
Lawrence Berkeley National Laboratory
Recent Work

Title
Properties of Statistical and Scientific Databases

Permalink
https://escholarship.org/uc/item/78x0311s

Author
Shoshani, A.

Publication Date
1991

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/78x0311s
https://escholarship.org
http://www.cdlib.org/

,,. -

·• w'

1
"

LBL-29900

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division
To be published as a chapter in Statistical and Scientific
Databases, Z. Michalewicz, Ed:, Ellis Horwood Ltd., Publisher,
Chichester, England, Febmary 1991

Properties of Statistical and Scientific Databases

A. Shoshani

November 1990

Prepared for the U.S. Department ofEuergy under Contract Number DE-AC03-76SF00098.

-t!C1
0 ...,,r
)) 0

11 D
.j::-~ z

......
~ !lJ n
I'D <1"0
I'D I'D 1J
'AU' -<
II' ---
Ill
1-'

0.
!0 .
(.fl
5I r
r Ill r
ern
) 0
!lJ"O
)'<
'< . m

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

...

'··

Properties of Statistical and Scientific Databases

Arie Shoshani

Computing Science Research & Development
Information & Computing Sciences Division

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, California 94720

November 1990

LBL-29900

To appear as a chapter in a book entitled
"Statistical and Scientific Databases" by Ellis Horwood Ltd .

This work was supported by the Director, Office of Energy Research, Applied Mathematics
Sciences Research Program of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.

...

PROPERTIES OF STATISTICAL AND SCIENTIFIC DATABASES

Arie Shoshani

Information and Computing Sciences Division

Lawrence Berkeley Laboratory

University of California

Berkeley, California 94 720

Abstract

This paper is intended as an introduction to the properties and requirenments of Statistical

and Scientific Databases (SSDBs). It discusses the inadequacy of current commercial data

management systems for SSDB applications. The paper also contains a discussion of new

approaches for the support of complex applications and their implications to SSDB applica

tions. It concludes with observations of future research areas.

1. Introduction

A large number of Statistical and Scientific Databases (SSDBs) are not managed today by

data management systems, whether commercial systems or special purpose laboratory systems.

Such data include collected statistics by various government agencies (such as health data or

business pattern data), and large datasets which result from scientific experiments and simula

tions (such as climate measurements and climate model simulations). Typically, such databases

are stored as files which are then managed and processed by special purpose programs written

especially for each of these applications.

The main reason for this state of affairs is that most of the commercial systems available

today were designed primarily to support business applications (such as marketing and bank

ing). SSDBs have data characteristics and access requirements that need different tools than

currently offered by commercial systems. The different needs are discussed further in the next

section. However, the following example can provide some intuition as to the complexity of

typical scientific applications.

-1-

Consider a panicle physics experiment. where panicles are collided in order to generate

sub-panicles. Such collisions can occur millions of times in the course of an experiment, and

the results captured by special detectors. The data from the detectors passes many stages of

analysis. The first few stages reconstruct the tracks of sub-panicles produced. Eventually, col

lections of tracks for certain sub-particles are analyzed statistically in order to characterize the

collisions. In general, scientific data have more complexity than strictly statistical data (such as

survey data), because in addition to the measured data, it contains data about the instruments,

the environment of the experiment, and the configuration of the experiment. Configuration

data can be quite complex, as is the case, for example, in describing a wing configuration for

an airplane simulation.

From the example above, one can observe that the data structures of SSDBs can be quite

complex: there are temporal sequences of measurements, there are measurement which

represent points in space (spatial data), the configuration of the detector represents graphic data

(such as contours) and images, and there are various statistical summaries generated in the pro

cess of analysis. In terms of operations over the data. searches that have spatial and temporal

locality are common, as well as statistical operators in multi-dimeltsional space.

Research in data management for SSDBs has been going on for about a decade, as

exemplified by the series of workshops held approximately every two years since 1981 [1-5].

However, the suppon for such research has been sporadic. More recently, there is a renewed

interest in this topic, because of the realization that large projects such as environmental

cleanup, climate modeling, human genome mapping and sequencing, super-computer super col

lider (SSC), etc., have already, and will continue to generate vast amounts of data at multiple

physical locations. The management and coordination of these large datasets can indeed

benefit from scientific data management tools. This growing interest has been reflected in a

recent workshop sponsored by NSF [6].

The amount of scientific data generated is accelerated due to more sophisticated devices

and cheaper computer power. A single scientific experiment can generate hundreds of mega

bytes of data within days. Many scientific simulations are not carried out to the desired granu

larity level, only because it is impractical to process and manage the large amounts of data that

would be generated. Many practical databases collected for statistical purposes, such as trade

data between countries, or the various census data. are too eomplex to be managed with con

ventional data management techniques efficiently. In addition, there are large amounts of data

that were not collected originally for experimental or statistical purposes, but have tremendous

potential when used for statistical purposes. For example, routine patient records in hospitals

-2-

"

..

'11

can be used for statistical "cause and effect" studies. Business transactions can be statistically

analyzed for policy setting and econometric models. For the most pan. such sources of routine

collections of data are left unused because adequate data management facilities do not exist .

The purpose of this paper is to provide an overview of the properties of SSDBs. In sec

tion II we discuss the main differences between the properties of SSDBs and conventional

(business) data. Section Ill contains a discussion of new emerging technologies, and their

implications to the management of SSDBs. sections IV and V discuss in more detail properties

of statistical and scientific databases, respectively. These sections contain parts of previous

articles [7-8]. The last section contains a summary and conclusions on future research in the

area.

