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Abstract

Learning and Socially Responsible Decision-Making with Strategic Feedback

by

Yatong Chen

In recent years, the concepts of “human-centered AI” and “responsible data science”

have gained prominence across multiple sectors, including academia, industry, gov-

ernment, and civil society. This interdisciplinary field addresses the significant

challenges posed by algorithmic decision-making, particularly issues of bias, fair-

ness, robustness, and transparency in diverse applications such as education, facial

recognition, and machine translation. These challenges often originate from biased

training data, inadequate inclusion of minority classes, and inappropriate algorith-

mic choices during pre- and post-processing steps. Moreover, all of these potential

problems might be reinforced by human responses, exacerbating more severe prob-

lems in the long term as people perform multiple rounds of interaction with deployed

models.

To develop machine learning systems that are truly socially beneficial, it is

essential to consider human behavior, especially how individuals may strategically

alter their data to influence model predictions when they understand the model’s

mechanics. Recognizing this, the thesis focuses on learning and decision-making

within the context of strategic human feedback. Despite significant progress in re-

lated research areas, the current state of research in this field still exhibits critical

gaps, including a lack of practical models of human behavior, insufficient under-

standing of existing algorithms’ limitations in scenarios involving human responses,

and overlooked potential problems in algorithmic decision-making systems.

xi



We focus on three key objectives: understanding the social impact of deci-

sion rules, designing interventions that are both socially beneficial and sustainable,

and enhancing the practicality of algorithmic decision-making. By integrating the-

oretical and experimental methods from machine learning, algorithmic game the-

ory, constrained optimization, and theoretical computer science, this thesis aims to

demonstrate the necessity and benefits of incorporating human factors into algo-

rithm design.

Ultimately, this thesis strives to advance the field by developing algorithms,

modeling frameworks, theorems, and experimental evidence that bridge the gap

between theoretical research and practical implementation in responsible machine

learning.
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Chapter 1

Overture

1.1 Introduction

This thesis studies machine learning-based decision-making in the context of

strategic human subjects. In the past few years, the concepts of “human-centered

AI” and “responsible data science” have become a pivotal focus of academia, indus-

try, government, and civil society. Researchers in this broad and interdisciplinary

field are increasingly aware of the pitfalls of relying purely on algorithmic decision-

making, in that there are fundamental issues around bias and unfairness [Hardt

et al., 2016b, Barocas et al., 2019], robustness [Xu and Mannor, 2012], and trans-

parency [Ustun et al., 2019]. For example, in school applications [Mehrabi et al.,

2021], facial recognition [Xu et al., 2020], machine translation [Stanovsky et al.,

2019], and more. Increased awareness of these issues has begun to shift the focus

of machine learning research from pursuing solely predictive accuracy to including

measures of fairness and social welfare.

In general, existing issues in the current machine learning literature, like bias

and unfairness, arise from many sources: from the training data (which might
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reflect biases present in society) [Merler et al., 2019], from the training process

(not sufficiently accounting for minority classes during the learning process), from

seemingly innocuous pre-and post-processing steps, and even from the choice of the

algorithm itself [Friedler et al., 2019]. Moreover, all of these potential problems

might be reinforced by human responses, exacerbating more severe problems in the

long term as people perform multiple rounds of interaction with deployed models

[Liu et al., 2018].

To address these issues and create socially beneficial ML systems, researchers

and practitioners need to take human behavior into account when designing algo-

rithmic decision-making. For example, it is well-known that when a person sub-

jected to the decision of a classification model gains information about the inner

workings of that model, they have a strong incentive to modify their features so

as to obtain a favorable prediction outcome — in other words, humans exhibit

strategic behavior and can sometimes even reverse-engineer the decision rules.

1.1.1 Challenges and Critical Gaps in Algorithmic Decision-Making

Despite rapid advancement on related research topics, the state of the art

research in algorithmic decision-making is still lacking on several fronts:

Lack of Practical Modeling of Human Behavior While much recent work in

responsible ML has begun to explicitly incorporate social elements into algorithmic

solutions, many of these efforts fall short of an adequate assessment of human be-

havior, resulting in algorithms that would be of limited use in deployment, or even

introduce new issues. For example, in the vast majority of work on the influential

literature on strategic classification [Hardt et al., 2016a, Chen et al., 2020b, Dong
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et al., 2018a], the goal is to discourage the effects of all strategic adaptation, and

classify individuals as if they had not performed such adaptations; however, not

all strategic behavior is socially undesirable: with the right incentives, it is often

possible to leverage this behavior to the benefit of both decision-makers and sub-

jects. An example of this comes from lending, in which a loan applicant presents

their qualifications for a loan and receives a yes/no decision. If a decision subject

improves their education level or salary, it should be both individual and societal

beneficial; however, these improvement behaviors are treated as potentially mali-

cious, and hence discouraged, by popular strategic classification algorithms.

Lack of Understanding the Limitations of Existing Algorithms and Frame-

works in Settings with the Presence of Human Response Existing work

in robust and fair ML jumps too quickly to prescribe specific algorithmic solutions

or interventions before coming to an adequate understanding of the limitations of

existing algorithms’ performance. For example, one commonly used intervention to

guarantee fair prediction among different social groups is to impose fairness con-

straints (e.g. enforce equal acceptance rate). However, recent work has shown that

for the loan application setting, blindly enforcing fairness constraints on different

societal groups might cause more harm to certain groups since in the long-term

they might not actually be able to pay back their loan (see, e.g. [D’Amour et al.,

2020, Liu et al., 2018, Zhang et al., 2020b]). In other words, a lack of understanding

of the limitations on the standard intervention method in the presence of human

response might cause more harm than no intervention at all.
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Potential Issues in Algorithmic Decision-Making System Before blindly

pursuing the development of socially beneficial algorithmic decision-making sys-

tems, it is essential to exercise caution and consider the potential issues that may

arise. For example, while algorithmic recourse [Ustun et al., 2019], which aims

to provide explanations and recommendations to individuals adversely affected by

automated decision-making systems, is undoubtedly valuable, it is essential to rec-

ognize a potential downside – the availability of recourse may inadvertently create

opportunities for strategic agents to exploit the transparency of the system, espe-

cially when agents strategically coordinate and share information. This inherent

tension determines whether the system offers recourse, challenging the conventional

assumption of a system’s willingness to provide recourse without evaluating the ra-

tionality of such readiness. In general, failing to identify and address such potential

issues proactively can lead to many problems. In an era where algorithmic systems

are becoming integral to our daily lives, modeling potential issues is essential to

ensure these systems serve the greater good while minimizing harm.

1.2 Overview of Results

Taking various human behaviors into account, I envision my work being able

to strengthen the bond between theoretical and empirical analyses of the human-

centered algorithm design. In particular, my thesis aims to advance the following

directions:
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1.2.1 Understanding the Social Impact of Decision Rules

Algorithms can potentially make consequential decisions that, in turn, induce

complex social dynamics by influencing human outcomes. Given an algorithmic

predictor that is accurate for a specific source population consisting of strategic

human decision subjects, will it maintain accuracy if the population reacts to it?

This question is particularly crucial when machine learning practitioners have access

only to training data from the source distribution but expect changes due to human

responses, and where retraining is either too costly or unavailable. To address

this, in Chapter 3, we provide modeling frameworks and theoretical guarantees on

how performance (i.e., accuracy and fairness) deteriorates due to distribution shifts

primarily caused by human strategic behavior.

1.2.2 Socially Beneficial and Long-Term Intervention

Addressing the challenge of guiding human agents to act in socially beneficial

ways when anticipating strategic behavior is central to my research. In Chap-

ter 4, we propose a novel training approach that bridges the gap between tra-

ditional strategic classification and incentive-compatible machine learning. This

approach offers an alternative to the predominantly pessimistic view found in con-

ventional strategic classification literature. In Chapter 5, we analyze the incentives

for decision-makers to offer recourse to a set of negatively affected applicants. In

particular, we ask the question: does the decision-maker have the incentive to offer

recourse to all rejected applicants? Contrary to the classic assumption that the

algorithmic recourse system is always willing to provide recourse to individuals,

we show that a utility-maximizing decision-maker does not have an incentive to
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offer recourse to all applicants, especially when the recourse process is possible to

manipulate through imitation and collective behavior. We then propose efficient

intervention tools to make recourse-providing incentive-compatible.

1.2.3 Making Algorithmic Decision-Making Practical

Ensuring the practicality of algorithmic decision-making is paramount in to-

day’s data-driven world. Practicality ensures that machine learning systems extend

beyond academic exercises and effectively address real-world problems. Bridging

the gap between theoretical advancements and real-world applications allows these

systems to have a meaningful impact. Practicality includes considerations such as

scalability, interpretability, and usability, enabling decision-makers to deploy these

algorithms at scale and trust their results. Furthermore, practicality promotes

responsible AI by ensuring that algorithms can adapt to the dynamic nature of

human behavior and evolving data distributions, thereby making them more ro-

bust and fair in the face of real-world challenges. In Chapter 6, we study the

derandomization of stochastic classifiers, which appear in various settings (e.g., as

solutions to constrained optimization problems) but are impractical due to their

inherent randomness. We provide a straightforward derandomization procedure

with guarantees for both accuracy and individual fairness, making the deployment

of stochastic classifiers more viable in real-life scenarios.

The ultimate aim of this thesis is to produce algorithms, modeling frameworks,

theorems, and experimental findings that bring the state of the art in research closer

to practical deployability.
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1.2.4 Research Publications Underpinning This Thesis

This thesis draws much of its content from the following published manuscripts

or preprints.

• Model Transfereability with Responsive Decision Subjects (Chapter 3).

Joint work with Zeyu Tang, Kun Zhang and Yang Liu, appearing

at ICML 2023. The preliminary version won the Best Paper Award

at ICML 2022 Workshop on Adversarial Machine Learning Frontiers.

[Chen et al., 2023].

• Fair Transferability Subject to Distribution Shift (Chapter 3). Joint

work with Reilly Raab, JialuWang, and Yang Liu, appearing in NeurIPS

2022. [Chen et al., 2022].

• Learning to Incentivize Improvements from Strategic Agents (Chap-

ter 4). Joint work with Jialu Wang, and Yang Liu, appearing in the

Transactions on Machine Learning Research (TMLR). The preliminary

version won the Best Paper Award at the ICML 2021 Workshop on

Algorithmic Recourse. [Chen et al., 2020a].

• To Give or Not to Give? In the Impacts of Strategically Withheld Re-

course (Chapter 5). Joint work with Andrew Estornel, Yevgeniy Vorob-

eychik, and Yang Liu. Preprint. [Chen et al., 2024].

• Metric-Fair Classifier Derandomization (Chapter 6). Joint work with

Jimmy Wu and Yang Liu, appearing at ICML 2022. [Wu et al., 2022].
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Chapter 2

Background, Preliminaries and

Related Works

In conjunction with the literature review, this chapter will establish prelimi-

nary and basic notations by discussing key concepts and ideas drawn from existing

research. We will cover foundational topics and their applications on strategic clas-

sification, performative prediction, algorithmic recourse, algorithmic fairness, and

other related topics The goal is to ensure a comprehensive understanding of the

field and lays the groundwork for the following discussions and analyses.

2.1 Preliminaries

Let X ⊂ Rd and Y ≡ {0, 1} be a domain of features and labels respectively.

We consider a classification task of training a classifier f1 ∈ F : X → Y from

a dataset of n examples {(xi, yi)}ni=1 ∼ D . Example i corresponds to an agent

who wishes to receive a positive prediction and may alter their features to obtain

such a prediction once the model is deployed. We assume that an agent’s true

1We may use h to represent a classifier in later chapters.
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qualification (or label), denoted as y, is always a function of its feature vector x,

and define the true unknown qualification function y : X → Y as the mapping

between the feature vector x ∈ X and the true qualification/label y ∈ Y .

Standard Empirical Risk Minimization In a standard prediction setting, a

model designer trains a classifier that minimizes the empirical risk :

f∗ERM ∈ argmin
f∈F

E(x,y)∼D1[(f(x) ̸= y)]

Notice that this classifier may perform poorly in a setting with strategic adaptation

since the model is deployed on a population with a different distribution over X

as decision subjects alter their features. For instance, when a model is used to

decide loan applications, candidates may adapt their features based on the model

specification in order to maximize their chances of approval; thus the loan decision

classifier observes a new shifted distribution caused by its own deployment (e.g.,

see Figure 2.1 for a demonstration). Similar observations can be articulated for

application in the insurance sector, e.g., insurance companies may develop policy

such that customers’ behaviors might adapt to lower premium [Haghtalab et al.,

2020], the education sector, e.g., teachers may want to design courses in a way that

students are less incentivized to cheat [Kleinberg and Raghavan, 2020], and so on.

2.2 Strategic Classification

Strategic classification focuses on the problem of how to make predictions in

the presence of agents who behave strategically to obtain desirable outcomes [Hardt

et al., 2016a, Chen et al., 2020b, Dong et al., 2018a, Chen et al., 2020a, Miller et al.,

2020]. In particular, [Hardt et al., 2016a] first formalizes strategic classification

9



Feature Weight Original Value Adapted Value

Income 2 $ 6,000 −→ $ 6,000

Education Level 3 College −→ College

Debt -10 $40,000 −→ $20,000

Savings 5 $20,000 −→ $0

Table 2.1: An example of an agent who originally has both savings and debt, observes that

the classifier penalizes debt (weight -10) more than it rewards savings (weight +5), and

concludes that their most efficient adaptation is to use their savings to pay down debt.

tasks as a two-player sequential game (i.e., a Stackelberg game) between a model

designer and strategic agents as follows:

Definition 2.2.1 (Full Information Strategic Classification Game, Hardt et al.

[2016a]). The two players are the model designer and strategic agents. Fix a pop-

ulation X, and a probability distribution D over (X ,Y ). Fix a cost function

c : X × X → R+.

1. A model designer (who knows c and D), publishes a classifier f : X →

{−1,+1} from a hypothesis class F , which is also their action space.

2. Strategic agents, who adapt their features from x to x′ so as to be assigned

f(x′) = +1 if possible. The action space for the decision subjects includes

all feature vectors that are within a given manipulation budget B, namely

∀x′ ∈ X such that c(x, x′) ≤ B.

Denote the best response action of the agent with feature x as ∆(x). The payoff to

the model designer is Pr((x,y)∼D [f(∆(x)) = y], and the payoff to the strategic agent

with feature x ∈ X is f(∆(x))− c(x,∆(x)).

Most existing work in strategic classification assumes that human agents are
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fully rational and will always perform best response to any given classifier. As

a result, their behaviors can be fully characterized based on pre-specified human

response models [Hardt et al., 2016a, Chen et al., 2020b]. Agent best response

behavior is typically viewed as malicious in the traditional setting; as a result, the

model designer seeks to disincentivize this behavior or limit its impact by publishing

classifiers robust to any agent’s adaptations.

Strategic Risk Minimization Existing approaches in strategic classification

tackle these issues by training a robust classifier to all adaptation. This approach

treats all adaptation as undesirable, and seeks to maximize accuracy by discourag-

ing it entirely. Formally, they train a classifier that minimizes the strategic risk :

f∗SC ∈ argmin
f∈F

E(x,y)∼D1[(∆(x) ̸= y)]

However, this classifier still achieves only suboptimal accuracy, as it overlooks

potential changes in the true label, y. Specifically, since y depends on the feature

vector x, an updated feature vector, ∆(x), results in a revised true label, y(∆(x)).

Additionally, this design choice does not take advantage of the opportunity to

encourage an improvement in the profile x and its corresponding qualification, y(x).

Different Types of Strategic Behaviors In reality, there are two types of

strategic adaptations:

1. Gaming corresponds to interventions that change the classification outcome

f(X), but do not change the true label Y . Classic strategic classification

assumes that any adaptation is always gaming.

2. Improvement corresponds to interventions that change both the classification

f(X) and the true label Y . Incentivizing improvement requires inducing
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agents to intervene on causal features that can change the label Y rather

than non-causal features.

Non-causal features Classifier outputCausal features Target variable

Y Ŷ

X1

X2 X3

Gaming ImprovementThe classification
causal graph

y=0

x2

x1

x3

ŷ=1 y=

x1

x3

ŷ=1

x̂2

1

x̂4 x̂4X4

X4 := x̂4 X2 := x̂2

Figure 2.1: Illustration of the causal framework for strategic adaptation. Strategic adap-

tation is modeled as interventions in a counterfactual causal graph, conditioned on the

individual’s initial features X. Gaming corresponds to interventions that change the clas-

sification f(X) (or Ŷ ), but do not change the true label Y . Improvement corresponds to

interventions that change both the classification f(X) (or Ŷ ) and the true label Y . In-

centivizing improvement requires inducing agents to intervene on causal features that can

change the label Y rather than non-causal features. Plot sourced from Miller et al. [2020].

Distinguishing between these two categories of features generally requires non-

trivial causal analysis [Miller et al., 2020], see, e.g., Figure 2.1 for a demonstration.

Ideally, the model designer should design a classifier that incentivizes improvement

while discouraging gaming. In Chapter 4, we propose an intuitive way to incentivize

improvement behavior from strategic agents.

2.3 Algorithic Recourse

Also related is the recent development of algorithmic recourse [Ustun et al.,

2019, Venkatasubramanian and Alfano, 2020, Karimi et al., 2020b, Gupta et al.,

2019, Karimi et al., 2020c, von Kügelgen et al., 2020]. Recourse is defined as the
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ability of a person to obtain a desired outcome from a fixed model.

In particular, given a person who is assigned an undesirable outcome f(x) =

−1, we aim to find an action a∗ such that f(x+ a) = +1 by solving the following

optimization problem:

a∗ = argmin
a

cost(a;x)

s.t. f(x+ a) = +1,

a ∈ A(x).

Here, A(x) is a set of feasible actions specified by the decision maker to x, cost(·;x) :

A(x) → R is a cost function to choose between feasible actions.

The concept was first introduced to the machine learning community in [Us-

tun et al., 2019]. There, an integer programming solution was developed to offer

actionable recourse from a linear classifier. Later, Venkatasubramanian and Alfano

[2020] discusses a more adequate conceptualization and operationalization of re-

course. Karimi et al. [2020b] provides a thorough survey of algorithmic recourse in

terms of its definitions, formulations, solutions, and prospects. Rudin [2019] argues

the sufficiency of recourse in explainable machine learning. Bellamy et al. [2018]

builds toolkits for actionable recourse analysis. Furthermore, Gupta et al. [2019]

studies how to mitigate disparities in recourse across populations.

Causal Recourse Recent developments in causal recourse propose to model al-

gorithmic recourse through counterfactual explanations [Karimi et al., 2020c, 2021,

von Kügelgen et al., 2020, 2022]. The formulation of causal recourse typically in-

volves the identification and modification of causal relationships within a model.

This requires a causal model or graph that specifies how features (variables) inter-

act and influence each other, including the decision outcome. The goal is to find a
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set of interventions (or changes to input features) that will lead to a change in the

output, ensuring that these interventions are feasible and have a genuine causal

effect. We point the reader to [Karimi et al., 2020b] for a detailed read on this

topic.

Comparison between Recourse and Pure Manipulation Recourse can be

viewed as a system-aided tool to incentivize agent’s good strategic behavior. There

are two major differences between recourse and generic strategic behavior we men-

tioned in the previous section (Section 2.2):

1. Action Space: for recourse, the actions are specified by the decision maker

(i.e., a ∈ A(x), while for strategic manipulation, or strategic adaptation in

general, the actions can be arbitrarily chosen by the agents as long as the

manipulation cost is within budget.

2. Changes in True Qualification y: taking recourse implies that agents change

their corresponding true value y, whereas when manipulation is malicious

(i.e., gaming rather than gaming), it is simply a misreport rather than a

change of one’s features. Thus, the true qualification in that case remains the

same.

2.4 Performative Prediction

Performative prediction is a new type of supervised learning problem in which

the underlying data distribution shifts in response to the deployed model [Perdomo

et al., 2020, Mendler-Dünner et al., 2020, Brown et al., 2020, Drusvyatskiy and

Xiao, 2020, Izzo et al., 2021a, Li and Wai, 2022, Maheshwari et al., 2021].
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In particular, Perdomo et al. [2020] first propose the notion of the performative

prediction risk defined as

Performative Risk: PR(θ) := Ez∼D(θ)[ℓ(θ; z)] (2.1)

where z = (x, y) denote the feature and label pair, θ ∈ Θ is the model parameter, ℓ

is a loss function, and D(θ) is the induced distribution as a result of the deployment

of the model θ. We can think of D(θ) as the distribution over features and outcomes

that result from making decisions according to the model specified by θ.

One of the primary focuses of performative prediction is to find the optimal

model θOPT which achieves the minimum performative prediction risk:

θOPT = argmin
θ

E
Z∼D

ℓ(Z; θ)

Another line of work focuses on finding the performative stable model θST,

which is optimal under its own induced distribution:

θST = argmin
θ

E
Z∼D

ℓ(Z; θ)

In particular, one way to find a performative stable model θST is to perform

repeated retraining on the distribution resulting from the previous model, corre-

sponding to the update rule:

θt+1 = argmin
θ

E
Z∼D(θt)

ℓ(Z; θ).

In order to get meaningful theoretical guarantees on any proposed algorithms,

works in this field generally require particular assumptions on the mapping between

the model parameter and its induced distribution (e.g., the smoothness of the map-

ping), or requires multiple rounds of deployments and observing the corresponding

induced distributions, which can be costly in practice [Jagadeesan et al., 2022a,
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Mendler-Dünner et al., 2020]. Other recent developments include the multiplayer

version of the performative prediction problem [Piliouras and Yu, 2022, Narang

et al., 2022], and the economic aspects of performative prediction [Hardt et al.,

2022, Mendler-Dünner et al., 2022].

2.5 Algorithmic Fairness

This thesis also contributes to the broad study of algorithmic fairness in ma-

chine learning. Much of this study focuses on two notions of fairness: group fairness

and individual fairness.

Group Fairness The general recipe for a notion of group fairness consists of

three main components: (1) identify a sensitive attribute, which defines “protected

groups” (e.g., gender, race, sexual orientation, etc). We will denote A as the

sensitive attribute. (2) identify a statistic of interest, (e.g., prediction accuracy,

true/false positive rate); (3) ensure that the statistics of interest are ’similar’ across

the groups defined by the sensitive attribute.

Most common notions of group fairness include disparate impact [Feldman

et al., 2015], demographic parity [Agarwal et al., 2018], disparate mistreatment [Za-

far et al., 2019], equality of opportunity [Hardt et al., 2016b] and calibration [Choulde-

chova, 2017]. Here, we introduce one notion that we will be using in the later

chapters:

Definition 2.5.1 (Demographic Parity, [Dwork et al., 2012]). A classifier f: X →

Y satisfies demographic parity if for any pair of groups A = a, a′, we have:

Pr[f(x) = 1|A = a] = Pr[f(x) = 1|A = a′] (2.2)
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This means that the rate at which the classifier accepts individuals from A = a

and from A = a′ (i.e. f(x) = 1) is equal. For instance, a company screening can-

didates for a job may enforce demographic parity to ensure they interview roughly

the same number of men and women.

Individual (Metric-)Fairness: The idea behind individual fairness is similar

individuals should be treated similarly. Mathematically speaking, it means that

the classifier should be an approximately Lipschitz-continuous function relative to

a given distance metric:

Definition 2.5.2 ((α, β, d)-metric fairness). Let α ≥ 1 and β ≥ 0, let d : X2 →

[0, 1] be a metric, and let x, x′ ∈ X. We say a classifier f : X → [0, 1] satisfies

(α, β, d)-metric fairness on (x, x′), or is (α, β, d)-fair on (x, x′), if

∣∣f(x)− f(x′)
∣∣ ≤ α · d(x, x′) + β (2.3)

In Chapter 6, we study classifier derandomization with such metric fairness

guarantees.

Fairness in Recourse and Strategic Classification Fairness has also been

explored in the algorithmic recourse and strategic classification literature. For ex-

ample, existing works on fairness in recourse emphasize the importance of equitable

recourse and explore various remedying unfair recourse decisions [Gupta et al., 2019,

von Kügelgen et al., 2022, Ehyaei et al., 2023]. Among them, disparities in the re-

course fraction can be viewed as equality of false positive rate (FPR) in the strategic

classification setting. Fairness with the presence of strategic behavior has featured

studies that highlight the inequity that results from strategic behavior by individ-

uals [Hu et al., 2019], as well as inequity (e.g., social cost) resulting from making
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classifiers robust to strategic behavior [Milli et al., 2019, Estornell et al., 2023b].

Disparities in recourse costs and flipsets are empirically demonstrated in this thesis

(see, e.g., Chapter 4).

2.6 Other Related Works

Incentive Design This thesis is also closely related to the literature on mecha-

nism design in economy. Similar to the work in Chapter 4, Kleinberg and Raghavan

[2020] discusses how to incentivize decision subjects to improve a certain subset of

features. Next, Haghtalab et al. [2020] shows that an appropriate projection is

an optimal linear mechanism for strategic classification, as well as an approximate

linear threshold mechanism. Liu et al. [2020] considers the equilibria of a dynamic

decision-making process in which individuals from different demographic groups

invest rationally, and compares the impact of two interventions: decoupling the

decision rule by group and subsidizing the cost of investment.

Domain Adaptation Work in Chapter 3 is closely related to the literature on

domain adaptation. There has been tremendous work in domain adaptation study-

ing different distribution shifts and learning from shifting distributions [Jiang, 2008,

Ben-David et al., 2010a, Sugiyama et al., 2008, Zhang et al., 2019, Kang et al., 2019,

Zhang et al., 2020a, Xie et al., 2022]. There are a few interesting subareas in do-

main adaptations: (1)Adversarial attack [Chakraborty et al., 2018, Papernot et al.,

2016, Song et al., 2019]. Adversarial attack involves manipulating the input data

to a machine learning model with the intent to cause the model to make errors.

These attacks exploit vulnerabilities in the model’s design or training data. (2)

Domain generalization [Wang et al., 2021c, Li et al., 2017, Muandet et al., 2013]:
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the goal of domain generalization is to learn a model that can be generalized to any

unseen distribution. (3) Test-time adaptation [Varsavsky et al., 2020, Wang et al.,

2021a, Nado et al., 2021]: the issue of test-time adaptation falls into the classical

domain adaptation setting where the adaptation is independent of the model being

deployed. Applying this technique to solve our problem requires accessing data

(either unsupervised or supervised) drawn from both domains.
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Chapter 3

Model Transferability with Strategic

Decision Subjects

In this chapter, we provide a general framework for quantifying the transfer-

ability of a decision rule when facing responsive decision subjects. Specifically, we

consider a setting where the deployed machine learning models interact with human

agents, and will ultimately face data distributions that reflect how human agents

respond to the models. In this case, how does the performance of the classifier

primarily trained on the source distribution fares in the induced distribution?

3.1 Model Transferability Problem

Decision-makers are increasingly required to be transparent on their decision-

making rules to offer the “right to explanation” [Goodman and Flaxman, 2017,

Selbst and Powles, 2018, Ustun et al., 2019]. Being transparent also invites potential

adaptations from the population, leading to potential shifts. We are motivated by

settings where the deployed machine learning models interact with human agents,

and will ultimately face data distributions that reflect human agents’ responses
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to the models. For instance, when a model is used to decide loan applications,

candidates may adapt their features based on the model specification to maximize

their chances of approval; thus, the loan decision classifier observes a new shifted

distribution caused by its own deployment (e.g., see Figure 2.1 for a demonstration).

In this chapter, we provide a general framework for quantifying the transfer-

ability of a decision rule when facing responsive decision subjects. What we would

like to achieve is some characterizations of the performance guarantee of a classifier

— that is, given a model primarily trained on the source distribution DS , how good

or bad will it perform on the distribution it induces D(h), which depends on the

model h itself. A key concept in our setting is the induced risk, defined as the error

a model incurs on the distribution induced by itself:

Induced Risk : ErrD(h)(h) := PD(h)(h(X) ̸= Y ) (3.1)

Most relevant to the above formulation are the works of literature on strate-

gic classification Hardt et al. [2016a], and performative prediction [Perdomo et al.,

2020]. In strategic classification, agents are modeled as rational utility maximiz-

ers, and under a specific agent’s response model, game theoretical solutions were

proposed to model the interactions between the agents and the decision-maker. In

performative prediction, a similar notion of risk called the performative prediction

risk is introduced to measure a given model’s performance on the distribution it-

self induces. Unlike ours, one of their main focuses is finding the optimal classifier

that achieves minimum induced risk after a sequence of model deployments and

observing the corresponding response datasets, which might be computationally

expensive.
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3.1.1 Motivation

In particular, our results are motivated by the following challenges in more

general scenarios:

• Modeling assumptions being restrictive In many practical situations, it is

often hard to accurately characterize the agents’ utilities. Furthermore, agents

might not be fully rational when they respond. All the uncertainties can lead to a

far more complicated distribution change in (X,Y ), as compared to often-made

assumptions that agents only change X but not Y [Hardt et al., 2016a, Chen

et al., 2020b, Dong et al., 2018b].

• Lack of access to response data During training, machine learning practi-

tioners may only have access to data from the source distribution, and even when

they can anticipate changes in the population due to human agents’ responses,

they cannot observe the newly shifted distribution until the model is actually

deployed.

• Retraining being costly Even when samples from the induced data distribu-

tion are available, retraining the model from scratch may be impractical due to

computational constraints, and will result in another round of agents’ response

at its deployment.

The above observations motivate us to focus on understanding the transfer-

ability of a model before diving into finding the optimal solutions that achieve the

minimum induced risk – the latter problem often requires more specific knowledge

on the mapping between the model and its induced distribution, which might not

be available during the training process. Another related research problem is to

find models that will perform well on both the source and the induced distribution.
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This question might be solved using techniques from domain generalization [Zhou

et al., 2021, Sheth et al., 2022].

3.1.2 Our Contributions

Overall, we aim to provide answers to the following fundamental questions:

1. Source risk ⇒ Induced risk For a given model h, how different is ErrD(h)(h),

the error on the distribution induced by h, from ErrDS
(h) := PDS

(h(X) ̸= Y ),

the error on the source?

2. Induced risk ⇒ Minimum induced risk How much higher is ErrD(h)(h),

the error on the induced distribution, than minh′ ErrD(h′)(h
′), the minimum

achievable induced error?

3. Induced risk of source optimal ⇒ Minimum induced risk Of par-

ticular interest, and as a special case of the above, how does ErrD(h∗S)
(h∗S),

the induced error of the optimal model trained on the source distribution

h∗S := argminh ErrDS
(h), compare to h∗T := argminh ErrD(h)(h)?

4. Lower bound for learning tradeoffs What is the minimum error a model

must incur on either the source distribution ErrDS
(h) or its induced distribu-

tion ErrD(h)(h)?

For the first three questions, we prove upper bounds on the additional error

incurred when a model trained on a source distribution is transferred over to its

induced domain. We also provide lower bounds for the trade-offs a classifier has to

suffer on either the source training distribution or the induced target distribution.

We then show how to specialize our results to two popular domain adaptation

settings: covariate shift [Shimodaira, 2000, Zadrozny, 2004, Sugiyama et al., 2007,
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2008, Zhang et al., 2013b] and target shift [Lipton et al., 2018, Guo et al., 2020,

Zhang et al., 2013b].

3.1.3 How Does Our Work Relate to the Surrounding Literatures?

Our work most closely relates to strategic classification, domain adaptation,

and performative prediction. This section discusses how our work relates to these

three related literatures.

Strategic Classification In traditional strategic classification setting, agent’s

best response behavior is typically viewed as malicious (see, e.g., [Hardt et al.,

2016a]). As a result, the model designer seeks to disincentivize this behavior or

limit its impact by publishing classifiers that are robust to any agent’s adaptations.

In our work, the agents’ strategic behaviors are not necessarily malicious; instead,

we aim to provide a general framework that works for any distribution shift resulting

from the human agency.

In addition, most existing work in strategic classification assumes that human

agents are fully rational and will always perform best response to any given classi-

fier. As a result, their behaviors can be fully characterized based on pre-specified

human response models [Hardt et al., 2016a, Chen et al., 2020b]. While we are also

interested in settings where agents respond to a decision rule, we focus on the dis-

tribution shift of human agents at a population level and characterize the induced

distribution as a function of the deployed model. Instead of specifying a particular

individual-level agent’s response model, we only require the knowledge of the source

data DS , as well as some characterizations of the relationship between the source

and the induced distribution, e.g., they satisfy some particular distribution shift
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models, like covariate shift (see Section 3.4), or target shift (see Section 3.5), or we

have access to some data points from the induced distribution so we can estimate

their statistical differences like H-divergence (see Section 3.3).

Performative Prediction Similar to our definition of induced risk, performa-

tive risk (defined in Equation (2.1)), also measures a given model’s performance on

the distribution itself. The major difference between our work and performative

prediction is that we focus on different aspects of the induced domain adaptation

problem. Instead of focusing on finding the optimal model θOPT which achieves

the minimum performative prediction risk, our work’s primary focus is to study

the transferability of a particular model trained primarily on the source distribu-

tion and provide theoretical bounds on its performance on its induced distribution,

which is useful for estimating the effect of a given classifier when repeated retrain-

ing is unavailable. As a result, our work does not assume the knowledge of the

supervision/label information on the transferred domain.

Domain Adaptation Our results differ from these previous works in domain

adaptation: in our setting, changes in distribution are not passively provided by

the environment, but rather an active consequence of model deployment. Part of

our technical contributions is inspired by the transferability results in domain adap-

tations [Ben-David et al., 2010a, Zadrozny, 2004, Gretton et al., 2009, Sugiyama

et al., 2008, Lipton et al., 2018, Azizzadenesheli et al., 2019].

Our work, at first sight, looks similar to several sub-areas within the literature

of domain adaptation, e.g., domain generalization, adversarial attack, and test-time

adaptation, to name a few. For instance, the notion of observing an “induced dis-
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tribution” resembles similarity of the adversarial machine learning literature [Lowd

and Meek, 2005, Huang et al., 2011, Vorobeychik and Kantarcioglu, 2018]. One of

the major differences between ours and adversarial machine learning is that in ad-

versarial machine learning, the true label Y stays the same for the attacked feature,

while in our paper, both X and Y might change in the induced distribution D(h).

The details for reproducing our experimental results can be found at https:

//github.com/UCSC-REAL/Model_Transferability.

3.2 Notation and Formulation

Suppose we are given a parametric model h ∈ H primarily trained on the train-

ing data set S := {xi, yi}Ni=1, which is drawn from a source distribution DS , where

xi ∈ Rd and yi ∈ {−1,+1}. However, h will then be deployed in a setting where

the samples come from a test or target distribution DT that can differ substantially

from DS . Therefore, instead of finding a classifier that minimizes the prediction

error on the source distribution ErrDS
(h) := PDS

(h(X) ̸= Y ), ideally the decision

maker would like to find h∗ that minimizes ErrDT
(h) := PDT

(h(X) ̸= Y ). This is

often referred to as the domain adaptation problem, where typically, the transition

from DS to DT is assumed to be independent of the model h being deployed.

We consider a setting in which the distribution shift depends on h, or is thought

of as being induced by h. We will use D(h) to denote the induced domain by h:

DS → encounters model h → D(h)

Strictly speaking, the induced distribution is a function of both DS and h and

should be better denoted by DS(h). To ease the notation, we will stick with D(h),

but we shall keep in mind its dependency of DS . For now, we do not specify the
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dependency of D(h) as a function of D and h, but later in Section 3.4 and 3.5 we

will further instantiate D(h) under specific domain adaptation settings.

