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PROPERTIES OF STATISTICAL AND SCIENTIFIC DATABASES

Arie Shoshani

Information and Computing Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Abstract

This paper is intended as an introduction to the properties and requirenments of Statistical
and Scientific Databases (SSDBs). It discusses the inadequacy of current commercial data
management systems for SSDB applications. The paper also contains a discussion of new
approaches for the support of complex applications and their implications to SSDB applica-
tions. It concludes with observations of future research areas.

1. Introduction

A large number of Statistical and Scientific Databases (SSDBs) are not managed today by
data management systems, whether commercial systems or special purpose laboratory systems.
Such data include collected statistics by various government agencies (such as health data or
business pattern data), and large datasets which result from scientific experiments and simula-
tions (such as climate measurements and climate model simulations). Typically, such databases
are stored as files which are then managed and processed by special purpose programs written

especially for each of these applications.

The main reason for this state of affairs is that most of the commercial systems available
today were deéigned primarily to support business applications (such as marketing and bank-
ing). SSDBs have data characteristics and access requirements that need different tools than
currently offered by commercial systems. The different needs are discussed further in the next
section. However, the following example can provide some intuition as to the complexity of

typical scientific applications.



Consider a particle physics experiment, where particles are collided in order to generate
sub-particles. Such collisions can occur millions of times in the course of an experiment, and
the results captured by special detectors. The data from the detectors passes many stages of
analysis. The first few stages reconstruct the tracks of sub-particles produced. Eventually, col-
lections of tracks for certain sub-particles are analyzed statistically in order to characterize the
collisions. In general, scientific data have more complexity than strictly statistical data (such as
survey data), because in addition to the measured data, it contains data about the instruments,
the environment of the experiment, and the configuration of the experiment. Configuration
data can be quite complex, as is the case, for example, in describing a wing configuration for

an airplane simulation.

From the example above, one can observe that the data structures of SSDBs can be quite
complex: there are temporal sequences of measurements, there are measurement which
represent points in space (spatial data), the conﬁgura;ion of the detector represents graphic data
(such as contours) and images, and there are various statistical summaries generated in the pro-
cess of analysis. In terms of operations over the data, searches that have spatial and temporal
locality are common, as well as statistical operators in multi-dimensional space.

Research in data management for SSDBs has been going on for about a decade, as
exemplified by the series of workshops held approximately every two years since 1981 [1-3].
However, the support for such research has been sporadic. More recently, there is a renewed
interest in this topic, because of the realization that large projects such as environmental
cleanup, climate modeling, human genome mapping and sequencing, super-computer super col-
lider (SSC), etc., have already, and will continue to generate vast amounts of data at multiple
physical locations. The management and coordination of these large datasets can indeed
benefit from scientific data management tools. This growing interest has been reflected in a
recent workshop sponsored by NSF [6].

The amount of scientific data generated is accelerated due to more sophisticated devices
and cheaper computer power. A single scientific experiment can generate hundreds of mega-
bytes of data within days. Many scientific simulations are not carried out to the desired granu-
larity level, only because it is impractical to process and manage the large amounts of data that
would be generated. Many practical databases collected for statistical purposes, such as trade
data between countries, or the various census data, are too complex to be managed with con-
ventional data management techniques efficiently. In addition, there are large amounts of data
that were not collected originally for experimental or statistical purposes, but have tremendous
potential when used for statistical purposes. For example, routine patient records in hospitals
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can be used for statistical "cause and effect” studies. Business transactions can be statistically
analyzed for policy setting and econometric models. For the most part, such sources of routine
collections of data are left unused because adequate data management facilities do not exist.

The purpose of this paper is to provide an overview of the properties of SSDBs. In sec-
tion II we discuss the main differences between the properties of SSDBs and conventional
(business) data. Section III contains a discussion of new emerging technologies, and their
implications to the management of SSDBs. sections IV and V discuss in more detail properties
of statistical and scientific databases, respectively. These sections contain parts of previous
articles [7-8]. The last section contains a summary and conclusions on future research in the
area.

2. Additional Requirements of SSDBs

As mentioned in the introduction, SSDBs have needs that are not adequately supported
by commercial data management. systems. To see what are the additional requirements, it is
worth mentioning briefly the main advantages offered by data management systems in general.
This will be followed by a discussion of the additional requirements.

Data management technology has been used successfully in many applications (mostly

business oriented) because they offer the following main advantages:

1) data models which provide an abstraction for representing the structure and semantics of the
data,

2) high-level query languages defined over the data models for accessing and manipulating the
data,

3) support for concurrent access of the data by multiple users (concurrency control),
4) mechanisms for expressing and validating the integrity of the data,
5) back up and recovery of the database as protection from system failures, and

6) support for efficient physical organization in terms of storage on and access from secondary
and tertiary storage.



In general the same advantages that are useful for business applications are also useful
for SSDBs. However, for each of the points above there are specific additional or different
requirements that SSDBs have. A brief discussion of each of the points above follows.