2. Additional Requirements of SSDBs

As mentioned in the introduction, SSDBs have needs that are not adequately supported

by commercial data management systems. To see what are the additional requirements, it is

worth mentioning briefly the main advantages offered by data management systems in general.

This will be followed by a discussion of the additional requirements.

Data management technology has been used successfully in many applications (mostly

business oriented) because they offer the following main advantages:

1) data models which provide an abstraction for representing the structure and semantics of the

data.

2) high-level query languages defined over the data models for accessing and manipulating the

data,

3) support for concurrent access of the data by multiple users (concurrency control),

4) mechanisms for expressing and validating the integrity of the data,

5) back up and recovery of the database as protection from system failures, and

6) support for efficient physical organization in tenns of storage on and access from secondary

and tertiary storage.

In general the same advantages that are useful for business applications are also useful

for SSDBs. However, for each of the points above there are specific additional or different

requirements that SSDBs have. A brief discussion of each of the points above follows.

1) The data model

The data model used in modem commercial data management systems is the relational

model. It consists of multiple tables (called "relations") that can be linked explicitly in the

query language by associating columns (called a "join" operation). The model is set oriented,

that is, the order of instances (rows of a table) is not enforced. For SSDBs this simple table

structure is inadequate. For example, ordered strucrures, such as DNA sequences or temporal

sequences, cannot be directly represented. Other data types, such as vectors, matrices, etc. also

cannot be expressed by relations in a straightforward and convenient way. SSDBs often

include graphs, images, and complex tables (e.g. isotope tables). Such needs are not unique to

SSDBs, since they often exist in business data, but they are more pronounced in SSDBs.

Another important requirement is the ability to represent complex objects. Consider the

simple example of a contour in 2-dimensional space. It can be thought of as a circular

sequence of points, where each point is composed of X and Y ·coordinates. Each point is a

complex object made of two labeled values, and the sequence is a complex object that orders

the points and has the property "circular". One can further iterate to define objects that are

sets of contours, sequences of contours, etc. This property can be extended to model images,

sequences of images (video), data forms, etc. Complex object structures are prevalent in

SSDBs. Their representation in terms of relational tables is quite awkward, complex, and

unnatural. Thus, data models that can support complex structures directly and naturally are

needed for SSDBs. Current approaches to such models are discussed further in the next sec

tion.

2) The query language

SQL (Structured Query Language) has become a de-facto standard as the high level query

language for the relational model. The basic functionality is provided by constructs for speci

fying predicates to select rows from relational tables, specifying how multiple tables can be

associated (''joined'') in a single query, and which columns should be included in the output

Additional features of the language include aggregate functions (such as "count", or "sum")

over groups of values, set operators ("union", "difference"), and sorting of the output. SQL

has been shown to be a fairly powerful language for expressing data manipulation of table

\1

"

structures, although there is continuing criticism of its semantic clarity and power.

The obvious corollary from the structural needs of SSDBs discussed in the previous sec

tion is that SQL is not powerful enough for SSDBs. For example, if a model for SSDBs sup

ports a sequence construct, then it will imply operators to search such a structure, such as

"find a subsequence of length k starting in position n". In general, complex objects are com

posed of multiple structures, and for each structure there is a set of operators for its search and

manipulation.

SSDB applications are often based on different disciplines, such as biology, earth sci

ences, physics, etc. Accordingly, their requirements can be highly specialized. Suppose, for

example, that a "sequence" construct exists in a certain complex data model. This sequence

structures could be used to represent seismic events in time, text sequences, DNA sequences,

etc. In general, in each of these domains, different operators will make sense. For seismic

sequences we ·may be interested to find if an event occurred at a particular range of time, for

text sequences we may be interested in finding words with certain proximity to each other, and

for DNA sequences we may want to find overlapping regions between them. Can such com

plex operations be supported by an underlying high level complex object language? This is

indeed the subject of current research. Current approaches will be discussed in the next sec

tion.

3) Concurrent access

Support for concurrent access of data for business applications revolves around the con

cept of a transaction. The paradigm used is that multiple transactions may be applied to the

same data item(s) and thus interfere witH each other when at least one transaction updates the

data. For business applications, such as banking, accounting, or reservation systems, such

interference may be disastrous. Thus, most of the work in the past concentrated on coordinat

ing the access of concurrent transactions so that the global behaviour will be equivalent to a

serial execution of the transactions.

In SSDBs concurrent access to the data is not an important issue. First, much of the data

is not updated, as is the case with data that was generated by scientific devices, such as those

used in weather monitoring. Second, if data is updated, it is often done by a single person, as

is the case when an analyst removes or corrects "outliers" (data that is outside expected

bounds). In such a case, the corrections do not have to be immediately visible, and _thus can

be made on a locked version of the database. Third, when multiple users need to update the

data simultaneously, they often need to access different parts of the database, such as multiple

-5-

).

engineers working on different sections of a joint design. Founh, the concept of a "long tran

saction" is often more appropriate for SSDBs, where a scientist may embark on a long

analysis (which results in updates). It is not always possible to break such long transactions

into a series of short transactions.

For the above reasons, concurrency control, as supported by current commercial systems,

is not sufficient. There is a need to support multiple versions of datasets, and to keep track of

the correspondence between them. In addition, there is the need to support a master version,

where different parts of it are modified by different users. Support long transactions is another

important requirement Fmally, for the massive amounts of data that are only read (not

modified), there is no need to pay the overhead of concurrency control. As will be discussed

below, there is also a benefit to using data structures especially designed for static data.

