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Abstract 
 

The process of overriding prior experience and learning � 
restructuring � was examined within a categorization 
paradigm. Undergraduate students worked on a modified 
categorization task in which they learned an initial 
�misconception� category and later had to restructure their 
knowledge to acquire a different target category. Participants 
were able to learn both the misconception and the target 
category. The data are consistent with the conclusions that 
participants searched the relevant attribute space in parallel, 
that negative feedback had little effect, and that the 
supposedly rejected �misconception� was still affecting 
behavior at the end of target category training.  
 
Keywords: restructuring; categorization; cognitive change. 

 
Introduction 

The world we live in is constantly changing. Changes may 
be dramatic and large-scale, exemplified by the way 
Hurricane Katrina devastated New Orleans and the way 
fiscal crises change the global economy. Most changes are 
smaller and less destructive. We might have to adjust our 
commute due to changing train schedules, or we might have 
to learn to use a new computer. At both the global and the 
mundane scales, our environment is changing and we must 
change accordingly. 

There are multiple lines of work in the cognitive sciences 
that address the issue of adaptation to changing task 
environments. In the area of skill acquisition, researchers 
model how people learn to perform unfamiliar tasks through 
practice (Ohlsson, 2008) and try to measure the mental cost 
of task switching (Altmann, 2007). In studies of creativity 
and insight, participants are faced with problems that require 
them to override their initial task representation (Kershaw & 
Ohlsson, 2004; Öllinger, Jones & Knoblich, 2006). 
Educational researchers investigate how to promote 
conceptual change in science learning (Ohlsson, 2009; 
Sinatra & Pintrich, 2003). Social psychologists have 
proposed mechanisms for attitude and belief change 
(Gawronski & Bodenhausen, 2006; Petty et al., 2006). 

The central unsolved theoretical problem is how someone 
can learn something new that conflicts with what they knew 
before (Ohlsson, 2009). If new information is understood 
with the help of already acquired concepts, how, by what 
cognitive process, can a person acquire information that 

contradicts those prior concepts? For brevity, we refer to 
this process as restructuring.  

Why is restructuring difficult? In the science education 
context, one plausible hypothesis is that scientific concepts 
are more complex than common sense ones. The ordinary 
concept of "pulling" is simpler than the concept of "mutual 
attraction" that underpins mechanics; the concept of 
"mixture" is less complex than the chemical concept of 
"dynamic equilibrium"; and so on. Science concepts require 
attention to more aspects of a situation for correct 
application. Restructuring in science learning may be 
difficult because it requires the learner to move from a 
simpler to a more complex conception.  

In this paper, we describe an experimental paradigm 
called re-categorization that allows us to bring restructuring 
into the laboratory for close-up study. We use a standard 
categorization paradigm, but change the target category 
once the participants start responding correctly. Adaptation 
to the change is stretched out over multiple categorization 
trials. Also, re-categorization affords experimental control 
over the relevant prior knowledge because participants learn 
their �misconception� in the course of the experiment. 

We describe the re-categorization paradigm in more 
detail, report an empirical study, highlight the salient 
features of participants' behavior and discuss what cognitive 
mechanism may be able to reproduce and explain those 
features. Our results are consistent with a gradualist 
conception of the restructuring process.  
 

The Re-Categorization Paradigm 
During a trial in the standard categorization paradigm, a 
participant sees a stimulus, predicts whether it is an instance 
of the category to-be-learned and receives feedback. Trials 
continue until the category is learned according to some 
mastery criterion (Ross et al., 2008). The re-categorization 
paradigm extends this task by incorporating the key feature 
of the Wisconsin Card Sorting Task (WCST), a clinical 
measure of perseverance: Once the category has been 
acquired, the experimenter shifts the learning target to 
another category without telling the participant (Stratta, et 
al., 1997; Obonsawin, 1999). Responses that were correct 
before the shift might now be incorrect and vice versa. 

A re-categorization task thus consists of two phases: First, 
there is the initial training phase in which participants 
acquire the initial category ('misconception'). This phase 
ends with the �behind-the-scenes� shift, and is followed by 
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a second training phase on the second, target category. The 
question is how and by what processes participants �back 
out� of the initial category and acquire the target category.  
 

