by simple duality reasoning.
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The last item may also need some explanation. To start, unpack the semantics of
θ̃(∀p(Bp→ p) ∧ ∃p(p ∧ at(p))), and we see that it is

θ̃(∀p(Bp→ p)) ∧
∨
{θ̃[a/p](p ∧ at(p)) | a ∈ B}

= z ∧
∨
{a ∧ θ̃[a/p](at(p)) | a ∈ B}

=
∨
{z ∧ a ∧ θ̃[a/p](at(p)) | a ∈ B}.

Now if a is an atom below z, then z ∧ a = a, which is still an atom. Then, given that

θ̃[a/p] = a and hence z ∧ θ̃[a/p] = z ∧ a, θ̃[a/p](at(p)) = > according to item 6 above. Then

z∧a∧ θ̃[a/p](at(p)) = a. This means that all atoms below z are included in the join. On the

other hand, if a is not an atom below z, then z ∧ a∧ θ̃[a/p](at(p)) = ⊥ since θ̃[a/p](at(p)) is
⊥, again by item 6 above. Thus the join is precisely the join of atoms below z.

It can also be shown that ∃p(p ∧ at(p)) expresses the join of those elements whose meet
with z is an atom. However, taking this as a primitive seems to be less convenient for later
work.

Now we focus on the fragment LBΠzg and show in what sense it can be seen as talking
about the natural quotients of complete proper filter algebras in a first-order way. To this
end, we first define precisely what we mean by the natural quotient of a complete proper
filter algebra B.

Definition 3.4.8. For any complete proper filter algebra B = 〈B,F 〉, define its natural
quotient B/F as the tuple 〈B/F, πB(z), πB(g)〉, where πB is the quotient map from B to
B/F . We may drop the subscript of πB when its context is clear.

When viewed as a first-order structure, natural quotients of complete proper filter alge-
bras are in the type of Boolean algebras augmented with two constants. Hence we define
the following first-order language.

Definition 3.4.9. Let FOL be the first-order language defined as below.

Terms : t ::= p | > | ¬t | (t ∧ t) where p ∈ Prop,

FOL : ϕ ::= (t = t′) | ¬ϕ | (ϕ ∧ ϕ) | ∀pϕ where t, t′ ∈ Terms.

Let FOLzg be the first-order language extending FOL by adding z and g as two constants.

Note that here we are intentionally reusing the symbols in LΠ, so that the translation
between FOLzg and LBΠzg can be defined more directly. Note also that because we use
the same symbols for meet in terms and conjunction in formulas, we need to bracket atomic
formulas to avoid ambiguity. Now we define the standard first-order semantics for FOLzg.
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Definition 3.4.10. For any triple 〈B, z, g〉 where B is a Boolean algebra and z, g ∈ B, a
variable assignment θ : Prop→ B can be extended uniquely to θ̃ on the terms of FOLzg by
the following inductive clauses:

θ̃(p) = θ(p), θ̃(g) = g, θ̃(z) = z, θ̃(>) = >,
θ̃(¬t) = ¬B θ̃(t), θ̃((t ∧ s)) = θ̃(t) ∧B θ̃(s).

Then the semantics of FOLzg is defined by

〈B, z, g〉, θ � (t = s) ⇐⇒ θ̃(t) = θ̃(s)

〈B, z, g〉, θ � ¬ϕ ⇐⇒ 〈B, z, g〉, θ 6� ϕ
〈B, z, g〉, θ � (ϕ ∧ ψ)⇐⇒ 〈B, z, g〉, θ � ϕ and 〈B, z, g〉, θ � ψ
〈B, z, g〉, θ � ∀pϕ ⇐⇒ 〈B, z, g〉, θ[a/p] � ϕ for all a ∈ B.

Syntactically, LBΠzg and FOLzg are almost identical. This can be seen from how simply
the translations between them can be defined.

Definition 3.4.11. Let T be the function from LBΠzg to FOLzg such that T (ϕ) is the
result of replacing all occurrences in ϕ of formulas of the form Bψ where ψ ∈ BLzg by
(ψ = >).

Let T ′ be the function from FOLzg to LBΠzg such that T ′(ϕ) is the result of replacing
all atomic formulas (s = t) by B(s↔ t).

For example, recall the sentence ∃p(¬Bp ∧ ¬B¬p) we used in Proposition 3.4.3 where we
showed that lower MacNeille completion does not preserve its semantic value. It is not hard
to see that T (∃p(¬Bp ∧ ¬B¬p)) = ∃p(¬(p = >) ∧ ¬(¬p = >)). Then T (∃p(¬Bp ∧ ¬B¬p)) is
false on a 〈B, z, g〉 iff B is the 2-element Boolean algebra. This matches our observation there
that ∃p(¬Bp∧¬B¬p) is false (evaluates to ⊥) on a complete proper filter algebra B = 〈B,F 〉
iff the filter F is an ultrafilter, or equivalently iff the quotient B/F is the 2-element Boolean
algebra.

To make the intuition that LBΠzg talks about natural quotients in the first-order way
precise, we use the following lemma.

Lemma 3.4.12. For any ϕ ∈ LBΠzg, any complete proper filter algebra B = 〈B,F 〉, and any
valuation θ on B, θ̃(ϕ) is either > or ⊥, and θ̃(ϕ) = > if and only if 〈B/F, π(z), π(g)〉, π◦θ �
T (ϕ). As a corollary, when ϕ is a sentence, B � ϕ iff B/FB � T (ϕ).

Proof. To avoid clutter, we omit the pair of parentheses immediately after π and also the
circle for composing π with θ. Hence πp = π(p) and πθ(p) = π(θ(p)) = (π ◦ θ)(p). Now
obviously we need an induction on LBΠzg.

For any ψ ∈ BLzg, a simple induction shows that πθ̃(ψ) = π̃θ(ψ), since π is a quotient
map and hence a homomorphism. By our algebraic semantics defined in Definition 3.2.5,
θ̃(Bψ) is either >B or ⊥B according to whether θ̃(ψ) is in the filter F or not. Also, since
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F = π−1(>B/F ) by the definition of π in Definition 3.4.8, πθ̃(ψ) = >B/F if and only if

θ̃(ψ) ∈ F . Then

θ̃(Bψ) = >B ⇐⇒ θ̃(ψ) ∈ F ⇐⇒ πθ̃(ψ) = >B/F ⇐⇒ π̃θ(ψ) = >B/F
⇐⇒ 〈B/F, πz, πg〉, πθ � ψ = >
⇐⇒ 〈B/F, πz, πg〉, πθ � T (Bψ).

For formulas in LBΠzg of the form ¬ϕ where ϕ ∈ LBΠzg, note first that T (¬ϕ) = ¬T (ϕ).
Also, θ̃(¬ϕ) must be either >B or ⊥B, given the induction hypothesis that θ̃(ϕ) is either >B
or ⊥B. Then, with the induction hypothesis that θ̃(ϕ) = >B iff 〈B/F, πg, πz〉 � T (ϕ), we
have

θ̃(¬ϕ) = >B ⇐⇒ θ̃(ϕ) = ⊥B ⇐⇒ θ̃(ϕ) 6= >B
⇐⇒ 〈B/F, πg, πz〉 6� T (ϕ)

⇐⇒ 〈B/F, πg, πz〉 � ¬T (ϕ)

⇐⇒ 〈B/F, πg, πz〉 � T (¬ϕ).

For formulas in LBΠzg of the form ϕ1 ∧ ϕ2, the situation is completely similar. We only
need to do more replacements of equivalent claims coming from the induction hypothesis in
this case.

Now consider ∀qϕ. Note first that for all a ∈ B, by induction hypothesis we know that

θ̃[a/q](ϕ) is either >B or ⊥B, since the proof works for all valuations. Then, θ̃(∀qϕ) =∧
{θ̃[a/q](ϕ)} must be either >B or ⊥B. Moreover, being a meet of elements that are either

>B or ⊥B, it is >B iff for all a ∈ B, θ̃[a/q](ϕ) = >B, which, using induction hypothesis, is
equivalent to

for all a ∈ B, 〈B/F, πg, πz〉, π ◦ (θ[a/q]) � T (ϕ). (3.1)

On the other hand, according to the semantics, 〈B/F, πg, πz〉, πθ � T (∀qϕ) iff

for all a ∈ B/F, 〈B/F, πg, πz〉, (π ◦ θ)[a/q] � T (ϕ). (3.2)

Hence, all we need to show now is that (3.1) and (3.2) are equivalent. Too see that they
are equivalent, note that for any a ∈ B, π ◦ (θ[a/q]) is the same function as (π ◦ θ)[π(a)/q].
Then, given that π is surjective, we are done.

3.4.2 Logics in auxiliary languages and completeness proof

In the last subsection, we introduced a number of fragments of LΠzg, including LBΠzg, which
can be translated to the first-order language FOLzg in a semantically meaningful way: a
formula ϕ ∈ LBΠzg evaluates to > in a complete proper filter algebra B iff its translation
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T (ϕ) is true on the natural quotient B/FB. From this we see that semantically, LBΠzg is
talking about the natural quotients of complete proper filter algebras in a first-order way.

In this subsection, we move to the logical side of this translation. We will first aug-
ment KD4∀5Π with two definitional axioms for the two new constants z and g and obtain
KD4∀5Πzg. Then we provide a first-order logic FOLzg that is sound and complete with re-
spect to a class of Boolean algebras with two extra named elements, which we call the class of
zg-algebras. This class of zg-algebras is bigger than the class of natural quotients of complete
proper filter algebras. However, we can show in a later section that the first-order logics of
them are the same. In this section, the main task is to show that reasoning in FOLzg can be
carried out in KD4∀5Πzg by the reverse translation T ′. Then, assuming that we can separate
the translatable part LBΠzg and the non-translatable part and that FOLzg is not only the
first-order logic of zg-algebras but also the first-order logic of the class of natural quotients
of complete proper filter algebras, we show in this subsection that KD4∀5Πzg is complete
with respect to all complete proper filter algebras. Given that KD4∀5Πzg is a definitional
extension of KD4∀5Π, the completeness of KD4∀5Π follows.

To start, we define the system KD4∀5Πzg.

Definition 3.4.13. Define logic KD4∀5Πzg by extending KD4∀5Π with the following two
axioms for z and g:

z : z↔ ∀p(Bp→ p),

g : g↔ (∀p(Bp→ p) ∧ ∃p(p ∧ at(p))).

The new axioms state the semantic definition of z and g, as shown in Proposition 3.4.7.
Moreover, the right-hand side of the first axiom z is in LΠ, and the right-hand side of
the second axiom g uses only z besides allowed constructions in LΠ. Hence KD4∀5Πzg is a
definitional and conservative extension of KD4∀5Π, and we only need to prove that KD4∀5Πzg
is the complete logic of complete proper filter algebras in LΠzg according to the semantics
defined in Definition 3.4.5.

Notation 3.4.14. In this and the next subsection, we will state many provability claims in
the system KD4∀5Πzg. We write ` ϕ for ϕ being provable in KD4∀5Πzg and write ϕ a` ψ
for ` ϕ ↔ ψ. We treat a` as a kind of equality between formulas so that in notation we
chain them and use substitutions. We can do this because KD4∀5Πzg is a normal Π-logic,
and thus a` is a congruence relation with respect to all connectives and quantifiers.

Now we prove two lemmas that will be very useful. The first shows the importance of
having 4∀, and the second shows the use of the constant z. To state the first lemma, we call a
formula ϕ ∈ LΠzg fully modalized when every propositional letter (those in Prop∪{>, z, g})
is under the scope of some B. It is not hard to see that the fully modalized formulas in LΠzg

can be characterized by the grammar ϕ ::= Bψ | ¬ϕ | (ϕ ∧ ϕ) | ∀pϕ, where ψ ∈ LΠzg.

Lemma 3.4.15. For every fully modalized formula ϕ ∈ LΠzg, ϕ a` Bϕ a` B̂ϕ.
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Proof. First we show ϕ a` Bϕ by induction.

• The case where ϕ = Bψ is trivial by KD45 since we are just showing that Bψ a` BBψ.

• Suppose ϕ = ψ1 ∧ ψ2 where ψ1 and ψ are fully modalized. Then ψ1 a` Bψ1 and
ψ2 a` Bψ2. Then ψ1 ∧ ψ2 a` Bψ1 ∧ Bψ2 a` B(ψ1 ∧ ψ2).

• Suppose ϕ = ¬ψ where ψ is fully modalized, and hence ψ a` Bψ. Then again by KD45,
we have a chain of provable equivalences: ¬ψ a` ¬Bψ a` B¬Bψ a` B¬ψ. The last
equivalence can be obtained by simply replacing Bψ by ψ. Since KD4∀5Πzg is normal,
we can certainly do such replacements.

• Suppose ϕ = ∀pψ where ψ is fully modalized and thus ψ a` Bψ. Then ∀pψ a` ∀pBψ.
By 4∀, ∀pψ a` B∀pBψ. Then we can replace Bψ by ψ again, and hence ∀pψ a` B∀pϕ.

Then for any fully modalized formula ϕ, noting that we just proved that ϕ a` Bϕ, ϕ a`
Bϕ a` B̂Bϕ a` B̂ϕ.

Lemma 3.4.16. For every ϕ, ψ ∈ LΠzg, the following are theorems of KD4∀5Πzg:

[z](ϕ→ ψ)→ ([z]ϕ→ [z]ψ),

z→ ([z]ϕ→ ϕ),

[z]ϕ→ [z][z]ϕ,

〈z〉ϕ→ [z]〈z〉ϕ.

Moreover, if ` z→ ϕ, then ` z→ [z]ϕ. This means that, assuming z, [z] is an S5 modality.

Proof. The first, third, and last formulas are easy to derive in KD4∀5Πzg. For the second,
recall that by the axiom z, ` z ↔ ∀p(Bp → p). Hence, assuming z, we can deduce B(z →
ϕ) → (z → ϕ). But we can also derive (z → ϕ) → ϕ as we have z in hand. So we derive
B(z→ ϕ)→ ϕ and thus [z]ϕ→ ϕ.

Finally, for the necessitation-like implication, suppose that ` z→ ϕ. Then by necessita-
tion, B(z→ ϕ) is provable, but this is just [z]ϕ. So certainly z→ [z]ϕ is provable.

Moving to the FOLzg side, what we need is a first-order logic that is weak enough to be
embedded using T ′ in KD4∀5Πzg, yet strong enough to include all validities of the natural
quotients of complete proper filter algebras. It turns out that this logic is the logic of the
following very general class of Boolean algebras with two named elements.

Definition 3.4.17. A zg-algebra A is a tuple 〈A0, zA, gA〉 such that A0 is a non-trivial
Boolean algebra and zA, gA ∈ A0, such that zAgA is atomic (it is the join of atoms below it),
zAgA is atomless (there are no atoms below it), and gA ≤ zA.
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Note that according to the definition, for any zg-algebra A, gA is precisely the join of
the atoms below zA. Hence zg-algebras can alternatively be defined as Boolean algebras
with an element z such that the join of the atoms below it exists and is denoted by g. It is
not too hard to observe that all natural quotients of complete proper filter algebras are zg-
algebras. On the other hand, there are certainly zg-algebras that are not isomorphic to the
natural quotients of any complete proper filter algebra. An obvious way to construct such
zg-algebras is to take zg-algebras whose restriction to z is not complete. By our definition,
this is totally admissible for being a zg-algebra: the existence of just the join of atoms below
z suffices. However, for any zg-algebra A = B/FB where B is some complete proper filter
algebra, A|zA must be a complete Boolean algebra since first B is complete and second A|zA
is isomorphic to B|zB . We will show that it is not a problem that zg-algebras forms a wider
class than the class of natural quotients of complete proper filter algebras. The motivation
of having a wider class is that this class of zg-algebras is first-order definable, and thus we
get a complete first-order logic for free. The logic is presented below, and we omit the easy
soundness and completeness proof since the class of zg-algebras is obviously defined by the
non-logical axioms.

Proposition 3.4.18. The validities of all zg-algebras in the language of FOLzg under the se-
mantics in Definition 3.4.10 is axiomatized by the logic FOLzg defined by the axiom schemas
below and the usual modus ponens and universalization rule. In the group of logical axioms,
ϕ, ψ are arbitrary formulas in FOLzg, t is an arbitrary term, and p, q, r are arbitrary vari-
ables in Prop. In the second group of non-logical axioms, p, q, r are three specific and distinct
variables in Prop while s, t still stand for arbitrary terms.

Logical axioms

All instances of propositional tautology schemas in FOLzg
∀p(ϕ→ ψ)→ (∀pϕ→ ∀pψ)

∀pϕ→ ϕ[t/p] when t is substitutable for p in ϕ

ϕ→ ∀pϕ when p is not free in ϕ

(p = p) ∧ ((p = q)→ (q = p))

((p = q) ∧ (q = r))→ (p = r)

(p = q)→ ((¬p = ¬q))
(p = q)→ ((r ∧ p = r ∧ q) ∧ (p ∧ r = q ∧ r))

Non-logical axioms
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¬(> 6 ⊥) (3.3)

(s = t) when s↔ t is a tautology (3.4)

(g 6 z) (3.5)

∀p(((p 6 zg) ∧ (p 6= ⊥))→ ∃q((q 6 p) ∧ (q 6= ⊥) ∧ ∀r((q 6 r) ∨ (q 6 r)))) (3.6)

∀p(((p 6 zg) ∧ (p 6= ⊥))→ ∃q((q 6 p) ∧ (pq 6= ⊥) ∧ (pq 6= ⊥))) (3.7)

Note that we are not using the usual Leibniz’s law in this axiomatization. Instead, we have a
group of axioms saying that the equality relation is a congruence relation. The usual Leibniz’s
law can be derived from them together with other axioms and rules. This is mainly for the
ease of showing that the translations preserve theoremhood, since KD4∀5Πzg does not have
Leibniz’s law as one of its axioms.

In the non-logical axioms above and also for the rest of the chapter, we use the following
abbreviations in FOLzg: (s 6 t) := ((s → t) = >) and (s 6= t) := ¬(s = t). Intuitively
the abbreviation (s 6 t) says that s is below t in the Boolean lattice order. Then the two
axioms intuitively say that zg is atomic and zg is atomless respectively. Obviously then the
non-logical axioms define zg-algebras.

That FOLzg is weak enough to be embedded into KD4∀5Πzg is shown by the following
three lemmas.

Lemma 3.4.19. For any ϕ ∈ LBΠzg, ϕ ↔ T ′(T (ϕ)) is provable in KD4∀5Πzg. For any
ϕ ∈ FOLzg, ϕ↔ T (T ′(ϕ)) is provable in FOLzg

Proof. T ′(T (ϕ)) turns every Bβ in ϕ first to β = > and then to B(β ↔ >). But Bβ ↔
B(β ↔ >) is in KD4∀5Πzg. Similarly, T (T ′(ϕ)) turns the s = t in ϕ first to B(s ↔ t) and
then to ((s↔ t) = >). But (s = t)↔ ((s↔ t) = >) is in FOLzg.

Lemma 3.4.20. For any axiom ϕ in Proposition 3.4.18 defining FOLzg, T ′(ϕ) is provable
in KD4∀5Πzg.

Proof. The translations of the logical axioms are easily provable in KD4∀5Πzg since it is a
normal Π-logic and, in particular it can do Boolean reasoning inside B. For the rest, the
only non-trivial axioms to be dealt with are (3.6) and (3.7). To derive the translation of
(3.6) in KD4∀5Πzg, we now work in LΠzg. Let us first assume pzg in system. Then we have
p ∧ ∀p(Bp→ p) ∧ ∃p(p ∧ at(p)). Instantiating ∃p(p ∧ at(p)) using x, we have x ∧ at(x) that
just abbreviates

x ∧ 〈z〉x ∧ ∀r([z](x→ r) ∨ [z](x→ ¬r)).
Instantiating ∀r([z](x → r) ∨ [z](x → ¬r)) using p, we have [z](x → p) ∨ [z](x → ¬p).
But the latter disjunct leads to contradiction since we have assumed z, which, according
to Lemma 3.4.16, allows us to remove [z] and obtain x → ¬p, contradicting the previously
assumed pzg and x ∧ at(x). Hence, we reject the second disjunct and derive [z](x → p).
Summing everything, we now have:

[z](x→ p) ∧ 〈z〉x ∧ ∀r([z](x→ r) ∨ [z](x→ ¬r)).
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Writing this without any abbreviation and using ϕ1 → (ϕ2 → ϕ3) being provably equivalent
to (ϕ1 ∧ ϕ2)→ ϕ3, we then have

B((z ∧ x)→ p) ∧ B̂(z ∧ x) ∧ ∀r(B((z ∧ x)→ r) ∨ B((z ∧ x)→ ¬r)).

Then we can existentially quantify back to obtain

ϕ(p) := ∃q(B(q → p) ∧ B̂q ∧ ∀r(B(q → r) ∨ B(q → ¬r))),

as z ∧ x is a witness. The above process shows that ` pzg→ ϕ(p).
Now assume B(p → zg) ∧ B̂p in system. Then clearly we can deduce B̂(pzg). Since we

have just shown that ` pzg→ ϕ(p), we also obtain B(pzg→ ϕ(p)). Thus B̂(pzg)→ B̂(ϕ(p))
is provable. But ϕ(p) is fully modalized. So by Lemma 3.4.15, B̂(ϕ(p)) a` ϕ(p). This means
that (B(p → zg) ∧ B̂p) → ϕ(p) is provable, and hence, after universalization, ` ∀p((B(p →
zg) ∧ B̂p)→ ϕ(p)).

Note that for any s, t ∈ BLzg, T (B(s → t)) = (s 6 t) and T (B̂s) = (¬s 6= ⊥). The
latter is easily seen to be provably equivalent to (s 6= >) in FOLzg. Thus, T (∀p((B(p →
zg) ∧ B̂p) → ϕ(p))) is obviously provably equivalent to (3.6) in FOLzg. By Lemma 3.4.19,
we are done in this case.

The translation of (3.7) can be derived in KD4∀5Πzg similarly. The key again is that
once we assume z, [z] is an S5 modality.

Lemma 3.4.21. For any ϕ ∈ FOLzg, T ′(ϕ) ∈ KD4∀5Πzg.

Proof. We show that for any derivation 〈ϕ1, ϕ2, · · · , ϕn〉 of FOLzg, T ′(ϕi) is a theorem of
KD4∀5Πzg for all i from 1 to n by induction. For any i, if ϕi is an axiom in FOLzg, then
by the previous lemma, T ′(ϕ) ∈ KD4∀5Πzg. If ϕi is obtained by either modus ponens or
universalization, notice that the same rule applies to the formulas after translation as the
translation does not change the sentential form or the variables used. So T ′(ϕi) can also be
obtained from the rules.

Now we can show the completeness of KD4∀5Πzg from the following two lemmas.

Lemma 3.4.22. Any sentence in LΠzg is equivalent in KD4∀5Πzg to a sentence in the
following form:

(z ∧ α) ∨ (zg ∧ β) ∨ (zg ∧ γ),

where α, β, γ are all sentences in LBΠzg.

Lemma 3.4.23. For any zg-algebra A, there is a complete proper filter algebra B such that
B/FB is elementarily equivalent to A (satisfying the same formulas in FOLzg).

Moreover, zB is not ⊥B, zBgB is ⊥B if and only if zAgA is ⊥A, and zBgB is ⊥B if and
only if zAgA is ⊥A.

Theorem 3.4.24. Any sentence in LΠzg that is valid on all complete proper filter algebras
is also in KD4∀5Πzg.
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Proof. By Lemma 3.4.22, we can assume that we are dealing with a sentence ϕ = (z ∧ α) ∨
(zg ∧ β) ∨ (zg ∧ γ) where α, β, γ are all sentences in LBΠzg. To proceed, assume that ϕ is
valid on all complete proper filter algebras.

By Lemma 3.4.12, for any complete proper filter algebra B and any valuation θ on B,
θ̃(α), θ̃(β), θ̃(γ) are either > or ⊥. Also, z, zg, and zg disjointly decompose B. This means
that once θ̃(z) 6= ⊥, θ̃(α) must be > since otherwise θ̃(ϕ) will lose a non-trivial θ̃(z) and be
strictly below >. Similarly, θ̃(zg) 6= ⊥ implies θ̃(β) = >, and θ̃(zg) 6= ⊥ implies θ̃(γ) = >.

Focus on α first. Now we know that α is valid on all complete proper filter algebra B
where zB 6= ⊥ since z always evaluates to zB. Then for any zg-algebra A, A � T (α) since by
Lemma 3.4.23, for any zg-algebra A there is a complete proper filter algebra B with zB 6= ⊥
such that B/FB is elementarily equivalent to A, and by Lemma 3.4.12, B/FB � T (α) iff
B � α. Now that T (α) is valid on all zg-algebras, by Proposition 3.4.18, T (α) ∈ FOLzg. By
Lemma 3.4.21 and 3.4.19, then, ` α, and thus ` z→ α.

The method applies to the cases with β and γ too. Take β as an example. Now β
must be valid on all complete proper filter algebra B where zBgB is non-trivial. If T (β)
is refutable by some zg-algebra A with zAgA non-trivial, then β will also be refutable by
some complete proper filter algebra B with zBgB non-trivial, using lemma 3.4.23 and 3.4.12.
This means that T (β) is valid on any zg-algebra A with zAgA non-trivial. In other words,
¬(zg = ⊥) → T (β) is valid and hence provable in FOLzg. Translating back to LΠzg,
` B̂(zg) → β. But ` zg → B̂(zg) since z a` ∀p(p → B̂p), and then we can instantiate this
with zg. So ` zg→ β. In the same fashion, it can be shown that ` zg→ γ.

Taking stock, we have shown that ` (z → α), ` (zg → β), and ` (zg → γ). But
obviously ` z ∨ zg ∨ zg since trivially ` g → z. With some basic Boolean manipulation,
` (z ∧ α) ∨ (zg ∧ β) ∨ (zg ∧ γ).

Theorem 3.4.1 follows since KD4∀5Πzg is a conservative extension of KD4∀5Π, and a
formula is valid if and only if its universal closure, which is a sentence, is valid.

3.4.3 Syntactical Reduction

In this section, we prove Lemma 3.4.22. The main idea is relativizing formulas by zg, zg,
and z. We also use ideas from the quantifier elimination for S5Π. See the appendix of [91]
and the original [54] for more about the quantifier elimination for S5Π.

An important addition to the S5Π case is the following lemma, where the intuition is
that if ¬B̂b is true, then b is unimportant and does not affect the semantic value of ϕ(p)
where ϕ ∈ LBΠzg, when we replace p by either p ∨ b or p ∧ ¬b.

Lemma 3.4.25. For any formula ϕ(p) ∈ LBΠzg where p is free and any propositional
variable b not occurring in ϕ, the following are provable in KD4∀5Πzg:

B¬b→ (ϕ(p)↔ ϕ(p ∨ b)), B¬b→ (ϕ(p)↔ ϕ(p ∧ ¬b)).

Proof. We only show the p ∨ b case here. The other case can be shown similarly. First,
a simple induction shows that for any Boolean formula β(p), (β(p) ∨ b) a` (β(p ∨ b) ∨ b).
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The only non-trivial case is negation. If (β(p) ∨ b) a` (β(p ∨ b) ∨ b), then ¬(β(p) ∨ b) a`
¬(β(p ∨ b) ∨ b). Pushing ¬ inside, (¬β(p) ∧ ¬b) a` (¬β(p ∨ b) ∧ ¬b). Joining a b on both
side and performing some Boolean manipulation, we see that (¬β(p)∨ b) a` (¬β(p∨ b)∨ b).

Using the normality of B, it is not hard to see that ` B¬b→ (Bϕ↔ B(ϕ ∨ b)): assuming
B¬b, B(ϕ ∨ b) implies B((ϕ ∨ b) ∧ ¬b), which then implies B(ϕ ∧ ¬b) and hence also Bϕ.
The other direction is trivial. Applying this to the case of ϕ being β(p), we see then that
` B¬b→ (Bβ(p)↔ B(β(p) ∨ b)). Using the claim we proved in the last paragraph, ` B¬b→
(Bβ(p)↔ Bβ(p∨b)). This forms the basis of a trivial induction on the formulas in LBΠzg.

Since our strategy is to relativize by zg, zg, and z, we first introduce the necessary
definitions and lemmas required for separating the zg and zg part. Then we move to the
necessary preparation for separating the z part. Then we show a simple lemma on when we
can push ∃p over conjunctions. After that, we combine everything together.

For the zg and zg part, we need the following abbreviations:

Miϕ := ∃p1 · · · pi

( ∧
1≤i<j≤n

[z](pi → ¬pj) ∧
∧

1≤i≤n

at(pi) ∧
∧

1≤i≤n

[z](pi → ϕ)

)
(for i ≥ 1) ,

M0ϕ := >, Qiϕ := Miϕ ∧ ¬Mi+1ϕ (for i ∈ N), Nϕ := 〈z〉(g ∧ ϕ).

As usual, the auxiliary variables are chosen to be distinct and unused in ϕ. Here Mi, Qi, and
N come from the quantifier elimination proof of [54], which requires the modality to be S5.
But by Lemma 3.4.16, the modality [z] used here is really S5 if z is also present. Even if z
is not assumed, KD4∀5Πzg still proves many intuitive principles. We summarize the results
in the following lemma.

Lemma 3.4.26. KD4∀5Πzg proves all instances of the following schemas. In the last group,
q is required to be not free in ϕ and ±q can be either q or ¬q. Moreover, when ±q is taken
to be q, m in the first four formulas is not 0, and when ±q is taken to be ¬q, n is not 0.

〈z〉(g ∧ ϕ)↔M1ϕ Miϕ↔Mi(g ∧ ϕ) Qiϕ↔ Qi(g ∧ ϕ)

∃q[Qm(ϕ ∧ q) ∧Qn(ϕ ∧ q)]↔ Qm+nϕ ∃q[N(ϕ ∧ q) ∧N(ϕ ∧ q)]↔ Nϕ

∃q[Qm(ϕ ∧ q) ∧Mn(ϕ ∧ q)]↔Mm+nϕ ∃q[N(ϕ ∧ q) ∧ ¬N(ϕ ∧ q)]↔ Nϕ

∃q[Mm(ϕ ∧ q) ∧Qn(ϕ ∧ q)]↔Mm+nϕ ∃q[¬N(ϕ ∧ q) ∧N(ϕ ∧ q)]↔ Nϕ

∃q[Mm(ϕ ∧ q) ∧Mn(ϕ ∧ q)]↔Mm+nϕ ∃q[¬N(ϕ ∧ q) ∧ ¬N(ϕ ∧ q)]↔ ¬Nϕ
n∨
i=0

(Mi(ϕ ∧ ψ) ∧Mn−i(ϕ ∧ ψ))↔Mnϕ ((N(ϕ ∧ ψ) ∨ (N(ϕ ∧ ψ)))↔ Nϕ

n∨
i=0

(Qi(ϕ ∧ ψ) ∧Qn−i(ϕ ∧ ψ))↔ Qnϕ ((¬N(ϕ ∧ ψ) ∧ ¬(N(ϕ ∧ ψ)))↔ ¬Nϕ
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∃q[zg ∧ ϕ ∧ ±q ∧Qm(ϕ ∧ q) ∧Qn(ϕ ∧ q)]↔ (zg ∧ ϕ ∧Qm+nϕ)

∃q[zg ∧ ϕ ∧ ±q ∧Mm(ϕ ∧ q) ∧Qn(ϕ ∧ q)]↔ (zg ∧ ϕ ∧Mm+nϕ)

∃q[zg ∧ ϕ ∧ ±q ∧Qm(ϕ ∧ q) ∧Mn(ϕ ∧ q)]↔ (zg ∧ ϕ ∧Mm+nϕ)

∃q[zg ∧ ϕ ∧ ±q ∧Mm(ϕ ∧ q) ∧Mn(ϕ ∧ q)]↔ (zg ∧ ϕ ∧Mm+nϕ)

∃q[zg ∧ ϕ ∧ ±q ∧N(ϕ ∧ q) ∧N(ϕ ∧ q)]↔ (zg ∧ ϕ ∧Nϕ)

∃q[zg ∧ ϕ ∧ ±q ∧ ¬N(ϕ ∧ q) ∧N(ϕ ∧ q)]↔ (zg ∧ ϕ ∧Nϕ)

∃q[zg ∧ ϕ ∧ ±q ∧N(ϕ ∧ q) ∧ ¬N(ϕ ∧ q)]↔ (zg ∧ ϕ ∧Nϕ)

∃q[zg ∧ ϕ ∧ ±q ∧ ¬N(ϕ ∧ q) ∧ ¬N(ϕ ∧ q)]↔ (zg ∧ ϕ ∧ ¬Nϕ)

Proof. Syntactical proofs of them are not interesting, and here we only briefly explain why
they are valid, from which syntactical proofs can be extracted straightforwardly. Using
Proposition 3.4.7, Miϕ says that z ∧ ϕ contains at least i atoms. More precisely, for any
complete proper filter algebra B and valuation θ on B, θ̃(Miϕ) = > if and only if zB ∧ θ̃(ϕ)
contains at least i atoms, and otherwise θ̃(Miϕ) = ⊥. Similarly, Qiϕ says that z∧ϕ contains
exactly i atoms, and Nϕ says that z ∧ ϕ contains an atomless part.

Note that θ̃(g) = gB is the join of all atoms under zB and hence atomic. So if gB∧zB∧θ̃(ϕ)
is non-trivial, then zB∧θ̃(ϕ) must contain an atom, and the numbers of atoms below zB∧θ̃(ϕ)
and gB ∧ zB ∧ θ̃(ϕ) respectively are the same. These two observations show the validity of
the first group of three formulas.

The left six formulas in the second group are simply counting principles, and the right
six formulas state obvious properties of atomless elements. Hence they are all valid. Note
that they only consider the situation under z.

For the last group, note that by Boolean reasoning, (z ∧ α)↔ (z ∧ β) a` z→ (α↔ β).
By Proposition 3.4.16, to prove the last group of formulas in KD4∀5Πzg, we only need to
translate their proofs in S5Π to proofs in KD4∀5Πzg by replacing the S5 modality � by
[z].

For the z part, the only extra definition we need is the following.

Definition 3.4.27. Define the following abbreviations:

〈z̄〉ϕ := B̂(z ∧ ϕ), [z]ϕ := B(z→ ϕ).

Then define the following restricted version of LBΠzg:

L[z]Π : ϕ ::= [z]t | ¬ϕ | (ϕ ∧ ϕ) | ∀pϕ

where t ∈ BL, p ∈ Prop.

Now we introduce the concept of a propositional variable being restricted. This helps us
to distribute existential quantifiers over conjunctions in certain cases.

Definition 3.4.28. We say that p is restricted by a formula µ in ϕ just in case µ is substi-
tutable for p in ϕ and ` ∀p(ϕ(p)↔ ϕ(p ∧ µ)).
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Lemma 3.4.29. ∃p(ϕ ∧ ψ) is provably equivalent to ∃pϕ ∧ ∃pψ, if there are formulas µ, ν,
such that

• p in ϕ is restricted by µ, p in ψ is restricted by ν, and

• ¬(µ ∧ ν) is provable.

Proof. One direction of the equivalence is trivial. For the other, the strategy is relativization.
Suppose ∃pϕ(p) ∧ ∃pψ(p) in system. Then we have ϕ(p1) and ψ(p2). By the assumption
that p in ϕ is restricted by µ and that p in ψ is restricted by ν, we can derive ϕ(p1 ∧ µ) and
ψ(p2 ∧ ν). Now we see that ¬(µ ∧ ν) is provable. So, using Boolean reasoning and letting
χ = (p1 ∧ µ) ∨ (p2 ∧ ν), χ ∧ µ a` p1 ∧ µ and χ ∧ ν a` p2 ∧ ν. Hence we now have a chain
of provable equivalence: ϕ(χ) a` ϕ(χ ∧ µ) a` ϕ(p1 ∧ µ) a` ϕ(p1). Similarly ψ(χ) a` ψ(p2).
Thus χ witness ∃p(ϕ(p) ∧ ψ(p)).

Now we start to combine everything together. A few extra notations are used. We fix
an enumeration 〈pi〉i<|Prop| of Prop and write ~p or in general use vector notation for a finite
subset of Prop. Then for ~p = {pi1 , pi2 , . . . , pin} with i1 < i2 < · · · < in, 2~p is the set of
formulas in the form of ±pi1 ∧±pi2 ∧ · · · ∧ ±pin . We call elements in 2~p cells. And as usual,
a conjunction of no formulas is >, and a disjunction of no formulas is ⊥.

Definition 3.4.30. A state description over ~p with degree l ∈ N is a conjunction of the
following components:

• (choice of zg) one of z, zg, zg,

• (propositional truth) one cell c ∈ 2~p,

• (z part) one L[z]Π formula δ whose free variables are all in ~p,

• (zg part) for each cell c ∈ 2~p, a formula Mlc or Qic for some 0 ≤ i < l,

• (zg part) for each cell c ∈ 2~p, a formula Nc or ¬Nc.

We call the first two parts the propositional part and the rest the modal part of a state
description. A partial state description over ~p of degree l is a formula missing one or more
components above. If the only missing part is the propositional part, we also call it a modal
state description.

Lemma 3.4.31. Every free variable in a z (respectively zg, zg) part is restricted by z

(respectively zg, zg).

Proof. For the z part, note that in any formula ϕ ∈ L[z]Π, every free variable appears in
a Boolean term which is then in a conjunction with z. We can distribute this z into the
Boolean term, assuming that Boolean term is already in negation normal form. Then every
free variable appears either in the form of z ∧ p or z ∧ ¬p. But z ∧ p a` z ∧ (p ∧ z) and
z ∧ ¬p a` z ∧ ¬(p ∧ z).
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For the zg part, take Mic for some c ∈ 2~p and p ∈ ~p for example. First note that by
definition of Mi, c in Mic appears in a Boolean term directly following [z]. So using a similar
proof as in the previous case, p in Mic is restricted to z. Then note that in Lemma 3.4.26,
Mic is provably equivalent to Mi(g ∧ c). So obviously p in Mic is restricted to g as well.
Finally, it is not hard to see that in general if p in ϕ(p) is restricted to both µ and ν, then
it is also restricted to µ ∧ ν. Indeed, ϕ(p) will first be equivalent to ϕ(p ∧ µ) and then to
ϕ((p ∧ µ) ∧ ν), but this is equivalent to ϕ(p ∧ (µ ∧ ν)). Thus p in Mic is restricted to zg.

The case for the zg part is similar.

Lemma 3.4.32. For every partial state description ϕ over ~p with degree l, and for every
finite set of variables ~p′ ⊇ ~p and every natural number l′ ≥ l, ϕ is provably equivalent in
KD4∀5Πzg to a disjunction of state descriptions over ~p′ with degree l′.

Proof. Let ϕ, ~p, l, ~p′, and l′ be arbitrarily given as above. Without loss of generality, we
assume that ~p′ = ~p∪ {p′} since we can repeat the following process many times if necessary.
Now, let ψ be the conjunction of the following ψ1, ψ2, ψ3, ψ4, and ψ5:

• If ϕ has a choice of zg, let ψ1 be this choice. Otherwise let ψ1 be z ∨ zg ∨ zg.

• If ϕ has a propositional truth c ∈ 2~p, let ψ2 be (c ∧ p′) ∨ (c ∧ p′). Otherwise, let ψ2 be∨
2~p
′
.

• If ϕ has a z part, let ψ3 be the z part. Otherwise, let ψ3 be [z]>.

• If ϕ has no zg part, let ψ4 be the disjunctive normal form of
∧
c∈2~p′ (Q0c ∨Q1c ∨ · · · ∨

Ql′−1c ∨Ml′c) with Qic and Ml′c seen as atomic formulas.

Otherwise, say ϕ has a zg part δzg =
∧
c∈2~p Xcc with Xc being either Qi for some

i < l or Ml. If ~p′ is just ~p (that is, p′ ∈ ~p), let ψ4 be δzg. If p′ 6∈ ~p, construct ψ4

by first replacing each Mlc in δzg with
∨l
i=0(Mi(cp

′) ∧Ml−i(cp′)) and each Qjc with∨j
i=0(Qi(cp

′) ∧ Qj−i(cp′)). Then replace each Mic with c now being in 2~p
′

and with
i < l′ by (Qic ∨Qi+1c ∨ · · · ∨Ql′−1c ∨Ml′c). Finally, take its disjunctive normal form
with Qic and Ml′c for all c ∈ 2~p

′
seen as atomic formulas.