4) Integrity constraints

Maintaining the integrity of data can be quite complex. Most commercial systems sup

port a simple form of data type integrity, such as checking that values would not exceed given

boundaries, or that values would be only in a certain format. However, commercial systems

are quite limited, especially for SSDB applications. Even a simple feature, often needed in

SSDBs, which checks that data values are only from a given list of values (called "categori

cal" values), is not always supported by commercial systems. Integrity conditions become

more complex to maintain when they involve multiple domains, such as checking that a

person's birthdate is smaller by at least 18 years than his/her employment start date (assuming

adult employment). In general, integrity conditions may require the power of a programming

language for their expression.

In relational systems, integrity conditions can involve data elements from multiple tables.

One form of multi-table integrity condition, called "referential integrity" has recently attracted

much attention. For example, a "car" table may contain a column for the person who owns

it In order to enforce the condition that every car must have an owner, a referential integrity

condition between the relevant columns of the tables must be defined and maintained. This

creates problems for SSDBs. It is a tedious and non-trivial task to specify such conditions for

complex schemas that contain complex objects. In current systems they need to be expressed

with complex constructs, such as "triggers" (e.g. Sybase) or "rules" (e.g. Ingres). If complex

objects can be expressed directly in the model, the referential integrity conditions that hold

between the components of the complex structures could be inferred, and do not have to be

expressed explicitly by the user who specifies the database structure. In general, richer models

-6-

..

for SSDBs should capture more semantics, and therefore the integrity constraints implied by

these semantics. This would save the user the chore of expressing them explicitly.

5) Recovery

Mechanisms for back up and recovery are always needed. In conventional applications

where transactions are shon, it is quite acceptable to back up to the last successful transaction

for the purpose of recovery. For SSDBs, where long transactions are more typical, backing up

to the last transaction is not acceptable, because too much work may be lost. new mechanisms

need to be developed for the support of long transactions.

6) Physical database organization

Physical data structures and access methods are the key to efficient support of queries.

Relational database implementations typically organize rows of relations as records in files, and

provide additional index mechanisms (e.g. B-trees, hash tables) over the various columns of the

relations. SSDB applications need additional types of data organization and access algorithms.

For SSDBs the best physical clustering of the data may not be according to records in a file.

The main reason is that in SSDB applications the access requirements would benefit from other

ways of clustering data. For example, spatial applications typically have local access operators

(such as "find neighboring points" for calculations of mesh data). For such applications, phy

sical locality of data according to their spatial locality would reduce the amount of VO from

secondary storage.

Another example, is sparsity of data in multi-dimensional space. The best method for

compressing the data has to be weighted against efficient access, and thus depends on the

SSDB application's access requirements. Various methods, such as "grid files", "quad

trees", etc. were proposed in the literatUre but are not yet available in commercial system.

Statistical databases often need to access a few columns from a table for performing sta

tistical correlations. The typical ''row-wise'' organization is quite inefficient for such applica

tions, because entire records have to be read in order to read a few values out of them. The

more efficient organization for such applications, is a "column-wise" organization (called

"transposed files'). No commercial system currently offers this option of data organization.

Finally, it is wonh noting that complex objects have a natural clustering of their components.

For applications that need to access entire complex objects, "object-wise" clustering would be

best.

-7-

As can be seen from the above examples, data management systems for SSDBs need to

have a rich set of physical organization options to provide efficient performance. A multipli

city of choices makes the problem of query optimization (i.e. the algorithm for the most

efficient way to execute a query) so much harder. The management of these options and the

way they can interact are a great challenge to designers of such systems.

3. Current Approaches and Their Relationship to SSDBs

There are several new promising approaches that could have an effect on the future

management of SSDBs .. These approaches were not specifically developed for SSDBs, but for

complex database applications in general. However, the capabilities they are designed to pro

vide can go a long way towards supporting SSDB applications. In general, these approaches

strive to provide the following capabilities:

1) support for complex objects, and operations over them,

2) support for user defined structures and functions, and

3) the capability to incorporate new physical data structures and access methods.

It follows from the discussion and examples in the previous section, that such capabilities

are indeed necessary for the efficient support of SSDBs. The approaches we discuss below are

fundamentally different, thus emphasizing different aspects of the capabilities above.

3.1 Object-oriented database systems

The object-oriented methodology was developed in the context of programming

languages. This methodology has been found to be very useful for system design [9]. The

two main features of this methodology are encapsulation and inheritance. Encapsulation con

sists of the ability to define data structures and operators over them (also called "methods"),

and make them available to users through interfaces. The objective is to hide the details of the

implementation of the data structures and operations and make only their interfaces visible.

Accordingly, object structures in SSDBs, such as a "seismic event", could be encapsulated,

together with specialized operators, such as ''find other events that correlate with this event''.

The usefulness of this concept to SSDBs is in the power to code new complex structures

and operations, and make them callable by name. For example, a DNA sequence could be

coded as a linked list structure, and the operation "overlap" could be coded to return the sub-

-8-

..

v

·-

sequences that overlap between two given DNA sequences. Both the DNA structure and the

overlap operation will then be recognized by the system, and could be invoked by name.