1) The data model

The data model used in modern commercial data management systems is the relational
model. It consists of multiple tables (called "relations") that can be linked explicitly in the
query language by associating columns (called a “‘join’’ operation). The model is set oriented,
that is, the order of instances (rows of a table) is not enforced. For SSDBs this simple table
structure is inadequate. For example, ordered structures, such as DNA sequences or temporal
sequences, cannot be directly represented. Other data types, such as vectors, matrices, etc. also
cannot be expressed by relations in a straightforward and convenient way. SSDBs often
include graphs, images, and complex tables (e.g. isotope tables). Such needs are not unique to
SSDBs, since they often exist in business data, but they are more pronounced in SSDBs.

Another important requirement is the ability to represent complex objects. Consider the
simple example of a contour in 2-dimensional space. It can be thought of as a circular
sequence of points, where each point is composed of X and Y ‘coordinates. Each point is a
complex object made of two labeled values, and the sequence is a complex object that orders
the points and has the property ‘‘circular’’. One can further iterate to define objects that are
sets of contours, sequences of contours, etc. This property can be extended to model images,
sequences of images (video), data forms, etc. Complex object structures are prevalent in
SSDBs. Their representation in terms of relational tables is quite awkward, complex, and
unnatural. Thus, data models that can support complex structures directly and naturally are
needed for SSDBs. Current approaches to such models are discussed further in the next sec-

tion.

2) The query language

SQL (Structured Query Language) has become a de-facto standard as the high level query
language for the relational model. The basic functionality is provided by constructs for speci-
fying predicates to select rows from relational tables, specifying how multiple tables can be
associated (‘‘joined’’) in a single query, and which columns should be included in the output.
Additional features of the language include aggregate functions (such as ‘‘count’’, or ‘‘sum’’)
over groups of values, set operators (‘‘union’’, ‘‘difference’’), and sorting of the output. SQL

has been shown to be a fairly powerful language for expressing data manipulation of table
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structures, although there is continuing criticism of its semantic clarity and power.

The obvious corollary from the structural needs of SSDBs discussed in the previous sec-
tion is that SQL is not powerful enough for SSDBs. For example, if a model for SSDBs sup-
ports a sequence construct, then it will imply operators to search such a structure, such as
*‘find a subsequence of length k starting in position n’’. In general, complex objects are com-
posed of multiple structures, and for each structure there is a set of operators for its search and
manipulation.

SSDB applications are often based on different disciplines, such as biology, earth sci-
ences, physics, etc. Accordingly, their requirements can be highly specialized. Suppose, for
example, that a ‘‘sequence’’ construct exists in a certain complex data model. This sequence
structures could be used to represent seismic events in time, text sequences, DNA sequences,
etc. In general, in each of these domains, different operators will make sense. For seismic
sequences we may be interested to find if an event occurred at a particular range of time, for
text sequences we may be interested in finding words with certain proximity to each other, and
for DNA sequences we may want to find overlapping regions between them. Can such com-
plex operations be supported by an underlying high level complex object language? This is
indeed the subject of current research. Current approaches will be discussed in the next sec-
tion.

3) Concurrent access

Support for concurrent access of data for business applications revolves around the con-
cept of a transaction. The paradigm used is that multiple transactions may be applied to the
same data item(s) and thus interfere with each other when at least one transaction updates the
data. For business applications, such as banking, accounting, or reservation systems, such
interference may be disastrous. Thus, most of the work in the past concentrated on coordinat-
ing the access of concurrent transactions so that the global behaviour will be equivalent to a
serial execution of the transactions.

In SSDBs concurrent access to the data is not an important issue. First, much of the data
is not updated, as is the case with data that was generated by scientific devices, such as those
used in weather monitoring. Second, if data is updated, it is often done by a single person, as
is the case when an analyst removes or corrects ‘‘outliers’’ (data that is outside expected
bounds). In such a case, the corrections do not have to be immediately visible, and thus can
be made on a locked version of the database. Third, when multiple users need to update the
data simultaneously, they often need to access different parts of the database, such as multiple
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engineers working on different sections of a joint design. Fourth, the concept of a ‘‘long tran-
saction’” is often more appropriate for SSDBs, where a scientist may embark on a long
analysis (which results in updates). It is not always possible to break such long transactions

into a series of short transactions.

For the above reasons, concurrency control, as supported by current commercial systems,
is not sufficient. There is a need to support multiple versions of datasets, and to keep track of
the correspondence between them. In addition, there is the need to support a master version,
where different parts of it are modified by different users. Support long transactions is another
important requirement. Finally, for the massive amounts of data that are only read (not
modified), there is no need to pay the overhead of concurrency control. As will be discussed
below, there is also a benefit to using data structures especially designed for static data.