The challenge in the above setting is that when training h, the learner needs to

carry the thoughts that D(h) should be the distribution it will be evaluated on and

that the training cares about. Formally, we define the induced risk of a classifier h

as the 0-1 error on the distribution h induces:1

Induced risk : ErrD(h)(h) := PD(h)(h(X) ̸= Y ). (3.2)

Denote by h∗T := argminh∈H ErrD(h)(h) the classifier with minimum induced risk.

More generally, when the loss may not be the 0-1 loss, we define the induced ℓ-risk

as

Induced ℓ-risk : Errℓ,D(h)(h) := Ez∼D(h)[ℓ(h; z)]

The induced risks will be the primary quantities we are interested in quantifying.

The following additional notation will also help present our theoretical results in

the following few sections:

• Distributions of Y on a distribution D : DY := PD(Y = y), and in particular

DY (h) := PD(h)(Y = y), DY |S := PDS
(Y = y).

• Distribution of h on a distribution D : Dh := PD(h(X) = y), and in particular

Dh(h) := PD(h)(h(X) = y), Dh|S := PDS
(h(X) = y).

• Marginal distribution of X for a distribution D : DX := PD(X = x), and in

particular DX(h) := PD(h)(X = x), DX|S := PDS
(X = x).2

• Total variation distance [Ali and Silvey, 1966]: dTV(D ,D
′) := supO |PD(O) −

PD ′(O)|.
1The “:=” defines the RHS as the probability measure function for the LHS.
2For continuous X, the probability measure shall be read as the density function.
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3.2.1 Example Induced Domain Adaptation Settings

We provide two example models to demonstrate the use cases of the distribution

shift models described in our paper. We provide more detailed descriptions of both

settings and instantiate our bounds in Section 3.4.3 and Section 3.5.3, respectively.

Strategic Response As mentioned before, one example of induced distribution

shift is when human agents perform strategic response to a decision rule. In par-

ticular, it is natural to assume that the mapping between feature vector X and the

qualification Y before and after the human agents’ best response satisfies covariate

shift : the feature distribution P(X) will change, but P(Y |X), the mapping between

Y and X, remain unchanged. Notice that this is different from the assumption

made in the classic strategic classification setting Hardt et al. [2016a], where any

adaptations are considered malicious, which means any changes in the feature vec-

tor X do not change the underlying true qualification Y . In this example, we

assume that changes in feature X could potentially lead to changes in the true

qualification Y and that the mapping between Y and X remains the same before

and after the adaptation. This is a common assumption made in a recent line of

work on incentivizing improvement behaviors from human agents (see, e.g., Chen

et al., 2020a, Shavit et al., 2020). We use Figure 3.1 (top) as a demonstration of

how distribution might shift for the strategic response setting. In Section 3.4.3, we

will use the strategic classification setup to verify our obtained results.

Replicator Dynamics Replicator dynamics is a commonly used model to study

the evolution of an adopted “strategy” in evolutionary game theory [Tuyls et al.,

2006, Friedman and Sinervo, 2016, Taylor and Jonker, 1978, Raab and Liu, 2021].
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Figure 3.1: Example causal graph annotated to demonstrate covariate shift (the top panel)

and target shift (the bottom panel) as a result of the deployment of h. Grey nodes indicate

observable variables and transparent nodes are not observed at the training stage. Red

arrow emphasizes h induces changes in certain variables.

The core notion of it is the growth or decline of the population of each strategy

depends on its “fitness”. Consider the label Y = {−1,+1} as the strategy, and the

following behavioral response model to capture the induced target shift:

PD(h)(Y = +1)

PDS
(Y = +1)

=
Fitness(Y = +1)

EDS
[Fitness(Y )]

The intuition behind the above equation is that the change of the Y = +1

population depends on how predicting Y = +1 “fits” a certain utility function. For

instance, the “fitness” can take the form of the prediction accuracy of h for class

+1, namely Fitness(Y = +1) := PDS
(h(X) = +1|Y = +1). Intuitively speaking,

a higher “fitness” describes more success of agents who adopted a certain strategy

(Y = −1 or Y = +1). Therefore, agents will imitate or replicate their successful

peers by adopting the same strategy, resulting in an increase in the population

(PD(h)(Y )).

With the assumption that P(X|Y ) stays unchanged, this instantiates one ex-

ample of a specific induced target shift. We will provide detailed conditions for

target shift in Section 3.5. We also use Figure 3.1 (bottom) as a demonstration of

how distribution might shift for the replicator dynamic setting. In Section 3.5.3,
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we will use a detailed replicator dynamics model to further instantiate our results.

3.3 Transferability Bounds for General Distribution Shift

In this section, we first provide upper and lower bounds for any induced do-

main without specifying the particular type of distribution shift. In particular,

we first provide upper bounds for the transfer error of any classifier h (that is,

the difference between ErrD(h)(h) and ErrDS
(h)), as well as between ErrD(h)(h)

and the minimum induced risk ErrD(h∗T )(h
∗
T ). We then provide lower bounds for

max{ErrDS
(h),ErrD(h)(h)}, that is, the minimum error a model h must incur on

either the source distribution DS or the induced distribution D(h).

3.3.1 Upper Bound For General Distribution Shift

We first investigate the upper bounds for the transfer errors. We begin by show-

ing generic bounds and further instantiate the bound for specific domain adaptation

settings in Section 3.4 and 3.5. We begin by answering the following question:

How does a model h trained on its training data set fare on the induced

distribution D(h)?

To that end, we define the minimum and h-dependent combined error of any

two distributions D and D ′ as:

λD→D ′ := min
h′∈H

ErrD ′(h′) + ErrD(h
′), ΛD→D ′(h) := max

h′∈H
ErrD ′(h) + ErrD(h)

and their corresponding H -divergence as

dH ×H (D ,D ′) = 2 sup
h,h′∈H

∣∣PD(h(X) ̸= h′(X))− PD ′(h(X) ̸= h′(X))
∣∣ .
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The H -divergence is a celebrated measure proposed in the domain adaptation

literature [Ben-David et al., 2010a] which will be useful for bounding the difference

in errors of any two classifiers. Following the classical arguments from Ben-David

et al. [2010a], we can easily prove the following:

Theorem 3.3.1 (Source risk ⇒ Induced risk). The difference between ErrD(h)(h)

and ErrDS
(h) is upper bounded by: ErrD(h)(h) ≤ ErrDS

(h)+λDS→D(h)+
1
2dH ×H (DS ,D(h)).

Proof. We first establish two lemmas that will help bound the errors of a pair of

classifiers. Both are standard results from the domain adaption literature Ben-

David et al. [2010a].

Lemma 3.3.2. For any hypotheses h, h′ ∈ H and distributions D ,D ′,

|ErrD(h, h′)− ErrD ′(h, h′)| ≤ dH ×H (D ,D ′)

2
.

Proof. Define the-cross prediction disagreement between two classifiers h, h′ on a

distribution D as ErrD(h, h
′) := PD(h(X) ̸= h′(X)). By the definition of the

H −divergence,

dH ×H (D ,D ′) = 2 sup
h,h′∈H

∣∣PD(h(X) ̸= h′(X))− PD ′(h(X) ̸= h′(X))
∣∣

= 2 sup
h,h′∈H

∣∣ErrD(h, h′)− ErrD ′(h, h′)
∣∣

≥ 2
∣∣ErrD(h, h′)− ErrD ′(h, h′)

∣∣ .

Another helpful lemma for us is the well-known fact that the 0-1 error obeys

the triangle inequality (see, e.g., Crammer et al. [2008]):

Lemma 3.3.3. For any distribution D over instances and any labeling functions

f1, f2, and f3, we have ErrD(f1, f2) ≤ ErrD(f1, f3) + ErrD(f2, f3).
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Denote by h̄∗ the ideal joint hypothesis, which minimizes the combined error:

h̄∗ := argmin
h′∈H

ErrD(h)(h
′) + ErrDS

(h′)

We have:

ErrD(h)(h) ≤ ErrD(h)(h̄
∗) + ErrD(h)(h, h̄

∗) (Lemma 3.3.3)

≤ ErrD(h)(h̄
∗) + ErrDS

(h, h̄∗) +
∣∣ErrD(h)(h, h̄

∗)− ErrDS
(h, h̄∗)

∣∣
≤ ErrD(h)(h̄

∗) + ErrDS
(h) + ErrDS

(h̄∗) +
1

2
dH ×H (DS ,D(h))

(Lemma 3.3.2)

= ErrDS
(h) + λDS→D(h) +

1

2
dH ×H (DS ,D(h)). (Definition of h̄∗)

The transferability of a model h between ErrD(h)(h) and ErrDS
(h) looks pre-

cisely the same as in the classical domain adaptation setting [Ben-David et al.,

2010a].

An arguably more interesting quantity in our setting to understand is the

difference between the induced error of any given model h and the error induced

by the optimal model h∗T : ErrD(h)(h)−ErrD(h∗T )(h
∗
T ). We get the following bound,

which differs from the one in Theorem 3.3.1:

Theorem 3.3.4 (Induced risk ⇒ Minimum induced risk). The difference

between

ErrD(h)(h) and ErrD(h∗T )(h
∗
T ) is upper bounded by:

ErrD(h)(h)−ErrD(h∗T )(h
∗
T ) ≤

λD(h)→D(h∗T ) + ΛD(h)→D(h∗T )(h)

2
+
1

2
·dH ×H (D(h∗T ),D(h)).

The above theorem informs us that the induced transfer error is generally

bounded by the “average” achievable error on both distributions D(h) and D(h∗T ),

as well as the H divergence between the two distributions.
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The major benefit of the results in Theorem 3.3.4 is that it provides the decision

maker a way to estimate the minimum induced risk ErrD(h∗T )(h
∗
T ) even when she

only has access to the induced risk of some available classifier h, as long as she can

characterize the statistical difference between the two induced distribution. The

latter, however, might not seem to be a trivial task itself. Later in Section 3.3.3,

we briefly discuss how our bounds can still be useful even when we do not have the

exact characterizations of this quantity.

3.3.2 Lower Bound For General Distribution Shift

Now we provide a lower bound on the induced transfer error. We particularly

want to show that at least one of the two errors ErrDS
(h), and ErrD(h)(h), must be

lower-bounded by a certain quantity.

Theorem 3.3.5 (Lower bound for learning tradeoffs). Any model h must

incur the following error on either the source or induced distribution:

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2
.

The proof leverages the triangle inequality of dTV. This bound is dependent on

h; however, by the data processing inequality of dTV (and f -divergence functions in

general) [Liese and Vajda, 2006], we have dTV(Dh|S ,Dh(h)) ≤ dTV(DX|S ,DX(h)).

Applying this to Theorem 3.3.5 yields:

Corollary 3.3.6. For any model h,

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(DX|S ,DX(h))

2
.

The benefit of Corollary 3.3.6 is that the bound does not contain any quantities

that are functions of the induced distribution; as a result, for any classifier h, we
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can estimate the learning tradeoffs between its source risk and its induced risk

using values that are computable without actually deploying the classifier at the

first place.

Tightness of the General Bounds in Section 3.3 For the general bounds

reported in Section 3.3, it is not trivial to fully quantify the tightness without

further quantifying the specific quantities of the terms, e.g., the H-divergence of the

source and the induced distribution and the average error a classifier have to incur

for both distribution. This part of our results adapted from the classical literature

in learning from multiple domains Ben-David et al. [2010a]. The tightness of using

H -divergence and other terms seem to be partially validated therein.

3.3.3 How to Use Our Bounds?

The upper and lower bounds we derived in the previous sections (Theorem 3.3.4

and Theorem 3.3.5) depend on the following two quantities either explicitly or

implicitly: (1) the distribution D(h) induced by the deployment of the model h in

question, and (2) the optimal target classifier h∗T as well as the distribution D(h∗T )

it induces. The bounds may therefore seem to be of only theoretical interest since

in reality we generally cannot compute D(h) without actual deployment, let alone

compute h∗T . Thus, in general, it is unclear how to compute the value of these

bounds.

Nevertheless, our bounds can still be useful and informative in the following

ways:

General modeling framework with flexible hypothetical shifting models

The bounds can be evaluated if the decision maker has a particular shift model
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in mind, which specifies how the population would adapt to a model. A common

special case is when the decision maker posits an individual-level agent response

model (e.g., the strategic agent [Hardt et al., 2016a] - we demonstrate how to

evaluate in Section 3.4.3). In these cases, the H -divergence can be consistently

estimated from finite samples of the population [Wang et al., 2005], allowing the

decision maker to estimate the performance gap of a given h without deploying

it. The general bounds provided can thus be viewed as a framework by which

specialized, computationally tractable bounds can be derived.

Estimate the optimal target classifier h∗T from a set of imperfect mod-

els Secondly, when the decision maker has access to a set of imperfect mod-

els h̃1, h̃2 · · · h̃t ∈ HT that will predict a range of possible shifted distribution

D(h̃1), · · ·D(h̃t) ∈ DT and a range of possibly optimal target distribution hT ∈

H T , the bounds on h∗T can be further instantiated by calculating the worst case in

this predicted set :3

ErrD(h)(h)− ErrD(h∗T )(h
∗
T ) ≲ max

D ′∈DT ,h′∈H T
UpperBound(D ′, h′),

max{ErrDS
(h),ErrD(h∗T )(h

∗
T )} ≳ min

D ′∈DT ,h′∈H T
LowerBound(D ′, h′).

3.4 Transferability Bounds for Covariate Shift

In this section, we focus on a particular distribution shift model known as

covariate shift, in which the distribution of features changes, but the distribution

3UpperBound and LowerBound are the RHS expressions in Theorem 3.3.4 and Theorem 3.3.5.
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of labels conditioned on features remains the same:

PD(h)(Y = y|X = x) = PDS
(Y = y|X = x) (3.3)

PD(h)(X = x) ̸= PDS
(X = x) (3.4)

Thus with covariate shift, we have

PD(h)(X = x, Y = y) =PD(h)(Y = y|X = x) · PD(h)(X = x)

=PDS
(Y = y|X = x) · PD(h)(X = x)

Let ωx(h) :=
PD(h)(X=x)

PDS
(X=x) be the importance weight at x, which characterizes

the amount of adaptation induced by h at instance x. Then for any loss function ℓ

we have:

Proposition 3.4.1 (Expected Loss on D(h) Under Covariate Shift).

ED(h)[ℓ(h;X,Y )] = EDS
[ωx(h) · ℓ(h;x, y)].

Proof.

ED(h)[ℓ(h;X,Y )]

=

∫
PD(h)(X = x, Y = y)ℓ(h;x, y) dxdy

=

∫
PDS

(Y = y|X = x) · PD(h)(X = x)ℓ(h;x, y) dxdy

=

∫
PDS

(Y = y|X = x) · PDS
(X = x) ·

PD(h)(X = x)

PDS
(X = x)

· ℓ(h;x, y) dxdy

=

∫
PDS

(Y = y|X = x) · PDS
(X = x) · ωx(h) · ℓ(h;x, y) dxdy

=EDS
[ωx(h) · ℓ(h;x, y)]

The above derivation is a classic trick and offers the basis for performing im-

portance reweighting when learning under covariate shift [Sugiyama et al., 2008].
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The particular form informs us that ωx(h) controls the generation of D(h) and

encodes its dependency on both DS and h, and is critical for deriving our results

below.

3.4.1 Upper Bound for Covariate Shift

We now derive an upper bound for transferability under covariate shift. We

will particularly focus on the optimal model trained on the source data DS , which

we denote as h∗S := argminh∈H ErrS(h). Recall that the classifier with minimum

induced risk is denoted as h∗T := argminh∈H ErrD(h)(h). We can upper bound the

difference between h∗S and h∗T as follows:

Theorem 3.4.2 (Suboptimality of h∗S). Let X be distributed according to DS. We

have:

ErrD(h∗S)
(h∗S)− ErrD(h∗T )(h

∗
T ) ≤

√
ErrDS

(h∗T ) ·
(√

Var(ωX(h∗S)) +
√
Var(ωX(h∗T ))

)
.

This result can be interpreted as follows: h∗T incurs an irreducible amount of

error on the source data set, represented by
√
ErrDS

(h∗T ). Moreover, the difference

in induced risks between h∗S and h∗T is at its maximum when the two classifiers

induce adaptations in “opposite” directions; this is represented by the sum of the

standard deviations of their importance weights,
√

Var(ωX(h∗S))+
√

Var(ωX(h∗T )).

3.4.2 Lower Bound For Covariate Shift

Recall that in Theorem 3.3.5, for the general setting, it is unclear whether

the lower bound is strictly positive or not. In this section, we provide further

understanding for when the lower bound
dTV(DY |S ,DY (h))−dTV(Dh|S ,Dh(h))

2 is indeed

positive under covariate shift. Under several assumptions, our previously provided
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lower bound in Theorem 3.3.5 is strictly positive with covariate shift.

Assumption 3.4.3. |EX∈X+(h),Y=+1[1− ωX(h)]| ≥ |EX∈X−(h),Y=+1[1− ωX(h)]| .,

where X+(h) = {x : ωx(h) ≥ 1} and X−(h) = {x : ωx(h) < 1}.

This assumption states that increased ωx(h) value points are more likely to

have positive labels.

Assumption 3.4.4. |EX∈X+(h),h(X)=+1[1−ωX(h)]| ≥ |EX∈X−(h),h(X)=+1[1−ωX(h)]|.

This assumption states that increased ωx(h) value points are more likely to be

classified as positive.

Assumption 3.4.5. Cov
(
PDS

(Y = +1|X = x)−PDS
(h(x) = +1|X = x), ωx(h)

)
>

0.

This assumption is stating that for a classifier h, within all h(X) = +1 or

h(X) = −1, a higher PD(Y = +1|X = x) associates with a higher ωx(h).

Theorem 3.4.6. Under Assumption 3.4.3 - Assumption 3.4.5, the following lower

bound is strictly positive under covariate shift:

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2
> 0.

3.4.3 Covariate Shift via Strategic Response

As introduced in Section 3.2.1, we consider a setting caused by strategic re-

sponse in which agents are classified by and adapt to a binary threshold classifier. In

particular, each agent is associated with a d dimensional continuous feature x ∈ Rd

and a binary true qualification y(x) ∈ {−1,+1}, where y(x) is a function of the

feature vector x. Consistent with the literature in strategic classification [Hardt

et al., 2016a], a simple case where after seeing the threshold binary decision rule

38



h(x) = 2 · 1[x ≥ τh] − 1, the agents will best response to it by maximizing the

following utility function:

u(x, x′) = h(x′)− h(x)− c(x, x′),

where c(x, x′) is the cost function for decision subjects to modify their feature

from x to x′. We assume all agents are rational utility maximizers: they will only

attempt to change their features when the benefit of manipulation is greater than

the cost (i.e. when c(x, x′) ≤ 2) and the agent will not change their feature if they

are already accepted (i.e. h(x) = +1). For a given threshold τh and manipulation

budget B, the theoretical best response of an agent with original feature x is:

∆(x) = argmax
x′

u(x, x′) s.t. c(x, x′) ≤ B.

To make the problem tractable and meaningful, we further specify the following

setups:

Setup 1. (Initial Feature) Agents’ initial features are uniformly distributed between

[0, 1] ∈ R1.

Setup 2. (Agent’s Cost Function) The cost of changing from x to x′ is proportional

to the distance between them: c(x, x′) = ∥x− x′∥.

Setup 2 implies that only agents whose features are in between [τh − B, τh)

will attempt to change their feature. We also assume that feature updates are

probabilistic, such that agents with features closer to the decision boundary τh have

a greater chance of updating their feature and each updated feature x′ is sampled

from a uniform distribution depending on τh, B, and x (see Setup 3 & 4):

Setup 3. (Agent’s Success Manipulation Probability) For agents who attempt to
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update their features, the probability of a successful feature update is P(X ′ ̸= X) =

1− |x−τh|
B .

Intuitively this setup means that the closer the agent’s original feature x is to

the decision boundary τh, the more likely they can successfully change their feature

to cross the decision boundary.

Setup 4 (Adapted Feature’s Distribution). An agent’s updated feature x′, given

original x, manipulation budget B, and classification boundary τh, is sampled as

X ′ ∼ Unif(τh, τh + |B − x|).

Setup 4 aims to capture the fact that even though agent targets to change their

feature to the decision boundary τh (i.e. the least cost action to get a favorable

prediction outcome), they might end up reaching a feature that is beyond the

decision boundary.

With the above setups, we can specify the bound in Theorem 3.4.2 for the

strategic response setting as follows:

Proposition 3.4.7. For the setting of strategic response described above, Theo-

rem 3.4.2 implies ErrD(h∗S)
(h∗S)− ErrD(h∗T )(h

∗
T ) ≤

√
2B
3 ErrDS

(h∗T ).

We can see that the upper bound for strategic response depends on the manip-

ulation budget B, and the error the ideal classifier made on the source distribution

ErrDS
(h∗T ). This aligns with our intuition that the smaller the manipulation budget

is, the fewer agents will change their features, thus leading to a tighter upper bound

on the difference between Errh∗S (h
∗
S) and Errh∗T (h

∗
T ). This expression also allows us

to provide bounds even without the knowledge of the mapping between D(h) and

h, since we can directly compute ErrDS
(h∗T ) from the source distribution and an

estimated optimal classifier h∗T .
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3.5 Transferability Bounds for Target Shift

We consider another popular domain adaptation setting known as target shift,

in which the distribution of labels changes, but the distribution of features condi-

tioned on the label remains the same:

PD(h)(X = x|Y = y) = PDS
(X = x|Y = y) (3.5)

PD(h)(Y = y) ̸= PDS
(Y = y) (3.6)

For binary classification, let p(h) := PD(h)(Y = +1), and PD(h)(Y = −1) =

1 − p(h). Notice that p(h) encodes the full adaptation information from DS to

D(h), since the mapping between Y and X, P(X = x|Y = y), is known and

remains unchanged during target shift. We have for any proper loss function ℓ:

ED(h)[ℓ(h;X,Y )]

=p(h) · ED(h)[ℓ(h;X,Y )|Y = +1] + (1− p(h)) · ED(h)[ℓ(h;X,Y )|Y = −1]

=p(h) · EDS
[ℓ(h;X,Y )|Y = +1] + (1− p(h)) · EDS

[ℓ(h;X,Y )|Y = −1]

We will adopt the following shorthands: Err+(h) := EDS
[ℓ(h;X,Y )|Y = +1]

Err−(h) := EDS
[ℓ(h;X,Y )|Y = −1]. Note that Err+(h),Err−(h) are both defined

on the conditional source distribution, which is invariant under the target shift

assumption.

3.5.1 Upper Bound for Target Shift

We first provide characterizations of the upper bound on the transferability of

h∗S under target shift. Denote by D+ the positive label distribution on DS (PDS
(X =

x|Y = +1)) and D− the negative label distribution on DS (PDS
(X = x|Y = −1)).

Let p := PDS
(Y = +1).
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Theorem 3.5.1. For target shift, the difference between ErrD(h∗S)
(h∗S) and

ErrD(h∗T )(h
∗
T ) bounds as:

ErrD(h∗S)
(h∗S)− ErrD(h∗T )(h

∗
T )

≤|ω(h∗S)− ω(h∗T )|+ (1 + p) · (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T )) .

The above bound consists of two components. The first quantity captures the

difference between the two induced distributions D(h∗S) and D(h∗T ). The second

quantity characterizes the difference between the two classifiers h∗S , h
∗
T on the source

distribution.

3.5.2 Lower Bound For Target Shift

Now we discuss lower bounds. Denote by TPRS(h) and FPRS(h) the true

positive and false positive rates of h on the source distribution DS . We prove the

following:

Theorem 3.5.2. For target shift, any model h must incur the following error on

either DS or D(h):

max{ErrDS
(h),ErrD(h)(h)} ≥ |p− p(h)| · (1− |TPRS(h)− FPRS(h)|)

2
.

Proof of Theorem 3.5.2. We will make use of the following fact:

Lemma 3.5.3. Under label shift, TPRS(h) = TPRh(h) and FPRS(h) = FPRh(h).

In section 3.3.2 we showed a general lower bound on the maximum of ErrDS
(h)

and ErrD(h)(h):

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2
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In the case of label shift, and by the definitions of p and p(h),

dTV(DY |S ,DY (h)) = |PDS
(Y = +1)− PD(h)(Y = +1)| = |p− p(h)| (3.7)

In addition, we have

Dh|S = PS(h(X) = +1) = p · TPRS(h) + (1− p) · FPRS(h) (3.8)

Similarly

Dh(h) = PD(h)(h(X) = +1)

= p(h) · TPRh(h) + (1− p(h)) · FPRh(h)

= p(h) · TPRS(h) + (1− p(h)) · FPRS(h) (by Lemma 3.5.3) (3.9)

Therefore

dTV(Dh|S ,Dh(h)) =|PDS
(h(X) = +1)− PD(h)(h(X) = +1)|

=|(p− p(h)) · TPRS(h) + (p(h)− p) · FPRS(h)|

(By equation 3.9 and equation 3.8)

=|p− p(h)| · |TPRS(h)− FPRS(h)| (3.10)

which yields:

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h)) = |p− p(h)|(1− |TPRS(h)− FPRS(h)|)

(By equation 3.7 and equation 3.10)

completing the proof.

Taking a closer look, the lower bound is determined linearly by how much

the label distribution shifts: p− p(h). The difference is further determined by the

performance of h on the source distribution through 1−|TPRS(h)−FPRS(h)|. For

instance, when TPRS(h) > FPRS(h), the quality becomes FNRS(h) + FPRS(h),

that is the more error h makes, the larger the lower bound will be.
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3.5.3 Target Shift via Replicator Dynamics

We now further instantiate our theoretical bound for target shift (Theorem 3.5.1)

using a particular replicator dynamics model previously used in Raab and Liu

[2021]. In particular, the fitness function is specified as the prediction accuracy of

h for class y:

Fitness(Y = y) := PDS
(h(X) = y|Y = y) (3.11)

Then we have E [Fitness(Y )] = 1−ErrDS
(h), and p(h)

PDS
(Y=+1) =

PrDS
(h(X)=+1|Y=+1)

1−ErrDS
(h) .

Plugging the result back into Theorem 3.5.1 we get the following bound for the

above replicator dynamic setting:

Proposition 3.5.4. Under the replicator dynamics model described in

Equation (3.11), |ω(h∗S)− ω(h∗T )| bounds as:

|ω(h∗S)− ω(h∗T )|

≤PDS
(Y = +1) ·

|ErrDS
(h∗S)− ErrDS

(h∗T )| · |TPRS(h∗S)− TPRS(h
∗
T )|

ErrDS
(h∗S) · ErrDS

(h∗T )
.

Proof.

|p(h∗S)− p(h∗T )| ·
1

PDS
(Y = +1)

=
|(1− ErrDS

(h∗S))TPRS(h
∗
S)− (1− ErrDS

(h∗T ))TPRS(h
∗
T )|

(1− ErrDS
(h∗S)) · (1− ErrDS

(h∗T ))

≤
|ErrDS

(h∗S)− ErrDS
(h∗T )| · |TPRS(h∗S)− TPRS(h

∗
T )|

(1− ErrDS
(h∗S)) · (1− ErrDS

(h∗T ))
(3.12)

The inequality above is due to Lemma 7 of Liu and Liu [2015].

The above result shows that the difference between the induced risks

ErrD(h∗S)
(h∗S) and ErrD(h∗T )(h

∗
T ) only depends on the difference between the two

classifiers’ performances on the source data DS . This offers the decision maker a
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Figure 3.2: Results for synthetic experiments on real-world data. Diff := ErrD(h∗
S)(h

∗
S) −

ErrD(h∗
T )(h

∗
T ), Max := max{ErrDS

(h∗T ),ErrD(h∗
T )(h

∗
T )}, UB := upper bound specified in

Theorem 3.4.2, and LB := lower bound specified in Theorem 3.4.6. For each time step

K = k, we compute and deploy the source optimal classifier h∗S and update the credit

score for each individual according to the received decision as the new reality for time step

K = k + 1. Details of the data generation are deferred to Appendix A.7.

great opportunity to evaluate the performance gap by using their corresponding

evaluations on the source data only without observing their corresponding induced

distributions.

Tightness of the Bounds in Section 3.4 and Section 3.5 It is relatively

easier to argue about the tightness of the boundss provided in Section 3.4 (for

covariate shift) and Section 3.5 (target shift): the proofs there are more transparent

and are easier to back out the conditions where the inequalities are relaxed. For

example, in Theorem 5.1, the inequalities of our bound are introduced primarily

in the following two places: 1) one is using the optimiality of h∗S on the source

distribution. 2) the other is bounding the statistical difference in h∗S and h∗T ’s

predictions on the positive and negative examples. Both are saying that if the

differences in the two classifiers’ predictions are bounded in a range, then the result

in Theorem 5.1 is relatively tight.
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3.6 Experiments

We present synthetic experimental results on both simulated and real-world

data sets.

Synthetic experiments using simulated data We generate synthetic data

sets from the structural equation models described on simple causal DAG in Figure

3.1 for covariate shift and target shift. To generate the induced distribution D(h),

we posit a specific adaptation function ∆ : Rd × H → Rd, so that when an input

x encounters classifier h ∈ H , its induced features are precisely x′ = ∆(x, h).

We provide details of the data generation processes and adaptation functions in

Appendix A.7.

We take our training data set {x1, . . . , xn} and learn a “base” logistic regression

model h(x) = σ(w · x).4 We then consider the hypothesis class H := {hτ | τ ∈

[0, 1]}, where hτ (x) := 2·1[σ(w·x) > τ ]−1. To compute h∗S , the model that performs

best on the source distribution, we simply vary τ and take the hτ with the lowest

prediction error. Then, we posit a specific adaptation function ∆(x, hτ ). Finally,

to compute h∗T , we vary τ from 0 to 1 and find the classifier hτ that minimizes the

prediction error on its induced data set {∆(x1, hτ ), . . . ,∆(xn, hτ )}. We report our

results in Figure 3.3.

For all four datasets, we do observe positive gaps ErrD(h∗S)
(h∗S)−ErrD(h∗T )(h

∗
T ),

indicating the suboptimality of training on DS . The gaps are well bounded by

the theoretical results. For the lower bound, the empirical observation and the

theoretical bounds are roughly within the same magnitude except for one target

shift dataset, indicating the effectiveness of our theoretical result. Regarding the

4σ(·) is the logistic function and w ∈ R3 denotes the weights.
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upper bound, for target shift, the empirical observations are well within the same

magnitude of the theoretical bounds while the results for the covariate shift are

relatively loose.

Figure 3.3: Results for synthetic experiments on simulated and real-world data. Diff :=

ErrD(h∗
S)(h

∗
S)−ErrD(h∗

T )(h
∗
T ), Max := max{ErrDS

(h∗T ),ErrD(h∗
T )(h

∗
T )}, UB := upper bound

specified in Theorem 3.4.2, and LB := lower bound specified in Theorem 3.4.6.

Synthetic experiments using real-world data We also perform synthetic ex-

periments using real-world data to demonstrate our bounds. In particular, we use

the FICO credit score data set [Board of Governors of the Federal Reserve System

(US), 2007] which contains more than 300k records of TransUnion credit scores

of clients from different demographic groups. For our experiment on the prepro-

cessed FICO data set [Hardt et al., 2016b], we convert the cumulative distribution

function (CDF) of TransRisk score among different groups into group-wise credit

score densities, from which we generate a balanced sample to represent a population

where groups have equal representations. We demonstrate the application of our
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results in a series of resource allocations. Similar to the synthetic experiments on

simulated data, we consider the hypothesis class of threshold classifiers and treat

the classification outcome as the decision received by individuals.

For each time step K = k, we compute h∗S , the statistical optimal classifier

on the source distribution (i.e., the current reality for step K = k), and update

the credit score for each individual according to the received decision as the new

reality for time step K = k + 1. Details of the data generation are again deferred

to Appendix A.7. We report our results in Figure 3.2. We do observe positive gaps

ErrD(h∗S)
(h∗S)− ErrD(h∗T )(h

∗
T ), indicating the suboptimality of training on DS . The

gaps are well bounded by the theoretical upper bound (UB). Our lower bounds (LB)

do return meaningful positive gaps, demonstrating the trade-offs that a classifier

has to suffer on either the source distribution or the induced target distribution.

We also provide additional experimental results using synthetic datasets generated

according to causal graphs defined in Figure 3.1.

3.7 Fair Transferability

In this section, we briefly mention that we can also provide a general framework

for quantifying the robustness of statistical group fairness guarantees [Chen et al.,

2022].

Our primary result is a bound on a policy’s potential “violation of statisti-

cal group fairness” defined in terms of the differences in policy outcomes between

groups when applied to a target distribution shifted relative to the source distri-

bution within known constraints. Such settings naturally arise whenever training

data represents a random sample of a target population with different statistics or
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Figure 3.4: In Chen et al. [2022], we evaluate our bounds against historical, temporal distri-

bution shifts in demographics and income recorded by the US Census Bureau [Ding et al.,

2021]. The above figure depicts changes to income-prediction accuracy and demographic

parity violation when a classifier initially trained on US state-specific demographic data for

2014 is reused on 2018 data, thus exemplifying the negative potential effects of distribution

shift.

a sample from dynamic environments, when a policy is reused on a new distribu-

tion without retraining, or whenever policy deployment itself induces a distribution

shift. As an example of this last case, strategic individuals seeking loans might

change their features or abstain from future application (thus shifting the distri-

bution of examples) in response to policies trained on historical data [Hardt et al.,

2016a, Ustun et al., 2019, Zhang et al., 2020b]. Beyond policy selection, exogenous

pressure such as economic trends and noise may also drive a distribution shift in

this example. In Figure 3.4, we show how a real-world distribution shift in demo-

graphic and income data for US states between 2014 and 2018 may increase fairness

violations while decreasing accuracy for a hypothetical classifier trained on the 2014

distribution. In such settings, it is useful to quantify how fairness guarantees trans-

fer across distributions shifted within some bound, thus allowing the deployment
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of unfair machine learning policies to be avoided.

Our primary contribution is formulating a general, worst-case upper bound for

a given policy’s violation of statistical group fairness subject to group-dependent

distribution shifts within presupposed bounds. The statistical group fairness notion

we use is defined in Equation (2.2).

Overall, bounding violations of fairness subject to distribution shift allow us

to recognize and avoid potentially inappropriate deployments of machine learning

when the potential disparities of a prospective policy eclipse a given threshold within

bounded distribution shifts of the training distribution.

3.8 Conclusions

Unawareness of the potential distribution shift might lead to unintended con-

sequences when training a machine learning model. One goal of our paper is to

raise awareness of this issue for the safe deployment of machine learning methods

in high-stake scenarios. We also provide a general framework for characterizing

the performance difference for a fixed-trained classifier when the decision subjects

respond to it.
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Chapter 4

Learning to Incentivize Improvements

from Strategic Agents

Machine learning systems are often used in settings where individuals adapt

their features to obtain a desired outcome. In such settings, strategic behavior

leads to a sharp loss in model performance in deployment. In this chapter, we

aim to address this problem by learning classifiers that encourage decision subjects

to change their features in a way that leads to improvement in both predicted

and true outcome. We frame the dynamics of prediction and adaptation as a

two-stage game, and characterize optimal strategies for the model designer and its

decision subjects. In benchmarks on simulated and real-world datasets, we find that

classifiers trained using our method maintain the accuracy of existing approaches

while inducing higher levels of improvement and less manipulation.