The second feature that makes this approach attractive is inheritance. this feature is

related to the concept of "generalization", which has been incoipOrated in many semantic

database models. Like generalization, it supports the construct of classes and subclasses (e.g. a

"student" is a subclass of the class "person"), and provides the inheritance of its properties

(e.g. the "age" of the "person" is inherited by the "student"). However, object-oriented

inheritance includes the inheritance of the operators (methods) as well. This feature provides

the capability to share code and to make explicit the inheritance association between objects.

Object-Oriented Database Management Systems (OODBMSs) have additional require

ments [10]. Support for encapsulation and inheritance is already provided by object-oriented

programming languages, such as Object-Pascal or C++. In order to support database applica

tions these languages need to provide persistency to the data, i.e., that the data will exist across

multiple executions of the program. In addition, other features need to be added, such as those

mentioned in the previous section (concurrency, recovery, physical organization, query

language, etc.) The approach to the implementation of such systems is typically to start with

some object-oriented programming language and to develop the above features with it.

The obvious difficulties with this approach is that there are no constructs beyond the pro

gramming language supported by the OOBDMS for defining complex data structures and

operators. This has two drawbacks. First. there are no system supported building blocks to

define new structures. For example, it would have been simpler to define a DNA structure if a

"sequence structure" and its associated operators were available. This can be remedied by

developing software libraries. However, the second drawback is more severe: there are no

mechanisms to make the new objects and structures part of some high level query language.

They are only callable from a program. Further, even if a query language exists, and even if it

can be extended with the new operators, there needs to be an additional component that pro

vides query optimization for the new objects. This requires that the query optimization algo

rithm will be capable of dynamically adjusting according to the properties of the new data

structures and operators. This is a challenging task that will determine the performance of

OODBMSs.

3.2 Extensions to the relational model

It is natural to take the approach of extending a popular database model, such as the rela

tional model. U successful, it has the advantage that relational technology has matured into

-9-

commercial products, and its concepts are well known. Initially, there were various attempts to

extend the relational data structures and relational query languages (such as permitting relations

made of relations). In subsequent work, systems were designed to include user defined data

structures and operations. Examples of such developments are Postgres [11], and the system

described in [12].

The typical approach in such extensions, is to define a complex relational model, and a

query language for it. the extensions include, inheritance structures, new data types (e.g., vec

tors, matrices, images, etc., and even procedures), and a capability to construct complex rela

tions from other relations. Fux;ther, the systems are designed to be extendible, in that the user

can define new structures and operations in terms of data structures and operators provided by

the system. The user defined operations are callable by name from the query language.

The advantage of this approach is that it provides a capability to define complex data

structures, and· the incorporation of user defined structures and functions. However, it is not

clear whether the approach of extending an existing model is natural for SSDB applications.

Experience will show whether a conceptual model at a more abstract level will be more useful.

Another difficulty with this approach is similar to the one discussed in the context of

OODBMSs; that is, the need for the query optimizer to be dynamically modified when new

data structures and operators are introduced. The main difficulty is whether the information for

the query optimizer can be specified by the scientific database designer, or whether this will

require the expertise of a specialist.

3.3 Extensible database systems

Extensible database systems are based on the premise that a single system cannot be

designed to answer the complex needs of various applications. Thus, they are designed to cus

tomize specific data management system for each application. The main idea is one of using

"building blocks", that is, reusable software that can be selected for the need of a particular

application. Additional "blocks" can be provide by users, and the selected blocks are then

assembled (compiled) to produce a special purpose system customized for the application. The

key to the success of this approach is the design of interfaces (the "glue") that permit the

interchangeability of modules and the integration of new modules. Examples of such systems

are Exodus [13] and Genesis [14].

Obviously, this approach should be quite attractive for scientific database applications.

However, the designer of such a customized system has to have sufficient expertise in the

-10-

implementations of DBMSs. Thus, this approach may be considered more appropriate to a

software house that can customize a DBMS for the needs of the application.

Extensible database systems have to address explicitly the issue of incorporating new

operators, new query languages, and new physical data sttuctures and access meth~s. While

these can be introduced as "plug compatible" modules, there is still the problem of having to

modify the query optimizer accordingly. One of the proposed solutions is to use rule-based

optimizers to specify the optimization algorithm.

Implications to SSDB research

The above methodologies show great promise for helping in the development of SSDB

data management systems. They do not, however, provide any insight as to the properties and

needs of SSDB applications. There is a continuing challenge of characterizing the properties

of various applications, understanding the modeling requirements, the operators, the access pat

terns of the application, and the physical sttuctures to support them. For example, applications

that involve temporal and spatial data need to be characterized in terms of sequence and multi

dimensional sttuctures, their operators defined, and efficient physical sttuctures for their support

developed.

The above tasks are especially difficult to achieve for scientific applications because of

the complexity of the disciplines. It requires the collaboration of computer scientists (data

management specialists) and scientists from other disciplines. To understand fully the needs of

these disciplines in terms of data modeling, operators, and physical structures, requires long

and dedicated interactions. The next two sections contain some observations of the properties

of statistical and scientific databases.

4. Properties of Statistical Databases

Statistical data bases (SOBs) can be described in terms of the type of data they contain,

and their use. SOBs are primarily collected for statistical analysis purposes. They typically

contain both parameter data and measured data (or "variables") for these parameters. For

example, parameter data consists of the different values for varying conditions in an experi

ment; the variables are the measurements taken in the experiment under these varying condi

tions. The data base is usually organized into "flat files" or tables.