4) Integrity canstraints

Maintaining the integrity of data can be quite complex. Most commercial systems sup-
port a simple form of data type integrity, such as checking that values would not exceed given
boundaries, or that values would be only in a certain format. However, commercial systems
are quite limited, especially for SSDB applications. Even a simple feature, often needed in
SSDBs, which checks that data values are only from a given list of values (called *‘categori-
cal’’ values), is not always supported by commercial systems. Integrity conditions become
more complex to maintain when they involve multiple domains, such as checking that a
person’s birthdate is smaller by at least 18 years than his/her employment start date (assuming
adult employment). In general, integrity conditions may require the power of a programming
language for their expression.

In relational systems, integrity conditions can involve data elements from muitiple tables.
One form of multi-table integrity condition, called ‘‘referential integrity’’ has recently attracted
much attention. For example, a ‘‘car’’ table may contain a column for the bexson who owns
it. In order to enforce the condition that every car must have an owner, a referential integrity
condition between the relevant columns of the tables must be defined and maintained. This
creates problems for SSDBs. It is a tedious and non-trivial task to specify such conditions for
complex schemas that contain complex objects. In current systems they need to be expressed
with complex constructs, such as ‘‘triggers’’ (e.g. Sybase) or ‘‘rules’’ (e.g. Ingres). If complex
objects can be expressed directly in the model, the referential integrity conditions that hold
between the components of the complex structures could be inferred, and do not have to be
expressed explicitly by the user who specifies thé database structure. In general, richer models
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for SSDBs should capture more semantics, and therefore the integrity constraints implied by

~ these semantics. This would save the user the chore of expressing them explicitly.

5) Recovery

Mechanisms for back up and recovery are always needed. In conventional applications
where transactions are short, it is quite acceptable to back up to the last successful transaction
for the purpose of recovery. For SSDBs, where long transactions are more typical, backing up
to the last transaction is not acceptable, because too much work may be lost. new mechanisms
need to be deVeloped for the support of long transactions.

6) Physical database organization

Physical data structures and access methods are the key to efficient support of queries.
Relational database implementations typically organize rows of relations as records in files, and
provide additional index mechanisms (e.g. B-trees, hash tables) over the various columns of the
relations. SSDB applications need additional types of data organization and access algorithms.
For SSDBs the best physical clustering of the data may not be according to records in a file.
The main reason is that in SSDB applications the access requirements would benefit from other
ways of clustering data. For example, spatial applications typically have local access operators
(such as ‘“‘find neighboring points’’ for calculations of mesh data). For such applications, phy-
sical locality of data accovrding to their spatial locality would reduce the amount of I/O from
secondary storage.

Another example, is sparsity of data in multi-dimensional space. The best method for _
compressing the data has to be weighted against efficient access, and thus depends on the
SSDB application’s access requirements. Various methods, such as ‘‘grid files’’, ‘‘quad

trees’’, etc. were proposed in the literature but are not yet available in commercial system.

Statistical databases often need to access a few columns from a table for performing sta-
tistical correlations. The typical ‘‘row-wise’’ organization is quite inefficient for such applica-
tions, because entire records have to be read in order to read a few values out of them. The
more efficient organization for such applicatons, is a ‘‘column-wise’’ organization (called
‘“‘transposed files’). No commercial system currently offers this option of data organization.
Finally, it is worth noting that complex objects have a natural clustering of their components.
For applications that need to access entire complex objects, ‘‘object-wise’’ clustering would be
best.
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As can be seen from the above examples, data management systems for SSDBs need to
have a rich set of physical organization options to provide efficient performance. A multipli-
city of choices makes the problem of query optimizaton (i.e. the algorithm for the most
efficient way to execute a query) so much harder. The management of these options and the
way they can interact are a great challenge to designers of such systems.

3. Current Approaches and Their Relationship to SSDBs

There are several new promising approaches that could have an effect on the future
management of SSDBs. - These approaches were not specifically developed for SSDBs, but for
complex database applications in general. However, the capabilities they are designed to pro-
vide can go a long way towards supporting SSDB applications. In general, these approaches
strive to provide the following capabilities:

1) support for complex objects, and operations over them,
2) support for user defined structures and functions, and

3) the capability to incorporate new physical data structures and access methods.

It follows from the discussion and examples in the previous section, that such capabilities
are indeed necessary for the efficient support of SSDBs. The approaches we discuss below are
fundamentally different, thus emphasizing different aspects of the capabilities above.

3.1 Object-oriented database systems

The object-oriented methodology was developed in the context of programming
languages. This methodology has been found to be very useful for system design [9]. The
two main features of this methodology are encapsulation and inheritance. Encapsulation con-
sists of the ability to define data structures and operators over them (also called ‘‘methods’’),
ahd make them available to users through interfaces. The objective is to hide the details of the
implementation of the data structures and operations and make only their interfaces visible.
Accordingly, object structures in SSDBs, such as a ‘‘seismic event’’, could be encapsulated,
together with specialized operators, such as ‘‘find other events that correlate with this event’’.

The usefulness of this concept to SSDBs is in the power to code new complex structures
and operations, and make them callable by name. For example, a DNA sequence could be

coded as a linked list structure, and the operation ‘‘overlap’’ could be coded to return the sub-
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sequences that overlap between two given DNA sequences. Both the DNA structure and the
overlap operation will then be recognized by the system, and could be invoked by name.