4.1 Incentivize Improvement From Strategic Agent

Individuals subject to a classifier’s predictions may act strategically to influ-

ence their predictions. Such behavior, often referred to as strategic manipulation
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[Hardt et al., 2016a], may lead to a sharp deterioration in classification perfor-

mance. However, not all strategic behavior is detrimental: in many applications,

model designers stand to benefit from strategic adaptation if they deploy a classifier

that incentivizes decision subjects to perform adaptations that improve their true

outcome [Haghtalab et al., 2020, Shavit et al., 2020]. For example:

• Lending: In lending, a classifier predicts a loan applicant’s ability to repay

their loan. If the classifier is designed so as to incentivize the applicants to

improve their income, it will also improve the likelihood of repayment.

• Content Moderation: In online shopping, a recommender system suggests

products to customers based on their relevance. Ideally, the algorithm should

incentivize the product sellers to publish accurate product descriptions by

aligning this with improved recommendation rankings.

• Course design: an instructor designs schoolwork to incentivize students to

invest their efforts on studying rather than cheating on an exam [Kleinberg

and Raghavan, 2020].

• Car insurance determination: an auto insurer tries to predict drivers’ ex-

pected accident costs, and by designing a determination criterion, encourages

safe driving behavior [Haghtalab et al., 2020, Shavit et al., 2020].

In this chapter, we study the following mechanism design problem: amodel designer

needs to train a classifier that will make predictions over decision subjects who will

alter their features to obtain a specific prediction. Our goal is to learn a classifier

that is accurate and that incentivizes decision subjects to adapt their features in a

way that improves both their predicted and true outcomes.
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4.1.1 Our Contributions

Our main contributions are as follows:

1. We introduce a new approach to handle strategic adaptation in machine learn-

ing, based on a new concept we call the constructive adaptation risk, which

trains classifiers that incentivize decision subjects to adapt their features in

ways that improve true outcomes. Under the assumption of a feature tax-

onomy that distinguishes improvable features (features that, if changed, lead

to changes in the true qualification) from non-causal features (which do not

lead to changes in the true qualification), we provide formal evidence that

this risk captures both the strategic and constructive dimensions of decision

subjects’ behavior.

2. We characterize the dynamics of strategic decision subjects and the model

designer in a classification setting using a two-player sequential game. We

begin by generalizing cost functions used in previous works on strategic clas-

sification to the Mahalanobis distance, which provides a way to capture cor-

relations between changes in different features. Under this generalization, we

derive closed-form expressions for the decision subjects’ optimal strategies

(Theorem 4.4.2). These expressions (Section 4.4.3) reveal insights about de-

cision subjects’ behavior when the model designer uses non-causal features

(features that do not affect the true outcome) as predictors.

3. We formulate the problem of training such a desired classifier as a risk min-

imization problem. We evaluate our method on simulated and real-world

datasets to demonstrate how it can be used to incentivize improvement or

discourage adversarial manipulation. Our empirical results show that our
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method outperforms existing approaches, even when some feature types are

misspecified. In addition, we provide a potential way to extend our main

result into a non-linear setting using LIME [Ribeiro et al., 2016].

The details for reproducing our experimental results can be found at

https://github.com/UCSC-REAL/ConstructiveAdaptation.

4.1.2 How Does Our Work Relate to the Surrounding Literatures?

Our paper builds on the strategic classification literature in machine learning.

Departing from previous work, which aims to suppress all adaptations, we consider

a setting in which strategic adaptation can consist of manipulation as well as im-

provement. Our broader goal of designing a classifier that encourages improvement

is characteristic of recent work in this area [see e.g., Kleinberg and Raghavan, 2020,

Haghtalab et al., 2020, Shavit et al., 2020, Rosenfeld et al., 2020]. Specifically, Hagh-

talab et al. [2020] study how to design an evaluation mechanism that incentivizes

individuals to improve a desired quality. However, the success of their method re-

quires explicit assumptions on the linear mapping of features to true qualifications,

as well as a projection matrix P that maps the observed features back to the full

features. Their setting also does not account for correlations between different fea-

tures. Another recent work by Shavit et al. [2020] also focuses on finding a decision

rule that maximizes decision subjects’ true qualifications. Their setting is similar

to ours, but they focus on how decision makers can perform causal interventions

through the deployment of different decision rules, rather than designing a classifier

relying only on observational data. Moreover, they assume that decision subjects

take actions in some action space that maps linearly to features in feature space;

this also does not capture correlations between features. Our approach may be
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useful for mitigating the disparate effects of strategic adaptation [Hu et al., 2019,

Milli et al., 2019, Liu et al., 2020] that stem from differences in the cost of manipu-

lation (see Proposition 4.4.6). Our results may also be helpful for developing robust

classifiers in dynamic environments, where both decision subjects’ features and the

deployed models may vary across time periods [Kilbertus et al., 2020, Shavit et al.,

2020, Liu and Chen, 2017a]. In contrast to the previous work on causal recourse

[Karimi et al., 2020c], we explicitly separate improvable features from manipulated

features when maximizing decision subjects’ payoffs. Our work also broadly re-

lates to the concept of intervention in the literature of causal inference [Eberhardt

and Scheines, 2007]. In our work, the actionability of a feature is always factual,

meaning it is always feasible to change those features. This is closely related to the

concept of last trial in causal inference, which refers to the interventions that one

could run in the real-world (which would rule out the interventions on age) [Hernán

et al., 2022].

4.2 Problem Statement

In this section, we describe our approach to training a classifier that incentivizes

improving actions. Similar to Definition 2.2.1, we formalize the dynamics between

the model designer and strategic agent as a sequential game between the following

two players: the model designer, and the decision subjects 1. The objectives for

the two players are as follows:

1. A model designer, who trains a classifier h : X → {−1,+1} from a hypothesis

class H ,which is also their action space.

1Throughout the paper, we will also use strategic agents, or agents, interchangeably.
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2. Decision subjects, who adapt their features from x to x′ so as to be assigned

h(x′) = +1 if possible. We assume that decision subjects incur a cost for

altering their features, which we represent using a cost function c : X ×X →

R+. The action space for the decision subjects includes all feature vectors

that are within a given manipulation budget B, namely ∀x′ ∈ Rd such that

c(x, x′) ≤ B.

We intentionally do not provide the formal definitions of the utilities for the

two players here due to the need to provide a clear and accessible introduction to

our framework. We will provide more detailed discussions on the agent and decision

maker’s utility function in Section 4.4.2 and Section 4.3, respectively.

We assume that decision subjects know the model designer’s classifier, and the

model designer knows the decision subjects’ cost function. Decision subjects alter

their features based on their current features x, the cost function c, and the classifier

h, so that their altered features can be written x∗ = ∆(x;h, c) where ∆(·) is the

best response function. The model designer only observes the altered feature x∗ but

not the original and private one x the decision subject holds. In other words, we

consider the standard setting in strategic classification where the model designer

has no strong verification power to verify truthfulness of x∗.

We allow adaptations that alter the true qualification y. In practice, the re-

lationship between features and true qualification is unknown, and in fact, it is

known that distinguishing causal features (features that affect the true outcome)

from non-causal features reduces to solving a non-trivial causal inference problem

[Miller et al., 2020]. Addressing this aspect is not the aim of the present work;

instead, we will assume that changes in certain features are known to affect the
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qualification – for example, in loan application, such features can be the agent’s

education level and salary, and changing those features will affect qualification is

the agent’s ability to pay for the loan.

Remark 4.2.1. When an agent adapts its feature vector from x to ∆(x), its qual-

ification becomes y(∆(x)), which may differ from y(x). We consider a setting in

which during the training process, the decision maker cannot observe how decision

subjects’ true qualifications change after they alter their features. We introduced

the shorthand notation y to refer to y(x), the qualification for the original feature

vector, for the sake of simplicity. For the rest of our paper, a label y always denotes

the true qualification before adaptation.

4.3 CARisk: Minimizing Error While Encouraging Con-

structive Adaptation

In many applications, model designers are better off when decision subjects

adapt their features in a way that yields a specific true outcome, such as y = +1.

Consider a typical lending application where a model is used to predict whether a

customer will repay a loan. In this case, a model designer benefits from y = +1, as

this means that a borrower will repay their loan.

4.3.1 Ideal objective function for the decision maker

Ideally, the decision maker should aim to classify the agents correctly using

their adapted features with respect to the corresponding new qualification. Math-

ematically, this corresponds to training a classifier h∗ that minimizes the following
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quantity:

h∗ ∈ argmin
h∈H

E(x,y)∼D [1(h(∆(x)) ̸= y(∆(x))] (4.1)

where ∆(x) is the agent’s adapted feature, and y(∆(x)) is the true qualification after

the adaptation. However, since the true mapping function y : X → Y is unknown,

and the decision maker cannot observe how decision subjects’ true qualifications

change after they alter their features, we need to propose an alternative approach

to achieve similar goals of this ideal objective function, which we call CA risk

minimization.

4.3.2 Our Proposed CA risk

To help explain our proposed approach, we assume that we can write x =

[xI | xM | xIM] where xI, xM and xIM denote the following categories of features:

• Immutable features (xIM), which cannot be altered (e.g. race, age).

• Improvable features (xI), which can be altered in a way that will either in-

crease or decrease the true outcome y(x) (e.g. increasing education level

might help improve the probability of repayment).

• Manipulable features (xM), which can be altered without changing the true

outcome y(x) (e.g. social media presence, which can be used as a proxy for

influence). Notice that it is the change in these features that is undesirable;

the features themselves may still be useful for prediction.

Incomplete taxonomy of features There may also be features that can be

altered but whose effect is unknown. In this work, we treat them as manipulable

features. We would like to point out that in practice, implementing our proposed

solution does not require the decision-maker to know exactly how to characterize
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every single feature. In fact, our method can be applied to settings where the

decision-makers only know some features are improvable and focus on incentivizing

adaptations on them, while treating changes on the rest of the features as undesir-

able. In this case, using our training method is still strictly better than performing

no intervention (i.e. simply letting decision subjects perform their unconstrained

best response).

Z1 X1

Y

X2Z2

M1

M2

Figure 4.1: A causal DAG for the toy data. Z1 and Z2 are improvable features that

determine the true qualification Y , X1 = Z1, and X2 is a noisy proxy for Z2. In our

context, all we require is the knowledge that X1, X2 are the factors that causally affect Y ,

rather than complete knowledge of the DAG. We can directly observe X1 and X2 but not

Z1 or Z2. In addition, M1 and M2 are manipulated features that correlate with Y .

Please see Figure 4.1 for a demonstration of the differences between improvable

and manipulable features. We also use xA = [xI | xM] to denote the actionable

features, and dA to denote its dimension. Note that the question of how to decide

which features are of which type is beyond the scope of the present work; however,

this is the topic of intense study in the causal inference literature [Miller et al.,

2020]. Analogously, we define the following variants of the best response function

∆:

• xI
∗ = ∆I(x, h; c): the improving best response, which involves an adaptation

that only alters improvable features.

• xM
∗ = ∆M(x, h; c): the manipulating best response, which involves an adapta-
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tion that only alters manipulable features.

Note that in reality, a decision subject can still alter both types of features, which

means that they will perform ∆(x, h; c), unless the model designer explicitly forbids

changing certain features. However, it still worth distinguishing different types of

best responses when the model designer designs the classifier: we can think of the

improving best response ∆I as the best possible adaptation which only consists

of honest improvement, while the manipulating best response ∆M is the worst

possible adaptation that consists of pure manipulation. The model designer would

like to design a classifier such that for the decision subjects, ∆(x, h; c) appears to

be close to ∆I(x, h; c). We therefore propose to train a classifier that minimizes the

constructive adaptation (CA) risk RCA, which balances robustness to manipulation

and incentivization of improvement:

h∗CA ∈ argmin
h∈H

RCA(h) := RM(h) + λ ·RI(h) (4.2)

The first term, RM(h) = E(x,y)∼D [1(h(x
M
∗) ̸= y)], is the manipulation risk,

which penalizes pure manipulation. The second term, RI(h) = E(x,y)∼D [1(h(x
I
∗) ̸=

+1)], is the improvement risk, which rewards decision subjects for playing their

improving best response. The parameter λ > 0 trades off between these competing

objectives. Setting λ → 0 results in an objective that simply discourages manip-

ulation, whereas increasing λ → ∞ yields a trivial classifier that always predicts

+1.

A natural question to ask is: how good the proposed objective function Equa-

tion (4.2) is compared to the ideal objective function in Equation (4.1)? We show

that the two terms in the objective function can be viewed as proxies for the ideal

objective function. In particular, in Section 4.5, we show that under reasonable
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conditions, the following hold:

• The first term, RM(h), is an upper bound on RSC(h). Thus minimizing

the manipulation risk also minimizes the traditional strategic risk (Propo-

sition 4.5.1).

• A decrease in the second term, RI(h) reflects an increase in Pr(y(xI
∗) = +1).

Thus improvement in the prediction outcome aligns with improvement in the

true qualification (Proposition 4.5.2).

4.4 Decision Subjects’ Best Response

We now characterize the decision subjects’ best response.

4.4.1 Setup

We restrict our analysis to the setting in which a model designer trains a linear

classifier h(x) = sign(wTx), where w = [w0, w1, . . . , wd] ∈ Rd+1 denotes a vector

of d+ 1 weights. We capture the cost of altering x to x′ through the Mahalanobis

norm of the changes:2

c(x, x′) =
√

(xA − xA′)TS−1(xA − xA′)

Here, S−1 ∈ RdA × RdA is a symmetric cost covariance matrix in which S−1
j,k repre-

sents the cost of altering features j and k simultaneously. To ensure that c(·) is a

valid norm, we require S−1 to be positive definite, meaning xA
TS−1xA > 0 for all

xA ̸= 0 ∈ RdA . Additionally, we assume S−1 is a block matrix of the form

S−1 =

 (S−1)I (S−1)IM

(S−1)MI (S−1)M

 , or S =

 SI SIM

SMI SM

 (4.3)

2Since immutable features xIM cannot be altered, the cost function involves only the actionable
features xA.
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Notice that the I-th block of matrix S−1 (i.e. (S−1)I) does not necessarily equal to

its inverse’s I-th block component (i.e. SI
−1).

We allow the cost matrix to contain non-zero elements on non-diagonal entries.

This means that our results hold even when there are interaction effects when

altering multiple features. This generalizes prior work on strategic classification

in which the cost is based on the ℓ2 norm of the changes, which is tantamount

to setting S−1 = I, and therefore assumes the change in each feature contributes

independently to the overall cost [see e.g., Hardt et al., 2016a, Haghtalab et al.,

2020].

4.4.2 Decision Subject’s Best Response Model

Given the assumptions of Section 4.4.1, we can define and analyze the decision

subjects’ best response. We start by defining the decision subject’s payoff function.

Given a classifier h, a decision subject who alters their features from x to x′ derives

total utility

U(x, x′) = h(x′)− c(x, x′)

Naturally, a decision subject tries to maximize their utility; that is, they play their

best response:

Definition 4.4.1 (F-Best Response Function). Let F ∈ {I,M,A}, and let X ∗
F (x)

denote the set of vectors that differ from x only in features of type F. Let ∆F :

X → X denote the F-best response of a decision subject with features x to h,

defined as:

∆F(x) = argmax
x′∈X ∗

F (x)
U(x, x′)
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Setting F = I gives the improving best response ∆I(x), in which the adaptation

changes only the improvable features; setting F = M yields the manipulating best

response ∆M(x), in which only manipulable features are changed. Setting F = A,

we get the standard unconstrained best response ∆A(x) in which any actionable

features can be changed. As we mentioned earlier, we will also use xF
∗ := ∆F(x) as

shorthand for the F-best response, and we denote ∆(x) := ∆A(x).

Intuitively, the cost of manipulation should be smaller than the cost of actual

improvement. For example, improving one’s coding skills should take more effort,

and thus be more costly, than simply memorizing answers to coding problems. As

a result, one would expect the gaming best response ∆M(x) and the unconstrained

best response ∆(x) to flip a negative decision more easily than the improving best

response ∆I(x). In Section 4.4.3, we formalize this notion (Proposition 4.4.4).

For ease of notation, let ŜF := ((S−1)F)
−1.We prove the following theorem

characterizing the decision subject’s different best responses:

Theorem 4.4.2 (F-Best Response in Closed-Form). Given a linear threshold func-

tion h(x) = sign(wTx) and a decision subject with features x such that h(x) = −1,

reorder the features so that x = [xF | xA\F | xIM], and let ΩF = wF
TŜFwF. Then x

has F-best response

∆F(x) =


[
xF − wTx

ΩF
ŜFwF

]
| xA\F | xIM, if |wTx|√

ΩF
≤ 2

x, otherwise

(4.4)

with corresponding cost

c(x,∆F(x)) =


|wTx|√

ΩF
, if |wTx|√

ΩF
≤ 2

0 otherwise

.
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All proofs in this section are included in Appendix B.1.

Example: When F = M, xF = xM and xA\F = [xI]. After reordering features,

we get the following closed-form expression for the manipulating best response:

∆M(x) =


[
xI | xM − wTx

ΩM
ŜMwM | xIM

]
if |wTx|√

ΩM
≤ 2

x, otherwise

with corresponding cost

c(x,∆M(x)) =


|wTx|√
ΩM
, if |wTx|√

ΩM
≤ 2

0 otherwise

.

4.4.3 Discussion

We now discuss the implications of different decision subject’s responses derived

in Theorem 4.4.2. In this section, we consider a slightly more structured cost

matrix that is diagonal blocked matrix (in which case, S−1
IM = S−1

MI = 0), which

corresponds to a setting where there are no correlations between the cost of changing

manipulated feature versus the cost of changing improvable features.

Notation For this section, we make use of the following additional notation:

• v(i) denotes the i-th element of a vector v

• For any F ∈ {A, I,M}, ∆F ∈ RdF denotes the vector containing only features

of type F within the best response ∆(x).

• 0 denotes the vector whose elements are all 0

• A ≻ B indicates that matrix A−B is positive definite

• ei denotes the vector containing 1 in its i-th component and 0 elsewhere

Firstly, we demonstrate a basic limitation for the model designer: if the clas-

sifier uses any manipulable features as predictors, then decision subjects will find a
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way to exploit them. Hence the only way to avoid any possibility of manipulation

is to train a classifier without such features.

Proposition 4.4.3 (Preventing Manipulation is Hard). Suppose there exists a ma-

nipulated feature x(m) whose weight in the classifier w
(m)
A is nonzero. Then for

almost every x ∈ X , ∆(m)(x) ̸= x(m). 3

Proof. Let w
(m)
M ̸= 0, and consider an decision subject with original features x who

was classified as −1. By Theorem 4.4.2, the actionable sub-vector of x’s uncon-

strained best response is

∆A(x) =
wTx

wA
TSwA

S · wA =
wTx

wA
TSwA

SI 0

0 SM


 wI

wM

 =
wTx

wA
TSwA

 SI · wI

SM · wM


And in particular,

∆M(x) =
wTx

wA
TSwA

SM · wM

Since x was initially classified as−1, we have wTx < 0, which means wTx
wASwA

̸= 0.

For convenience, let c = wTx
wASwA

. We have

∆M(x)− xM = cSMwM − xM = SM(cwM − SM
−1xM)

Now examine the following:

(cwM − SM
−1xM)(m) = cw

(m)
M − (S−1

M xM)(m)

= cw
(m)
M −

dM∑
i=1

(S−1
M )(im)xM

(m)

Recall that cw
(m)
M ̸= 0. Hence if

∑dM
i=1(S

−1
M )(im) = 0, or if

x
(m)
M ̸=

cw
(m)
M∑dM

i=1(S
−1
M )(im)

,

3In our paper, the subscript (e.g. xm) refers to the entire feature vector (e.g., xm ∈ Rdm ,
where dm is the total number of the manipulative features), while the superscript (m) refers to the
particular index of a particular manipulation feature.
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then (cwM−SM−1xM)(m) ̸= 0, and therefore cwM−S−1
M xM ̸= 0. Since SM is positive

definite, it has full rank, which implies

∆M(x)− xM = SM(cwM − S−1
M xM) ̸= 0

as required. With this, we have shown that when there exists a manipulated fea-

ture x(m) whose corresponding coefficient wA
(m) ̸= 0, the classifier is vulnerable to

changes in the manipulated features by the vast majority of decision subjects.

Next, we show that the unconstrained best response ∆(x) dominates the im-

proving best response ∆I(x), thus highlighting the difficulty of inducing decision

subjects to change only their improvable features when they are also allowed to

change manipulable features.

Proposition 4.4.4 (Unconstrained Best Response Dominates Improving Best Re-

sponse). Suppose there exists a manipulable feature x(m) whose weight in the clas-

sifier w
(m)
A is nonzero. Then, if a decision subject can flip her decision by playing

the improving best response, she can also do so by playing the unconstrained best

response. The converse is not true: there exist decision subjects who can flip their

predictions through their unconstrained best response but not their improving best

response.

Proof. Consider a decision subject with features x such that h(x) = −1. Suppose x

can flip this classification result by performing the improving best response ∆I(x),

which implies that the cost of that action is no greater than 2 for this decision

subject. We therefore have:

2 ≥ c(x,∆I(x)) =
|wTx|√
wI

TSIwI

>
|wTx|√

wI
TSIwI + wM

TSMwM

=
|wTx|√
wA

TSwA

= c(x,∆(x))
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where the strict inequality is due to the fact that SM ≻ 0 and wM ̸= 0. As we

have shown that c(x,∆(x)) < 2, we conclude whenever an decision subject can

successfully flip her decision by the improving best response, she can also achieve

it by performing the unconstrained best response.

On the other hand, consider the case when the unconstrained best response of

a decision subject with features x∗ has cost exactly 2:

2 = c(x∗,∆(x∗)) =
|wTx∗|√
wA

TSwA

=
|wTx∗|√

wI
TSIwI + wM

TSMwM

<
|wTx∗|√
wI

TSIwI

= c(x∗,∆I(x
∗))

where the strict inequality is due to the fact that SM ≻ 0 and wM ̸= 0. As we

have shown that c(x∗,∆I(x
∗)) > 2, we conclude that while the unconstrained best

response is viable for this decision subject, the improving best response is not.

Next, we show how correlations between features affect the cost of adaptation.

This can be demonstrated by looking at any cost matrix and adding a small nonzero

quantity τ to some i, j-th and j, i-th entries. Such a perturbation can reduce every

decision subject’s best-response cost:

Proposition 4.4.5 (Correlations between Features May Reduce Cost). For any

cost matrix S−1 and any nontrivial classifier h, there exist indices k, ℓ ∈ [dA] and

τ ∈ R such that every feature vector x has lower best-response cost under the cost

matrix S̃−1 given by

S̃−1
ij = S̃−1

ji =


S−1
ij + τ, if i = k, j = ℓ

S−1
ij , otherwise

than under S−1; that is, cS̃−1(x,∆(x)) < cS−1(x,∆(x)) for all x.
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In many applications, decision subjects may incur different costs for modifying

their features, resulting in disparities in prediction outcomes [see Hu et al., 2019,

for a discussion]. To formalize this phenomenon, suppose Φ and Ψ are two groups

whose costs of changing improvable features are identical, but members of Φ incur

higher costs for changing manipulable features. Let ϕ ∈ Φ and ψ ∈ Ψ be two people

from these groups who share the same profile, i.e. xϕ = xψ. We show the following:

Proposition 4.4.6 (Cost Disparities between Subgroups). Suppose there exists

a manipulated feature x(m) whose corresponding weight in the classifier w
(m)
A is

nonzero. Then if decision subjects are allowed to modify any features, ϕ must pay

a higher cost than ψ to flip their classification decision.

Proof. Let the cost covariance matrices for groups Φ and Ψ be

S−1
Ψ =

S−1
I 0

0 S−1
M,Φ

 , S−1
Φ =

S−1
I 0

0 S−1
M,Ψ


Here, we see that both groups have the same cost of changing improvable features,

as represented in the cost submatrix SI
−1. However, the cost of manipulation for

group Φ is higher than that of group Ψ, namely S−1
M,Φ ≻ S−1

M,Ψ.

We are now equipped to compare the costs for the two decision subjects:

c(xϕ,∆(xϕ)) =
|wTxϕ|√
wA

TSΦwA

=
|wTx|√

wI
TSIwI + wM

T · SM,Φ · wM

c(xψ,∆(xψ)) =
|wTxψ|√
wA

TSΨwA

=
|wTx|√

wI
TSIwI + wM

T · SM,Ψ · wM

Since S−1
M,Φ ≻ S−1

M,Ψ, we have SM,Φ ≺ SM,Ψ. And since wM ̸= 0, this implies

0 < wM
TSM,ΦwM < wM

T · SM,Ψ · wM. As a result, c(xϕ,∆(xϕ)) > c(xψ,∆(xψ)) as

required.
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Proposition 4.4.6 highlights the importance for a model designer to account for

these differences when serving a population with heterogeneous subgroups. Indeed,

when one group achieves more favorable prediction outcomes due to a lower cost of

manipulation, our method mitigates the cost disparities between different subgroups

by encouraging changes in improvable features and penalizing manipulation.

4.5 Constructive Adaptation Risk Minimization

In this section we analyze the training objective for the model designer, for-

mulating it as an empirical risk minimization (ERM) problem. The omitted details

can be found in Appendix B.3.

The model designer’s goal is to publish a classifier h that maximizes the classifi-

cation accuracy while incentivizing individuals to change their improvable features.

By Theorem 4.4.2, we have

xM

∗ =


[
xI | xM − wTx

ΩM
S̃MwM | xIM

]
if |w

Tx|√
ΩM

≤ 2

x, otherwise

(4.5)

xI

∗ =


[
xI − wTx

ΩI
S̃IwI | xM | xIM

]
, if |wTx|√

ΩI
≤ 2

x, otherwise

(4.6)

Recall from Section 4.3 that the model designer’s optimization program is as

follows:

min
h∈H

Ex∼D [1(h(xM

∗) ̸= y)] + λEx∼D [1(h(xI

∗) ̸= +1)]

s.t. xM

∗ in Equation (4.5), xI

∗ in Equation (4.6) (4.7)

Interpreting the Objective The two terms in the objective function can be

viewed as proxies for two other familiar objectives. The first term, Ex∼D [1(h(xM
∗) ̸= y)],
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directly penalizes pure manipulation. But as the following proposition suggests,

minimizing this term also minimizes the traditional strategic risk when the true

qualification does not change:

Proposition 4.5.1. Assume that the manipulating best response is more likely to

result in a positive prediction than the unconstrained best response, given that the

true labels do not change. Then

Ex∼D [1[h(x∗) ̸= y] | ∆(y) = y] ≤ Ex∼D [1(h(xM

∗) ̸= y)] .

Proof. We want to show that the standard strategic risk conditioned on an un-

changed true label is upper-bounded by the first term in our model designer’s

objective, RM(h):

Ex∼D [1[h(x∗) ̸= y] | ∆(y) = y] ≤ Ex∼D [1(h(xM

∗) ̸= y)]

We assume that the manipulating best response is more likely to result in a positive

prediction than the unconstrained best response, given that the true labels do not

change:

Ex∼D [1[h(x∗) ̸= y] | ∆(y) = y] ≤ ED [1[h(xM

∗) ̸= y] | ∆M(y) = y] (4.8)

We therefore have:

Ex∼D [1(h(xM

∗) ̸= y)]

=Ex∼D [1(h(xM

∗) ̸= y) | ∆M(y) ̸= y] · Pr[∆M(y) ̸= y]

+ Ex∼D [1(h(xM

∗) ̸= y) | ∆M(y) = y] · Pr[∆M(y) = y]

=Ex∼D [1(h(xM

∗) ̸= y) | ∆M(y) = y] (Pr[∆M(y) = y] = 1)

≥Ex∼D [1(h(x∗) ̸= y) | ∆(y) = y] (by equation 4.8)
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Intuitively, the assumption within Proposition 4.5.1 may be fulfilled in settings

where a population of agents each have the same fixed budget on the cost or effort

they are willing to expend, and manipulative or cheating-type actions (for instance,

(controlling recent purchase behaviors and borrowing money from family members

right before applying for a credit card) confer greater immediate advantages than

honest improvement (e.g. spending frugally and accruing savings from personal

income over several years).

The second term, Ex∼D [1(h(xI
∗) ̸= +1)], explicitly rewards decision subjects

for playing their improving best response (closely related to the notion of recourse).

Of course, without positing a causal graph, we cannot know whether performing

the improving best response leads to a positive change in the true qualification,

namely whether ∆I(Y ) = +1; however, when the distribution of X may change

but not the conditional label distribution Pr(Y |X), we can show that an increase

in Pr(h(X) = +1) reflects an increase in Pr(Y = +1). This gives formal evidence

that our prediction outcome aligns with improvement in the true qualification:

Proposition 4.5.2. Let D∗ be the new distribution after decision subject’s best

response. Denote ωh(x) = PrD∗ (X=x)
PrD(X=x) denote the amount of adaptation induced

at feature vector x. Suppose y(X) and h(X) are both positively correlated with

ωh(X), and that the distribution of the true label Y given a particular feature vector

X is unchanged is the same before and after adaptation. Then the following are

equivalent:

Pr[h(xI

∗) = +1] > Pr[h(x) = +1] ⇐⇒ Pr[y(xI

∗) = +1] > Pr[y(x) = +1].

Proof. Let D∗ be the distribution induced by deploying classifier h. By the covariate
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shift assumption, PrD∗(Y = y|X = x) = PrD(Y = y|X = x). Therefore

Pr
x∼D∗

[y(x) = +1] =ED∗ [1[y(x) = +1]]

=

∫
1[y(x) = +1]Pr

D∗
(X = x)dx

=

∫
1[y(x) = +1]

PrD∗(X = x)

PrD(X = x)
Pr
D
(X = x)dx

=

∫
1[y(x) = +1]ωh(x) Pr

D
(X = x)dx

=ED [ωh(x)1[y(x) = +1]]

This implies

Pr
x∼D∗

[y(x) = +1] ≥ Pr
x∼D

[y(x) = +1] ⇐⇒ ED [(ωh(x)− 1)1[y(x) = +1]] ≥ 0 (4.9)

By similar reasoning, we have

Pr
x∼D∗

[h(x) = +1] = ED∗ [1[h(x) = +1]] = ED [ωh(x)1[h(x) = +1]]

which implies

Pr
x∼D∗

[h(x) = +1] ≥ Pr
x∼D

[h(x) = +1] ⇐⇒ ED [(ωh(x)− 1)1[h(x) = +1]] ≥ 0 (4.10)

It is easy to verify that Ex∼D [ωh(x)] = 1, and this gives us

ED [(ωh(x)− 1)1[y(x) = +1]] = CovD(ωh(x),1[y(x) = +1]) (4.11)

ED [(ωh(x)− 1)1[h(x) = +1]] = CovD(ωh(x),1[h(x) = +1]) (4.12)

By equation 4.9, equation 4.10, and equation 4.11, the condition

Pr
x∼D∗

[h(x) = +1] ≥ Pr
x∼D

[h(x) = +1] ⇐⇒ Pr
x∼D∗

[y(x) = +1] ≥ Pr
x∼D

[y(x) = +1]

is equivalent to the condition

CovD(ωh(x),1[y(x) = +1]) ≥ 0 ⇐⇒ CovD(ωh(x),1[h(x) = +1]) ≥ 0

72



We also provide further derivation for model designer’s objective function in

Appendix B.3.

Here we provide some motivation for the premise of Proposition 4.5.2. An

unchanged Pr(Y |X) means that the mapping from feature vector X to its cor-

responding true qualification Y (X) remains the same despite a population-level

distribution shift. This is a useful and natural simplification in numerous settings.

An example is in credit card applications: suppose X is an applicant’s credit score

and Y is whether they are truly qualified. For people with the same credit score,

we assume they have equal chances of being truly qualified.

Algorithm 1 Best Response for Non-Linear Model

Input: Non-Linear classifier h, an individual data point x

Result: xM
∗ and xI

∗

Step 1. Call LIME to get the approximated weights w̃ of a local linear classifier

for non-linear model h around the individual point x

Step 2. Substitute w̃ into Equation (4.5) and Equation (4.6) to get xM
∗ and xI

∗,

respectively

Extension to Non-Linear Models The above approach in Equation (4.7) pre-

sumes a linear classifier such that we can derive a close-form solution of the agent’s

best response. However, the recourse scheme will be typically infeasible with non-

linear classifiers. To extend our approach to nonlinear models, we propose to sub-

stitute xM
∗ and xI

∗ in Equation (4.7) with an approximated best response acquired

from a local linear classifier. We note that a prior work LIME [Ribeiro et al.,

2016] can provide an approximate linear decision boundary for arbitrary individual

points to any non-linear models. The idea is to sample the spherical neighborhood
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of the data point and fit a local linear model with the target model’s certified pre-

dictions. As shown in Algorithm 1, we integrate LIME into the oracle that can

return us any decision subjects’ best response in terms of the approximated local

linear classifier. Once we get the best response xM
∗ and xI

∗, we iteratively plug them

back to Equation (4.7) as the learning objective of the non-linear classifier. We will

demonstrate the effectiveness of this oracle procedure when optimizing a non-linear

neural network with gradient descent in Appendix B.4.2. Nonetheless, even with

the above extension, all of our theoretical guarantees is not straightforwardly clear

to analysis with an oracle of non-linear models’ best response, so we let the current

paper focus on linear models.

4.6 Experiments

In this section, we present empirical results to benchmark our proposed method

on synthetic and real-world datasets. We test the effectiveness of our approach in

terms of its ability to incentivize improvement as well as to disincentivize manip-

ulation (see Evaluation Criteria for details). We also compare its performance

with other standard approaches (see Methods).

4.6.1 Setup

Datasets and Cost Matrix We consider five datasets:

1. toy, a synthetic dataset based on the causal DAG in Figure 4.1;

2. credit, a dataset for predicting whether an individual will default on an

upcoming credit payment [Yeh and Lien, 2009];

3. adult, a census-based dataset for predicting adult annual incomes;
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4. german, a dataset to assess credit risk in loans;

5. spambase, a dataset for email spam detection. The last three are from the

UCI ML Repository [Dua and Graff, 2017b].

We conducted all experiments on a 3 GHz 6-Core Intel Core i5 CPU. All our

methods have relatively modest computational costs and can be trained within

a few minutes. We provide a detailed description of each dataset along with a

partitioning of features in Table B.1 in the Appendix.

We assume the cost of manipulation is lower than that of improvement and

refer to the specific cost matrix S below. In particular, we specify the cost matrix

S as follows:

S−1
ij =



1, if i = j and i ∈ I

0.2, if i = j and j ∈ M

1, if the cost of changing features i and j are negatively correlated

−1, if the cost of changing features i and j are positively correlated

0, otherwise

We use the credit dataset as a demonstration of how we specify the non-diagonal

element in the cost matrix. For two feature variables that have a positive corre-

lation, e.g., CheckingAccountBalance and SavingsAccountBalance, we assign −1 to

the corresponding elements in the cost matrix S. For two feature variables that

have a negative correlation, e.g., CheckingAccountBalance and MissedPayments, we

assign +1 to the corresponding elements in the cost matrix. In practice, the cost

matrix S should be determined using domain expertise. The purpose of the cost

matrix used in these experiments is not to accurately specify costs per se, but to
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demonstrate the relative difficulty of changing different features.