-11·

,,
'

The statistical analysis process involves the selection of records (or tuples) using selection

conditions on the parameters, taking a random sample, or using a graphics device to point to

the items desired. Several variables are then selected for analysis. The analysis may involve

applying simple univariate statistical functions to the value sets of the variables (e.g. sum,

mean, variance) or using more complex multivariate analysis tools (e.g. multiple regression,

log-linear models).

The statistical analysis process may involve several steps. It includes phases of data

checking, exploration, and confirmation. The purpose of data checking is to find probable

errors and unusual but valid values (called "outliers" by statisticians), by checking histograms

or integrity constraints across attributes. The purpose of data exploration is to get an impres

sion of the distribution of variables and the relationships between them. This phase involves

taking samples of the data, selecting records, and creating temporary data sets for use in graph

ical display anc;i preliminary analysis. In the confOimation phase, the analyst tests hypothesized

distributions (which are based on the observations made in the exploratory phase) against the

data base, or relationships between variables (cross tabulations). This process may then iterate

several times until satisfactory results are achieved.

At first glance it appears that the necessary data manageme?t functions can be supponed

by existing general purpose data management systems. For example, one can view fiat files as

relations in a relational data management system, and generate subsets for analysis by using .

relational operators, such as "join" and "project". However, practice has shown that these data

management systems have not been used for SOBs. Instead, one finds that statistical packages

are used or special purpose software is developed. Most statistical packages have some data

management capabilities, but their primary purpose is to provide statistical analysis tools to the

analyst.

There are two main reasons for the fact that commercial data management systems have

not been widely used for SOBs. The first reason is the storage and access inefficiency of these

systems for SOBs. As will be discussed later, many SDBs have a high degree of data redun

dancy that can benefit from sophisticated compression techniques. The organization of the data

into records (or tuples) makes retrieval inefficient in those cases where only a few attributes

are needed for the analysis. Other data organization methods, such as organizing the data by

columns instead of rows (called "transposed files") are usually more efficient [15]. Most exist

ing data management systems are designed for high volume interactive transactions with the

possibility of concurrent access to the data. The overhead required for the suppon of con

current access is not necessary for SOBs, because much of the data is static. Also, analysts

-12-

work with their particular subset of the data, and are willing to put up with occasional sequen

tial access to the original data bases.

The second reason stems from the lack of functionality and ease of use. Statistical func

tions available in commercial data management systems are quite limited, usually to simple

aggregate univariate functions such as sum, maximum, or average. Most systems do not have

facilities for supporting additional user-defined functions, although some provide an ability to

create predefined functions in libraries. In addition, some query languages are quite complex

when it comes to specifying aggregate functions. As will be discussed later, the query

language can be simplified if the semantic properties of the SOBs are modeled.

Ease of use considerations are much more pragmatic. In order to perfonn statistical

analysis, an analyst must eventually rely on more sophisticated statistical tools such as those

found in statistical packages. This means that in order to use a data management system the

analyst will need to become familiar with two systems, and the methods used to pass data

between them. Often, the analyst will choose to stay with the essential statistical tools pro

vided by the statistical package, and manage with the limited data management tools provided

by them.

In the sequel, we identify some characteristics that are common to SOBs. These charac

teristics are both in tenns of the structure and use of-the data.

4.1 Category and summary attributes

SOBs can be thought of as having two types of data: measured data on which statistical

analysis is perfonned, and parameter data which describe the measured data. There are several

reasons to making this distinction.

To illustrate the reasons, consider for example a simple data base represented in a relation

fonn. The first five attributes are: oil type, state, county, year, month. They represent the

parameter data. The last two attribute are: consumption, production. They represent measured

data. The attributes for the parameter data are referred to as "category" attributes, since they

contain categorical values for the measured data. The attributes for the measured data are

referred to as "summary" attributes, since they contain data on which statistical summaries (and

analysis) are applied. There are several points to note.

First, note that a combination of the category attribute values is necessary for each of the

values of each summary attribute. That is, the category attributes serve as a composite key for

the summary attributes. Thus, each summary attribute is functionally dependent on the the

-13-

category attributes. This relationship between category and summary attributes is part of the

semantics that need to be modelled.

Second, there is a great amount of redundancy in the values of the category attributes,

when they are represented in a relation. In many data bases all possible combinations of the

category attributes (i.e. the full cross product) exist In such cases each value of a category

attribute repeats as many times as the product of the cardinality of the remaining category attri

butes. This is the main reason for the organization of SOBs into matrix fonn, as is the pre

ferred representation for statisticians. A matrix organization replaces the need to store the

category values in the data base by representing them as positions of the columns and rows.

This suggests the need for the efficient efficient storage and access of category attributes.

Third, the range of category attributes is usually small, from as little as two (e.g. "sex")

to a few hundreds (e.g. oil type). In contrast, summary attributes often have large ranges since

they always represent numeric measures. Often, category attribute ranges are grouped together

so as to have fewer categories, such as using "age groups" rather than "age". Also, category

values are more descriptive in nature, and therefore tend to be character data (e.g. industrial

classes), while summary values are numeric. Often, coded versions of the text are assigned to

long category values. This suggests the need to support the mapping between the codes and

the descriptive values.

4.2 Classification hierarchies over category attribute

In SOBs, each of the category attributes can represent a hierarchy of tenns. For example,

"oil type" can be organized into "crude oil", "heating oil", and "refined products". Each

of these categories can be further organized into sub-categories. For example, "refined pro

ducts" can include "leaded gasoline" and "unleaded gasoline". There are two implications

to this property.