The second feature that makes this approach attractive is inheritance. this feature is
related to the concept of ‘‘generalization’’, which has been incorporated in many semantic
database models. Like generalization, it supports the construct of classes and subclasses (e.g. a
‘“‘student’’ is a subclass of the class ‘‘person’’), and provides the inheritance of its properties

tal

(e.g. the ‘‘age’ of the ‘‘person’’ is inherited by the ‘‘student’’). However, object-oriented
inheritance includes the inheritance of the operators (methods) as well. This feature provides

the capability to share code and to make explicit the inheritance association between objects.

Object-Oriented Database Management Systems (OODBMSs) have additional require-
ments [10]. Support for encapsulation and inheritance is already provided by object-oriented
programming languages, such as Object-Pascal or C++. In order to support database applica-
tions these languages need to provide persistency to the data, i.e., that the data will exist across
multiple executions of the program. In addition, other features need to be added, such as those
mentioned in the previous section (concurrency, recovery, physical organization, query
language, etc.) The approach to the implementation of such systems is typically to start with
some object-oriented programming language and to develop the above features with it.

The obvious difficulties with this approach is that there are no constructs beyond the pro-
gramming language supported by the OOBDMS for defining complex data structures and
operators. This has two drawbacks. First, there are no system supported building blocks to
define new structures. For example, it would have been simpler to define a DNA structure if a
‘‘sequence structure’’ and its associated operators were available. This can be remedied by
developing software libraries. However, the second drawback is more severe: there are no
mechanisms to make the new objects and structures part of some high level query language.
They are only callable from a program. Further, even if a query language exists, and even if it
can be extended with the new operators, there needs to be an additional component that pro-
vides query optimization for the new objects. This requires that the query optimization algo-
rithm will be capable of dynamically adjusting according to the properties of the new data
structures and operators. This is a challenging task that will determine the performance of
OODBMS:s.

3.2 Extensions to the relational model

It is natural to take the approach of extending a popular database model, such as the rela-
tional model. If successful, it has the advantage that relational technology has matured into
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commercial products, and its concepts are well known. Initially, there were various attempts to
extend the relational data structures and relational query languages (such as permitting relations
-made of relations). In subsequent work, systems were designed to include user defined data
structures and boperations. Examples of such developments are Postgres [11], and the system
described in {12].

The typical approach in such extensions, is to define a complex relational model, and a
query language for it. the extensions include, inheritance structures, new data types (e.g., vec-
tors, matrices, images, etc., and even procedures), and a capability to construct complex rela-
tions from other relations. Further, the systems are designed to be extendible, in that the user
can define new structures anvd' operations in terms of data structures and operators provided by

the system. The user defined operations are callable by name from the query language.

The advantage of this approach is that it provides a capability to define complex data
structures, and -the incorporation of user defined structures and functions. However, it is not
clear whether the approach of extending an existing model is natural for SSDB applications.
Experience will show whether a conceptual model at a more abstract level will be more useful.

Another difficulty with this approach is similar to the one discussed in the context of
OODBMS:s; that is, the need for the query optimizer to be dynamically modified when new
data structures and operators are introduced. The main difficulty is whether the information for
the query optimizer can be specified by the scientific database designer, or whether this will
require the expertise of a specialist.

3.3 Extensible database systems

Extensible database systems are based on the premise that a single system cannot be
designed to answer the complex needs of various applications. Thus, they are designed to cus-
tomize specific data management system for each application. The main idea is one of using
"building blocks", that is, reusable software that can be selected for the need of a particular
application. Additional "blocks" can be provide by users, and the selected blocks are then
assembled (compiled) to produce a special purpose system customized for the application. The
key to the success of this approach is the design of interfaces (the ‘‘glue’”) that permit the
interchangeability of modules and the integration of new modules. Examples of such systems
are Exodus [13] and Genesis [14].

Obviously, this approach should be quite attractive for scientific database applications.

However, the designer of such a customized system has to have sufficient expertise in the
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implementations of DBMSs. Thus, this approach may be considered more appropriate to a
software house that can customize a DBMS for the needs of the application.

Extensible database systems have to address explicitly the issue of incorporating new
operators, new query languages, and new physical data structures and access methods. While
these can be introduced as ‘‘plug compatible’® modules, there is still the problem of having to
modify the query optimizer accordingly. One of the proposed solutions is to use rule-based
dptimizers to specify the optimization algorithm,

Implications to SSDB research

The above methodologies show great promise for helping in the development of SSDB
data management systems. They do not, however, provide any insight as to the properties and
needs of SSDB applications. There is a continuing challenge of characterizing the properties
of various applications, understanding the modeling requirements, the operators, the access pat-
temns of the application, and the physical structures to support them. For example, applications
that involve temporal and spatial data need to be characterized in terms of sequence and multi-
dimensional structures, their operators defined, and efficient physical structures for their support
developed.