Study 
If participants solve categorization tasks by searching 
through the relevant hypothesis space, then a larger 
hypothesis space should increase the difficulty of the task. If 
a simple category is defined by a single value, a feature, on 
one of six binary attributes, then there are 12 possible 
hypotheses. But there are 132 possible complex categories, 
defined by a conjunction of two features. Hence, complex 
categories should be harder to learn. Also, category 
complexity should interact with restructuring. A simple-to-
complex shift should be more difficult than either a simple-
to-simple or a complex-to-complex shift. (It is less clear 
what to predict for a complex-to-simple shift.) 

 
Figure 1: An example of a Martian bacterium. 

 
Participants Participants in the present study were 278 
undergraduates in an introductory psychology course who 
received course credit for participating. 
 
Materials We created a set of 64 images of fictional micro-
organisms ("Martian bacteria"). An example is displayed in 
Figure 1. The example has a tail with cilia, a single cell 
wall, a white cell body, one nucleus, ribosomes and three 
head bulbs. The possible attributes and their values are 
listed in Table 1. The materials also included a written 
instruction and a set of rating scales for recording 
participants' confidence judgments. All materials were 
presented via a computer screen and all participant 
responses were recorded using the E-Prime software 
package (www.pstnet.com/products/E-Prime/default.htm/). 
 

Table 1: Attributes and their possible values (features). 
 
Attributes Values (features) 
Tail cilia Present or not present 
Number of nuclei Two or zero 
Ribosomes Present or not present 
Cell wall Double or single layer 
Head bulbs Three or zero 
Cytoplasm White or grey 

 
Design The study was a 2 X 2 design, with either a simple 
(one-feature) or a complex (two-feature) initial category and 

either a simple or a complex target category. Participants 
were randomly assigned to the four conditions (labeled SS, 
SC, CS, CC), shown in Table 2. The specific features that 
defined the initial and target categories are displayed in 
Table 3.  
 

Table 2: Design and number of participants in each cell. 
 

Initial 
category 

Target 
category 

 Simple Complex 
Simple One!one 

(n = 73) 
One!two 
(n = 64) 

Complex Two!one 
(n = 76) 

Two!two 
(n = 65) 

 
Procedure Participants were asked to read instructions 
presented onscreen and to ask the experimenter if he or she 
had any questions. Participants read that the bacteria were 
discovered on Mars and that their task was to decide if they 
were �oxygen resistant� or �not oxygen resistant.� 
Participants saw a labeled variant (see Figure 2) and were 
instructed to �memorize the names of these six features.�  

 
Table 3: Category definitions for the four conditions. 

 
Condition Initial category Target category 
Simple-to-
complex (SC) 

Head bulbs Two nuclei & tail 
cilia 

Simple-to-simple 
(SS) 

Head bulbs Two nuclei 

Complex-to-
complex (CC) 

Ribosomes & 
single cell wall 

Two nuclei & tail 
cilia 

Complex-to-
simple (CS) 

Two nuclei & tail 
cilia 

Head bulbs 

 
Participants were asked to rate how important they 

thought the six attributes would be for predicting oxygen 
resistance. Each of the six attributes were rated on a scale 
from zero to five, with zero being �not important� and five 
being �very important.� Feature importance ratings were 
gathered three times: before initial training, after training on 
the initial category and again after training on the target 
category. 

 

 
 

Figure 2: Labeled stimulus from the task instruction. 
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After reading the instructions, participants began training 
on the initial category. Training consisted of training blocks 
of 16 trials each. In each trial, participants saw a single 
image randomly selected from either the training subset or 
the assessment subset, depending on which type of block 
participants were in. The 64 images were split into 32 
training images and 32 assessment images. Images in the 
assessment blocks were never included in training blocks. 
Participants then pressed either �Y� or �N� (yes or no) in 
response to the question �is this bacterium oxygen 
resistant?� and used the number keys to indicate their level 
of confidence in their decisions. Participants then received 
feedback (see below). Participants continued training until 
they reached a mastery criterion of 15 out of 16 correct 
responses in a training block. The maximum number of 
training blocks for the initial category was 10. Participants 
were then presented with an assessment block of 16 trials in 
which no feedback was given and all stimuli were 
previously unseen. At this point, participants were also 
asked to rate the importance of the six attributes. 