• If ϕ has no zg part, let ψ5 be the disjunctive normal form of
∧
c∈2~p′ (Nc ∨ ¬Nc) with

Nc and ¬Nc seen as atomic formulas.

Otherwise, say ϕ has a zg part δzg =
∧
c∈2~p Xcc where Xc is either N or ¬N . If ~p = ~p′

(that is, p′ ∈ ~p), let ψ5 be δzg. If not, let ψ5 be constructed by first replacing each Nc
in δzg by (N(cp′) ∧ N(cp′)) ∨ (N(cp′) ∧ ¬N(cp′)) ∨ (¬N(cp′) ∧ N(cp′)) and replacing
each ¬Nc in δzg by ¬N(cp′) ∧ ¬N(cp′). Then take its disjunctive normal form with
Nc and ¬Nc as atomic formulas.

Now it should not be too hard to see that ψ is provably equivalent to ϕ as each of ψi is
provably equivalent to the respective part of ϕ if it exists, or to > otherwise. In particular, to
see that ψ4 a` δzg and ψ5 a` δzg, use Lemma 3.4.26. Then, let ϕ′ be the result of distributing
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the outermost conjunction over ψ1 through ψ5 over the disjunctions in them. Clearly ϕ′ is
now a disjunction of state descriptions over ~p′ with degree l′, and ϕ′ is provably equivalent
to ϕ.

Lemma 3.4.33. Any formula ϕ ∈ LΠzg with ~p being its set of free variables is provably
equivalent in KD4∀5Πzg to a disjunction of state descriptions over ~p.

Proof. By induction. Since we are only after provable equivalence, we can pretend that our
language has ∨, B̂, and ∃ as primitives. For the base cases, note that:

• every propositional variable p in Prop is a partial state description in {p} with degree
0;

• > is a partial state description in {} with degree 0;

• since z a` (zg ∨ zg), z is equivalent to a disjunction of two partial state descriptions
over {} with degree 0;

• since ` g → z and g a` zg, g is also provably equivalent to a disjunction of partial
state descriptions over {} with degree 0.

Hence we can apply the previous lemma to clear the base cases.
Now suppose ϕ = ϕ1 ∨ ϕ2, and let ~p1 and ~p2 be the set of free variables in ϕ1 and

ϕ2, respectively. Then ~p = ~p1 ∪ ~p2 is the set of free variables of ϕ. By the induction
hypothesis, there is a disjunction ψ1 of state descriptions over ~p1 with some degree l1 provably
equivalent to ϕ1 and a disjunction ψ2 of state descriptions over ~p2 with some degree l2
provably equivalent to ϕ2. Without loss of generality, we can assume that l1 ≥ l2. Now we
first use the previous Lemma 3.4.32 to turn ψ1 and ψ2 into disjunctions of state descriptions
over ~p with degree l1 and obtain α and β. Then α ∨ β is the formula we need in this case.

For the negation case, suppose ϕ = ¬ψ with ~p being the set of free variables in ψ. Then
~p is also the set of free variables in ϕ. Using the induction hypothesis, let α be a disjunction
of state descriptions over ~p with some degree l that is provably equivalent to ψ. Then using
Lemma 3.4.32, let β be a disjunction of state descriptions over ~p with degree l that is provably
equivalent to >. Then let γ be the disjunction of the state descriptions over ~p with degree l
that are in β but not in α. Then γ is a disjunction of state descriptions over ~p with degree
l that is provably equivalent to ϕ.

Now suppose ϕ = B̂ψ with ~p being the set of free variables in ψ and hence also ϕ.
By the induction hypothesis, ψ is provably equivalent to a disjunction of state descriptions∨
i∈I ψi. Then B̂ψ a` B̂

∨
i∈I ψi a`

∨
i∈I B̂ψi. Hence, we only need to show that for each state

description ψi, B̂ψi is equivalent to a partial state description, which can then be turned to
a disjunction of state descriptions. Let ψi = b ∧ c ∧ d so that b ∈ {z, zg, zg}, c ∈ 2~p, and
d is the modal part of ψi. By Lemma 3.4.15, ψi a` (b ∧ c ∧ Bd) since d is fully modalized.
Then it is a standard exercise of modal logic to show that B̂ψi a` B̂(b∧ c)∧Bd, which is then
provably equivalent to B̂(b ∧ c) ∧ d. Now there are three cases:
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• if b = z, then B̂(b ∧ c) is just 〈z̄〉c. But then 〈z̄〉c ∧ d is a partial state description, as
〈z̄〉c is a L[z]Π formula and can be included in the z part.

• if b = zg, then B̂(b ∧ c) a` 〈z〉(g ∧ c). But 〈z〉(g ∧ c) a` M1c, and M1c ∧ d can be
turned into a partial state description, as there is a Qic/Mlc formula in d, and M1c
can be merged in to that formula, resulting in ⊥ or the original d.

• if b = zg, then B̂(b ∧ c) a` 〈z〉(g ∧ c). But 〈z〉(g ∧ c) a` Nc and hence can be merged
into d.

In sum, B̂ψi is provably equivalent to a partial state description missing a choice of a zg part
and a propositional truth part.

For ∃, like B̂, we only need to show that ∃qψi is provably equivalent to a partial state
description over ~p\{q} where ψi is a state description over ~p. The case where q 6∈ ~p is trivial
so we assume here that q ∈ ~p. Let ψi be b∧ c∧ δz∧ δzg∧ δzg, where b ∈ {z, zg, zg}, c ∈ 2~p, δz
is the z part of ψi (a L[z]Π formula), δzg is the zg part, and δzg is the zg part. As noted in
Lemma 3.4.31, δz, δzg, and δzg are restricted by z, zg, and zg respectively. Then by repeated
use of Lemma 3.4.29, we have the following cases:

• If b = z, then ∃qψi a` ∃q(z ∧ c ∧ δz) ∧ ∃qδzg ∧ ∃qδzg.

• If b = zg, then ∃qψi a` ∃qδz ∧ ∃q(zg ∧ c ∧ δzg) ∧ ∃qδzg.

• If b = zg, then ∃qψi a` ∃qδz ∧ ∃qδzg ∧ ∃q(zg ∧ c ∧ δzg).

Hence what remains to be shown is that in each of these three cases, the three conjuncts on
the right-hand side of the a` claim are provably equivalent to a z part, a zg part, and a zg

part, possibly with a corresponding choice of zg and a propositional truth c, respectively.
First consider the two possibilities ∃qδz and ∃q(z ∧ c ∧ δz). We need to show that they

are provably equivalent to some z part. Now ∃qδz is already a L[z]Π formula and thus a z

part, so there is nothing further to show. For ∃q(z∧ c∧ δz), depending on whether q appears
in c positively or negatively, we have two cases (the f below is the result of excluding the
literal of q in c).

• If q appears positively, we have ∃q(z ∧ f ∧ q ∧ δz). This is provably equivalent to
z ∧ f ∧ ∃qδz. The direction from left to right is trivial. For the other direction, if q is
not free in δz, it is also trivial. So assume now that q is free in δz(q). First instantiate
∃qδz(q) with a fresh a and obtain δz(a). Now recall that z a` ∃r(r ∧ B¬r). Since we
already have z, we can now instantiate with a fresh propositional variable b and get
b∧ B¬b. By Lemma 3.4.25, we derive δz(a)↔ δz(a∨ b) (recall that δz(a) is in LBΠzg),
and hence also δz(a∨b). But ` b→ (a∨b), so we also obtain a∨b. Then a∨b witnesses
∃q(q ∧ δz(q)). Summing up the process, we have shown that ` (z∧∃qδz)→ ∃q(q ∧ δz).
Then it is easy to see that ` (z∧ f ∧∃qδz)→ ∃q(z∧ f ∧ q∧ δz) since q does not appear
in z and f .
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• ∃q(z ∧ f ∧ ¬q ∧ δz). This is very similar to the previous case. We only need to
prove the direction from z ∧ f ∧ ∃δz to ∃q(z ∧ f ∧ ¬q ∧ δz) and in fact only that
` (z ∧ ∃qδz) → ∃q(¬q ∧ δz). We can also assume that q is free in δz(q). Instantiating
∃qδz and ∃r(r ∧ B¬r) (equivalent to z) with fresh a and b, we get δz(a) and b ∧ B¬b.
By Lemma 3.4.25, we get δz(a ∧ ¬b). Also, ` b → ¬(a ∧ ¬b). Hence a ∧ ¬b witnesses
∃q(¬q ∧ δz(q)), and we are done in this case.

So, the two formulas involving δz are indeed provably equivalent to formulas that can serve
as the z part of some state description over ~p \ {q}.

For the cases involving δzg and δzg, note that both of them are conjunctions of formulas
that are restricted to one of c ∈ 2~p. Considering this, we can push ∃q further down, with
results in the following cases where again f is the result of restricting c to literals using only
things in ~p \ {q}:

• ∃q(Qi/Ml(fq) ∧Qj/Ml(fq)),

• ∃q(zg ∧ f ∧ ±q ∧Qi/Ml(fq) ∧Qj/Ml(fq)),

• ∃q(±N(fq) ∧ ±N(fq)),

• ∃q(zg ∧ f ∧ ±q ∧ ±N(fq) ∧ ±N(fq)).

They are all addressed in Lemma 3.4.26.

Now Lemma 3.4.22 follows from the previous lemma. Too see this, observe first that
the modal parts of any state description are LBΠzg formulas. Further, when there are no
free variables, the propositional truth part will be > in any state description. So a state
description over {} can be seen as simply a conjunction of one of z, zg, zg, and a LBΠzg

formula. Then for any sentence ϕ in LΠ, since it has no free variables, it is provably
equivalent in KD4∀5Πzg to a disjunction

∨
i∈I(ai ∧ bi) such that for all i ∈ I, ai ∈ {z, zg, zg}

and bi ∈ LBΠzg. But then we only need to extract the ai’s according to what they are.
Formally, letting Iz = {i ∈ I | ai = z}, Izg = {i ∈ I | ai = zg}, and Izg = {i ∈ I | ai = zg},
ϕ a` (z ∧

∨
i∈Iz bi) ∨ (zg ∧

∨
i∈Izg bi) ∨ (zg ∧

∨
i∈Izg bi). This formula is in the required form

in Lemma 3.4.22.

3.4.4 Quotients of complete Boolean algebras

In this subsection we prove Lemma 3.4.23. The main idea is to show that every Boolean
algebra is elementarily equivalent to a κ-field-of-sets for a large enough cardinal κ to be
specified later and then invoke a theorem saying that every κ-field-of-sets can be realized as
a quotient of a complete Boolean algebra for large enough κ. To show that every Boolean
algebra is elementarily equivalent to a κ-field-of-sets, we show that every Tarski invariant,
which fully describes the first-order properties of Boolean algebras, is realized by a κ-field-
of-sets.

First we define κ-regular subalgebras and κ-field-of-sets.
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Definition 3.4.34. A Boolean algebra B is a κ-regular subalgebra of C if B is a subalgebra
of C and for any X ⊆ B with |X| < κ, whenever

∧
C X exists, it is also in B. We write

B 4κ C for B being a κ-regular subalgebra of C.
we say an embedding f : B ↪→ C is κ-regular if for every X ⊆ B such that |X| < κ,

whenever
∧
C f [X] exists,

∧
BX also exists and f(

∧
BX) =

∧
C f [X]. Or equivalently, f is

κ-regular if the image of f is a κ-regular subalgebra of C. We write f : B ↪→κ C when f
is a κ-regular embedding from B to C and write B ↪→κ C when there is such a κ-regular
embedding.

Definition 3.4.35. A Boolean algebra B is a κ-field-of-sets if there is a set D such that
B ↪→κ ℘(D). Here ℘(D) is the powerset algebra of D.

Proposition 3.4.36. For any cardinal κ, the property of being a κ-field-of-sets is closed
taking κ-regular subalgebras and is closed under taking arbitrary direct product.

Proof. First, clearly, if A ↪→κ B and B ↪→κ C, then A ↪→κ C. Hence if A 4κ B and B ↪→κ

℘(D), then A ↪→κ ℘(D). Thus κ-field-of-sets is closed under taking κ-regular subalgebras.
Now consider an indexed set {Bi}i∈I of κ-field-of-sets with fi : Bi ↪→κ ℘(Di) for each

i ∈ I. Then it is not hard to see that Πi∈IBi ↪→κ Πi∈I℘(Di). This is because, letting πi be
the natural projection map from ΠiBi to Bi, for every X ⊆ ΠiBi,

∧
X = 〈

∧
πi[X]〉i∈I , if any

side of this equation exists. In other words, meets can be computed componentwisely. But
Πi∈I℘(Di) is isomorphic to ℘(

⋃
i∈I({i} ×Di)). Hence Πi∈IBi is also a κ-field-of-sets.

Due to the fact that we need to deal with zg-algebras instead of just Boolean algebras,
sometimes we need to make sure that the cokernels of the quotient maps we use have a trivial
meet. We now introduce notations for this and prove two lemmas about it.

Definition 3.4.37. We say a surjective homomorphism f : A� B is meet-trivial if its cok-
ernel f−1(>B) has a trivial meet:

∧
f−1(>B) is ⊥A. We write f : A◦� B when f : A� B

and f is meet-trivial, and we write A◦� B when there is a meet-trivial surjective homomor-
phism from A to B. In the later case, we also say that B is a meet-trivial homomorphic
image of A.

Proposition 3.4.38. For any Boolean algebras A, B, and C, if f : A� B and g : B ◦� C,
then (g ◦ f) : A◦� C.

Proof. Let f : A� B and g : B ◦� C be given. To show that g ◦ f : A◦� C, by definition,
we only need to show that

∧
F = ⊥A where F = (g ◦ f)−1(>C). Suppose not and let a

be a non-trivial lower bound of F in A. Then first we can show that f(a) 6= ⊥B since if
otherwise f(a) = ⊥B, then f(¬a) = >B, meaning that g(f(¬a)) = >C and that ¬a ∈ F ,
which obviously contradicts the assumption that a is below everything, in particular ¬a, in
F and that a 6= ⊥A. Since f is a homomorphism, f(a) is a lower bound of f [F ]. Then
we only need to note that g−1(>C) = f [F ], and hence f(a) is a non-trivial lower bound of
g−1(>C), contradicting g : B ◦� C.
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Proposition 3.4.39. For any κ-field-of-sets B where κ is a regular cardinal, meaning that
the cofinality cf(κ) = κ, there is a κ-field-of-sets C such that C ◦� B.

Proof. Let κ and B be given as above. Then consider the following subset of Bκ = Πi<κB:

C = {f ∈ Bκ | ∃α ∈ κ,∀β ∈ κ, if β ≥ α then f(β) = f(α)}.

The set C collects what we may call the eventually constant elements in Bκ. For every
f ∈ C, let lim f be the limit of f defined in the obvious way. Now we show that C with
operations inherited from Bκ is a κ-regular subalgebra of Bκ.

1. C is closed under negation. This is trivial.

2. C is closed under taking meets of sets of cardinality smaller than κ. Take any {fi}i∈I ⊆
C with |I| < κ. Let αi for each i ∈ I be the smallest ordinal in κ such that for any
β such that κ > β ≥ αi, fi(β) = fi(αi). Then let f =

∧
fi in Bκ. Now because

cf(κ) = κ, α = supi∈I αi < κ. Thus for any β such that κ > β ≥ α and any i ∈ I,
fi(β) = fi(αi) = fi(α). Hence for any κ > β ≥ α,

f(β) =
∧
i∈I

fi(β) =
∧
i∈I

fi(α) = f(α).

Then we know that f ∈ C.

This also shows that for any set {fi}i∈I ⊆ C with |I| < κ, lim
∧
i∈I fi =

∧
i∈I lim fi.

Using Proposition 3.4.36, C is now also a κ-field-of-sets since C 4κ Bκ and B is a κ-
field-of-sets. Now consider the set F = {f ∈ C | lim f = >B}. Observe that F is a filter in
C. Also,

∧
F = ⊥C . To see this, consider the sequence 〈fi〉i∈κ defined by

fi(α) =

{
⊥B α < i

>B α ≥ i.

Each fi is in F , yet the only f ∈ C that is below all the fi’s is the constantly 0B function,
which is ⊥C .

Now note that lim as a function from C to B is a surjective homomorphism and by
definition lim−1(>B) = F . Hence lim : C ◦� B.

Now we start to show that for every non-trivial Boolean algebra A, there is a (2ω0)+-
field-of-sets B which is elementarily equivalent to A. To this end, we first recall the Tarski
invariants.

Definition 3.4.40. For any Boolean algebra B, call an element b ∈ B atomic if b is the
join of the atoms below it, and atomless if there are no atoms below it. If an element is the
join of an atomic element and an atomless element, we call it separable. Denote the set of
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separable element in B by S(B). It is easy to see that S(B) is an ideal, which is generated
by the atomic and atomless elements.

Then for any non-trivial Boolean algebra B, we can define a sequence of Boolean algebras:

B(0) = B,B(i+1) = B(i)/S(B(i)).

With the above sequence, define Inv(B) for every non-trivial Boolean algebra B as follows:

m(B) =

{
k if B(k) is non-trivial and B(k+1) is trivial

∞ if for all k ∈ ω,B(k) is non-trivial.

n0(B) =

{
∞ if m(B) ∈ N and B(m(B)) has infinitely many atoms

l if m(B) ∈ N and B(m(B)) has l ∈ N many atoms.

n(B) =


0 if m(B) 6∈ N
n0(B) if m(B) ∈ N and B(m(B)) is atomic

−n0(B) if m(B) ∈ N and B(m(B)) is not atomic.

Inv(B) = 〈m(B), n(B)〉.

We also define Inv(B) = 〈−1, 0〉 when B is trivial. Finally let Inv be the set of all possible
invariant, i.e., Inv = {Inv(B) | B a Boolean algebra}.

Proposition 3.4.41. For any two Boolean algebras A and B, they are elementarily equiva-
lent if and only if Inv(A) = Inv(B). In fact, for any two Boolean algebras with extra distin-
guished elements, 〈A, a1, a2, · · · an〉, 〈B, b1, b2, · · · bn〉, they are elementarily equivalent in the
first-order language of Boolean algebras extended with n constants to be interpreted by the
corresponding distinguished elements if and only if for each f ∈ 2n, Inv(A|f [~a]) = Inv(B|f [~b]).

Here for any f ∈ 2n, f [~a] is defined as the element
∧
i∈f−1(1) ai ∧

∧
i∈f−1(0) ¬ai and f [~b] is

defined similarly.

Proof. See Chap.5.5 of [31].

Hence our goal now is to construct a (2ω0)+-field-of-sets B for each invariant c ∈ Inv such
that Inv(B) = c. To start, we need at least an atomic and an atomless κ-field-of-sets. An
atomic κ-field of sets can be easily found, such as the Boolean algebra of two elements. Now
we construct an atomless κ-field-of-sets.

Proposition 3.4.42. For each regular infinite cardinal κ, there exists an atomless κ-field-
of-sets L.

Proof. We construct a κ-field-of-sets in the powerset algebra of {0, 1}κ. For any f, g ∈ {0, 1}κ
and i ∈ κ, write f =i g when f(j) = g(j) for all j < i. Also let [f ]i be the equivalence class
that f is in under =i, i.e. {g ∈ {0, 1}κ | g =i f}.

Then it is not hard to see that the set of all subsets of {0, 1}κ that are closed under =i

for some i ∈ κ forms an atomless κ-field-of-sets under the inherited complementation and
intersection.
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• Both empty set and {0, 1}κ are closed under =1.

• Clearly if X is closed under =i, then {0, 1}κ \X is also closed under =i.

• For any family of κ0 < κ many sets {Xi}i∈κ0 such that each Xi is closed under =λi

where λi ∈ κ, consider their intersection. Let µ = supi∈κ0
λi. By the regularity of κ,

µ ∈ κ, and obviously each Xi is also closed under =µ since =α refines =β if α ≥ β.
Then the intersection

⋂
{Xi | i ∈ κ0} is also closed under =µ.

• For any non empty X ⊆ {0, 1}κ that is closed under =λ, pick f ∈ X and then we
can easily split [f ]λ ⊆ X into two non-empty parts: {g ∈ [f ]λ | g(λ + 1) = 0} and
{g ∈ [f ]λ | g(λ+ 1) = 1}. Both parts are non-empty subsets of X and are closed under
=λ+1. So X is not an atom in the Boolean algebra we construct.

Now fix κ as an infinite regular cardinal, 2 a two-element Boolean algebra, and L the
atomless κ-field-of-sets constructed above. The next step is to show that for every κ-field-
of-sets B, there is a U(B) which is also a κ-field-of-sets, and moreover U(B)/S(U(B)) ∼= B.
Since we are constructing a κ-field-of-sets that has B as a homomorphic image with some
requirement on the kernel of the homomorphism, the construction here is very similar to the
one we did in Proposition 3.4.39.

For a κ-field-of-sets B, we construct U(B) as follows. First, since B is a κ-field-of-sets,
without loss of generality, we can assume that B 4κ ℘(ρ) with ρ a large enough cardinal.
Then we have e : B ↪→κ (2×L)ρ where e is such that for all b ∈ B and λ < ρ, e(b)(λ) = >2×L
if and only if λ ∈ b, and otherwise e(b)(λ) = ⊥2×L. In other words, e(b) is the characteristic
function of b using {⊥2×L,>2×L} instead of {0, 1} as the codomain. By Proposition 3.4.36,
(2 × L)ρ is a κ-field-of-sets. Now, as in the proof of Proposition 3.4.39, we can now define
the set of eventually constant functions C = {f ∈ ((2 × L)ρ)κ | ∃α < κ∀β < κ, β > α ⇒
f(β) = f(α)}. Then we know that C 4κ ((2 × L)ρ)κ and hence is a κ-field-of-sets, and in
addition lim : C ◦� (2× L)ρ. However, since we need a κ-field-of-sets with B, not (2× L)ρ,
as its homomorphic image, we need to take a κ-regular subalgebra of C. Indeed, we only
need to take U(B) = lim−1(e[B]). Essentially, U(B) is the pullback of e and lim. This is
illustrated by the following commutative diagram:

B (2× L)ρ

U(B) C.

e

id

lim

Lemma 3.4.43. For any κ-field-of-sets B, U(B) as defined above is also a κ-field-of-sets,
and U(B)/S(U(B)) ∼= B.

Proof. To show that U(B) is a κ-field-of-sets, it is enough to show that U(B) 4κ ((2×L)ρ)κ.
That is, we only need to show that for all X ⊆ U(B) such that |X| < κ,

∧
((2×L)ρ)κ X is also in

U(B) (it always exists as ((2×L)ρ)κ is a κ-field-of-sets). To show that
∧

((2×L)ρ)κ X ∈ U(B),
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we only need to show that lim
∧

((2×L)ρ)κ X ∈ e[B]. Since κ is regular, lim
∧

((2×L)ρ)κ X =∧
(2×L)ρ lim[X]. Since X ⊆ U(B), lim[X] ⊆ e[B]. Since |X| < κ, |lim[X]| < κ. Then indeed∧
(2×L)ρ lim[X] ∈ e[B] since e is a κ-regular embedding, and hence e[B] 4κ (2× L)ρ.

To show that U(B)/S(U(B)) ∼= B, it is enough to show that lim−1(⊥(2×L)ρ), the kernel
of lim, is precisely S(U(B)), the set of separable elements in U(B). To this end, note first
that in both (2× L)ρ and ((2× L)ρ)κ, the join of atoms exists and can be easily described.
Let a be the constantly 〈>2,⊥L〉 function in (2 × L)ρ and fa be the constantly a function
in ((2 × L)ρ)κ. Then clearly a is the join of atoms in (2 × L)ρ, and fa is the join of atoms
in ((2×L)ρ)κ. Similarly, let l be the constantly 〈⊥2,>L〉 function in (2×L)ρ and fl be the
constantly l function in ((2×L)ρ)κ. Then l is the join of atomless elements in (2×L)ρ, and
fl is the join of atomless elements in ((2× L)ρ)κ.

Now, to show that S(U(B)) ⊆ lim−1(⊥(2×L)ρ), it is enough to show that every atomic
and every atomless elements in U(B) are in lim−1(⊥(2×L)ρ) since the S(U(B)) is the ideal
generated by those elements and a kernel is always an ideal. Let f be an atomic element in
U(B). First, we claim that f ≤ fa. Suppose not. Then there would be i < κ, j < ρ such that
f(i)(j) ∧ >L is non-trivial. Let g be the function in ((2 × L)ρ)κ such that g(i′)(j′) = ⊥2×L
unless i′ = i and j′ = j, in which case g(i′)(j′) = f(i)(j)∧>L. Then g ≤ f , lim g = ⊥(2×L)ρ ,
and hence g ∈ U(B). But obviously g is atomless in U(B) since we can simply keep decreasing
g(i)(j) using the fact that L is atomless, and the resulting function’s limit is still ⊥(2×L)ρ ,
meaning that the function itself is still in U(B). This contradicts that f is atomic. So f ≤ fa,
and hence lim f ≤ a. But recall that f is from U(B) and hence lim f ∈ e[B], which means
that for each i < ρ, (lim f)(i) ∈ {>2×L,⊥2×L}. Now for each i < ρ, a(i) < >2×L. Obviously
then, the only element in e[B] that is below a is ⊥(2×L)ρ , and hence lim f = ⊥(2×L)ρ . So we
are done showing that every atomic element in U(B) is in the kernel of lim. To show that
every atomless element in U(B) is in the kernel of lim the strategy is exactly the same. If
f ∈ U(B) is atomless, then we can show similarly that f ≤ fl. Then lim f , being both below
l and also inside e[B], must be ⊥(2×L)ρ . So this f is also in the kernel of lim.

To show that lim−1(⊥(2×L)ρ) ⊆ S(U(B)), pick an arbitrary f ∈ U(B) such that lim f =
⊥(2×L)ρ . Then f ∧ fa is also in U(B) as lim(f ∧ fa) must also be ⊥(2×L)ρ . For similar
reasons, f ∧ fl ∈ U(B) too. Now clearly f ∧ fa is atomic in U(B) since it is the join of
{gi,j | (f ∧ fa)(i)(j) = 〈>2,⊥L〉} where gi,j is the function that always returns ⊥2×L expect
that gi,j(i)(j) = 〈>2,⊥L〉. Each gi,j is obviously in U(B) and is atomic. Hence f ∧ fa is a
join of atoms in U(B) and hence atomic. Similarly f ∧ fl is atomless in U(B) as it is the
join of the elements of the form hi,j below it where hi,j always returns ⊥2×L except that
hi,j(i)(j) = 〈⊥2,>L〉. Each hi,j is in U(B) and is atomless. Hence f ∧ fl is atomless. But
then, f is separable by definition since f = (f ∧ fa) ∨ (f ∧ fl).

Now we can sum the above up and obtain the following proposition.

Proposition 3.4.44. For every Boolean algebra A, there is a (2ω0)+-field-of-sets B which
is elementarily equivalent to A.
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Proof. Let κ be (2ω0)+. It is a successor cardinal, so it is regular. By Proposition 3.4.41, it is
enough to show that for every c ∈ Inv, there is a (2ω0)+-field-of-sets B such that Inv(B) = c.
Now Inv can be partitioned into three parts: {〈−1, 0〉}, {〈m,n〉 | m ∈ N, n ∈ Z∞}, and
{〈∞, 0〉}. For 〈−1, 0〉, we use ℘(∅). For the second part, we use a simple induction on the
first coordinate.

1. For non-zero n ∈ N, Inv(℘(n)) = 〈0, n〉, and Inv(℘(N)) = 〈0,∞〉. For 〈0, 0〉, use the
L from Proposition 3.4.42, which is an atomless κ-field-of sets. For invariants 〈0,−n〉
(n > 0) and 〈0,−∞〉, use ℘(n)× L and ℘(N)× L, respectively.

2. Suppose for any n ∈ Z∞, there is a κ-field-of-sets Bn such that Inv(Bn) = 〈m,n〉. Then
for 〈m+ 1, n〉 for any n ∈ Z∞, use U(Bn), since by Lemma 3.4.43, U(Bn) is a κ-field-
of-sets, U(Bn)/S(U(Bn)) ∼= Bn, and thus Inv(U(Bn)) = Inv(Bn) + 〈1, 0〉 = 〈m+ 1, n〉.

For the invariant 〈∞, 0〉, take the product B = Πi∈NU
i(2) = 2 × U(2) × U(U(2)) ×

U(U(U(2))) · · · . That B is a κ-field-of-sets follows from Proposition 3.4.36. Also, since
B/S(B) = Πi∈NU

i(2)/S(U i(2)) = 1 × Πi∈N,i>0U
i−1(2), B/S(B) is isomorphic to B. (1 is

the trivial algebra, and it appears here as the result of 2/S(2).) This means that for any
n ∈ N, B(n) is isomorphic to B, which means that Inv(B) = 〈∞, 0〉.

The only missing link now is the following proposition, shown in [153].

Proposition 3.4.45 (Vermeer 1996). Every (2ω0)+-field-of-sets is a quotient of a complete
Boolean algebra.

With this, we can prove the following lemma, which leads to a proof of Lemma 3.4.23
that also takes care of the requirements for the distinguished elements z and g.

Lemma 3.4.46. For every Boolean algebra A there is a non-trivial complete Boolean algebra
C with a filter H ⊆ C such that

∧
H = ⊥, and that A is elementarily equivalent to C/H.

Proof. If A is trivial, let D be the two-element Boolean algebra and H the improper filter
in D. Now pick an arbitrary non-trivial Boolean algebra A. By Proposition 3.4.44, there is
a (2ω0)+-field-of-sets B that is elementarily equivalent to A. Then we only need to find a
complete Boolean algebra C such that C ◦� B.

Notice that (2ω0)+ is a successor cardinal, so it is regular. Then, by Proposition 3.4.39,
there is a (2ω0)+-field-of-sets B′ such that B′ ◦� B. By Proposition 3.4.45, then, there is a
complete Boolean algebra C such that C � B′. But then, by Proposition 3.4.38, C ◦� B.
Since A is non-trivial, B and hence C must also be non-trivial.

for Lemma 3.4.23. Pick an arbitrary zg-algebra 〈A, z, g〉. We decompose A as A|z ×A|zg ×
A|zg since g ≤ z. Since we are only after elementary equivalence, by Proposition 3.4.41, it
is enough to find 〈A′, z′, g′〉 such that Inv(A′|z′) = Inv(A|z), Inv(A′|z′g′) = Inv(A|zg), and
Inv(A′|z′g′) = Inv(A|zg), and that 〈A′, z′, g′〉 is the natural quotient of a complete proper
filter algebra.
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By the definition of zg-algebra, A|zg is atomic and A|zg is atomless. Let A′2 and A′3 be
the MacNeille completion of A|zg and A|zg, respectively. Note that MacNeille completion
does not change the number of atoms. Thus Inv(A′2) = Inv(A|zg), and Inv(A′3) = Inv(A|zg).

To figure out A′|z, we invoke Lemma 3.4.46. By that lemma, there is a non-trivial
complete Boolean algebra C with a filter H, such that C/H is elementarily equivalent to
A|z, and that

∧
H = ⊥C . Let A′1 = C/H.

Now let 〈A′, z′, g′〉 = 〈A′1×A′2×A′3, 〈⊥,>,>〉, 〈⊥,⊥,>〉〉. Then by construction, 〈A′, z′, g′〉
is also a zg-algebra and is elementarily equivalent to 〈A, z, g〉.

Then let B = 〈B,F 〉 where B = C × A′2 × A′3 and F = H × {>} × {>}. For this B, we
need to establish two points.

• First, B is a complete proper filter algebra. To see this, note first that C×A′2×A′3 is a
complete Boolean algebra as each of the three components are. Then note that F is a
proper filter. It is obviously a filter. It is proper because if not, A′1, A′2, and A′3 are all
trivial, and hence A′ and A are trivial since A′ and A are elementarily equivalent. But
A is a zg-algebra and zg-algebras are non-trivial. Note though that any two of A′1, A

′
2,

and A′3 can be trivial together.

• Also, the natural quotient of B, B/F , is precisely 〈A′, z′, g′〉. That A′ = B/F is a simple
Boolean algebra exercise. The next thing to note is that zB =

∧
F = 〈⊥,>,>〉 ∈ B

since
∧
H = ⊥C . Hence πF (zB) = 〈⊥,>,>〉 ∈ A′, which is precisely z′. Also, the join

of atoms below zB in B is precisely 〈⊥,>,⊥〉 as A′2 by construction is atomic and A′3
is atomless.

The extra constraints in Lemma 3.4.23 are also satisfied. B|zB ∼= C is always non-trivial
by construction. B|zBgB ∼= A′2 is trivial if and only if A|zg is trivial since the construction
method is MacNeille completion. By the same reason, B|zBgB ∼= A′3 is trivial if and only if
A|zg is trivial.

3.5 Stronger logics and decidability

In the previous section, our only goal was the completeness theorems Theorem 3.4.1 and
Theorem 3.4.24. However, the method we used to show them in fact supports a full analysis
of the expressivity of LΠ on complete proper filter algebras and the normal Π-extension
of KD4∀5Π, similar to the one in [40]. In light of the space such a general analysis would
take, in this section we focus only on several natural concrete cases in which we only add one
formula, or equivalently finitely many formulas, to KD4∀5Π. Since KD4∀5Πzg is a definitional
extension of KD4∀5Π, in this section we move between KD4∀5Π and KD4∀5Πzg freely in
stating the results, noting that to obtain the results in LΠ, one only needs to replace z and
g by their definitions in the axioms z and g in Definition 3.4.13.

Before we start, let us introduce a bit of notation. For any X ⊆ LΠzg, let CPFA(Γ) be
the class of complete proper filter algebras validating every formula in Γ. As usual we write
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CPFA(ϕ) for CPFA({ϕ}) and write CPFA for CPFA(∅), the class of all complete proper filter
algebras. Then for any class K of complete proper filter algebras, we write Log(K) for the
set of formulas in LΠzg that are valid in all complete proper filter algebras in K. Finally,
as usual, for any ϕ ∈ LΠzg, we write KD4∀5Πzgϕ for the smallest normal Π-logic extending
KD4∀5Πzg with ϕ. Then, we first define the following semantics-preserving mapping between
complete proper filter algebras.

Definition 3.5.1. For any complete proper filter algebras B and B′ and any function f from
B to B′, we say f is a complete homomorphism if

• f is a complete Boolean homomorphism: f(¬a) = ¬f(a) and f(
∧
X) =

∧
f [X];

• for any a ∈ B, a ∈ FB iff f(a) ∈ FB′ .

Proposition 3.5.2. If f : B → B′ is a complete homomorphism, then for any valuation θ

on B and ϕ ∈ LΠzg, f(θ̃(ϕ)) = f̃ ◦ θ(ϕ).

Proof. If ϕ ∈ LΠ, a simple induction suffices. For ϕ ∈ LΠzg, note that we have the
definitional axioms z and g that are sound.

Now we prove the following general completeness theorem.

Theorem 3.5.3. For any ϕ ∈ LΠzg, KD4∀5Πzgϕ = Log(CPFA(ϕ)).

Proof. That KD4∀5Πzgϕ ⊆ Log(CPFA(ϕ)) is trivial by soundness. Now pick an arbitrary ψ ∈
Log(CPFA(ϕ)). Without loss of generality we assume that both ϕ and ψ are sentences. Since
we will only be dealing with sentences whose semantic values do not depend on particular
valuations, we use the notation B(χ) for the semantic value of any sentence χ in B. By
necessitation and modus ponens in KD4∀5Πzg, it is enough to show that ` (ϕ ∧ Bϕ) → ψ.
By the completeness theorem, then, it is enough to show that for every B ∈ CPFA, B �
(ϕ ∧ Bϕ)→ ψ.

Pick an arbitrary complete proper filter algebra B. If B(ϕ) 6∈ FB, then we are done
since B(Bϕ) and hence B(ϕ ∧ Bϕ) in this case is ⊥. So now we focus on the case where
B(ϕ) ∈ FB and let v = B(ϕ). Consider B′ defined by restricting B to v: B′ = 〈B|v, {a ∧ v |
a ∈ FB}〉. It is not hard to see that h : B → B′ defined by h(a) = a ∧ v is a complete
homomorphism. By Proposition 3.5.2, we see that (1) B′(ϕ) = h(B(ϕ)) = v = >B′ and also
that (2) B′(ψ) = h(B(ψ)). From (1), it follows that B′ � ϕ. By assumption, B′ � ψ. Hence,
by (2), h(B(ψ)) = B(ψ) ∧ v = v and thus B(ψ) ≥ v. This means that B(ψ) ≥ B(ϕ ∧ Bϕ)
and that B � (ϕ ∧Bϕ)→ ψ.

While of course there is a limit to the expressivity of LΠzg, many natural classes of
complete proper filter algebras corresponds to the validity of sentences in LΠzg. We give
some examples below.
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Corollary 3.5.4. • CPFA(z) is the class of complete proper filter algebras with trivial
filters. Hence its logic is KD4∀5Πzgz. In LΠ, the logic is KD4∀5Π∀p(Bp→ p).

• CPFA(Bz) is the class of complete proper filter algebras with principal filters. Hence its
logic is KD4∀5ΠzgBz. In LΠ, the logic is KD4∀5ΠImmod.

• The class of complete proper filter algebras with ultrafilters is defined by ∀p(Bp∨ B¬p).
Hence its logic in LΠ is KD4∀5Π∀p(Bp ∨ B¬p).

Now we consider an undefinable property: atomicity. To see that it is not definable by
the validity of any formula in LΠzg, we first establish a general proposition.

Proposition 3.5.5. For any complete proper filter algebras B and B′, if zB and zB′ are
non-trivial and B/FB and B′/FB′ are elementarily equivalent, then Log(B) = Log(B′).

Proof. Let B and B′ with the suppositions above be given. Observe first that when passing
from B to B/FB, the Boolean structure of B below zB and the Boolean structure of B/FB
below zB/FB are the same. In fact, if B is a complete Boolean algebra, F a filter in B, and
z the meet of F , then B/F is isomorphic to (B|z/F |z)×B|z where F |z = {a ∧ ¬z | a ∈ F}.
Thus, the zg in B is trivial iff the zg in B/FB is trivial, and the same goes for zg and for
B′. Since B/FB and B′/FB′ are elementarily equivalent, zg (resp. zg) in B is non-trivial iff
zg (resp. zg) in B′ is non-trivial. Since we also assumed that the z in both B and B′ are
non-trivial, in sum, the triviality of z, zg, and zg in B and B′ are the same, respectively.

Now, recall that by Lemma 3.4.22, for any sentence ϕ ∈ LΠzg, we can assume that
ϕ = (z∧ ϕz)∨ (zg∧ ϕzg)∨ (zg∧ ϕzg) where ϕz, ϕzg, and ϕzg are all in LBΠzg. This means,
given Lemma 3.4.12 and that the natural quotients of B and B′ are elementarily equivalent,
B � χ iff B′ � χ for all χ ∈ {ϕz, ϕzg, ϕzg}. By the simple reasoning we have used in the
beginning of the proof of Theorem 3.4.24, B � ϕ iff B′ � ϕ. To show the same for formulas
with free variables, take the universal closure of them.

Proposition 3.5.6. There are no Γ ⊆ LΠzg such that CPFA(Γ) is precisely the class of
atomic complete proper filter algebras.

Proof. Let B0 = 〈℘(N), F0〉 where F0 is a non-principal ultrafilter of ℘(N). Then let B1 =
〈L, F1〉 where L is a complete atomless Boolean algebra and F1 is an ultrafilter in L. Note
that for both i ∈ {0, 1}, zBi is ⊥ and the natural quotient Bi/Fi is isomorphic to 〈2,⊥,⊥〉
where 2 is a two-element Boolean algebra. By Proposition 3.5.5, for any ϕ ∈ LΠzg, B0 � ϕ
if and only if B1 � ϕ. But B0 is atomic yet B1 is not.