Methods We fit linear classifiers for each dataset using the following methods:

ST, a static classifier trained using ℓ2-logistic regression without accounting for

strategic adaptation; DF, a classifier trained using ℓ2-logistic regression without

any manipulated features; MP, a classifier that considers the agent’s unconstrained

best response (i.e. with changes in any actionable features xA allowed) during

training, as typically done in the strategic classification literature [Hardt et al.,

2016a]; CA, a linear logistic regression classifier that results from solving the opti-

mization program in Equation (B.11), which is a smooth differentiable surrogate

version of the objective function Equation (4.7). Please refer to Appendix B.3 for

a detailed derivation. Using the BFGS algorithm [Byrd et al., 1995]. CA represents

our approach.

Evaluation Criteria We run each method with 5-fold cross-validation and report

the following:

• Test Error : the error of a classifier after training but before decision subjects’

adaptations, i.e. E(x,y)∼D1[h(x) ̸= y].

• (Worst-Case) Deployment Error : the test error of a classifier after decision

subjects play their manipulating best response, i.e. E(x,y)∼D1[h(x
M
∗) ̸= y].

• (Best-Case) Improvement Rate: the percent of improvement, defined as the

proportion of the population who originally would be rejected but are ac-

cepted if they perform constructive adaptation (improving best response),

i.e. E(x,y)∼D1[h(x
I
∗) = +1 | y(x) = −1].
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Figure 4.2: The trade-off between test error at deployment and improvement rate in the

cost matrix. We observe that the test error increases consistently with the improvement

rate.

4.6.2 Controlled Experiments on Synthetic Dataset

We perform controlled experiments using a synthetic toy dataset to test the

effectiveness of our model at incentivizing improvement in various situations. As

shown in Figure 4.1, we set Z1 and Z2 as improvable features, X1 and X2 as their

corresponding noisy proxies,M1 andM2 as manipulable features, and Y as the true

outcome. Since we have full knowledge of this DAG structure, we can observe the

changes in the true outcome after the decision subject’s best response. As shown

in Table 4.1, Our method achieves the lowest deployment error (20.61%) and the

best improvement rate (23.04%) when the model designer has full knowledge of the

causal graph.

We also run experiments in which some features are misspecified, simulating

realistic scenarios in which the model designer may not be able to observe all the
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Table 4.1: Performance metrics for different specifications (Spec.) in which features may

be misspecified. For each method, we report test error, deployment error, and improvement

rate. In Full, the model designer has full knowledge of the causal DAG. In Mis. I, M1 is

mistaken for an improvable feature. In Mis. II, the improvable feature X1 is miscategorized

as manipulable.

Methods

Spec. Metrics ST DF MP CA

Full

test error

deployment error

improvement rate

10.29

35.79

11.54

28.0

35.15

13.13

11.91

24.1

14.63

11.62

20.61

23.49

Mis. I

test error

deployment error

improvement rate

11.39

37.37

37.23

10.52

10.53

39.74

11.26

19.79

0.62

11.04

25.30

23.04

Mis. II

test error

deployment error

improvement rate

10.58

12.37

1.12

35.77

41.51

5.74

29.52

27.68

3.36

10.80

23.58

19.82

improvable features [Haghtalab et al., 2020, Shavit et al., 2020], or mistakes one

type of feature for another. We model these situations by changing M1 into an im-

provable feature and X1 into a manipulable feature; the results, shown in Table 4.1,

show that our classifier maintains a relatively high improvement rate in these cases,

without sacrificing much deployment accuracy.
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Table 4.2: Performance metrics for all methods over 4 real data sets with non-diagonal

cost matrix. We report the mean and standard deviation for 5-fold cross validation. The

constructive adaptation (CA) consistently achieves a high accuracy at deployment while

providing the highest improvement rates across all four datasets.

Methods

Dataset Metrics ST DF MP CA

CREDIT

test error

deployment error

improvement rate

29.52± 0.37

31.25± 0.56

46.35± 3.81

29.66± 0.40

29.66± 0.40

44.71± 4.75

29.65± 0.41

29.41± 0.32

36.76± 0.53

29.60± 0.44

29.49± 0.38

48.27± 5.50

ADULT

test error

deployment error

improvement rate

23.05± 0.47

38.64± 4.46

30.92± 3.31

33.55± 0.73

33.55± 0.73

60.63± 29.40

24.94± 0.52

26.85± 0.59

36.70± 1.62

27.22± 0.65

29.34± 0.45

63.79± 7.80

GERMAN

test error

deployment error

improvement rate

30.85± 0.82

33.40± 1.78

41.20± 5.77

36.10± 1.97

36.10± 1.97

42.10± 9.07

33.25± 1.44

34.60± 1.94

33.50± 2.53

34.70± 2.15

34.25± 1.78

56.10± 6.40

SPAMBASE

test error

deployment error

improvement rate

7.11± 0.52

22.40± 3.14

40.04± 13.06

10.18± 0.45

10.18± 0.45

32.46± 14.63

11.52± 0.12

12.92± 0.58

26.42± 4.80

14.37± 0.24

14.70± 0.36

43.98± 6.18

4.6.3 Results

We summarize the performance of each method in Table 4.2. To wrap up, our

method produces classifiers that achieve almost the highest deployment accuracy

while providing the highest percentage of improvement across all four datasets. The

static classifier, which does not account for adaptations, is vulnerable to strategic

manipulation and consequently has the highest deployment error on every dataset.

Naively cutting off the manipulated features may harm the accuracy at test time –

DF incurs high test errors on Adult (33.55%) and German (36.10%). In particular,

the strategic classifier MP induces the lowest improvement rates on the Credit

(36.76%) and German (34.50%) datasets.
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Effect of Trade-off Parameter λ. Figure 4.2 shows the performance of

linear classifiers for different values of λ on four real datasets. Note that, since the

objective function is non-convex, the trends for test error at deployment are not

necessarily monotonic. In general, we observe a trade-off between the improvement

rate and deployment error: both increase as λ increases from 0.01 to 10 in all four

datasets.

4.7 Conclusion and Limitations

In this work, we study how to train a linear classifier that encourages con-

structive adaption. We characterize the equilibrium behavior of both the decision

subjects and the model designer, and prove other formal statements about the pos-

sibilities and limits of constructive adaptation. Finally, our empirical evaluations

demonstrate that classifiers trained via our method achieve favorable trade-offs be-

tween predictive accuracy and inducing constructive behavior. Our work has several

limitations:

1. As a first foray into strategic classification with constructive adaptation, our

focus on linear threshold classifiers helps us capture the challenges unique

to this setting; indeed, this is ultimately what allows for a closed-form best

response (Theorem 4.4.2) even with a significantly more general cost function

than in preceding literature. However, this is clearly not true of many models

actually in deployment.

2. In order to focus on the strategic aspects of constructive adaptation, we as-

sume that the feature taxonomy is simply given; however, distinguishing im-

provable features from non-improvable features is an interesting question in
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its own right, and has been shown to be reducible to a nontrivial causal

inference problem [Miller et al., 2020].

3. In real-world scenarios, causal features are often intertwined with non-causal

features, and improving one may affect the other. While in our paper, we

simplify the setting by assuming independence between the effects, we ac-

knowledge that this is not always the case in practice. One potential way

to address this issue is to incorporate additional modeling techniques that

account for the causal interactions between features, such as causal inference

methods or structural equation modeling.
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Chapter 5

To Give or Not to Give? The Impacts

of Strategically Withheld Recourse

Individuals often aim to reverse undesired outcomes in interactions with auto-

mated systems, like loan denials, through system-recommended actions (recourse)

or manipulation actions (e.g., misreporting feature values). While providing re-

course benefits users and enhances system utility, it also increases transparency,

enabling more strategic exploitation by individuals, especially when groups share

information. We show that this tension could potentially lead systems to strate-

gically withhold recourse, challenging assumptions about universal recourse pro-

vision in current literature. We propose a framework to investigate the interplay

of transparency, recourse, and manipulation and demonstrate that rational utility-

maximizing systems frequently withhold recourse, leading to decreased population

utility, particularly impacting sensitive groups. To mitigate these effects, we explore

the role of recourse subsidies, finding them effective in increasing the provision of

recourse actions by rational systems.
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5.1 Is System Always Incentivized to Provide Recourse?

When individuals interacting with automated systems are denied a desired

outcome (e.g., loan approval), they may seek a means of reversing this decision to

obtain the desired outcome. This procedure is commonly referred to as recourse

[Ustun et al., 2019]. In cases where the system’s decision rule is opaque (e.g., lend-

ing), the system itself is responsible for supplying individuals with recourse, i.e.,

the system provides individuals with a minimum cost feature modification which is

both feasible for the individual to make and will result in that individual being ap-

proved. When feature improvements change an agent’s true qualification rate (e.g.,

paying off debt increases one’s creditworthiness), providing recourse can benefit the

system. This mutual benefit arises as the result of an increase in the true qualifi-

cation rate among the population, e.g., the number of creditworthy individuals to

whom the bank can lend increases.

However, by providing recourse actions, the system inadvertently reveals infor-

mation about its decision rule, as each recourse action corresponds with a positively

classified feature. This added transparency fosters opportunities for strategic indi-

viduals to exploit the system’s decision rule by manipulating their features, espe-

cially when they share their knowledge about the decision rule with one another. For

example, platforms like GradCafe for graduate school admissions and LendingClub

for loan applications allow agents to see the features of other applicants and po-

tentially misreport their features, leveraging publicly available information to their

advantage. Manipulation typically refers to altering the reported features—in other

words, deception—often resulting in incorrect predictions [Hardt et al., 2016a]. For

instance, individuals might inflate their income or misreport their loan purpose.
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This issue has been studied in the literature in strategic classification [Hardt et al.,

2016a, Chen et al., 2020a, Bechavod et al., 2022]. Such feature alterations are un-

desirable from a model-designer perspective because the true qualification of the

agent remains unchanged, even though their predicted outcome may be improved.

In the presence of greater manipulations, the system’s utility decreases, as the

system is more likely to make false positive errors. This natural tension results in

settings where providing recourse to all, or even most, agents is no longer in the

best interest of the system. This sharply contrasts with the common assumption in

the algorithmic recourse literature, which typically considers agents taking recourse

actions without the possibility of manipulation. In practice, systems are aware of

the possibility of strategic agents’ manipulations; for example, the existence of tax

audits 1 serves as a simple example of such an awareness. As such, systems may

strategically withhold recourse in the face of possible manipulations, jeopardizing

the practicality of recourse in real-world settings. In particular, when the detriment

of added transparency is too great, the system’s choice not to provide recourse

decreases the overall welfare of the population.

High-Level Overview of Our Model We first provide a high-level overview of

our modeling framework using terms and notation that will be rigorously defined

later. We model recourse providing in the presence of strategic and collective be-

havior as a game between a system and a set of n agents where the system can

strategically not offer recourse to all agents. Each agent can be represented by a

feature vector x ∈ X . The system trained a fixed, potentially opaque function

f : X → [0, 1] to decide who to provide a loan based on the feature vector x.

1https://www.irs.gov/businesses/small-businesses-self-employed/irs-audits
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The system is also responsible for providing recourse actions to negatively classified

agents after they receive their prediction outcome. The central tension comes from

the fact that agents can both (1) lie about their features and manipulate them to

some publically known positively classified features and (2) take the recommended

recourse actions that change their true features. The publically known features

mainly come from either agents who are already classified positively, or agents

who have successfully obtained a recourse action from the system. The latter is

more within the control of the system. Thus, the system’s main tool to combat

this is strategically withholding recourse actions to the agents to maximize utility.

Based on the relative cost of recourse and manipulation, agents choose to take the

recommended action or manipulate known positively classified features.

Main Results With the modeling framework described above, our result shows

that in many settings, the system is incentivized to strategically withhold recourse

from most, if not all, agents. As far as we know, our work is the first to challenge

this fundamental assumption and argues that without a third-party’s intervention

(e.g., the government regulation), a utility-maximizing algorithmic recourse system

may be incentivized to withhold recourse from some agents to prevent manipula-

tions strategically. As the system provides recourse to fewer agents, the social cost,

i.e., the average cost required to achieve positive classification, increases. When

the system chooses to withhold recourse actions, fewer agents can access positive

classification through legitimate means. This lack of a legitimate path towards pos-

itive classification also results in larger portions of individuals having manipulation

as their only means of achieving positive classification. The increased social cost

associated with lower recourse rates can fall disproportionately on disadvantaged
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groups, meaning that strategically withheld recourse can further existing disparities

in populations. To combat the negative effects of strategically withheld recourse

and to increase the rate at which the system provides recourse, we investigate the

use of recourse-subsidies, which are third-party payments that decrease the cost of

recourse. As the cost of recourse decreases, more agents will choose recourse over

manipulation. We find that subsidies are an effective tool to increase the number

of agents who are provided recourse actions by a rational system.

5.1.1 How Does Our Work Relate to the Surrounding Literatures?

Our work is closely related to the literature on algorithmic recourse, strategic

classification, and fairness in general.

Recourse Much of the works in recourse focus on the setting where the requested

recourse is guaranteed to be provided out of ethical consideration [Venkatasubra-

manian and Alfano, 2020]. Our work is the first to challenge this fundamental as-

sumption and argue that without a third-party’s intervention, a utility-maximizing

algorithmic recourse system may be incentivized to strategically withhold recourse

from some agents to prevent manipulations.

Strategic Classification Our work considers a specific type of strategic behav-

ior, namely the imitation-based manipulations: agents do not know the classifier

f but are aware of a set of positively classified features and can misreport their

feature by imitating another agent’s feature that is positively classified. Such copy-

cat behavior has been well-known in the literature of game theory, the behavioral

economy, and strategic classification, e.g., [Bechavod et al., 2022, Barsotti et al.,

2022]. While most of this line of work focuses on agents being strategic and could
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potentially modify their features to get a favorable prediction outcome, our work

focuses on when the system is being strategic and potentially withholds recourse to

the agents.

Fairness and Social Cost in Recourse and Strategic Classification Fair-

ness has been explored in the literature algorithmic recourse and strategic classifi-

cation. For example, existing works on fairness in recourse emphasize the impor-

tance of equitable recourse and explore various remedying unfair recourse decisions

[Gupta et al., 2019, von Kügelgen et al., 2022, Ehyaei et al., 2023]. Fairness with the

presence of strategic behavior has featured studies that highlight the inequity that

results from strategic behavior by individuals [Hu et al., 2019], as well as inequity

(e.g., social cost) resulting from making classifiers robust to strategic behavior [Milli

et al., 2019, Estornell et al., 2023a]. Unlike previous work that primarily focuses on

proposing fair classifiers with the presence of strategic agents, our work uniquely

demonstrates how the system’s strategic withholding impacts the fairness and social

cost for different societal groups.

Transparency Works on transparency in machine learning are also related. In

particular, Barsotti et al. [2022] find that the risks of transparent explanations are

alleviated if effective methods to detect faking behaviors are in place. Unlike our

modeling framework, they model transparency as how much noise is in the threshold

of a threshold classifier. Akyol et al. [2016] examines the impact of users’ strategic

behavior on the design and performance of transparent machine learning algorithms,

quantifying the ”price of transparency” as the cost ratio for the algorithm designer

when users exploit transparency compared to when the algorithm is opaque.
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5.2 Preliminaries

Let X ⊂ Rd and Y ≡ {0, 1} be a domain of features and labels respectively.

Let f : X → Y be a binary classifier. A population of n agents with features

X = {x : x ∈ X } and labels Y ⊂ Y are classified by f ; all agents desired to be

positively classified (e.g., all loan applicants desire approval). The classifier f is

unknown to agents. Denote the domain of negatively classified features as X− and

the domain of positively classified features as X+, i.e. f(x) = 0 for all x ∈ X−

and f(x) = 1 for all x ∈ X+. All agent prefer positive classification over negative

classification. For example, in the context of lending, where f(x) = 1 corresponds

to an agent being granted a loan, all agents prefer to have their loans approved,

over having their loans denied. Agents who have features x ∈ X− have two means

of obtaining positive classification, recourse and manipulation which are defined

next.

Recourse Recourse is defined as the ability of an agent to obtain a desired out-

come from a fixed model Ustun et al. [2019]. Let cR : X × X → R+ be the cost

of recourse, i.e. an agent with true features x pays cost cR(x,x
′) when modifying

their features to be x′. An agent with true feature x ∈ X− has optimal recourse

action,

xR(x) = argminx′∈X+
cR(x,x

′) (5.1)

s.t. f(x′) = 1, x′ ∈ A(x) (5.2)

Where A(x) is the set of all features that can be feasibly obtained by an agent

with true features x, i.e., A(x) is the set of all actionable recourse actions, specified

by the system. When agents perform recourse, both their true features and true
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qualification rate change, i.e., their true features become xR(x), and their true

qualification rate becomes P(y = 1|xR(x)).

Manipulation In addition to recourse, agents can also perform manipulations.

Following Barsotti et al. [2022], we focus on imitation-based manipulations: agents

do not know the classifier f , but are aware of a set of publically revealed positively

classified features Z ⊆ X+ (defined below) and can misreport their feature by

imitating another agent’s feature that is positively classified. For a manipulation

cost function cM : X ×X → R+ the optimal manipulation for an agent with true

feature x is

xM (x) = arg min
x′∈Z

cM (x,x′) (5.3)

Remark 5.2.1 (Difference between Recourse and Manipulation). Recourse changes

the agent’s true features – when their features become xR(x), and their true quali-

fication rate becomes P(y = 1|xR(x)).. In contrast, manipulation is simply a mis-

report (rather than a change) of one’s features and thus does not change Pr[y|x].

However, since the system only observes the reported features before classification,

it does not know whether a report is truthful.

Remark 5.2.2 (Terminology). Throughout this chapter, we will interchangeably

use the terms ’recourse action’ and ’recourse feature’. They both refer to the feature

vector that will be classified positively after the agent’s taking a particular recourse

action. In other words, we assume that whenever an agent reveals their recourse

action, it also reveals their original feature vector, which is equivalent to revealing

the feature vector that corresponds to the vectorafter the agent performs recourse.
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Feature Disclosure and Publically Revealed Set Z We model the set of

publically known features Z ⊆ X+ resulting from agents sharing information with

each other. In particular, the revealed set Z is composed of features from two sets:

1) the revealed recourse actions recommended by the system (i.e., z ∈ XR where

XR = {xR(x),x ∈ X−}), and 2) the set of initial positively classified features (i.e.,

z ∈ X+). Each element is made public with a fixed probability p ∈ [0, 1], and all

publically revealed elements make the reveal set Z. We represent the set of recourse

actions that are actually revealed as ZR = {z ∈ XR : Reveal(z) = 1}. Here,

Reveal(z) is a random indicator function that equals 1 with probability p (indicating

that feature z is revealed) and 0 otherwise. Similarly, let Z+ represent the positively

classified features that are actually revealed: Z+ = {z ∈ X+ : Reveal(z) = 1}. As

a result, Z = ZR ∪ Z+.

This aims to capture the real-life scenarios where negatively classified agents

act collectively to gather information about the classifier f , either by observing the

features of their peers who are already classified positively by f , or by observing

their peers who have successfully obtained a recourse action from the system.

5.3 Interaction between Agents and the System

Different from the traditional recourse setting where the system is always sup-

posed to offer recourse to individuals requesting them, without any assumptions on

regulation from external parties (e.g., the government may force the bank to provide

recourses to any individual), a utility-maximizing system may have incentives to

withhold recourse to prevent the manipulation behavior from agents strategically.

In this section, we introduce our modeling framework to capture such dynamics.
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A Motivating Example of Our Model With the above idea in mind, we begin

with a motivating example. A bank publishes a classifier to decide who to issue

a credit card. Each applicant (with application x) is approved for the card if the

bank’s model predicts that the applicant could repay their loan. For agents denied

credit cards, the bank may offer them access to recourse, i.e., a plan for making the

applicant more creditworthy, such as paying off their outstanding debt or increasing

income. Such recourse actions are provided through specific programs, e.g., offering

financial classes for the agents to take. Agents also have access to an online forum

where some applicants share their approved loan or recourse features with the

public. Thus, with knowledge of both the recourse actions and the online forum,

agents may misreport their features to potentially positively classified features to

get approved instead of taking the recommended recourse actions. Thus, the bank

has the incentive to only offer recourse to a fraction of individuals whose recourse

features are not that easily misreported (e.g., it is easier for the bank to verify

later).

5.3.1 Formulating the Dynamic between the System and Agents

We now formalize the dynamics as a sequential game between the system and

the agents.

System The system trains a classifier f : X → Y to maximize the prediction

accuracy: f = argmaxf∈F

∑
x∈X 1[f(x) = y]. A collection of negatively classified

agents with features X− ⊆ X− will request recourse actions from the system after

receiving their prediction outcome. The system first computes optimal recourse

actions for all negatively classified agents but only chooses to release a subset of
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those recourse actions ZR ⊂ XR to the public to maximize its utility, i.e., TP−FP:

(System’s Objective) : max
ZR⊂XR

TP(S)− FP(S)︸ ︷︷ ︸
system’s utility

(5.4)

where S = {z(x,Z) : x ∈ X},︸ ︷︷ ︸
the set of features after agent’s

final actions described in Equation (5.5)

and Z = ZR ∪ Z+︸ ︷︷ ︸
the set of all publically revealed features,
including revealed recourse features ZR
and positively classified features Z+

TP(S) and FP(S) are the true positive and false positive rates on the set of features

after the agent’s final actions. We assume that the system either knows cR and cM ,

or can reasonably approximate these cost functions when optimizing their objective.

Intuitively, this definition of system utility captures a bank gaining a utility of 1

for every loan that is repaid and −1 for each loan that is not repaid.

Agents: Agents who are already positively classified will keep their original fea-

ture x. Agents who are negatively classified will request a recourse action from the

system. Upon seeing the publically revealed features Z defined in Section 5.2, agents

who are provided with a recourse action adapt their features from x to z = xM (x)

or z = xR(x) such that f(z) = 1, while minimizing the cost of the corresponding

action. When both the recourse and manipulation actions are greater than 12, the

agents will choose to stay with their original features x, which corresponds to the

do-nothing action. Agents who are not provided with a recourse action will choose

to manipulate or do nothing. For already positively classified agents, their final

action is always the do-nothing action.

Agent’s Best Response Denote ζx ∈ {0, 1} as an indicator for whether agent

x is provided with a recourse or not (i.e., ζ(x) = 1 when provided with a recourse

2The strategic agent’s utility for adapting their feature from x to x′ is determined by the
standard utility function in the literature of strategic classification (see, e.g., Hardt et al. [2016a]),
which is U(x, x′) = f(x′)− c(x, x′). Thus, when the cost of adaptation c(x, x′) ≥ 1, the utility will
be less than 0, in which case, the agent does nothing.
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action). Then for all agents with f(x) = 0, their final action is:

z(x, Z) =



xR(x) ζx = 1 and cR(x,xR(x)) < min(1, cM (x,x′)),

∀x′ ∈ Z

xM (x) ζx = 1 and cM (x,xM (x)) < min(1, cR(x,x′)),

∀x′ ∈ Z, or ζx = 0 and cM (x,xM (x)) < 1

x ζx = 1 and cR(x,xR(x)), cM (x,xR(x)) ≥ 1,

∀x′ ∈ Z, or ζx = 0 and cM (x,xM (x)) ≥ 1

(5.5)

Summary of System-Agent Interaction

1. Agents arrive simultaneously, and the system trains a classifier f : X → Y

for maximum prediction accuracy.

2. Negatively classified agents request recourse, and the system selects agents

for recourse provision to maximize utility (Equation (5.4)).

3. Positively classified agents and those provided recourse have a probability

p ∈ [0, 1] to reveal features, contributing to the publicly revealed set Z ⊆ X+.

4. Upon observing Z, agents execute final actions based on Equation (5.5).

Our framework is intended to capture settings where black box models are used

for decision-making. Any agent subjected to the decision rules will not have direct

access to the model but will still act in their own best interest. In these opaque

settings, recourse proposed by the system naturally offers a way for agents to learn

more about the decision rule, thus increasing their ability to game the system. The

tension between transparency and manipulability exists naturally; our framework,

while stylized, is a means of capturing this tension when recourse increases model

transparency.
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5.3.2 Useful Definitions

We also provide two definitions to aid the discussions of strategic withheld

algorithmic recourse systems.

Definition 5.3.1. (Recourse Rate) Let X− be the set of features of negatively

classified agents. For a given set of disclosed features (i.e., recourse actions) Z, the

recourse rate rec(Z,X−) is defined as the fraction of agents who choose to perform

recourse when shown Z:

rec(Z,X−) =

∑
x∈X−

1
[
min
z′∈Z

cR(x, z
′) < min

(
1, min

z′′∈Z
cM (x, z′′)

)]
|X−|

Definition 5.3.2. (Manipulation Rate) Let X− be the set of features of the

negatively classified agents. For a given set of disclosed features (i.e., recourse

actions) Z, the manipulation rate manip(Z,X−) is defined as the fraction of the n

agents which choose to manipulate when shown features Z:

manip(Z,X−) =

∑
x∈X−

1
[
min
z′∈Z

cM (x, z′) < min
(
1, min

z′′∈Z
cR(x, z

′′)
)]

|X−|

5.4 System Utility

Recall from the previous section, the system aims to select a set ZR ⊆ XR

to reveal as recourse recommendations simultaneously in order to minimize the

number of agents who perform manipulation. We can first show that this problem

is NP-hard:

Theorem 5.4.1 (Strategic Recourse Selection is Hard). The problem of selecting

the optimal set of recourse actions to recommend, such that the system’s utility

is maximized (Equation 5.4), is NP-hard, even when the probability of disclosure

p = 1.
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Proof Sketch. We reduce from the known NP-hard problem Minimum k-Union

(MkU). Given an instance of MkU, we show that it can be mapped to an instance

of our strategic recourse selection problem. We defer the rest of the proof to the

appendix.

Despite the hardness of this objective, the system’s utility is submodular in the

set of provided recourse actions. This characteristic enables the system to employ

standard submodular optimization techniques to approximately get the optimal

recourse actions to disclose to k agents.

Theorem 5.4.2 (System’s Utility is Submodularity). The system’s objective func-

tion is submodular with respect to the size of the set of revealed features.

Proof Sketch. We defer the full proof to the Appendix. The intuition for this result

follows from the fact that agents will select their action (recourse, manipulation, or

do nothing) based on the set of publicly revealed features Z and the recourse action

recommended to them by the system xR. An agent who is given a recourse action

will only manipulate if there exists some x′ ∈ Z such that cM (x,x′) < cR(x,xR).

Let X ′
x = {x′ ∈ X+ : cM (x,x′) < cR(x,xR)} be the set of all such features for

a given agent with true features x. Then the probability that this agent performs

manipulation, i.e., the probability that some x′ ∈ X ′
x is revealed, is concave in the

number of recourse actions recommended to other agents which are in X ′
x (this is

due to the fact that each such feature is made public with probability α).

Remark 5.4.3. When the disclosure probability p = 1, the optimal set of recourse

features to disclose can be found via an ILP (see Appendix C.2).
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5.4.1 Disconnect between System’s Utility and Offering Recourse

We now demonstrate that the system’s utility maximization and recourse max-

imizing are not always equivalent. We first show that, in expectation, the system

benefits from agents taking recourse actions:

Theorem 5.4.4 (System’s Expected Utility Changes). The system’s expected util-

ity increases for each recourse action taken by agents and decreases for every ma-

nipulation action taken by agents.

Proof. Notice that only agents x ∈ X(0) who are originally negatively classified

would request a recourse from the system in the first place, and both the recourse

action and the manipulation actions that they are potentially going to take will

be positively classified by the system. From the system’s perspective, when the

classifier is non-trivial (better than random guessing), all positively classified x are

more likely to have true label y = 1, and all negatively classified x are more likely

to have true label 0. When an agent with feature x takes recourse, the expected

system utility change is:

∆(System’s Utility)(x → zR)

=
(
1[y(zR) = 1, f(zR) = 1]− 1[y(zR) = −1, f(zR) = 1]

)
− 0

= 2Pr[y(zR) = 1|X = zR]− 1 ≥ 0 (f is a non-trivial classifier, and f(zR) = 1)

Similarly, when the agent takes manipulation, the expected system utility change

is:

∆(System’s Utility)(x → zM )

=
(
1[y(x) = 1, f(zM ) = 1]− 1[y(x) = −1, f(zM ) = 1]

)
− 0

= 2Pr[y(x) = 1|X = x]− 1 ≤ 0 (Since f is a non-trivial classifier, and f(x) = 0)
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When the agent performs do-nothing, the system utility remains the same.

Thus, we see that the system will benefit from agents taking a recourse action

while suffering from agents taking a manipulation action. However, this does not

imply that the system is always incentivized to provide as many recourse actions

as possible since agents might not always take them if they collude, which creates

a natural misalignment between the system’s utility and recourse offering for the

system.

5.5 Cost of Manipulation-Proof System

Having shown that the system could potentially be incentivized to withhold re-

course from the agents, what are the consequences from the agent’s perspective? In

this section, we study the consequence of increased system manipulation-proofness,

by proposing several metrics, including the social cost (Section 5.5.1), the differ-

ence in recourse ratio as well as the social cost for social groups (Section 5.5.2), and

demonstrate our results in the experimental section.

5.5.1 Social Cost and Unfairness of Manipulation-proofness

How much has the average recourse cost increased due to the principal not

providing optimal recourse actions for everyone due to the risk of agents manipu-

lating? In particular, we propose the following definition to capture the social cost

for a manipulation-proofness system:

Definition 5.5.1. (Social Cost of a Manipulation-proof System) Given a

particular set S ⊆ Z that select k actions to reveal as recourse recommendations,

the social cost from the principal being manipulation-proof refers to the additional
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cost agents must pay because the system recommends sub-optimal recourse actions to

limit the total amount of manipulation. Denote xR as the optimal recourse action

provided by a non-strategic system, and zR(x,Z) as the recourse action that the

agent takes given the revealed set Z:

cost(Z,X−) =
∑

x∈X−

(
cR(x, zR(x,Z))− cR(x,xR)

)
,where zR(x,Z) = argmin

z∈Z
cR(x, z)

For the remainder of our results, we focus on univariate classifiers, i.e., the

feature x is one-dimensional. There is a natural correspondence between univariate

and multivariate classifiers in the sense that one can imagine the space of single-

dimensional features as the scores produced a multi-dimensional classifier f(x) (see,

e.g., Lemma 3.1 in Milli et al. [2019]). Here, there is a natural equivalence between

feature-based costs in a single dimension and score-based costs in multiple dimen-

sions – that is, in the case when f(x) = [h(x) ≥ θ] for some score function h and

threshold theta, we can view f as a single dimensional classifier acting on the space

of scores produced by h.

Theorem 5.5.2 (Monotonicity of Social Cost). When the recourse cost cR(x, x
′)

is monotonic in ∥x− x′∥, and consider a linear threshold classifier. The social cost

monotonically decreases in the easiest obtained recourse action.

Proof. Consider a 1-dimensional setting, where the system uses a linear threshold

classifier f(x) = 1[x ≥ τ ]. In this case, the optimal recourse action for any agent is

always the minimum recourse action that has been revealed so far, namely zmin =

minz∈Z z. Recall the definition of the social cost:

cost(Z,X−) =
∑

x∈X−

(cR(x, zR(x,Z)− cR(x,xR)) ,where zR(x,Z) = argmin
z∈Z

cR(x, z)
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When the cost function is monotonic in the ℓ2 norm, e.g., cR(x, x
′) = wR · ∥x−x′∥,

we have

cR(x, zR(x,Z)) = wR · ∥x− zR(x,Z)∥ = wR ·min
z∈Z

∥x− z∥ = wR ·
(
min
z∈Z

z − x

)
cR(x,xR) = wR · ∥x− xR∥ = wR · ∥x− τ∥ = wR · (τ − x)

Thus,

cost(Z,X−) =
∑

x∈X−

(cR(x, zR(x,Z))− cR(x, zR))

=
∑

x∈X−

[
wR ·

(
min
z∈Z

z − x

)
− wR · (τ − x)

]

= |X−| · wR ·
(
min
z∈X−

z − τ

)

As the size of Z gets larger (more recourse actions get revealed), minz∈Z z will be

non-increasing, which means that cost(Z,X−) is monotonically decreasing.

Theorem 5.5.2 provides intuitions on the relationship between social cost and

the size of the sets of recourse actions. As the size of Z gets larger, zmin = minz∈Z z

is only going to be non-increasing, indicating that social cost will be non-decreasing

as the size of the revealed set becomes larger.

5.5.2 Unfairness in a Manipulation-Proof System

We also measure the disparities of different social groups in terms of their dif-

ferences in 1) recourse ratios (defined in Definition 5.3.1) and 2) social cost (defined

in Definition 5.3.1). Understanding the disparities in terms of recourse rate and so-

cial cost among different groups is crucial for addressing issues of unfairness in an

algorithmic recourse system [Gupta et al., 2019, von Kügelgen et al., 2022]. These
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disparities often reflect systemic biases and inequalities, impacting marginalized

communities disproportionately.

In particular, assume there are two groups of agents X(g0) and X(g1), where

g0, g1 represents their group memberships, we are interested in the following quan-

tities:

Definition 5.5.3. (Disparity in Social Cost) The disparity in social cost for

two group g0, g1 is defined as:

Diff(cost)(Z,X(g0),X(g1)) :=
∣∣∣cost(Z,X(g1)

− )− cost(Z,X
(g0)
− )

∣∣∣
Definition 5.5.4. (Disparity in Recourse Ratio) The disparity in recourse

ratio for two group g0, g1 is defined as:

Diff(rec)(Z,X(g0),X (g1)) :=
∣∣∣rec(S,X(g1)

− )− rec(Z,X
(g0)
− )

∣∣∣
In the experiments section, we demonstrate the vast existence of these dis-

parities across different datasets (see Figure 5.5 and Figure 5.6). By quantifying

and illuminating these disparities, we gain crucial insights into the specific mecha-

nisms of inequity and injustice within algorithmic recourse systems. This in-depth

understanding is pivotal, particularly in comprehending how systems that aim to

maximize utility might strategically withhold recourse, thereby exacerbating these

disparities. Recognizing and addressing this interaction is vital for the recourse

community, as it directly impacts the development of fairer and more effective poli-

cies and practices. It not only aids in the formulation of more equitable systems

but also plays a significant role in raising public awareness.
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5.6 Subsidies

As a means to remedy the adverse population- and group-level impacts previ-

ously observed, we investigate the use of subsidies (rigorously defined next). Sub-

sidies correspond to a global decrease in the cost of recourse. For example, free

educational material on financial literacy distributed to any agent petitioning the

bank for recourse will increase the ease at which that agent can perform recourse

actions. It is important to note that our investigation does not focus on the mon-

etary value required to achieve a particular cost reduction but rather focuses on

the question of how particular cost decreases change both the willingness of the

system to provide recourse as well as the agents’ choice of performing recourse over

manipulation.

Definition 5.6.1. (Subsidies) [Hu et al., 2019] A subsidy 0 ≤ α ≤ 1 is a scalar

decrease to the cost of recourse. That is, for subsidy α, agents performing recourse

pay only (1− α) · cR(x,x′) instead of the full cost of cR(x,x
′).

We denote cR(x, x
′;α) = (1−α) · cR(x,x′) as the new recourse cost at subsidy

level α.