The above tasks are especially difficult to achieve for scientific applications because of
the complexity of the disciplines. It requires the collaboration of computer scientists (data
management specialists) and scientists from other disciplines. To understand fully the needs of
these disciplines in terms of data modeling, operators, and physical structures, requires long
and dedicated interactions. The next two sections contain some observations of the properties
of statistical and scientific databases.

4. Properties of Statistical Databases

Staustical data bases (SDBs) can be described in terms of the type of data they contain,
and their use. SDBs are primarily collected for statistical analysis purposes. They typically
contain both parameter data and measured data (or "varables”) for these parameters. For
example, parameter data consists of the different values for varying conditions in an experi-
ment; the variables are the measurements taken in the experiment under these varying condi-

tions. The data base is usually organized into “flat files" or tables.

i)
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The statistical analysis process involves the selection of records (or tuples) using selection
conditions on the parameters, taking a random sample, or using a graphics device to point to
the items desired. Several variables are then selected for analysis. The analys.is may involve
applying simple univariate statistical functions to the value sets of the variables (e.g. sum,
mean, variance) or using more complex multivariate analysis tools (e.g. multiple regression,
log-linear models). '

The statistical analysis process may involve several steps. It includes phases of data
checking, exploration, and confirmation. The purpose of data checking is to find probable
errors and unusual but valid values (called "outiers” by statisticians), by checking histograms
or integrity constraints aé‘xi)Ss attributes. The purpose of data exploration is to get an impres-
sion of the distribution of variables and the relationships between them. This phase involves
taking samples of the data, selecting records, and creating temporary data sets for use in graph-
ical display and preliminary analysis. In the conformation phase, the analyst tests hypothesized
distributions (which are based on the observations made in the exploratory phase) against the
data base, or relationships between variables (cross tabulations). This process may then iterate

several times until satisfactory results are achieved.

At first glance it appears that the necessary data management functions can be supported
by existing general purpose data management systems. For example, one can view flat files as
relations in a relational data management system, and generate subsets for analysis by using .
relational operators, such as "join" and "project". However, practice has shown that these data
management systems have not been used for SDBs. Instead, one finds that statistical packages
are used or special purpose software is developed. Most statistical packages have some data
management capabilities, but their primary purpose is to provide statistical analysis tools to the
analyst.

There are two main reasons for‘the fact that commercial data management systems have
not been widely used for SDBs. The first reason is the storage and access inefficiency of these
systems for SDBs. As will be discussed later, many SDBs have a high degree of data redun-
dancy that can benefit from sophisticated compression techniques. The organization of the data
into records (or tuples) makes retrieval inefficient in those cases where only a few attributes
are needed for the analysis. Other data organization methods, such as organizing the data by
columns instead of rows (called "transposed files") are usually more efficient [15]. Most exist-
ing data management systems are designed for high volume interactive transactions with the
possibility of concurrent access to the data. The overhead required for the support of con-

current access is not necessary for SDBs, because much of the data is static. Also, analysts
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work with their particular subset of the data, and are willing to put up with occasional sequen-
tial access to the original data bases.

The second reason stems from the lack of functionality and ease of use. Statistical func-
tions available in commercial data management systems are quite limited, usually to simple
aggregate univariate functions such as sum, maximum, or average. Most systems do not have
facilities for supporting additional user-defined functions, although some provide an ability to
create predefined functions in libraries. In addition, some query languages are quite complex
when it comes to specifying aggregate functions. As will be discussed later, the query
language can be simplified if the semantic properties of the SDBs are modeled.

Ease of use considerations are much more pragmatic. In order to perform statistical
analysis, an analyst must eventually rely on more sophisticated statistical tools such as those
found in statistical packages. This means that in order to use a data management system the
analyst will need to become familiar with two systems, and the methods used to pass data
between them. Often, the analyst will choose to stay with the essential statistical tools pro-
vided by the statistical package, and manage with the limited data management tools provided
by them.

In the sequel, we identify some characteristics that are common to SDBs. These charac-
teristics are both in terms of the structure and use of-the data.

4.1 Category and summary attributes

SDBs can be thought of as having two types of data: measured data on which statistical
analysis is performed, and parameter data which describe the measured data. There are several

reasons to making this distinction.

To illustrate the reasons, consider for example a simple data base represented in a relation
form. The first five attributes are: oil type, state, county, year, month. They represent the
parameter data. The last two attribute are: consumption, production. They represent measured
data. The attributes for the parameter data are referred to as "category” attributes, since they
contain categorical values for the measured data. The attributes for the measured data are
referred to as "summary” attributes, since they contain data on which statistical summaries (and

analysis) are applied. There are several points to note.

First, note that a combination of the category attribute values is necessary for each of the
values of each summary attribute. That is, the category attributes serve as a composite key for
the summary attributes. Thus, each summary attribute is functionally dependent on the the
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category attributes. This relationship between category and summary attributes is part of the
semantics that need to be modelled.

