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This study combines the areas of metal ion sensors and Fragment-
Based Drug Discovery (FBDD)1 to generate a novel class of matrix
metalloproteinase inhibitor (MMPi) lead fragments. Zinc is an essential
element for humans and plays an important role in a wide range of
biological processes, prompting the development of a large number of
Zn(II)-selective small molecule sensors as tools to better understand the
biological trafficking of this metal ion.2 Among the most widely used
Zn(II) fluorescent sensors are those based on the 8-sulfonamidoquinoline
core (part of the Zinquin family, Figure 1),3 which show a selective turn-
on fluorescent response for Zn(II) over other biologically relevant metal
ions such as Mn(II), Fe(II), and Cu(II). A new class of fluorescent sensors
based on the structurally related 2-(2′-benzene-sulfonamidophenyl) ben-
zimidazole chelating group, which have the advantage of displaying a
ratiometric fluorescent response, have also been described.4,5 Based on
the high affinity and selectivity of these molecules for Zn(II) and their
capacity to form complexes with zinc-dependent metalloproteins,6 it is
surprising that these scaffolds have not yet been purposely applied for the
development of metalloenzyme inhibitors.7 Herein, zinc-binding moieties
from these sensors are used to generate libraries that produce semiselective
MMPi hits. These findings show that combining the extensive work in
the area of small molecule metal ion sensors with the FBDD approach to
drug development is a powerful combination for the discovery of novel
metalloprotein inhibitors.

Matrix metalloproteinases (MMPs) are a family of zinc-depend-
ent endopeptidases which have been identified as therapeutic targets
for diseases such as multiple sclerosis, arthritis, cardiovascular
disease, and cancer.8 Most MMPi are comprised of a zinc-binding
group (ZBG, most commonly a hydroxamic acid) and a peptido-
mimetic “backbone”. The ZBG binds the active site metal ion, while
the backbone engages in noncovalent interactions with the protein
surfaces.9 A major challenge in this area, due to structural
similarities between the different MMPs, is to obtain selective
MMPi. The fragment libraries reported here show that the two
different core scaffolds show some degree of selective MMP
inhibition, which may be useful in combination with backbone
substituents to generate even greater MMP selectivity.10

A fragment library based on the 8-sulfonamidoquinoline ZBG
was prepared (Quinoline Sulfonamide Library 1 ) QSL-1, com-
pounds 1-40) by combining 8-aminoquinoline with sulfonyl
chlorides using microwave irradiation. The typical procedure for
this coupling requires long reaction times; in contrast, when
performed using a microwave at 130 °C in pyridine, the coupling
was complete within 3 min with generally good yields (average
yield ) 78% for 40 compounds). Using the same procedure, a
second library based on the 2-sulfonamidophenylbenzimidazole
ZBG (Benzimidazole Sulfonamide Library 1 ) BISL-1, compounds
41-77) was generated (Scheme 1).

The two libraries, QSL-1 and BISL-1, were first screened against
MMP-2, -3, and -9 at a concentration of 50 µM and fragments that
produced >50% inhibition were categorized as a hit. The assay
results clearly showed that both fragment libraries gave hits that
were generally more potent for MMP-2 over MMP-9 and -3. Out
of the 40 fragments in QSL-1, 25 were hits against MMP-2, 11
against MMP-3, and only 3 against MMP-9. For BISL-1, 27
compounds were hits against MMP-2, 2 against MMP-3, and only
1 against MMP-9. Considering that the majority of sulfonamide
backbones for these two libraries were identical (35 out of 40), the
results indicate that the QSL versus BISL scaffold plays a role in
the semiselective MMP inhibition by these fragments.

The IC50 values against MMP-2, -3, -8, and -9 for three of the best
fragments from each library were determined. For comparison purposes,
fragments with the same sulfonamide groups were selected from QSL-1
and BISL-1 (Table 1). For QSL-1, the potency against different MMPs
varies substantially depending on the sulfonamide moiety. In the case of
small substituents, such as thiophene or p-trifluoromethylphenyl, there is
a preference toward MMP-2 and -8 (Table 1, fragments 2 and 3). However,
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Figure 1. Structure of chelating-sulfonamide zinc sensors.