5.6.1 The Effect of Subsidy on Recourse Rate, Social Cost, Un-

fairness in Manipulation-Proof System

In the previous section, we observed that when a utility-maximizing system

recognizes the potential for agents’ manipulative behavior, it may strategically

withhold recourse. This action can lead to increased social costs and unfairness

for the agents. In this section, we demonstrate how subsidy help increase the re-

course rate (Theorem 5.6.2) and system’s utility (Theorem 5.6.4). Additionally,
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subsidies can mitigate disparities in recourse rate differences (Theorem 5.6.6) and

social cost differences (Theorem 5.6.5) among various groups.

Subsidies and Recourse Rate We first show how subsidies influence the re-

course rate. Recall that subsidy reduces the cost of recourse from cR(x, x
′) to

cR(x, x
′;α). With that, the recourse rate becomes:

rec(Z,X−;α) =

∑
x∈X−

1

[
min
z′∈Z

cR(x, z
′;α) < min

(
1, min

z′′∈Z
cM (x, z′′)

)]
|X−|

The key observation we make here is that with subsidy α, the cost of recourse

becomes (1 − α) · cR(x, z′) but the cost of manipulation remains the same. Both

optimal recourse actions zR and the optimal manipulation action zM remain the

same. With that, we can show that the recourse rate is a monotonic function in

subsidy, namely as the subsidy level increases, the recourse rate will also increase:

Theorem 5.6.2 (Subsidy Influence on Recourse Rate). Given a reveal set Z, the

recourse rate rec(Z,X−, α) is a monotonically increasing function of subsidies α.

Proof. Recall that given a revealed set Z, with subsidy α, the corresponding re-

course rate becomes:

rec(Z,X−;α) =

∑
x∈X−

1

[
min
z′∈Z

cR(x, z
′;α) < min

(
1, min

z′′∈Z
cM (x, z′′)

)]
|X−|

In particular, with subsidy α, the cost of recourse becomes (1 − α) · cR(x, z′), the

cost of manipulation remains the same. Both optimal actions zR and zM remain

the same.
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Thus, for the nominator, we have:

∑
x∈X−

1

[
min
z′∈Z

cR(x, z
′;α) ≤ min

(
1, min

z′′∈Z
cM (x, z′′)

)]

=
∑

x∈X−

1

[
min
z′∈Z

(1− α) · cR(x, z′) ≤ min
(
1, min

z′′∈Z
cM (x, z′′)

)]

=
∑

x∈X−

1

[
(1− α) ·min

z′∈Z
cR(x, z

′)︸ ︷︷ ︸
fixed

≤ min
(
1, min

z′′∈Z
cM (x, z′′)︸ ︷︷ ︸

fixed

)]

=
∑

x∈X−

1

[
(1− α) · min

z′∈Z
cR(x, z

′)︸ ︷︷ ︸
fixed for a particular x

≤ min
(
1, min

z′′∈Z
cM (x, z′′)︸ ︷︷ ︸

fixed for a particular x

)]

=
∑

x∈X−

1

[
α ≥ 1−

min
(
1, min

z′′∈Z
cM (x, z′′)

)
min
z′∈Z

cR(x, z′)︸ ︷︷ ︸
fixed for a particular x

]

As α becomes larger, this quantity will be non-decreasing. This implies that the

recourse rate is a monotonically non-decreasing function of subsidy for a given

revealed set Z.

Subsidy and Social Cost With subsidy α, the social cost for a given revealed

set Z becomes:

cost(Z,X−;α) =
∑

x∈X−

(
cR(x, zR(x,Z;α);α)− cR(x,xR;α)

)
where zR(x,Z;α) = argminz∈Z(1−α)cR(x, z) is the optimal recourse action given

revealed set Z and a particular subsidy level α, and xR is the optimal default

recourse action provided by the system without any strategic withholding. We can

show that the social cost is also a monotonic non-increasing function in the subsidy

level:

Theorem 5.6.3 (Subsidy Influence on Social Cost). Given a revealed set Z, the

social cost cost(Z,X−;α) is monotonically decreasing in subsidies.
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Subsidy with System’s Utility Subsidies also help improve the system’s utility.

In particular, we show that under certain assumptions on the cost functions (i.e.,

monotonic in the distance and only cross once), the system’s utility is monotonic

in subsidies as well:

Theorem 5.6.4 (Subsidy’s Influence on System’s Utility). Given a revealed set Z,

when both cR(x, x
′) and cM (x, x′) are monotonic in ∥x − x′∥ and only cross once,

the system utility is monotonically increasing in subsidies.

Again, the key observation is that with subsidy α, the cost of recourse decreases

and becomes (1 − α) · cR(x, z′), but the cost of manipulation remains the same.

Thus, more agents will choose to perform recourse over manipulation, leading to

more increases in true positives for the system, which further leads to an increase

in system’s utility.

Subsidy and Social Cost Difference Next we examine the difference in social

cost between groups as a function of subsidies. We find hat subsidies are an effec-

tive tool at mitigating disparities caused by the system strategically withholding

recourse.

Theorem 5.6.5 (Subsidy Influence on Social Cost Disparity). With subsidy α, the

disparity in social cost for two group g0, g1 becomes:

Diff(cost)(Z,X(g0),X(g1);α) :=
∣∣∣cost(Z,X(g1)

− ;α)− cost(Z,X
(g0)
− ;α)

∣∣∣
Given a revealed set Z, the social cost difference monotonically decreases in subsi-

dies.
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Proof. Recall the definition of social cost difference:

Diff(cost)(S,X
(g0)
− ,X

(g1)
− ) :=

∣∣∣cost(S,X(g1)
− )− cost(S,X

(g0)
− )

∣∣∣
Again, consider a 1-dimensional setting, where the system uses a linear threshold

classifier f(x) = 1[x ≥ τ ]. In this case, the optimal recourse action for any agent

is always the minimum recourse actions that has been revealed so far, namely

zmin = minz∈Z z. Recall from the proof for social cost with subsidy, we have for a

particular set X :

cost(Z,X, α) = (1− α) · |X| · wR ·
(
min
z∈Z

z − τ

)

Plug it back to the definition of social cost difference at a certain subsidy level, we

have:

Diff(cost)(Z,X(g0),X(g1);α)

=
∣∣∣cost(Z,X(g1))− cost(Z,X(g0))

∣∣∣
=

∣∣∣∣(1− α) · |X(g0)
− | · (min

z∈Z
−τ)− (1− α) · |X(g1)

− | · (min
z∈Z

−τ)
∣∣∣∣

=

∣∣∣∣(1− α) · (|X(g0)
− | − |X(g1)

− |) · (min
z∈Z

−τ)
∣∣∣∣

which is monotonically decreasing as α increases.

Intuitively, as we increase the subsidy level, the cost of recourse decreases

linearly as a function of the subsidy level, making it increasingly cheaper to perform

the optimal recourse action. For both social groups, their social cost approaches 0

as we increase the subsidy level; as a result, the disparity in social cost between the

two groups also decreases to 0.
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Subsidy and Recourse Rate Difference With subsidy α, for a given a revealed

set Z, the disparity in recourse ratio for two group g0, g1 becomes:

Diff(rec)(Z,X(g0),X(g1);α) :=
∣∣∣rec(Z,X(g1)

− ;α)− rec(Z,X
(g0)
− ;α)

∣∣∣
where rec(Z,X

(gi)
− ) is the recourse rate for a particular subgroup gi. We show that

when subsidies are sufficiently large, the recourse rate difference is monotonically

decreasing in subsidies:

Theorem 5.6.6 (Subsidy’s Influence on Recourse Rate Disparity). Given two

groups g0 and g1 of relatively equal negatively classified agents size |X(g0)
− | ≈ |X(g1)

− |,

there exists a subsidy level 0 ≤ α∗ ≤ 1, such that ∀α ≥ α∗, the recourse rate differ-

ence monotonically decreases.

This result follows from the fact that when recourse is free, i.e., subsides are

maximized, all agents can perform recourse and the recourse rate difference is 0.

Thus, as subsidies increase there must exist a point (namely α∗) when both groups

are able to take advantage of subsides at proportional rates, thus decreasing the gap

between the number of agents performing recourse in both groups. We also verify

empirically that for recourse rate difference, there indeed exists a peak subsidy value

α∗ where the recourse rate difference increases before and then decreases afterward

(see Figure 5.7).

5.7 Empirical Studies

Setup We conduct experiments using three datasets: 1) Law School Wightman

and Council [1998] dataset, in which the objective is to predict whether a student

will pass the bar exam on the first attempt, Adult Income Dua and Graff [2017b]
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in which the objective is to predict whether an individual earns more than 50K

annually, and German Credit Yeh and Lien [2009] in which the objective is to

predict whether a given individual will not default on their credit.

In each dataset, agents have constant utility over approved features, i.e., the

conventional recourse setting where ua(x) = 1 for all x; the principal (system) has

utility up(x) = 1 when the agent is a true positive (y = 1, f(x) = 1) and up(x) = −1

when the agent is a false positive (y = −1, f(x) = 1).

Qualification is predicted via a Logistic Regression model. Additionally, we

present outcomes using a Gradient Boosting Decision Tree as the classifier across all

datasets, where we observe comparable results. We defer the plots to Appendix C.8.

Recourse and manipulation both carry an ℓ2 cost, namely cR(x, z) = ∥wR ·(x−z)∥2,

and cM (x, z) = ∥wM · (x− z)∥2. In our experiments, we report outcomes over 100

runs using randomly initialized wR and wM and resampled subsets of positive and

negative agents in the dataset in each run. We use the local search method provided

in Orso et al. [2015] to compute the set of recourse actions that the system provides

to agents. We set the probability that agent discloses their feature publicly at

p = 0.7 for all experiments (when varying this value we observe qualitatively similar

results).

Recourse Rate and Manipulation Rate We begin by examining the relation-

ship between the fraction of the population choosing to perform recourse, and the

fraction choosing to perform manipulation, as a function of the fraction of agents

who are given a recourse action. Recall that 0 subsidy, i.e. sub = 0, is equivalent

to the setting with no subsidies. In Figures 5.1 and 5.2, we see that in general,

as the percentage of agents who are provided a recourse action increases, recourse
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(a) Law (b) Adult

(c) Credit

Figure 5.1: Fraction of the population performing recourse, with 95% confidence intervals.

Each line corresponds to a different subsidy ratio “subs”, i.e., the cost reduction applied to

recourse.

rate decreases while manipulation rate increases (this trend holds for each subsidy

value). Thus, when agents themselves can strategically select between recourse

and manipulation, the increased model transparency, created by providing more

agents with recourse actions, results in more agents selecting to perform manipula-

tion. Providing more recourse actions to agents, does not necessarily result in more

agents performing recourse.

Despite this general trend, we also observe the effectiveness of subsidies. As

subsidies converge to 1 (meaning recourse carries no cost), the fraction of agents

choosing recourse converges to 1, while the fraction of agents choosing manipulation
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(a) Law (b) Adult

(c) Credit

Figure 5.2: Fraction of the population performing manipulation, with 95% confidence in-

tervals. Each line corresponds to a different subsidy ratio “subs”, i.e., the cost reduction

applied to recourse.

converges to 0. While it may be expensive in general to provide such subsides,

and the question of how balance this expense against the system’s own utility

remains open, these results indicate that subsides are an effective avenue for broadly

promoting recourse and disincentivizng manipulation.

Social Cost and System Utility In Figure 5.4 and 5.1, we see both social cost

and system utility as a function of the fraction of revealed features. As was the case

with the recourse rate and manipulation rate, social cost has a roughly monotonic

relationship with both the percentage of revealed features as well as the subsidy
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strength. This aligns with expectations as cost paid by agents should monotonically

decrease with the number of possible recourse and manipulation actions. However,

we also see that for most subsidy tradeoffs, system utility is monotonically decreas-

ing, implying that the utility of the population (measured in terms of social cost)

is fundamentally at odds with system utility in a wide range of cases. In particu-

lar, for subsidy scaling of 0.6 or greater, the system would prefer to not provide a

single agent with recourse (since system utility is monotonically decreasing). Note

that such an action from the system also corresponds to the highest possible so-

cial cost for each subsidy. Without strong enough subsidy tradeoffs, the system

is incentivized to provide 0 recourse, resulting in the maximum possible harm to

the population. However, for subsidy scaling of 0.4 and lower, system utility be-

comes loosely quadratic, with a maximum between 10% and 25%. In such cases,

the system is incentivized to reveal a much larger portion of recourse actions to the

population, resulting in overall lower social cost.

Disparity in Recourse and Social Cost Lastly we investigate the way in which

strategic system behavior causes disparate impact among sensitive groups. In our

experiments, groups are taken to be binary and are defined by race in the Law

School dataset (White and Non-White), by gender in the Adult Income dataset

(Male and Female), and by age in the German Credit dataset (Young and Old). In

Figure 5.5, we see the difference in the amount of agents performing recourse, and in

Figure 5.6 and the difference in social cost between groups. Higher values in these

plots indicate a lower costs, or higher rates of recourse, for White individuals in

the Law School dataset, Male individuals in the Adult income dataset, and Young

individuals in the Credit dataset. First, we see that strong subsidies (particularly
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(a) Law

(b) Adult (c) Credit

Figure 5.3: The system’s utility as a function of the population percentage with provided

recourse, with 95% confidence intervals. Each line corresponds to a different subsidy ratio

“subs”, i.e., the cost reduction applied to recourse.

subs ≤ 0.4) result in a large decrease in the disparities between groups for both

recourse rate and social cost. For less strong subsidies (subs ≥ 0.6) we see that

the gap in recourse rate between groups can increase. This is due to the fact that

when subsidies are less strong, only agents with already low costs of recourse (which

primarily come from the advantaged group) can benefit from those subsidies. When

the percentage of revealed features is close to 0%, very few agents from either group

have viable recourse actions; on the other hand, when large amounts of features are

revealed (close to 100%), almost all agents from each group have viable recourse
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(a) Law (b) Adult

(c) Credit

Figure 5.4: The social cost as a function of the population percentage with provided re-

course, with 95% confidence intervals. Each line corresponds to a different subsidy ratio

“subs”, i.e., the cost reduction applied to recourse.

actions. While subsidies (particularly large subsidies) can help improve rates of

disparity between groups, and always result in a lower total social cost, subsidies

need not always decrease disparity between groups.

In Figure 5.7 we see the recourse rate difference between groups as a function

of different values of subsidies. This figures serve to outline the parabolic nature

relationship between subsidies and recourse rate difference. As mentioned previ-

ously, for smaller subsides, only those with already low recourse costs can benefit

from subsidies. Thus we see that smaller subsidies can initially result in greater

disparity between agents, however, as subsides increases, they eventually decrease
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(a) Law (b) Adult

(c) Credit

Figure 5.5: Difference in recourse rate between different sensitive attribute groups with

95% confidence intervals. Each line corresponds to a different subsidy ratio “subs”, i.e., the

cost reduction applied to recourse.

disparity to rates which are lower than the disparity without subsidies (sub = 0).

Thus when deciding the amount of subsidies to choose, it is important for systems

to be aware of the potential negative impacts (larger disparities between groups)

that can result from smaller subsidies.

5.8 Conclusion

When agents can manipulate a system, that system my have a decreased in-

centive to provide recourse as doing so increases model transparency, making ma-

nipulations easier. In such settings, a system seeking to preserver its own utility,
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(a) Law (b) Adult

(c) Credit

Figure 5.6: Difference in social cost between different sensitive attribute groups with 95%

confidence intervals. Each line corresponds to a different subsidy ratio “subs”, i.e., the cost

reduction applied to recourse.

will strategically withhold recourse from some (possibly all) individuals. This with-

holding of recourse in turn results in higher social cost to the population, and such

costs can fall disproportionately on disadvantaged groups. We have demonstrated

these relationships both theoretically and empirically. Despite the natural tension

between the system’s utility and its desire to provide recourse, we showed that

subsidies can be used as a useful tool to not only increase the rate at which the

system provides recourse actions, but also to decrease the group-wise disparities

caused by the system withholding recourse. Our work demonstrates that the pre-

sumption that a system will provide all individuals with recourse is unreasonable
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(a) Law (b) Adult

(c) Credit

Figure 5.7: Recourse rate difference as a function of subsidy with 95% confidence intervals.

Each line corresponds to a different percentage of the population with provided recourse

actions.

in cases when the system is self-interested (such as lending intuitions). However,

the upshot is that mitigation techniques such as subsidies can be used to improve

the rates at which self-interested systems provide recourse.
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Chapter 6

Metric-Fair Classifier

Derandomization

In this chapter, we study the problem of classifier derandomization in machine

learning: given a stochastic binary classifier f : X → [0, 1], sample a determin-

istic classifier f̂ : X → {0, 1} that approximates the output of f in aggregate

over any data distribution. Recent work revealed how to efficiently derandomize a

stochastic classifier with strong output approximation guarantees, but at the cost

of individual fairness — that is, if f treated similar inputs similarly, f̂ did not. In

this paper, we initiate a systematic study of classifier derandomization with metric

fairness guarantees. We show that the prior derandomization approach is almost

maximally metric-unfair, and that a simple “random threshold” derandomization

achieves optimal fairness preservation but with weaker output approximation. We

then devise a derandomization procedure that provides an appealing tradeoff be-

tween these two: if f is α-metric fair according to a metric d with a locality-sensitive

hash (LSH) family, then our derandomized f̂ is, with high probability, O(α)-metric

fair and a close approximation of f . We also prove generic results applicable to all
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(fair and unfair) classifier derandomization procedures, including a bias-variance

decomposition and reductions between various notions of metric fairness.

6.1 Classifier Derandomization Problem

We study the general problem of derandomizing stochastic classification mod-

els. Consider a typical binary classification setting defined by a feature space

X ⊆ Rn and labels {0, 1}; we wish to devise a procedure that, given a stochastic

or randomized classifier f : X → [0, 1], efficiently samples a deterministic classifier

f̂ : X → {0, 1} from some family of functions F , such that f̂ preserves various

qualities of f .

Stochastic classifiers arise naturally in both theory and practice. For example,

they are frequently the solutions to constrained optimization problems encoding

complex evaluation metrics [Narasimhan, 2018], group fairness [Grgić-Hlača et al.,

2017, Agarwal et al., 2018], individual fairness [Dwork et al., 2012, Rothblum and

Yona, 2018, Kim et al., 2018, Sharifi-Malvajerdi et al., 2019], and robustness to

adversarial attacks [Pinot et al., 2019, Cohen et al., 2019, Pinot et al., 2020, Braver-

man and Garg, 2020]. Stochastic classifiers are also the natural result of taking an

ensemble of individual classifiers [Dietterich, 2000, Grgić-Hlača et al., 2017].

However, they may be undesirable for numerous reasons: a stochastic classifier

is not robust to repeated attacks, since even one that is instance-wise 99% accurate

will likely err after a few hundred attempts; by the same token, they violate intu-

itive notions of fairness since even the same individual may be treated differently

over multiple classifications. For these reasons, Cotter, Gupta, and Narasimhan

Cotter et al. [2019a] recently presented a procedure for derandomizing a stochastic
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classifier while approximately preserving the outputs of f with high probability.

However, the authors observe that their construction results in similar individuals

typically being given very different predictions — in other words, it does not satisfy

individual fairness — and ask whether it is possible to obtain a family of determin-

istic classifiers that preserves both aggregate outputs and individual fairness.

Another motivation for studying individually fair decision making comes from

the game-theoretic setting of strategic classification, wherein decision subjects may

modify their features to obtain a desired outcome from the classifier [Hardt et al.,

2016a, Cai et al., 2015, Chen et al., 2018, Dong et al., 2018b, Chen et al., 2020b].

A metric-fair stochastic classifier — and by extension, a metric-fair derandom-

ization procedure — offers significant protection against such manipulations. See

Appendix D.2 for more on this topic.

6.1.1 Our Contributions

In this paper, we initiate a systematic study of classifier derandomization with

individual fairness preservation. In line with many recent works, we formalize

individual fairness as metric fairness, which requires the classifier to output similar

predictions on close point pairs in some metric space (X, d) Dwork et al. [2012], Kim

et al. [2018], Friedler et al. [2016]. Roughly, f is metric-fair if there are constants

α, β > 0 such that for all x, x′ ∈ X,

∣∣f(x)− f(x′)
∣∣ ≤ α · d(x, x′) + β

A sampled deterministic classifier f̂ ∼ F is metric-fair when this inequality holds

in expectation.

Under this formalism, we obtain the following results:
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1. We make precise the observation of Cotter et al. [2019a] that their deran-

domization procedure, based on pairwise-independent hash functions, does

not preserve individual fairness. In fact, we prove that it is almost max-

imally metric-unfair regardless of how fair the original stochastic classifier

was (Section 6.2.1).

2. We demonstrate that a very simple derandomization procedure, based on

setting a single random threshold r ∼ [0, 1], attains near-perfect expected

fairness preservation, and prove that no better fairness preservation is possible

(Section 6.2.2). However, this procedure’s output approximation has higher

variance than the pairwise-independent hashing approach in general.

3. We devise a derandomization procedure that achieves nearly the best of both

worlds, preserving aggregate outputs with high probability, with only mod-

est loss of metric fairness (Section 6.3). In particular, when f has fairness

parameters (α, β), sampling f̂ from our family FLS yields expected fairness

parameters at most (α + 1
2 , β + ϵ). We also show a high-probability aggre-

gate fairness guarantee: most deterministic classifiers in F assign most close

pairs the same prediction. These guarantees hold for the class of metrics d

that possess locality-sensitive hashing (LSH) schemes, which includes a wide

variety of generic and data-dependent metrics.

4. We prove structural lemmas applicable to all classifier derandomization proce-

dures: first, a bias-variance decomposition for the error of a derandomization

f̂ of f ; second, a set of reductions showing that metric fairness-preserving

derandomizations also preserve notions of aggregate and threshold fairness.

A practically appealing aspect of our LSH-based derandomization method is
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that it is completely oblivious to the original stochastic classifier, in that it requires

no knowledge of how f was trained, and its fairness guarantee holds for whatever

fairness parameters f happens to satisfy on each pair (x, x′) ∈ X2. The technique

can therefore be applied as an independent post-processing step — for example,

on the many fair stochastic classifiers detailed in recent works Rothblum and Yona

[2018], Kim et al. [2018]. The burden on the model designer is thus reduced to

selecting an LSHable metric feature space (X, d) that is appropriate for the classi-

fication task.

6.1.2 Preliminaries

Given a stochastic classifier f : X → [0, 1] and distance function d : X ×X →

[0, 1], we wish to design an efficiently sampleable set F of deterministic binary

classifiers f̂ : X → {0, 1}; we call F a family of deterministic classifiers, or a

derandomization of f . Moreover, we would like F to have the following properties:

Output approximation: f̂ sampled uniformly1 from F simulates or approxi-

mates f in aggregate over any distribution. More precisely, define the pointwise

bias and variance of f̂ with respect to f on a sample x ∈ X as

Bias(f̂ , f, x) := Ef̂∼F

[
f̂(x)

]
− f(x) and variance(f̂ , x) := Varf̂∼F

(
f̂(x)

)
Now let D be a distribution over X. The aggregate bias and variance of f̂ with

respect to f on D are

Bias(f̂ , f,D) := Ex∼D

[
Bias(f̂ , f, x)

]
,

variance(f̂ ,D) := Varf̂∼F

(
Ex∼D

[
f̂(x)

])
1In this paper, we will always sample uniformly from families of classifiers and hash functions;

thus f̂ ∼ F means f̂ ∼ Unif(F ), and h ∼ H means h ∼ Unif(H ).
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We seek a family F for which both of these quantities are small. This is a

useful notion of a good approximation of f since in practice, classifiers are typically

applied in aggregate on some dataset or in deployment. In Section 6.4.4 we also

point out that low bias and variance in the above sense implies that f̂ and f are

nearly indistinguishable when compared according to any binary loss functions,

such as accuracy, false positive rate, etc.

Individual fairness: Similar individuals are likely to be treated similarly. We

formally define this notion as metric fairness, which says that that the classifier

should be an approximately Lipschitz-continuous function relative to a given dis-

tance metric:

Definition 6.1.1 ((α, β, d)-metric fairness). Let α ≥ 12 and β ≥ 0, let d : X2 →

[0, 1] be a metric, and let x, x′ ∈ X. We say a stochastic classifier f : X → [0, 1]

satisfies (α, β, d)-metric fairness on (x, x′), or is (α, β, d)-fair on (x, x′), if

∣∣f(x)− f(x′)
∣∣ ≤ α · d(x, x′) + β (6.1)

Similarly, a deterministic classifier family F is (α, β, d)-fair on (x, x′) if

Ef̂∼F

[∣∣∣f̂(x)− f̂(x′)
∣∣∣] ≤ α · d(x, x′) + β (6.2)

When this condition is satisfied for all (x, x′) ∈ X2, we simply say the classifier (or

family) is (α, β, d)-fair.

To intuit this definition, notice that when a classifier satisfies metric fairness

with β = 0, the difference between its predictions on some pair of points x and

2We enforce α ≥ 1, and not merely α ≥ 0, so that the codomain of f is [0, 1] rather than
potentially [0, α] (or some other interval of length α < 1). Requiring α ≥ 1 thus makes f a proper
stochastic classifier and enables direct comparisons between different fairness parameters. This is
no loss of generality since (α, β, d)-fairness for α < 1 can also be expressed as (1, β

α
, d
α
)-fairness or,

with some loss of generality, (1, β + α, d)-fairness.
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x′ scales in proportion to their distance. To conform to this idea of fairness, it

is important that the derandomization procedures we design do not substantially

increase these fairness parameters, but especially β.

The above definition of metric fairness is most closely related to those of Roth-

blum and Yona Rothblum and Yona [2018], whose focus is learning a “probably

approximately metric-fair” model that generalizes to unseen data; and Kim, Rein-

gold, and Rothblum Kim et al. [2018], whose focus is in-sample learning when the

metric d is not fully specified. Both works take inspiration from the metric-based

notion of individual fairness introduced in Dwork et al. [2012]. Crucially however,

the aforementioned works provide guarantees exclusively for stochastic classifiers,

and to our knowledge, this is the case for all papers to date whose focus is learning

metric-fair classifiers.

In addition to this pairwise notion of metric fairness, we will also develop

aggregate fairness guarantees for various derandomization procedures. To that end,

let

X2
≤τ :=

{
(x, x′) ∈ X2

∣∣ d(x, x′) ≤ τ
}

denote the set of point pairs within some distance τ ∈ [0, 1]. Our aggregate fairness

bounds will state that, with high probability over the sampling of f̂ ∼ F , most

pairs (x, x′) ∈ X2
≤τ receive the same prediction from f̂ .

6.2 Output Approximation Versus Fairness

We begin our study of metric-fair classifier derandomization by contrasting

two approaches: first, the “pairwise-independent” derandomization of Cotter et al.

[2019a], which achieves a low-variance approximation of the original stochastic clas-
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sifier, but does not preserve metric fairness; and second, a simple “random thresh-

old” derandomization that perfectly preserves metric fairness, at the cost of higher

output variance.

6.2.1 Pairwise-Independent Derandomization

The construction of Cotter, Narasimhan, and Gupta Cotter et al. [2019a] makes

use of a pairwise-independent hash function family HPI, i.e. a set of functions

hPI : B → [k] such that

Pr
h∼HPI

[h(b) = i, h(b′) = j] =
1

k2
∀b ̸= b′ ∈ B, i, j ∈ [k]

Observe that a family that satisfies this property is also uniform, i.e. Prh∼HPI
[h(b) =

i] = 1/k for all b, i.

The classifier family they propose is then3

FPI :=
{
f̂hPI

∣∣∣ hPI ∈ HPI

}
, where f̂hPI(x) := 1

{
f(x) ≥ hPI(π(x))

k

}
(6.3)

where π : X → B is some fixed bucketing function that discretizes the input (since

the pairwise-independent hash family has finite domain).

Let us develop some intuition for this construction. First, thinking of k as large,

each f̂hPI ∈ FPI essentially assigns a pseudo-random threshold hPI(π(x))
k ∈ [0, 1] to

each input x, so that f̂(x) = 1 if and only if f(x) exceeds the threshold. Since hPI

is a uniform hash function family, hPI(π(x)) is uniform over [k]; this endows FPI

with low bias with respect to f . Using this idea and the pairwise-independence of

HPI, the authors show that this classifier family exhibits low bias and variance of

approximation:

3For the sake of clearer exposition, we simplify the deterministic classifier used in Cotter et al.
[2019a], which is actually f̂hPI(x) := 1{f(x) ≥ 2hPI(x)−1

2k
}; this does not change Theorem 6.2.1 or

Proposition 6.2.2 beyond a 1/2k additive difference in the bias, variance, and β.
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Theorem 6.2.1 (Bias and variance of pairwise-independent derandomization Cot-

ter et al. [2019a] (simplified)). Let f be a stochastic classifier, D a distribution over

X, and π : X → B a bucketing function. Then f̂ ∼ FPI satisfies

Bias(f̂PI, f,D) ≤ 1

k
,

variance(f̂PI, f,D) ≤ max
b∈B

Pr
x∼D

[π(x) = b] · Ex∼D [f(x)(1− f(x))] +
1

k

Moreover, f̂PI can be sampled using O(log |B|+ log k) uniform random bits.

To understand this variance bound, observe that for a given data distribution

D , the bound is stronger or weaker depending on how well π disperses samples into

different buckets in B. When there exists some b ∈ B such that Prx∼D [π(x) =

b] ≈ 1, variance(f̂PI, f,D) ≈ Ex∼D [f(x)(1 − f(x))] essentially tracks the stochas-

ticity of f . At the other extreme when Prx∼D [π(x) = b] = 1/|B| for all b ∈ B,

variance(f̂PI, f,D) ≈ 1/|B|.

As the authors pointed out (but did not formalize), f̂PI does not preserve

pairwise fairness in general. We make this observation precise by showing that it

is always possible to design a dataset, of any desired size, such that the pairwise-

independent derandomization treats every pair of points unfairly for nearly any

β < 1/2.

Proposition 6.2.2 (Unfairness of pairwise-independent derandomization). For ev-

ery N ≥ 2, α ≥ 1, β < 1
2 − 1

2k , and metric d : Rn × Rn → [0, 1], there exist a set

X ⊂ Rn of size N and stochastic classifier f : X → [0, 1] such that the following

hold:

1. f is nontrivial and (1, 0, d)-fair.

2. FPI violates (α, β, d)-metric fairness for every pair (x, x′) ∈ X2, x ̸= x′.
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If k is not too small, this says that derandomizing using pairwise-independent

hashing is almost maximally unfair, as a uniform random binary function ĝ : X →

{0, 1} satisfies E[|ĝ(x)− ĝ(x′)|] = 1/2, and therefore achieves β = 1/2.

Proof sketch of Proposition 6.2.2. Consider any α ≥ 1, β ∈
(
0, 12 − 1

2k

)
, and N ≥ 2.

We choose X to be some set of N points on a sufficiently small sphere about the

origin, and let f be a classifier that maps half of the points inX to 1+ϵ
2 and the other

half to 1−ϵ
2 . When ϵ > 0 is sufficiently small, it can be shown that f is (1, 0, d)-fair

over X. However, FPI is not (α, β, d)-fair on any point pair (x, x′) ∈ X2. The

reason is that since f is almost maximally stochastic (i.e. f(x) ≈ 1/2 for all x), and

HPI is pairwise-independent, the binary outputs f̂(x) and f̂(x′) are about as likely

to be the same as they are likely to be different. Hence Ef̂∼FPI
[|f̂(x)− f̂(x′)|] ≈ 1/2,

violating (α, β, d)-metric fairness. See Appendix D.1.1 for the full proof.

6.2.2 Random Threshold Classifier

It turns out that there is a near-trivial derandomization that achieves optimal

preservation of metric fairness, namely the following random threshold classifier

family:

FRT := {f̂r | r ∈ [0, 1]}, where f̂r := 1{f(x) ≥ r} (6.4)

Formally we make the following observation, whose proof is in Appendix D.1.2.

Proposition 6.2.3 (Random threshold derandomization guarantees). Let f be an

(α, β, d)-fair stochastic classifier and D a distribution over X. Then the determin-

istic classifier family FRT is also (α, β, d)-fair. Moreover,

Bias(f̂RT, f,D) = 0 and variance(f̂RT, f,D) ≤ Ex∼D [f(x)(1− f(x))]
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Note that while this derandomization preserves the original fairness parameters

perfectly, its variance can be substantially higher than that of FPI depending on

the choice of bucketing function π in Equation (6.3).

One subtlety here is that FRT is an infinite set, and is therefore not sampleable

in practice. For the more realistic scenario in which the threshold r is a number of

some fixed precision ϵ > 0, the statements in Proposition 6.2.3 hold up to additive

error ϵ, and f̂RT can be sampled using O(log(1/ϵ)) uniform random bits. In this

case FRT is (α, β + ϵ, d)-fair, and as we can show, this is in fact necessary:

Proposition 6.2.4 ((α, 0, d)-metric fairness is impossible for finite deterministic

families). Let d : X × X → [0, 1] be a metric over a convex set X ⊆ Rn, and let

F be a finite family of deterministic classifiers, at least one of which is nontrivial.

Then for every α ≥ 1 and β < 1/|F |, F is not (α, β, d)-fair.

Proof sketch. Since F contains a nontrivial classifier f̂ , we can pick sufficiently

close points around a discontinuity of f̂ and show that in expectation, F fails to

achieve roughly (α, 1/|F |, d)-fairness on this point pair. See Appendix D.1.3 for

details.

The main consequence is that there is an irreducible amount of additive unfair-

ness β > 0 that cannot be avoided when constructing a fair deterministic classifier

family. Indeed, the derandomization F we present in Section 6.3 has |F | ≥ 1/β,

thus avoiding the impossible regime indicated by Proposition 6.2.4.
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6.3 Fair Derandomization via Locality-Sensitive Hash-

ing

In this section, we construct a deterministic classifier family that combines

much of the appeal of both the pairwise-independent derandomization (low output

variance) and the random threshold derandomization (strong fairness preservation).

This new approach utilizes two types of hashing: first, a pairwise-independent hash

family HPI as before; and second, a locality-sensitive hash family:4

Definition 6.3.1 (Locality-sensitive hash (LSH) family). Let X be a set of hashable

items, B a set of buckets, and d : X2 → [0, 1] a metric distance function. We say

a set HLS of functions h : X → B is a locality-sensitive family of hash functions

for d if for all x, x′ ∈ X,

Pr
h∼HLS

[
h(x) ̸= h(x′)

]
= d(x, x′)

Locality-sensitive hashing is a well-studied technique, and LSH families have

been constructed for many standard distances and similarities, such as L1 Indyk

and Motwani [1998], L2 Andoni and Indyk [2006], cosine Charikar [2002], Jaccard

Broder [1997], various data-dependent metrics Jain et al. [2008], Andoni et al.

[2014], Andoni and Razenshteyn [2015], and more.