First, the data model should have the capability of representing this structure. Note that

in the relational model there is no such capability. In order to represent the infonnation in the

category hierarchy, each hierarchy will have to be "flattened out" into multiple attributes.

Even so, the semantics of the hierarchical relationship will be lost

Second, summary queries can be requested to any level of the hierarchy. Typically, the sum

mary values are given for categories in the leaves of the category hierarchy. Thus, request for

data at higher levels would require summarization from the leaves to the higher levels. For

example, the values for oil consumption should be summed up from the leaves of the category

-14-

~i

'·.i

hierarchies, i.e "leaded gasoline", etc.. Thus, the data model will has to include the semantics

of summary operators over the category hierarchies.

4.3 Sparsity of the cross product space

In many statistical data bases, there are no summary values for some of the cross product

space elements of the category attributes. For example, consider a data base on trade between

states by year. Since not every state produces all products and since a state sells its product

only to a limited number of states, it follows that many cross product elements of (producing

state, consuming state, product, year) are not valid. There are two options of dealing with the

sparsity of the cross product space. The first is to leave the null values (or zeros, or any other

designated constants) for the summary attribute in the data base and then squeeze them out

using compression techniques. The second option is to remove entries that have null values

from the data base. The trade off between these options suggests specialized physical organiza

tion methods, similar to those that are used for supporting sparse matrices.

4.4 Summary sets

When statistical data bases are very large, it becomes too expensive to work directly with

the original data set. Users extract smaller data sets that are of interest to them, apply the

usual selection functions to limit the number of entries in the data set (such as only the western

states), apply projection functions to limit the summary data they are interested in, and join

data from different data sets (although tools for joining are not always available). But in addi

tion, a very common operation is to reduce the number of category attributes by summarizing

over them. Thus, in the example discussed above, a user can request total consumption by oil

type, by state, by year, so that the consumption values are totaled over the appropriate counties

and months.

In an active data base, a large number of summary sets may be generated, suggesting the

need for the management of versions of summary datasets, and the maintenance of the relation

ship between them.

4.5 Stability

A large proportion of statistical data bases are very stable. Initial corrections may be

required but very little updating is necessary afterwards. This stems from the primary purpose

of SOBs, which is to collect data for future reference and analysis. Once the data is collected,

there usually is no reason to change it unless it is for the correction of identified errors. Even

-15-

in data bases that are usually associated with a high degree of updating, such as inventories,

the transactions are actually recorded over time, if further analysis is desired. Actually, most

businesses, such as banks, retail stores, etc., record all transactions as verification that the tran

saction has taken place, along with the time and person performing the transaction. Thus,

these parts of the database are not updated very often.

The stability of SDBs is a benefit since many of the problems that arise in multiple

updates to data bases that require concurrency control algorithms can be avoided. There is

another benefit to the stability of data bases which takes advantage of the trade-off between

retrieval and update operations. If one assumes very little or no updating, it is possible to

design more efficient r~trieval algorithms on account of slow updating.

4.6 Proliferation of terms

This phenomenon is not unique to statistical data bases, but exists whenever a' data base

contains a large number of attributes. When a data base has hundreds (or even a few tens) of

attributes, it is necessary that some tools be provided for dealing with such complexity.

In order to formulate a query, a user must remember the following things in addition to

the details of the query language: the names of data sets (or relations) needed, the names or

acronyms of the attributes needed, the possible and legal values for these attributes, and the

formats of the values (e.g. the fonnat for age groups, or whether to use capitals in names of

cities). In addition, the codes or abbreviations that were assigned to values (e.g. codes for

states and counties) must be remembered. It is not surprising that such data bases require spe

cialists to access them.

These difficulties are even more serious in SDBs, for two reasons. First, many data

bases have categories that change their definitions over time. An example of this situation is

that counties change their boundaries but not their names over time. Also, the same terms are

used with slightly different meanings. For example, the tenn "state" may include Guam and

Puerto Rico in one data base, but not in another. The second reason stems from the summary

sets. With every new summary set that is created, new names are introduced, or perhaps old

names with new meanings. It is necessary to control this proliferation of terms, and to keep

track of what exists in the system.

S. Properties of Scientific Data

It is useful to distinguish between different· types of scientific data. In this section we

describe these types and their main features.

S.l Experiment and simulation data

Most scientific data result from experiments and simulations. Data from experiments are

usually measurements of some physical phenomena. such as the collision of particle beams. or

the spectra generated by molecules in a strong magnetic field. Data from simulations typically

result from complex computations derived by using values from the previous step of the simu

lation. Both experiment and simulation data have similar characteristics. and therefore are con

sidered jointly. In order to simplify the tenninology used here. we refer to such data as

"experiment data''. regardless of whether they are· experiment or simulation data. Experiment

data can be cJassified according to three characteristics: regularity, density, and time variation.

a) Regularity

Regularity refers to the pattern of the points or coordinates for which values are measured

or computed. For example, in physics experiments, detectors are placed in a specific

configuration. If the configuration describes a regular grid or some other geometric structure,

the experiment is said to have (spatial) regularity. Similarly, many simulations assume some

regular grid for which values are computed. and therefore have spatial regularity. In addition,

if values are measured or computed at regular time intervals, then time can be considered as

another regular coordinate of the data.