However, the undefinability of atomicity in complete proper filter algebras does not pre-
clude axiomatization. An obvious validity on atomic complete proper filter algebras is z→ g

since z must be below the join of atoms below z. It turns out that we can just append this
to KD4∀5Πzgϕ to obtain the logic of the atomic algebras in CPFA(ϕ). To show this, first
note that we can strengthen Lemma 3.4.46 so that the non-trivial complete Boolean algebra
C is also atomic. This can be done simply by using the canonical extension Cδ, the powerset



CHAPTER 3. LOGICS OF BELIEF AND PROPOSITIONAL QUANTIFIERS 90

algebra of the set of ultrafilters of C, rather than C as the final result of that lemma, since by
Sikorski’s extension lemma and C being complete, Cδ � C (for a proof, see [73], Theorem
5, Chapter 13). We can then chain the surjective morphisms and see that Cδ ◦� B where
B is elementarily equivalent to an arbitrarily given Boolean algebra. But then, the Lemma
3.4.23 is also strengthened so that besides all other requirements, zB can be atomic. In sum,
the completeness theorem is now strengthened into the following: if ϕ ∈ LΠzg is valid on all
complete proper filter algebras B such that zB is atomic, then ϕ is already in KD4∀5Πzg. To
formulate results below, let us use CPFAzat(Γ) to denote the class of complete proper filter
algebras such that z is atomic and every formula in Γ is validated and use CPFAat(Γ) for the
class of complete proper filter algebras that are atomic and validates everything in Γ.

Theorem 3.5.7. For every formula ϕ ∈ LΠzg, KD4∀5Πzgϕ = Log(CPFAzat(ϕ)). For
CPFAat, we have that KD4∀5Πzg((z→ g) ∧ ϕ) = Log(CPFAat(ϕ)).

Proof. To show that KD4∀5Πzgϕ = Log(CPFAzat(ϕ)), using Theorem 3.5.3, we only need
to show that Log(CPFAzat(ϕ)) ⊆ Log(CPFA(ϕ)). This clearly follows from the fact that for
every B ∈ CPFA there is a B′ ∈ CPFAzat such that Log(B) = Log(B′). If B is such that zB
is trivial, then B itself is in CPFAzat and we are done. If zB is not trivial, then apply the
strengthened Lemma 3.4.23 to B/FB and obtain B′. By the strengthening, B′ ∈ CPFAzat.
Moreover, Lemma 3.4.23 states that the zg (resp. zg) in B′ is non-trivial iff the zg (resp.
zg) in B/FB is non-trivial. This means that Proposition 3.5.5 can be applied to B and B′,
and from it we have that Log(B) = Log(B′).

To show that KD4∀5Πzg((z → g) ∧ ϕ) = Log(CPFAat(ϕ)), note that CPFAzat(z → g) =
CPFAat and thus CPFAat(ϕ) = CPFAzat((z→ g)∧ϕ), since for any B ∈ CPFA, zBgB is already
atomic, so if zB → gB is >, zB is atomic in B.

While z → g is simple in LΠzg, its translation back to LΠ with z and g replaced by
their axiomatic definitions is rather long (recall Definition 3.4.6 and Definition 3.4.13). Note
that in complete simple S5 algebras, atomicity can defined easily with the following sentence
(with � replaced by B):

At : ∃p(p ∧ ∀q(q → B(p→ q))).

Moreover, this formula has a natural interpretation: there is a world proposition, a proposi-
tion that is true and entails all true propositions. We now show that At can replace z → g

in axiomatization since they are logically equivalent, though with B interpreted as belief, At
falls short to say exactly that there is a world proposition.

Proposition 3.5.8. In KD4∀5Πzg, At↔ (z→ g) is derivable.

Proof. We mimic Fitch-style natural deduction below and do the left-to-right direction first.

1. Suppose At = ∃p(p ∧ ∀q(q → B(p→ q))) and z.

2. By the definitional axiom z, we have ∀p(Bp→ p).
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3. Setting up an existential elimination, consider the following derivation:

a) Suppose p ∧ ∀q(q → B(p→ q)). Then we have p and ∀q(q → B(p→ q)). We also
have z ∧ p now.

b) Using the dual of ∀p(Bp→ p), we have B̂(z ∧ p) = 〈z〉p.
c) Introduce the variable q and consider the following derivation:

i. We have the tautology q ∨ ¬q.
ii. Suppose q, then instantiating ∀q(q → B(p → q)) by q itself, we have q →

B(p→ q) and hence B(p→ q). By monotonicity for B, we have [z](p→ q).

iii. Suppose ¬q, then instantiating ∀q(q → B(p→ q)) by ¬q, we have ¬q → B(p→
¬q) and hence B(p→ ¬q). By monotonicity for B, we have [z](p→ ¬q).

iv. Thus, by disjunction elimination, we have [z](p→ q) ∨ [z](p→ ¬q).
By universalization, we have ∀q([z](p→ q) ∨ [z](p→ ¬q)).

d) Thus we have p ∧ 〈z〉p ∧ ∀q([z](p→ q) ∨ [z](p→ ¬q)) = p ∧ at(p)

Thus, we have ∃p(p ∧ at(p)). Together with z and using the definitional axiom g, we
have g.

Now for the right-to-left direction, we need to show that At follows from both g and ¬z. We
show that At follows from g first.

1. Suppose g. Then we have ∀p(Bp → p) ∧ ∃p(p ∧ at(p)) by axiom g. So we also have
∀p(Bp→ p) and ∃p(p ∧ at(p)). By axiom z, we also have z.

2. Setting up an existential elimination, consider the following derivation:

a) Suppose (p ∧ at(p)) = (p ∧ 〈z〉p ∧ ∀q([z](p→ q) ∨ [z](p→ ¬q))).
b) Now we have p, 〈z〉p, and ∀q([z](p→ q) ∨ [z](p→ ¬q)).
c) Introduce the variable q and consider the following derivation:

i. Suppose q. Then we have z ∧ p ∧ q. Using the dual form of ∀p(Bp → p), we
have B̂(z∧ p∧ q) = 〈z〉(p∧ q). By the normality of B, we have ¬[z](p→ ¬q).

ii. Instantiating ∀q([z](p→ q)∨ [z](p→ ¬q))) by q, we have [z](p→ q)∨ [z](p→
¬q)). By disjunctive syllogism, we have [z](p → q) = B(z → (p → q)). By
the normality of B, we have B((z ∧ p)→ q).

By universalization, we have ∀q(q → B((z ∧ p)→ q)).

d) Since we had z and p, we have (z ∧ p). By existential introduction with (z ∧ p)
being a witness, we have ∃p(p ∧ ∀q(q → B(p→ q)).

With existential elimination, we have ∃p(p ∧ ∀q(q → B(p→ q)), which is At.

Then we show that At follows from ¬z.
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1. Suppose ¬z. By axiom z, we have ¬∀p(Bp→ p) and hence ∃p(p ∧ B¬p).

2. Setting up an existential elimination, consider the following derivation:

a) Suppose p ∧ B¬p. Then we have p and B¬p.
b) Introduce the variable q and consider the following derivation:

i. Suppose q.

ii. Now note that we had B¬p. By the normativity of B, we have B(p→ q).

iii. So we have q → B(p→ q).

Universalizing over q, we have ∀q(q → B(p→ q)).

c) Putting p and ∀q(q → B(p → q)) together, we have p ∧ ∀q(q → B(p → q)). So
with p being a witness, we have ∃p(p ∧ ∀q(q → B(p→ q))).

By existential elimination, we derive ∃p(p ∧ ∀q(q → B(p→ q))), which is At.

In light of the above derivation, it is also true that for any ϕ ∈ LΠzg, KD4∀5Πzg(At∧ϕ) =
Log(CPFAat(ϕ)), and for any ϕ ∈ LΠ, KD4∀5Π(At ∧ ϕ) = Log(CPFAat(ϕ)). We collect some
special cases in the following corollary:

Corollary 3.5.9. • The logic of the class of atomic complete proper filter algebras with
trivial filters in language LΠ is KD4∀5ΠAt∀p(Bp→ p).

• The logic of the class of atomic complete proper filter algebras with principal filters in
language LΠ is KD4∀5ΠAtImmod.

• The logic of the class of atomic complete proper filter algebras with ultrafilters in lan-
guage LΠ is KD4∀5ΠAt∀p(Bp ∨ B¬p).

Before we move on to decidability, note that since KD4∀5Π is sound on the class of all
complete KD45 algebras, the above general completeness theorems, when phrased in LΠ
(since we did not define the semantics of z and g on those algebras), hold for complete KD45
algebras too.

For decidability, the situation is simple: all the logics mentioned above are decidable.
To see this, we first state a general theorem linking the decidability of logics in the form of
Log(K) to the decidability of the first-order theories of some classes of zg-algebras coming
from K.

Theorem 3.5.10. For any K ⊆ CPFA, Let QK0 = {B/FB | B ∈ K and zB = ⊥} and
QK1 = {B/FB | B ∈ K and zB 6= ⊥}. Then, if QK0 and QK1 have a decidable first-order
theory in FOLzg, then Log(K) is decidable.
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Proof. For any ϕ ∈ LΠzg, to decide whether ϕ ∈ Log(K), we can first take its universal
closure and then turn it into a sentence of the form

(z ∧ α) ∨ (zg ∧ β) ∨ (zg ∧ γ)

with α, β, γ ∈ LBΠzg. Obviously this process is decidable. Then, following similar reasoning
done in the proof of Theorem 3.4.24, ϕ ∈ Log(K) if and only if for all B ∈ K, the following
hold.

• Either zBgB = ⊥ or B/FB � T (β).

• Either zBgB = ⊥ or B/FB � T (γ).

• Either zB = ⊥ or B/FB � T (α).

It is not hard to see that zBgB = ⊥ if and only if B/FB � ((z∧g) = ⊥), and similarly zBgB = ⊥
if and only if B/FB � ((z ∧ ¬g) = ⊥). This is because zB =

∧
FB, so all distinctions below

zB are preserved under quotienting through FB. However, there is no analog for zB. It may
well be that B/FB � ¬z = ⊥ while zB > ⊥. This happens whenever FB is principal, and this
is why we need to take care of two classes of natural quotients. Using the observations we
collected, now ϕ ∈ Log(K) if and only if the following hold.

• For all B ∈ K such that zB = ⊥, B/FB � ((zg = ⊥) ∨ T (β)) ∧ ((zg = ⊥) ∨ T (γ)).

• For all B ∈ K such that zB 6= ⊥, B/FB � T (α)∧((zg = ⊥)∨T (β))∧((zg = ⊥)∨T (γ)).

Thus we are now deciding if two formulas, obtained effectively from ϕ, are in the first-order
theories of QK0 and QK1 respectively. By assumption the two theories are decidable. Hence
whether ϕ ∈ Log(K) is decidable.

Theorem 3.5.11. The following logics are decidable:

• KD4∀5Π,

• KD4∀5Π∀p(Bp→ p),

• KD4∀5ΠB∀p(Bp→ p),

• KD4∀5Π∀p(Bp ∨ B¬p),

• KD4∀5ΠAt,

• KD4∀5ΠAt∀p(Bp→ p),

• KD4∀5ΠAtB∀p(Bp→ p),

• KD4∀5ΠAt∀p(Bp ∨ B¬p).

Proof. As is argued above, each of them comes from a well-behaved class of complete proper
filter algebras. Take KD4∀5Π for example. It is the logic of CPFA. Using the notation above
in Theorem 3.5.10, we only need to argue that QCPFA0 and QCPFA1 have decidable theories
in FOLzg.
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• QCPFA0 is just the class of complete zg-algebras with z being the top element. This
is because that if B = 〈B,F 〉 is such that zB = ⊥, then zB = >, and hence F is the
trivial filter. Thus B/F = 〈B,>, g〉 where g is the join of atoms. It is well known that
the first-order theory of non-trivial complete Boolean algebras is decidable. To decide
whether ϕ ∈ FOLzg is valid in QCPFA0, we only need to test whether the formula
(x = > ∧ at(y)) → ϕ[x/z, y/g] in FOL is valid in all non-trivial complete Boolean
algebras, where x and y are two fresh variables and at(y) states that y is the join of
all atoms (which is expressible in FOL).

• By Lemma 3.4.23, we see that the theory of QCPFA1 is precisely the theory of all zg-
algebras: FOLzg. This theory is decidable since the theory of all non-trivial Boolean
algebras is well known to be decidable, and to test whether ϕ ∈ FOLzg is in FOLzg, we
only need to test whether the formula at(x, y)→ ϕ[x/z, y/g] is valid in all non-trivial
Boolean algebras, where x and y are fresh variables and at(x, y) states that y is the
join of the atoms below x.

The argument above clearly generalizes to all other cases, noting also that the first-order
theory of atomic Boolean algebras, the first-order theory of complete and atomic Boolean
algebras, and the first-order theory of two-element Boolean algebras are all decidable. We
briefly sketch the FOLzg theories we need for the other logics.

• KD4∀5Π∀p(Bp→ p) is the logic of complete proper filter algebras with the trivial filter.
Calling this class K, the theory of QK0 is the theory of complete zg-algebras with z
being >, and the theory of QK1 is the inconsistent theory since QK1 is empty.

• KD4∀5ΠB∀p(Bp → p) is the logic of complete proper filter algebras with a principal
filter. Calling this class K, the theory of QK0 is the theory of complete zg-algebras
with z being >, and the theory of QK1 is also the theory of complete zg-algebras with
z being >.

• KD4∀5ΠB∀p(Bp∨B¬p) is the logic of complete proper filter algebras with an ultrafilter.
Calling this class K, the theory of QK0 is the theory of two-element zg-algebras with z
being >, and the theory of QK1 is the theory of two-element zg-algebras.

• For KD4∀5ΠAt, the relevant FOLzg-theories are the theory of atomic and complete
zg-algebras with z being > and the theory of zg-algebras with g being equal to z.

• For KD4∀5ΠAt∀p(Bp → p), the relevant FOLzg-theories are the theory of atomic and
complete zg-algebras and the inconsistent theory.

• For KD4∀5ΠAtB∀p(Bp → p), the relevant FOLzg-theory is the theory of atomic and
complete zg-algebras with z being >.

• For KD4∀5ΠAt∀p(Bp∨B¬p), the relevant FOLzg-theories are the theory of two-element
zg-algebras with z being > and the theory of two-element zg-algebras.
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3.6 Conclusion

In the previous sections, we have studied complete KD45 algebras, complete proper filter
algebras, and logics in LΠ extending KD45 based on these algebras. It turns out that KD4∀5Π
is the weakest logic we can have if we use algebraic semantics based on complete Boolean
algebras of propositions to extend KD45 with propositional quantifiers. Beyond KD4∀5Π,
the semantics based on complete proper filter algebras is adequate for many logics, and we
can even show some general completeness theorems. Moreover, the semantics is arguably
intuitive for the language LΠ as many properties of the algebras can be easily defined by
the language, with atomicity being an exception, and we can determine decidability easily
in many cases if the logic is coming from a class of complete proper filter algebras.

To conclude, we mention some directions of future research. First, noting that the set of
measure 1 set in any probability space is always a proper filter in the algebra of events and
that probability spaces are commonly used to model subjective credences, we may consider
interpreting LΠ on probability spaces and obtain a logic of “credence 1”. The first difficulty
for this is that in a probability space 〈X,B, µ〉 with B the algebra of events, in most realistic
cases, B is not lattice complete. To overcome this, it would be good to pin down exactly what
is required for the well-definedness of the semantics of LΠ and see how widely applicable
the requirement is. Once this is done, to obtain the logic, our strategy above suggests that
we need to study the natural quotient of 〈B,F 〉 by F , the filter of measure 1 sets. It is well
known that if B is a σ-algebra and µ is countably additive, then B/F is lattice complete.
Roughly speaking, then, the first-order theory of the natural quotients of countably additive
probability spaces by their filter of measure 1 sets is at least the first-order theory of complete
Boolean algebras. On the other hand, if we do not assume countable additivity, then there
seems to be little constraint on what the quotient could be. These two observations suggest
that LΠ is able to distinguish countably additive probability spaces from merely finitely
additive probability spaces.

Second, we can include more modal operators in the language, each of which is interpreted
by a proper filter. This is of course not the most general way to extend our language with
multiple modalities. But if not careful, we may suddenly find ourselves on the other side of the
axiomatizability boundary. Also, some special cases of this semantics may be of conceptual
significance. For example, there can be two modal operators, one for “necessarily”, which
is interpreted using the trivial filter containing only the top element, and the other for
“actually”, interpreted by a complete ultrafilter, which is necessarily generated by an atom,
or just an ultrafilter, if one would like to drop the assumption that there is an “actual world”.
Without the modality for necessity, the logic would be extending KD4∀5Π with both Immod
and ∀p(Bp ∨ ¬Bp) or just ∀p(Bp ∨ ¬Bp), depending on whether the ultrafilter is principal
or not, as we have shown above. Another example is when the modal operators are belief
operators of different agents, where the beliefs of all agents are publicly known to all agents,
so that one agent believes that p if and only if any other agent believes that the former agent
believes that p. We conjecture that the general idea of relativization to z, zg, and zg on
both the logic and the algebra sides can be generalized to deal with multiple filters too.
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Third, in Section 3.2, we introduced semantics for LΠ based on frames with propositional
contingency and showed that while they cannot be used to refute Immod while maintaining
KD45Π easily, they can be used to refute 4∀ while maintaining KD45Π, something that can-
not be done with complete BAOs. Many questions can be asked about these propositionally
contingent frames. Relating to the logics above KD45, we ask, first, whether we can refute
Immod while validating KD45Π and what the accessibility relation will look like in a counter-
model for this, and second, if we require that the accessibility relations have the properties
corresponding to KD45 (serial, transitive, and Euclidean), what will be the resulting logic
and is it KD45ΠImmod if we also assume propositional richness?

Let us now consider the general method of extending normal modal logics with proposi-
tional quantifiers through complete algebras and raise some natural questions here. Let L
be the quantifier free fragment LΠ, and let CAlg(Γ) be the class of lattice complete BAOs
validating all formulas in Γ, with CAlg(ϕ) and CAlg abbreviating CAlg({ϕ}) and CAlg(∅),
respectively. Then, let Log(K) be the set of sentences in LΠ validated by every member of
K. Once these two operators are defined, a series of standard questions can be asked. Most
notably is the question of characterizing the fixed points of this Galois connection, namely
the classes of algebras of the form CAlg(Γ) and the sets of sentences of the form Log(K).
But from the perspective of extending normal modal logics with propositional quantifiers,
the natural object of study is Log ◦CAlg, an operator from ℘(L) to ℘(LΠ). A theorem we
have shown in this chapter is that Log(CAlg(KD45)) = KD4∀5Π, where we see that axiom 4
is strengthened into 4∀. Note, however, that Log(CAlg(S5)) = S5Π, in which case there is
no strengthening of the axioms in S5. In other words, for S5, the syntactic way of extending
it with propositional quantifiers by adding Π-principles and the semantic way of extending
it by going through complete BAOs result in the same logic, while for KD45 this is not so.
In general, let us call a normal modal logic L in L CΠ-complete if Log(CAlg(L)) = LΠ; that
is, the syntactic way and the semantic way of extending L to a Π-logic in LΠ are the same
judging from the final result. Then, we can ask what accounts for the distinction that KD45
is CΠ-incomplete yet S5 is CΠ-complete, and more generally we can ask whether there is a
more logical or intrinsic way to characterize CΠ-(in)completeness.

The name “CΠ-completeness” we chose for the property is inspired by the well-studied
property of C-completeness of normal modal logics in L. Recall that by definition, using our
notation, a normal modal logic L ⊆ L is C-complete if and only if Log(CAlg(L))∩L = L. Given
that the definitions of these two properties are similar in form, one might hope that there
are some logical relations between them. However, if 4∀ is not in KD45Π, as we believe, then
C-completeness does not imply CΠ-completeness since KD45 is well known to be C-complete
(in fact Kripke complete or more algebraically CAV-complete). The other direction is also
not obvious. Suppose L is C-incomplete. Then there is a ϕ ∈ (Log(CAlg(L))∩L)\L. If we can
show that ϕ 6∈ LΠ then we will be done. However, this is not obvious as while ϕ ∈ L, it may
well be that LΠ is not conservative over L and LΠ∩L ) L with ϕ witnessing the inequality.
In general, we can call a normal modal logic L in L Π-conservative if LΠ ∩ L = L. Then,
it is easy to observe that C-incompleteness plus Π-conservativity imply CΠ-incompleteness.
However, it seems unlikely that C-incompleteness and Π-conservativity can coexist, since the
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Π-principles intuitively should help derive validities in complete BAOs that normal modal
logics cannot. At any rate, the logical relations among the above three properties about
normal modal logics regarding how they can be extended (with or without propositional
quantifiers) using complete BAOs seem intricate and may be worthy of future research.

Finally, we would like to point out that our proof of the completeness theorem relies
heavily on a syntactic reduction that can hardly be generalized below KD45 since once we
introduced z and g, by the end of the process, we see that all quantifiers are outside the
scope of the modal operators, and moreover there is only one layer of modal operators. Once
we let go of the 4 and 5 axioms, we can hardly achieve this result. Our strategy may still
work when we study Log(CAlg(K45)), but a method more generalizable is clearly needed if
we want to venture further.
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Chapter 4

The Logic of Comparative Cardinality
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4.1 Introduction

Reasoning about the relative size of infinite sets has been a source of puzzles since at least
Galileo [66]. Any consistent extension of the notion of relative size from finite to infinite
sets must give us very different principles in the infinite compared to the finite. For two key
principles that hold in the finite—that proper subsets are smaller than their supersets, and
that sets in one-to-one correspondence have the same size—are inconsistent in the infinite.
Cantor’s theory of infinite cardinalities [27] maintains the latter principle at the expense of
the former, while the more recent theory of infinite numerosities [126] does the reverse.

For logicians, a precise definition of relative size of sets raises an obvious question: can
we completely axiomatize reasoning about the relative size of finite sets, of infinite sets, and
of arbitrary sets in a formal set-theoretic language? Just as the laws for reasoning about
intersection, union, and complementation of sets are captured by the laws of Boolean algebra,
what are the laws one must add to Boolean algebra to capture reasoning about the relative
size of sets according to the given definition?

In this chapter, we answer this question for a particular language and definition of relative
size. Our language (see Definition 4.2.1) allows us to build terms using the standard set-
theoretic operations of intersection, union, and complementation, and to express that a set
s is at least as big as a set t: |s| ≥ |t|. Thus, we work with a comparative notion of size,
prior to the reification of sizes as cardinal numbers. The semantics is given by the Cantorian
definition: |s| ≥ |t| is true iff there is an injection from t into s.

This language has an alternative interpretation in terms of the relative likelihood of
events, instead of the relative size of sets. We will exploit this connection to prove some
of our main results. In essence, Cantorian reasoning about the relative size of finite size is
the same as probabilistic reasoning about the relative likelihood of events, while Cantorian
reasoning about the relative size of infinite sets is the same as what is called possibilistic
reasoning [46] about the relative likelihood of events. Each type of likelihood reasoning
has been axiomatized by itself [145, 67, 24, 30]. If we reinterpret these results in terms of
cardinality, then reasoning about the comparative cardinality of finite sets and reasoning
about the comparative cardinality of infinite sets have each been axiomatized by themselves.

The goal of this chapter is to bridge the divide between finite and infinite and axiomatize
reasoning about the cardinality of arbitrary sets. In § 4.2, we define our formal language and
its interpretation in fields of sets. We then present our first axiomatization, which uses two
extra predicates Fin and Inf to express that a set is finite or infinite. The axiomatization
without these predicates is more complicated and saved for later. Both axiomatizations use
the so-called finite cancellation axiom schema, which encodes an infinite sequence of axioms
of exponentially growing length. In section § 4.3, we show how this schema can be replaced
with the combination of a simple axiom and a simple rule. In § 4.4, we define models based
on Boolean algebras to be used later and adapt to this context the representation theorem
in the classic paper [109] by Kraft, Pratt, and Seidenberg. We also show the effective finite
model property and as a corollary the decidability of our two logics (with or without the Fin
and Inf predicates). In § 4.5, we construct canonical models from maximally consistent sets,
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as is common in proofs of completeness, leading in § 4.6 to the completeness of the system
with extra predicates. In § 4.7, we first show in what sense finiteness and infiniteness of a set
can be defined in the language with only cardinality comparisons between set terms. Then
we finally define the axiomatic system mentioned in § 4.2 without the two extra predicates
and prove its soundness and completeness. Lastly, we end with open problems in § 4.8.

Comparison to related work Two strands of work related to ours are worth mentioning.
The first is the study of computable fragments of set theory, as in [26, 53]. For example, con-
sider the quantifier-free language with intersection and set difference as binary functions and
membership, inclusion, and equality as binary predicates. When this language is interpreted
on the universe of all sets in the obvious way, the satisfiability problem is decidable; in fact,
more functions and predicates can be added without loss of decidability [26]. In particular,
a cardinality comparison predicate can be added, resulting in a language very similar to
ours [53]. However, the language is still different from ours, due to its lack of set-theoretic
complementation. Moreover, the cited works do not provide any axiomatization.

Another strand is the work on extending syllogistic logic with cardinality comparison
initiated by Lawrence Moss (see [129] for an introduction). In this setting, the language
consists of sentences of the form “all x are y”, “some x are y”, “there are at least as many
x as y”, and “there are more x than y” with variables interpreted as subsets of an arbitrary
set. In [128, 130], axiomatizations of the valid sentences (on finite or infinite domains) are
provided. However, in this setting there are no sentential Boolean connectives, nor Boolean
set operators except complementation. Thus, the expressivity of the syllogistic language with
cardinality comparisons is much weaker than ours, though with the consequent advantage
of having a tractable satisfiability problem.

4.2 Formal setup and statement of main result

Definition 4.2.1. Given a countably infinite set Φ of set labels, the set terms t and formulas
ϕ of the language L are generated by the following grammar:

t ::= a | tc | (t ∩ t)
ϕ ::= |t| ≥ |t| | ¬ϕ | (ϕ ∧ ϕ),

where a ∈ Φ. The other sentential connectives ∨, →, and ↔ are defined as usual, and we
use ϕ ⊕ ψ as an abbreviation for (ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ). Standard set-theoretic notation may
be defined as follows:

• ∅ := t ∩ tc;

• t ⊆ s := |∅| ≥ |t ∩ sc|;

• t = s := (t ⊆ s ∧ s ⊆ t) and t 6= s := ¬(t = s);
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• t 6⊆ s := ¬(t ⊆ s) and t ( s := (t ⊆ s ∧ s 6⊆ t).

We also use |s| ≤ |t| for |t| ≥ |s|, |s| > |t| for ¬|t| ≥ |s|, and |s| = |t| for |s| ≥ |t| ∧ |t| ≥ |s|.
For any ∆ ⊆ Φ, let L(∆) be the fragment of L using only set labels in ∆, and let T (∆) be
the set of set terms generated by ∆.

Our models consist essentially of a collection of sets, some of which are assigned set labels
from Φ.

Definition 4.2.2. A field of sets is a pair 〈X,F〉 where X is a nonempty set and F is a
collection of subsets of X closed under intersection and set-theoretic complementation. A
field of sets model is a triple M = 〈X,F , V 〉 where 〈X,F〉 is a field of sets and V : Φ→ F .

The satisfaction relation is defined in the obvious way.

Definition 4.2.3. Given a field of sets modelM = 〈X,F , V 〉, we define a function V̂ , which
assigns to each set term a set in F , by:

• V̂ (a) = V (a) for a ∈ Φ;

• V̂ (tc) = X \ V̂ (t);

• V̂ (t ∩ s) = V̂ (t) ∩ V̂ (s).

We then define a satisfaction relation � as follows:

• M � |t| ≥ |s| iff there is an injection from V̂ (s) into V̂ (t);

• M � ¬ϕ iff M 6� ϕ;

• M � ϕ ∧ ψ iff M � ϕ and M � ψ.

Given a class K of field of sets models, ϕ is valid over K iff M � ϕ for all M∈ K.

In Definition 4.7.12, we will define the cardinality comparison logic CardCompLogic. Our
main result is that this logic is sound and complete.

Theorem 4.2.4. The cardinality comparison logic CardCompLogic is sound and complete
with respect to field of sets models.

The logic is somewhat complicated, so we will leave its definition for later. For now, it will be
helpful to consider the expanded language LFin,Inf that adds predicates Fin and Inf that pick
out the finite and infinite sets, respectively. Then the logic CardCompLogic can be obtained
by eliminating Fin and Inf.
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Definition 4.2.5. Let LFin,Inf be the language extending L with two new unary predicates
Fin and Inf using the following grammar:

t ::= a | tc | (t ∩ t)
ϕ ::= Fin(t) | Inf(t) | |t| ≥ |t| | ¬ϕ | (ϕ ∧ ϕ),

where a ∈ Φ.

Satisfaction can then be extended from L to LFin,Inf as follows.

Definition 4.2.6. For any field of sets modelM = 〈X,F , V 〉, define the satisfaction relation
� for LFin,Inf with the following two new clauses:

• M � Fin(t) iff V̂ (t) is finite;

• M � Inf(t) iff V̂ (t) is infinite.

It will be convenient for later use to divide the logic of cardinality comparison with Fin
and Inf into two parts, the first of which gives basic comparison principles such as transitivity
and the second of which involves additional principles such as that infinite sets are larger
than finite sets.

Definition 4.2.7. The basic comparison logic BasicCompLogic is the logic for L (or LFin,Inf)
with the following axiom schemas and rules:

(BC1) all substitution instances of classical propositional tautologies;

(BC2) ¬ |∅| ≥ |∅c|;

(BC3) |s| ≥ |t| ∨ |t| ≥ |s|;

(BC4) (|s| ≥ |t| ∧ |t| ≥ |u|)→ |s| ≥ |u|;

(BC5) |∅| ≥ |s ∩ tc| → |t| ≥ |s|;

(BC6) (|∅| ≥ |s| ∧ |∅| ≥ |t|)→ |∅| ≥ |s ∪ t|;

(BC7) if ϕ and ϕ→ ψ are theorems, so is ψ;

(BC8) if t = 0 is provable in the equational theory of Boolean algebras, then |∅| ≥ |t| is a
theorem.

Definition 4.2.8. The logic CardCompLogicFin,Inf , the cardinality comparison logic with
predicates Fin and Inf, consists of the axioms and rules of the basic comparison logic Basic-
CompLogic together with the following axiom schemas:

(A1) Fin(s)⊕ Inf(s);
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(A2) Fin(∅) ∧ ((Fin(s) ∧ Fin(t))→ Fin(s ∪ t));

(A3) (Fin(t) ∧ s ⊆ t)→ Fin(s);

(A4) (Fin(s) ∧ Inf(t))→ |t| > |s|;

(A5)
∧n
i=1(Fin(si) ∧ Fin(ti))→ FCn(s1, · · · , sn, t1, · · · , tn) (for all n ≥ 1);

(A6) (Inf(s) ∧ |s| ≥ |t| ∧ |s| ≥ |u|)→ |s| ≥ |t ∪ u|;

Here FCn(s1, · · · , sn, t1, . . . , tn) is what we call the finite cancellation axiom. To define this
formula, first for each m such that 1 ≤ m ≤ n, define the term Sm as the union of the terms
of the form sc11 ∩ sc22 ∩ · · · ∩ scnn where exactly m many ci’s are c and the rest are empty.
Similarly define Tm with s replaced by t. Intuitively, Sn denotes the set of elements which
are in exactly m many sets among the sets denoted by s1, s2, . . . , sn.

Then FCn(s1, . . . , sn, t1, . . . , tn) is defined by(
n∧
i=1

Si = Ti

)
→

((
n−1∧
i=1

|si| ≥ |ti|

)
→ |tn| ≥ |sn|

)
.

The first four axioms set up the relations between finite sets and infinite sets—for example,
that finite sets are smaller than infinite sets. Axioms (A5) and (A6) describe the distinct
behavior of finite and infinite cardinal arithmetic. To understand (A5), suppose the condition
expressed by

∧n
i=1 Si = Ti is true, assuming that the sets denoted by the si’s and ti’s are all

finite. Note that to compute the sum K of the cardinalities of the sets denoted by the si’s,
instead of the most straightforward way of adding their cardinalities, we can consider how
much each element contributes to K: if an element e is in ke many sets denoted by the si’s,
then the contribution of this e is ke, and then K is the sum of the ke’s. Thus,

n∑
i=1

|V (si)| =
n∑
i=1

i× |V (Si)|

as Si is precisely the set of elements that lie in exactly i many sets denoted by si’s. The
same holds for the ti’s. Then given that

∧n
i=1 Si = Ti is true,

n∑
i=1

|V (si)| =
n∑
i=1

i× |V (Si)| =
n∑
i=1

i× |V (Ti)| =
n∑
i=1

|V (ti)|.

Hence it is not hard to see that the consequent(
n−1∧
i=1

|si| ≥ |ti|

)
→ |tn| ≥ |sn|

must be true in the same model.
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Example 4.2.9. Let A,B,C,D,E ⊆ X be disjoint and finite. Then it follows from

• |A| ≥ |B ∪ C|,

• |B ∪ E| ≥ |A ∪ C|, and

• |C ∪D| ≥ |A ∪B|,

that |D∪E| ≥ |A∪B∪C|. To see this, we only need to add the cardinalities of the inequalities
on both sides, which leads to |A|+ |B|+ |C|+ |D|+ |E| ≥ |A|+ |A|+ |B|+ |B|+ |C|+ |C|.
Hence by canceling |A|+ |B|+ |C| since they are finite, we get |D|+ |E| ≥ |A|+ |B|+ |C|.
Thus |D ∪ E| ≥ |A ∪B ∪ C|. In our system, this reasoning is captured by

FC4(a, b ∪ e, c ∪ d, a ∪ b ∪ c, b ∪ c, a ∪ c, a ∪ b, d ∪ e)

with a, b, c, d, e ∈ Φ, as the antecedent of FC4 follows from the assumption that these five
sets are disjoint, which can be expressed by formulas like |a ∩ b| = ∅.

Finally, (A6) captures the distinct absorption property (or non-additivity) of infinite
sets. In terms of the analogy with relative likelihood, it is (A5) that matches probabilistic
reasoning, as is shown in [109] and [142], while (A6) matches what is called possibilistic
reasoning [46].

Theorem 4.2.10. CardCompLogicFin,Inf , the cardinality comparison logic with predicates Fin
and Inf, is sound and complete with respect to field of sets models.

Remark 4.2.11. Admittedly, (A5) is an infinite sequence of axioms that are long and
somewhat complicated. We remark here that (A5) can be replaced by the combination of
the following axiom and rule:

(A7) (Fin(s) ∧ Fin(t))→ (|s| ≥ |t| ↔ |s ∩ tc| ≥ |t ∩ sc|);

(A8) where a|t abbreviates |t ∩ a| = |t ∩ ac| for a ∈ Φ, if a|t → ϕ is derivable, then ϕ is
derivable, assuming that a does not occur in t or in ϕ.

Axiom (A7) is sometimes called the quasi-additivity axiom. Intuitively, it means that taking
unions with a disjoint set does not change the ordering of sets by cardinality. Rule (A8)
is slightly non-standard. Intuitively, a|t says that set a splits t into two parts of the same
size. In both [109] and [24], this is expressed by “a polarizes t”. Hence (A8) is called the
“polarizability rule” in [24] ((A8) also appeared, but not as a rule in a formal system, in
[109]). Proof theoretically, (A8) allows us to assume without loss of generality that any
set can be polarized with a fresh set when proving some formula ϕ. Semantically, the idea
behind (A8) is the invariance of truth under duplication: for any sets a, b, |a| � |b| iff
|a×{0, 1}| � |b×{0, 1}|, and a is finite iff a×{0, 1} is finite. This warrants the use of (A8),
as to show that ϕ is true on all field-of-sets models, it is enough to focus on those models
that come from duplication, in which every set in the field-of-sets can be polarized. The
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Figure 4.1: Polarization and set addition

power of (A8) lies in the fact that with it, we can simulate the addition of overlapping sets
so that we can count overlaps correctly. Hence all instances of (A5) are provable from the
system with (A5) replaced by (A7) and (A8). This point is already made implicitly in [109]
and explicitly in [24], but we give a direct syntactic proof in section § 4.3. To get a flavor
of the strategy, see Figure 4.1 where the shaded area in the second picture has a cardinality
equal to one fourth of the sum of the cardinalities of the three larger sets (say A,B, and C).
To see this, first polarize all minimal regions like A∩Bc ∩Cc and A∩B ∩C into four parts,
and then for regions that are contained in m of the sets A,B, and C, select m parts of those
regions. For example, as shown in the diagram, three of the four parts of region A ∩ B ∩ C
are selected, while only one of the four in A ∩ Bc ∩ Cc is selected. So we have replaced the
non-disjoint union of the shapes A, B, and C by a disjoint union of the shaded areas, while
keeping the same area up to a factor of 1/4.

For the logic in the language L, without the predicates Fin and Inf, it takes more work
to capture the difference between finite and infinite cardinal arithmetic. The cardinality
comparison logic CardCompLogic will also extend the same basic comparison logic BasicCom-
pLogic. The key idea for the extra axioms is that of a set being “witnessed to be finite” or
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“witnessed to be infinite.” For example, if

M � |s| ≥ |s ∪ t| ∧ |s ∩ t| = |∅|,

then s must denote an infinite set inM. Since s denotes an infinite set, anything true of infi-
nite sets must be true of s. One can think of the cardinality comparison logic CardCompLogic
as being the same as the cardinality comparison logic CardCompLogicFin,Inf except with Fin(t)
and Inf(t) being replaced by formulas that witness t to be finite or infinite, respectively.

Of course the definition of a set being finite or infinite would be superfluous if we were
to restrict our models so that every set in the field of sets is finite (or infinite except for
the empty set). In fact, letting FinCardCompLogic be the result of adding to BasicCompLogic
all instances of FCn(s1, . . . , sn, t1, . . . , tn), FinCardCompLogic is sound and complete with
respect to all field of sets models where the underlying set is finite. Similarly, the system
InfCardCompLogic defined by adding (|s| ≥ |t| ∧ |s| ≥ |u|) → |s| ≥ |t ∪ u| is sound and
complete with respect to all field of sets models where all nonempty sets in the field are
infinite. We will not formally prove these two completeness results since the strategy we use
to prove the completeness of CardCompLogicFin,Inf can be readily adapted.

4.3 Polarizability rule and finite cancellation axiom

schema

Let CardCompLogic′Fin,Inf be the system obtained by adding axiom schemas and rules (A1)–
(A4), (A6), (A7), and (A8) to BasicCompLogic. In this section, we discuss how (A5) can be
derived in CardCompLogic′Fin,Inf . First, we verify that the rule (A8) is sound in the sense
that if the premise a|t→ ϕ is valid, then the conclusion ϕ is also valid.

Proposition 4.3.1. The polarizability rule (A8) is sound on field of sets models.

Proof. Suppose ϕ is not valid, so ¬ϕ is satisfiable. Our goal is to show that a|t ∧ ¬ϕ is
satisfiable. Let ∆ be the set of set labels in ϕ or t. Then by the constraint of (A7), a 6∈ ∆.
The strategy is simple: take a modelM of ¬ϕ; construct the disjoint union N of two copies
of M with a valued to exactly one copy of M; then we have that both a|t and ¬ϕ are true
in N .

Formally, take a field of sets model M = 〈X,F , V 〉 that makes ¬ϕ true. Let X ′ =
X × {0, 1}. Define a duplication function d : ℘(X) → ℘(X ′) by d(S) = S × {0, 1}. Then
d ◦V is a valuation on 〈X ′, ℘(X ′)〉. Define V ′ such that if a ∈ ∆, then V ′(a) = d(V (a)), and
otherwise V ′(a) = X × {0}. Let N = 〈X ′, ℘(X ′), V ′〉. A simple induction shows that for

any term t ∈ T (∆), V̂ ′(t) = d(V̂ (t)) = V̂ (t) × {0, 1}. This implies that for any two terms
s, t ∈ T (∆),M � |s| ≥ |t| iff N � |s| ≥ |t|. In addition, a set S is finite iff S×{0, 1} is finite.
Another simple induction then shows that M and N satisfy the same formulas in LFin,Inf

using only labels in ∆. In particular, N � ¬ϕ. Since a 6∈ ∆, we have V̂ ′(a) = X ×{0} while

V̂ ′(t) = V̂ (t)× {0, 1}. Thus, N � a|t.
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While it is not hard to understand the content of the polarizability rule itself, it is harder
to see what it can prove and how it can be used.

Kraft, Pratt, and Seidenberg famously observed in [109] that without the polarizability
rule (A8), the remaining system does not capture all valid reasoning patterns for finite sets,
contrary to a conjecture of de Finetti [58].