Our derandomization works as follows: suppose f : X → [0, 1] is a stochastic

classifier, HLS is a family of locality-sensitive hash functions hLS : X → B, and HPI

is a family of pairwise-independent hash functions hPI : B → [k] for some positive

4We use the definition of LSH as coined by Charikar Charikar [2002]. See Indyk and Motwani
[1998] for an alternative gap-based definition in the same spirit.
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integer k. Our family of deterministic classifiers is then

FLS :=
{
f̂hLS,hPI

∣∣∣ hLS ∈ HLS, hPI ∈ HPI

}
, (6.5)

where f̂hLS,hPI(x) := 1

{
f(x) ≥ hPI(hLS(x))

k

}
. (6.6)

Let us develop some intuition for this construction. First, thinking of k as large,

each f̂ ∈ FLS essentially assigns a pseudo-random threshold hPI(hLS(x))
k ∈ [0, 1] to

each input x, so that f̂(x) = 1 if and only if f(x) exceeds the threshold. Since

the outer hash function hPI is pairwise-independent, and therefore also uniform,

hPI(hLS(·)) is uniform over [k]. This endows FLS with low bias and variance with

respect to f , as we explain in Section 6.3.1.

Second, the composition of two different hash functions gives us our fairness

guarantee: hLS maps close point pairs x, x′ to the same bucket, then hPI disperses

pairs that were not hashed together — most of which are distant. This separation

of point pairs by distance is precisely what enables good preservation of metric

fairness, as we prove in Section 6.3.2.

6.3.1 Approximation of Outputs

We show the following bounds on the bias and variance of our derandomization.

The proof is deferred to Appendix D.1.4.

Theorem 6.3.2 (Bias and variance of derandomized classifier). Let f be a stochas-

tic classifier, f̂ ∼ FLS, and D a distribution over X. Then

Bias(f̂ , f,D) ≤ 1

k
, and

variance(f̂ , f,D) ≤ EhLS∼HLS

[
max
b∈B

Pr
x∼D

[hLS(x) = b]

]
· Ex∼D [f(x)(1− f(x))] +

1

k
.

The above variance bound is similar in form to that of the pairwise-independent

derandomization (Theorem 6.2.1), but with added randomization over the sampling
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of locality-sensitive hash function: when most choices of hLS distribute points x ∼

D into buckets relatively evenly, the bound is as small as O(1/|B|); when most

hashes are collisions, the bound may be as large as Ex∼D [f(x)(1−f(x))], essentially

tracking the stochasticity of f .

6.3.2 Preservation of Metric Fairness

We can now show that our derandomization procedure approximately preserves

metric fairness, both in the sense of expected fairness for any pair of points (the

usual convention in the metric fairness literature), as well as in aggregate over all

point pairs.

Theorem 6.3.3 (Locality-sensitive derandomization preserves metric fairness). Let

f be an (α, β, d)-fair stochastic classifier, where d is a metric with an LSH family

HLS with k ≥ 2/ϵ buckets. Then FLS is a deterministic classifier family satisfying

the following:

• (Pairwise fairness) Consider any x, x′ ∈ X, and assume without loss of generality

that f(x) ≤ f(x′). Then

Ef̂∼FLS

[∣∣∣f̂(x)− f̂(x′)
∣∣∣] ≤ [α+ 2f(x)(1− f(x′))] · d(x, x′) + β + ϵ

• (Aggregate fairness) For any distance threshold τ ∈ [0, 1], with probability at least

1− δ over the sampling of f̂ ,

Pr
(x,x′)∼X2

≤τ

[
f̂(x) ̸= f̂(x′)

]
≤
(
1 +

1√
δ

)
([α+ 2f(x)(1− f(x′))] · τ + β + ϵ).

The above fairness guarantees can be simplified by noticing that since f(x) ≤

f(x′) w.l.o.g., f(x)(1 − f(x′)) ≤ 1/4; this yields the following worst-case bounds

over f and (x, x′):
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Corollary 6.3.4 (Worst-case fairness). When f is (α, β, d)-fair, FLS satisfies the

following:

• (Pairwise fairness)
(
α+ 1

2 , β + ϵ, d
)
-metric fairness on any (x, x′) ∈ X2, i.e.

Ef̂∼FLS

[∣∣∣f̂(x)− f̂(x′)
∣∣∣] ≤ (α+

1

2

)
· d(x, x′) + β + ϵ.

• (Aggregate fairness) For any distance threshold τ ∈ [0, 1], with probability at least

1− δ over the sampling of f̂ ,

Pr
(x,x′)∼X2

≤τ

[
f̂(x) ̸= f̂(x′)

]
≤
(
1 +

1√
δ

)(
ατ +

τ

2
+ β + ϵ

)
.

In expectation and with high probability, therefore, the generated deterministic

classifier approximates the fairness guarantee of the original classifier to within a

small constant factor when there exists an LSH family H for d. To get a better

sense what kind of guarantees this gives us, consider the following example:

Example 1. Let f be a (1, 0, d)-fair stochastic classifier, and suppose we deran-

domize it to some f̂ ∼ FLS, choosing k = 500. Then by Corollary 6.3.4,

• (Pairwise fairness) f̂ is (3/2, ϵ, d)-metric fair.

• (Aggregate fairness) With probability at least 1− δ = 3/4 (over the sampling

of f̂), at least 76% of point pairs within distance τ = 1/20 receive identical

predictions.

We present a sketch of the proof of Theorem 6.3.3; see Appendix D.1.5 for the

complete proof.

Proof sketch of Theorem 6.3.3. Consider any x, x′ ∈ X. Since f̂ is binary and HLS
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is locality-sensitive,

Ef̂∼FLS

[∣∣∣f̂(x)− f̂(x′)
∣∣∣] = Pr

hLS∼HLS
hPI∼HPI

[
f̂(x) ̸= f̂(x′)

]

= Pr
hLS,hPI

[
f̂(x) ̸= f̂(x′)

∣∣∣ hLS(x) = hLS(x
′)
]
· (1− d(x, x′))

+ Pr
hLS,hPI

[
f̂(x) ̸= f̂(x′)

∣∣∣ hLS(x) ̸= hLS(x
′)
]
· d(x, x′)

From here, the proof is a systematic analysis of conditional probabilities. To give

some intuition, notice that the event [f̂(x) ̸= f̂(x′) | hLS(x) = hLS(x
′)] occurs

precisely when hPI(hLS(x))
k falls between f(x) and f(x′); by the uniformity of HPI,

the probability of this is roughly |f(x) − f(x′)| ≤ α · d(x, x′) + β. This is one of

several cases that use the uniformity and symmetry properties of the composed

hash function hPI(hLS(·)) to express |f̂(x) − f̂(x′)| in terms of |f(x) − f(x′)|. In

some cases this is not possible, resulting in an additive 2f(x)(1 − f(x′)) loss in

α.

6.3.3 Sample Complexity

Since the LSH-based derandomization procedure involves sampling two hash

functions HPI and HLS, it samples f̂ using O(log |B|+log k+Sd(X,B)) random bits,

where O(log |B|+log k) is the number of bits used to sample a pairwise-independent

hash function Rubinfeld [2012], and Sd(X,B) is the number of random bits required

to sample a locality-sensitive hash function for metric d with domain X and range

B. When the metric is the Euclidean distance, for example, O(dimX) random bits

suffice Rashtchian [2019].
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6.4 Structural Lemmas for Fair Classifier Derandom-

ization

In this section, we present generic results applicable to all classifier derandom-

ization procedures, as well as unify different definitions of fairness used in this paper

and others.

6.4.1 Bias-Variance Decomposition

Up to this point, a “stochastic” classifier has signified any function f from X

to [0, 1]; in this sense, it does not necessarily contain any randomness of its own.

However, when it comes time to perform a binary decision on some input x, f(x)

is typically interpreted as the probability of outputting 1, i.e. we use the (truly

random) binary function 1f (x) ∼ Bern(f(x)).

By how much does this prediction typically differ from that of some pre-

sampled deterministic classifier f̂? We show that this error can be decomposed

into the bias of f̂ and the variance of both f̂ and f :

Lemma 6.4.1 (Bias-variance decomposition). Let f : X → [0, 1] be a stochastic

classifier and F a deterministic classifier family. Then for any x ∈ X,

Ef,f̂
[∣∣∣f̂(x)− 1f (x)

∣∣∣] ≤ ∣∣∣Bias(f̂ ,1f , x)∣∣∣+ 2
(
Varf (1f (x)) + Varf̂∼F

(
f̂(x)

))2/3
We defer the proof to Appendix D.1.6. For now, let us interpret this decompo-

sition and see how it applies to the derandomization approaches laid out in previous

sections. Recall that for all three derandomizations — FPI, FRT, and FLS — the

bias was either zero or could be made arbitrarily small. As for the variance, we see

two types: the first, Varf (1f (x)), is equal to f(x)(1 − f(x)), i.e. the variance of
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a Bernoulli with parameter f(x); it therefore quantifies the inherent stochasticity

of the given classifier f , over which we have no control. In contrast, the second

variance arises from sampling the deterministic classifier f̂ , which depends greatly

on the procedure being used. Thus a comparison of the expected error of these ap-

proaches boils down to this latter variance, for which the pairwise-independent and

locality-sensitive hashing approaches compare favorably against the simple random

threshold.

6.4.2 Metric Fairness and Threshold Fairness

Friedler, Scheidegger, and Venkatasubramanian Friedler et al. [2016] propose

an alternative threshold-based notion of individual fairness that implements the

mantra that “similar individuals should receive similar treatment,” but only extends

this constraint to pairs of inputs within a certain distance of interest:

Definition 6.4.2 ((σ, τ, d)-threshold fairness). Fix some constants σ, τ ∈ (0, 1).

We say a stochastic classifier f is (σ, τ, d)-threshold fair if for all x, x′ ∈ X such

that d(x, x′) ≤ σ, we have |f(x) − f(x′)| ≤ τ . We say a deterministic classifier

family F is (σ, τ, d)-threshold fair if for all x, x′ ∈ X such that d(x, x′) ≤ σ, we

have Ef̂∼F [|f̂(x)− f̂(x′)|] ≤ τ .

Neither metric fairness nor threshold fairness fully subsumes the other. How-

ever, we can still show the following algorithmic reduction: if we wish to deran-

domize a stochastic classifier while preserving threshold fairness, then it suffices to

use any procedure that preserves metric fairness. For example, suppose we have a

derandomization procedure that worsens the input classifier’s fairness parameters

α and β to at most a · α and b · β, respectively, for some small constants a, b ≥ 1.
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We should also expect this procedure to preserve threshold fairness, within certain

parameters related to a, b. This is what we prove in the following lemma, but for

more general fairness preservation functions:

Lemma 6.4.3 (Metric-fair derandomization preserves threshold fairness). Sup-

pose we have a procedure that, given an (α, β, d)-metric fair stochastic classifier f ,

samples a deterministic classifier f̂ from an (A(α), B(β), d)-metric fair family F ,

for some functions A,B : R → R. Then this same procedure also derandomizes

any (σ, τ, d)-threshold fair stochastic classifier to a deterministic classifier from a

(σ,A(0) · σ +B(τ), d)-threshold fair family.

Applying this to the random threshold and locality-sensitive derandomization

procedures yields the following:

Corollary 6.4.4 (Threshold fairness-preserving derandomizations). Let f be a

(σ, τ, d)-threshold fair stochastic classifier. Then

• The family FRT is (σ, τ, d)-threshold fair.

• If d is LSHable, the family FLS, for a choice of k ≥ 4/σ, is (σ, σ + τ, d)-

threshold fair.

The proofs are deferred to Appendix D.1.7.

6.4.3 Pairwise Fairness and Aggregate Fairness

Throughout most of this paper (and in most of the individual fairness litera-

ture), we have been focused on pairwise notion of fairness, such as metric fairness

(Definition 6.1.1) and threshold fairness (Definition 6.4.2). One shortcoming of

these definitions is that even if a classifier satisfies them for any particular pair of

points (x, x′), they do not hold simultaneously for all input pairs; thus once we
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sample a specific deterministic classifier f̂ , it may be unfair for many pairs. Fortu-

nately, as we now show, these pairwise statements imply high-probability aggregate

fairness guarantees: if F is a metric-fair family, then most deterministic classifiers

in F assign most close pairs the same prediction.

To that end, for all distances τ ∈ [0, 1], let X2
≤τ :=

{
(x, x′) ∈ X2

∣∣ d(x, x′) ≤ τ
}

denote the set of point pairs within distance τ . Then we can bound the fraction of

τ -close pairs that receive different predictions:

Lemma 6.4.5 (Pairwise fairness implies aggregate fairness). Let F be an (α, β, d)-

fair deterministic classifier family. Then for any distance threshold τ ∈ [0, 1], with

probability at least 1− δ over the sampling of f̂ ∼ F ,

Pr
(x,x′)∼X2

≤τ

[
f̂(x) ̸= f̂(x′)

]
≤
(
1 +

1√
δ

)
(ατ + β).

The proof is deferred to Appendix D.1.8.

6.4.4 Output Approximation and Loss Approximation

In this paper, we have analyzed the output approximation qualities of vari-

ous derandomization techniques using the definitions of bias and variance in Sec-

tion 6.1.2, which say that the output of f̂ should resemble that of f , either on a

single point x or in aggregate over some distribution D .

An alternative set of definitions of bias and variance, put forth in Cotter et al.

[2019a], instead measures how well f̂ preserves the loss of f according to one or more

binary loss functions ℓ. This property, which we might call loss approximation, is

useful since in practice, classifiers are typically compared based on criteria such as

accuracy, false positive rate, etc. evaluated on a dataset — and these are essentially

binary loss functions averaged over a data distribution.
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Concretely, let ℓ : {0, 1} × {0, 1} → {0, 1} be a loss function and let (x, y) ∈

X × {0, 1} be an instance with its corresponding label. The loss on this instance

incurred by a (stochastic or deterministic) classifier f is defined as

L(f, x, y) := f(x)ℓ(1, y) + (1− f(x))ℓ(0, y)

The (pointwise) bias and variance of f̂ under this loss are then

Bias(f̂ , f, x, y, ℓ) :=
∣∣∣Ef̂∼F

[
L(f̂ , x, y)

]
− L(f, x, y)

∣∣∣ ,
variance(f̂ , x, y, ℓ) := Varf̂∼F

(
L(f̂ , x, y)

)
We observe that these are closely related to the simpler definitions given in

Section 6.1.2:

Lemma 6.4.6. For any ℓ : {0, 1} × {0, 1} → {0, 1}, x ∈ X, and y ∈ {0, 1},

Bias(f̂ , f, x, y, ℓ) ≤
∣∣∣Bias(f̂ , f, x)∣∣∣ and variance(f̂ , x, y, ℓ) ≤ variance(f̂ , x)

Thus even when the goal is to compute a derandomization that simulates

the performance of f on one or more binary loss functions, it essentially suffices

to use a derandomization that merely simulates the raw output of f itself. See

Appendix D.1.9 for the proof of this lemma.

6.5 Discussion

We offer some brief notes regarding practical considerations for our derandom-

ization framework.

A framework for derandomization Our results give machine learning practi-

tioners a time- and space-efficient way to remove randomness — with the inherent
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brittleness, security vulnerabilities, and other issues that stochasticity entails —

from their deployed models while approximately preserving fairness constraints en-

forced during training. Notably, our derandomization procedure has the useful

quality of being oblivious to f , its training process, and even its actual fairness

parameters α and β. It can therefore be applied as an independent post-processing

step — for example, on the stochastic classifiers generated by the algorithms of

Rothblum and Yona [2018], Kim et al. [2018], and others. The burden on the

model designer is thus reduced to selecting a metric feature space (X, d) that is

both appropriate for the classification task and for which an LSH family exists.

This simplification comes with inherent constraints: it was shown in Charikar

[2002] that only metrics (or similarities ϕ whose complement d is a metric) can

have LSH schemes, though not all of them do. On the positive side, recent work

has shown that various non-LSHable similarities can be approximated by LSHable

similarities with some provable distortion bound Chierichetti et al. [2019].

Separation of feature sets Throughout this paper, we have assumed that the

inner hash function hLS and classifiers f and f̂ all share the same domain X;

however, this is in no way necessary. In fact, from a fairness perspective, it is often

prudent to distinguish between the features used for ensuring fairness and those

used purely for inference, i.e. we may have

f : X → [0, 1], f̂ : X → {0, 1}, and hLS : Z → B

The feature set Z should be chosen, in tandem with an appropriate LSHable metric

d : Z → [0, 1], so as to measure similarity or difference between inputs on the basis

of attributes that should be treated equitably; on the other hand, the feature set

X can be designed primarily to maximize predictive accuracy, and need not have
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any overlap with Z. The fairness guarantees of Theorem 6.3.3 and Corollary 6.3.4

then hold with respect to the metric space (Z, d) rather than (X, d).
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

While algorithms can automate decisions and optimize outcomes, their design

must thoughtfully account for the complexities of human behavior to avoid per-

petuating biases and enable socially beneficial outcomes. Building upon existing

literature on algorithmic game theory, machine learning, constrained optimization,

and algorithmic fairness, our goal is to contribute to the ongoing dialogue in re-

sponsible machine learning, setting a precedent for future research to build upon.

We mainly focus on three aspects: understanding the social impact of decision

rules, designing interventions that are both socially beneficial and sustainable and

enhancing the practicality of algorithmic decision-making. The ultimate aim of this

thesis is to produce algorithms, modeling frameworks, theorems, and experimental

findings that bring the state of the art in research closer to practical deployability.

7.2 Future Works

We separate the questions based on the relevant chapters in this thesis:
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From Chapter 3 Our contributions in this chapter are mostly theoretical. A

natural extension is to collect real human experiment data to verify the usefulness

and tightness of our bounds. Another potential future direction is to develop al-

gorithms to find an optimal model that achieves minimum induced risk, which has

been an exciting ongoing research problem in the field of performative prediction

[Perdomo et al., 2020]. Furthermore, using techniques from general domain adap-

tation to find robust classifiers that perform well in both the source and induced

distribution is another promising direction.

From Chapter 5 There are several potential future works related to this chapter:

1. Given the fact that a utility-maximizing recourse system has an incentive to

not provide optimal recourse to everyone as a result of strategic manipulation,

how do we design a manipulate-proof recourse system?

2. What are the other efficient intervention tools besides subsidy to incentivize

recourse offerings?

3. In the current work, we assume that agents perform naive collusion, meaning

that agents share their true features as well as their original features. It will

be interesting to study how various levels of cooperation and strength affect

the result. In particular, we may want to consider the following types of

collisions:

• No Collusion Agents share no information with one another.

• Truthful Collusion Agents only share their true feature, and do not

share their recourse action.

• Naive Collusion (the current setting) Agents share both their true
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feature and their provided recourse feature, but the recourse feature is

generated using their true feature.

• Strategic Collusion All agents share both their true feature and pro-

vided recourse feature, but agents now also manipulate the recourse

generating process (via a misreport) with the goal of decreasing the

cost of achieving positive classification for future agents, i.e., the pop-

ulation shares utility.

• Adversarial Collusion All agents share both their true features and

provided recourse features. Agents manipulate the recourse generation

process with the goal of decreasing the system utility gained by pro-

viding recourse. In addition to modeling agents who seek to harm the

system, this case serves as a worst-case comparison in terms of when a

system will elect not to provide recourse.

4. In this work, we explore a scenario in which agents simultaneously arrive

and concurrently seek recourse. However, a potentially more realistic set-

ting would involve considering a situation where agents arrive sequentially

in an online manner. Within this framework, the central inquiry focuses on

identifying the optimal strategy for a recourse system to employ in order to

maximize its utility when providing recourse under such conditions.

From Chapter 6 This chapter has focused on classifier derandomization with

individual fairness guarantees, but it is also worthwhile to investigate the effect of

derandomization from a group fairness perspective — for example, if it is possible

to design an LSHable metric such that the derandomization preserves notions of

fairness with respect to a protected attribute?
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Appendix A

Appendix for Chapter 3

A.1 Proof of Theorem 3.3.4

Proof. Invoking Theorem 3.3.1, and replacing h with h∗T and S with D(h∗T ), we

have

ErrD(h)(h
∗
T ) ≤ ErrD(h∗T )(h

∗
T ) + λD(h)→D(h∗T ) +

1

2
dH ×H (D(h∗T ),D(h)) (A.1)

Now observe that

ErrD(h)(h) ≤ ErrD(h)(h
∗
T ) + ErrD(h)(h, h

∗
T )

≤ ErrD(h)(h
∗
T ) + ErrD(h∗T )(h, h

∗
T ) +

∣∣∣ErrD(h)(h, h
∗
T )− ErrD(h∗T )(h, h

∗
T )
∣∣∣

≤ ErrD(h)(h
∗
T ) + ErrD(h∗T )(h, h

∗
T ) +

1

2
dH ×H (D(h∗T ),D(h))

(by Lemma 3.3.2)

≤ ErrD(h)(h
∗
T ) + ErrD(h∗T )(h) + ErrD(h∗T )(h

∗
T ) +

1

2
dH ×H (D(h∗T ),D(h))

(by Lemma 3.3.3)

≤ ErrD(h∗T )(h
∗
T ) + λD(h)→D(h∗T ) +

1

2
dH ×H (D(h∗T ),D(h))

(by equation A.1)

+ ErrD(h∗T )(h) + ErrD(h∗T )(h
∗
T ) +

1

2
dH ×H (D(h∗T ),D(h))
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Adding ErrD(h)(h) to both sides and rearranging terms yields

2ErrD(h)(h)− 2ErrD(h∗T )(h
∗
T )

≤ErrD(h)(h) + ErrD(h∗T )(h) + λD(h)→D(h∗T ) + dH ×H (D(h∗T ),D(h))

= ΛD(h)→D(h∗T )(h) + λD(h)→D(h∗T ) + dH ×H (D(h∗T ),D(h))

Dividing both sides by 2 completes the proof.

A.2 Proof of Theorem 3.3.5

Proof. Using the triangle inequality of dTV, we have

dTV(DY |S ,DY (h)) ≤ dTV(DY |S ,Dh|S) + dTV(Dh|S ,Dh(h)) + dTV(Dh(h),DY (h))

(A.2)

and by the definition of dTV, the divergence term dTV(DY |S ,DY (h)) becomes

dTV(DY |S ,Dh|S) = |PDS
(Y = +1)− PDS

(h(x) = +1)|

=

∣∣∣∣EDS
[Y ] + 1

2
− EDS

[h(X)] + 1

2

∣∣∣∣
=

∣∣∣∣EDS
[Y ]

2
− EDS

[h(X)]

2

∣∣∣∣
≤ 1

2
· EDS

[|Y − h(X)|]

= ErrDS
(h)

Similarly, we have

dTV(Dh(h),DY (h)) ≤ ErrD(h)(h)

As a result, we have

ErrDS
(h) + ErrD(h)(h) ≥ dTV(DY |S ,Dh|S) + dTV(Dh(h),DY (h))

≥ dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

(by equation A.2)
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which implies

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2
.

A.3 Proof of Theorem 3.4.2

Proof. We start from the error induced by h∗S . Let the average importance weight

induced by h∗S be ω̄(h∗S) = EDS
[ωx(h

∗
S)]; we add and subtract this from the error:

ErrD(h∗S)
(h∗S) = EDS

[ωx(h
∗
S) · 1(h∗S(x) ̸= y)]

= EDS
[ω̄(h∗S) · 1(h∗S(x) ̸= y)] + EDS

[(ωx(h
∗
S)− ω̄(h∗S)) · 1(h∗S(x) ̸= y)]

In fact, ω̄(h∗S) = 1, since

ω̄(h∗S) =EDS
[ωx(h

∗
S)] =

∫
ωx(h

∗
S)PDS

(X = x)dx

=

∫ PD(h)(X = x)

PDS
(X = x)

PDS
(X = x)dx =

∫
PD(h)(X = x)dx = 1

144



Now consider any other classifier h. We have

ErrD(h∗S)
(h∗S)

= EDS
[1(h∗S(x) ̸= y)] + EDS

[(ωx(h
∗
S)− ω̄(h∗S)) · 1(h∗S(x) ̸= y)]

≤ EDS
[1(h(x) ̸= y)] + EDS

[(ωx(h
∗
S)− ω̄(h∗S)) · 1(h∗S(x) ̸= y)]

(by optimality of h∗S on DS)

= EDS
[ω̄(h) · 1(h(x) ̸= y)] + EDS

[(ωx(h
∗
S)− ω̄(h∗S)) · 1(h∗S(x) ̸= y)]

(multiply by ω̄(h∗S) = 1)

= EDS
[ωx(h) · 1(h(x) ̸= y)] + EDS

[(ω̄(h)− ωx(h)) · 1(h(x) ̸= y)]

(add and subtract ω̄(h∗S))

+ EDS
[(ωx(h

∗
S)− ω̄(h∗S)) · 1(h∗S(x) ̸= y)]

= ErrD(h)(h) + Cov(ωx(h
∗
S),1(h

∗
S(x) ̸= y))− Cov(ωx(h),1(h(x) ̸= y))

Moving the error terms to one side, we have

ErrD(h∗S)
(h∗S)− ErrD(h)(h)

≤ Cov(ωx(h
∗
S),1(h

∗
S(x) ̸= y))− Cov(ωx(h),1(h(x) ̸= y))

≤
√
Var(ωx(h∗S)) ·Var(1(h∗S(x) ̸= y)) (|Cov(X,Y )| ≤

√
Var(X) ·Var(Y ))

+
√

Var(ωx(h)) ·Var(1(h(x) ̸= y))

=
√

Var(ωx(h∗S)) · ErrS(h∗S)(1− ErrS(h∗S)) +
√

Var(ωx(h)) · ErrDS
(h)(1− ErrDS

(h))

≤
√

Var(ωx(h∗S)) · ErrS(h∗S) +
√

Var(ωx(h)) · ErrDS
(h) (1− ErrDS

(h) ≤ 1)

≤
√

ErrDS
(h) ·

(√
Var(ωx(h∗S)) +

√
Var(ωx(h))

)

Since this holds for any h, it certainly holds for h = h∗T .

145



A.4 Omitted Assumptions and Proof of Theorem 3.4.6

Denote X+(h) = {x : ωx(h) ≥ 1} and X−(h) = {x : ωx(h) < 1}. First, we

observe that

∫
X+(h)

PDS
(X = x)(1− ωx(h))dx+

∫
X−(h)

PDS
(X = x)(1− ωx(h))dx = 0

This is simply because of
∫
x PDS

(X = x) · ωx(h)dx =
∫
x PD(h)(X = x)dx = 1.

Proof. Notice that in the setting of binary classification, we can write the total vari-

ation distance between DY |S and DY (h) as the difference between the probability

of Y = +1 and the probability of Y = −1:

dTV(DY |S ,DY (h))

=
∣∣PDS

(Y = +1)− PD(h)(Y = +1)
∣∣

=

∣∣∣∣∫ PDS
(Y = +1|X = x)PDS

(X = x)dx−
∫

PDS
(Y = +1|X = x)PDS

(X = x)ωx(h)dx

∣∣∣∣
=

∣∣∣∣∫ PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

∣∣∣∣ (A.3)

Similarly we have

dTV(Dh|S ,Dh(h)) =

∣∣∣∣∫ PDS
(h(x) = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

∣∣∣∣
(A.4)

We can further expand the total variation distance between DY |S and DY (h) as
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follows:

dTV(DY |S ,DY (h))

=

∣∣∣∣∫ PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

∣∣∣∣
=
∣∣∣∫
X+(h)

PD(Y = +1|X = x)PDS
(X = x) · (1− ωx(h))dx︸ ︷︷ ︸

≤0

+

∫
X−(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx︸ ︷︷ ︸
>0

∣∣∣
=−

∫
X+(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

−
∫
X−(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

(by Assumption 3.4.3)

=

∫
X+(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (ωx(h)− 1)dx

+

∫
X−(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (ωx(h)− 1)dx (by equation A.3)

=

∫
PDS

(Y = +1|X = x)PDS
(X = x) · (ωx(h)− 1)dx

Similarly, by assumption 3.4.4 and equation equation A.4, we have

dTV(Dh|S ,Dh(h)) =

∫
PDS

(h(x) = +1|X = x)PDS
(X = x) · (ωx(h)− 1)dx

Thus we can bound the difference between dTV(DY |S ,DY (h)) and dTV(Dh|S ,Dh(h))
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as follows:

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

=

∫
PDS

(Y = +1|X = x)PDS
(X = x) · (ωx(h)− 1)dx

−
∫

PD(h(x) = +1|X = x)PDS
(X = x) · (ωx(h)− 1)dx

=

∫
[PDS

(Y = +1|X = x)− PDS
(h(x) = +1|X = x)]PDS

(X = x) · (ωx(h)− 1)dx

= EDS
[(PDS

(Y = +1|X = x)− PDS
(h(x) = +1|X = x)) (ωx(h)− 1)]

(by Assumption 3.4.5)

> EDS
[PDS

(Y = +1|X = x)− PDS
(h(x) = +1|X = x)]EDS

[ωx(h)− 1]

= 0

Combining the above with Theorem 3.3.5, we have

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2
> 0

A.5 Omitted Details for Section 3.4.3

With Setup 2 - Setup 4, we can further specify the important weight wx(h) for

the strategic response setting:

Lemma A.5.1. Recall the definition for the covariate shift important weight coef-
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ficient ωx(h) :=
PD(h)(X=x)

PDS
(X=x) , for our strategic response setting, we have,

wx(h) =



1, x ∈ [0, τh −B)

τh−x
B , x ∈ [τh −B, τh)

1
B (−x+ τh + 2B), x ∈ [τh, τh +B)

1, x ∈ [τh +B, 1]

(A.5)

Proof for Lemma A.5.1:

Proof. We discuss the induced distribution D(h) by cases:

• For the features distributed between [0, τh −B]: since we assume the agents are

rational, under assumption 2, agents with feature that is smaller than [0, τh−B]

will not perform any kinds of adaptations, and no other agents will adapt their

features to this range of features either, so the distribution between [0, τh − B]

will remain the same as before.

• For the target distribution between [τh − B, τh] can be directly calculated from

assumption 3.

• For distribution between [τh, τh+B], consider a particular feature x⋆ ∈ [τh, τh+B],

under Setup 4, we know its new distribution becomes:

PD(h)(x = x⋆) = 1 +

∫ τh

x⋆−B

1− τh−z
B

B − τh + z
dz

= 1 +

∫ τh

x⋆−B

1

B
dz

=
1

B
(−x⋆ + τh + 2B)

• For the target distribution between [τh + B, 1]: under assumption 2 and 4, we

know that no agents will change their feature to this feature region. So the

distribution between [τh +B, 1] remains the same as the source distribution.
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Recall the definition for the covariate shift important weight coefficient ωx(h) :=

PD(h)(X=x)

PDS
(X=x) , the distribution of ωx(h) after agents’ strategic responding becomes:

ωx(h) =



1, x ∈ [0, τh −B) and x ∈ [τh +B, 1]

τh−x
B , x ∈ [τh −B, τh)

1
B (−x+ τh + 2B), x ∈ [τh, τh +B)

0, otherwise

(A.6)

Proof for Proposition 3.4.7:

Proof. According to Lemma A.5.1, we can compute the variance of wx(h) as Var(wx(h)) =

E(wx(h)2) − E(wx(h)2) = 2
3B. Then plugging it into the general bound for Theo-

rem 3.4.2 gives us the desired result.

A.6 Proof of Theorem 3.5.1

Proof. Defining p := PDS
(Y = +1), p(h) = PD(h)(Y = +1), we have

ErrD(h∗S)
(h∗S) = p(h∗S) · Err+(h∗S) + (1− p(h∗S)) · Err−(h∗S)

(by definitions of p(h∗S), Err+(h
∗
S), and Err−(h

∗
S))

= p · Err+(h∗S) + (1− p) · Err−(h∗S)︸ ︷︷ ︸
(I)

+(p(h∗S)− p)[Err+(h
∗
S)− Err−(h

∗
S)]

(A.7)
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We can expand (I) as follows:

p · Err+(h∗S) + (1− p) · Err−(h∗S)

≤ p · Err+(h∗T ) + (1− p) · Err−(h∗T ) (by optimality of h∗S on DS)

= p(h∗T ) · Err+(h∗T ) + (1− p(h∗T )) · Err−(h∗T ) + (p− p(h∗T )) · [Err+(h∗T )− Err−(h
∗
T )]

= ErrD(h∗T )(h
∗
T ) + (p− p(h∗T )) · [Err+(h∗T )− Err−(h

∗
T )] .

Plugging this back into equation A.7, we have

ErrD(h∗S)
(h∗S)− ErrD(h∗T )(h

∗
T )

≤(p(h∗S)− p)[Err+(h
∗
S)− Err−(h

∗
S)] + (p− p(h∗T )) · [Err+(h∗T )− Err−(h

∗
T )]

Notice that

0.5(Err+(h)− Err−(h))

= 0.5 · 1− 0.5 · P(h(X) = +1|Y = +1)− 0.5 · P(h(X) = +1|Y = −1)

= 0.5− PDu(h(X) = +1)

where Du is a distribution with a uniform prior. Then

(p(h∗S)− p)[Err+(h
∗
S)− Err−(h

∗
S)] = 2(p(h∗S)− p) · (0.5− PDu(h(X) = +1))

(p− p(h∗T ))[Err+(h
∗
T )− Err−(h

∗
T )] = 2(p− p(h∗T )) · (0.5− PDu(h(X) = +1))
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Adding together these two equations yields

(p(h∗S)− p)[Err+(h
∗
S)− Err−(h

∗
S)] + (p− p(h∗T )) · [Err+(h∗T )− Err−(h

∗
T )]

= 2(p(h∗S)− p) · (0.5− PDu(h
∗
S(X) = +1)) + 2(p− p(h∗T )) · (0.5− PDu(h

∗
T (X) = +1))

= (p(h∗S)− p(h∗T ))− 2 (p(h∗S)PDu(h
∗
S(X) = +1)− p(h∗T )PDu(h

∗
T (X) = +1))

+ 2p · (PDu(h
∗
S(X) = +1)− PDu(h

∗
T (X) = +1))

≤ |p(h∗S)− p(h∗T )| · (1 + 2|PDu(h
∗
S(X) = +1)− PDu(h

∗
T (X) = +1)|)

+ 2p · |PDu(h
∗
S(X) = +1)− PDu(h

∗
T (X) = +1)| (A.8)

Meanwhile,

|PDu(h
∗
S(X) = +1)− PDu(h

∗
T (X) = +1)|

≤ 0.5 · |PD |Y=+1(h
∗
S(X) = +1)− PD |Y=+1(h

∗
T (X) = +1)|

+ 0.5 · |PD |Y=−1(h
∗
S(X) = +1)− PD |Y=−1(h

∗
T (X) = +1)|

= 0.5 (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T )) (A.9)

Combining equation A.8 and equation A.9 gives

|p(h∗S)− p(h∗T )| · (1 + 2 · |PDu(h
∗
S(X) = +1)− PDu(h

∗
T (X) = +1)|)

+ 2p · |PDu(h
∗
S(X) = +1)− PDu(h

∗
T (X) = +1)|

≤ |p(h∗S)− p(h∗T )| · (1 + dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T ))

+ p · (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T ))

≤ |p(h∗S)− p(h∗T )|+ (1 + p) · (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T )) .
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A.7 Missing Experimental Details

A.7.1 Synthetic Experiments Using DAG

Here we provide details regarding the data-generating process for the simulated

dataset.

Covariate Shift We specify the causal DAG for covariate shift setting in the

following way:

X1 ∼ Unif(−1, 1)

X2 ∼ 1.2X1 + N (0, σ22)

X3 ∼ −X2
1 + N (0, σ23)

Y := 2sign(X2 > 0)− 1

where σ22 and σ23 are parameters of our choices.