In general, regularity implies that a mapping between the coordinates of measured values

and the storage locations of these values can be made by means of a computation (such as

"array linearization", which is simply a mapping from multi-dimensional space to linear space,

similar to FORTRAN array mapping). Therefore. in such cases it is not necessary to store the

coordinate values with each measured data value, resulting in storage savings and fast random

access. On the other hand, when spatial irregularity exists it is necessary to enumerate the data

points, and store their identifiers with the data values.

b) Density

Density indicates whether all the potential data points have actual values associated with

them. For example. simulation data of fluid motion computed on a regular grid would have

-17-

data values (for velocity, direction. etc.) computed for each point of the grid, and therefore the

data is considered dense. On the other hand, in many experiments a large number of measure

ments that are below a certain threshold are discarded and never recorded. In fact, the level of

sparsity can be quite high, i.e. only a small fraction of the potential data points have recorded

values. For example, in physics experiments of colliding panicle beams, the measured data is

only for resulting sub-particles, which occur over a small portion of the detectors that are dis

tributed in space.

Sparsity implies a large number of null values which may be compressed out The

compression technique chosen should depend on the access patterns to the data, such as

whether the data are accessed sequentially or randomly.

c) Tune variation

Time variation refers to the change of coordinates over time; i.e. the points for which

data values are measured or computed change their position from one time unit to another. For

example, consider some material that is bent in the course of an experiment Before the exper

iment starts a set of points is selected for measuring the material's behavior (such as stress,

voltage, temperature). During the experiment the selected points may change their position as

a result of the bending action. Time variation is a characteristic found mostly in simulations

where a mesh of points are allowed to change their position over time during the simulation

process. These simulation methods are generally called adaptive mesh techniques.

Time variation adds an important requirement In addition to storing the coordinates of

points for every time interval, it is necessary to maintain the relationships between the points

as they existed in the original mesh. This is needed in order to be able to reconstruct the time

sequence of points that correspond to the same original point, and in order to find neighboring

points to a given point at any given time.

5.2 Configuration data

Configuration data are data that describe the initial structure of an experiment or simula

tion. For example, in simulating heat transfer through buildings, the building layout has to be

described. Similarly, the configuration of an experiment describes the position of different

devices and detectors. The configuration layout actually determines the regularity (or irregular

ity) of the experiment data mentioned above. Usually, it does not change in the course of the

experiment or simulation. However, it can change between experiments or simulations. It is

important to keep track of these changes and to associate the correct configuration data with

-18-

" ~'

the corresponding experiment data.

5.3 Instrumentation data

Instrumentation data consists of descriptions of the different instruments and substances

used in an experiment, and their changes over time. This data is crucial for the correct

analysis of the experiment data. It includes information such as the pressure and temperature of

a gas used in an experiment and their changes over time, drift of voltage over time, and the

characteristics of detectors and devices as measured before each experiment or a series of

experiments. It also includes the log of experiment operations, such as the time that a defec

tive analog-to-digital converter was replaced, and who was in charge of it. Unfortunately,

some of this information is collected into unrelated files and log books, thus making their asso

ciation with the experiment data a tedious task that is prone to errors.

5.4 Analyzed data

The previous two data types are essential in order to support the analysis of experiment

data. The analysis process produces many databases that also need to be managed along with

their relationships to the experiment data they were derived from and to each other. The

analysis process may require several steps. For example, in physics experiments of colliding

particle beams, a preliminary histogram over the experiment data can be done in order to esti

mate parameters that are used to interpret the calibration data of detectors in the next step of

the analysis. For each collision, called an event, the tracks of sub-particles produced are recon

structed and kept in a database. From the track data, another database for the event data can

be derived, describing the kind of sub-particles produced and their characteristics. Additional

steps use databases from this and earlier stages to generate yet more data It is important to

capture the analysis process, the input and output databases of each step, and the relationships

between the steps.

5.5 Summary data

Similar to "statistical" databases, which deal with statistical summaries (aggregations) of

data sets, scientific databases are often aggregated. For example, in experiments of heat

transfer in buildings, the amount of heat lost or gained can be averaged over several points of a

wall, summed over entire rooms, or aggregated over days into months. Another example, is

the generation of histograms from many experiments to determine the likelihood of a certain

phenomenon. As in the case of statistical databases, there is a need to organize, search and

-19-

. :.:

browse collections of summary data, and to preseiVe their relationship to lower level data from

which they were derived.

5.6 Property data

In any scientific field, the summary of infonnation learned over the years is useful to the

community at large. There is a substantial amount of work devoted to the organization and

classification of properties of materials, substances, and particles. For example, there are

several systems devoted to the storage and retrieval of chemical substance properties. Many

property databases cannot now be accessed on-line. The data is only available in periodically

published books, and may ... not be up-to-date. Property data is non-unifonn: it contains

numeric, text, and bibliographic data, as well as images and graphs. This is one of the reasons

that for each scientific area special purpose systems have been developed. Data management

systems that can deal with such diversity of data types are not generally available. In addition,

because of the complex tenninology involved with such data, sophisticated search and brows

ing capabilities are needed.

The following obseiVations can be made relative to scientific databases and the way they

are used.

(1) Multi-dimensional data are prevalent in scientific databases. Methods for efficiently

managing, accessing, and compressing multi-dimensional data are necessary.

(2) Scientific databases are frequently accessed via proximity searches and successive

queries often exhibit locality of reference. Techniques of partitioning the data into cells

(or grids) along the coordinates of its dimensions seem to be the most promising for

efficiently supporting these needs.