When training resumed, the to-be learned category had 
changed. Participants were not told of this shift. The training 
procedure for the target category was the same as for the 
initial category. Participants were then presented with a 
second assessment block. They were again asked to rate the 
importance of the six attributes. 

On each training trial, participants received feedback on 
whether or not their response was correct. Positive feedback 
following a correct response stated, �You are correct. This 
bacterium was indeed oxygen resistant.� Negative feedback 
following an error stated, �You are incorrect, this bacterium 
was not oxygen resistant.� Similarly for �not oxygen 
resistant.� During the assessment blocks, participants did 
not receive feedback. At the end of the task, participants 
were debriefed and thanked for their participation. 

 
Measures 
For each trial we recorded whether the response given was 
consistent with the initial category, whether it was 
consistent with the target category, a confidence judgment, 
response time and time spent looking at the subsequent 
feedback screen. We recorded the number of training blocks 
taken to reach criterion for the initial and target categories, 
respectively. We collected attribute importance ratings 
before training, after initial category training and after target 
category training.  

We also computed a change ratio (CR) which examined 
the balance between the two types of responses. The CR is 
computed as the ratio of the difference between target and 
initial responses to their sum (within a block of 16 trials): 
 

CR = (Target � Initial) / (Target + Initial) 
 
The CR variable is zero when a participant's responses are 

equally consistent with both categories, -1 when his or her 
responses are completely consistent with the initial category 

and +1 when completely consistent with the target category. 
Reponses inconsistent with both categories do not affect the 
ratio. 

 
Results 

Acquisition of the initial category The number of 
participants who acquired the initial category 
('misconception') varied greatly across conditions. Of the 
137 participants who were trained on a simple, single-
feature initial category, 89 (65%) reached the mastery 
criterion in less than 10 training blocks. However, of the 
141 participants who were trained on a complex, two-
feature initial category, only 11 (8%) learned it. Thus, 
complexity mattered initially [χ2 (1, n = 100) = 60.84, p < 
.001]; see Table 4. The two conditions with complex initial 
categories (CS and CC) did not produce sufficient 
participants who acquired the initial category for meaningful 
data analysis, so the following analyses focus on the two 
conditions with simple initial categories (SS and SC). 
 
Acquisition of the target category Of the 89 participants 
who learned the initial category, 74 (83%) also successfully 
restructured their definition of "oxygen resistance" and 
reached the mastery criterion for the target category as well 
in less than the maximum of 10 training blocks; see Table 4. 
 
Table 4: Number of participants who learned initial and 
target categories by condition. Percentages refer to the 
column immediately to the left. 

 
Condition n Initial  

category   (%) 
Initial and 
target   (%) 

SC   64  41        (63.0) 39     (95.1) 
SS   73  48        (66.0) 35     (72.9) 
CC   65    7        (11.0)   6     (85.7) 
CS   76    4          (5.0)   2     (50.0) 

Collapsed 278 100       (36.0) 82     (82.0) 
 

Did success rate differ, depending on the complexity of 
the target category? Of the 89 participants who learned the 
single-feature misconception, 35 were trained on the single-
feature target category and 39 were trained on the two-
feature target category. Contrary to our predictions, there 
was no effect of target complexity. For the simple target, 35 
of 48 (73%) acquired the target category, while for the 
complex target category, 39 of 41 (95%) acquired the target, 
χ2 (1, n = 74) = 0.78, ns.  

How much cognitive effort did restructuring require?  
Figure 3 shows the frequency distribution of the number of 
blocks to successful acquisition of the target category for all 
89 participants who learned the initial category. Most of the 
participants had restructured by Block 3, (i.e., within 48 
training trials). The modal value was Target- 2 or within 24 
trials. However, the distribution is strongly skewed, with a 
long tail. Notice that the frequency shown for the 10th 
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training block includes the participants who had not yet 
learned the target category by the end of Block 10.  