Scheme 1. Synthesis of Two Sulfonamide Libraries Using an
Efficient Microwave Procedure (Top); Control Compounds
(Bottom)
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in the case of a larger substituent (Table 1, fragment 1), broad-spectrum
activity is observed. This is likely due to the strong interaction of the
biphenyl substituent with the deep S1′ pocket of these MMPs. For BISL-
1, a greater preference for MMP-2 (Table 1, fragments 42 and 43) is
obtained. This is best illustrated by the p-trifluoromethylphenyl derivatives
(Table 1, fragments 3 and 43), where both chelating sulfonamides inhibit
MMP-2 over MMP-3 and -9, but the benzimidazole compound (Table 1,
fragment 43) shows reduced activity against MMP-8. This fragment is
uniquely potent against MMP-2 when compared with the other MMPs
tested and is particularly notable for discriminating between the gelatinases
(MMP-2 and -9).11 This finding clearly demonstrates that the core scaffold
has a significant effect on the selectivity of these lead compounds.

Evidence that these chelating sulfonamide fragments were binding
to the active site Zn(II) ion was provided by three control compounds
with structural similarities to fragment 3. Each of these control
compounds (Scheme 1, 78-80) has a reduced metal-binding capacity
due to either (i) lacking the two nitrogen donor atoms required to
achieve chelation (79) or (ii) having an insufficiently acidic N-H group
(78, 80) such that metal binding cannot compete with ligand proton-
ation. At a concentration of 500 µM all three control compounds
showed <30% inhibition of MMP-2 (>200-fold loss of activity vs 3),
indicating that the QSL-1 and BISL-1 libraries inhibit MMPs by Zn(II)
ion coordination. In addition, extended X-ray adsorption fine structure
(EXAFS) spectroscopy of fragment 3 with an MMP indicate binding
to the active site Zn(II) ion (Figure S6), providing direct evidence that
these fragments bind to the MMP metal ion.

To better understand the activity of these fragments, computational
docking studies were performed on fragments 3 and 43 (Table 1, fragments
3 and 43) in MMP-2, -3, -8, and -9 using the Glide software package
(Schrödinger, Supporting Information). The 100 best poses against each
MMP were filtered based on distance/geometry between the ZBG and
the active site Zn(II) ion (Supporting Information).3 This filtering procedure
ensured that only structures with geometric parameters that produce
reasonable metal chelation are evaluated.

Fragment 3 generated acceptable poses for all four MMPs;
however, the lowest energy poses for MMP-3 and -9 were >3.5
kcal/mol higher (∆Eele+Vdw, Table S1) than those for MMP-2 and
-8, consistent with the selectivity for this fragment for the latter
MMPs (Table 1). Acceptable poses for fragment 43 were readily
obtained with MMP-2, but not with the other MMPs examined.
Structures of fragment 43 in MMP-3, -8, and -9 were all >3.4 kcal/

mol higher in energy than the conformation observed with MMP-
2. Again, these calculations are consistent with the experimental
data showing that fragment 43 is selective for MMP-2. The best
poses of fragments 3 and 43 in the active site of MMP-2 are shown
in Figure 2. Interestingly, both fragments have the sulfonamide
moiety pointed toward the unprimed side of the active site.11 In
spite of the intrinsic limitations of classical approaches to accurately
describe systems involving metal ions, the docking analysis was
otherwise wholly consistent with the experimental findings sum-
marized (Table 1) and provides some initial insight into the binding
of these fragments. Because the electrostatic component is the most
important contribution to the calculated ∆Eele+Vdw, our findings also
suggest that, despite the homology among MMPs, differences in
the electrostatic environment around the Zn(II) ion (Figure S5) may
have a significant effect on inhibitor-receptor recognition.

In summary, we have used known scaffolds from fluorescent
Zn(II) sensors as ZBGs in the design of two focused fragment
libraries. Most of the fragments exhibited a preference for MMP-
2, which was generally consistent with computational analysis. One
fragment (Table 1, fragment 43) shows low micromolar activity
against MMP-2 and no significant activity against MMP-3, -8, and
-9. Ongoing efforts to elaborate these new scaffolds are expected
to produce more potent, semiselective MMPi.
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Table 1. IC50 Values (µM) of Select Fragments against Four MMPs

Figure 2. Model structure of the complex formed between MMP-2 (gray
surface, zinc shown as orange sphere) and fragments 3 (left) and 43 (right).
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