Adaptation function We assume the new distribution of featureX ′
1 will be generated

in the following way:

X ′
1 = ∆(X) = X1 + c · (h(X)− 1)

where c ∈ R1 > 0 is the parameter controlling how much the prediction h(X) affect

the generating of X ′
1, namely the magnitude of distribution shift. Intuitively, this

adaptation function means that if a feature x is predicted to be positive (h(x) =

+1), then decision subjects are more likely to adapt to that feature in the induced

distribution; Otherwise, decision subjects are more likely to be moving away from

x since they know it will lead to a negative prediction.
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Target Shift We specify the causal DAG for target shift setting in the following

way:

(Y + 1)/2 ∼ Bernoulli(α)

X1|Y = y ∼ N[0,1](µy, σ
2)

X2 = −0.8X1 + N (0, σ22)

X3 = 0.2Y + N (0, σ23)

where N[0,1] represents a truncated Gaussian distribution taken value between 0

and 1. α, µy, σ
2,σ22 and σ23 are parameters of our choices.

Adaptation function We assume the new distribution of the qualification Y ′ will

be updated in the following way:

P(Y ′ = +1|h(X) = h, Y = y) = chy, where {h, y} ∈ {−1,+1}

where 0 ≤ chy ∈ R1 ≤ 1 represents the likelihood for a person with original qual-

ification Y = y and get predicted as h(X) = h to be qualified in the next step

(Y ′ = +1).

A.7.2 Synthetic Experiments Using Real-world Data

On the preprocessed FICO credit score data set [Board of Governors of the

Federal Reserve System (US), 2007, Hardt et al., 2016b], we convert the cumu-

lative distribution function (CDF) of TransRisk score among demographic groups

(denoted as A, including Black, Asian, Hispanic, and White) into group-dependent

densities of the credit score. We then generate a balanced sample where each group

has equal representation, with credit scores (denoted as Q) initialized by sampling

from the corresponding group-dependent density. The value of attributes for each
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data point is then updated under a specified dynamics (detailed in Appendix A.7.3)

to model the real-world scenario of repeated resource allocation (with decision de-

noted as D).

A.7.3 Parameters for Dynamics

Since we are considering the dynamic setting, we further specify the data gen-

erating process in the following way (from time step T = t to T = t+ 1):

Xt,1 ∼ 1.5Qt + U [−ϵ1, ϵ1]

Xt,2 ∼ 0.8At + U [−ϵ2, ϵ2]

Xt,3 ∼ At + N (0, σ2)

Yt ∼ Bernoulli(qt) for a given value of Qt = qt

Dt = ft(At, Xt,1, Xt,2, Xt,3)

Qt+1 = {Qt · [1 + αD(Dt) + αY (Yt)]}(0,1]

At+1 = At (fixed population)

where {·}(0,1] represents truncated value between the interval (0, 1], ft(·) represents

the decision policy from input features, and ϵ1, ϵ2, σ are parameters of choices. In

our experiments, we set ϵ1 = ϵ2 = σ = 0.1.

Within the same time step, i.e., for variables that share the subscript t, Qt

and At are root causes for all other variables (Xt,1, Xt,2, Xt,3, Dt, Yt). At each time

step T = t, the institution first estimates the credit score Qt (which is not directly

visible to the institution, but is reflected in the visible outcome label Yt) based on

(At, Xt,1, Xt,2, Xt,3), then produces the binary decision Dt according to the optimal

threshold (in terms of the accuracy).

For different time steps, e.g., from T = t to T = t+ 1, the new distribution at
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T = t + 1 is induced by the deployment of the decision policy Dt. Such impact is

modeled by a multiplicative update in Qt+1 from Qt with parameters (or functions)

αD(·) and αY (·) that depend on Dt and Yt, respectively. In our experiments, we

set αD = 0.01 and αY = 0.005 to capture the scenario where one-step influence of

the decision on the credit score is stronger than that for ground truth label.
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Appendix B

Appendix for Chapter 4

B.1 Proof of Theorem 4.4.2

In this section, we provide the proof of Theorem 4.4.2. To simplify our discus-

sion, we focus on the unconstrained best response, i.e. the case in which F = A.

The proofs for the other two types of best response (F = M, F = I) follow the

same arguments except that the inverse of (S−1)I does not equal to S, but equals

to ((S−1)I)
−1.

We first prove two lemmas that allow us to reformulate the best response as

an optimization problem. The first states that the decision subject’s goal is to

maximize their utility, but they are unwilling to pay a cost greater than 2:

Lemma B.1.1 (Decision Subject’s Best-Response Function). Given a classifier

h : X → {−1,+1}, a cost function c : X ×X → R, and a set of realizable feature

vectors X † ⊆ X , the best response of a decision subject with features x ∈ X † is

the solution to the following optimization program:

max
x′∈X †

U(x, x′) s.t. c(x, x′) ≤ 2
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Proof. Since the classifier in our game outputs a binary decision (−1 or +1), decision

subjects only have an incentive to change their features from x to x′ when c(x, x′) ≤

2. To see this, notice that an decision subject originally classified as −1 receives

a default utility of U(x, x) = f(x) − 0 = −1 by presenting her original features x.

Since costs are always non-negative, she can only hope to increase her utility by

flipping the classifier’s decision. If she changes her features to some x′ such that

f(x′) = +1, then the new utility will be given by

U(x, x′) = f(x′)− c(x, x′) = 1− c(x, x′)

Hence the decision subject will only change her features if 1−c(x, x′) ≥ f(x) = −1,

or c(x, x′) ≤ 2.

The next lemma turns the above maximization program into a minimization

program, in which the decision subject seeks the minimum-cost change in x that

crosses the decision boundary. If the cost exceeds 2, which is the maximum possible

gain from adaptation, they would rather not modify any features.

Lemma B.1.2. Let x⋆ be an optimal solution to the following optimization problem:

x⋆ = argmin
x′∈X ∗

A (x)
c(x, x′)

s.t. sign(wTx′) = 1

If no solution is returned, we say an x⋆ such that c(x, x⋆) = ∞ is returned. Define

∆(x) as follows:

∆(x) =


x⋆, if c(x, x⋆) ≤ 2

x, otherwise

Then ∆(x) is an optimal solution to the optimization problem in Lemma B.1.1.

158



Proof. Recall that the utility function of the decision subject is U(x, x′) = f(x′)−

c(x, x′), and that, by Lemma B.1.1, they will only modify their features if the utility

increases, i.e. if they achieve f(x′) = +1 and while incurring cost c(x, x′) ≤ 2.

Consider two cases for x′ ̸= x:

1. When c(x, x′) > 2, there are no feasible points for the optimization problem of

Lemma B.1.1.

2. When c(x, x′) ≤ 2, we only need to consider those feature vectors x′ that satisfy

f(x′) = 1, because if f(x′) = −1, the decision subject with features x would

prefer not to change anything. Since maximizing U(x, x′) = f(x′) − c(x, x′) is

equivalent to minimizing c(x, x′) if f(x′) = 1, we conclude that when c(x, x′) ≤ 2,

the optimum of the program of Lemma B.1.1 is the same as the optimum of the

program in Lemma B.1.2.

Lemma B.1.2 enables us to re-formulate the objective function as follows. Re-

call that c(x, x′) =
√

(xA − xA′)TS−1(xA − xA′) where S−1 is symmetric positive

definite. Thus S−1 has the following diagonalized form, in which Q is an orthogonal

matrix and Λ−1 is a diagonal matrix:

S−1 = QTΛ−1Q = (Λ− 1
2Q)T(Λ− 1

2Q)

With this, we can re-write the cost function as

c(x, x′) =
√

(xA − xA′)TS−1(xA − xA′)

=

√
(xA − xA′)T(Λ− 1

2Q)T(Λ− 1
2Q)(xA − xA′)

=

√
(Λ− 1

2Q(xA − xA′))T(Λ− 1
2Q(xA − xA′))

= ∥Λ− 1
2Q(xA − xA

′)∥2
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Meanwhile, the constraint in Lemma B.1.2 can be written

sign(w · x′) = sign(wA · xA′ + wIM · xIM)

= sign(wA · xA′ − (−wIM · xIM)) = 1

Hence the optimization problem can be reformulated as

min
xA′∈X ∗

A

∥(Λ− 1
2Q(xA − xA

′))∥2 (B.1)

s.t. sign(wA · xA′ − (−wIM · xIM)) = 1 (B.2)

The above optimization problem can be further simplified by getting rid of the

sign(·):

Lemma B.1.3. If xA
∓ is an optimal solution to Equation (B.1) under constraint

Equation (B.2), then it must satisfy wA · xA∓ − (−wIM · xIM) = 0.

Proof. We prove by contradiction. Let x∓A is an optimal solution to Equation (B.1)

and suppose towards contraction that wAx
∓
A > −wIM ·xIM. Since the original feature

vector x was classified as −1, we have

wA · x∓A > −wIM · xIM, wA · xA < −wIM · xIM

By the continuity properties of linear vector space, there exists µ ∈ (0, 1) such that:

wA

(
µ · xA∓ + (1− µ)xA

)
= −wIM · xIM

Let xA
′′ = µ · xA∓ + (1− µ)xA. Then sign(wAxA

′′ − (−wIM · xIM)) = 1, i.e., x′′A also

satisfies the constraint. Since xA
∓ is an optimum of Equation (B.1), we have

∥Σ− 1
2Q(xA

∓ − xA)∥ ≤ ∥Σ− 1
2Q(xA

′′ − xA)∥
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However, we also have:

∥Σ− 1
2Q(xA

′′ − xA)∥ = ∥Σ− 1
2Q(µ · xA∓ + (1− µ)xA − xA)∥

= ∥Σ− 1
2Q(µ · (xA∓ − xA))∥

= µ∥Σ− 1
2Q(xA

∓ − xA)∥

< ∥Σ− 1
2Q(xA

∓ − xA)∥

contradicting our assumption that x∓A is optimal. Therefore x∓A must satisfy wAx
∓
A =

−wIM · xIM.

As a result of Lemma B.1.3, we can replace the constraint in Equation (B.1)

with its corresponding equality constraint without changing the optimal solution.1

The decision subject’s best-response program from Lemma B.1.1 is therefore equiv-

alent to

min
xA′∈X ∗

A

∥(Λ− 1
2Q(xA − xA

′))∥2 (B.3)

s.t. wA · xA′ − (−wIM · xIM) = 0 (B.4)

The following lemma gives us a closed-form solution for the above optimization

problem:

Lemma B.1.4. The optimal solution to the optimization problem defined in Equa-

tion (B.3) and Equation (B.4)

has the following closed form:

xA
∓ = xA − wTx

wA
TSwA

SwA.

1A similar argument was made by Haghtalab et al. [2020] but here we provide a proof for a
more general case, where the objective function is to minimize a weighted norm instead of simply
∥xA − xA

′∥2.
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Proof. Notice that the above program has the form

min
xA′∈xA∗

∥AxA′ − b∥2

s.t. CxA
′ = d

where A = Λ− 1
2Q, b = Λ− 1

2QxA, C = wA
T, and d = −wIM

TxIM. Note the following

useful equalities:

ATA = (Λ− 1
2Q)TΛ− 1

2Q = S−1

(ATA)−1 = S

ATb = (Λ− 1
2Q)TΛ− 1

2QxA = S−1xA

The above is a norm minimization problem with equality constraints, whose opti-

mum xA
∓ has the following closed form [Boyd and Vandenberghe, 2004]:

xA
∓ = (ATA)−1

(
ATb− CT(C(ATA)−1CT)−1(C(ATA)−1ATb− d)

)
= S

(
S−1xA − wA(wA

TSwA)
−1(wA

TS(S−1xA)− (−wIM
TxIM))

)
= xA − S

(
wA(wA

TSwA)
−1(wA

TxA + wIM
TxIM)

)
= xA − wTx

wA
TSwA

SwA

We can now compute the cost incurred by an individual with features x who

plays their best response x∓:

c(x, x∓) =
√

(xA − xA∓)TS−1(xA − xA∓)

=

√(
wTx

wA
TSwA

SwA

)T

S−1

(
wTx

wA
TSwA

SwA

)
=

|wTx|√
wA

TSwA
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Hence an decision subject who was classified as −1 with feature vector x has the

unconstrained best response

∆(x) =


x, if |wTx|√

wA
TSwA

≥ 2

[
xA − wTx

wA
TSwA

SwA | xIM
]
, otherwise

which completes the proof of Theorem 4.4.2.

B.2 Proof of Proposition 4.4.5

Proposition B.2.1 (Correlations between Features May Reduce Cost). For any

cost matrix S−1 and any nontrivial classifier h, there exist indices k, ℓ ∈ [dA] and

τ ∈ R such that every feature vector x has lower best-response cost under the cost

matrix S̃−1 given by

S̃−1
ij = S̃−1

ji =


S−1
ij + τ, if i = k, j = ℓ

S−1
ij , otherwise

than under S−1; that is, cS̃−1(x,∆(x)) < cS−1(x,∆(x)) for all x.

Proof. Consider any cost matrix S−1 ∈ RdA×dA and any nontrivial classifier h (i.e. h

does not assign every x the same prediction). Since S−1 is positive definite, so is its

inverse S, and all of their diagonal entries are positive. And since h is nontrivial,

it must contain a nonzero coefficient wi ̸= 0. Additionally, let wj be any other

coefficient.

Let S̃−1 = S−1 + τ(eie
T
j + eje

T
i ) for some constant τ ∈ R to be set later. We

claim that there exists τ such that the best-response adaptation always costs less

under S̃−1 than S−1. To do so, we compute the inverse of S̃−1 and invoke the

closed-form cost expression given by Theorem 4.4.2.
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To begin computing the inverse, note that by the Sherman-Morrison-Woodbury

formula [Golub and Van Loan, 2013],

S̃ =
(
S̃−1

)−1
= S − τS

[
ei ej

]I + τ

eTj
eTi

S [ei ej

]
−1 eTj

eTi

S (B.5)

= S − τS

[
ei ej

]I + τ

Sij Sjj

Sii Sij




−1 eTj
eTi

S (B.6)

= S − τS

[
ei ej

]τ
1

τ
I +

Sij Sjj

Sii Sij




−1 eTj

eTi

S (B.7)

= S − τS

[
ei ej

]
τ−1

 1
τ + Sij Sjj

Sii
1
τ + Sij


−1 eTj

eTi

S (B.8)

= S − S

[
ei ej

] 1
τ + Sij Sjj

Sii
1
τ + Sij


︸ ︷︷ ︸

T

−1 eTj
eTi

S (B.9)

Clearly, we can ensure that T is invertible by setting τ so that det(T ) ̸= 0. But as

the following lemmas show, we can actually say much more: det(T ) can be made

either positive or negative, and moreover, both can be accomplished with a choice

of τ > 0 or τ < 0. This flexibility in choosing τ will become crucial later.

First, we need the following useful fact about positive definite matrices:

Lemma B.2.2 (Off-diagonal entries of a positive definite matrix). If A ∈ Rn×n is

symmetric positive definite, then for all i, j ∈ [n],
√
AiiAjj > |Aij |.

Proof. By positive definiteness, we have, for any nonzero α, β ∈ R,

(αei + βej)
TA(αei + βej) = α2Aii + β2Ajj + 2αβAij > 0
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For a choice of α = −Aij and β = Aii, we have

A2
ijAii +A2

iiAjj − 2A2
ijAii = Aii(AiiAjj −A2

ij) > 0

Since Aii > 0, we must have AiiAjj −A2
ij > 0, from which the claim follows.

Now we can characterize the possible settings of τ and det(T ):

Lemma B.2.3 (Possible settings of τ). There exist τmax, τmin > 0 such that the

following hold:

1. det(T ) > 0 for any τ ∈ R such that τmax ≥ |τ | > 0.

2. det(T ) < 0 for any τ ∈ R such that τmin ≤ |τ |.

Proof. To prove the first claim, note that having

det(T ) =

(
1

τ
+ Sij

)2

− SiiSjj > 0

is equivalent to ∣∣∣∣1τ + Sij

∣∣∣∣ >√SiiSjj
It suffices to choose τ such that∣∣∣∣1τ

∣∣∣∣− |Sij | >
√
SiiSjj

1

|τ |
>
√
SiiSjj + |Sij |

So any τ such that 0 < |τ | <
(√

SiiSjj + |Sij |
)−1

results in det(T ) > 0. Analo-

gously, for the second claim, a sufficient condition for det(T ) < 0 is that

1

|τ |
<
√
SiiSjj − |Sij |

By Lemma B.2.2, the right-hand side is positive. Hence it suffices to pick any τ

such that

|τ | >
(√

SiiSjj − |Sij |
)−1

.
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With this lemma in place, we can describe the difference between the inverses

of S−1 and S̃−1. Denote this matrix by E = S − S̃. We show the following:

Lemma B.2.4 (Difference between inverse cost matrices). The k, ℓ-th entry of E

has the following form:

Ekℓ =
1

det(T )

(
E′
kℓ +

1

τ
E′′
kℓ

)

where E′
kℓ and E

′′
kℓ do not depend on τ .

Proof. Assume that τ has been chosen so that det(T ) ̸= 0, as Lemma B.2.3 showed

to be possible. We then have

T−1 =
1

det(T )

 1
τ + Sij −Sjj

−Sii 1
τ + Sij


Thus continuing from equation B.9, we have

S̃ = S − 1

det(T )
S

[
ei ej

] 1
τ + Sij −Sjj

−Sii 1
τ + Sij


eTj
eTi


︸ ︷︷ ︸

V

S

It can be verified that V is a dA × dA matrix whose only nonzero entries are

Vii = −Sjj , Vjj = −Sii, Vij = Vji =
1

τ
+ Sij
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Next we evaluate the dA × dA matrix SV S. For any k, ℓ ∈ [dA], we have

(SV S)kℓ =

dA∑
i′=1

dA∑
j′=1

Ski′Vi′j′Sj′ℓ

= SkiViiSiℓ + SkiVijSjℓ + SkjVjiSiℓ + SkjVjjSjℓ

((V has four nonzero entries))

= ViiSkiSiℓ + VjjSkjSjℓ + Vij(SkiSjℓ + SkjSiℓ) ((Vij = Vji))

= −SjjSkiSiℓ − SiiSkjSjℓ +

(
1

τ
+ Sij

)
(SkiSjℓ + SkjSiℓ)

= −SjjSkiSiℓ − SiiSkjSjℓ + Sij(SkiSjℓ + SkjSiℓ)︸ ︷︷ ︸
E′

kℓ

+
1

τ
(SkiSjℓ + SkjSiℓ)︸ ︷︷ ︸

E′′
kℓ

which proves the claim.

We now compute the marginal best-response cost incurred due to the difference

between the inverse cost matrices, E = S − S̃. We have

wA
TEwA =

dA∑
k=1

dA∑
ℓ=1

wkwℓEkℓ

=
1

det(T )

dA∑
k=1

dA∑
ℓ=1

wkwℓ

(
E′
kℓ +

1

τ
E′′
kℓ

)
(by Lemma B.2.4)

=
1

det(T )


dA∑
k=1

dA∑
ℓ=1

wkwℓE
′
kℓ︸ ︷︷ ︸

E′

+
1

τ

dA∑
k=1

dA∑
ℓ=1

wkwℓE
′′
kℓ︸ ︷︷ ︸

E′′


By Lemma B.2.3, there exists τ ̸= 0 such that

sign(det(T )) = −sign(E′) and sign(τ) = −sign(det(T )) · sign(E′′)

Such a choice of τ results in wA
TEwA < 0. Finally by Theorem 4.4.2, we have for

all x that

cS̃−1(x,∆S̃−1(x)) =
|wTx|√
wA

TS̃wA

=
|wTx|√

wA
TSwA − wA

TEwA

<
|wTx|√
wA

TSwA

= cS−1(x,∆S−1(x))

which completes the proof.
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B.3 Derivations For The Model Designer’s Objective

Function

Now that we have obtained a closed-form expression for both the unconstrained

and improving best response from the decision subjects, we can analyze the objec-

tive function for the model designer and the model that would be deployed at

equilibrium. Recall that the objective function for the model designer is

min
w∈Rd+1

Ex∼D [1(h(∆M(x)) ̸= y)] + λEx∼D [1(h(∆I(x)) ̸= +1)]

By Theorem 4.4.2, h(∆M(x)) has the closed form

h(∆M(x)) =


+1 if w · x ≥ −2

√
wM

TSMwM

−1 otherwise

= 2 · 1
[
w · x ≥ −2

√
wM

TSMwM

]
− 1

and similarly,

h(∆I(x)) = 2 · 1
[
w · x ≥ −2

√
wI

TSIwI

]
− 1

The model designer’s objective can then be re-written as follows:

Ex∼D [1[h(∆M(x)) ̸= y] + λ1[h(∆I(x)) ̸= +1]]

=Ex∼D

[
1− 1

2
(1 + h(∆M(x)) · y) + λ(1− 1

2
(1 + h(∆I(x)) · 1))

]
=Ex∼D

[
1

2
(1 + λ)− 1

2
h(∆M(x)) · y − λ

2
h(∆I(x))

]
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Removing the constants, the objective function becomes:

min
w

Ex∼D [λ− h(∆M(x)) · y − λh(∆I(x))]

=min
w

Ex∼D

[
−
(
2 · 1

[
w · x ≥ −2

√
wM

TSMwM

]
− 1
)
· y(x)

− 2λ · 1
[
w · x ≥ −2

√
wI

TSIwI

] ]

Re-organizing the above equations, we can turn the model designer’s con-

strained optimization problem in equation 4.7 into the following unconstrained

problem:

min
w∈Rd

Ex∼D

[
−
(
2 · 1

[
wTx ≥ −2

√
ΩM

]
− 1
)
· y − 2λ · 1

[
wTx ≥ −2

√
ΩI

] ]
(B.10)

The optimization problem in equation B.10 is intractable since both the objec-

tive and the constraints are non-convex. To overcome this difficulty, we train our

classifier by replacing the 0-1 loss function with a convex surrogate loss σ(x) =

log
(

1
1+e−x

)
. This results in the following ERM problem:

min
w∈Rd

1

n

n∑
i=1

[
− σ

(
yi · (wTxi + 2

√
ΩM)

)
− λ · σ(wTxi + 2

√
ΩI)
]

(B.11)

Conditionally Actionable Features In practice, individuals can often only

change some features in either a positive or negative direction, but not both. How-

ever, modeling this restriction on the decision subject’s side precludes a closed-form

solution. Instead, we strongly disincentivize such moves in the model designer’s

objective function. The idea is that if the model designer is punished for encour-

aging an illegal action, the announced classifier will not incentivize such moves

from decision subjects. The result is that decision subjects encounter an implicit

direction constraint on the relevant variables. To that end, we construct a vec-

tor dir ∈ {−1, 0,+1}d where diri represents the prohibited direction of change for
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the corresponding feature xi; that is, diri = +1 if xi should not be allowed to in-

crease, −1 if it should not decrease, and 0 if there are no direction constraints.

We then append the following penalty term to the model designer’s objective in

Equation (4.7):

−η ·
d∑
i=1

max(diri · (∆(x)− x)i, 0) (B.12)

where η > 0 is a hyperparameter representing the weight given to this penalty

term. Equation (B.12) penalizes the weights of partially actionable features so that

decision subjects would prefer to move towards a certain direction.

B.4 Additional Experimental Details and Results

In this section, we provide additional experimental information and results.

B.4.1 Basic Information Of Each Dataset.

Table B.1: Basic Information Of Each Dataset.

Dataset Size Dimension Prediction Task

credit 20, 000 16 To predict if a person can repay their

credit card loan.

adult 48, 842 14 To predict whether income exceeds

50K/yr based on census data.

german 1, 000 26 To predict whether a person is good or

bad credit risk.

spam 4601 57 To predict if an email is a spam or not.
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B.4.2 Additional Experimental Results for Non-Linear Models

We also work with a three-layer neural network to validate the effectiveness

of the oracle best response in Algorithm 1. We note that the LIME program

needs to learn a local linear model for each instance, which is very time-consuming.

Therefore, we downsample only 10% of data examples from the credit dataset. We

follow the same setting as the linear classifier experiments. We compare our method

with the static classifier in Table B.2. We find out for this non-linear model setting,

our approach has a higher improvement rate while preventing manipulations with

the deploy error 27.72% vs. 35.64%.

Table B.2: Performance Metrics for Non-linear Models.

Methods

Metrics ST CA

test error

deployment error

improvement rate

30.72%

35.64%

0.99%

30.01%

27.72%

2.97%
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Appendix C

Appendix for Chapter 5

C.1 Notation Table for Chapter 5
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Symbol Usage

X ⊂ Rd The domain of the feature x

Y ≡ {0, 1} The domain of labels

X ∈ Rn×d A set of features of n agents

Y ∈ {0, 1}|X| The labels for the set of features X

x ∈ X A random variable representing an example’s features.

y ∈ Y A random variable representing an example’s ground truth label

f : X → Y a binary classifier, unknown to the agents

X−,X (0) ⊆ X The domain of negatively classified features, i.e. ∀x ∈ X−, f(x) = 0

X+ ⊆ X The domain of positively classified features, i.e., ∀x ∈ X+, f(x) = 1

X− ⊆ X The set of negatively classified features, i.e. ∀x ∈ X−, f(x) = 0

X+ ⊆ X The set of positively classified features, i.e., ∀x ∈ X+, f(x) = 1

X(gi) ⊆ X The subset of features belongs to group G = gi

cR : X × X → R+ The cost function of recourse

cM : X × X → R+ The cost function of recourse

XR The set of all possible recourse actions

ZR The set of revealed recourse actions

Z+ The set of revealed positively classified features

Z = ZR ∪ Z+ A publicly revealed feature set

xR(x) The optimal recourse action for agent with feature x

xM (x) The optimal manipulation action for agent with feature x

z(x,Z) The agent’s final action

rec(Z,X) The recourse ratio for feature sets X given revealed set is Z

α ∈ [0, 1] A subsidy level

u0 ∈ R The initial utility of a system without providing recourse.

Table C.1: Primary Notation

C.2 ILP for system when p = 1

We provide the ILP formula for the system to find optimal recourse actions

when the revealing probability p = 1:

max
a∈{0,1}|Zmax|,b∈{0,1}|X−|

|X−|∑
j=1

bj

(maximize the number of agents performing recourse)

s.t. bjcR(xj , zR) ≤ aicM (xj , zi) + (1− ai)

(only do recourse if all manipulation costs are greater)

bj ≤ ajR

(the optimal recourse action zjR for agent j must be revealed)

bjcR(xj , zR) ≤ 1

(the optimal recourse action zjR for agent j must be less than 1)

|Z|∑
h=1

ah = k

(the total number of revealed recourse action is k)
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C.3 Proofs for Theorem 5.4.1

Proof. To demonstrate the intractability of this objective, we reduce from the

known NP-hard problem Minimum k-Union (MkU), an instance of which is defined

via a universe of n elements U = {s1, . . . , sn},a collection of n sets S = {S1, . . . Sm}

with elements in U , and a budget k. The objective in MkU is to select an in-

dex set I of size exactly k such that ∪j∈ISj is minimized. Given an instance

of MkU can be mapped to an instance of simultaneous recourse as follows. Let

X(0) × Z =
{
(x, zj) : si ∈ U and Sj ∈ S

}
, and define cR and cM as follows,

cR(x, zj) =


1 if i ̸= j

0 if i = j

cM (x, zj) =


1 if si /∈ Sj

1/2 if si ∈ Sj

Under this construction of the cost functions, each agent x will perform recourse

if and only if zi is revealed, and the disclosure probability p = 1. In the case

that zi is not revealed, the agent will elect to perform manipulation when any zj

is revealed where j ̸= i and si ∈ Sj . If neither criterion is met, the agent will

elect to do nothing (remaining negatively classified). Combining these cases, we

see that revealing each zj causes exactly one agent to perform recourse, namely xj ,

and causes all x (with si ∈ Sj) to manipulate. Let I = {j1, . . . , jk} be the index

set of the revealed features, then the number of agents manipulating is equal to∣∣ ∪j∈I Sj∣∣ − k. Therefore providing k recourse actions to agents while minimizing

the number of agents manipulating is equivalent to minimizing
∣∣ ∪j∈I Sj∣∣.
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C.4 Proof for Theorem 5.4.2

Proof. Given a revealed set Z ⊆ XR, for agent with feature x ∈ X−, let Sm(x,Z) :=

{z ∈ Z : cM (x, z) ≤ cR(x, zR(x,Z))} be the set of manipulation features that are

cheaper than the minimum recourse action zR(x,Z) given the revealed set Z. Then

the agent will perform recourse if and only if Sm(x,Z) = ∅. Given the cost function

cM and cR, the principal can pre-compute each agent’s manipulation set Sm(x,Z).

The probability for the manipulation set Sm(x,Z) to overlap with a given

revealed set Z is P (x;Z) = Πz∈Zm(x,Z)(1− p), where p is the disclosure probability

for any criteria z.

The goal for the system is to select a disclosure set Z ⊆ XR to minimize the

overlap between Z and Sm(x,Z) for all agents, namely:

min
Z⊆XR

u(Z,X−) :=
∑

x∈X−

(1− P (x;Z)) =
∑

x∈X−

(
1−Πz∈Zm(x,Z)(1− p)

)
(C.1)

To ease the notation, we use u(Z) to shorthand u(Z,X−) since X− is fixed in

our setting. To show that Equation (C.1) is submodular, it is equivalent to prove

that the objective function u(Z,X−) satisfies the diminishing returns property,

which means ∀A,B ⊆ Z with A ⊆ B ⊆ Z, and any criteria z ∈ Z\B, we want to

show

u(A ∪ {z})− u(A) ≥ u(B ∪ {z})− u(B)

Only four types of agents could potentially contribute to the marginal gain for

U when the revealed sets are A ∪ {z} v.s. B ∪ {z}:

1. when Sm(x, B ∪ {z}) = B ∪ {z}

2. when Sm(x, B ∪ {z}) = A ∪ {z}

3. when Sm(x, B ∪ {z}) = {z}
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4. when Sm(x, B ∪ {z}) = B\A ∪ {z}

For the first three cases, we can verify that the two marginal gains are the

same. For the last case, the two marginal gains are:

u(A+ {z})− u(A) = [1− (1− p)]− 0 = p

u(B + {z})− u(B) = [1−Πt∈{B\A∪{z}}(1− p)]− [1−Πt∈{B\A}(1− p)]

= p×Πt∈{B\A}(1− p)

≤ p

Since this holds for all agents, we show that adding a criterion z to a larger set

B provides an equal or smaller marginal gain in the objective function compared to

adding it to a smaller set A, satisfying the diminishing returns property. Therefore,

the objective function defined in Equation (C.1) is submodular.

C.5 Proof for Theorem 5.6.3

Proof. Again, consider a 1-dimensional setting, where the system uses a linear

threshold classifier f(x) = 1[x ≥ τ ]. In this case, the optimal recourse action for

any agent is always the minimum recourse actions that has been revealed so far,

namely zmin = minz∈Z z. Recall the definition of the social cost with subsidy level

α:

cost(Z,X−;α) =
∑

x∈X−

(
cR(x, zR(x,Z;α);α)− cR(x, zR)

)
,

where zR(x,Z;α) = argmin
z∈Z

(1− α)cR(x, z)
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In the 1-dimension case, we have

cR(x, zR(x,Z;α);α) = (1− α) · wR · ∥x− zR(x,Z;α)∥

= (1− α) · wR ·min
z∈Z

∥x− z∥ = (1− α) · wR ·
(
min
z∈Z

z − x

)
cR(x, zR;α) = (1− α) · wR · ∥x− zR∥

= (1− α) · wR · ∥x− τ∥

= (1− α) · wR · (τ − x)

Thus,

cost(Z,X−;α) =
∑

x∈X−

(cR(x, zR(x;Z;α))− cR(x,xR;α))

=
∑

x∈X−

[
(1− α) · wR ·

(
min
z∈Z

z − x

)
− (1− α) · wR · (τ − x)

]

= (1− α) · |X−| · wR ·
(
min
z∈Z

z − τ

)

As the level of subsidy gets larger (α gets bigger, cheaper to perform recourse),

cost(Z,X−;α) will get smaller, which corresponds to a smaller social cost.

C.6 Proof for Theorem 5.6.4

Proof. The system utility is defined as the difference between true positive and false

positive after agent’s actions. Let Pr[Y = 1|X = x] be the true qualification rate

given a feature X = x, and assume it’s also monotonic in X. u0 is the system’s

initial utility (before providing recourse).

177



Let the recourse region RR and manipulation region RM are defined as:

RM = {x ∈ X− : cM (x, zmin) < min(1, cR(x, zmin))}

RR = {x ∈ X− : cR(x, zmin) < min(1, cM (x, zmin))}

where X− is the set of negatively classified agents. Then we have

System’s utility(zmin)

= TP− FP

= u0 +

∫
x∈RM

Pr(y = 1|X = x)dx︸ ︷︷ ︸
TP from agents taking manipulation

+

∫
x∈RR

Pr(y = 1|X = zmin)dx︸ ︷︷ ︸
TP from agents taking recourse

−
∫
x∈RM

(1− Pr(y = 1|X = x)) dx︸ ︷︷ ︸
FP from agents taking manipulation

−
∫
x∈RR

(1− Pr(y = 1|X = zmin))dx︸ ︷︷ ︸
FP from agents taking recourse

= u0 +

∫
x∈RM

(2 · Pr(y = 1|X = x)− 1) dx+

∫
x∈RR

(2Pr(y = 1|X = zmin)− 1) dx

= u0 +

∫
x∈RM

(2 · Pr(y = 1|X = x)− 1) dx+ (2Pr(y = 1|X = zmin)− 1)

∫
x∈RR

dx

where zmin = argminz∈Z z is the cheapest recourse actions.

Useful facts:

1. Suppose the classifier is a threshold classifier: f = I[x ≥ θ], we can further

characterize the X (0) = {x ∈ X : x ≤ θ}.

2. the minimum value of zmin is θ (the decision boundary).

3. Since Pr[y = 1|X = x] is monotonic in x, ∀x ∈ RM ,Pr[y = 1|X = x] ≤ Pr[y =

1|X = zmin]

When we change the subsidy level α, the two regions change as:

X
(α)
M = {x ∈ X(0) : cM (x, zmin) < min(1, cR(x, zmin;α))}

R
(α)
R = {x ∈ X(0) : cR(x, zmin;α) < min(1, cM (x, zmin;α))}
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where cR(x, x
′;α) = (1 − α) · cR(x, x′). As α becomes larger, we should expect

|X (α)
R | to be larger and |X (α)

M | to be smaller.