 

 
Figure 3: Frequency distribution for number of blocks to 
restructure for the SC and SS conditions (n = 89). 

 
Did the amount of cognitive effort differ as a function of 

complexity? Once again, the answer is no. There is no 
significant difference between the mean number of blocks to 
restructure for the SC and SS conditions, t(74) = -0.36, ns. 

To study the change from the initial to the target category 
in more detail, we plotted the CR measure (see the Measures 
section) separately for the SC and SS conditions; see 
Figures 4 and 5. In Figures 4 and 5, the mean CR score for 
each block after the shift is displayed. �Target-1� indicates 
the first target training block after restructuring and so on. 
�A2� indicates Assessment Block 2. 

On the first assessment block (A1, not shown), the mean 
CR score is close to -1 because this analysis only includes 
participants who successfully acquired the initial category. 
Participants in both conditions are still responding below 
zero (i.e., in accordance with the initial category) in Target-
1 after the shift in the to-be-learned category, but both are 
above zero by Target-2, indicating rapid adaptation to the 
change in feedback in both conditions. 

 

 
Figure 4: Mean CR for the SC condition by target training 

blocks (n = 39). 
 

In Figure 5, the SS condition exhibited relatively steady, 
almost linear progress and all participants had restructured 
by Target-8. In the SC condition, progress was nonlinear, 
indicating that participants varied in how quickly they 

restructured, and some participants had only completed 
restructuring by Target-9. It is plausible that SC participants 
had to realize that the target category was defined by two 
features, and they varied in how quickly they reached this 
insight. Both conditions scored a perfect +1 in the last 
training block because this analysis only includes successful 
participants. 

 

 
 

Figure 5: Mean CR for the SS condition by target training 
blocks (n = 35). 

 
What did the participants learn? What was their state of 

knowledge once they had learned the target category? The 
obvious hypothesis is that they replaced the initial definition 
of oxygen resistance with the target definition in response to 
the negative feedback on erroneous postshift decisions. The 
data do not support this replacement hypothesis. First, 
performance on Assessment Block 2 (A2) is close to zero on 
the CR score in both conditions. That is, once feedback was 
removed and they were asked to categorize stimuli that were 
previously unseen, their performance became partially 
consistent with the initial category again (Figures 4 and 5; 
see the values for A2). Recall that a CR score of zero means 
that half the participant's responses were consistent with the 
initial category and half with the target category. 

Second, the feature importance ratings do not support the 
replacement hypothesis. Figures 6 and 7 show the three sets 
of importance ratings broken down by the six attributes. 
Recall that ratings were collected before training, after 
initial training and after target training. 

The middle set for both Figures 6 and 7 confirms the 
successful learning of the initial ("head bulbs") category. 
Head bulbs are judged as more important than in the first set 
and all other features have decreased in importance. 
However, after successful learning of the one-feature target 
category �two nuclei,� the head bulb feature has decreased 
in importance again, but the correct feature is accorded less 
importance than it was initially, and the irrelevant �shaded 
cytoplasm� feature is considered almost as important 
(Figure 7). Notice that no feature is rated zero. This pattern 
is repeated for the two-feature target category (Figure 6). 
The �head bulbs� dominate the second set of importance 
ratings, but in the third set, the correct features, �two nuclei� 
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and �tail cilia�, are awarded less importance than they were 
initially, and the �head bulbs� feature is still considered 
somewhat important. Again, no feature was rated zero.  

We examined whether feature importance ratings changed 
across the three occasions on which participants were asked 
to give ratings. Within-subjects ANOVAs with three levels 
of time revealed that in the complex condition, all six 
features changed in importance over time, �nuclei,� F (2, 
39) = 23.38, p < .001, �ribosomes,� F (1.72,39) = 69.46, p 
< .001 with Greenhouse-Geisser correction, �cilia,� F (2,39) 
= 26.31, p < .001, �head bulbs,� F (1.34,39) = 39.67, p < 
.001 with Greenhouse-Geisser correction, �cell wall,� F 
(2,39) = 35.18, p < .001 with Greenhouse-Geisser 
correction, �shaded cytoplasm,� F (2,39) = 47.96, p < .001. 
Similar analyses were conducted and similar results were 
obtained for the simple condition. In short, participants� 
feature importance ratings varied as a function of time as 
participants first learned the initial category and then the 
target category.  