For compact notation, we use the standard set theoretical definition of n = {0, 1, . . . , n−
1} and do not distinguish a sequence of length n and a function with domain n. We let n2
denote the set of such functions/sequences with codomain 2. Then FCn can be defined under
this notation by the following.

Definition 4.3.2. For each n,m ∈ N, sequence ~s = 〈s0, · · · , sn−1〉 of n terms, and f ∈ n2,
define the term

~s[f ] =
⋂
{si | f(i) = 1} ∩

⋂
{sci | f(i) = 0}

and the term
Nm(~s) =

⋃
{~s[f ] | f : n→ 2 and |f−1(1)| = m}.

For each f ∈ n2, ~s[f ] is intuitively a “definable” atom (in the Boolean algebra of terms
constructible from ~s), and Nm(~s) is then the union of atoms that appear in exactly m terms
in ~s. Given two sequences ~s and~t of n terms, we can then define the formula

~s E~t =
∧

0≤i≤n

(Ni(~s) = Ni(~t)).

Recall that equality between terms is defined in Definition 4.2.1. Then

FCn(~s,~t) =~s E~t → ((
∧

i<n−1

|si| ≥ |ti|)→ |tn−1| ≥ |sn−1|).

Consequently (A5) is now

(Fin(~s) ∧ Fin(~t))→ FCn(~s,~t), (A5)

where Fin is extended to sequences of terms in the obvious way.

Now we show that we can derive (A5) in CardCompLogic′Fin,Inf . The main strategy is
to repeatedly use (A8) so that (A7) can be applied. In fact, Kraft, Pratt, and Seidenberg
already sketched a proof of this in [109] for their Theorem 5. More specifically, the idea is
the following, assuming that we are dealing with only finite set terms (for convenience we
often speak loosely of terms as sets, say that one set is a subset of another when the relevant
formula involving terms is provable, etc.):

1. Given two sequences ~s and ~t of length n, use the polarizability rule (A8) to keep
polarizing atomic terms (minimal regions in the Venn diagram) definable from the
terms in ~s and~t until each atomic term is split into 2n ≥ 2n pieces of equal size.
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2. Now each si and ti are unions of definable atomic terms. For each si, define s′i to be
the union of the ith piece of the definable atomic terms that are subsets of si (so for
example, if there are just s1 and s2, then s′1 is the union of the first piece of s1 ∩ s2

and the first piece of s1 ∩ sc2). Similarly define t′i by using the (i+ n)th pieces.

3. Then intuitively s′i and t′i are disjoint representatives of si and ti: for any i 6= j, s′i, s
′
j,

t′i, and t′j are all disjoint, and for each i, |s′i| = 1
2n
|si| and |t′i| = 1

2n
|ti|.

4. Recall that intuitively, when ~s E ~t, we have
∑

i<n |si| =
∑

i<n |ti|. This means∑
i<n |s′i| =

∑
i<n |t′i| as we just need to scale both sides by 1

2n
. Also, since now

the primed versions of si and ti are disjoint, the sum of the sizes is just the size of the
union. So intuitively we should get

∣∣⋃
i<n s

′
i

∣∣ =
∣∣⋃

i<n t
′
i

∣∣. Indeed, this is derivable from

~s E~t.

5. Using (A7), which deals with disjoint unions, we can then derive (
∧
i<n−1 |s′i| ≥ |t′i|)→

|t′n−1| ≥ |s′n−1|. But recall that intuitively |s′i| and |t′i| are just 1
2n

of |si| and |ti|.
Formally, this means that |si| ≥ |ti| ↔ |s′i| ≥ |t′i| is derivable for any i < n. So the real
consequent of FCn(~s,~t) is derivable.

The rest of this section implements the sketch above formally in system CardCompLogic′Fin,Inf .
We start with a lemma showing that for disjoint finite sets, cardinality comparison works as
intended. Note that we have proved that theorems are closed under substitution in Lemma
4.5.1. Hence we will use substitution freely without explicit reference.

Lemma 4.3.3. For any sequence ~s of n terms, define the disjointness of terms in ~s by

D(~s) :=
∧

0≤i<j<n

(si ∩ sj) = ∅.

Then CardCompLogic′Fin,Inf derives the following with ~s a sequence of 2n terms:

(
D(~s) ∧ Fin(~s)

)
→
((∧

i<n

|si| ≥ |si+n|
)
→ |

⋃
i<n

si| ≥ |
⋃
i<n

si+n|
)

; (4.1)

(
D(~s) ∧ Fin(~s)

)
→
((∧

i<n

|si| = |si+n|
)
→ |

⋃
i<n

si| = |
⋃
i<n

si+n|
)

; (4.2)(
D(~s) ∧ Fin(~s) ∧ |

⋃
i<n

si| = |
⋃
i<n

si+n|
)
→ (4.3)(( ∧

i<n−1

|si| ≥ |si+n|
)
→ |sn−1| ≤ |s2n−1|

)
.

Proof. Note that (4.2) follows directly from (4.1). Also, we need only prove the case for
n = 2, as the general formula can then be derived inductively.
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Suppose now that D(~s) ∧ Fin(~s) holds with n = 2. Then consider the following three
terms: s01 = s0 ∪ s1, s12 = s1 ∪ s2, and s23 = s2 ∪ s3. Using BasicCompLogic, we have

s01 ∩ sc12 = s0, s12 ∩ sc01 = s2,

s12 ∩ sc23 = s1, s23 ∩ sc12 = s3.

So by (A7), we have

|s01| ≥ |s12| ↔ |s0| ≥ |s2|, |s12| ≥ |s23| ↔ |s1| ≥ |s3|.

Hence, we get (|s0| ≥ |s2| ∧ |s1| ≥ |s3|) → |s01| ≥ |s12|. This shows (4.1). Also, when
|s0| ≥ |s2|, suppose further that ¬|s3| ≥ |s1|, that is, |s1| > |s3|. Then |s01| ≥ |s12| > |s23|.
Hence |s01| > |s23|, contradicting |s01| = |s23|.

For induction, we just need to consider the union of the first n− 1 sets, the nth set, the
next n− 1 sets, and the last set as a four-set sequence.

Proposition 4.3.4. CardCompLogic′Fin,Inf derives (A5).

Proof. Take an arbitrary sequence ~s of 2n terms. Let ~s< be the sequence of the first n terms
in ~s and ~s> that of the last n terms. Similarly, for any function f ∈ 2n2, define f< to be the
restriction of f on n and f> the restriction of f on {n, n+ 1, · · · , 2n− 1}. Our final goal is
to derive

(Fin(~s) ∧~s< E~s>)→
(( ∧

i<n−1

|si| ≥ |si+n|
)
→ |sn−1| ≤ |s2n−1|

)
. (4.4)

As we mentioned above, our strategy will be to “disjointify” ~s so that we can use (4.3)
in Lemma 4.3.3. This is done by constructing in each si a subset s′i so that 〈s′i〉i<2n is a
sequence of pairwise disjoint sets while each s′i is 1

2n
of si. Then Lemma 4.3.3 can be applied.

More formally, our plan is to use the polarizability rule (A8) to construct a term s′i for
each i < 2n so that the following three formulas are derivable:

(
∧
i<2n

s′i ⊆ si) ∧ D(〈s′i〉i<2n); (4.5)

Fin(~s)→ (
∧
i<n

(|s′i| ≥ |s′i+n| ↔ |si| ≥ |si+n|)); (4.6)

~s< E~s> → |
⋃
i<n

s′i| = |
⋃
i<n

s′i+n|. (4.7)

Once the three formulas are derived, it is then quite obvious that the system can derive (4.4)
with the help of (4.3).

Hence the rest of this proof is devoted to the construction of s′i and s′i+n and the derivation
of (4.5)–(4.7) above. Indented passages marked with a vertical line give details that may be
skipped on a first reading.
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Figure 4.2: Polarization and construction when n = 2. Squares in the same row can be of
different sizes. But squares in the same column must be of the same size.

Polarization and construction. By repeated use of (A8), for any f ∈ 2n2, we can also
assume that ~s[f ] is polarized into 2n many pieces. Let us enumerate the partitions of ~s[f ]
by ~s[f ][i] with i < 2n. Let us also generalize the notation of ~s[f ][i] to ~s[F ][I] where F ⊆
2n2, I ⊆ 2n, defined by ⋃

{~s[f ][i] | f ∈ F, i ∈ I}.

Then we abbreviate ~s[{f}][I] as ~s[f ][I] and ~s[F ][{i}] as ~s[F ][i].
Now define Ci = {f ∈ 2n2 | f(i) = 1} for i < 2n. The equation ~s[Ci] = si is in the

equational theory of Boolean algebras and hence is derivable in our system. Then for any
i < 2n, our s′i used in the outline above is defined by ~s[Ci][i] (note that for any n ≥ 1,
2n ≥ 2n). In Figure 4.2, we use a grid to illustrate the partition resulting from polarization.
Each column is an ~s[f ] for some f ∈ 2n2. Each cell is then an ~s[f ][i]. We shade ~s[Ci][i] for
i = 0, 1, 2, 3, each in its own row; note that they are disjoint, and each is 1/4 the size of the
corresponding ~si. This is essentially Figure 4.1 but since there are 4 sets, we choose not to
draw a Venn diagram in the usual way.

The indented passage provides more details on the construction of ~s[f ][i]:

We can prepare for each ~s[f ] and each natural number l < n a set of 2l many fresh set
labels. For convenience, we can just use functions in l2. Now, we can first assume that
the empty function ε polarizes ~s[f ]: ε|~s[f ]. This gives us two sets: ~s[f ] ∩ ε and ~s[f ] ∩ εc.
Then we can inductively polarize the generated sets.

In fact, for each function g ∈ l2 with l < n, we can define

~s[f ][g] =~s[f ] ∩
⋂
k<l

g<k
c·g(j),

where g<k is g restricted to k and c ·x is c if x is 1 and empty otherwise. Then (A8) allows
us to assume that for all 0, 1 sequences g of length at most n−1, g|~s[f ][g], or equivalently
by our definition, |~s[f ][〈g, 0〉]| = |~s[f ][〈g, 1〉]|. Of course, due to the restriction of (A8),
we need to arrange those formulas so that those with shorter variables come first. Fix
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an enumeration 〈gi〉 of
⋃
l<n

l2 so that if gj extends gi then j ≥ i. Then formally we are
using (A8), so that it suffices to prove

g2n−1|~s[f ][g2n−1]→ (· · · (gi|~s[f ][gi]→ (· · · (g0|~s[f ][g0]→ ϕ) · · · )) · · · )

when we want to prove ϕ. Hence, from now on, we have that each ~s[f ] is polarized into
2n many pieces, enumerated by ~s[f ][g] with g ∈ n2.

Deriving formula (4.5). Since for all f ∈ Ci, ~s[f ][i] ⊆ si is obviously derivable, we have
~s[Ci][i] ⊆ si. Hence the first part of (4.5) can be derived.

Disjointness is slightly less trivial. Recall that by our definition of~s[f ][i], for any f ∈ 2n2,
~s[f ][i]∩~s[f ][j] = ∅ is derivable when i 6= j. Thus when relativized to each ~s[f ], ~s[Ci][i] and
~s[Cj][j] are disjoint for i 6= j. Some simple Boolean equational theory will then show that
~s[Ci][i] and ~s[Cj][j] themselves are disjoint.

Deriving formula (4.6). Assume Fin(~s). Note that for any f ∈ 2n2 that is not constantly
0, there is an i < 2n such that ~s[f ] ⊆ si is derivable: just pick i with f(i) = 1. Hence, using
(A2) and (A3), for any I ⊆ 2n and F ⊆ 2n2 with the constantly 0 function not in F , the
system derives Fin(~s[F ][I]). Then, by repeated use of Lemma 4.3.3, the system derives that
for any i, j < 2n and f ∈ 2n2 with f not constantly 0, |~s[f ][i]| = |~s[f ][j]|.

Recall how we defined ~s[f ][i] by polarization. We can in fact use a simple induction on
0 < l < n to show that for each l and g0, g1 ∈ l2, |~s[f ][g0]| = |~s[f ][g1]| is derivable. The
base case is when l = 1 and g0 = 〈0〉, g1 = 〈1〉. Here what we need to show is already
assumed when we apply (A8): ε|~s[f ], as this is defined precisely as |~s[f ][〈0〉]| = |~s[f ][〈1〉]|.
To go from l to l + 1, note that any function in l+12 is obtained by appending a 0 or 1
to functions in l2. So it is enough to show that for any g0, g1 ∈ l2, the four sets in the
sequence

~t = 〈~s[f ][〈g0, 0〉],~s[f ][〈g0, 1〉],~s[f ][〈g1, 0〉],~s[f ][〈g1, 1〉]〉

are of equal size. In the previous (unindented) paragraph, we have derived Fin(~s[F ][I])
for any F and I, and hence we have derived Fin(~t). It is also obvious that the system can
derive D(~t) using the equational theory of Boolean algebras. By the induction hypothesis,
we also have that the union of the first two and the last two are of equal size. Hence we
can apply (4.3) to~t and obtain

~s[f ][〈g0, 0〉] ≥~s[f ][〈g1, 0〉]→~s[f ][〈g1, 1〉] ≥~s[f ][〈g0, 1〉].

By switching the first two and the second two sets in~t and applying (4.3) again, we get

~s[f ][〈g0, 0〉] ≤~s[f ][〈g1, 0〉]→~s[f ][〈g1, 1〉] ≤~s[f ][〈g0, 1〉].

Now |~s[f ][〈g0, 0〉]| = |~s[f ][〈g0, 1〉]| and |~s[f ][〈g1, 0〉]| = |~s[f ][〈g1, 1〉]| are derivable since we
have assumed when using the polarizability rule (A8) that g0|~s[f ][g0] and g1|~s[f ][g1]. With
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the transitivity of ≥ encoded by axiom (BC3), we can derive that the four sets involved
are all equal in size. This shows that the 2n subsets of ~s[f ] obtained by polarization are
of equal size whenever f is not constantly 0.

Since Ci does not contain the constantly 0 function and ~s[Ci][j] is the disjoint union
of all ~s[f ][j] with f ∈ Ci, using (4.2), we have |~s[Ci][j]| = |~s[Ci][k]| for any i < n and
j, k < 2n.

Now we can start to derive the consequent of (4.6). Fix an i < n. The idea is simple:
|~s[Ci][i]| > |~s[Ci+n][i + n]| iff for any j, |~s[Ci][j]| > |~s[Ci+n][j]|. Summing over j, this is
equivalent to |~s[Ci]| > |~s[Ci+n]|. Of course, the equivalences must be derived by Lemma
4.3.3 and in particular (4.3).

First, since both Ci and Ci+n do not include the constantly 0 function, we can de-
rive Fin(~s[Ci][j]) and Fin(~s[Ci+n][j]). With (A7), we have for all j < 2n, |~s[Ci][j]| ≥
|~s[Ci+n][j]| ↔ |~s[Ci \ Ci+n][j]| ≥ |~s[Ci+n \ Ci][j]|. Let ~t be the sequence of 2 × 2n terms
with the first 2n terms being 〈~s[Ci \ Ci+n][j]〉j<2n and the rest being 〈~s[Ci+n \ Ci]〉j<2n .

Also let ~t′ be the same as ~t except that the first 2n terms and the last 2n terms are
switched.

Then D(~t) and D(~t′) are derivable. This is because for any two terms, if they do not
share the same second coordinate, then they are certainly disjoint. But if they do share
the same second coordinate, then they are of the form ~s[Ci \Ci+n][j] and ~s[Ci+n \Ci][j],
which are disjoint. Obviously we also have Fin(~t) and Fin(~t′).

Now, from left to right, suppose |~s[Ci][i]| ≥ |~s[Ci+n][i+ n]|. Then, for any j < 2n,
we have |~s[Ci][j]| ≥ |~s[Ci+n][j]|. By (A7), this implies |~s[Ci \ Ci+n][j]| ≥ |~s[Ci+n \ Ci][j]|.
Then we can apply (4.2) to~t and obtain |~s[Ci \Ci+n]| = |~s[Ci+n \Ci]|. But by (A7) again,
this gives us |~s[Ci]| ≥ |~s[Ci+n]|.

From right to left, assume |~s[Ci]| ≥ |~s[Ci+n]| and suppose for contradiction that
|~s[Ci+n][i + n]| > |~s[Ci][i]|. Then for any j < 2n, we have |~s[Ci+n][j]| > |~s[Ci][j]|. By
(A7), this implies |~s[Ci+n\Ci][j]| > |~s[Ci\Ci+n][j]|. Thus, in sequence ~t′ the first 2n terms
are strictly larger than the last 2n terms, respectively. By (BC3), > implies ≥. Hence, by
(4.1), |~s[Ci+n]| ≥ |~s[Ci]|, as they are the unions of the first and last 2n terms, respectively.
Together with the assumption, we have |~s[Ci+n]| = |~s[Ci]|. At this point, we can apply
(4.3) and obtain |~s[Ci+n \Ci][2n− 1]| ≤ |~s[Ci \Ci+n][2n− 1]|. With (A7), this contradicts
|~s[Ci+n][2n − 1]| > |~s[Ci][2n − 1]|, which is derived from |~s[Ci+n][i+ n]| > |~s[Ci][i]|.

Deriving formula (4.7). First, note that⋃
i<n

~s[Ci][i] =
⋃
i<n

⋃
f∈Ci

~s[f ][i] =
⋃
f∈2n2

~s[f ][f−1
< (1)],

⋃
i<n

~s[Ci+n][i+ n] =
2n−1⋃
i=n

⋃
f∈Ci

~s[f ][i] =
⋃
f∈2n2

~s[f ][f−1
> (1)].

(4.8)

Now assume ~s< E~s>. Recall that our goal is to derive |
⋃
i<n~s[Ci][i]| = |

⋃
i<n~s[Ci+n][i+n]|.
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Figure 4.3: The grid with n = 2 when ~s< E ~s>. Recall that squares in the same column are
of the same size. It is not hard to see then that |~s[C0][0] ∪~s[C1][1]| = |~s[C2][2] ∪~s[C3][3]| by
comparing them in each column.

Our strategy is the following. When we assume ~s< E ~s>, we can show that for any f ∈ 2n2,
treated as a sequence of 0’s and 1’s, if the number of 1’s in the first n places of f and the
number of 1’s in the last n places of n are not equal, then ~s[f ] = ∅ can be derived. We
can call f “balanced” when this condition is satisfied; when f is not balanced, ~s[f ] = ∅
can be derived. However, for those balanced f , when restricted to ~s[f ],

⋃
i<n~s[Ci][i] and

~s[Ci][i]| = |
⋃
i<n~s[Ci+n][i+n]| are of the same size. For a simple illustration, see Figure 4.3.

Then summing over all balanced f , we obtain the required formula.

Pick an arbitrary f ∈ 2n2 and let k< = |f−1
< (1)|, k> = |f−1

> (1)|. Then it is easy to see that
the system can derive the following through the equational theory of Boolean algebras:

~s[f ] ⊆ Nk<(~s<) ∧~s[f ] ⊆ Nk>(~s>).

Also by the definition of N in Definition 4.3.2 and by using the equational theory of
Boolean algebras, Ni(~s>) ∩ Nj(~s>) = ∅ and Ni(~s>) ⊆ (Nj(~s>))c are derivable when
i 6= j. Hence, if k< 6= k>, then ~s[f ] ⊆ Nk<(~s<) and also ~s[f ] ⊆ (Nk<(~s>))c. Since we
have assumed ~s< E~s>, we have Nk<(~s<) = Nk<(~s>). This means that we can derive
~s[f ] ⊆ Nk<(~s<) ∧~s[f ] ⊆ (Nk<(~s<))c and then ~s[f ] = ∅.

Now we derive that |~s[f ][f−1
< (1)]| = |~s[f ][f−1

> (1)]|. When k< 6= k>, we derive~s[f ] = ∅.
Then trivially |~s[f ][f−1

< (1)]| = |∅| = |~s[f ][f−1
> (1)]|.

If k< = k>, then let k = k< = k> and consider the sequence ~t where the terms are
〈~s[f ][i]〉f∈Ci :

• D(~t) is derivable using the equational theory of Boolean algebras.

• ~t has 2k terms; the union of the first k terms is ~s[f ][f−1
< (1)] and the union of the

last k terms is ~s[f ][f−1
> (1)];

• we showed when we derived (4.6) that for any i, j, |~s[f ][i]| = |~s[f ][j]|; hence for any
i < k, |ti| = |ti+k|.
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Given these three points, we can apply (4.2) to~t and derive the equation |~s[f ][f−1
< (1)]| =

|~s[f ][f−1
> (1)]|.

In sum, we have derived for any f ∈ 2n2 the equation |~s[f ][f−1
< (1)]| = |~s[f ][f−1

> (1)]|.
Then we can apply (4.2) to the sequence where the first 22n terms are 〈~s[f ][f−1

< (1)]〉f∈2n2

and the last 22n are 〈~s[f ][f−1
> (1)]〉f∈2n2. Hence it is derivable that the unions of each,

which by (4.8) are just
⋃
i<n~s[Ci][i] and

⋃
i<n~s[Ci+n][i+ n], are of equal size.

This completes the whole proof.

4.4 Other types of models

While our interest is in field of sets models, it is convenient to think in terms of an abstract
Boolean algebra rather than a concrete field of sets. For then we do not have to worry
about which particular elements a set contains, but instead we only have to consider the
cardinality of the set. This will help us focus on the structures related to the truth of
formulas and to show the effective finite model property. In the following, we use ∧,∨, and ′

for meet, join, and complementation in arbitrarily picked Boolean algebras. For specifically
constructed Boolean algebras, the symbols for the operations may change and we will usually
specify only the complementation and meet operation. The lattice ordering of a Boolean
algebra will be denoted by ≤ (below) and ≥ (above1), possibly with a subscript to show
which Boolean algebra we are talking about. Since the models defined below are all Boolean
algebras with extra structure, we call them algebra-based models and call them finite when
the underlying Boolean algebra is finite. As a convenient notation, for any models B, C and
set L of formulas, we write B ≡L C when for any ϕ ∈ L, B � ϕ iff C � ϕ.

4.4.1 Measure algebra models

The first step is to forget the elements in sets and only keep their Boolean structure and
their cardinality. This gives us the following definition.

Definition 4.4.1. A measure algebra is a pair 〈B, µ〉 where B is a Boolean algebra and µ
is a function assigning a cardinal to each element of B such that

• if a ∧ b = ⊥, then µ(a ∨ b) = µ(a) + µ(b), and

• µ(b) = 0 iff b = ⊥.

We call such a cardinal-valued function µ with which 〈B, µ〉 is a measure algebra a cardinal
measure on B.

A measure algebra model is a triple B = 〈B, µ, V 〉 where 〈B, µ〉 is a measure algebra and

V is a function from Φ to B. This V can be extended to a function V̂ from T (Φ) to B

1We use “below” and “above” in the weak sense.
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as in Definition 4.2.3 but using the Boolean complement and meet in place of set-theoretic
complement and intersection.

Note that µ is only finitely additive, which is good enough because the language is finitary
and unable to express countable additivity.

Definition 4.4.2. Given a measure algebra model B = 〈B, µ, V 〉, we define the satisfaction
relation � as follows, where ϕ, ψ ∈ L and s, t ∈ T (Φ):

• B � |t| ≥ |s| iff µ(V (t)) ≥ µ(V (s));

• B � ¬ϕ iff B 6� ϕ;

• B � ϕ ∧ ψ iff B � ϕ and B � ψ.

We also have the following two clauses for LFin,Inf sentences:

• B � Inf(t) iff µ(V̂ (t)) is infinite;

• B � Fin(t) iff µ(V̂ (t)) is finite.

We can turn any field of sets 〈X,F〉 into a measure algebra 〈B, µ〉 by setting B =
〈F , X \ · ,∩〉 and µ(a) = |a| for a ∈ B. It is easy to check that this is a measure algebra.
If we have a field of sets model M = 〈X,F , V 〉 then we get a measure algebra model
B = 〈B, µ, V 〉 using the same valuation V ; moreover, M≡LFin,Inf

B by a simple induction.
On the other hand, given a finite measure algebra model B, we can turn it into a field

of sets model M such that M ≡LFin,Inf
B. Since the cardinal measure functions in measure

algebras are only finitely additive, the construction will fail for infinite measure algebra
models.

Proposition 4.4.3. For any finite measure algebra model B = 〈B, µ, V 〉, there is a field of
sets model M = 〈X,F , V ′〉 such that M≡LFin,Inf

B.

Proof. Since B is finite, let a1, . . . , an be the atoms of B. Let S1, . . . , Sn be disjoint sets with
|Si| = µ(ai). Let X =

⋃n
i=1 Si and let F be the field of sets generated by S1, . . . , Sn under

complementation (in X) and intersection. The map f(ai) = Si extends to an isomorphism
between B and F , which maps an element ai1 ∨ · · · ∨ ai` to Si1 ∪ · · · ∪ Si` . We have

µ(ai1 ∨ · · · ∨ ai`) = µ(ai1) + · · ·+ µ(ai`)

= |Si1|+ · · ·+ |Si` |
= |Si1 ∪ · · · ∪ Si` |.

Thus, |f(a)| = µ(a). Let V ′ = f ◦ V . Then it is easy to see that for any set term s,
|V (s)| = µ(V ′(s)), since f is an isomorphism preserving cardinalities. A simple induction
then shows that 〈X,F , V ′〉 ≡LFin,Inf

B.
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Thus, there is no loss of generality when focusing on measure algebra models if we consider
only finite models, and as we will see later in this section, there is also no loss of generality
in restricting to finite models.

4.4.2 Comparison algebra models

As one often does to prove the completeness of some logic, we will use a canonical model
construction. In building the canonical model, we start with a maximally consistent set of
sentences in our language L or LFin,Inf , which encodes only comparisons between set terms
and their being finite or infinite in the case of LFin,Inf . Hence it will be convenient to forget
about the cardinals we assign to each element of the Boolean algebra and to remember only
the comparisons between elements. When we need to work with LFin,Inf , we also need the
model to contain a set of distinguished elements.

Definition 4.4.4. A comparison algebra is a pair 〈B,�〉 where B is a Boolean algebra and
� is a total preorder on B such that

• for all a, b ∈ B, a ≥B b implies a � b, and

• ⊥B 6� b for all b ∈ B \ {⊥B}.

A labeled comparison algebra is a triple 〈B,�, F 〉 where 〈B,�〉 is a comparison algebra and
F ⊆ B. A comparison algebra model is a triple B = 〈B,�, V 〉 where 〈B,�〉 is a comparison
algebra and V a function from Φ to B. Similarly, a labeled comparison algebra model is
a labeled comparison algebra model together with a valuation. The valuation V can be
extended in the usual way to a valuation V̂ from T (Φ) to B.

Here the relation � is intended to interpret “at least as great in cardinality as” and F is
intended to interpret “being a finite set”. Hence we have the required constraints for � in
the above definition: it is a total preorder, extends the Boolean lattice order (set inclusion
relation), and makes the bottom element (the empty set) the strictly smallest set. Formally,
the interpretation is given by the satisfaction relation.

Definition 4.4.5. Given a comparison algebra model B = 〈B,�, V 〉, we define the satisfac-
tion relation � for L as follows, where s, t ∈ T (Φ):

• B � |s| ≥ |t| iff V̂ (s) � V̂ (t);

• usual clauses for ¬ and ∧.

Given a labeled comparison algebra model B = 〈B,�, F, V 〉 the satisfaction relation � can
be extended to LFin,Inf with the extra clauses:

• B � Fin(s) iff V̂ (s) ∈ F ;

• B � Inf(s) iff V̂ (s) 6∈ F .
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While � is intended to compare cardinality and F is intended to include exactly finite
elements, the requirements given above are not enough to let us know that it is cardinality
that � is comparing and that elements in F are precisely those that are finite. Given a
measure algebra 〈B, µ〉, we can easily build a comparison algebra 〈B,�〉 by taking a � b if
and only if µ(a) ≥ µ(b) and further a labeled measure algebra 〈B,�, F 〉 by taking F = {b ∈
B | µ(b) is finite}. But for the other direction, to fix that � is comparing cardinality and F
captures finiteness, we need some extra conditions. We state this in terms of a representation
theorem.

Definition 4.4.6. A comparison algebra 〈B,�〉 (labeled comparison algebra 〈B,�, F 〉) is
represented by a cardinal measure µ on B if for all a, b ∈ B, we have a � b iff µ(a) ≥ µ(b)
(and F = {b ∈ B | µ(b) is finite}). We also say 〈B,�〉 or 〈B,�, F 〉 is represented by a
measure algebra B′ when it is represented by µ and B′ = 〈B, µ〉. A (labeled) comparison
algebra model is representable if its (labeled) comparison algebra part is representable.

Clearly if a finite (labeled) comparison algebra model 〈B, V 〉 is represented by a measure
algebra 〈B′, V 〉, then B ≡LFin,Inf

B′. Hence if ϕ is satisfiable on a finite representable (labeled)
comparison algebra model, then, in light of Proposition 4.4.3, ϕ is satisfiable on a field of
sets model.

Before proving the full representation, we recall the following classic theorem on when
an ordering is representable by a probability measure.

Theorem 4.4.7 (Kraft, Pratt, Seidenberg [109], Theorem 2). For any finite Boolean algebra
B with > as the top element and ⊥ the bottom element and any binary relation � on B,
there is a probability measure µ on B such that for all a, b ∈ B, a � b iff µ(a) ≥ µ(b), if and
only if the following conditions are satisfied:

• not ⊥ � >;

• for all b ∈ B, b � ⊥;

• � is transitive, and for any a, b ∈ B, a � b or b � a;

• for any two sequences of elements a1, a2, . . . , an and b1, b2, . . . , bn from B of equal length,
if every atom of B is below (in the order of the Boolean algebra) exactly as many a’s
as b’s, and if ai � bi for all i ∈ {1, . . . , n− 1}, then bn � an.

The fourth condition, known also as finite cancellation, is precisely the truth condition of
FCn. Put more algebraically, if we represent elements in B as their characteristic functions
over the atoms of B and further identify those functions with vectors of 0’s and 1’s, then
the vector sum of a’s being the same as the vector sum of b’s implies that the sum of the
probabilities of a’s is also equal to the sum of the probabilities of b’s. This is of course because
vector sums count overlaps properly, unlike unions. Dana Scott used this representation in
[142] and provided a lucid proof of the above theorem. It can also be observed from the
proof in [109] (see Corollary 2) or [142] that the probability measure µ can be turned into an
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additive function to non-negative rational numbers and then to natural numbers by scaling,
since µ is obtained by solving a finite system of (possibly strict) linear inequalities with
rational coefficients.

With this component dealing with finite elements, we can prove the representation the-
orem for both finite and infinite elements.

Theorem 4.4.8. A finite labeled comparison algebra B = 〈B,�, F 〉 is represented by some
cardinal measure µ on B if and only if the following conditions hold:

(1) F is an ideal;

(2) elements in F satisfy the finite cancellation condition in Theorem 4.4.7: for any two
sequences of elements a1, a2, . . . , an and b1, b2, . . . , bn from F of equal length, if every
atom of B is below (in the order of the Boolean algebra) exactly as many a’s as b’s,
and if ai � bi for all i ∈ {1, . . . , n− 1}, then bn � an;

(3) for any a, b, c ∈ B such that a 6∈ F , if a � b and a � c, then a � b ∨B c;

(4) for any a, b ∈ B, if a ∈ F and b 6∈ F , then b � a and not a � b.

It is then easy to see that a finite comparison algebra B = 〈B,�〉 is represented by µ if and
only if there exists an F ⊆ B such that 〈B,�, F 〉 is represented by µ.

Proof. For the proof, we use the following definitions. For any Boolean algebra B and b ∈ B,
let At(B) be the set of all atoms in B and At(b) the set of atoms below b. Given a preorder
� on B and b ∈ B, let [b] be {b′ ∈ B | b′ � b and b � b′}. Then define Rank(b) for b ∈ B
to be the number of atoms strictly smaller than b in the order �, modulo equivalence, i.e.,
the cardinality of the set {[a] | a ∈ At(B), b � a}. Finally, let maxAt(b) be any one of the
�-maximal elements in At(b), if there is such an element.

Since B is finite, F is a finite ideal and hence principal. Then the quotient B|F becomes
a finite Boolean algebra with a binary relation that satisfies all the conditions required
in Theorem 4.4.7 because we required that the finite cancellation condition holds for all
elements in F . Hence there is an additive measure function µ0 from B|F to N such that for
any b1, b2 ∈ B|F , we have b1 � b2 iff µ0(b1) ≥ µ0(b2).

If B = B|F then we are done, so we now consider the case where B 6= B|F . Consider
an arbitrary element b outside B|F . Because B is finite, it is atomic and hence At(b) must
contain an atom that is not in B|F . Then by (4) this atom is strictly greater in � than all
atoms in B|F . Hence maxAt(b) is outside B|F (it exists because B is finite).

By definition, maxAt(b) is an atom under b. Thus b � maxAt(b). But because b 6∈ F , we
can also show that maxAt(b) � b using condition (3). To see this, list At(b) as b1, b2, . . . , bn.
Then we have the following inductive argument:

• maxAt(b) � b1;
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(111) : 4

(011) : 4 (101) : 4 (110) : 4

(001) : 1 (010) : 2 (100) : 3

(000) : 0

Figure 4.4: A non-representable comparison algebra

• supposing maxAt(b) �
∨k
i=1 bi, then together with maxAt(b) � bk+1 and condition

(3), maxAt(b) �
∨k
i=1 bi ∨ bk+1 =

∨k+1
i=1 bi.

Hence at the end of the induction we have maxAt(b) �
∨n
i=1 bi = b.

Now define a measure µ on B as follows:

µ(b) =

{
µ0(b) b ∈ B|F
ℵRank(maxAt(b)) b 6∈ B|F .

It is not hard to see that this is indeed a measure function on B. Moreover, we now show
that for any b1, b2 ∈ B, we have b1 � b2 iff µ(b1) ≥ µ(b2):

• if both b1, b2 ∈ B|F , then we can use µ0;

• if both b1, b2 6∈ B|F , then b1 � b2 iff maxAt(b1) � maxAt(b2) iff Rank(maxAt(b1)) ≥
Rank(maxAt(b2)) iff µ(b1) ≥ µ(b2);

• if b1 ∈ B|F and b2 6∈ B|F , then b2 � b1 by condition (4), but it is also trivially true
that µ(b2) ≥ µ(b1).

The above theorem again only works for finite models. Representation of infinite models
requires different conditions and techniques to prove. We will review this as an open problem
in § 4.8.
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Example 4.4.9. Figure 4.4.2 presents a comparison algebra that cannot be represented
by any cardinal measure. The number after the colon in each node is the rank of that
node in �; this determines the preorder �, as x � y iff the rank of x is at least that of
y. We also group the nodes of the same rank into shaded areas. We can then see that if
� were representable by a cardinal measure, all nodes would be finite. To see this, note
that (110) is the join of (010) and (100), but (110) is also strictly greater than both of
them, which implies that (110) is finite. Now (110) is of rank 4, which means it is as large
as any other set, so all the sets would be finite. However, we can also see that, letting
a1 = (101), a2 = (010), b1 = (110), b2 = (001), the finite cancellation condition fails. First,
every atom is below exactly one of a1 and a2 and also exactly one of b1 or b2. Thus, the
antecedent of finite cancellation is true. But the consequent is false, as a1 � a2 but not
b2 � b1. The non-representability of this comparison algebra also implies, by the previous
theorem, that the required ideal does not exist.

4.4.3 Effective finite model property

In the previous two subsections, we saw that our representation theorems (Proposition 4.4.3
and Theorem 4.4.8) only work on finite models. However, to make a formula true, we
only need finite models. In fact, we can effectively bound the size of satisfying models
for any formula that is satisfiable by some (possibly infinite) field of sets model. Since the
construction of a finite satisfying model will be used later, we provide a systematic treatment,
starting with the following definition.

Definition 4.4.10. Let B be an algebra-based model and ∆ ⊆ Φ. B is adapted to ∆ if V̂ is
surjective from T (∆) to the underlying Boolean algebra B in B.

The importance of this definition is that for any algebra-based model B that is adapted to
∆, every element b ∈ B is named in the sense that there exists t ∈ T (∆) such that V̂ (t) = b.
It is easy to see that an algebra-based model adapted to a finite set ∆ is finite. To be more
precise, when ∆ ⊆ Φ is finite, let T0(∆) be the set of all distinct terms in ∆ in disjunctive
normal form with no repetition of conjuncts or disjuncts. T0(∆) is finite, and using Boolean

identities, for every term t ∈ T (∆), there is a term t′ ∈ T0(∆) such that V̂ (t) is always the

same as V̂ (t′). Thus, in any model, V̂ (T (∆)) = V̂ (T0(∆)) is finite.

Proposition 4.4.11. Fix a finite set ∆ ⊆ Φ. For any measure (resp. comparison, labeled
comparison) algebra model B, there is a measure (resp. comparison, labeled comparison)
algebra model B∆ that is adapted to ∆ and satisfies B∆ ≡L(∆) B.

Proof. For any measure algebra model B = 〈B, µ, V 〉, define B∆ = 〈B∆, µ∆, V∆〉 where the

B∆ is the subalgebra of B with V̂ (T (∆)) as the carrier set, µ∆ is the restriction of µ to V̂ ,
and V∆ is defined as:

V∆(a) =

{
V (a) a ∈ ∆

⊥B a 6∈ ∆.
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Similarly, for any comparison algebra model B = 〈B,�, V 〉, we can define B∆ = 〈B∆,�∆, V∆〉
where now �∆ is the restriction of � to V̂ (T (∆)). It is not hard to see that B∆ ≡L(∆) B.

For labeled comparison algebras, we just need to further define F∆ = F ∩ V̂ (T (∆)).

Now we prove the effective finite model property.

Theorem 4.4.12. For any formula ϕ ∈ LFin,Inf , ϕ is satisfied by some field of sets model if
and only if it is satisfied by a labeled comparison algebra model 〈B,�, F, V 〉 such that:

1. B is finite with at most 2|∆| many atoms where ∆ is the set of set labels appearing in
ϕ, and

2. 〈B,�, F 〉 is representable (i.e., satisfies the conditions listed in Theorem 4.4.8).

The right-to-left direction does not require any bound on the size of B, so long as it is finite.
In addition, it is decidable whether a finite labeled comparison algebra model is representable.
The complexity of deciding whether a finite labeled comparison algebra model is representable
is NP in the size of the underlying Boolean algebra of the labeled comparison algebra model.

Proof. The right-to-left direction is immediate by Theorem 4.4.8 and Proposition 4.4.3. For
the left-to-right direction, suppose M = 〈X,F , V 〉� ϕ, and let ∆ be the set of set labels
appearing in ϕ. As we described above, the field of sets model can be naturally turned into
a measure algebra model B = 〈F , µ, V 〉 and then into a labeled comparison algebra model
C = 〈F ,�, F, V 〉 such that M ≡LFin,Inf

B, C. By adapting C to ∆ using Proposition 4.4.11,
we obtain C∆ that satisfies the same formulas in LFin,Inf(∆), which includes ϕ. Note that C∆

is represented by B∆. Also, since B∆ is adapted to ∆, the size of the Boolean algebra base
of B∆ is at most 22|∆| , and there are at most 2|∆| many atoms.

To decide whether a finite labeled comparison algebra 〈B,�, F, V 〉 is representable, the
only non-trivial part is to verify whether B|F satisfies the finite cancellation condition. How-
ever, rather than using this characterization, it is easier to naively check the definition of
representability; this is an integer linear programming problem with at most 2|∆| (the number

of atoms in B) many variables and (22|∆|)2 many inequalities, the coefficients of which are
all in {0, 1,−1}. According to a standard result on integer linear programming (see [134]),
the complexity is NP in the size of B.

As a simple corollary, the sets of sentences in L or LFin,Inf valid on all field of sets models
are decidable, as to decide whether ϕ is satisfiable (or equivalently whether ¬ϕ is valid) we

can enumerate all labeled comparison algebra models of size up to 22|∆| and for each one
first check if it is representable and then check if ϕ is satisfied. If ϕ is never satisfied in this
procedure, then ϕ is in fact unsatisfiable.
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4.5 Canonical comparison algebra models

This section is devoted to the construction of canonical comparison algebra models. In Def-
inition 4.2.7, we formulated a logic that captures our basic intuitions about the comparison
of “sizes” of sets. For example, (BC2) says that the complement of the empty set is strictly
larger than the empty set, which we should assume as otherwise all set terms would simply
be empty. (BC3) and (BC4) together provide the order structure of the “sizes” of sets: it
is a total preorder. (BC5) and (BC6) gives two basic interactions between set construction
and size comparison: (BC5) says that if a set is a subset of another, then the size of the
subset should be no greater than that of the superset, and (BC6) says that the union of two
empty sets (those with sizes no greater than the empty set) is still empty. (This is the union
of the empty set with itself, though two different set terms denote it.)