Second, there is a great amount of redundancy in the values of the category attributes,

when they are represented in a relation. In many data bases all possible combinations of the
category attributes (i.e. the full cross product) exist. In such cases each value of a category
attribute repeats as many times as the product of the cardinality of the remaining category attri-
butes. This is the main reason for the organization of SDBs into matrix form, as is the pre-
ferred representation for statisticians. A matrix organization replaces the need to store the
category values in the data base by representing them as positions of the columns and rows.
This suggests the need for the efficient efficient storage and access of category attributes.

Third, the range of category attributes is usually small, from as little as two (e.g. "sex")
to a few hundreds (e.g. oil type). In contrast, summary attributes often have large ranges since
they always represent numeric measures. Often, category attribute ranges are grouped together
so as to have fewer categories, such as using "age groups” rather than "age”. Also, category
values are more descriptive in nature, and therefore tend to be character data (e.g. industrial
classes), while summary values are numeric. Often, coded versions of the text are assigned to
long category values. This suggests the need to support the mapping between the codes and
the descriptive values.

4.2 Classification hierarchies over c:itegory attribute

In SDBs, each of the category attributes can represent a hierarchy of terms. For example,
*“0il type’” can be organized into ‘‘crude oil’’, ‘‘heating 0il’’, and ‘‘refined products’’. Each
of these categories can be further organized into sub-categories. For example, ‘‘refined pro-
ducts’’ can include ‘‘leaded ga:soline" and ‘‘unleaded gasoline’’. There are two implications
to this property.

First, the data model should have the capability of representing this structure. Note that
in the relational model there is no such capability. In order to represent the information in the
category hierarchy, each hierarchy will have to be ‘‘flattened out’’ into multiple attributes.
Even so, the semantics of the hierarchical relationship will be lost.

Second, summary queries can be requested to any level of the hierarchy. Typically, the sum-
mary values are given for categories in the leaves of the category hierarchy. Thus, request for
data at higher levels would require summarization from the leaves to the higher levels. For

example, the values for oil consumption should be summed up from the leaves of the category
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hierarchies, i.e ‘‘leaded gasoline’’, etc.. Thus, the data model will has to include the semantics

of summary operators over the category hierarchies.

4.3 Sparsity of the cross product space

In many statistical data bases, there are no summary values for some of the cross product
space elements of the category attributes. For example, consider a data base on trade between
states by year. Since not every state produces all products and since a state sells its product
only to a limited number of states, it follows that many cross product elements of (producing
state, consuming state, product, year) are not valid. There are two options of dealing with the
sparsity of the cross product space. The first is to leave the null values (or zeros, or any other
designated constants) for the summary attribute in the data base and then squeeze them out
using compression techniques. The second option is to remove entries that have null values
from the data base. The trade off between these options suggests specialized physical organiza-
tion methods, similar to those that are used for supporting sparse matrices.

4.4 Summary sets

When statistical data bases are very large, it becomes too expensive to work directly with
the original data set. Users extract smaller data sets that are of interest to them, apply the
usual selection functions to limit the number of entries in the data set (such as only the western
states), apply projection functions to limit the summary data they are interested in_, and join
data from different data sets (although tools for joining are not always available). But in addi-
tion, a very common operation is to reduce the number of category attributes by summarizing
over them. Thus, in the example discussed above, a user can request total consumption by 0il
type, by state, by year, so that the consumption values are totaled over the appropriate counties
and months.

In an active data base, a large number of summary sets may be generated, suggesting the
need for the management of versions of summary datasets, and the maintenance of the relation-

ship between them.

4.5 Stability

A large proportion of statistical data bases are very stable. Initial corrections may be
required but very little updating is necessary afterwards. This stems from the primary purpose
of SDBs, which is to collect data for future reference and analysis. Once the data is collected,

there usually is no reason to change it unless it is for the correction of identified errors. Even
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in data bases that are usually associated with a high degree of updating, such as inventories,
the transactions are actually recorded over time, if further analysis is desired. Actually, most
businesses, such as banks, retail stores, etc., record all transactions as verification that the tran-
saction has taken place, along with the time and person performing the transaction. Thus,
these parts of the database are not updated very often.

The stability of SDBs is a benefit since many of the problems that arise in muitiple
updates to data bases that require concurrency control algorithms can be avoided. There is
another benefit to the stability of data bases which takes advantage of the trade-off between
retrieval and update dper_ations. If one assumes very little or no updating, it is possible to

design more efficient iéqievd algorithms on account of slow updating.

4.6 Proliferation of terms

This phenomenon is not unique to statistical data bases, but exists whenever a: data base
contains a large number of attributes. When a data base has hundreds (or even a few tens) of

attributes, it is necessary that some tools be provided for dealing with such complexity.

In order to formulate a query, a user must remember the following things in addition to
the details of the query language: the names of data sets (or relations) needed, the names or
acronyms of the attributes needed, the possible and legal values for these attributes, and the
formats of the values (e.g. the format for age groups, or whether to use capitals in names of
cities). In addition, the codes or abbreviations that were assigned to values (e.g. codes for
states and counties) must be remembered. It is not surprising that such data bases require spe-
cialists to access them.