Furthermore, we asked whether there were differences in 
importance ratings among the features within each occasion. 
At each time, we treated each feature as a within-subjects 
factor. For the complex condition at Time 1, importance 
ratings were different from each other, F (3.81, 39) = 4.31, p 
< .01 with Greenhouse-Geisser correction. Similar analyses 
were conducted and similar results were obtained for Time 
1, 2 and 3 for both conditions.  

 
Discussion 

The data suggest two conclusions with respect to the final 
knowledge state of the participants. First, their final  
conception of oxygen resistance is not well described as a 
conjunction of features. Instead, features appear to be 
evaluated individually, with participants assuming that more 
than one feature may be relevant. This is why the two-
feature target category was not radically more difficult to 
acquire. Participants considered all features in parallel in 
both conditions. Second, the features were not evaluated on 
an either-or basis for relevance, but are better described as 
having a degree of importance. Third, there was no 
complete rejection of any feature. Both the initial category 
definition and the features that were irrelevant throughout 
the task were awarded some degree of importance at the 
end.  

What does this characterization of the final knowledge 
state imply about the mechanisms of change? What type of 
learning mechanisms would have this kind of outcome? A 
first-approximation explanation follows, if we assume that 
the task is awarded a fixed amount of a quantity that we 
may call �strength.� Strength gets assigned to the different 
features depending on the stimuli seen and the feedback 
given. As participants go through initial training, almost all 
the strength is allocated to the �head bulbs� feature. To 
explain what happens next, we hypothesize that negative 
feedback was ineffective.  The allocation of strength across 

 
 
 
 
 

 
 

Figure 6: Feature importance ratings for SC condition (n = 39). 
 

 
 

Figure 7: Feature importance ratings for SS condition (n = 35). 
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the features is only adjusted when there is positive feedback. 
However, the increase of strength of one feature affects that 
of other features because the total amount of strength is 
fixed. Thus, as learning of the target progresses, there is a 
gradual increase in the strength of the relevant features 
while the other features lose some of theirs. However, to be 
consistent with the pattern of importance ratings, we have to 
further assume that the loss of strength is proportional to 
how much strength a feature already has. Most of the loss 
occurs on the �head bulbs� feature and less on the other 
features. The overall effect is that the strength is spread out 
across the features, instead of concentrated on the correct 
definition of the target category. The target features do not 
ever reach the level of the �head bulbs� feature because 
there is not enough strength to go around. The result is a 
final knowledge state in which all the features have some 
strength and the differences between the target features and 
the irrelevant features are relatively small. This explains the 
inconsistent performance on the second assessment block. 

An account along these lines contrasts with multiple 
expectations derived from the idea that people learn 
abstract, rule-like representations of the relevant categories 
in this type of experiment. First, it is plausible to assume 
that people treat conjunctive categories as conjunctions of 
select features, while the pattern in our data is more 
consistent with the idea that participants treat all the features 
as relevant to varying degrees. Second, it is plausible that 
people restructure in response to contradictory feedback, 
while our data are consistent with the idea that only positive 
feedback has an effect. Third, it is plausible that after 
restructuring, the old knowledge structure has been changed 
or deleted, but our data indicate that it is still active; 
interestingly, researchers in other fields have reached 
analogous conclusions (Ohlsson, 2009; Petty et al,. 2006). 

The present study had several shortcomings and 
limitations that will be addressed in future work. The 
informal explanation above needs to be implemented as a 
simulation model in order to investigate whether it can 
reproduce the quantitative details of the data. The 
counterintuitive lack of a complexity effect needs to be 
replicated with other stimuli and other behavioral data such 
as think-aloud protocols to see whether it is robust and 
generalizable. In particular, the effect needs to be replicated 
with realistic stimuli and categories. Finally, the exact 
implications for areas like insight, conceptual change and 
belief revision remain to be worked out. 
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