Those axioms may capture some notion of “size” comparison, but they are not enough to
completely capture the notion of “cardinality” comparison. Loosely speaking, we may treat
“cardinality” as a special kind of “size”, less general but perhaps more interesting, due to
the distinct behaviors of finite and infinite cardinalities. The following theorem says that the
basic comparison logic BasicCompLogic captures precisely the notion of “size” comparison in
comparison algebra models defined in Definition 4.4.4. This will be useful, as to show that
CardCompLogic captures the notion of “cardinality” comparison, we only need to show that
the difference between the two logics captures the difference between the models: the extra
properties identified in Theorem 4.4.8 that make a comparison algebra model representable
by a cardinal measure.

Lemma 4.5.1. BasicCompLogic derives the following for terms s, t, u, s′, t′:

1. s = t if it is provable in the equational theory of Boolean algebras.

2. ⊆ is a preorder: s ⊆ s, (s ⊆ t ∧ t ⊆ u)→ s ⊆ u.

3. = is an equivalence relation: s = s, s = t→ t = s, (s = t ∧ t = u)→ s = u.

4. ⊆ works as the subset relation: s ⊆ t → tc ⊆ sc, s ⊆ t → (s ∩ u) ⊆ t, (s ⊆ t ∧ s ⊆
u)→ s ⊆ (t ∩ u), and (s ⊆ u ∧ t ⊆ u)→ (s ∪ t) ⊆ u.

5. = is a congruence relation: s = t → sc = tc and (s = s′ ∧ t = t′) → (s ∩ t) =
(s′∩ t′). With axioms in CardCompLogicFin,Inf , s = t→ (Fin(s)↔ Fin(t)) and s = t→
(Inf(s)↔ Inf(t)) are also derivable.

6. Substitution of equal terms: s = t → (ϕ ↔ ψ) for all formulas ϕ and ψ in L where
ψ is obtained from ϕ by replacing one or more occurrences of s by t. When using
CardCompLogicFin,Inf , this substitution schema is valid for all ϕ ∈ LFin,Inf .

Proof. If s = t is provable in the equational theory of Boolean algebras, then so are 0 = s∩tc
and 0 = t ∩ sc. Then by axiom (BC8), both |∅| ≥ |s ∩ tc| and |∅| ≥ |t ∩ sc| are provable.
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But they are abbreviated by s ⊆ t and t ⊆ s. Putting them together, we have that s = t is
provable.

Note that s = s is obviously provable. So we have s ⊆ s as well. Now assume s ⊆ t
and t ⊆ u. They abbreviate |∅| ≥ |s ∩ tc| and |∅| ≥ |t ∩ uc|. By (BC6), we have |∅| ≥
|(s ∩ tc) ∪ (t ∩ uc)|. Note that the following is in the equational theory of Boolean algebras
by distinguishing cases t and tc:

0 = (s ∩ uc) ∩ ((s ∩ tc) ∪ (t ∩ uc))c.

Hence by (BC7), we have (s∩ uc) ⊆ ((s∩ tc)∪ (t∩ uc)). Then by (BC5), we have |s∩ uc| ≤
|(s ∩ tc) ∪ (t ∩ uc)|. Combining this with what we derived by (BC6) above, using (BC4) we
have |∅| ≥ |s ∩ uc|, which is just s ⊆ u.

Part 3 follows directly from part 2 with just a few Boolean manipulations. Part 4 is also
not hard using the same technique we used in part 2. The congruence over complementation
and union in part 5 follows from part 4 by Boolean manipulations. The congruence over
Fin is an easy consequence of (A3). Note also that using (A1), (A4), and (BC5), we have
(Inf(s) ∧ s ⊆ t)→ Inf(t). So we can also easily derive the congruence over Inf.

Finally, to show substitution, we need to use two inductions. First, an induction on terms
using part 5 will show that for any four terms s, t, u0, u1 with u1 being the result of replacing
some occurrences of s in u0 by t, we can derive s = t → u0 = u1. Obviously for any terms
s, t, we can derive s = t → |s| = |t|. So we proved substitution for atomic sentences in L.
When we are in CardCompLogicFin,Inf , part 5 also provides substitution for the rest of the
atomic sentences in LFin,Inf . Then a simple induction on formulas will do, since ↔ is again
congruential over ¬ and ∧.

Theorem 4.5.2. For any set X of L-sentences that is maximally consistent relative to
BasicCompLogic, there exists a comparison algebra model CX such that CX � X.

Proof. For terms s and t, define s ⊆X t iff s ⊆ t ∈ X, s �X t iff |s| ≥ |t| ∈ X, s =X t iff
s = t ∈ X, and s 'X t iff s �X t and t �X s, for all s, t ∈ T (Φ). We also write s ≡ t when
s = t is provable in the equational theory of Boolean algebras.

Note that by the maximality of X and Lemma 4.5.1, =X is a congruence relation on
T (Φ). Let BX = 〈T (Φ)/=X , ·c,u〉 be the homomorphic image of the term algebra T (Φ),
with the homomorphism [·]=X that sends a term to its equivalence class under =X , and
[s]c=X = [sc]=X , [s]=X u [t]=X = [s ∩ t]=X . Since =X extends ≡ (by Lemma 4.5.1 again), BX
is a Boolean algebra. The bottom element ⊥BX is obviously [∅]=X as it is the meet of [t]=X
and [tc]=X , but the latter is just [t]c=X . Regarding the Boolean lattice ordering in BX , note
that:

[s]=X ≤BX [t]=X ⇔ [s]=X u [t]c=X = ⊥BX
⇔ [s ∩ tc]=X = [∅]=X
⇔ s ∩ tc =X ∅.
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It is also not hard to see that s ∩ tc =X ∅ iff s ⊆X t since BasicCompLogic derives s ∩ tc =
∅↔ s ⊆ t. Hence ≤BX is just ⊆X .

Now we add a comparison structure to BX . Note that by (BC5), 'X extends =X .
So we can take the quotient �X/=X , so that [s]=X �X/=X [t]=X iff s �X t. Let CX =
〈BX ,�X/=X , [·]=X 〉. Now we show that CX is a comparison algebra model:

• We have just shown that ≤BX is identical to ⊆X . By (BC5), �X extends ⊇X . So �X
extends ≥BX .

• Suppose ⊥BX�X/=X [s]=X . Then by definition, ∅ �X s. What we need is [s]=X = ⊥BX .
To show this, we just need BasicCompLogic to derive |∅| ≥ |s| → s = ∅ as the
antecedent is given by ∅ �X s. First, ∅ ⊆ s is derivable trivially. To derive s ⊆ ∅,
we need |∅| ≥ |s ∩ ∅c| by definition. Obviously s ∩ ∅ ≡ s. So we can substitute and
then use the assumption that |∅| ≥ |s|.

Finally, we verify that ϕ ∈ X iff CX � ϕ. For the atomic case, consider a formula |s| ≥ |t|
for arbitrary s, t ∈ T (Φ). Then |s| ≥ |t| ∈ X iff s �X t iff [s]=X �X/=X [t]=X iff CX � |s| ≥ |t|.
The induction is trivial.

4.6 Completeness with predicates for infinite and

finite sets

In this short section, we will prove Theorem 4.2.10, which says that the cardinality compari-
son logic with Fin and Inf, CardCompLogicFin,Inf , is sound and complete with respect to field
of sets models. It is not hard to check that it is sound with respect to field of sets models as
well as measure algebra models and labeled comparison algebra models. For completeness,
we follow the standard strategy by starting with a consistent formula ϕ, building a canonical
labeled comparison model satisfying ϕ, adapting it to the set labels appearing in ϕ so that
we obtain a finite model, and finally using the fact that the canonical model must also satisfy
all the axioms to show that it is representable. By Theorem 4.4.12, this means ϕ is satisfied
by a field of sets model.

Theorem 4.2.10. CardCompLogicFin,Inf is sound and complete with respect to the class of
all measure algebra models and also the class of all field of sets models.

Proof. Soundness is almost trivial. For completeness, we show that every formula ϕ that is
consistent in CardCompLogicFin,Inf is also satisfied by a measure algebra model. Since ϕ is
consistent, let X be a maximally consistent set that contains ϕ.

Since CardCompLogicFin,Inf includes BasicCompLogic ⊆ L, X|L = X ∩ L is a maximally
consistent set for the logic BasicCompLogic in L. By the canonical model theorem (Theorem
4.5.2),

C = 〈〈T (Φ)/=X|L
, ·c,u〉,�X|L/=X|L

, [·]=X|L 〉
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is a comparison algebra model and C � X|L. Now we need to build an F ⊆ T (Φ)/
X|L

to

interpret Fin and Inf. Define [s]=X|L ∈ F iff Fin(s) ∈ X. For this F to be well defined, we

need to show that if s =X|L t, then Fin(s) ∈ X iff Fin(t) ∈ X. As shown in the beginning of
the proof of Theorem 4.5.2, =X|L is extended by 'X|L . Thus, once s =X|L t, both |s| ≥ |t|
and |t| ≥ |s| are in X|L. By axiom (A3) in CardCompLogicFin,Inf and the maximality of X,
this implies Fin(s) ∈ X iff Fin(t) ∈ X.

So we can define F = {[s]=X|L | Fin(s) ∈ X}. Then

CF = 〈〈T (Φ)/=X|L
, ·c,u〉,�X|L/=X|L

, F, [·]=X|L 〉

is a labeled comparison algebra model. For any s, t ∈ T (Φ), CF � |s| ≥ |t| iff C � |s| ≥ |t| iff
|s| ≥ |t| ∈ X; and CF � Fin(s) iff Fin(s) ∈ X. Because of axiom (A1) in CardCompLogicFin,Inf ,
Inf(s) ∈ X iff Fin(s) 6∈ X. So it follows that CF � Inf(s) iff s 6∈ F iff Fin(s) 6∈ X iff
Inf(s) ∈ X. Then a simple inductive argument on LFin,Inf shows that CF � X. Hence, in
particular, CF � ϕ. In other words, ϕ is satisfied by the labeled comparison algebra model
CF that also satisfies the axioms of CardCompLogicFin,Inf .

Now we adapt CF to the finite set ∆ of the set labels appearing in ϕ. By Proposition
4.4.11, the resulting model CF∆ is finite and satisfies the same formulas in LFin,Inf as CF does.
This implies that:

• CF∆ � ϕ.

• Given that CF∆ is adapted to ∆, every element b ∈ CF∆ is equal to V̂ (t) for some t ∈ T (∆),
where V is the valuation in CF∆.

• CF∆ is representable, using Theorem 4.4.8. As we noted before Proposition 4.4.11, it is
finite. Now we need to check the four conditions listed in Theorem 4.4.8. Condition
(1) is guaranteed since all instances of (A2) and (A3) are theorems and hence true of
CF∆, which means we can apply (A2) and (A3) to every element as they are all named
by terms. Hence it is clear that condition (1) is true. Similarly conditions (2), (3), and
(4) are guaranteed by axioms (A5), (A6), and (A4), respectively.

Then by Theorem 4.4.12, ϕ is satisfied by a field of sets model. This completes the proof of
completeness.

4.7 Completeness without predicates for infinite and

finite sets

In this section, we define the logic CardCompLogic and prove Theorem 4.2.4.

Theorem 4.2.4. The cardinality comparison logic CardCompLogic is sound and complete
with respect to field of sets models.
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By earlier results, it suffices to consider only measure algebra models. The key idea is
to find two formulas Fin and Inf in L to replace the two primitive predicates, Fin and Inf,
added in LFin,Inf . The general strategy is as follows:

1. Show that there is a way to define formulas Fin(u) and Inf(u) in L, instead of adding
the two extra predicates, to capture the finiteness or infiniteness of u on all adapted
measure algebra models except a very special class of models, which we call flexible
models in § 4.7.1. We use the name “flexible” because in those models we can change
the cardinality of an element to be anything finite or infinite without changing the
comparative structure.

2. Then, in § 4.7.2, we give the axioms for CardCompLogic using the formulas Fin and Inf
defined in § 4.7.1, and we show that any (adapted) comparison algebra model satisfying
these axioms can be turned into a measure algebra model. This uses Theorem 4.4.8
and splits into two cases depending on whether the model is flexible or not.

3. Finally, in § 4.7.3, given a formula ϕ consistent with CardCompLogic, we use the canoni-
cal model construction of Theorem 4.5.2 to build a comparison algebra model satisfying
ϕ. Then, using previous results in this section, we can assume that the model is adapted
and hence turn it into a measure algebra model.

4.7.1 Flexible models

In this subsection, we define flexible models and show how they appear when we try to define
Fin and Inf in L. Essentially, flexible models are models where our definition, or in fact any
definition to capture Fin and Inf in language L, fails. This is because we can make the
cardinality of an element in a flexible model anything we like, be it finite or infinite, without
changing the formulas in L satisfied by that model.

Definition 4.7.2. A finite measure algebra model B = 〈B, µ, V 〉 is flexible if there is an
atom a in B whose measure is strictly smaller than the measure of all other atoms in B, and
a is the only atom in B with finite measure, if there is any atom with finite measure.

The following two propositions show why we call such models flexible.

Proposition 4.7.3. If B = 〈B, µ, V 〉 is a flexible finite measure algebra model, then for any
non-bottom element b ∈ B, we have

µ(b) = max{µ(a) | a ∈ At(B), a ≤ b}.

Proof. Write b as a finite join of the atoms below it: b = a1 ∨ · · · ∨ an. Then µ(b) =
µ(a1) + · · ·+ µ(an). If b is an atom, then µ(b) = µ(a1); otherwise, n ≥ 2 and at least one of
µ(a1), . . . , µ(an) is infinite, so

µ(b) = max{µ(a1), . . . , µ(an)} = max{µ(a) | a ∈ At(B), a ≤ b}.
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Proposition 4.7.4. For any flexible finite measure algebra model B = 〈B, µ, V 〉 and cardinal
κ, if a0 is the atom of B with the smallest measure, then there is a flexible finite measure
algebra model C = 〈B, ν, V 〉 such that:

1. B ≡L(∆) C;

2. ν(a0) = κ.

In other words, for any flexible finite measure algebra model, the measure of the smallest
atom does not matter, if we are only concerned with the truth of formulas in L(∆).

Proof. First, B ≡L(∆) C when for any b1, b2 ∈ B, we have µ(b1) ≥ µ(b2) iff ν(b1) ≥ ν(b2).
But notice that by Proposition 4.7.3, both µ(b) and ν(b) are calculated by taking maxi-

mums of the measures of the atoms below b, given that the 〈B, ν, V 〉 is flexible. This means
the condition for equivalence can be weakened to: for any two atoms a1, a2 ∈ B, we have
µ(a1) ≥ µ(a2) iff ν(a1) ≥ ν(a2). So we only need to have an order-preserving map for the
measures of all atoms in B while keeping the flexibility.

Thus, we can define ν on the atoms of B as follows:

ν(a) =

{
κ if a = a0, the smallest atom

ℵκ+i if |{µ(a′) | a′ ∈ At(B), µ(a′) < µ(a)}| = i

where to compute ℵκ+i we view κ as an ordinal, i.e., as the least order type of a well-order
of size κ. It is not hard to verify that C = 〈B, ν, V 〉 is still a flexible finite measure algebra
model and that for any a1, a2 ∈ At(b), we have µ(a1) ≤ µ(a2) iff ν(a1) ≤ ν(a2).

Example 4.7.5. Figure 4.7.1 displays a particular flexible measure algebra (flexible model
without the valuation). The comparison structure (illustrated by shaded areas in the same
way as in Example 4.4.9) is the same regardless of what the cardinal κ is so long as 1 ≤ κ ≤
ℵ1.

Now we capture Fin and Inf in the language L by the following.

Definition 4.7.6. When ∆ ⊆ Φ is finite, define the Fin∆(u) for any set term u ∈ T (∆) as:

Fin∆(u) := |∅| ≥ |u| ∨
∨

s,t∈T0(∆)

|s ∪ t| ≥ |u| ∧ |s ∪ t| > |s| ≥ |t|

and then define Inf∆(u) for any set term u ∈ T (∆) as

Inf∆(u) :=
∨

s,t∈T0(∆)

(t 6⊆ s ∧ |u| ≥ |s| ≥ |s ∪ t|) .

Here ri ranges over elements in R, and si, ti range over elements in sequences S and T ,
respectively. When no confusion arises, we may drop the subscript ∆.
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|(111)| = ℵ3

|(011)| = ℵ2 |(101)| = ℵ3 |(110)| = ℵ3

|(001)| = κ |(010)| = ℵ2 |(100)| = ℵ3

|(000)| = 0

Figure 4.5: A flexible measure algebra

To understand this definition, recall that by basic cardinal arithmetic, the distinct feature
of infinite sets is so-called absorption: if a set X is infinite, then |X| ≥ |X ∪ Y | whenever
|X| ≥ |Y |, even if Y is not a subset of X. On the other hand, when Y is not a subset of X
and yet |X| ≥ |X ∪ Y |, then X must be infinite. Hence, we can witness X’s finiteness by a
set Y such that |X ∪ Y | > |X| ≥ |Y |. Note that this also shows that Y , and thus X ∪ Y , is
finite, and moreover any set smaller than X ∪ Y is also finite. Similarly, we can witness X’s
infiniteness by a set Y that is not a subset of X yet for which |X| ≥ |X ∪ Y |. Then, any
set as large as X must also be infinite. Our definitions of Fin∆ and Inf∆ are based on these
simple observations.

The following two propositions tell us precisely to what extent these formulas capture
Fin and Inf. In sum, their truth forces the respective properties (finiteness and infiniteness)
on adapted models, but not vice versa. However, (in adapted models) the other direction
fails only on the smallest atom of flexible models. This is the best we can do in L, due to
Proposition 4.7.4 and the existence of flexible models.

Proposition 4.7.7. Fix a finite ∆ ⊆ Φ. For any adapted measure algebra model B =
〈B, µ, V 〉:

1. if B � Fin∆(u), then µ(V̂ (u)) is finite;

2. if B � ¬Fin∆(u) and yet µ(V̂ (u)) is finite, then B is flexible and V̂ (u) is the smallest
atom in B.

Proof. As we reasoned above, the first claim is easy. For the second claim, assume for
contradiction that V̂ (u) is not an atom in B. V̂ (u) cannot be the bottom element, since
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then Fin∆(u) is trivially true. So V̂ (u) is neither the bottom nor an atom. This means there

are two non-bottom elements a, b ∈ B that are below V̂ (u), whose join is V̂ (u), whose meet

is bottom, and µ(a) ≥ µ(b). Since µ(V̂ (u)) is finite, µ(a) and µ(b) must also be finite. Then
µ(a) ≥ µ(b) but µ(a) < µ(a ∨ b) = µ(a) + µ(b), since b is not bottom and µ(b) > 0. From
this, we have:

• µ(a ∨ b) > µ(a) ≥ µ(b);

• V̂ (u) = a ∨ b.

So B � Fin∆(u), a contradiction. Here, we are using the fact that V̂ (T (∆)) = V̂ (T0(∆)) = B

to get terms s and t with V̂ (s) = a and V̂ (t) = b.

Now assume again for contradiction that V̂ (u) is not the only atom finite in measure

and in particular that a ∈ At(B), a 6= V̂ (u), and µ(a) is finite. Then a ∧ V̂ (u) = 0 and

µ(a ∨ V̂ (u)) = µ(a) + µ(V̂ (u)) > µ(V̂ (u)), since a is not bottom and µ(a) > 0. Then we

again have a witness for Fin∆(u), depending on which of V̂ (u) and a is larger. For example,

if a is larger, then V̂ (u) is smaller than a, a does not absorb a smaller element V̂ (u), and

V̂ (u) is smaller than the join of V̂ (u) and a. Thus, we contradict B � ¬Fin∆(u).

In summary, we have that V̂ (u) is the only finite atom in B, which immediately shows

that V̂ (u) is the smallest atom in B and B is flexible.

Proposition 4.7.8. Fix a finite ∆ ⊆ Φ. For any adapted measure algebra model B =
〈B, µ, V 〉:

1. if B � Inf∆(u), then µ(V̂ (u)) is infinite;

2. if B � ¬Inf∆(u) and yet µ(V̂ (u)) is infinite, then B is flexible and V̂ (u) is the smallest
atom in B.

Proof. After expanding the semantics, it is easy to see that Inf∆(u) expresses that there is

an element b ∈ B such that b absorbs an element c not contained in b, and V̂ (u) is no smaller
than b in measure. The elements b and c are obtained by first picking out the true disjunct
(t 6⊆ s ∧ |u| ≥ |s| ≥ |s ∪ t|) of Inf∆(u) and then taking b and c to be just V̂ (s) and V̂ (t),
respectively. Then t 6⊆ s being true means that c is not contained in b, and |s| ≥ |s ∪ t|
means c absorbs b. Hence µ(b) must be infinite, and since |u| ≥ |s|, µ(V̂ (u)) is infinite too.

For the second claim, first suppose that there is an atom a ∈ At(B) with µ(a) finite.
Then for any atom b ∈ At(B) that is infinite in measure, a 6⊆ b and µ(b) ≥ µ(b ∨ a). Now

µ(V̂ (u)) is infinite, so V̂ (u) must have an infinite atom b below it. Then Inf∆(u) is witnessed
by b and a, a contradiction. Thus, there is no finite atom in B.

Now suppose there is no strictly smallest atom—for any atom b, there is another atom
a such that µ(b) ≥ µ(a). Then a 6⊆ b, and because they are both infinite in measure,
µ(b) ≥ max{µ(b), µ(a)} = µ(b∨a). So by the same reasoning as the previous case, Inf∆(u) is
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witnessed, and we have a contradiction. Thus, there is also a strictly smallest infinite atom
a0 in B.

Finally, suppose V̂ (u) 6= a0. Then V̂ (u) must be above another atom b, as it is infinite in
measure and cannot be bottom. But then a0 6⊆ b and µ(b) ≥ max{µ(a0), µ(b)} = µ(b ∨ a0).

So Inf∆(u) is still witnessed. In sum, V̂ (u) is the strictly smallest infinite atom in B, so B is
flexible.

4.7.2 Representation using axioms of the language

It is now time to give the axioms for cardinality comparison in L that are not already in
BasicCompLogic.

Definition 4.7.9. Where ∆ ⊆ Φ is finite, define Axiom(∆) as the set containing all of the
following formulas for all u, s, t ∈ T0(∆):

(C1) ¬(Fin∆(u) ∧ Inf∆(u));

(C2) (¬Fin∆(u) ∧ ¬Inf∆(u))→
∧
t∈T0(∆)(|u| ≥ |t| → (t = ∅ ∨ t = u));

(C3)
∧n
i=1(Fin∆(si) ∧ Fin∆(ti))→ FCn(s1, . . . , sn, t1, . . . tn);

(C4) Inf∆(u)→ ((|u| ≥ |s| ∧ |u| ≥ |t|)→ |u| ≥ |s ∪ t|);

(C5) (Inf∆(s) ∧ Fin∆(t))→ |s| > |t|,

where n ≥ 1, and s1, . . . , sn, t1, . . . , tn ∈ T0(∆) are also all arbitrary.

Given that Fin and Inf do not fully capture Fin and Inf, we cannot use Fin∆(u)⊕ Inf∆(u)
like axiom (A1) for Fin and Inf, since it is outright invalid among all adapted measure algebra
models. Instead, we have (C1) and (C2) here. Put together, they ensure that the only case
when Fin∆(u) and Inf∆(u) fail to capture Fin and Inf is when we are in a flexible model and
u is the smallest atom.

As we have done for CardCompLogicFin,Inf , we prove a representation theorem using
Axiom(∆). In other words, we show that Axiom(∆) is enough to force the comparison
relation � in an adapted comparison algebra model to be a comparison of cardinalities. To
start, we need the following straightforward lemma.

Lemma 4.7.10. Fix a finite ∆ ⊆ Φ. For any comparison algebra model B and s, t ∈ T (∆):

1. B � |∅| ≥ |t| iff V (t) = ⊥B;

2. B � t ⊆ s iff V (t) ≤B V (s);

3. B � t = s iff V (t) = V (s);

4. if B � Fin∆(t) ∧ s ⊆ t, then B � Fin∆(s);
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5. if B � Fin∆(s) ∧ Fin∆(t), then B � Fin∆(s ∪ t);

6. if B � Inf∆(t) ∧ |s| ≥ |t|, then B � Inf∆(s).

Proof. The first item follows from the requirement that ⊥B 6� b for all b ∈ B \ {⊥B}. The
second and third follow easily.

For the fourth item, suppose B � Fin∆(t)∧s ⊆ t. Then by definition, we have terms ri as
the witnesses of the finiteness of s. It is easy to see that ri∩s’s are witnesses of the finiteness
of s. Similarly for the fifth item, the witnesses of s ∪ t are just the union of witnesses for s
and witnesses for t. The sixth item is even easier, as the same witness works.

Theorem 4.7.11. Fix a finite ∆ ⊆ Φ. Let B be an adapted comparison algebra model such
that B � Axiom(∆). Then there is a µ such that m(B) = 〈B, µ, V 〉 is a finite measure algebra
model representing B and hence B ≡L(∆) m(B).

Proof. Since B is adapted to ∆, every element in B is named by some term in T (∆). Thus,
given b ∈ B we may write ϕ(b) for the sentence ϕ(tb) where tb ∈ T (∆) and V (tb) = b. By
axiom (C1) in Axiom(∆), there are two cases:

Case 1 there is a b ∈ B such that B � ¬(Fin∆(b) ∨ Inf∆(b));

Case 2 for any b ∈ B, B � Fin∆(b)⊕ Inf∆(b).

In both cases, we want to obtain an F ⊆ B, so that using F as the labeling set, 〈B,�, F, V 〉
is a labeled comparison algebra model satisfying all the conditions in Theorem 4.4.8.

Case 1: First, we show that there is a unique atom a0 ∈ At(B) such that B �
¬(Fin∆(a0)∨ Inf∆(a0)), and that for all other atoms b, we have b � a0. Suppose for a0, a1 ∈ B
that we have both B � ¬Fin∆(ai)∧¬Inf∆(ai) for i ∈ {0, 1}. Then by axiom (C2) and Lemma
4.7.10, for any b ∈ B, if a0 � b, then b = a0 or b = ⊥B. But for any b ∈ B that is below
a0 in the Boolean algebra, i.e., b ≤ a0, it is also true that b � a0, by the definition of a
comparison algebra. So whenever b ≤ a0, we have b � a0 and hence b is a0 or ⊥B. This
means that a0 is an atom in B, as it must not be ⊥B, since B � Fin∆(⊥B). In exactly the
same fashion we can show that a1 is also an atom. Now � is a total preorder. So either
a0 � a1 or a1 � a0. But in either case, they must be equal, as they cannot be ⊥B, but axiom
(C2) says they are either equal or are bottom. Thus, there is a unique atom a0 such that
B � ¬Fin∆(a0) ∧ ¬Inf∆(a0).

Building on the previous conclusion, for any a ∈ At(B) \ {a0}, we have B � Fin∆(a) ⊕
Inf∆(a). The second step is to show that in fact B � Inf∆(a). Consider a ∪ a0. If B �
(a ∪ a0) � a, then we have B � (a ∪ a0) � a � a0 ∧ (a ∪ a0) � a0. It is not hard to see that
then B � Fin∆(a0), a contradiction. Hence B � a � (a ∪ a0) instead. However, B � a0 6⊆ a
since a0 and a are distinct atoms. So B � Inf∆(a).

Thus we see that there is no element in B satisfying Fin except the bottom element. So
define F = {⊥B}. We can show that Theorem 4.4.8 can be applied to 〈B,�, F, V 〉. In fact,
the only nontrivial condition is the third condition: for any a, b, c ∈ B with a 6∈ F , if a � b
and a � c, then a � b ∨ c. There are two cases:
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• a = a0: then a is the smallest atom, and b, c are either ⊥B or a0 and so is b ∨ c; hence
a � b ∨ c;

• a 6= a0: as we have shown, now B � Inf∆(a); thus by axiom (C4) in Axioms(∆), a � b∨c.

Hence we can invoke Theorem 4.4.8 to build µ.
Case 2: Define F = {b ∈ B | B � Fin∆(b)}. By Lemma 4.7.10, F is an ideal. Axioms

(C3), (C4), and (C5) in Axioms(∆) ensure conditions (2), (3), and (4) in Theorem 4.4.8.
Thus, Theorem 4.4.8 applies again.

4.7.3 Completeness

Finally we are in a position to present the logic of cardinal comparison CardCompLogic.

Definition 4.7.12. Let CardCompLogic be the logic for L with the following axioms and
rules:

1. all axioms and rules in BasicCompLogic;

2. for any finite ∆ ⊆ Φ, all formulas in Axioms(∆);

Now we show that CardCompLogic is sound and complete with respect to all measure
algebra models and also field of sets models, completing our proof of Theorem 4.2.4.

Theorem 4.7.13 (Soundness). CardCompLogic is sound with respect to the class of all mea-
sure algebra models. Since every field of sets model can be equivalently turned into a measure
algebra model in an obvious way, CardCompLogic is also sound on the class of all field of sets
models.

Proof. The only non-trivial axioms are in Axioms(∆) for an arbitrary finite ∆. Given an
arbitrary measure algebra model B = 〈B, µ, V 〉, by Proposition 4.4.11 there is a measure
algebra model B∆ which is adapted to ∆ and which satisfies B∆ ≡L(∆) B. So to show that
B � Axioms(∆), it is enough to show B∆ � Axioms(∆).

Hence we only need to show that all sentences in Axioms(∆) are true on any adapted
measure algebra model B. Fix an arbitrary such B = 〈B, µ, V 〉; we check that all the
sentences in Axioms(∆) are true in B:

• ¬(Fin∆(u)∧Inf∆(u)): By Propositions 4.7.7 and 4.7.8, B � Fin∆(u) implies that µ(V̂ (u))

is finite, and B � Inf∆(u) implies that µ(V̂ (u)) is infinite. But µ(V̂ (u)) cannot be both
finite and infinite. Therefore, B � ¬(Fin∆(u) ∧ Inf∆(u)).

• (¬Fin∆(u) ∧ ¬Inf∆(u)) →
∧
t∈T0(∆)(|u| ≥ |t| → (t = ∅ ∨ t = u)): Suppose B �

¬Fin∆(u) ∧ ¬Inf∆(u). Then by the second part of Proposition 4.7.7, if µ(V̂ (u)) is

infinite, then V̂ (u) is the strictly smallest atom in B. Then it follows that

B �
∧

t∈T0(∆)

(|u| ≥ |t| → (t = ∅ ∨ t = u)).
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Similarly, by Proposition 4.7.8, if µ(V̂ (u)) is finite, the above statement holds as well.
So indeed the formula is valid.

•
∧n
i=1(Fin∆(si) ∧ Fin∆(ti))→ FCn(s1, . . . , sn, t1, . . . tn): By Proposition 4.7.7, when B �

Fin∆(si)∧Fin∆(ti), V̂ (si) and V̂ (ti) are indeed finite. But as we have explained both in
§ 4.2 and immediately after Theorem 4.4.7, the consequent (finite cancellation axiom)
is clearly valid for elements of finite cardinality.

• Inf∆(u) → ((|u| ≥ |s1| ∧ |u| ≥ |s2|) → |u| ≥ |s1 ∪ s2|): By Proposition 4.7.8, V̂ (u) is
infinite, and the consequent expresses a simple property of elements of infinite cardi-
nality.

• (Inf∆(s1) ∧ Fin∆(s2))→ |s1| > |s2|: Using Propositions 4.7.7 and 4.7.8 again, this says

that when µ(V̂ (s1)) is infinite and µ(V̂ (s2)) is finite, then µ(V̂ (s1)) is greater than

µ(V̂ (s2)), which is trivial.

Theorem 4.7.14 (Completeness). CardCompLogic is complete with respect to the class of
all field of sets models: every valid formulas is derivable in CardCompLogic.

Proof. We show that any formula that is consistent is satisfied by a measure algebra model.
By Proposition 4.4.3, it is also satisfied by a field of sets model.

Suppose ϕ is consistent. Then let X be a maximally consistent set of CardCompLogic
containing ϕ. Using the canonical model theorem (Theorem 4.5.2), we obtain a comparison
algebra model C � X.

Now let ∆ be the set of all set labels appearing in ϕ. Then ∆ is finite. By Proposition
4.4.11, there is a comparison algebra model C∆ that is adapted to ∆ and that satisfies
C∆ ≡L(∆) C. Since Axioms(∆) ⊆ X, C � Axioms(∆), and since Axioms(∆) ∪ {ϕ} ⊆ L(∆),
C∆ � Axioms(∆) ∪ {ϕ}. Now the representation theorem (Theorem 4.7.11) can be applied
to C∆, and we obtain a measure algebra model B such that B ≡L(∆) C∆. Thus B � ϕ. So ϕ
is satisfied on a measure algebra model.

Thus, the question with which we began—what are the laws one must add to Boolean
algebra to capture reasoning about the relative size of sets according to Cantor’s definition?—
is answered by the laws of CardCompLogic.

4.8 Open problems

In our proofs, we quickly passed to finite models, that is, models with only finitely many
sets (some of which may of course be infinite). For example, our representation theorem
(Theorem 4.4.8) applies only to finite models, and in Theorems 4.2.10 and 4.2.4, we proved
completeness rather than strong completeness.

Problem 4.8.1. Find a logic that is sound and strongly complete with respect to field of
sets models.
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Problem 4.8.2. Prove a representation theorem for infinite comparison algebras.

We will give some examples that show the difficulties that arise here. First, such a logic
cannot be compact. Indeed (in the language LFin,Inf), with distinct set terms 〈sn〉n∈ω and t,
the following set of formulas is finitely satisfiable in field of sets models, but not satisfiable:

{|sn| < |sn+1| | n ∈ ω} ∪ {|sn| ≤ |t| | n ∈ ω} ∪ {Fin(t)}.

One can give similar examples in the language L. Then to obtain a strongly complete logic,
one might add an infinitary rule stating that if the sentences in

{|sn| < |sn+1| | n ∈ ω} ∪ {|sn| ≤ |t| | n ∈ ω}

are derivable, then so is Fin(t).
Another interesting example comes from the fact that the relation of cardinality compar-

ison must be well-founded (assuming the axiom of choice). Thus, if 〈sn〉n∈ω is a sequence of
distinct set terms, then the set of sentences

{|sn+1| < |sn| | n ∈ ω}

is not satisfiable in field of sets models, but it is again finitely satisfiable.
Note also that finite cardinalities are just natural numbers, whose ratios are all rational.

However, with infinitely many formulas, we can express that the sizes of two sets are of
irrational ratio. To do this, define the following set of formulas:

A = {|ai| = |aj|, |bi| = |bj| | i, j ∈ ω} ∪
{|ai ∩ aj| = ∅ ∧ |bi ∩ bj| = ∅ | i, j ∈ ω, i 6= j}.

Intuitively, this says that the ai’s are disjoint and of the same size, and the same holds for
the bi’s. Then we can approximate any ratio by using ai’s and bi’s. For example, consider
sequences 〈li〉i∈ω, 〈ri〉i∈ω, 〈ni〉i∈ω of natural numbers such that li/ni approaches

√
2 from

below and ri/ni from above. Then let

B = {|
⋃
k<li

ak| < |
⋃
k<ni

bk| < |
⋃
k<ri

ak| | i ∈ ω}.

The set A ∪B is then finitely satisfiable, but not satisfiable as it forces the ratio of |a0| and
|b0| to be

√
2.

As the last example of non-compactness, suppose that we allow more than countably
many set labels in the language. Let |Φ| = ℵ1. Then the set of sentences

{|a| 6= |b| | a, b ∈ Φ, a 6= b} ∪ {Fin(a) | a ∈ Φ}

is not satisfiable. However, any countable subset is satisfiable.
A natural extension of our language is to add the powerset operation. In this case, one

must replace the complement operation with the relative complement operation s\t. Then a
field of sets model (with powerset) is a collection F of sets closed under intersection, union,
relative complement, and powerset, together with a valuation of the set labels.
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Problem 4.8.3. Axiomatize the logic of cardinality comparison with the powerset operation.

In this language, one can consider principles such as

|s| < |t| → |P(s)| < |P(t)|,

which is true under GCH but is independent of ZFC [100]. It would be interesting to have
a logic for comparing such principles.



136

Chapter 5

Logics of Imprecise Comparative
Probability
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5.1 Introduction

While the standard probability calculus remains the dominant formal framework for repre-
senting uncertainty across numerous disciplines, a small but significant tradition in philoso-
phy, economics, computer science, and statistics has contended that the precision inherent
in assigning “sharp” probabilities to uncertain events is often inappropriate. The reasons
are several. One obvious concern is the psychological reality of arbitrarily precise real-valued
judgments ([20, 103, 106, 75, 149]). As [149] expresses the concern, “Almost everyone who
has thought about the problems of measuring beliefs in the tradition of subjective probabil-
ity or Bayesian statistical procedures concedes some uneasiness with the problem of always
asking for the next decimal of accuracy in the prior estimation of a probability” (p. 160).
Another quite distinct concern is that even for a certain kind of idealized agent free of
computational or representational limitations, in many important cases the available evi-
dence somehow underdetermines the “right” probability function to have, and it would be
epistemically unfitting to opt for any one of them ([28, 121, 101, 105]).

A number of alternative formal frameworks have been advanced (see, e.g., [80]). Our focus
here is on two especially prominent alternatives. Some authors favor a sort of generalization
of the probability calculus, allowing uncertainty to be measured by sets of probability func-
tions ([75, 121, 154, 146]; see [21] for a philosophical overview). This imprecise probability
framework retains many of the benefits of standard Bayesian representation and reasoning—
indeed allowing the standard picture to emerge as a special case—while also affording a wider
range of epistemic attitudes. Philosophical questions about imprecise probability have gen-
erated a great deal of discussion in recent years (see, e.g., [101, 141, 137, 22, 131]). A second
line of work renounces the demand for explicit numerical judgments altogether, arguing that
qualitative, especially comparative, judgments should be the primitive building blocks for the
theory of uncertainty ([103, 106, 57, 87]; see [104] for a philosophical overview). Aside from
being intuitively simpler and arguably closer to “ordinary” expressions of uncertainty, some
authors have argued that this setting of comparative probability is perhaps uniquely suited
to solving notable epistemic puzzles ([56, 38, 50]). Others have sought more ameliorative
reconciliations between the quantitative and qualitative approaches so as to capitalize on
the advantages of each (see, e.g., [150] and [49]).

Our aim in this chapter is neither to weigh in on the debate between precise and impre-
cise versions of probabilism, nor to adjudicate between the quantitative and the qualitative
alternatives, but rather to shed light on the connections between them. Only quite re-
cently have even the most basic questions about such connections been clarified ([138, 2, 1,
83]). This is of interest from all perspectives. If one takes sets of probability measures as
primitive, it would nevertheless be desirable to understand some of the core qualitative com-
mitments implicit in this representation, including how such commitments relate to those of
precise probability and other frameworks. Most conspicuously, the generalization to sets of
measures brings with it a rejection of the infamous comparability principle (also sometimes
called opinionation or totality), according to which every two events ought to be compared
in probability. Indeed, rejection of this principle has served as one of the primary arguments
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against precise probabilism. As Keynes [103] expressed it a century ago:

Is our expectation of rain, when we start out for a walk, always more likely than
not, or less likely than not, or as likely as not? I am prepared to argue that on
some occasions none of these alternatives hold, and that it will be an arbitrary
matter to decide for or against the umbrella. If the barometer is high, but the
clouds are black, it is not always rational that one should prevail over the other
in our minds, or even that we should balance them. (p. 30)

Aside from the rejection of comparability, are there other differences between the precise and
imprecise probabilistic frameworks that surface in this qualitative setting? Likewise, we can
ask about various additional qualitative notions aside from the usual “weak” comparison ‘at
least as likely as’. For example, whereas the strict version of this judgment, ‘more likely
than’, is easily definable in the precise setting in terms of weak comparison, this is no longer
the case in the imprecise setting (see Section 5.2 below), raising new questions about the
qualitative principles characterizing this distinctive kind of unanimity operator.