These difficulties are even more serious in SDBs, for two reasons. First, many data
bases have categories that change their definitions over time. An example of this situation is
that counties change their boundaries but not their names over time. Also, the same terms are
used with slightly different meanings. For example, the term "state" may include Guam and
Puerto Rico in one data base, but not in another. The second reason stems from the summary
sets. With every new summary set that is created, new names are introduced, or perhaps old
names with new meanings. It is necessary to control this proliferation of terms, and to keep
track of what exists in the system.
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5. Properties of Scientific Data

It is useful to distinguish between different types of scientific data. In this section we
describe these types and their main features,

5.1 Experiment and simulation data

Most scientific data result from experiments and simulations. Data from experiments are
usually measurements of some physical phenomena, such as the collision of particle beams, or
the spectra generated by molecules in a strong magnetic field. Data from simulations typically
result from complex computations derived by using values from the previous step of the simu-
latdon. Both experiment and simulation data have similar characteristics, and therefore are con-
sidered jointly. In order to simplify the terminology used here, we refer to such data as
"experiment data”, regardless of whether they are'experiment or simulation data. Experiment
data can be classified according to three characteristics: regularity, density, and time van'atiqn.

a) Regularity

Regularity refers to the pattern of the points or coordinates for which values are measured
or computed. For example, in physics experiments, detectors are placed in a specific
configuration. If the configuration describes a regular grid or some other geometric structure,
the experiment is said to have (spatial) regularity. Similarly, many simulations assume some
regular grid for which values are computed, and therefore have spatial regularity. In addition,
if values are measured or computed at regular time intervals, then time can be considered as

another regular coordinate of the data.

In general, regularity implies that a mapping between the coordinates of measured values
and the storage locations of these values can be made by means of a computation (such as
"array linearization"”, which is simply a mapping from multi-dimensional space to linear space,
similar to FORTRAN array mapping). Therefore, in such cases it is not necessary to store the
coordinate values with each measured data value, resulting in storage savings and fast random
access. On the other hand, when spatial irregularity exists it is necessary to enumerate the data
points, and store their identifiers with the data values.

b) Density

Density indicates whether all the potential data points have actual values associated with
them. For example, simulation data of fluid motion computed on a regular grid would have
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data values (for velocity, direction, etc.) computed for each point of the grid, and therefore the
data is considered dense. On the other hand, in many experiments a large number of measure-
ments that are below a certain threshold are discarded and never recorded. In fact, the level of
sparsity can be quite high, i.e. only a small fraction of the potential data points have recorded
values. For example, in physics experiments of colliding particle beams, the measured data is
only for resulting sub-particles, which occur over a small portion of the detectors that are dis-
tributed in space. |

Sparsity implies a large number of null values which may be compressed out. The
compression technique chosen should depend on the access pattems to the data, such as
whether the data are accessed sequentially or randomly.

¢) Time variation

Time variation refers to the change of coordinates over time; i.e. the points for which
data values are measured or computed change their position from one time unit to another. For
example, consider some material that is bent in the course of an experiment. Before the exper-
iment starts a set of points is selected for measuring the material’s behavior (such as stress,
voltage, temperature). During the experiment the selected points may change their position as
a result of the bending action. Time variation is a characteristic found mostly in simulations
where a mesh of points are allowed to change their position over time during the simulation

process. These simulation methods are generally called adaptive mesh techniques.

Time variation adds an important requirement. In addition to storing the coordinates of
points for every time interval, it is necessary to maintain the relatonships between the points
as they existed in the original mesh. This is needed in order to be able to reconstruct the time
sequence of points that correspond to the same original point, and in order to find neighboring
points to a given point at any given time.

52 Configuration data

Configuration data are data that describe the initial structure of an experiment or simula-
tion. For example, in simulating heat transfer through buildings, the building layout has to be
described. Similarly, the configuration of an experiment describes the position of different
devices and detectors. The configuration layout actually determines the regularity (or irregular-
ity) of the experiment data mentioned above. Usually, it does not change in the course of the

experiment or simulation. However, it can change between experiments or simulations. It is

important to keep track of these changes and to associate the correct configuration data with
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the corresponding experiment data.

5.3 Instrumentation data

Instrumentation data consists of descriptions of the different instruments and substances
used in an experiment, and their changes over time. This data is crucial for the correct
analysis of the experiment data. It includes information such as the pressure and temperature of
a gas used in an experiment and their changes over time, drift of voltage over time, and the
characteristics of detectors and devices as measured before each experiment or a series of
experiments. It also includes the log of experiment operations, such as the time that a defec-
tive analog-to-digital converter was replaced, and who was in charge of it. Unfortunately,
some of this information is collected into unrelated files and log books, thus making their asso-

ciation with the experiment data a tedious task that is prone to errors.