(3) Although scientific databases are usually very large, they can be often partitioned into

small independent units during early data reduction. This implies that parallel process

ing can be applied. For example, in particle physics experiments, each event can be

analyzed independently of other events.

(4) Scientific databases include a variety of support data that describe instruments and the

configuration of experiments. Often this data is not explicitly organized but rather

made part of application programs. a practice that tends to cause many difficulties. The

requirements of such suppolt data can be handled for the most part with conventional

database techniques, but need to be integrated with the data that result from experi

ments. Some configuration data need special capabilities found in engineering database

-20-

systems.

(5) The analysis of scientific data generates many summary data sets which need to be

managed. Special techniques for handling analyzed data and summary data are

required in order to manage their metadata, to keep track of numerous data sets.

(6) Temporal aspects of scientific databases are important They range from time series of

the measured data, to logs of insttumem variation over time, to the historical sequence

of generating different summaries of the data. Thus, support for temporal data struc

tures and operations is needed.

(7) There are many aspects of scientific databases that are similar to statistical databases;

in particular, supporting the multi-dimensional aspects of the data and the handling of

summary data.

Summary and Conclusions

Statistical and scientific database applications are complex because they involve data and

procedures of complex disciplines (biology, physics, etc.). They have requirements that far

exceed the capabilities provided by current commercial data management systems. In this

paper, we have discussed soine of the properties and requirements of SSDBs.

The paper comains a discussion of current approaches to data management for complex

applications, and evaluates their adequacy for SSDBs. Three approaches were discussed:

object-oriented database systems, extended relational systems, and extensible database systems.

It was pointed out that while all of these approaches have the goal of supporting user defined

data structures and operations, each of these approaches has different strong points. Object

oriented systems provide an elegant environment for encapsulating new objects and operations,

extended relational systems provide a rich complex object model (as well as other features,

such as support for rules), and extensible database systems are designed to provide an environ

ment for interchangeable modules, as well as to support dynamic changes to the query optim

izer. For SSDBs these features are quite desirable. Thus, it is important that future research

will bring about systems that can incorporate the advantages of the three approaches.

The development of flexible and powerful data managements systems does not in itself

provide a solution for SSDB applications. The characteristics of each application need to be

well understood before an appropriate model of the application can be developed. In addition,

new methods for physically supporting the scientific application may need to be developed.

-21-

For example, the characterization of statistical database applications, and the development of

appropriate models, query languages, user interfaces, and physical structures for these applica

tions, has been going on for over a decade, and is still continuing. The success of such

developments requires a detailed understanding of the discipline as well as the needs of scien

tists in those disciplines.

Acknowledgement

This research was supported by the Applied Mathematics Sciences Research Program of

the Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-

76SF00098.

References

(1) Proceedings of the First LBL Workshop on Statistical Database Management, Menlo

Parle, California. 1981.

(2) Proceedings of the Second International Workshop on Statistical Database Manage

ment, Los Altos, California. 1983.

(3) Proceedings of the Third International Workshop on Statistical and Scientific Database

Management. Luxembourg, 1986.

(4) Proceedings of the Fourth International Worlcing Conference on Statistical and

·Scientific Database Management, Rome, Italy, Springer-Verlag, 198 8.

(5) Proceedings of the Fifth International Conference on Statistical and Scientific Database

Management. Charlotee, N.C., Springer-Verlag, 1990.

(6) Scientific Database Management. Computer Science Report No. TR-90-21, University

of Virginia. August 1990, French, J.C., Jones, A.K., Pfaltz, J.L., eds, to be published in

SIGMOD RECORD.

(7) Shoshani, A., Statistical Databases: Characteristics, Problems, and Some Solutions,

Proceedings of the 8th International Conference on Very Large Data Bases (VWB),

1982, pp.208-222.

·22·

'"

(8) Shoshani, A., Olken, F., Wong, H.K. T., Characteristics of Scientific Databases,

Proceedings of the lOth International Conference on Very Large Data Bases (VLDB),

1984, pp. 147-160.

(9) Special Issue: Object Oriented Design, Communications of the ACM, September 1990.

(10) Dittrich, K.R., "Object Oriented Database Systems: The Notion and the Issues, Proc.

1986 IEEE International Workshop on Object Oriented Database Systems, Pacific

Grove, pp. 2-6.

(11) Stonebraker, M., Rowe, L.A., The Design of Postgres, ACM SIGMOD Conference,

1986, pp. 340-355.

(12) Linnemann, V., Kuspert, K., et al, Design and Implementation of an Extensible Data

base Management System Supporting User Defined Data Types and Functions, Proc of

the 14Th VLDB Conference, 1988, pp.294-305.

(13) Carey, M., DeWitt, D., et al, The EXODUS Extensible DBMS Project: An Overview,

In Readings in Object-Oriented Databases, S. Zdonic and D, Maier, eds., Morgan

Kaufman Publishing Company, 1989.

(14) Batory, D.S., Concepts for a Database System Synthesizer, ACM PODS, 1988.

(15) Turner, M. J., Hammond, R. and Cotton, F., A DBMS for Large Statistical Databases,

Proceedings of the Fifth International Conference on Very Large Databases, 1979, pp.

319-327.

-23-

·'·

~ .ii~

- . ..r· G

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA

INFORMATION RESOURCES DEPARTMENT
BERKELEY, CALIFORNIA 94720

<W(:.--- • .,

... - ... __ ~