When cR(x, x
′) and cM (x, x′) are both monotonic in ∥x − x′∥ and only cross

once. wlog, assume

cM (x, x′) = ∥x− x′∥, cR(x, x′;α) = α · wR · ∥x− x′∥+ b (0 < wR ≤ 1, b < 1)

(to guarantee they only cross once)

we can further characterize the two regions:

X
(a)
M = {x : x ∈ [zmin −

√
b

1− α · wR
, θ]},

X
(a)
R = {x : x ∈ [zmin −

√
1− b

α · wR
, zmin −

√
b

1− α · wR
]}

which gives us the size for the two regions as:

∣∣∣X (a)
M

∣∣∣ = θ − zmin +

√
b

1− α · wR
,

∣∣∣X (a)
R

∣∣∣ =√ 1− b

α · wR
−
√

b

1− α · wR

For α ∈ [0, 1], the rate in which the size of X
(a)
M and X

(a)
R changes as a function

of the subsidy level α can be expressed as:

∂|X (a)
M |

∂α
=

1

2
· b1/2 · w · (1− aw)−3/2,

∂|X (a)
R |

∂α
= −1

2

√
1− b

w
· a−3/2 − 1

2
· b1/2 · w · (1− aw)−3/2

we can see the increase rate in the size of R
(α)
R is higher than the decrease rate in

the size of R
(α)
M . This, together with the fact that useful fact (3), tell us that the

system’s utility will be a monotonically increasing function in subsidy level α.
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C.7 Proof for Theorem 5.6.6

Proof. Recall from the proof for the recourse rate with subsidy, for a particular

reveal set Z and a given set of negatively classified feature set X−, we have:

rec(Z,X−;α) =

∑
x∈X−

1

[
α ≥ 1−

min
(
1, min

z′′∈Z
cM (x,z′′)

)
min
z′∈Z

cR(x,z′)

]
|X−|

To ease the notation, let’s define γ(x) =

∑
x∈X−

1

[
α≥1−

min

(
1, min

z′′∈Z
cM (x,z′′)

)
min
z′∈Z

cR(x,z′)

]
|X−| . Plug

the expression into the definition for the disparity in recourse ratio for two groups

g0, g1, we have:

Diff(rec)(Z,X
(g0)
− ,X

(g1)
− ) =

∣∣∣rec(Z,X(g1)
− , α)− rec(Z,X

(g0)
− , α)

∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

∑
x∈X(g1)

−

1

[
α ≥ 1− γ(x)

]
|X(g1)

− |
−

∑
x∈X(g0)

−

1

[
α ≥ 1− γ(x)

]
|X(g0)

− |

∣∣∣∣∣∣∣∣∣∣∣
when the size of the two groups are similar, namely when |X(g0)

− | ≈ |X(g1)
− |, we

can roughly approximate the recourse difference by:

Diff(rec)(Z,X
(g0)
− ,X

(g1)
− , α) ≊

∣∣∣∣∣∣∣
∑

x∈X(g1)
−

1

[
α ≥ 1− γ(x)

]
−

∑
x∈X(g0)

−

1

[
α ≥ 1− γ(x)

]∣∣∣∣∣∣∣

We make the following observation:

• When α = 0: it corresponds to the situation where no subsidy is provided. This

is the original disparity Diff(rec)(Z,X
(g0)
− ,X

(g1)
− ).

• When α = αmax = 1, it corresponds to when the cost of recourse is 0, in this

case, everyone takes recourse, which means the recourse difference is zero. Since

1−γ(x) ≤ 1 = αmax is also an upper bound on the value 1 = γ(x) for all x ∈ X−.
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For each group g0 and g1, if we rank x by their 1 − γ(x) value, then as we move

α from 0 to 1, all the points that are to the left of the α will be counted towards

1[α ≥ 1 − γ(x)]. Thus the disparity will depend on the distribution of 1 − γ(x),

which will mainly depend on the distribution of x, as well as the cost functions cR

and cM . However, we are guaranteed to at least find an 1 < α∗ < 1, such that after

α > α∗, there is only one x ∈ X
(g0)
− such that α ≥ 1 − γ(x) is true. In this case,

increasing α will only leads to decreasing in the disparity.

C.8 Additional Experimental Results

In this section, we present further empirical findings obtained by employing

a Gradient Boosting Decision Tree as the training method. Overall, we observe

similar behavior compared with training with logistic regression.
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(a) Law (b) Adult

(c) Credit

Figure C.1: Fraction of the population performing recourse, with 95% confidence intervals.

Each line corresponds to a different subsidy ratio “subs”, i.e., the cost reduction applied to

recourse.
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(a) Law (b) Adult

(c) Credit

Figure C.2: Fraction of the population performing manipulation, with 95% confidence

intervals. Each line corresponds to a different subsidy ratio “subs”, i.e., the cost reduction

applied to recourse.
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(a) Law (b) Adult

(c) Credit

Figure C.3: The system’s utility as a function of the population percentage with provided

recourse, with 95% confidence intervals. Each line corresponds to a different subsidy ratio

“subs”, i.e., the cost reduction applied to recourse.
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(a) Law (b) Adult

(c) Credit

Figure C.4: The social cost as a function of the population percentage with provided

recourse, with 95% confidence intervals. Each line corresponds to a different subsidy ratio

“subs”, i.e., the cost reduction applied to recourse.
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(a) Law (b) Adult

(c) Credit

Figure C.5: Difference in recourse rate between different sensitive attribute groups with

95% confidence intervals. Each line corresponds to a different subsidy ratio “subs”, i.e., the

cost reduction applied to recourse.
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(a) Law (b) Adult

(c) Credit

Figure C.6: Difference in social cost between different sensitive attribute groups with 95%

confidence intervals. Each line corresponds to a different subsidy ratio “subs”, i.e., the cost

reduction applied to recourse.
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Appendix D

Appendix for Chapter 6

D.1 Omitted Proofs

D.1.1 Unfairness of Pairwise-Independent Derandomization

Proof of Proposition 6.2.2. For any δ > 0, let Sδ := {x ∈ Rn | d(x,0) = δ} be the

sphere of radius δ around the origin. Consider any α ≥ 1 and β ∈
(
0, 12 − 1

2k

)
, and

choose X to be some subset of Sδ of size |X| = N in which the closest two points

are positioned at distance ϵ from one another, where

0 < ϵ := min
x,x′∈X

d(x, x′) <
1

2
− 1

2k
− β.

Now let f be a classifier that maps half of the points in X to 1+ϵ
2 , and the

other half to 1−ϵ
2 . f is (1, 0, d)-fair over X, since for any x, x′ ∈ X,

|f(x)− f(x′)| ≤
∣∣∣∣1 + ϵ

2
− 1− ϵ

2

∣∣∣∣ = ϵ ≤ d(x, x′)

However, FPI is not (α, β, d)-fair on any point pair. To see this, consider any

x ̸= x′ ∈ X; we show that for f̂ ∼ FPI, |f̂(x) − f̂(x′)| is typically large relative to
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d(x, x′):

Ef̂∼FPI

[∣∣∣f̂(x)− f̂(x′)
∣∣∣]

= Pr
f̂∼FPI

[
f̂(x) ̸= f̂(x′)

]
(f̂ ∈ {0, 1})

= Pr
f̂∼FPI

[
f̂(x) = 1, f̂(x′) = 0

]
+ Pr
f̂∼FPI

[
f̂(x) = 0, f̂(x′) = 1

]
= Pr

h∼HPI

[
f(x) ≥ h(x)

k
, f(x′) <

h(x′)

k

]
+ Pr
h∼HPI

[
f(x) <

h(x)

k
, f(x′) ≥ h(x′)

k

]
≥ Pr

h∼HPI

[
1− ϵ

2
≥ h(x)

k
,
1 + ϵ

2
<
h(x′)

k

]
+ Pr
h∼HPI

[
1 + ϵ

2
<
h(x)

k
,
1− ϵ

2
≥ h(x′)

k

]
= Pr

h∼HPI

[
h(x)

k
≤ 1− ϵ

2

]
· Pr
h∼HPI

[
h(x′)

k
>

1 + ϵ

2

]
+ Pr
h∼HPI

[
h(x)

k
>

1 + ϵ

2

]
· Pr
h∼HPI

[
h(x′)

k
≤ 1− ϵ

2

]
(by pairwise independence)

≥
(
1− ϵ

2
− 1

k

)(
1− 1 + ϵ

2
− 1

k

)
+

(
1− 1 + ϵ

2
− 1

k

)(
1− ϵ

2
− 1

k

)
(by equation D.2)

=
1

2

(
1− 2ϵ+ ϵ2

)
− 1− ϵ

2k
+

1

k2

≥ 1

2
− ϵ− 1

2k

The distance between any two points in Sδ, and therefore X, is at most 2δ;

hence for a choice of δ ∈
(
0, 1/2−β−ϵ−1/2k

2α

)
(which is possible since β < 1

2 −
1
2k and

ϵ < 1
2 − 1

2k − β), we have

Eh∼H

[∣∣∣f̂(x)− f̂(x′)
∣∣∣]

≥1

2
− ϵ− 1

2k

=2α · 1/2− β − ϵ− 1/2k

2α
+ β

>α · 2δ + β

≥α · d(x, x′) + β

which is a violation of (α, β, d)-metric fairness (Equation (6.2)) and applies to all
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pairs x, x′ ∈ X.

D.1.2 Random Threshold Derandomization Guarantees

Proof of Proposition 6.2.3. Let f be an (α, β, d)-fair classifier, and consider any

x, x′ ∈ X. We have

Ef̂r∼FRT

[∣∣∣f̂r(x)− f̂r(x
′)
∣∣∣]

= Pr
f̂r∼FRT

[
f̂r(x) ̸= f̂r(x

′)
]

(f̂ ∈ {0, 1})

= Pr
f̂r∼FRT

[
f̂r(x) = 0, f̂r(x

′) = 1
]
+ Pr
f̂r∼FRT

[
f̂r(x) = 1, f̂r(x

′) = 0
]

= Pr
r∼[0,1]

[f(x) < r ≤ f(x′)] + Pr
r∼[0,1]

[f(x′) < r ≤ f(x)]

= |f(x)− f(x′)|

≤ α · d(x, x′) + β (f is (α, β, d)-fair)

which shows that FRT is also (α, β, d)-fair. To compute the bias, note that for any

x ∈ X,

Ef̂r∼FRT

[
f̂r(x)

]
= Pr

r∼[0,1]
[f(x) ≥ r] = f(x) (D.1)
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which implies Bias(f̂r, f, x) = 0 for all x and hence Bias(f̂ , f,D) for all D . Finally

for the variance, we have

variance(f̂r,D)

:= Varf̂r∼FRT

(
Ex∼D [f̂r(x)]

)
= Er∼[0,1]

[(
Ex∼D

[
f̂r(x)

])2]
−
(
Er∼[0,1]

[
Ex∼D

[
f̂r(x)

]])2
= Er∼[0,1]

[(
Ex∼D

[
f̂r(x)

])2]
−
(
Ex∼D

[
Er∼[0,1]

[
f̂r(x)

]])2
= Er∼[0,1]

[
Ex,x′∼D

[
f̂r(x)f̂r(x

′)
]]

− Ex,x′∼D

[
Er∼[0,1]

[
f̂r(x)

]
Er∼[0,1]

[
f̂r(x

′)
]]

= Ex,x′∼D

[
Er∼[0,1]

[
f̂r(x)f̂r(x

′)
]
− Er∼[0,1]

[
f̂r(x)

]
Er∼[0,1]

[
f̂r(x

′)
]]

= Ex,x′∼D

[
Covr∼[0,1]

(
f̂r(x), f̂r(x

′)
)]

≤ Ex,x′∼D

[√
Varr∼[0,1]

(
f̂r(x)

)
Varr∼[0,1]

(
f̂r(x′)

)]

(Cauchy-Schwarz inequality)

=

(
Ex∼D

[√
Varr∼[0,1]

(
f̂r(x)

)])2

≤ Ex∼D

[
Varr∼[0,1]

(
f̂r(x)

)]
(Jensen’s inequality)

= Ex∼D

[
Er∼[0,1]

[
f̂r(x)

] (
1− Er∼[0,1]

[
f̂r(x)

])]
= Ex∼D [f(x)(1− f(x))] (Equation (D.1))

as required.

D.1.3 Perfect Deterministic Fairness is Impossible for Finite Fam-

ilies

Proof of Proposition 6.2.4. Consider any α ≥ 1 and β ∈ (0, 1/|F |); it suffices to

exhibit a pair of points x, x′ ∈ X such that

Ef̂∼F

[∣∣∣f̂(x)− f̂(x′)
∣∣∣] > α · d(x, x′) + β.
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For any δ > 0, define the ball of radius δ around x to be Bδ(x) := {x′ ∈

X | d(x, x′) ≤ δ}. By assumption, F contains at least one nontrivial classifier

(i.e. one function that is not identically 1 or 0); let f̂ be one such classifier. Since

X ⊆ Rn is convex and d is a metric, f̂ must be discontinuous at some point x ∈ X,

meaning that for all δ > 0, there exists x′ ∈ Bδ(x) such that f̂(x) = 1 − f̂(x′).

Choose any δ∗ ∈
(
0, 1/|F |−β

α

)
, and consider some x∗ ∈ Bδ∗(x). We have

Ef̂∼F

[∣∣∣f̂(x)− f̂(x∗)
∣∣∣] ≥ 1

|F |
(at least one function in F is discontinuous at x)

= α

(
1/|F | − β

α

)
+ β

> α · δ∗ + β (δ∗ < 1/|F |−β
α )

≥ α · d(x, x∗) + β (x∗ ∈ Bδ∗(x))

which shows that F is not (α, β, d)-fair.

D.1.4 Output Approximation of Locality-Sensitive Derandomiza-

tion

Proof of Theorem 6.3.2. We will repeatedly use the following fact: by the unifor-

mity of HPI, for all 0 ≤ a < b ≤ 1 and x ∈ X we have

Pr
hLS∼HLS
hPI∼HPI

[
a ≤ hPI(hLS(x))

k
≤ b

]
∈
(
b− a− 1

k
, b− a+

1

k

)
(D.2)

Thus for all x ∈ X,

Ef̂∼FLS

[
f̂(x)

]
= Pr

f̂∼FLS

[
f̂(x) = 1

]
= Pr
hLS∼HLS
hPI∼HPI

[
f(x) ≥ hPI(hLS(x))

k

]
∈
(
f(x)− 1

k
, f(x) +

1

k

)

which implies Bias(f̂ , f, x) ≤ 1
k for all x ∈ X and hence Bias(f̂ , f,D) ≤ 1

k for all D .
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Now we bound the variance. Define the bucketed stochastic classifier

g(x) =
1

k

k∑
i=1

1

{
f(x) ≥ i

k

}

In other words, g(x) is the smallest multiple of 1/k greater than f(x). Note that

|g(x) − f(x)| ≤ 1
k for all x. Additionally, define the deterministic classifier family

GLS from g just as FLS was defined from f in Equation (6.5), i.e.

GLS := {ĝhLS,hPI | hLS ∈ HLS, hPI ∈ HPI} , (D.3)

where ĝhLS,hPI(x) := 1

{
g(x) ≥ hPI(hLS(x))

k

}
. (D.4)

It essentially suffices to analyze ĝ instead of f̂ , since in the end, we simply incur

an additional bias or variance of 1
k . To begin, observe that for any distribution D

over X,

variance(f̂ , f,D) = variance(ĝ, g,D)

:= Varĝ∼GLS
(Ex∼D [ĝ(x)])

= EhLS∼HLS
hPI∼HPI

[
(Ex∼D [ĝ(x)])

2
]
− (Ex∼D [ĝ(x)])

2

= EhLS∼HLS
hPI∼HPI

[
(Ex∼D [ĝ(x)])

2
]
− (Ex∼D [g(x)])

2

To evaluate the first term, note that for any x, x′ ∈ X,

EhLS∼HLS
hPI∼HPI

[
ĝ(x)ĝ(x′)

]
= EhLS∼HLS

[EhPI∼HPI

[
1{hLS(x) = hLS(x

′)}ĝ(x)ĝ(x′)
]

+ EhPI∼HPI

[
1{hLS(x) ̸= hLS(x

′)}ĝ(x)ĝ(x′)
]
]

= EhLS∼HLS
[EhPI∼HPI

[
1{hLS(x) = hLS(x

′)}ĝ(x)ĝ(x′)
]

+ 1{hLS(x) ̸= hLS(x
′)}g(x)g(x′)] (pairwise independence)
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Thus the first term of the variance is

EhLS∼HLS
hPI∼HPI

[
(Ex∼D [ĝ(x)])

2
]

= EhLS∼HLS
hPI∼HPI

[
Ex,x′∼D [ĝ(x)ĝ(x

′)]
]

= Ex,x′∼D

[
EhLS∼HLS
hPI∼HPI

[ĝ(x)ĝ(x′)]

]
= Ex,x′∼D [EhLS∼HLS

[EhPI∼HPI

[
1{hLS(x) = hLS(x

′)}ĝ(x)ĝ(x′)
]

+ 1{hLS(x) ̸= hLS(x
′)}g(x)g(x′)]]

Next consider the second term:

(Ex∼D [g(x)])
2 = Ex,x′∼D [g(x)g(x

′)]
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Putting these together, we have

variance(f̂ , f,D)

= EhLS∼HLS
[EhPI∼HPI

[
Ex,x′∼D [1{hLS(x) = hLS(x

′)}ĝ(x)ĝ(x′)]
]

− Ex,x′∼D

[
1{hLS(x) = hLS(x

′)}g(x)g(x′)]
]

= EhLS∼HLS

[
Ex,x′∼D

[
1{hLS(x) = hLS(x

′)} ·
(
EhPI [ĝ(x)ĝ(x

′)]− g(x)g(x′)
)]]

= EhLS∼HLS

[
Ex,x′∼D

[
1{hLS(x) = hLS(x

′)} ·
(
EhPI [ĝ(x)ĝ(x

′)]− EhPI [ĝ(x)]EhPI [ĝ(x
′)]
)]]

= EhLS∼HLS

[
Ex,x′∼D

[
1{hLS(x) = hLS(x

′)} · CovhPI
(
ĝ(x), ĝ(x′)

)]]
≤ EhLS∼HLS

[
Ex,x′∼D

[
1{hLS(x) = hLS(x

′)} ·
√
VarhPI (ĝ(x))VarhPI (ĝ(x

′))

]]
(Cauchy-Schwarz inequality)

= EhLS∼HLS

[∑
b∈B

(
Ex∼D

[
1{hLS(x) = b} ·

√
VarhPI (ĝ(x))

])2
]

= EhLS∼HLS

[∑
b∈B

(
Pr
x∼D

[hLS(x) = b] · Ex∼D

[√
VarhPI (ĝ(x))

∣∣∣∣ hLS(x) = b

])2
]

≤ EhLS∼HLS

[∑
b∈B

(
Pr
x∼D

[hLS(x) = b]

)2

· Ex∼D [VarhPI (ĝ(x)) | hLS(x) = b]

]

(Jensen’s inequality)

= EhLS∼HLS

[∑
b∈B

(
Pr
x∼D

[hLS(x) = b]

)2

· Ex∼D [g(x)(1− g(x)) | hLS(x) = b]

]

≤ EhLS∼HLS
[

(
max
b∈B

Pr
x∼D

[hLS(x) = b]

)
∑
b∈B

Pr
x∼D

[hLS(x) = b] · Ex∼D [g(x)(1− g(x)) | hLS(x) = b]]

= EhLS∼HLS

[
max
b∈B

Pr
x∼D

[hLS(x) = b]

]
· Ex∼D [g(x)(1− g(x))]

≤ EhLS∼HLS

[
max
b∈B

Pr
x∼D

[hLS(x) = b]

]
· Ex∼D

[
f(x)(1− f(x)) +

1

k

]
(Bias(f, g, x) ≤ 1

k for all x)
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D.1.5 Fairness of LSH-Based Derandomization

Proof of Theorem 6.3.3. We first prove pairwise metric fairness. Consider any

x, x′ ∈ X, and assume without loss of generality that f(x) ≤ f(x′). We have

Ef̂∼FLS

[∣∣∣f̂(x)− f̂(x′)
∣∣∣]

= Pr
hLS∼HLS
hPI∼HPI

[
f̂(x) ̸= f̂(x′)

]
(f̂ ∈ {0, 1})

= Pr
hLS
hPI

[
f̂(x) ̸= f̂(x′)

∣∣∣ hLS(x) = hLS(x
′)
]

︸ ︷︷ ︸
p1

·Pr
hLS

[hLS(x) = hLS(x
′)]

+ Pr
hLS
hPI

[
f̂(x) ̸= f̂(x′)

∣∣∣ hLS(x) ̸= hLS(x
′)
]

︸ ︷︷ ︸
p2

·Pr
hLS

[hLS(x) ̸= hLS(x
′)] (D.5)

We evaluate p1 and p2 separately. First, noting that a pairwise-independent

hash family is also uniform, we have

Pr
hLS,hPI

[
f̂(x) = 0, f̂(x′) = 1

∣∣∣ hLS(x) = hLS(x
′)
]

= Pr
hLS,hPI

[
f(x) <

hPI(hLS(x))

k
, f(x′) ≥ hPI(hLS(x

′))

k

∣∣∣∣ hLS(x) = hLS(x
′)

]
= Pr

hLS,hPI

[
f(x) <

hPI(hLS(x))

k
≤ f(x′)

∣∣∣∣ hLS(x) = hLS(x
′)

]
= Pr

hLS,hPI

[
f(x) <

hPI(hLS(x))

k
≤ f(x′)

]
(hPI is uniform)

By symmetry, PrhLS,hPI [f̂(x) = 1, f̂(x′) = 0 | hLS(x) = hLS(x
′)] = PrhLS,hPI [f(x) ≥

hPI(hLS(x))
k > f(x′)]; but this equals zero, since f(x) ≤ f(x′). Thus

p1 = Pr
hLS,hPI

[
f̂(x) = 1, f̂(x′) = 0

∣∣∣ hLS(x) = hLS(x
′)
]

+ Pr
hLS,hPI

[
f̂(x) = 0, f̂(x′) = 1

∣∣∣ hLS(x) = hLS(x
′)
]

= Pr
hLS,hPI

[
f(x) <

hPI(hLS(x))

k
≤ f(x′)

]
= |f(x)− f(x′)| ± 2

k
(by Equation (D.2))
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Next, to compute p2, we have

Pr
hLS,hPI

[
f̂(x) = 1, f̂(x′) = 0

∣∣∣ hLS(x) ̸= hLS(x
′)
]

= Pr
hLS,hPI

[
f(x) ≥ hPI(hLS(x))

k
, f(x′) <

hPI(hLS(x
′))

k

∣∣∣∣ hLS(x) ̸= hLS(x
′)

]
= Pr

hLS,hPI

[
f(x) ≥ hPI(hLS(x))

k
,

∣∣∣∣ hLS(x) ̸= hLS(x
′)

]
· Pr
hLS,hPI

[
f(x′) <

hPI(hLS(x
′))

k

∣∣∣∣ hLS(x) ̸= hLS(x
′)

]
(hPI is pairwise independent)

= f(x)(1− f(x′))± 1

k
(hPI is uniform)

and by symmetry, PrhLS,hPI [f̂(x) = 0, f̂(x′) = 1 | hLS(x) ̸= hLS(x
′)] = (1−f(x))f(x′)±

1
k . Thus

p2 = Pr
hLS,hPI

[
f̂(x) = 1, f̂(x′) = 0

∣∣∣ hLS(x) ̸= hLS(x
′)
]

+ Pr
hLS,hPI

[
f̂(x) = 0, f̂(x′) = 1

∣∣∣ hLS(x) ̸= hLS(x
′)
]

= f(x)− 2f(x′)f(x) + f(x′)± 2

k

Substituting p1 and p2 back into Equation (D.5) yields

EhLS,hPI
[∣∣∣f̂(x)− f̂(x′)

∣∣∣] (D.6)

= p1 · Pr
hLS

[hLS(x) = hLS(x
′)] + p2 · Pr

hLS
[hLS(x) ̸= hLS(x

′)]

= |f(x)− f(x′)| · (1− d(x, x′)) + (f(x)− 2f(x′)f(x) + f(x′)) · d(x, x′)± 2

k

(hLS is LSH)

= |f(x)− f(x′)|+ 2f(x)(1− f(x′)) · d(x, x′)± 2

k
(D.7)

≤ α · d(x, x′) + β + 2f(x)(1− f(x′)) · d(x, x′) + 2

k
(f is (α, β, d)-fair)

≤ [α+ 2f(x)(1− f(x′))] · d(x, x′) + β + ϵ (k ≥ 2/ϵ)
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which proves the pairwise fairness bound. The aggregate fairness bound then follows

from Lemma 6.4.5.

D.1.6 Bias-Variance Decomposition

Proof of Lemma 6.4.1. For any c > 0, we have∣∣∣f̂(x)− 1f (x)
∣∣∣

≤
∣∣∣Ef,f̂ [f̂(x)− 1f (x)

]∣∣∣+ ∣∣∣f̂(x)− 1f (x)− Ef,f̂
[
f̂(x)− 1f (x)

]∣∣∣
≤
∣∣∣Ef,f̂ [f̂(x)− 1f (x)

]∣∣∣+ c ·Varf,f̂
(
f̂(x)− 1f (x)− Ef,f̂

[
f̂(x)− 1f (x)

])
(by Chebyshev’s inequality, w.p. 1− 1/c2)

≤
∣∣∣Ef,f̂ [f̂(x)− 1f (x)

]∣∣∣+ c ·Varf̂
(
f̂(x)− Ef̂

[
f̂(x)

])
+ c ·Varf (1f (x)− Ef [1f (x)])

(f̂(x)− Ef̂ [f̂(x)] and 1f (x)− Ef [1f (x)] have mean zero)

≤
∣∣∣Ef,f̂ [f̂(x)− 1f (x)

]∣∣∣+ c ·Varf̂
(
f̂(x)

)
+ c ·Varf (1f (x))

The above calculation fails with probability at most 1/c2, in which case the left-

hand side still obeys the simple bound |f̂(x)−1f (x)| ≤ 1. Thus taking expectations

of both sides, we have

Ef,f̂
[∣∣∣f̂(x)− 1f (x)

∣∣∣] ≤ ∣∣∣Ef,f̂ [f̂(x)− 1f (x)
]∣∣∣+ c ·Varf̂

(
f̂(x)

)
+ c ·Varf (1f (x)) +

1

c2

with probability 1 for any c > 0. A choice of c = (Varf̂∼F (f̂(x))+Varf (1f (x)))
−1/3

yields the result.

D.1.7 Metric-Fair Derandomization Preserves Threshold Fairness

Proof of Lemma 6.4.3. First, fix some σ ∈ (0, 1) and let

X2
≤σ :=

{
(x, x′) ∈ X2

∣∣ d(x, x′) ≤ σ
}
. Observe the following translations between

metric and threshold fairness on this set:
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1. If f is (σ, τ, d)-threshold fair, then for any (x, x′) ∈ X2
≤σ,

|f(x)− f(x′)| ≤ τ = 0 · d(x, x′) + τ

So, f is also (0, τ, d)-metric fair on such pairs (x, x′).

2. If f is (α, β, d)-metric fair on all (x, x′) ∈ X2
≤σ, then for such pairs,

|f(x)− f(x′)| ≤ α · d(x, x′) + β ≤ ασ + β

So, f is also (σ, ασ + β, d)-threshold fair.

Now suppose we run our derandomization procedure on a (σ, τ, d)-threshold fair

stochastic classifier f . Let F be the deterministic classifier family from which

we sample our output. Then f is (0, τ, d)-metric fair over X2
≤σ (by observation 1

above), F is then (A(0), B(τ), d)-metric fair over X2
≤σ (by the fairness preservation

guarantee), and F is also (σ,A(0)·σ+B(τ), d)-threshold fair (by observation 2).

Proof of Corollary 6.4.4. If f is (σ, τ, d)-threshold fair, then FLS is (σ, τ
′, d)-threshold

fair, where

τ ′ = A(0) · σ +B(τ) (Lemma 6.4.3)

=
1

2
· σ + τ +

2

k
(Corollary 6.3.4)

= σ + τ (choice of k ≥ 4/σ)

D.1.8 Pairwise Fairness Implies Aggregate Fairness

Proof of Lemma 6.4.5. For all distances ξ ∈ [0, 1], let

X2
ξ :=

{
(x, x′) ∈ X2

∣∣ d(x, x′) = ξ
}
denote the set of point pairs at distance exactly
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ξ. Then, for any given f̂ ∈ F , let

ρξ(f̂) := Pr
(x,x′)∼X2

ξ

[
f̂(x) ̸= f̂(x′)

]
and ρ≤τ (f̂) := Pr

(x,x′)∼X2
≤τ

[
f̂(x) ̸= f̂(x′)

]
denote the fraction of pairs at distance ξ and within τ , respectively, to which f̂

assigns different outputs. Treating ρξ(f̂) as a random variable of f̂ , we have

Ef̂∼F

[
ρξ(f̂)

]
=Ef̂∼F

 Pr
(x,x′)
∼X2

ξ

[
f̂(x) ̸= f̂(x′)

] (D.8)

=Ef̂∼F

E(x,x′)
∼X2

ξ

[∣∣∣f̂(x)− f̂(x′)
∣∣∣]
 (D.9)

=E(x,x′)
∼X2

ξ

[
Ef̂∼F

[∣∣∣f̂(x)− f̂(x′)
∣∣∣]] (D.10)

Thus the fraction of separated pairs within distance τ is

Ef̂∼F

[
ρ≤τ (f̂)

]
(D.11)

:= Ef̂∼F

[
Pr

(x,x′)∼X2
≤τ

[
f̂(x) ̸= f̂(x′)

]]

=

∫ τ

0
Ef̂∼F

[
Pr

(x,x′)∼X2
≤τ

[
f̂(x) ̸= f̂(x′)

∣∣∣ d(x, x′) = ξ
]
· Pr
(x,x′)∼X2

≤τ

[d(x, x′) = ξ] dξ

]

=

∫ τ

0
Ef̂∼F

[
Pr

(x,x′)∼X2
ξ

[
f̂(x) ̸= f̂(x′)

]]
· Pr
(x,x′)∼X2

≤τ

[d(x, x′) = ξ] dξ

=

∫ τ

0
E(x,x′)∼X2

ξ

[
Ef̂∼F

[∣∣∣f̂(x)− f̂(x′)
∣∣∣]] · Pr

(x,x′)∼X2
≤τ

[d(x, x′) = ξ] dξ

(by Equation (D.8))

≤
∫ τ

0
(αξ + β) Pr

(x,x′)∼X2
≤τ

[d(x, x′) = ξ] dξ

(by (α, β, d)-fairness)

≤ (ατ + β)

∫ τ

0
Pr

(x,x′)∼X2
≤τ

[d(x, x′) = ξ] dξ

= ατ + β (D.12)

Since ρ≤τ ∈ [0, 1], Var(ρ≤τ ) = E[ρ2≤τ ] − E[ρ≤τ ]
2 ≤ E[ρ≤τ ]. Thus applying

200



Chebyshev’s inequality to Equation (D.12) yields

Pr
f̂∼F

[
ρ >

(
1 +

1√
δ

)
(ατ + β)

]
≤ Pr

f̂∼F

[
ρ >

(
1 +

1√
δ

)
Ef̂∼F [ρ]

]
≤ δ

which proves the claim.

D.1.9 Output Approximation and Loss Approximation

Proof of Lemma 6.4.6. For any x ∈ X and y ∈ {0, 1},

Ef̂∼F

[
L(f̂ , x, y)

]
= Ef̂∼F

[
ℓ(f̂(x), y)

]
(f̂(x) ∈ {0, 1})

= Ef̂
[
ℓ(f̂(x), y)

∣∣∣ f̂(x) = 1
]
· Pr
f̂

[
f̂(x) = 1

]
+ Ef̂

[
ℓ(f̂(x), y)

∣∣∣ f̂(x) = 0
]
· Pr
f̂

[
f̂(x) = 0

]
= ℓ(1, y) · Ef̂

[
f̂(x)

]
+ ℓ(0, y) ·

(
1− Ef̂

[
f̂(x)

])
= ℓ(1, y)f(x) + ℓ(0, y) (1− f(x))± Bias(f̂ , f, x)

= f(x)ℓ(1, y) + (1− f(x))ℓ(0, y)± Bias(f̂ , f, x)

which proves the first inequality concerning the bias. For the variance, notice that

since ℓ is binary, either Varf̂

(
ℓ(f̂(x), y)

)
= Varf̂

(
f̂(x)

)
or Varf̂

(
ℓ(f̂(x), y)

)
=

0.

D.2 Manipulation Deterrence in Strategic Classifica-

tion

Fair derandomization procedures carry implications for the strategic classifi-

cation problem, a popular framework for modeling the behavior of self-interested

agents subject to classification decisions Hardt et al. [2016a], Cai et al. [2015], Chen
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et al. [2018], Dong et al. [2018b], Chen et al. [2020b]. Formally, strategic classifica-

tion is a Stackelberg game, or a sequential game between two players:

1. First, a decision maker or model designer publishes a classifier. Traditionally,

this means a stochastic classifier f : X → [0, 1], but in our setting, the model

designer may publish a family of deterministic classifiers F , and promises to

select a single classifier from F uniformly at random.

2. Next, a strategic agent or decision subject, who is associated with some feature

vector x ∈ X, decides either to present their true features x, or to change

or manipulate their features to some x′ ∈ X to obtain the favorable outcome

f̂(x′) = 1 with higher probability. However, the agent incurs a cost c(x, x′) ≥ 0

for altering their features.

Given a (stochastic or deterministic) classifier f : X → [0, 1] and cost function

c : X2 → [0, 1], the utility of an agent with original features x who changes to x′ is

defined as

Uf (x, x
′) := f(x′)− c(x, x′)

and the utility-maximizing move ∆f (x) := argmaxx′∈X Uf (x, x
′) is called the best

response of x under f and c.

In the following proposition, we observe a general connection between metric

fairness and strategic manipulation; namely that the more fair a classifier is with

respect to a metric cost function, the less incentive agents have to manipulate their

features. The reason is intuitive: if a classifier is a smooth function, then an agent

x cannot expect their outcome to change much by moving to some nearby point x′.

Proposition D.2.1 (Metric fairness implies reduced manipulation incentive). Let

c be a metric cost function and let f be a (α, β, c)-metric fair classifier. Then the
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maximum utility gained by manipulating x to x′ is

Uf (x, x
′)− Uf (x, x) ≤ (α− 1) · c(x, x′) + β.

If f is a deterministic classifier drawn from a family F , then this holds in expec-

tation over the sampling of f .

Proof of Proposition D.2.1. Under a classifier f , an individual with original features

x ∈ X who changes to x′ ∈ X derives utility

Uf (x, x
′) = f(x′)− c(x, x′)

≤ f(x) + |f(x′)− f(x)| − c(x, x′)

≤ f(x) + α · c(x, x′) + β − c(x, x′) (f is (α, β, c)-fair)

= f(x) + (α− 1) · c(x, x′) + β

= Uf (x, x) + (α− 1) · c(x, x′) + β

which proves the claim for stochastic classifiers. The proof for a deterministic family

F results from taking an expectation Ef∼F [·] on both sides.

Braverman and Garg [Braverman and Garg, 2020] already observed this fact

for a stochastic classifier with α = 1 and β = 0, in which case there is no incentive to

manipulate. Note that by Proposition 6.2.4, deterministic families cannot achieve

such small fairness parameters; hence the upper bound of Proposition D.2.1 cannot

rule out some incentive to manipulate. Nevertheless, it presents a nontrivial worst-

case guarantee since, for a classifier without any fairness constraints, there may be

individuals near the decision boundary who can flip their decision from, for example,

f(x) = 0 to f(x′) = 1 at near-zero cost, thereby gaining utility U(x, x′)−U(x, x) ≈ 1

through manipulation.
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Cost functions studied in the strategic classification literature include the L2

[Hardt et al., 2016a, Brückner and Scheffer, 2011] and Mahalanobis [Chen et al.,

2021] distances, both of which are metrics with known LSH families Andoni and

Indyk [2006], Jain et al. [2008]. Therefore, stochastic classifiers trained to be fair

with respect to these costs automatically reduce incentives to manipulate features,

and if such classifiers are derandomized using fairness-preserving methods, this

quality is probably approximately preserved.
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