If, on the other hand, one takes qualitative judgments as primitive, this has the potential
advantage of discarding principles forced upon us by (even imprecise) probabilistic repre-
sentations. This may be desirable, e.g., if one is solely concerned with certain epistemic
virtues such as maximizing accuracy ([60]). At the same time, there are also arguments that
purport to show why an agent who maintains only comparative judgments would not want
to violate qualitative probabilistic principles ([59, 60, 99]). For example, suppose that we
operationalize a judgment of the form ‘A is more likely than B’ in terms of a disposition
to opt for a prospect that pays some positive dividend conditional on A over one that pays
the same amount conditional on B. Moreover, suppose that satisfying this preference is
worth some cost, while judgments of the form ‘A and B are equally likely’ engender no such
disposition. Then one can show that an agent will be forced into choosing strictly dominated
actions (worse than some other available option no matter how the world turns out) if and
only if the agent’s judgments fail to comport with any set of probability measures ([99]).
Arguments like these highlight the importance of gaining a better understanding of what
compatibility of comparative judgments with imprecise probability means.

In this chapter, we take a logical approach, studying a sequence of increasingly expressive
qualitative formal systems, all interpreted over sets of probability measures. To illustrate
the type of reasoning we would like to systemize, consider the following examples.

Example 5.1.1. A patient learns from her doctor of the existence of a gland in the human
body and of a disease previously unknown to her.1 The doctor informs her that if her gland
is swollen, then it is more likely than not that she has the disease. Subsequently the patient’s
gland is examined, and she learns that it is swollen. As a result, she comes to think it is
more likely than not that she has the disease.

1This example is inspired by van Benthem’s [13, p. 164, p. 166] example of the hypochondriac.
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How should we model the patient’s evolving uncertainty? A natural approach is to
represent her relevant uncertainty using the following set of four possible states:

{〈swollen, disease〉, 〈swollen, no disease〉, 〈not swollen, disease〉, 〈not swollen, no disease〉}.

Initially, the patient knows nothing about the gland or the disease. We represent this ig-
norance using the set P of all probability measures on the state space above. Next, when
her doctor informs her that if her gland is swollen, then it is more likely than not that she
has the disease, we eliminate from her set of measures all measures except those for which
the probability of disease conditional on a swollen gland is greater than the probability of
no disease conditional on a swollen gland. This gives us a new set P ′ of measures. Finally,
when she has the gland examined and learns that it is swollen, we condition each measure
in P ′ on the information that the gland is swollen, giving us a final set P ′′ of measures. All
measures in P ′′ give a higher probability to disease than no disease.

How should one model the example using the standard representation of an agent’s
uncertainty with a single probability measure? First, the standard representation forces the
agent to have sharp probabilities that her gland is swollen and that she has the disease,
even when she just learns of their existence and knows nothing else about them. It also
forces her to have a sharp conditional probability for having the disease conditional on her
gland being swollen, before the doctor tells her anything about the connection between the
two. Suppose she thinks that disease and no disease are equally likely conditional on her
gland being swollen. What do we then do with her probability measure when the doctor
informs her that if her gland is swollen, then it is more likely than not that she has the
disease? One idea would be to replace her probability measure with the “closest” measure
for which the conditional probability of disease given a swollen gland is greater than that
of no disease given a swollen gland; but the existence of a unique closest such measure is
clearly problematic. Another idea is that we must give up the simple state space above.
Instead, we must use a complicated state space involving possibilities for what her doctor
might say to her. On this approach, the patient must start out with a sharp conditional
probability for having the disease conditional on her doctor uttering at time t the words “if
your gland is swollen, then it is more likely than not that you have the disease.” Assuming
this conditional probability is greater than .5, it follows that conditional on the doctor not
uttering those words at time t, the probability she assigns to having the disease will be less
than .5. In order to allow that time t may pass in silence without the patient changing her
probability for disease, we must introduce still further distinctions in the state space, beyond
the distinction that the doctor may or may not utter the indicated words at t.

Though we will not argue that the modeling approach with a single probability measure
is unworkable, in this chapter we wish to explore the multi-measure approach sketched above.
We will fully formalize the swollen gland example in Section 5.6.2. There we will even model
the patient’s becoming aware of the distinction between having a swollen gland and not
having a swollen gland and of the distinction between having the disease and not having the
disease, creating the state space and set P of measures above.
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The next example is one in which it is essential to consider the possibilities for what an
informant may say. It was made famous by vos Savant [140] in the Monty Hall version of
the puzzle posed by Selvin [147]. We will present the earlier but mathematically equivalent
Three Prisoners version of the puzzle from Gardner [68, 69].

Example 5.1.2. The following is Diaconis and Zabell’s [37, p. 30] description of the Three
Prisoners puzzle (also see [36] and [80]):

Of three prisoners a, b, and c, two are to be executed, but a does not know
which. He therefore says to the jailer, “Since either b or c is certainly going to
be executed, you will give me no information about my own chances if you give
me the name of one man, either b or c, who is going to be executed.” Accepting
this argument, the jailer truthfully replies, “b will be executed.” Thereupon a
feels happier because before the jailer replied, his own chance of execution was
two-thirds, but afterward there are only two people, himself and c, who could be
the one not executed, and so his chance of execution is one-half.

Under what conditions could a’s reasoning possibly be sound? Imagine there are four relevant
ways the world could be: wab, wac, wbc, and wcb, where in wij prisoner i is the one who lives
and prisoner j is the one who the jailer says will be executed. Assuming that each prisoner is
equally likely to be spared, we can assume wbc and wcb both have probability one-third, and
the disjunction “wab or wac” has probability one-third. Concerning the relative probability
of wab and wac, we could apply a principle of indifference and proclaim that the jailer is
equally likely to announce b or announce c, in case a is the one to be spared. It is then
easy to compute that the conditional probability of being spared after learning that b will
be executed (and thus wac and wbc can be eliminated as possibilities) is still one-third. In
this case a learns nothing from the jailer’s announcement.

By contrast, if for whatever reason a thinks the jailer is certain to tell him it is b who will
be executed when a is the one to be spared, then learning b will be executed does rationally
lead a to conclude that he now has a one-half chance of survival.

There is an intuition in this scenario that the right way to respond to the evidence is to
leave the relative likelihood of wab and wac open: to represent a’s uncertainty in terms of the
set of all probability measures that assign one-third to each of wbc, wcb, and the disjunction
“wab or wac.” In this case the probabilities of wab and wac each range from zero to one-third,
under the constraint that their sum is one-third. Updating each such measure by eliminating
wac and wbc results in a range of posterior probability values for a surviving, from zero to
one-half. Thus, the probability that a is spared (the disjunction “wab or wac”) has dilated
([154]) from precisely one-third to the entire interval [0, 1/2].

Examples 5.1.1 and 5.1.2 illustrate some important aspects of imprecise probabilistic
reasoning, which surface already in a purely qualitative setting. By the end of this chapter,
we will be able to formalize Examples 5.1.1 and 5.1.2 in a dynamic logic of updating imprecise
comparative probability (Examples 5.6.5 and 5.6.21).
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The outline of the chapter is as follows. In Section 5.2, we consider the pure order-
theoretic setting of comparative probability and prove a representation theorem extending
previous results in the literature. The theorem concerns both a weak and a strict comparative
relation together represented by a set of probability measures (Theorem 5.2.7). In Section
5.3, we turn to the logical setting and review some completeness theorems for logics of precise
and imprecise probability with a single weak comparative relation (Theorems 5.3.7, 5.3.9), as
well as alternative interpretations of these systems (Theorems 5.3.10, 5.3.11). In Section 5.4,
we consider a logical language that includes both weak and strict comparative relations and,
using the representation in Theorem 5.2.7, prove a corresponding completeness theorem
(Theorem 5.4.4). Section 5.5 explores the addition of a primitive “possibility” operator
asserting the existence of a probability measure with a given property, culminating again in
a complete axiomatization (Theorem 5.5.5), plus an analysis of complexity (Theorem 5.5.12).

In Section 5.6, we turn to modeling the dynamics of learning. In Section 5.6.1, we add
to our language an update operator whose semantics is given by a process of discarding
from one’s set of measures any measure assigning zero probability to the learned proposi-
tion and then conditioning the remaining measures on the learned proposition. With this
we can model updating on pure comparative probability formulas (through the discarding
part), as well as non-probabilistic (ontic) formulas (through the conditioning part) and mixed
probabilistic-ontic formulas. The language also allows the formalization of basic comparative
conditional probabilities. Yet we prove that the extended language is in fact no more expres-
sive than the previous system from Section 5.5: the extended language can be completely
axiomatized by a set of “reduction axioms” (Theorem 5.6.8). Finally, in Section 5.6.2, we
add a second dynamic operator for becoming aware of a new proposition (recall how the
patient becomes aware of the existence of the gland and disease in Example 5.1.1). When an
agent becomes aware of a new proposition, we form a new state space by splitting each state
in her old state space in two, one where the new proposition is true and the other where
it is false, and we form a new set of probability measures by taking all measures on the
new set of propositions that when restricted to just the old propositions coincide with some
old measure. We show that this language is more expressive than our previous languages,
allowing us to express any linear inequality with integer coefficients about the probability of
formulas.

What emerges is a landscape of increasingly expressive logical systems, consistent with
both precise and imprecise probabilistic representations, simple but sufficiently powerful to
model sophisticated reasoning about uncertainty. Perhaps surprisingly, the computational
complexity of reasoning (e.g., determining validity or consistency) in each of the “static”
systems is no worse than for the classical propositional calculus. The complexity of reasoning
in the dynamic logic of updating sets of probability measures is an open problem, as is the
complexity and axiomatization of the dynamic logic of becoming aware.



CHAPTER 5. LOGICS OF IMPRECISE COMPARATIVE PROBABILITY 142

5.2 Representation

Before introducing any explicit logical calculus, in this section we consider the pure order-
theoretic setting of comparative probability. A comparative notion of probability is most
naturally formalized as a binary relation on an algebra of events. However, not all binary
relations can be intuitively interpreted as comparing how likely events are, just as not all
functions from events to [0, 1] can be interpreted as assigning quantitative probabilities.
Taking the usual axiomatization of quantitative probability for granted, a natural question—
posed early on by [58]—is what would be a set of axioms that are intuitive and in harmony
with those quantitative axioms.

This question was first solved for finite event algebras by [109]. Given a binary relation
% on ℘(W ), where W is a finite set, and a probability measure µ on ℘(W ), we say that %
is precisely represented by µ if for all X, Y ⊆ W , X % Y iff µ(X) ≥ µ(Y ).

Theorem 5.2.1 ([109]). Let W be a nonempty finite set and % a binary relation on ℘(W ).
Then % is precisely represented by some probability measure on ℘(W ) if and only if:

• ∅ 6% W , {w} % ∅ for all w ∈ W , and for all A,B ∈ ℘(W ), A % B or B % A, and

• % satisfies the finite cancellation condition (FC): letting 1X denote the characteristic
function of X, for any two finite sequences 〈Ai〉ni=1, 〈Bi〉ni=1 of events in ℘(W ) such
that

∑n
i=1 1Ai =

∑n
i=1 1Bi (additions are done in the vector space RW ), if for all i < n,

Ai % Bi, then Bn % An.

Following the same paradigm, we can consider a comparative notion of imprecise proba-
bility and ask the following question: which binary relations on a finite algebra of events can
be naturally interpreted as an imprecise version of the at-least-as-likely-as relation? More
precisely, given a binary relation % on ℘(W ), where W is a finite set, and a set P of prob-
ability measures on ℘(W ), we say that % is imprecisely represented as the weak relation by
P if for all X, Y ⊆ W , X % Y iff for all µ ∈ P , µ(X) ≥ µ(Y ). The following analogue of
Theorem 5.2.1 was proved by Ŕıos Insua [138] (also see [2]).

Theorem 5.2.2 ([138]). Let W be a nonempty finite set and % a binary relation on ℘(W ).
Then % is imprecisely represented as the weak relation by some set P of probability measures
on ℘(W ) if and only if:

• ∅ 6% W , {w} % ∅ for all w ∈ W , and

• % satisfies the generalized finite cancellation condition (GFC): for any two finite se-
quences 〈Ai〉ni=1, 〈Bi〉ni=1 of events in ℘(W ) and k ∈ N\{0} such that

∑n−1
i=1 1Ai+k1An =∑n−1

i=1 1Bi + k1Bn, if for all i < n, Ai % Bi, then Bn % An.2

2Note that n can be 1, in which case the condition simply expresses the reflexivity of %.
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Remark 5.2.3. Harrison-Trainor et al. [83] prove that there are relations % satisfying the
conditions of Theorem 5.2.1 except for the comparability principle (that for all A,B ∈ ℘(W ),
A % B or B % A) and which fail to satisfy the GFC condition in Theorem 5.2.2. Thus, it is
necessary to strengthen FC to GFC when dropping comparability to obtain Theorem 5.2.2.

A subtlety not covered by Theorem 5.2.2 is that given a set P of probability measures,
there are two natural ways to generate a strict relation, corresponding to the strict and the
weak dominance relation in game theory:

• X strictly dominates Y in P iff for all µ ∈ P , µ(X) > µ(Y );

• X weakly dominates Y in P iff for all µ ∈ P , µ(X) ≥ µ(Y ), and there is a µ ∈ P such
that µ(X) > µ(Y ).

When % is represented as the weak relation by P , it is easy to see that X weakly dominates
Y iff X % Y but Y 6% X. However, we cannot pin down the strict dominance relation simply
from the weak relation % or vice versa, as shown by the following example.

Example 5.2.4. Let W = {w, v} and consider the four binary relations %1,%2,�1,�2

pictured below from left to right (for dashed arrows, reflexive and transitive arrows are
omitted; for solid arrows, transitive arrows are omitted).

∅

{w} {v}

W

%1 ∅

{w} {v}

W

%2 ∅

{w} {v}

W

�1 ∅

{w} {v}

W

�2

If all we know about a set P of probability measures on ℘(W ) is that its weak relation is
%1, then both �1 and �2 may be P ’s strict dominance relation. For example, we can define
a probability measure µw<v on ℘(W ) that favors v so that µw<v({w}) = 1/3. Then let
µw=v be the uniform distribution on ℘(W ): µw=v({w}) = µw=v({v}) = 1/2. Then for both
{µw<v, µw=v} and {µw<v}, their weak relation is %1. Yet the strict dominance relation of the
former is �1 while the strict dominance relation of the latter is �2.

Similarly, if all we know about P is that its strict dominance relation is �1, then both %1

and %2 may be its weak relation. For this, define a probability measure µw>v that favors w so
that µw>v({w}) = 2/3. Then we see that the strict dominance relation of both {µw<v, µw=v}
and {µw<v, µw>v} is �1 while the weak relation of the former is %1 and the weak relation of
the latter is %2.

In light of these considerations, we introduce the following definition that accounts for
both relations; cf. Konek [104, p. 275, footnote 4], who suggests that the study of comparative
probability ought to start with pairs 〈%,�〉 because an agent who judges that X is at least
as likely as Y but withholds judgment about whether Y is at least as likely as X does not
necessarily judge that X is strictly more likely than Y .
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Definition 5.2.5. Given a pair 〈%,�〉 of binary relations on ℘(W ) and a set P of probability
measures on ℘(W ), we say that 〈%,�〉 is represented by P iff for all X, Y ⊆ W ,

• X % Y iff for all µ ∈ P , µ(X) ≥ µ(Y ), and

• X � Y iff for all µ ∈ P , µ(X) > µ(Y ).

Remark 5.2.6. Define X < Y as not Y � X, i.e., there is some µ ∈ P such that µ(X) ≥
µ(Y ) (cf. the notion of justifiable preference in [119]). Then the pair 〈%,<〉 of weak relations
is what Giarlotta and Greco [72] call a necessary and possible preference.

The following theorem characterizes the representable relation pairs.

Theorem 5.2.7. Let W be a nonempty finite set and %,� two binary relations on ℘(W ).
Then 〈%,�〉 is represented by a set P of probability measures on ℘(W ) if and only if:

• � is irreflexive and � ⊆ %;

• W � ∅, and {w} % ∅ for all w ∈ W ;

• % satisfies (GFC) and � satisfies the strict generalized finite cancellation condition
(SGFC): for any two finite sequences 〈Ai〉ni=1, 〈Bi〉ni=1 of events in ℘(W ) and k ∈ N\{0}
such that

∑n−1
i=1 1Ai + k1An =

∑n−1
i=1 1Bi + k1Bn, if for all i < n, Ai % Bi and there is

i < n with Ai � Bi, then Bn � An.

The rest of this section is devoted to the proof of Theorem 5.2.7. The proof is adapted
from the proof of Theorem 5.2.2 above in [2], which also generalizes the proof in [142] for
Theorem 5.2.1 (also see [127, § 3.3] for a representation theorem concerning 〈%,�〉 in the
setting of precise probability). For this, pick a nonempty finite set W and a pair 〈%,�〉
satisfying the conditions (the necessity of the conditions is easy). The main strategy is
to reframe the representability of 〈%,�〉 in terms of the existence of solutions to some
systems of homogeneous linear inequalities in the vector space RW . Hence we use vectors in
∆(W ) = {µ ∈ RW | µ · 1W = 1 and for all w ∈ W, µ(w) ≥ 0} as probability measures.

Define D% = {1A − 1B | A,B ⊆ W, A % B} and D� = {1A − 1B | A,B ⊆ W, A � B}.
Intuitively, D% contains vectors that always receive non-negative measures and D� contains
vectors that always receive positive measures. Given the conditions satisfied by % and �,
we can prove the following lemmas.

Lemma 5.2.8. If f ∈ {−1, 0, 1}W is a non-negative linear combination of vectors in D%,
then f ∈ D%.

Proof. Suppose f ∈ {−1, 0, 1}W is a non-negative linear combination of vectors in D%.
Since all the vectors are in {−1, 0, 1}W , we can assume that all coefficients are rational since
a system of linear inequalities with rational coefficients has a solution if and only if it has a
rational solution. Then we can clear the denominators and obtain a k ∈ N \ {0} such that
kf is simply a sum of vectors in D% possibly with repetitions:

∑n
i=1 gi. Since f and the gi’s

are in D%, we can find subsets Ai, Bi for i = 1 . . . n+ 1 of W such that
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• gi = 1Ai − 1Bi for i = 1 . . . n and f = 1Bn+1 − 1An+1 (take Bn+1 = f−1(1) and
An+1 = f−1(−1)), and

• Ai % Bi for i = 1 . . . n.

Then given that kf =
∑n

i=1 gi, we have
∑n

n=1 1Ai + k1An+1 =
∑n

i=1 1Bi + k1Bn+1 . Hence
we can apply (GFC) to 〈Ai〉n+1

i=1 and 〈Bi〉n+1
i=1 and see that Bn+1 % An+1. Therefore, f =

1Bn+1 − 1An+1 ∈ D%.

Lemma 5.2.9. If f ∈ {−1, 0, 1}W is a non-negative linear combination of vectors in D%∪D�
with a coefficient for a vector in D� being positive, then f ∈ D�.

Proof. Similar to the proof of the previous lemma. The only change in this case is that
when we find k and express kf as a sum of vectors in D% ∪D�, at least one vector in D�
must figure in the sum since initially the non-negative linear combination resulting in f has
a positive coefficient for a vector in D�. Then we can find sets Ai’s and Bi’s similarly and
apply (SGFC) to see that f must be in D� already.

Now define

P = {µ ∈ ∆(W ) | ∀f ∈ D%, µ · f ≥ 0 and ∀f ∈ D�, µ · f > 0}.

Our goal is to show that 〈%,�〉 is represented by this P . Note that one direction is done
already: for any A,B ⊆ W ,

• if A % B, then by the definition of P , for all µ ∈ P , µ · (1A − 1B) ≥ 0, which means
that µ · 1A ≥ µ · 1B;

• similarly, if A � B, then for all µ ∈ P , µ·(1A−1B) > 0, which means that µ·1A > µ·1B.

Hence all that are left to prove are the following two claims:

(a) If A 6% B, then there is a µ ∈ P such that µ · (1A − 1B) < 0;

(b) If A 6� B, then there is a µ ∈ P such that µ · (1A − 1B) ≤ 0.

For (a), it is enough to prove that for all f ∈ {−1, 0, 1}W , if f 6∈ D%, then there is µ ∈ P
such that µ · −f > 0, since for any A,B ⊆ W , we have 1A − 1B ∈ {−1, 0, 1}W . Hence take
such an f ∈ {−1, 0, 1}W \D%. We need to find a µ such that (i) µ ∈ P and (ii) µ · −f > 0.
Given the definition of P , this amounts to the existence of a solution to the following system
of homogeneous linear inequalities (where we write [D] for the matrix containing as columns
the vectors in a set D of vectors):

[D%]>~x ≥ ~0, [D� ∪ {−f}]>~x > ~0. (5.1)

The existence of a µ satisfying (i) and (ii) is equivalent to the existence of a solution to the
above system of inequalities because by assumption, W � ∅ and {w} % ∅ for all w ∈ W ,
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which means that 1W ∈ D� and 1{w} ∈ D% for all w ∈ W , so any solution can be scaled to
be an element in P . The condition of the existence of a solution is given by a special case of
Motzkin’s Transposition Theorem (see [133]).

Theorem 5.2.10 (Motzkin’s Transposition Theorem). The linear inequality system M1~x ≥
0,M2~x > ~0 has a solution if and only if there is no solution to the system M>

1 ~y1 +M>
2 ~y2 =

~0, ~y1 ≥ ~0, ~y2 ≥ ~0, ~y2 6= ~0.

Suppose toward a contradiction that there is no solution to (5.1). Then by Motzkin’s
Transposition Theorem, there are non-negative ~y1, ~y2 with ~y2 non-trivial such that [D%]>~y1 +

[D� ∪ {−f}]> ~y2 = ~0. In other words, ~0 is a non-negative linear combination of vectors in
D% ∪D� ∪ {−f} with one of the vectors in D� ∪ {−f} having a positive coefficient. Now

there are two possibilities: either −f has a positive coefficient or not. If not, then ~0 is a
non-negative linear combination of vectors in D%∪D� with a vector in D� having a positive

coefficient. Then, by Lemma 5.2.9, ~0 ∈ D�. This contradicts the assumption that � is
irreflexive. If −f has a positive coefficient, then f is a linear combination of vectors in
D% ∪ D� = D% since �⊆%. By Lemma 5.2.8, f ∈ D%, but we picked f specifically from
outside D%. Hence, either way, we have a contradiction. This completes the proof of (a).

The proof of (b) is almost identical. It is enough to show that for any f ∈ {−1, 0, 1}W\D�,
the following has a solution:

[D% ∪ {−f}]>~x ≥ ~0, [D�]>~x > ~0.

If there is no solution, then by Motzkin’s Transposition Theorem, ~0 is a non-negative linear
combination of vectors in D% ∪ {−f} ∪D� with at least one vector in D� having a positive

coefficient. Again, we consider whether −f has a positive coefficient or not. If not, then ~0
should again be in D�, which is not the case. If indeed −f has a positive coefficient, then
f is a linear combination of vectors in D% ∪ D� with at least one vector in D� having a
positive coefficient. By Lemma 5.2.9, f ∈ D�, contradicting the way we picked f . Hence
(b) is also proved, which completes the proof of Theorem 5.2.7.

Remark 5.2.11. The sets D% and D� used in the proof above are reminiscent of an alterna-
tive but also prominent way of modeling uncertainty in the imprecise probability literature:
sets of desirable gambles (see [155] and chapters in [4] for introductions). For any event
A ⊆ W , we may interpret it as a gamble that returns a unit of utility for the states in A
and returns nothing for states outside A. In other words, we can understand comparing the
likelihoods of two events A and B as comparing the two corresponding gambles 1A and 1B,
which in turn reduces to the question of whether the gamble 1A−1B is acceptable/desirable.
However, there are two important differences between our setting and the desirable gambles
approach commonly presented in the literature.

First, since we are only comparing propositions, we do not need to appeal to the desir-
ability of gambles not in {−1, 0, 1}W . In the literature on desirable gambles, all gambles in
RW are considered, and that is partly the reason for succinct axioms for coherent sets of
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desirable gambles such as closure under positive scaling and pairwise addition. The same
cannot be done when restricting to {−1, 0, 1}W , since for example 1W + 1W is no longer in
{−1, 0, 1}W . Also, it is not hard to see that different coherent sets of desirable gambles have
the same intersection with {−1, 0, 1}W . This means that using sets of desirable gambles in
RW , we may encode more information than needed for comparing propositions.

Second, we model an agent’s uncertainty with a pair of binary relations, and hence
when translated to sets of desirable gambles, we use a pair of sets of desirable gambles
instead of a single one. This can be easily seen from the proof above: we constructed a pair
〈D%, D�〉 from 〈%,�〉. If we disregard the previous difference and consider all gambles in
RW , our approach can be understood as generalizing representation by a single set of almost
desirable gambles (using the terminology in [33]) by pairing it with another set of gambles
that can be interpreted as strictly desirable gambles. However, the axiomatic requirement
for this set is weaker than the requirement for “sets of strictly desirable gambles” in [33].
More importantly, our axiomatic requirement concerns two sets jointly, as can be seen from
Lemma 5.2.9. In this way, we achieve greater generality (expressivity) than merely using a
set of almost desirable gambles. We leave further comparison between these two approaches
to imprecise probability for future work.

5.3 The Logic IP(%)

In this section and the following sections, we turn to the formalization of imprecise compar-
ative probabilistic reasoning in logical systems. The representation theorems of Section 5.2
lead to completeness theorems for these logical systems.

The logics we consider form a hierarchy of increasing expressive power of their languages.
The least expressive language we will consider is the following.

Definition 5.3.1. The language L(%), generated from a nonempty set Prop of propositional
variables, is defined by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ % ϕ)

where p ∈ Prop. A propositional (or Boolean) formula is a formula generated from Prop
using only ¬ and ∧. We define the other propositional connectives ∨, →, ↔, >, and ⊥ as
usual. Finally, we define ϕ � ψ as (ϕ % ψ) ∧ ¬(ψ % ϕ) and ϕ ≈ ψ as (ϕ % ψ) ∧ (ψ % ϕ).

We will consider several semantics for this language, each of which builds on the standard
possible world models for propositional logics.

Definition 5.3.2. A propositional model is a pairM = 〈W,V 〉 where W is a nonempty set
and V : Prop→ ℘(W ). We may abuse notation and write ‘w ∈M’ to mean w ∈ W .

The first semantics for L(%) that we will consider, which may be considered its “intended
semantics,” equips a propositional model with one or more probability measures, as follows.
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Definition 5.3.3. An imprecise probabilistic model (IP model) is a pair 〈M,P〉 where
M = 〈W,V 〉 is a propositional model and P is a set of finitely additive probability measures
on a field F of subsets of W such that V (p) ∈ F for each p ∈ Prop. A precise probabilistic
model is an imprecise probabilistic model 〈M,P〉 such that |P| = 1.

The key part of the truth definition of formulas of L(%) in IP models matches the notion
of imprecise representation from Section 5.2: ϕ % ψ is true just in case according to all the
probability measures in P , the probability of the set of worlds where ϕ is true is at least as
great as the probability of the set of worlds where ψ is true.

Definition 5.3.4. Given an IP model 〈M,P〉, w ∈M, and ϕ ∈ L(%), we defineM,P , w �
ϕ and JϕKM,P = {w ∈ W | M,P , w � ϕ} as follows:

1. M,P , w � p iff w ∈ V (p);

2. M,P , w � ¬ϕ iff M,P , w 2 ϕ;

3. M,P , w � (ϕ ∧ ψ) iff M,P , w � ϕ and M,P , w � ψ;

4. M,P , w � ϕ % ψ iff for all µ ∈ P , µ(JϕKM,P) ≥ µ(JψKM,P).

If α is a propositional formula, we may write ‘V (α)’ for JαKM,P to emphasize that the set of
worlds where α is true does not depend on the set P of probability measures.

Finally, given a class K of IP models, ϕ is valid with respect to K iff for all 〈M,P〉 ∈ K
and w ∈M, we have M,P , w � ϕ.

An easy induction shows that for any formula ϕ, the set of worlds where ϕ is true belongs
to the algebra F of measurable sets.

Lemma 5.3.5. For every IP model 〈M,P〉 and ϕ ∈ L(%), we have JϕKM,P ∈ F .

Below we define logics that are sound and complete with respect to the classes of imprecise
probabilistic models and precise probabilistic models, respectively. To do so, we first need to
define a syntactic abbreviation that allows us to express the finite cancellation condition of
Theorem 5.2.1 using formulas of our language. Given formulas ϕ1, . . . , ϕn, ψ1, . . . , ψn ∈ L(%),
and 1 ≤ k ≤ n, define Ck to be the disjunction of all conjunctions

f1ϕ1 ∧ · · · ∧ fnϕn ∧ g1ψ1 ∧ · · · ∧ gnψn

where exactly k of the f ’s and k of the g’s are the empty string, and the rest are ¬. Thus,
Ck is true at a state w ∈ W iff exactly k of the ϕ’s and k of the ψ’s are true at w. Then let

(ϕ1, . . . , ϕn) ≡ (ψ1, . . . , ψn) := C1 ∨ · · · ∨ Cn,

which is true at a state w ∈ W iff the number of ϕ’s true at w is exactly the same as the
number of ψ’s true at w. Using these abbreviations, we can express the finite cancellation
condition with the axiom schema (A4) below.
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Definition 5.3.6. The set of theorems of SP(%) (the logic of sharp probability) is the smallest
subset of L(%) that contains all tautologies of propositional logic, is closed under modus
ponens (if ϕ ∈ SP(%) and ϕ→ ψ ∈ SP(%), then ψ ∈ SP(%)) and necessitation (if ϕ ∈ SP(%),
then ϕ % > ∈ SP(%)), and contains all instances of the following axiom schemas for all
n ∈ N:3

(A0) (ϕ % ψ) ∨ (ψ % ψ);

(A1) ϕ % ⊥;

(A2) ϕ % ϕ;4

(A3) ¬(⊥ % >);

(A4)
(
(ϕ1 % ψ1) ∧ · · · ∧ (ϕn % ψn) ∧ (ϕ1, . . . , ϕn, ϕ

′) ≡ (ψ1, . . . , ψn, ψ
′) % >

)
→ (ψ′ % ϕ′);

(A5) (ϕ % ψ)→
(
(ϕ % ψ) % >

)
;

(A6) ¬(ϕ % ψ)→
(
¬(ϕ % ψ) % >

)
.

The representation result in Theorem 5.2.1 may be used to prove the following complete-
ness theorem for SP(%).

Theorem 5.3.7 ([145, 67]). For all ϕ ∈ L(%): ϕ is a theorem of SP(%) if and only if ϕ is
valid with respect to the class of all precise probabilistic models.

To obtain a complete logic for imprecise probabilistic models, we express the generalized
finite cancellation conditions of Theorem 5.2.2 using formulas of our language as follows.

Definition 5.3.8. The logic IP(%) (the logic of imprecise probability) is defined in the same
way as SP(%) except without axiom (A0) and with (A4) replaced by:

(A4′)
(
(ϕ1 % ψ1) ∧ · · · ∧ (ϕn % ψn) ∧ (ϕ1, . . . , ϕn, ϕ

′, . . . , ϕ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) % >
)

→ (ψ′ % ϕ′).

The representation result in Theorem 5.2.2 may be used to prove the following complete-
ness theorem for IP(%).

Theorem 5.3.9 ([1]). For all ϕ ∈ L(%): ϕ is a theorem of IP(%) if and only if ϕ is valid
with respect to the class of all imprecise probabilistic models.

3The labeling of axioms here follows [1].
4Axiom (A2) is redundant given (A0), but below we consider a logic that drops (A0). In fact, (A2) is

also derivable from the n = 0 case of (A4) and (A4′), but we include (A2) to match [1].
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In Section 5.4 we will give a completeness proof that shows how the proof of Theorem 5.3.9
goes as well.

Finally, we mention two non-probabilistic semantics for the logics SP(%) and IP(%),
respectively. First, van der Hoek [89] proved that SP(%) is also the logic of cardinality
comparisons between finite sets (for the logic of cardinality comparisons between sets of
arbitrary cardinality, see [41]).

Theorem 5.3.10 ([89]). The logic SP(%) is also sound and complete with respect to finite
propositional models M = 〈W,V 〉 with the semantics

M,w � ϕ % ψ iff there is an injection f : JψKM → JϕKM.

To obtain a similar semantics for IP(%), Holliday and Icard [95] use preferential models
M = (W,�, V ) where � is a preorder (a reflexive and transitive binary relation) on W .
Intuitively, � is a likelihood relation on worlds, which is then lifted to a likelihood relation
on events as in the following theorem (also see [84]).

Theorem 5.3.11 ([85]). The logic IP(%) is also sound and complete with respect to finite
preferential models M = (W,�, V ) with the semantics

M,w � ϕ % ψ iff there is a �-inflationary injection f : JψKM → JϕKM ,

where f is �-inflationary if f(w) � w for each w ∈ dom(f).

For a discussion of conceptual issues in the choice of probabilistic vs. non-probabilistic
semantics for IP(%) in the context of natural language semantics, see [95] and Section 3.4 of
[94].

5.4 The Logic IP(%,�)

Our first step beyond the existing literature on logics of imprecise comparative probability
is to add to our formal language the primitive strict operator � from Section 5.2.

Definition 5.4.1. The language L(%,�) is defined by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ % ϕ) | (ϕ � ϕ)

where p ∈ Prop. As before, we define ϕ � ψ as (ϕ % ψ) ∧ ¬(ψ % ϕ). Let L(�) be the
fragment of L(%,�) in which % does not occur.

Definition 5.4.2. We extend the semantics of Definition 5.3.4 to L(%,�) as follows:

• M,P , w � ϕ � ψ iff for all µ ∈ P , µ(JϕKM,P) > µ(JψKM,P).

It follows from Example 5.2.4 that the formula p � q is not equivalent to any formula of
L(%), including p � q, while the formula p % q is not equivalent to any formula of L(�).

In the following, we first present a sound and complete logic for L(%,�) whose axioms
match the conditions of the representation result in Theorem 5.2.7. Then we discuss the
expressivity of this language, including how it is more expressive than L(%).
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5.4.1 Logic

Definition 5.4.3. The logic IP(%,�) is the smallest subset of L(%,�) that contains all
tautologies of propositional logic, is closed under modus ponens (if ϕ ∈ IP(%,�) and ϕ→ ψ ∈
IP(%,�), then ψ ∈ IP(%,�)) and necessitation (if ϕ ∈ IP(%,�), then ϕ % > ∈ IP(%,�)),
and contains all instances of the following axiom schemas for all n ∈ N:

(B1) ϕ % ⊥;

(B2) > � ⊥;

(B3) (ϕ � ψ)→ (ϕ % ψ);

(B4) ¬(ϕ � ϕ);

(B5)
(
ϕ1, . . . , ϕn, ϕ

′, . . . , ϕ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) % >
)
→(
(
∧n
i=1(ϕi % ψi))→ (ψ′ % ϕ′)

)
;

(B6)
(
(ϕ1, . . . , ϕn, ϕ

′, . . . , ϕ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) % >
)
→(

(
∧n
i=1(ϕi % ψi) ∧

∨n
i=1(ϕi � ψi))→ (ψ′ � ϕ′)

)
;

(B7) (ϕ % ψ)→ ((ϕ % ψ) % >);

(B8) ¬(ϕ % ψ)→ (¬(ϕ % ψ) % >);

(B9) (ϕ � ψ)→ ((ϕ � ψ) % >);

(B10) ¬(ϕ � ψ)→ (¬(ϕ � ψ) % >).

The rest of this section is devoted to the proof of the following theorem.

Theorem 5.4.4 (Soundness and Completeness). For all ϕ ∈ L(%,�): ϕ is a theorem of
IP(%,�) if and only if ϕ is valid with respect to the class of all imprecise probabilistic models.

The soundness direction is easy to check. For completeness, as usual, pick an arbitrary
formula γ consistent in IP(%,�) and let p be the set of propositional variables appearing
in γ and L0 the restriction of L(%,�) to p. Then extend {γ} to a set Γ that is maximally
consistent in IP(%,�) with respect to L0. Now our goal is to build an IP model of γ by
extracting information from Γ. To this end, we view L0 as a term algebra of the type of
Boolean algebras expanded with two binary operations. Then define �ϕ by ϕ ∧ (ϕ % >),
F = {ϕ ∈ L0 | �ϕ ∈ Γ}, and define a binary relation ∼ on L0 by ϕ ∼ ψ iff (ϕ↔ ψ) ∈ F .
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Lemma 5.4.5. F contains > and is closed under deduction in L0: whenever ϕ → ψ ∈ L0

is a theorem of IP(%,�) and ϕ ∈ F , then ψ ∈ F too. Also, ∼ is an equivalence relation
extending the provable equivalence relation on L0 and is congruential over ¬,∧,%, and �:
for all ϕ, ψ, χ ∈ L0, if ϕ ∼ ψ, then ¬ϕ ∼ ¬ψ, (ϕ ∧ χ) ∼ (ψ ∧ χ), (χ ∧ ϕ) ∼ (χ ∧ ψ),
(ϕ % χ) ∼ (ψ % χ), (χ % ϕ) ∼ (χ % ψ), (ϕ � χ) ∼ (ψ � χ), and (χ � ϕ) ∼ (χ � ψ).

Proof. When n = 0, (B5) together with necessitation shows that for every ϕ, ϕ % ϕ is a
theorem. Then clearly > ∈ F . To show that F is closed under deduction in L0, noting that
Γ is clearly closed under deduction in L0 due to its being a maximally consistent set, it is
enough to show that whenever ϕ→ ψ ∈ IP(%,�), we have (ϕ % >)→ (ψ % >) ∈ IP(%,�)
too. For this, apply (B5) to 〈ϕ, ψ ∧ ¬ϕ,>〉 and 〈>,⊥, ψ〉.

Since F is closed under deduction in L0 and contains >, F also contains all theorems
of IP(%,�) in L0. Hence it is easy to show that ∼ is an equivalence relation extending the
provable equivalence relation on L0 that is congruential over ¬ and ∧. To show that ∼ is
congruential over % and �, using again that Γ is closed under deduction in L0, we only need
to show that the following are derivable:

• ((ϕ↔ ψ) % >)→ ((ϕ % χ)↔ (ψ % χ));

• ((ϕ↔ ψ) % >)→ (((ϕ % χ)↔ (ψ % χ)) % >);

• ((ϕ↔ ψ) % >)→ ((ϕ � χ)↔ (ψ � χ));

• ((ϕ↔ ψ) % >)→ (((ϕ � χ)↔ (ψ � χ)) % >).

In fact, the second and the fourth follow from the first and the third using (B7) to (B10),
the closure of (· % >) under deduction, and Boolean reasoning. The first and the third are
again simple exercises using (B5) and (B6), respectively.

Lemma 5.4.6. B = L0/∼ is a Boolean algebra expanded with two binary operations which
we denote again by % and �. Moreover, by axioms (B7) to (B10), for any a, b ∈ B, a % b
is either the top element or the bottom element, and so is a � b. In addition, B is finite.

Proof. Since ∼ is a congruence extending the provable equivalence relation and IP(%,�) has
all Boolean reasoning principles, B is a Boolean algebra. To see that a % b is either the top
element or the bottom element, pick any ϕ, ψ ∈ L0 such that [ϕ]∼ = a and [ψ]∼ = b. Then
note that either ϕ % ψ ∈ Γ or ¬(ϕ % ψ) ∈ Γ. In the former case, given (B7), we have
(ϕ % ψ) ∈ F and hence a % b = [ϕ % ψ]∼ is the top element. In the latter case, using (B8),
¬(a % b) is the top element, which means that a % b is the bottom element. The same
reasoning goes for a � b, using (B9) and (B10). Finally, to see that B is finite, note first
that it has a finite set of generators: [p]∼ = {[p]∼ | p ∈ p}. Since we have just shown that %
and � only bring elements to either the top element or the bottom element, in generating
B from [p]∼ we can use only the Boolean operations. Hence the Boolean reduct of B is a
finitely generated Boolean algebra, which must be finite.
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Since (the Boolean reduct of) B is a finite Boolean algebra, it is isomorphic to the powerset
algebra of its set of atoms. However, to facilitate the proof of the completeness theorem of
the next section, we take the set that includes all possible truth-assignments of propositional
variables in p.