54 Analyzed. data

The previous two data types are essential in order to support the analysis of expcrime'nt
data. The analysis process produces many databases that also need to be managed along with
their relationships to the experiment data they were derived from and to each other. The
analysis process may require several steps. For example, in physics experiments of colliding
particle beams, a preliminary histogram over the experiment data can be done in order to esti-
mate parameters that are used to interpret the calibration data of detectors in the next step of
the analysis. For each collision, called an event, the tracks of sub-particles produced are recon-
structed and kept in a database. From the track data, another database for the event data can
be derived, describing the kind of sub-particles produced and their characteristics. Additional
steps use databases from this and earlier stages to generate yet more data. It is important to
capture the analysis process, the input and output databases of each step, and the relationships
between the steps.

5.5 Summary data

Similar to "statistical” databases, which deal with statistical summaries (aggregations) of
data sets, scientific databases are often aggregated. For example, in experiments of heat
transfer in buildings, the amount of heat lost or gained can be averaged over several points of a
wall, summed over entire rooms, or aggregated over days into months. Another example, is
the generation of histograms from many experiments to determine the likelihood of a certain

phenomenon. As in the case of statistical databases, there is a need to organize, search and
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browse collections of summary data, and to preserve their relationship to lower level data from
which they were derived.

5.6 Property data

In any scientific field, the summary of information leamed over the years is useful to the
community at large. There is a substantial amount of work devoted to the organization and
classification of properties of materials, substances, and particles. For example, there are
several systems devoted to the storage and retrieval of chemical substance properties. Many
property databases cannot now be accessed on-line. The data is only available in periodically
published books, and may.not be up-to-date. Property data is non-uniform: it contains
numeric, text, and bibliograp‘hik: data, as well as images and graphs. This is one of the reasons
that for each scientific area special purpose systems have been developed. Data management
systems that can deal with such diversity of data types are not generally available. In addition,
because of the complex terminology involved with such data, sophisticated search and brows-
ing capabilities are needed.

The following observations can be made relative to scientific databases and the way they
are used. '

(1) Multd-dimensional data are prevalent in scientific databases. Methods for efficiently

managing, accessing, and compressing multi-dimensional data are necessary.

(2) Scientific databases are frequently accessed via proximity searches and successive

queries often exhibit locality of reference. Techniques of partitioning the data into cells

- (or grids) along the coordinates of its dimensions seem to be the most promising for
efficiently supporting these needs.

(3) Although scientific databases are usually very large, they can be often partitioned into
small independent units during early data reduction. This implies that parallel process-
ing can be applied. For example, in particle physics experiments, each event can be
analyzed independently of other events.

(4) Scientific databases include a variety of support data that describe instruments and the
configuration of experiments. Often this data is not explicitly organized but rather
made part of application programs, a practice that tends to cause many difficulties. The
requirements of such support data can be handled for the most part with conventional
database techniques, but need to be integrated with the data that result from experi-
ments. Some configuration data need special capabilities found in engineering database
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systems.

(5) The analysis of scientific data generates many summary data sets which need to be
managed. Special techniques for handling analyzed data and summary data are
required in order to manage their metadata, to keep track of numerous data sets.

(6) Temporal aspects of scientific databases are important. They range from time series of
the measured data, to logs of instrument variation over time, to the historical sequence
of generating different summaries of the data. Thus, support for temporal data struc-
tures and operations is needed.

(7) There are many aspects of scientific databases that are similar to statistical databases;
in particular, supporting the multi-dimensional aspects of the data and the handling of

summary data.

Summary and Conclusions

Statistical and scientific database applications are complex because they involve data and
procedures of complex disciplines (biology, physics, etc.). They have requirements that far
exceed the capabilities provided by current commercial data management systems. In this
paper, we have discussed some of the properties and requirements of SSDBs.

The paper contains a discussion of current approaches to data management for complex
applications, and evaluates their adequacy for SSDBs. Three approaches were discussed:
object-oriented database systems, extended relational systems, and extensible database systems.
It was pointed out that while all of these approaches have the goal of supporting user defined
data structures and operations, each of these approaches has different strong points. Object-
oriented systems provide an elegant environment for encapsulating new objects and operations,
extended relational systems provide a rich complex object model (as well as other features,
such as support for rules), and extensible database systems are designed to provide an environ-
ment for interchangeable modules, as well as to support dynamic changes to the query optim-
izer. For SSDBs these features are quite desirable. Thus, it is important that future research
will bring about systems that can incorporate the advantages of the three approaches.

The development of flexible and powerful data managements systems does not in itself
provide a solution for SSDB applications. The characteristics of each application need to be
well understood before an appropriate model of the application can be developed. In addition,
new methods for physically supporting the scientific application may need to be developed.
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For example, the characterization of statistical database applications, and the development of

appropriate models, query languages, user interfaces, and physical structures for these applica-

tions, has been going on for over a decade, and is still continuing. The success of such

developments requires a detailed understanding of the discipline as well as the needs of scien-

tists in those disciplines.
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