Definition 5.4.7. Let Wp = {0, 1}p and Vp : Prop→ ℘(W ) be the natural valuation function
defined by Vp(p) = {f ∈ Wp | f(p) = 1} when p ∈ p and Vp(p) = ∅ when p 6∈ p. Finally, let
Mp = 〈Wp, Vp〉.

In this way, ℘(Wp) is essentially the free Boolean algebra generated by the images of p
under Vp. The difference between ℘(Wp) and the Boolean reduct of B is that B might be
missing some of the atoms in the sense that some truth-assignments to p may be inconsistent
in B. However, from the probabilistic point of view, it is enough to make them impossible
probabilistically by assigning them 0 probability. This gives us the advantage of always using
the same Mp when satisfying any consistent subset of L0.

To connect Mp to B, first let π be the natural Boolean quotient map π from ℘(Wp) to
B0 such that π(Vp(p)) = [p]∼. This map is uniquely given since ℘(Wp) is the free Boolean
algebra generated by {V (p) | p ∈ p} and B is generated by {[p]∼ | p ∈ p} using Boolean
operations. Then, on ℘(Wp), we define two binary relations:

• X %Γ Y iff π(X) % π(Y ) is the top element of B;

• X �Γ Y iff π(X) � π(Y ) is the top element of B.

Then it is not hard to show the following using the axioms (B1) to (B6).

Lemma 5.4.8. 〈%Γ,�Γ〉 satisfies all the conditions required in Theorem 5.2.7.

Proof. Note that for every a ∈ B, a = [ϕ]∼ for some ϕ ∈ L0. Hence any quantification over
B, and by the quotient map π, any quantification over ℘(Wp) as well, can be simulated by
quantification over L0. Since the axioms are schematic, (B1) to (B4) directly translate the
first two bullet points of Theorem 5.2.7.

For (GFC) and (SGFC), it is enough to note that for any two finite sequences 〈Ai〉ni=1 and
〈Bi〉ni=1 of sets in ℘(Wp) such that

∑n
i=1 1Ai =

∑n
i=1 1Bi , we can find two sequences 〈ϕi〉ni=1

and 〈ψi〉ni=1 of formulas in L0 such that:

• for all i = 1 . . . n, we have [ϕi]∼ = π(Ai) and [ψi]∼ = π(Bi), which implies that
Ai %Γ Bi iff ϕi % ψi ∈ Γ and that Ai �Γ Bi iff ϕi � ψi ∈ Γ;

• [(ϕ1, . . . , ϕn) ≡ (ψi, . . . , ψn)]∼ = [>]∼ and hence (ϕ1, . . . , ϕn) ≡ (ψi, . . . , ψn) ∈ F ,
which in turn implies that ((ϕ1, . . . , ϕn) ≡ (ψi, . . . , ψn) % >) ∈ Γ.

The existence of these formulas means that we can use (B5) and (B6) to show (GFC) and
(SGFC), respectively.

Hence, by Theorem 5.2.7, we obtain a set PΓ of probability measures on ℘(Wp) such that
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• X %Γ Y iff for all µ ∈ PΓ, µ(X) ≥ µ(Y ), and

• X �Γ Y iff for all µ ∈ PΓ, µ(X) > µ(Y ).

From this, we can show the following truth lemma.

Lemma 5.4.9. For all ϕ ∈ L0, π(JϕK〈Mp,PΓ〉) = [ϕ]∼.

Proof. By a simple induction on L0. The only cases of interest are the inductive steps for %
and �. Note that Jϕ % ψK〈Mp,PΓ〉 is either Wp or ∅. Similarly, we have shown that [ϕ % ψ]∼
is either [>]∼ or [⊥]∼. Then the only missing connection is the following:

Jϕ % ψK〈Mp,PΓ〉 = Wp ⇐⇒ ∀µ ∈ PΓ, µ(JϕK〈Mp,PΓ〉) ≥ µ(JψK〈Mp,PΓ〉)

⇐⇒ JϕK〈Mp,PΓ〉 %Γ JψK〈Mp,PΓ〉

⇐⇒ (π(JϕK〈Mp,PΓ〉) % π(JψK〈Mp,PΓ〉)) = [>]∼

⇐⇒ ([ϕ]∼ % [ψ]∼) = [>]∼

⇐⇒ [ϕ % ψ]∼ = [>]∼.

The proof for the case with ϕ � ψ is almost identical.

Now note that [γ]∼ is not the bottom element in B, since otherwise [¬γ]∼ would be the
top element, and then �¬γ ∈ Γ, which means ¬γ ∈ Γ too, rendering Γ inconsistent. Hence
JγK〈Mp,PΓ〉 is nonempty because π(∅) must be [⊥]∼, which is not [γ]∼. Take a w ∈ JγK〈Mp,PΓ〉.
Then 〈Mp,PΓ〉, w � γ, and we are done.

To sum up, we now have the following strengthening of the completeness theorem, noting
that there are only finitely many logically inequivalent formulas all using only a finite set p
of propositional variables (see Lemma 5.6.11).

Proposition 5.4.10. For any finite subset p of Prop with L0 being the set of formulas in
L(%,�) using only the propositional variables in p, and for any Γ ⊆ L0 that is consistent
relative to IP(%,�), there is a set PΓ of probability measures on ℘(Wp) and a w ∈ Wp such
that Mp,PΓ, w � γ for all γ ∈ Γ.

Before we discuss the expressivity of L(%,�), we comment on the logic of precise prob-
abilistic models. While � is not definable in L(%,�) with respect to all IP models, with
respect to precise probabilistic models, ϕ � ψ can be defined simply by ¬(ψ % ψ). Hence
we can define the logic SP(%,�) as follows.

Definition 5.4.11. The logic SP(%,�) is the smallest subset of L(%,�) that is closed
under modus ponens (if ϕ ∈ SP(%,�) and ϕ → ψ ∈ SP(%,�), then ψ ∈ SP(%,�)) and
necessitation (if ϕ ∈ SP(%,�) then ϕ % > ∈ SP(%,�)), contains all instances of tautologies
of propositional logic, all instances of the axiom schemas (A1) to (A6) for SP(%), and all
instances of the axiom schema (A7) (ϕ � ψ)↔ ¬(ψ % ϕ).
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Then the following completeness theorem for SP(%,�) can be shown in the same way
that we just showed the completeness of IP(%,�) using instead the representation result in
Theorem 5.2.1. It will be used in the completeness proof for IP(%,�,♦) in the next section.

Proposition 5.4.12. For any finite subset p of Prop with L0 being the set of formulas in
L(%,�) using only the propositional variables in p, and for any Γ ⊆ L0 that is consistent
relative to SP(%,�), there is a probability measure µΓ on ℘(Wp) and a w ∈ Wp such that
Mp, {µΓ}, w � γ for all γ ∈ Γ.

5.4.2 Expressivity

In this subsection we discuss the expressivity of L(%) and L(%,�) in distinguishing IP
models. Given Example 5.2.4, it should not be surprising that L(%,�) is more expressive
than L(�). But here we precisely characterize the expressivity of these languages.

Definition 5.4.13. For any probability measure µ defined on a field F of sets, let %µ and
�µ be binary relations on F such that for any X, Y ∈ F , X %µ Y iff µ(X) ≥ µ(Y ), and
X �µ Y iff µ(X) > µ(Y ). In addition, for any set P of probability measures defined on F ,
let %P =

⋂
{%µ | µ ∈ P} and �P =

⋂
{�µ | µ ∈ P}.

For IP models 〈W,V,P〉 and 〈W ′, V ′,P ′〉, we say that they are %-order-similar in p, a
subset of Prop, if for any Boolean formulas α, β using only letters in p,

JαK〈W,V 〉 %P JβK〈W,V 〉 iff JαK〈W
′,V ′〉 %P ′ JβK〈W

′,V ′〉.

We say that they are order-similar in p ⊆ Prop if in addition to the above biconditional for
%, it is also true that for any Boolean formulas α, β using only letters in p,

JαK〈W,V 〉 �P JβK〈W,V 〉 iff JαK〈W
′,V ′〉 �P ′ JβK〈W

′,V ′〉.

A special case for (%-)order-similarity is worth mentioning.

Proposition 5.4.14. Let 〈W,V,P〉 and 〈W,V,P ′〉 be IP models and p a subset of Prop. Let
F be the field of sets generated by the image of p under V . Then 〈W,V,P〉 and 〈W,V,P ′〉
are %-order-similar (resp. order-similar) in p iff %P |F = %P ′ |F (resp. %P |F = %P ′ |F and
�P |F = �P ′|F ).

Proposition 5.4.15. Let 〈W,V,P〉 and 〈W ′, V ′,P ′〉 be IP models and w,w′ worlds in W
and W ′, respectively. Then w and w′ satisfy the same formulas in L(%,�) (resp. L(%))
using only propositional variables in p ⊆ Prop iff

1. w and w′ satisfy the same propositional variables in p, and

2. 〈W,V,P〉 and 〈W ′, V ′,P ′〉 are order-similar (resp. %-order-similar) in p.
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Proof. The left-to-right direction is trivial since failure of either 1 or 2 directly translates to
a formula in the appropriate language with respect to which w and w′ disagrees. For the
right-to-left direction, note first that any comparative formula χ of the form ϕ % ψ or ϕ � ψ
is true at one world iff it is true at all worlds. This means that a formula ϕ with χ occurring
is equivalent to (χ ∧ ϕ[χ/>]) ∨ (¬χ ∧ ϕ[χ/⊥]) where ϕ[χ/>] is the result of replacing χ by
> in ϕ, and similarly for ϕ[χ/⊥]. By repeated use of this method, it is not hard to see
that every formula in L(%,�) using only letters in p is semantically equivalent to a Boolean
combination of formulas of one of the following types:

• a propositional variables in p,

• α % β where α, β are Boolean formulas using only letters in p, and

• α � β where α, β are Boolean formulas using only letters in p.

The case with L(%) is similar (without the last kind of formula in the above list). The
proposition then follows easily.

Now we can translate Example 5.2.4 to a pair of pointed IP models that L(%,�) can
distinguish but L(%) cannot. Let W = {w, v} and V be the valuation such that V (p) = {w}
and V (q) = ∅ for all q ∈ Prop \ {p}. Let µw<v and µw=v be defined as in Example 5.2.4.
Then by Propositions 5.4.15 and 5.4.14, L(%) cannot distinguish 〈W,V, {µw<v, µw=v}〉, w
from 〈W,V, {µw<v}〉, w, since %{µw<v ,µw=v} and %{µw<v} are the same on ℘(W ). However,
¬p � p distinguishes the pointed models.

5.5 The Logic IP(%,�,♦)

In this section, we further extend our language with a possibility modal ♦. In the context
of natural language semantics, one proposal for the meaning of “possibly ϕ” in precise
probabilistic models is that ϕ has non-zero probability [118, §4.4]. In imprecise probabilistic
models, we could require either (a) that all measures in P give ϕ non-zero probability or
(b) that at least some measure in P gives ϕ non-zero probability. We adopt the weaker
interpretation (b) of “possibly ϕ” (not as a proposal in natural language semantics, but
because it suits our technical purposes in the next section). In addition to making claims
about the possibility of factual states of affairs, e.g., “It is possible that it is raining,” we
would like to be able to make claims about the possibility of likelihood relations, e.g., “It is
possible that hail is more likely than lightning tonight.” According to the formal semantics
given below, the latter will be true when there exists a probability measure in P such that
according to that measure hail is more likely than lightning.

Definition 5.5.1. The language L(%,�,♦) is defined by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ % ϕ) | (ϕ � ϕ) | ♦ϕ

where p ∈ Prop. We define �ϕ := ¬♦¬ϕ.
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Definition 5.5.2. We extend the semantics of Definition 5.4.2 to L(%,�,♦) as follows:

• M,P , w � ♦ϕ iff there is a µ ∈ P such that µ(JϕKM,{µ}) 6= 0.

Note that with ♦ added, we no longer need � as a primitive in the language, since ϕ � ψ is
definable as ¬♦(ψ % ϕ), but we keep � as a primitive for convenience.

In the following, we first present a sound and complete logic for the valid formulas in
L(%,�,♦). Then we briefly comment on the logic’s complexity. Finally, we show how
L(%,�,♦) is more expressive than L(%,�) and characterize the expressivity of L(%,�,♦).

5.5.1 Logic

An important logical fact about the set of valid formulas of L(%,�,♦) is that it is not closed
under uniform substitution of arbitrary formulas for propositional variables.

Example 5.5.3. The formula (p � ⊥)→ ♦(p � ⊥) is valid but

(¬((p % q) ∨ (q % p)) � ⊥)→ ♦(¬((p % q) ∨ (q % p)) � ⊥)

is not valid. The reason is that there is no single probability measure that can make true
the non-comparability formula ¬((p % q) ∨ (q % p)).

While the failure of uniform substitution can complicate efforts to axiomatize a set of
validities (cf. [92, 93]), we will completely axiomatize the validities of L(%,�,♦) with the
logic IP(%,�,♦) defined below.

Definition 5.5.4. The logic SP(%,�,♦) is the smallest subset of L(%,�,♦) that is (i)
closed under modus ponens, uniform substitution, and the rule of replacement of provable
equivalents, and (ii) contains all theorems of SP(%,�) and ♦p↔ (p � ⊥).

The logic IP(%,�,♦) is the smallest subset of L(%,�,♦) that is (i) closed under modus
ponens, the rule of replacement of provable equivalents, and the rule that if ϕ ∈ SP(%,�,♦),
then �ϕ ∈ IP(%,�,♦), and (ii) contains all substitution instances in L(%,�,♦) of the
theorems in IP(%,�) and also all instances of the following axiom schemas, where α and β
are propositional:

(C1) (�ϕ ∧�(ϕ→ ψ))→ �ψ;

(C2) ♦>;

(C3) �ϕ→ (�ϕ % >);

(C4) ♦ϕ→ (♦ϕ % >);

(C5) �ϕ↔ �(ϕ % >);

(C6) (α % β)↔ �(α % β);



CHAPTER 5. LOGICS OF IMPRECISE COMPARATIVE PROBABILITY 158

(C7) (α � β)↔ �(α � β).

As an example derivation using the above axioms and rules, especially the universalization
rule over SP(%,�,♦) by �, we derive the 4 axiom as follows:

• By the axiom ♦p↔ (p � ⊥) in SP(%,�,♦), we have ♦¬ϕ→ (¬ϕ � ⊥). Recall that in
SP(%,�), � is definable by %. So we have ♦¬ϕ→ ¬(⊥ % ¬ϕ). With the cancelation
axiom (A4), we have ♦¬ϕ→ ¬(ϕ % >). Contraposing this, we have (ϕ % >)→ �ϕ.

• Since we can universalize theorems in SP(%,�,♦), we now have�((ϕ % >)→ �ϕ). By
axiom (C5), �ϕ → �(ϕ % >). By axiom (C1), we can connect the two implications
and obtain �ϕ→ ��ϕ, which is the 4 axiom.

The rest of this section is devoted to the proof of the following theorem.

Theorem 5.5.5 (Soundness and Completeness). For all ϕ ∈ L(%,�,♦): ϕ is a theorem
of IP(%,�,♦) if and only if ϕ is valid with respect to the class of all imprecise probabilistic
models.

To prove Theorem 5.5.5, we first show that (1) there is no need for a ♦ to scope over a
♦ and (2) there is no need for a % or � to scope over a ♦. In other words, we will find a
significantly simpler fragment of L(%,�,♦), which we call LSimp, such that every formula in
L(%,�,♦) is provably equivalent to a formula in LSimp in IP(%,�,♦).

Definition 5.5.6. Define T−♦ : L(%,�,♦)→ L(%,�) by:

• T−♦(p) = p for all p ∈ Prop;

• T−♦(¬ϕ) = ¬T−♦(ϕ);

• T−♦(ϕ ∧ ψ) = T−♦(ϕ) ∧ T−♦(ψ);

• T−♦(ϕ % ψ) = T−♦(ϕ) % T−♦(ψ);

• T−♦(ϕ � ψ) = T−♦(ϕ) � T−♦(ψ);

• T−♦(♦ϕ) = ¬(⊥ % T−♦(ϕ)).

Lemma 5.5.7. For every ϕ ∈ L(%,�,♦), ϕ↔ T−♦(ϕ) is in SP(%,�,♦). Moreover, T−♦(ϕ)
uses the same propositional variables as ϕ does.

Proof. A simple induction with repeated use of replacement of equivalents suffices.

Lemma 5.5.8. In IP(%,�,♦), formulas of the form ♦ϕ↔ ¬�¬ϕ are theorems. In addition,
� is a normal operator: for any ϕ ∈ L(%,�,♦), (�ϕ∧�(ϕ→ ψ))→ �ψ is in IP(%,�,♦),
and whenever ϕ is in IP(%,�,♦), so is �ϕ.
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Proof. To derive ♦ϕ ↔ ¬�¬ϕ, it is enough to derive ♦ϕ ↔ ♦¬¬ϕ. But this is clearly
derivable by replacement of equivalents since ♦ϕ↔ ♦ϕ and ϕ↔ ¬¬ϕ are theorems.

Definition 5.5.9. Let LSimp be the fragment of L(%,�,♦) generated from Prop and {♦ϕ |
ϕ ∈ L(%,�)} by ¬ and ∧.

In the following, for any p ⊆ Prop, we append [p] to the name of a language to denote
the set of formulas in that language using only variables in p.

Lemma 5.5.10. For every ϕ ∈ L(%,�,♦), there is a T (ϕ) ∈ LSimp such that ϕ↔ T (ϕ) ∈
IP(%,�,♦). Moreover, T (ϕ) and ϕ use the same propositional variables.

Proof. By induction on L(%,�,♦). The base case is trivial: we can simply define T (p) = p.
The Boolean cases are also trivial: we can define T (¬ϕ) = ¬T (ϕ) and T (ϕ∧ψ) = T (ϕ)∧T (ψ).
For the ♦ case, define T (♦ϕ) = ♦T−♦(ϕ). To see that ♦ϕ is provably equivalent to ♦T−♦(ϕ),
first note that by Lemma 5.5.7, ϕ ↔ T−♦(ϕ) ∈ SP(%,�,♦). But then �(ϕ ↔ T−♦(ϕ)) ∈
IP(%,�,♦). By the normality of �, we have ♦ϕ↔ ♦T−♦(ϕ) ∈ IP(%,�,♦).

To find the appropriate T (ϕ % ψ), given that the required T (ϕ) and T (ψ) in LSimp have
been found, we need to extract all ♦’ed formulas in T (ϕ) % T (ψ) so that they are no longer in
the scope of the main connective % in T (ϕ) % T (ψ). Clearly this can be done by iteratively
using the following claim:

(*) for any χ ∈ L(%,�) and ϕ, ψ ∈ LSimp,

(ϕ % ψ)↔ (♦χ ∧ (ϕ[♦χ/>] % ψ[♦χ/>])) ∨ (¬♦χ ∧ (ϕ[♦χ/⊥] % ψ[♦χ/⊥])))

is in IP(%,�,♦).

The claim is provable using (C3) and (C4) and instances (B5). Note that since ϕ, ψ are in
LSimp, they are Boolean combinations of propositional variables and formulas of the form ♦χ
where χ ∈ L(%,�). List all the ♦’ed formulas appearing in ϕ or ψ as δ1, δ2, . . . , δn. Then
for any f ∈ {0, 1}n, let δf be

∧n
i=1 ¬f(i)δi where ¬0δi is ¬δi and ¬1δi is simply δi. Moreover,

let ϕ[f ] be ϕ[δ1/>f(1), · · · , δn/>f(n)] and similarly for ψ[f ], where >f(i) = > if f(i) = 1
and >f(i) = ⊥ if f(i) = 0. With this notation, it is not hard to see that by repeatedly
applying (*), ϕ % ψ is provably equivalent to

∨
f∈{0,1}n(δf ∧ (ϕ[f ] % ψ[f ])) and then also to∨

f∈{0,1}n(δf ∧�(ϕ[f ] % ψ[f ])) since for any f , ϕ[f ] and ψ[f ] are propositional since we have

replaced all the ♦’ed formulas by either > or ⊥ and by axiom (C6) we can add a � there.
The formula

∨
f∈{0,1}n(δf∧�(ϕ[f ] % ψ[f ])) is the desired T (ϕ % ψ) since it is clearly in LSimp

now. The definition of T (ϕ � ψ) is almost identical: we can simply replace ϕ[f ] % ψ[f ] by
ϕ[f ] � ψ[f ]. In this case, we use (C7) instead.

Now we are ready to prove the soundness and completeness of IP(%,�,♦). Soundness is
clear as usual. For completeness, pick an arbitrary γ that is consistent relative to IP(%,�,♦),
and let p be the set of propositional variables used in γ. Then take an arbitrary Γ that is
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maximally consistent containing γ. Following the standard strategy, let Σ = {(ϕ % >) |
�ϕ ∈ Γ, ϕ ∈ L(%,�)[p]}. Note that Σ ⊆ L(%,�)[p]. Also, Σ must be consistent relative
to SP(%,�) since otherwise there are formulas (ϕ1 % >), (ϕ2 % >), . . . , (ϕn % >) in Σ such
that ((ϕ1 % >) ∧ · · · ∧ (ϕn % >))→ ⊥ is in SP(%,�). But then by the rules of IP(%,�,♦)
and the normality of �, we have that (�(ϕ1 % >)∧· · ·∧�(ϕn % >))→ �⊥ is in IP(%,�,♦).
Since �ϕ is provably equivalent to �(ϕ % >) by (C5), we have that �⊥ is in Γ according
to the maximality of Γ, rendering Γ inconsistent since we have (C2).

Now let D = {Σ ∪ {¬(ϕ % >)} | ¬�ϕ ∈ Γ, ϕ ∈ L(%,�)[p]}. Note that for each
∆ = Σ ∪ {¬(ϕ % >)} ∈ D, ∆ is also a set of formulas in L(%,�)[p]. Moreover, ∆ must
be consistent relative to SP(%,�) as well. If not, then since Σ is consistent, we must have
formulas (ϕ1 % >), . . . , (ϕn % >) in Σ such that ((ϕ1 % >) ∧ · · · ∧ (ϕn % >))→ (ϕ % >) ∈
SP(%,�). Then by reasoning similar to that above, �(¬ϕ % >) and hence �¬ϕ are in Γ
using (C5), rendering Γ inconsistent.

Thus, for each ∆ ∈ D, according to Proposition 5.4.12, there is a probability measure
µ∆ on ℘(Wp) and a w ∈ Wp such that Mp, {µ∆}, w � ∆. Note that since all formulas in ∆
are comparison formulas of the form ϕ % > or its negation, it does not matter what w is.
Hence we have that Mp, {µ∆} � ∆. Take P to be the set {µ∆ | ∆ ∈ D}. Then we are left
only to show that there is a w ∈ Wp such that Mp,P , w � ϕ for all ϕ ∈ Γ ∩ L(%,�,♦)[p].

Let w0 be the element in Wp = {0, 1}p defined by w0(p) = 1 iff p ∈ Γ for all p ∈ p. Then
we are ready to show the following truth lemma.

Lemma 5.5.11. For all ϕ ∈ L(%,�,♦)[p], Mp,P , w0 � ϕ iff ϕ ∈ Γ.

Proof. It is enough to show that for all ϕ ∈ LSimp[p], Mp,P , w0 � ϕ iff ϕ ∈ Γ. This is
because for any ϕ ∈ L(%,�,♦)[p], according to Lemma 5.5.10, ϕ ∈ Γ iff T (ϕ) ∈ Γ with
T (ϕ) ∈ LSimp[p]. But then

T (ϕ) ∈ Γ ⇐⇒ Mp,P , w0 � T (ϕ) ⇐⇒ Mp,P , w0 � ϕ.

The first equivalence holds by the fact that T (ϕ) ∈ LSimp[p] and the truth lemma we will
show below in this fragment. The second is by soundness.

We now focus on the fragment LSimp[p]. Since the generating operations of this fragment
are Boolean, the inductive cases are trivial. The atomic case for propositional variables in p
is also trivial by the definition of w0. Hence we are left to show that for any ϕ ∈ {♦ψ | ψ ∈
L(%,�)[p]}, we have ϕ ∈ Γ iff Mp,P , w0 � ϕ. In other words, we only need to show that
for all ϕ ∈ L(%,�)[p], we have ♦ϕ ∈ Γ iff Mp,P , w0 � ♦ϕ.

• Suppose ♦ϕ 6∈ Γ, so �¬ϕ ∈ Γ. Then (¬ϕ % >) ∈ Σ since ¬ϕ ∈ L(%,�)[p], which
means (¬ϕ % >) ∈ ∆ for all ∆ ∈ D. Then, for any µ∆ ∈ P , Mp, {µ∆} � ¬ϕ % >
since (¬ϕ % >) ∈ ∆, which in turn means that µ∆(JϕKMp,{µ∆}) = 0. This is precisely
the condition for ♦ϕ to be false at Mp,P , w0.

• Suppose ♦ϕ ∈ Γ, so ¬�¬ϕ ∈ Γ. Then there is a ∆ such that ¬(¬ϕ % >) ∈ ∆
again because ¬ϕ ∈ L(%,�)[p]. For this µ∆ then, Mp, {µ∆} 2 ¬ϕ % >. In other
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words, µ∆(JϕKMp,{µ∆}) 6= 0. The existence of this µ∆ ∈ P shows that ♦ϕ is true at
Mp,P , w0.

Given the above truth lemma, Mp,P , w0 � γ since γ ∈ Γ and γ ∈ L(%,�,♦)[p]. Hence
we have successfully found a model for the arbitrarily chosen consistent γ, completing the
proof of the completeness of IP(%,�,♦).

5.5.2 Complexity

In this section, we briefly comment on the complexity of the consistency problem of the logic
IP(%,�,♦) or equivalently the satisfiability problem of L(%,�,♦). First, adapting the proof
of Theorem 9 in [85], it is not hard to see that the satisfiability problem for a conjunction
of literals where we take formulas in both Prop and {♦ϕ | ϕ ∈ L(%,�)} as atomic formulas
is in NP (note that Theorem 2.6 in [51], used in the proof of [85], allows strict inequalities).
Hence the satisfiability problem for LSimp is also in NP. Then to see that the satisfiability
problem for L(%,�,♦) is in NP, it is enough to show that every ϕ ∈ L(%,�,♦) is equivalent
to a disjunction of formulas in LSimp where each disjunct’s length is bounded by O(|ϕ|). In
our proof of Lemma 5.5.10 above, this is done by extracting ♦ from the scope of % and
� and eliminating ♦ in the scope of ♦. Note that the elimination of ♦ in the scope of ♦
can be done before the extraction: given an input formula ϕ, replace each subformula ♦χ
not in the scope of any ♦ by ♦T−♦(χ). The resulting formula, which we call ϕ′, is clearly
at most four times longer than ϕ. Then we only need to run the process of (1) extracting
♦’ed formulas in the scope of % or � and (2) adding a � to a % formula or a � formula
when both arguments to the % or � no longer contain modal operators. This process, while
introducing disjunctions exponentially, only grows the length of the disjuncts by at most a
constant for each extracting operation. The number of total extracting operations is clearly
at most the length of the input formula ϕ′. Thus, we obtain the following.

Theorem 5.5.12. The complexity of the satisfiability problem for L(%,�,♦) is NP-complete.

5.5.3 Expressivity

Reflecting the failure of uniform substitution, for any purely propositional formula α, ♦α is
already expressible in L(%).

Lemma 5.5.13. Let α, β be propositional formulas. Then:

1. ♦α is equivalent to ¬(⊥ % α);

2. ♦(α % β) and ♦¬(β � α) are both equivalent to ¬(β � α);

3. ♦(β � α) and ♦¬(α % β) are both equivalent to ¬(α % β).

However, ♦ϕ is not in general expressible without ♦.
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Example 5.5.14. The formula ♦(p ≈ ¬p) is not equivalent to any formula of L(%,�).
Consider again the propositional model M = 〈W,V 〉 where W = {w, v} and V (p) = {w}
while V (q) = ∅ for all q ∈ Prop \ {p}. Then let P be the set of all probability measures on
℘(W ) and P ′ the set of all probability measure µ on ℘(W ) except the ones that give equal
probability to {w} and {v}. Then %P and %P ′ (resp. �P and �P ′) are the same on ℘(W )
and are pictured below:

∅

{w} {v}

W

Thus, using Propositions 5.4.15 and 5.4.14, for any ϕ ∈ L(%,�),M,P , w � ϕ iffM,P ′, w �
ϕ. Yet M,P , w � ♦(p ≈ ¬p) while M,P ′, w 2 ♦(p ≈ ¬p).

Now we characterize the expressivity of L(%,�,♦) precisely.

Proposition 5.5.15. Let 〈W,V,P〉 and 〈W ′, V ′,P ′〉 be IP models and w,w′ worlds in W
and W ′, respectively. Let p be a subset of Prop. Then w and w′ satisfy the same formulas
in L(%,�,♦) using only propositional variables in p if

1. w and w′ satisfy the same propositional variables in p,

2. for any µ ∈ P, there is µ′ ∈ P ′ such that 〈W,V, {µ}〉 and 〈W ′, V ′, {µ′}〉 are order-
similar in p, and

3. for any µ′ ∈ P ′, there is µ ∈ P such that 〈W,V, {µ}〉 and 〈W ′, V ′, {µ′}〉 are order-
similar in p.

The converse also holds if in addition p is finite.

Proof. The left-to-right direction is again easy. For the only non-obvious case, suppose for
example that the second clause fails: there is a µ ∈ P such that for any µ′ ∈ P ′, 〈W,V, {µ}〉
and 〈W ′, V ′, {µ′}〉 are not order-similar in p. Then let {αi}1≤i≤n be a finite set of Boolean
formulas such that every Boolean formula using only letters in p is logically equivalent to
some αi (such a set can be found using disjunctive normal forms). We can now describe
µ in full relative to p by the conjunction χ =

∧
1≤i,j≤n si(αi % αj) where si is empty if

µ(JαiK〈W,V 〉) % µ(JαjK〈W,V 〉) and is ¬ otherwise. Indeed, by the definition of order-similarity,
whenever 〈W,V, {µ}〉 and 〈W ′, V ′, {µ′}〉 are not order-similar in p, at any world in W ′, χ is
false. This means that w′ would falsify ♦µ, but w satisfies ♦µ, showing that the two worlds
disagree on a formula in L(%,�,♦).

The right-to-left direction follows from the normal form lemma, Lemma 5.5.10. If the
last two clauses hold, then for any formula of the form ♦ϕ where ϕ ∈ L(%,�)[p], ♦ϕ is true
at M,P , w iff it is true at M,P ′, w′. By the first clause, the two pointed IP models also



CHAPTER 5. LOGICS OF IMPRECISE COMPARATIVE PROBABILITY 163

satisfy the same propositional variables in p. Then by a simple induction, they satisfy the
same formulas in LSimp[p]. But by Lemma 5.5.10, this is enough for them to satisfy the same
formulas in L(%,�,♦)[p].

The special case where the two IP models share the same propositional model is again
worth spelling out.

Proposition 5.5.16. Let M = 〈W,V 〉 be a propositional model, w and w′ two worlds in
W , and P and P ′ nonempty sets of probability measures defined on fields of sets extending
V [Prop]. Let p be a subset of Prop and F the field of sets on W generated by V [p]. Then
M,P , w and M,P ′, w′ satisfy the same formulas in L(%,�,♦)[p] if

• w and w′ satisfy the same propositional variables in p,

• for any µ ∈ P, there is µ′ ∈ P ′ such that %µ|F = %µ′|F , and

• for any µ′ ∈ P ′, there is µ ∈ P such that %µ|F = %µ′|F .

The converse also holds if in addition p is finite.

5.6 Dynamics

In this section, we consider two kinds of information dynamics in the context of imprecise
probability. The first is a standard notion of updating a set of probability measure on new
evidence (see, e.g., [80, p. 81]) where we can eliminate both possible worlds (keeping only the
worlds compatible with the evidence) and probability measures (keeping only the probabil-
ity measures that give the evidence a positive probability measure). Usually, especially in a
Bayesian framework, such updates are all we need for information dynamics, since we can al-
ways model agents with a universal and all-inclusive state space, anticipating all distinctions
that could be made among states. However, there are numerous examples where an agent is
not initially aware of a distinction. In Example 5.1.1, the agent is not initially aware of the
gland and hence the distinction between a swollen and normal gland. When the doctor tells
the agent about the gland, we can model the agent as first learning the mere existence of
a new proposition—the swollen gland proposition—and then learning how this proposition
relates probabilistically to her having the disease. Without imprecise probability, we face
the perennial question of how to assign a probability for such a new proposition. Given
imprecise probability, however, we can simply choose the set of all probability measures that
are compatible with one of the old probability measures. This models how an agent can
“initialize” her uncertainty toward a newly introduced proposition.

In the next two subsections, we discuss the two dynamic operators in more detail. For the
update operator, we show how it does not add expressivity to the language L(%,�,♦), and
we present a sound and complete logic following the standard “reduction axiom” strategy in
dynamic epistemic logic. For the operators modeling the introduction of new propositions,
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however, we show that they significantly increase expressivity, and we leave the axiomatiza-
tion of the valid formulas as an open question.

5.6.1 Updating Probabilities and the Logic IP(%,�,♦, 〈 〉)
In this subsection, we introduce the update operator 〈 〉 that models learning the truth of a
proposition. Given an initial set P of probability measures, after learning some proposition
U ⊆ W with certainty, we update the set P to the set

PU = {µ(· | U) : µ ∈ P , µ(U) > 0},

where µ(· | U) is defined by conditionalization as usual: for any V ⊆ W , µ(V | U) = µ(V ∩U)
µ(U)

.
Since we have a formal language with comparative probability operators, we can model

updating on sentences containing not only factual formulas but also comparative probability
formulas (cf. [156, 158, 132]), as in “it is raining, and it is more likely that there will
be hail than it is that there will be lightning” (r ∧ (h � `)). Intuitively, if Ann tells
Bob that “hail is more likely than lightning,” she is not telling Bob something about his
own epistemic state (which he already knows, in the models of this chapter) but is rather
recommending that he update his epistemic state to one according to which hail is more
likely than lightning—which he can do by discarding from his set of measures any measure
according to which hail is not more likely than lightning.5 Our semantics below, developed
in the style of dynamic epistemic logic (see, e.g., [43, 13]), will allow such updates in response
to comparative probability claims.

Definition 5.6.1. The language L(%,�,♦, 〈 〉) is defined by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ % ϕ) | (ϕ � ϕ) | ♦ϕ | 〈ϕ〉ϕ

where p ∈ Prop. We read 〈α〉ϕ as “(update with α is possible and) after update with α, ϕ
is the case.” As usual, [α]ϕ abbreviates ¬〈α〉¬ϕ.

Definition 5.6.2. We extend the semantics of Definition 5.5.2 to L(%,�,♦, 〈 〉) as follows:

• M,P , w � 〈ϕ〉ψ iff there is a µ ∈ P such that µ(JϕKM,{µ}) 6= 0 and M,Pϕ, w � ψ,

where
Pϕ = {ν(· | JϕKM,{ν}) : ν ∈ P and ν(JϕKM,{ν}) 6= 0}.

Lemma 5.6.3. The semantics for [ϕ]ψ is as follows:

• M,P , w � [ϕ]ψ iff if there is a µ ∈ P such that µ(JϕKM,{µ}) 6= 0, then M,Pϕ, w � ψ.

5Another possible interpretation is that there is some objectively correct probability measure, and Ann
is telling Bob a fact about that measure, which he wants his probabilities to ultimately match.
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The following lemma states how updating with a formula ϕ % ψ, if possible, results in
restricting one’s set of measures to just those that individually satisfy ϕ % ψ.

Lemma 5.6.4. For any IP model 〈M,P〉 and ϕ, ψ ∈ L(%,�,♦), Pϕ%ψ = ∅ or

Pϕ%ψ = {ν ∈ P :M, {ν} � ϕ % ψ}.

Let us see how this framework can be used to formalize the three prisoners scenario from
Example 5.1.2.

Example 5.6.5. Let ei and si stand for ‘prisoner i will be executed ’ and ‘the jailer says that
prisoner i will be executed’, respectively. Define a propositional model M = 〈W,V 〉 with

W = {wab, wac, wbc, wcb}

where at wij, prisoner i is the only prisoner who lives and prisoner j is the prisoner who the
jailer says will be executed, so

V (ea) = {wbc, wcb}, V (eb) = {wab, wac, wcb}, V (ec) = {wab, wac, wbc},

V (sb) = {wab, wcb}, V (sc) = {wac, wbc}.

Since prisoner a knows that each prisoner is equally likely to be executed but has no idea
about how the jailer is likely to answer his question about which of b or c will be executed
(except that the jailer is certain to give a true answer), prisoner a’s epistemic state may be
modeled by the following set of probability measures:

P = {µ : µ({wab, wac}) = µ({wbc}) = µ({wcb}) = 1/3}.

Then the following formulas together capture what is distinctive about the puzzle, all coming
out true in this model. First, we can state that each prisoner is equally likely to be spared—
indeed that each has one-third chance:

α :=
(
⊥ % (ea ∧ eb ∧ ec)

)
∧
((

(ea ∧ eb) ∨ (ea ∧ ec) ∨ (eb ∧ ec)
)
% >

)
∧ (ea ≈ eb) ∧ (eb ≈ ec).

Second, we can state that the jailer only announces truthfully one of sb and sc:

β := ((sb → eb) % >) ∧ ((sc → ec) % >) ∧ (⊥ % (sb ∧ sc)).

Given the dynamic operator, we can also express a fact about how a’s uncertainty is affected
upon learning that b is to be executed. After this announcement, a’s credences dilate from a
sharp two-thirds probability to including the possibilities that he is sure to be executed and
that he has merely one-half probability of being executed:

〈sb〉
(
♦(ea % >) ∧ ♦(ea ≈ ¬ea)

)
.
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If, however, a first updates with the information that the jailer is following a protocol of
reporting b or reporting c with equal probability in the case that a is to be spared, then
dilation no longer occurs. In fact, the probability of ea remains at two-thirds, and for
instance the following formula is true:

〈(¬ea ∧ sb) ≈ (¬ea ∧ sc)〉〈sb〉
(
(ea � ec) ∧ (ea � ¬ea) ∧ (> � ea)

)
.

Finally, were a to update with the information that the jailer would certainly announce eb
in case ea were false, then the probabilities of ea, eb, and ec would all remain equally likely:

〈⊥ % (¬ea ∧ sc)〉α.

But after learning that b will be executed, the probability of ea decreases to one-half:

〈⊥ % (¬ea ∧ sc)〉〈sb〉(ea ≈ ¬ea).

It is important to note that we do not have to resort to the particular model above to
model the prisoner case. Indeed, the following formulas are true at any pointed IP model
and hence also provable in the complete logic to be presented:

(α ∧ β)→ [(¬ea ∧ sb) ≈ (¬ea ∧ sc)]〈sb〉
(
(ea � ec) ∧ (ea � ¬ea) ∧ (> � ea)

)
(5.2)

(α ∧ β)→ [⊥ % (¬ea ∧ sc)](α ∧ 〈sb〉(ea ≈ ¬ea)) (5.3)

(α ∧ β)→
((♦(⊥ % (¬ea ∧ sb)) ∧ ♦(⊥ % (¬ea ∧ sc)))→ 〈sb〉(♦(ea % >) ∧ ♦(ea ≈ ¬ea))) .

(5.4)

In (5.2) and (5.3), we have to use [ ] instead of 〈 〉 since there are models that satisfy α ∧ β
but do not contain probability measures satisfying either (¬ea ∧ sb) ≈ (¬ea ∧ sc) or ⊥ %
(¬ea ∧ sc), unlike the particular model above using the all-inclusive P . To cope with this,
we need to use the box version of the update operator. In formula (5.4), the extra premise
♦(⊥ % (¬ea ∧ sb)) ∧ ♦(⊥ % (¬ea ∧ sc)) is again required since dilation crucially relies on P
containing both a measure assigning 0 to ¬ea ∧ sb and a measure assigning 0 to ¬ea ∧ sc.
In our current language, using the ♦ operator is the most straightforward way to express
this. An equivalent way is to use ¬((¬ea ∧ sb) � ⊥)∧¬((¬ea ∧ sb) � ⊥). However, the ♦ in
♦(ea ≈ ¬ea) is necessary: there is no formula in L(%,�) that is equivalent to ♦(ea ≈ ¬ea).

To obtain a complete logic for reasoning about updating sets of probability measures,
we follow the standard “reduction axiom” strategy used in dynamic epistemic logic: identify
a set of valid biconditionals that allow us to reduce any formula containing the dynamic
operators 〈ϕ〉 to an equivalent formula of L(%,�,♦) without dynamic operators, which can
then be handled by the complete logic for L(%,�,♦).

Definition 5.6.6. The logic IP(%,�,♦, 〈 〉) is the smallest set of L(%,�,♦, 〈 〉) formulas
that is (i) closed under modus ponens and the rule of replacement of equivalents, and (ii)
contains all theorems of IP(%,�,♦) as well as all instances of the following axiom schemas
where p ∈ Prop and α and β are propositional:
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(R0) 〈ϕ〉p↔ (♦ϕ ∧ p);

(R1) 〈ϕ〉♦ψ ↔ ♦〈ϕ〉ψ;

(R2) 〈ϕ〉¬ψ ↔ (♦ϕ ∧ ¬〈ϕ〉ψ);

(R3) 〈ϕ〉(ψ ∧ χ)↔ (〈ϕ〉ψ ∧ 〈ϕ〉χ);

(R4) 〈ϕ〉(α % β)↔ (♦ϕ ∧�((ϕ ∧ α) % (ϕ ∧ β)));

(R5) 〈ϕ〉(α � β)↔ (♦ϕ ∧�((ϕ � ⊥)→ ((ϕ ∧ α) � (ϕ ∧ β)))).

Example 5.6.7. In a given model, we may ask if after the agent updates with the information
that it is raining and that hail is more likely than lightning tonight the agent judges that it
is at least as likely that a window will break as it is that the power will go out:

〈r ∧ (h � l)〉(w % p).

This is equivalent, in light of the reduction axiom (R4), to

♦(r ∧ (h � l)) ∧�
((

(r ∧ (h � l)) ∧ w
)
%
(
(r ∧ (h � l)) ∧ p

))
,

which is in turn equivalent to

♦(r ∧ (h � l)) ∧�
(
(h � l)→

(
(r ∧ w) % (r ∧ p)

))
,

i.e., there is some measure that gives r non-zero probability and gives h greater probability
than l, and every measure that gives h greater probability than l also makes the probability
of w conditional on r at least as great as the probability of p conditional on r.

The rest of this section is devoted to the proof of the following theorem.

Theorem 5.6.8 (Soundness and Completeness). For all ϕ ∈ L(%,�,♦, 〈 〉): ϕ is a theorem
of IP(%,�,♦, 〈 〉) if and only if ϕ is valid with respect to the class of all imprecise probabilistic
models.

The soundness of IP(%,�,♦, 〈 〉) is less trivial than the soundness of the previous systems.
More importantly, we will use its soundness to prove its completeness, similar to the proof
of completeness of other dynamic epistemic logics axiomatized by reduction axioms.

Proposition 5.6.9. For all ϕ ∈ L(%,�,♦, 〈 〉): if ϕ is a theorem of IP(%,�,♦, 〈 〉), then ϕ
is valid with respect to the class of all imprecise probabilistic models.

Proof. Clearly it is enough to check the validity of (R0) to (R5).

• For (R0), note that the valuation of p is invariant under the updating.
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• For (R1), the key is to treat 〈ϕ〉♦ as a whole, whence the semantics of 〈ϕ〉♦ψ at
M,P , w is that there is a µ ∈ Pϕ such that µ(JψKM,{µ}) > 0. But given the construction
of Pϕ, this is precisely saying that there is a ν ∈ P such that ν(JϕKM,{ν}) > 0 and that,
letting µ = ν(· | JϕKM,{ν}), we have µ(JψKM,{µ}) > 0. Now note that for any ν ∈ P such
that JϕKM,{ν} > 0, letting µ = ν(· | JϕKM,{ν}), we have J〈ϕ〉ψKM,{ν} = JψKM,{µ} since
{ν}ϕ = {µ}. Hence the truth condition of 〈ϕ〉♦ψ is transformed into the existence of
ν ∈ P such that ν(JϕKM,{ν}) > 0 and that J〈ϕ〉ψKM,{ν} > 0. But this is precisely the
truth condition of ♦〈ϕ〉ψ.

• For (R2), the key insight is that atM,P , w, assuming that there is a ν ∈ P such that
ν(JϕKM,{ν}) > 0, we have:

M,P , w � 〈ϕ〉¬ψ ⇐⇒ M,Pϕ, w � ¬ψ
⇐⇒ M,Pϕ, w 6� ψ
⇐⇒ M,P , w � ¬〈ϕ〉ψ.

• For (R3), the idea is similar to the above.

• For (R4), it is enough to observe the following chain of equivalences assuming that
there is a ν ∈ P such that ν(JϕKM,{ν}) > 0:

M,P , w � 〈ϕ〉(α % β) ⇐⇒ M,Pϕ, w � α % β

⇐⇒ ∀µ ∈ Pϕ, µ(JαKM,Pϕ) ≥ µ(JβKM,Pϕ)

⇐⇒ ∀µ ∈ Pϕ, µ(V (α)) ≥ µ(V (β))

⇐⇒ ∀ν ∈ P such that ν(JϕKM,{ν}) > 0,

ν(V (α) | JϕKM,{ν}) ≥ ν(V (β) | JϕKM,{ν})

⇐⇒ ∀ν ∈ P such that ν(JϕKM,{ν}) > 0,

ν(V (α) ∩ JϕKM,{ν}) ≥ ν(V (β) ∩ JϕKM,{ν})

⇐⇒ ∀ν ∈ P , ν(V (α) ∩ JϕKM,{ν}) ≥ ν(V (β) ∩ JϕKM,{ν})

⇐⇒ ∀ν ∈ P ,M, {ν} � (ϕ ∧ α) % (ϕ ∧ β)

⇐⇒ ∀ν ∈ P , ν(J(ϕ ∧ α) % (ϕ ∧ β)KM,{ν}) = 1

⇐⇒ M,P , w � �((ϕ ∧ α) % (ϕ ∧ β)).

Note that the last three equivalences extensively use the fact that a Boolean combi-
nation of comparison formulas is true at a world if and only if it is true at all worlds.
The sixth equivalence is true because when ν(JϕKM,{ν}) = 0, it trivially holds that
ν(V (α) ∩ JϕKM,{ν}) ≥ ν(V (β) ∩ JϕKM,{ν}).

• For (R5), the strategy is the same—it is enough to observe the following chain of
equivalences assuming that there is a ν ∈ P such that ν(JϕKM,{ν}) > 0:

M,P , w � 〈ϕ〉(α � β) ⇐⇒ M,Pϕ, w � α � β
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⇐⇒ ∀µ ∈ Pϕ, µ(JαKM,Pϕ) > µ(JβKM,Pϕ)

⇐⇒ ∀µ ∈ Pϕ, µ(V (α)) > µ(V (β))

⇐⇒ ∀ν ∈ P such that ν(JϕKM,{ν}) > 0,

ν(V (α) | JϕKM,{ν}) > ν(V (β) | JϕKM,{ν})

⇐⇒ ∀ν ∈ P such that ν(JϕKM,{ν}) > 0,

ν(V (α) ∩ JϕKM,{ν}) > ν(V (β) ∩ JϕKM,{ν})

⇐⇒ ∀ν ∈ P , if M, {ν} � ϕ � ⊥ then

M, {ν} � (ϕ ∧ α) � (ϕ ∧ β)

⇐⇒ ∀ν ∈ P ,M, {ν} � (ϕ � ⊥)→ ((ϕ ∧ α) � (ϕ ∧ β))

⇐⇒ ∀ν ∈ P , ν(J(ϕ � ⊥)→ ((ϕ ∧ α) � (ϕ ∧ β))KM,{ν}) = 1

⇐⇒ M,P , w � �((ϕ � ⊥)→ ((ϕ ∧ α) � (ϕ ∧ β))).

Again, the last four equivalences extensively use the fact that a Boolean combination
of comparison formulas is true at a world if and only if it is true at all worlds.

For completeness, we first show that the axioms allow us to provably-equivalently reduce
any formula in L(%,�,♦, 〈 〉) to a fragment LSimpd1 that is even simpler than the fragment
LSimp: the comparison formulas in the scope of any ♦ must not have nested comparison.

Definition 5.6.10. Let LBool be the set of propositional formulas. In other words, this is
the fragment generated from Prop by ¬ and ∧.

Let LCompd1 be the fragment of L(%,�) with no nesting of % and �. In other words,
this is the fragment generated from Prop and {(α % β), (α � β) | α, β ∈ LBool} by ¬ and ∧.

Finally, let LSimpd1 be the fragment of L(%,�,♦) generated from Prop and {♦ϕ | ϕ ∈
LCompd1} by ¬ and ∧.

Lemma 5.6.11. For every ϕ ∈ L(%,�), there is a TCompd1(ϕ) ∈ LCompd1 such that ϕ ↔
TCompd1(ϕ) ∈ IP(%,�). Moreover, ϕ and TCompd1(ϕ) use the same propositional variables.

Proof. We use a standard argument for extracting comparisons embedded in comparisons.
Formally, an induction over L(%,�) is needed. The base case and the inductive cases for ¬
and ∧ are trivial as we can simply define TCompd1(p) = p, TCompd1(¬ϕ) = ¬TCompd1(ϕ), and
TCompd1(ϕ ∧ ψ) = TCompd1(ϕ) ∧ TCompd1(ψ).

For the non-trivial cases for % and �, we only need the following theorems in IP(%,�)
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for any α, β ∈ LBool and ϕ, ψ ∈ LCompd1:

(ϕ % ψ)↔
(((α % β) ∧ (ϕ[α % β/>] % ψ[α % β/>])) ∨ (¬(α % β) ∧ (ϕ[α % β/⊥] % ψ[α % β/⊥])));

(ϕ % ψ)↔
(((α � β) ∧ (ϕ[α % β/>] % ψ[α % β/>])) ∨ (¬(α � β) ∧ (ϕ[α % β/⊥] % ψ[α % β/⊥])));

(ϕ � ψ)↔
(((α % β) ∧ (ϕ[α % β/>] � ψ[α % β/>])) ∨ (¬(α % β) ∧ (ϕ[α % β/⊥] � ψ[α % β/⊥])));

(ϕ � ψ)↔
(((α � β) ∧ (ϕ[α % β/>] � ψ[α % β/>])) ∨ (¬(α � β) ∧ (ϕ[α % β/⊥] � ψ[α % β/⊥]))).

They are proven mainly by (B7) to (B10). The key idea is to first derive the following:

(α % β)→ ((ϕ↔ ϕ[α % β/>]) % >);

¬(α % β)→ ((ϕ↔ ϕ[α % β/⊥]) % >);

(α � β)→ ((ϕ↔ ϕ[α � β/>]) % >);

¬(α � β)→ ((ϕ↔ ϕ[α � β/⊥]) % >).

Together with ((ϕ↔ ψ) % >)→ ((ϕ % χ)↔ (ψ % χ)) and ((ϕ↔ ψ) % >)→ ((ϕ � χ)↔
(ψ � χ)), the required equivalences can easily be derived.

Proposition 5.6.12. For every ϕ ∈ L(%,�,♦) there is a TSimpd1(ϕ) ∈ LSimpd1 such that
ϕ↔ TSimpd1(ϕ) is in IP(%,�,♦).

Proof. The result of replacing all ♦χ in TSimp(ϕ) by ♦TCompd1(χ) is the desired TSimpd1(ϕ).

Proposition 5.6.13. For every ϕ ∈ L(%,�,♦, 〈 〉) there is a TSimpd1(ϕ) ∈ LSimpd1 such that
ϕ↔ TSimpd1(ϕ) is in IP(%,�,♦, 〈 〉).

Proof. By induction. Given Proposition 5.6.12 and the rule of replacement of equivalents,
the only non-trivial case is to show that there is a TSimpd1(〈ϕ〉ψ) that is provably equivalent
to 〈ϕ〉ψ in IP(%,�,♦, 〈 〉) where ϕ, ψ are in LSimpd1. By repeated use of (R1) to (R3) and
the rule of replacement of equivalents, obviously we can push the 〈ϕ〉 into ψ over Boolean
connectives and ♦ and obtain a Boolean combination of formulas of the form 〈ϕ〉p or of the
form 〈ϕ〉(α % β) or 〈ϕ〉(α � β) since in LSimpd1, % and � only scope over propositional
formulas. All three kinds of formulas can be replaced by formulas in L(%,�,♦) provably
equivalently. Then we apply TSimpd1 again to finish off (to eliminate any ♦’s appearing inside
♦’s).

With the above reduction method, the completeness of IP(%,�,♦, 〈 〉) follows.

Proposition 5.6.14. For all ϕ ∈ L(%,�,♦, 〈 〉): if ϕ is valid with respect to the class of all
imprecise probabilistic models, then ϕ is a theorem of IP(%,�,♦, 〈 〉).
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Proof. Let ϕ be any valid formula in L(%,�,♦, 〈 〉). Then by the soundness of IP(%,�,♦, 〈 〉)
and the fact that ϕ↔ TSimpd1(ϕ) ∈ IP(%,�,♦, 〈 〉), TSimpd1(ϕ) is also valid. But TSimpd1(ϕ) ∈
LSimpd1 ⊆ L(�,�,♦). By the completeness of IP(%,�,♦), TSimpd1(ϕ) ∈ IP(%,�,♦). By the
definition of IP(%,�,♦, 〈 〉), it contains all theorems of IP(%,�,♦). Hence TSimpd1(ϕ) is in
IP(%,�,♦, 〈 〉). Then by Boolean reasoning, ϕ is in IP(%,�,♦, 〈 〉).

Although the reduction axioms for L(%,�,♦, 〈 〉) allow us to reduce the satisfiability
problem for L(%,�,♦, 〈 〉) to that for L(%,�,♦), which is in NP (Theorem 5.5.12), it does
not immediately follow that the satisfiability problem for L(%,�,♦, 〈 〉) is in NP, due to the
blowup in the length of formulas during the reduction process. A similar obstacle occurs in
the case of the simplest dynamic epistemic logic (public announcement logic), in which case
a solution is to use a satisfiability-preserving reduction with only polynomial blowup instead
of the standard validity-preserving reduction with exponential blowup ([125]). Whether this
or other techniques apply to L(%,�,♦, 〈 〉) we leave as an open problem.

Problem 5.6.15. Determine the complexity of the satisfiability problem for L(%,�,♦, 〈 〉).

5.6.2 Introducing a New Proposition

In the previous subsection, we considered the dynamic update operator that concerns learn-
ing the truth of a proposition. In this subsection, we consider the complementary dynamics
of learning the mere existence of a proposition and then being maximally uncertain about
it in the way of imprecise probability (cf. [101]). Our goal is to show that this kind of
information dynamics is expressively helpful, especially in formalizing examples in a natural
way, and we leave the complete axiomatization of its logic as an open question.

Definition 5.6.16. The language L(%,�,♦, 〈 〉, I) is defined by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ % ϕ) | (ϕ � ϕ) | ♦ϕ | 〈ϕ〉ϕ | I+
p ϕ | I−p ϕ

where p ∈ Prop. We read I+
p ϕ as “letting p be a true proposition that is newly introduced to

the agent, ϕ”; similarly, I−p ϕ reads “letting p be a false proposition that is newly introduced
to the agent, ϕ”. We also take Ipϕ as an abbreviation of (I+

p ϕ ∧ I−p ϕ).
We treat both I+

p and I−p as a kind of propositional quantifier, since they change the mean-
ing (denotation) of p, and we define free and bound propositional variables in the obvious
way. For any ϕ ∈ L(%,�,♦, 〈 〉, I), let Prop(ϕ) be the set of freely occurring propositional
variables in ϕ.

Now we specify the semantics for I+ and I−. First, we define how a model changes when
we introduce a new proposition.

Definition 5.6.17. Given a non-empty set W , a field of sets F on W , a valuation V such
that V (p) ∈ F for all p ∈ Prop, and a set of finitely additive probability measure P on F ,
we interpret F as the collection of the “old” propositions. Our goal is to define the result of
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adding a “new” proposition P . Intuitively, we first split each w ∈ W into 〈w, 1〉 and 〈w, 0〉
corresponding to P being true and false, respectively, while keeping the truth value of the
old propositions. For the probability measures, we take all probability measures defined on
both the old and new propositions that, when restricted to just the old propositions, coincide
with some old probability measure. The following gives the formal details.

• Let F × 2 = {X × {0, 1} | X ∈ F}, which is a field of sets on W × {0, 1}.

• Let Split(F) be the smallest field of sets on W × {0, 1} extending F ∪ {W × {0}}.

• Let V × 2 be defined such that V × 2(p) = V (p) × {0, 1} for all p ∈ Prop; note that
V × 2(p) ∈ F × 2 for all p ∈ Prop.

• For any p ∈ Prop, let V +p be defined such that

V +p(q) =

{
V (q)× {0, 1} if q 6= p

W × {1} if q = p ;

note that V +p(q) ∈ Split(F) for all q ∈ Prop.

• For any finitely additive measure µ on F , define µ× 2, a finitely additive measure on
F × 2, by µ× 2(X × {0, 1}) = µ(X) for all X ∈ F .

• Let P × 2 = {µ× 2 | µ ∈ P}.

• Let Split(P) be the set of all finitely additive measures µ on Split(F) such that µ|F×2 ∈
P × 2.

Using the above definition, given a propositional variable p ∈ Prop and a propositional model
M = 〈W,V 〉, let M× 2 = 〈W × {0, 1}, V × 2〉 and M+p = 〈W × {0, 1}, V +p〉. Then if
〈M,P〉 is an IP model, so is 〈M+p, Split(P)〉, and 〈M+p, Split(P)〉 represents the result of
adding a new proposition, now denoted by p, to 〈M,P〉.

Remark 5.6.18. In the algebraic theory of Boolean algebras, there is a standard operation
of freely adjoining a new element to a Boolean algebra: for any Boolean algebra B and any
a 6∈ B, there is a unique up to isomorphism Boolean algebra B+a such that

• B is a subalgebra of B+a, and every element in B+a is generated from B ∪ {a};

• for any b ∈ B, b ∧ a and b ∧ ¬a are not the bottom element in B+a.

The operation of Split(F) is precisely the dual of this algebraic operation.
Hence, if we use an algebraic model 〈B, V,P〉 where B is a Boolean algebra (of propositions

of which the agent is currently aware), V a valuation function from Prop to B, and P a set
of finitely additive functions from B to [0, 1], we can easily define the result of adding a new
proposition a 6∈ B to be denoted by p as 〈B+a, V ′,P ′〉 where V ′ coincides with V on Prop
except that V ′(p) = a and P ′ = {µ : B+a → [0, 1] | µ is finitely additive and µ|B ∈ P}.
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Remark 5.6.19. The model construction from 〈M,P〉 to 〈Mp, Split(P)〉 can also be viewed
as an event-model update from (probabilistic) dynamic epistemic logic ([14]). The event
model contains two events {1, 0} corresponding to whether the new proposition is true or
not with no preconditions, and the agent is maximally ignorant about these two events:
at any of the old worlds, she cannot distinguish between these two events, is completely
ignorant about the relative likelihood of these two events, and does not observe which event
happens. Using the terminology from [14], the agent is maximally and imprecisely ignorant
about the occurrence probability of these two events and makes no observation about these
two events.

Definition 5.6.20. The semantics of I+
p and I−p are given by

M,P , w � I−p ϕ iff M+p, Split(P), 〈w, 0〉 � ϕ ,
M,P , w � I+

p ϕ iff M+p, Split(P), 〈w, 1〉 � ϕ .

Now let us put the new operators to work. We first use them to formalize the medical
example (Example 5.1.1).

Example 5.6.21. The following sentence is valid and represents the medical example if
we take p to mean that the agent has the disease (that is, the proposition introduced by
Ip is that the agent has the disease) and q to mean that the gland is swollen (that is, the
proposition introduced by Iq is that the gland is swollen).

Ip〈¬p � p〉Iq〈(q ∧ p) � (q ∧ ¬p)〉〈q〉(p � ¬p). (5.5)

We interpret the first update by ¬p � p as the result of the agent observing that she is not
feeling uncomfortable and hence believing that her not having the disease is more likely than
her having it. The second update represents what the agent learns from the doctor, and the
third update represents a medical examination revealing that her gland is swollen.

The above simple sentence does not capture more nuanced probabilistic relationships
between p and q such as that conditioning on q, p is twice as likely as ¬p or that the medical
examination does not reveal q but only a signal that is probabilistically related to q. But
with the new operator I, we can easily say these things. For example, to express that p is
twice as likely as ¬p conditioning on q, we may introduce two new propositions (like two coin
flips) by Ir and Is at the beginning of the formula (note that our syntax forbids embedding
I in updates) and later add after Iq the update 〈((q ∧ r ∧ s) ≈ (q ∧ r ∧¬s))∧ ((q ∧¬r ∧ s) ≈
(q ∧ ¬r ∧ ¬s)) ∧ ((q ∧ r ∧ s) ≈ (q ∧ ¬r ∧ s)) ∧ (⊥ % (q ∧ ¬r ∧ ¬s))〉, which says that
conditioning on q the two coin flips are fair and independent but the two tail situation is
impossible (perhaps because the two coins will be retossed if they are both tails up). Then,
using 〈(q ∧ p) ≈ (q ∧ s)〉, we essentially say that p’s probability conditioning on q is 2/3
and thus twice as likely as ¬p. To express that the medical examination only provides an
informative signal related to q, we may again introduce a new proposition t representing that
signal and then let the agent learn the probabilistic relationship between t and q.
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Example 5.6.22. For the prisoner example, recall that α is the formula(
⊥ % (ea ∧ eb ∧ ec)

)
∧
((

(ea ∧ eb) ∨ (ea ∧ ec) ∨ (eb ∧ ec)
)
% >

)
∧ (ea ≈ eb) ∧ (eb ≈ ec),

saying that two of the prisoners will be executed and the probabilities for the three situations
are equal. Recall also that β is the following formula

((sb → eb) % >) ∧ ((sc → ec) % >) ∧ (⊥ % (sb ∧ sc)),

saying that the jailer will announce one and only one prisoner to be executed truthfully.
Then the following formula is valid and represents the dilation when a hears that the jailer
announces that b will be executed:

IeaIebIec〈α〉IsbIsc〈β〉〈sb〉(♦(ea % >) ∧ ♦(ea ≈ ¬ea)).

As we have seen in Example 5.6.21, L(%,�,♦, 〈 〉, I) is capable of expressing numerical
relationships. Leveraging this capability, it is easy to observe that L(%,�,♦, 〈 〉, I) is more
expressive than L(%,�,♦, 〈 〉).

Example 5.6.23. Consider a propositional modelM = 〈W,V 〉 where W = {w, u} has two
worlds, V (p) = {w}, and V (q) = ∅ for all q ∈ Prop \ {p}. Then let µ1 be a probability
measure on ℘(W ) such that µ1({w}) = 0.6, and let µ2 also be a probability measure on
℘(W ) such that µ2({w}) = 0.9. Then it is easy to see that M, {µ1}, w and M, {µ2}, w
satisfy the same formulas in L(%,�,♦, 〈 〉). However, the following formula

IqIr〈((q ∧ r) ≈ (q ∧ ¬r)) ∧ ((q ∧ r) ≈ (¬q ∧ r)) ∧ ((q ∧ r) ≈ (¬q ∧ ¬r))〉(p � ¬(q ∧ r)),

which intuitively says that p is more likely than not getting two heads up from two randomly
and independently flipped fair coins, is true at M, {µ2}, w, but false at M, {µ1}, w.

Indeed, we will show that L(%,�,♦, 〈 〉, I) can express any linear inequality with integer
coefficients about the probability of formulas. For this, we first introduce some notation.

Definition 5.6.24. Let Γ be a finite set of formulas, C(Γ) the set of all clauses (conjunctions
of the form

∧
ϕ∈Γ±ϕ where ± is either the empty string or ¬), and p a propositional variable.

Then define (p|Γ) to be the formula∧
ψ∈C(Γ)

((ψ ∧ p) ≈ (ψ ∧ ¬p)).

Intuitively, (p|Γ) says that p represents a fair coin flip independent of all events expressible
using formulas in Γ.

Proposition 5.6.25. For any sequences 〈ϕi〉i=1...n and 〈ψi〉i=1...m of formulas in L(%,�
,♦, 〈 〉, I) and any sequences 〈ai〉i=1...n and 〈bi〉i=1...m of natural numbers, there is a formula
χ ∈ L(%,�,♦, 〈 〉, I) such that for any IP model M,P , w,

M,P , w � χ iff ∀µ ∈ P ,
n∑
i=1

aiµ(JϕiKM,P) ≥
m∑
i=1

biµ(JψiKM,P).
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Proof. The central idea is already in [109] and is also described in Section 2 of [41]: we use
I operators to introduce new propositions that evenly partition the logical space spanned
by ϕi’s so that we can take the union of multiple copies of the partitioned ϕi’s to simulate
addition.

Let l be the smallest natural number such that 2l is larger than the sum of all ai’s and
bi’s and pick propositional variables 〈pi〉i=1...l not occurring in any of the ϕi’s and ψi’s. Then
let C list all logically inequivalent clauses made from pi’s. Since |C| = 2l and 2l is larger
than the sum of all coefficients, let f be a function from {1, . . . n} × {0} ∪ {1, . . .m} × {1}
to ℘(C) such that f(x) ∩ f(y) = ∅ whenever x 6= y and |f(i, 0)| = ai and |f(i, 1)| = bi. Let
Γ be set of all ϕi’s and ψi’s. Then consider the following formula:

I+
p1
I+
p2
· · · I+

pl
〈(p1|Γ) ∧ (p2|Γ ∪ {p1}) · · · (pl|Γ ∪ {p1, p2, · · · , pl−1})〉

(
n∨
i=1

∨
c∈f(i,0)

(ϕi ∧ c)) % (
n∨
i=1

∨
c∈f(i,1)

(ψi ∧ c)). (5.6)

This is the required formula since after the introduction of new propositions and the an-
nouncement, the probability of

∨
c∈f(i,0)(ϕi ∧ c) (resp.

∨
c∈f(i,1)(ψi ∧ c)) is precisely ai/2

l

(resp. bi/2
l) times the probability of ϕi (resp. ψi). Canceling out the common denominator

2l, we see that the inequality expressed by formula (5.6) is the required one.

Therefore, we see that with the new operators I+
p and I−p , L(%,�,♦, 〈 〉, I) is capable of

expressing quantitative (and in particular arbitrary additive) information. This also means
that we cannot use the same reduction strategy we used for L(%,�,♦, 〈 〉) to axiomatize
the logic in L(%,�,♦, 〈 〉, I). However, we conjecture that there is a computable translation
from L(%,�,♦, 〈 〉, I) to L(%,�,♦, 〈 〉) that preserves satisfiability. Such a translation can
then be coded as rules instead of axioms that completely axiomatize the logic.

Problem 5.6.26. Find an axiomatization of the set of valid formulas in L(%,�,♦, 〈 〉, I).

Problem 5.6.27. Determine the complexity of the satisfiability problem for the language
L(%,�,♦, 〈 〉, I).

5.7 Conclusion

In this chapter, we have investigated a hierarchy of languages

L(%) ⊆ L(%,�) ⊆ L(%,�,♦) ⊆ L(%,�,♦, 〈 〉) ⊆ L(%,�,♦, 〈 〉, I)

and matching complete logics for imprecise comparative probabilistic reasoning in the first
four languages:

IP(%) ⊆ IP(%,�) ⊆ IP(%,�,♦) ⊆ IP(%,�,♦, 〈 〉).
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The first four languages have straightforward extensions to the multi-agent setting, in which
each agent i has their own comparative probability relations %i and �i, allowing us to
formalize statements such as “Ann judges it more likely than not that Bob thinks hail is
more likely than lightning”: (h �b l) �a ¬(h �b l). A multi-agent version of the language
L(%) was already studied in [1]. Generalizing the other languages in this chapter to the
multi-agent setting presents no major challenges, although the complexity of the resulting
multi-agent logics goes beyond that of the single-agent versions, just as the complexity of the
basic epistemic logic S5 jumps from NP to PSPACE when moving from the single-agent to
multi-agent setting (see [81]). When generalizing the language L(%,�,♦, 〈 〉, I) to the multi-
agent setting, there is a distinction between introducing a new proposition to every agent
publicly and introducing a new proposition for only one agent so that she becomes privately
aware of it. Our semantics naturally generalizes to model all agents publicly becoming aware
of a new proposition, but the modeling of some agent’s privately becoming aware of a new
proposition requires a different treatment.

Further extensions to the language are natural to consider, such as adding comparative
conditional probability formulas (ϕ | ψ) % (α | β) (resp. (ϕ | ψ) � (α | β)) expressing
that the conditional probability of ϕ given ψ is at least as great as (resp. greater than) the
conditional probability of α given β for every measure in one’s set of measures, which is not
expressible in the languages of this chapter (see [124]). For precise probabilistic models, such
a quarternary operator is investigated in, e.g., [44, § 2.6] and [151] (and recently in [87] using
so-called Popper functions), but the interpretation in imprecise probabilistic models seems
yet to be explored. Allowing inequalities of probabilistic products (ϕ× ψ) % (α× β) would
allow even greater expressivity (such an extension in the precise case is also considered in
[44, §2.4]).

More generally, the systems in this chapter are part of a much broader hierarchy of
probabilistic languages, ranging from the very simple L(%) all the way to highly expressive
probabilistic languages encompassing full quantified real number arithmetic [79]. In addition
to their inherent theoretical interest, probabilistic logics have emerged as a foundational tool
for many central computational tasks, from core knowledge representation [139], to reasoning
about strategic interaction [35, 15], to causal inference (witness do-calculus, which is built
on top of a probability calculus; see, e.g., [135, 7, 98]). Furthermore, applications in these
contexts have motivated some of the very systems presented here (e.g., [1]). Understanding
the capacities and limitations of such systems may well be an important step toward further
integration of explicit probabilistic tools in these and other domains.
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[30] Luis Fariñas del Cerro and Andreas Herzig. “A Modal Analysis of Possibility Theory”.
In: Lecture Notes in Computer Science 535 (1991), pp. 11–18.

[31] Chen Chung Chang and H. Jerome Keisler. Model theory. Vol. 73. Elsevier, 1990.

[32] Roger Clarke. “Belief Is Credence One (In Context)”. In: Philosopher’s Imprint 13.11
(2013).

[33] Inés Couso and Seraf́ın Moral. “Sets of desirable gambles: conditioning, representa-
tion, and precise probabilities”. In: International Journal of Approximate Reasoning
52.7 (2011), pp. 1034–1055.

[34] Brian A. Davey and Hilary A. Priestley. Introduction to lattices and order. Cambridge
university press, 2002.

[35] Eddie Dekel and Marciano Siniscalchi. “Epistemic Game Theory”. In: Handbook of
Game Theory with Economic Applications. Vol. 4. 2015, pp. 619–702.

[36] Persi Diaconis. “Review of “A mathematical theory of evidence” (G. Shafer)”. In:
Journal of the American Statistical Association 73.363 (1978), pp. 677–678.

[37] Persi Diaconis and Sandy L. Zabell. “Some alternatives to Bayes’s rule”. In: Infor-
mation Pooling and Group Decision Making. Ed. by B. Grofman and G. Owen. J.A.I.
Press, 1986, pp. 25–38.

[38] Nicholas DiBella. “Qualitative Probability and Infinitesimal Probability”. Draft of
9/7/18. 2018.

[39] Yifeng Ding. “On the Logic of Belief and Propositional Quantification”. In: Journal
of Philosophical Logic (2021). doi: 10.1007/s10992-021-09595-8.

[40] Yifeng Ding. “On the Logics with Propositional Quantifiers Extending S5Π”. In:
Advances in Modal Logic 12, proceedings of the 12th conference on ”Advances in
Modal Logic,” held in Bern, Switzerland, August 27-31, 2018. 2018, pp. 219–235.
url: http://www.aiml.net/volumes/volume12/Ding.pdf.

[41] Yifeng Ding, Matthew Harrison-Trainor, and Wesley H. Holliday. “The Logic of Com-
parative Cardinality”. In: The Journal of Symbolic Logic 85.3 (2020), pp. 972–1005.
doi: 10.1017/jsl.2019.67.

[42] Yifeng Ding, Wesley H. Holliday, and Thomas F. Icard III. “Logics of imprecise
comparative probability”. In: International Journal of Approximate Reasoning 132
(2021), pp. 154–180.

https://doi.org/10.1007/s10992-021-09595-8
http://www.aiml.net/volumes/volume12/Ding.pdf
https://doi.org/10.1017/jsl.2019.67


BIBLIOGRAPHY 180

[43] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic
Logic. Dordrecht: Springer, 2008.

[44] Zoltan Domotor. Probabilistic Relational Structures and their Applications. Techni-
cal Report No. 144 Psychology Series. Stanford University, California Institute for
Mathematical Studies in the Social Sciences, 1969.

[45] Alan Dow and J. Vermeer. “Not all σ-complete Boolean algebras are quotients of
complete Boolean algebras”. In: Proceedings of the American Mathematical Society
116.4 (1992), pp. 1175–1177.

[46] Didier Dubois and Henri Prade. Possibility Theory. New York: Plenum Press, 1988.

[47] J. Michael Dunn and Gary M. Hardegree. Algebraic methods in philosophical logic.
Oxford University Press, 2001.

[48] Kenny Easwaran. “Regularity and Hyperreal Credences”. In: Philosophical Review
123.1 (2014), pp. 1–41. doi: 10.1215/00318108-2366479.

[49] Edward Elliott. “‘Ramseyfying’ Probabilistic Comparativism”. In: Philosophy of Sci-
ence 87.4 (2020), pp. 727–754.

[50] Benjamin Eva. “Principles of Indifference”. In: Journal of Philosophy 116.7 (2019),
pp. 390–411.

[51] Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. “A logic for reasoning about
probabilities”. In: Information and Computation 87 (1990), pp. 78–128.

[52] Tuan-Fang Fan and Churn-Jung Liau. “Doxastic Reasoning with Multi-Source Jus-
tifications based on Second Order Propositional Modal Logic”. In: Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent Systems. International
Foundation for Autonomous Agents and Multiagent Systems. 2017, pp. 1529–1531.

[53] Alfredo Ferro, Eugenio G. Omodeo, and Jacob T. Schwartz. “Decision procedures for
elementary sublanguages of set theory. I. Multi-level syllogistic and some extensions”.
In: Communications on Pure and Applied Mathematics 33.5 (1980), pp. 599–608.

[54] Kit Fine. “For some proposition and so many possible worlds”. PhD thesis. University
of Warwick, 1969. url: http://wrap.warwick.ac.uk/72219/.

[55] Kit Fine. “Propositional quantifiers in modal logic”. In: Theoria 36.3 (1970), pp. 336–
346.

[56] Terrence L. Fine. “An Argument for Comparative Probability”. In: Basic Problems
in Methodology and Linguistics. Ed. by R.E. Butts and J. Hintikka. Springer, 1977,
pp. 105–119.

[57] Terrence L. Fine. Theories of Probability. New York: Academic Press, 1973.

[58] Bruno de Finetti. “La ‘logica del plausible’ secondo la concezione di Polya”. In: Atti
della XLII Riunione, Societa Italiana per il Progresso delle Scienze (1949), pp. 227–
236.

https://doi.org/10.1215/00318108-2366479
http://wrap.warwick.ac.uk/72219/


BIBLIOGRAPHY 181

[59] Peter C. Fishburn. “The Axioms of Subjective Probability”. In: Statistical Science
1.3 (1986), pp. 335–358.

[60] Brandon Fitelson and David McCarthy. “Toward an Epistemic Foundation for Com-
parative Confidence”. Draft of 1/19/14. 2014.

[61] Tim French. “Quantified propositional temporal logic with repeating states”. In: Tem-
poral Representation and Reasoning, 2003 and Fourth International Conference on
Temporal Logic. Proceedings. 10th International Symposium on. IEEE. 2003, pp. 155–
165.

[62] Peter Fritz. “Logics for propositional contingentism”. In: The Review of Symbolic
Logic 10.2 (2017), pp. 203–236.

[63] Peter Fritz. “Propositional contingentism”. In: The Review of Symbolic Logic 9.01
(2016), pp. 123–142.

[64] Peter Fritz. “Propositional quantification in bimodal S5”. In: Erkenntnis: An Inter-
national Journal of Scientific Philosophy (2018).

[65] Dov M. Gabbay. “Montague type semantics for modal logics with propositional quan-
tifiers”. In: Mathematical Logic Quarterly 17.1 (1971), pp. 245–249.

[66] Galileo Galilei. Dialogues concerning two new sciences. Trans. by Henry Crew and
Alfonso De Salvio. New York: Dover, 1954 [1638].

[67] Peter Gärdenfors. “Qualitative Probability as an Intensional Logic”. In: Journal of
Philosophical Logic 4.2 (1975), pp. 171–185.

[68] Marvin Gardner. “Mathematical Games”. In: Scientific American (1959). October
issue, pp. 180–182.

[69] Marvin Gardner. “Mathematical Games”. In: Scientific American (1959). November
issue, p. 188.

[70] Mai Gehrke, John Harding, and Yde Venema. “MacNeille completions and canonical
extensions”. In: Transactions of the American Mathematical Society 358.2 (2006),
pp. 573–590.

[71] Silvio Ghilardi and Marek Zawadowski. “Undefinability of propositional quantifiers
in the modal system S4”. In: Studia Logica 55.2 (1995), pp. 259–271.

[72] Alfio Giarlotta and Salvatore Greco. “Necessary and possible preference structures”.
In: Journal of Mathematical Economics 49 (2013), pp. 163–172.

[73] Steven Givant and Paul Halmos. Introduction to Boolean algebras. Springer Science
& Business Media, 2008.

[74] Robert Goldblatt. “Mathematical modal logic: A view of its evolution”. In: Handbook
of the History of Logic 7 (2006), pp. 1–98.



BIBLIOGRAPHY 182

[75] I.J. Good. “Subjective probability as the measure of a non-measurable set”. In:
Logic, Methodology and Philosophy of Science: Proceedings of the 1960 International
Congress. Ed. by Ernest Nagel, Patrick Suppes, and Alfred Tarski. 1962, pp. 319–329.

[76] Dorothy L. Grover. “Propositional quantifiers”. In: Journal of Philosophical Logic 1.2
(1972), pp. 111–136.

[77] Paul R. Halmos. Algebraic logic. Courier Dover Publications, 2016.

[78] Paul R. Halmos. “Algebraic logic. I. Monadic Boolean algebras”. In: Compositio Math
12.217-249 (1955), p. 7.

[79] Joseph Y. Halpern. “An Analysis of first-order logics of probability”. In: Artificial
Intelligence 46 (1990), pp. 311–350.

[80] Joseph Y. Halpern. Reasoning about Uncertainty. MIT Press, 2003.

[81] Joseph Y. Halpern and Yoram Moses. “A Guide to Completeness and Complexity
for Modal Logics of Knowledge and Belief”. In: Artificial Intelligence 54.3 (1992),
pp. 319–379.

[82] John Harding and Guram Bezhanishvili. “MacNeille completions of modal algebras”.
In: Houston Journal of Mathematics 33.2 (2007), pp. 355–384.

[83] Matthew Harrison-Trainor, Wesley H. Holliday, and Thomas F. Icard. “A note on can-
cellation axioms for comparative probability”. In: Theory and Decision 80.1 (2016),
pp. 159–166.

[84] Matthew Harrison-Trainor, Wesley H. Holliday, and Thomas F. Icard. “Inferring
Probability Comparisons”. In: Mathematical Social Sciences 91 (2018), pp. 62–70.

[85] Matthew Harrison-Trainor, Wesley H. Holliday, and Thomas F. Icard. “Preferential
Structures for Comparative Probabilistic Reasoning”. In: Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence (2017), pp. 1135–1141.

[86] Nick Haverkamp and Moritz Schulz. “A Note on Comparative Probability”. In: Erken-
ntnis 76.3 (2012), pp. 395–402. doi: 10.1007/s10670-011-9307-x.

[87] James Hawthorne. “A Logic of Comparative Support: Qualitative Conditional Prob-
ability Relations Representable by Popper Functions”. In: Oxford Handbook of Prob-
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