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Abstract


Quantitative normal approximation bounds are important to obtain finite-sample, non-
asymptotic inferential guarantees for various statistical problems. We derived such 
quantitative normal approximation results for a class of stabilizing statistics. Examples of 
such statistics include K-nearest neighbor based Entropy estimators, Euler 
characteristics, minimal spanning trees and Random forests. The central challenge in 
these problems is to handle the delicate dependency structure arising in such statistics. 
We handle this by utilizing the concept of stabilization, which we combine with Stein's 
method to establish our results. This notion of stabilization is quite universal in 
characterizing the local dependencies and thus provides a powerful tool for obtaining 
normal approximation analysis and doing finite-sample statistical inferences. Additionally, 
bootstrap methodology can be considered for performing practical statistical inference for 
the above class of problems. 
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1 Introduction

Let (X,F) be a metric measure space equipped with a �-finite measure Q and a metric d : X ⇥
X ! [0,1). For s � 1, let Ps denote the canonical Poisson process on X with intensity measure
� := sQ, and for Q a probability measure, let ⇠n denote a binomial process with n i.i.d. observations
from Q. Let dK(Y, Z) denote the Kolmogorov distance between two random variables Y, Z, i.e.,
dK(Y, Z) := supt2R | P(Y  t) � P(Z  t)|. In this thesis, we study normal approximation results
for real-valued functionals Fs(Ps) and Fn(⇠n), respectively, of the Poisson and the binomial point
processes in the Kolmogorov and Wasserstein metrics under relatively flexible assumptions on the
functionals. In particular, motivated by geometric and topological statistics, we focus on the case
when the functionals Fs and Fn are not necessarily expressible as sums of certain score functions,
and on obtaining presumably optimal bounds in this case.

Our proof techniques are based on the concept of stabilization, which was first used by Kesten
and Lee (1996) to establish central limit theorems for Poisson-based minimal spanning tree. Since
then, it has been extensively developed as a general tool to establish normal approximation rates for
various functionals of Poisson and Binomial point process. We refer the interested reader to Penrose
and Yukich (2001); Penrose (2005); Baryshnikov and Yukich (2005); Penrose and Yukich (2005);
Schreiber (2010); Last et al. (2016); Chatterjee and Sen (2017); Lachièze-Rey and Peccati (2017)
and reference therein for details. In particular, Last et al. (2016) develops normal approximation
bounds for a fairly general class of functions of Poisson processes by combining Malliavin-Stein tech-
niques (Peccati et al., 2010; Peccati and Reitzner, 2016), second-order Poincaré inequalities (Chat-
terjee, 2009; Nourdin et al., 2009) and stabilization concepts, and by using the iterated add-one cost
operator, also called second order cost operator. Considering the case of functionals expressible as a
sum of exponentially stabilizing score functions, Lachièze-Rey et al. (2019) establishes user-friendly
normal approximation results based on Last et al. (2016). The work of Lachièze-Rey et al. (2022)
introduces bounds for general functionals of Poisson process. Their method does not involve the
hard-to-evaluate iterated add-one cost operators but uses the add-one cost operator at two different
scales, an approach pioneered by Chatterjee and Sen (2017) for the case of Poisson-based minimal
spanning trees. However, their generality comes at the cost of sub-optimality – in general, the
bounds based on Lachièze-Rey et al. (2022) are sub-optimal compared to those of Last et al. (2016).
Furthermore, for the case of functionals that are expressible as a sum of exponentially stabilizing
score functions, the bounds of Lachièze-Rey et al. (2022) necessarily lead to sub-optimal rates.

Hence, the following question remains: Can one obtain presumably optimal bounds for general
functionals that automatically result in presumably optimal bounds when specialized to the case of
functionals that can be expressed as sums of score functions? Following Lachièze-Rey et al. (2019),
we use the term presumably optimal to refer to the case when the order of the normal approximation
is the same as that of a sum of i.i.d. random variables. In this thesis, we answer this question in the
affirmative for a class of functionals. Similar to Lachièze-Rey et al. (2022), our approach is based
on the idea of using the add-one cost operator at two scales. However, in contrast to their work, we
use it to directly simplify the evaluation of the iterated add-one cost operators. When specialized
to the case of sums of score functions, such an approach recovers the presumably optimal results
of Lachièze-Rey et al. (2019). In summary, we make the following contributions:

• In Definition 2.7, we leverage a flexible notion of the add-one cost operator with a general set
Ax that allows to (relatively) easily evaluate computations with the iterated add-one cost or
second-order difference operators, for general functionals of Poisson and binomial point process
that are not necessarily a sum. While this notion was proposed originally in Lachièze-Rey
et al. (2022), our use of it appears to be new and different.
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• In our main results, Theorems 2.1 and 2.2, we provide normal approximation results for
functionals of Poisson and binomial point processes, respectively. In particular, the functionals
do not necessarily need to be expressible as sums of certain score functions.

• We illustrate the applicability of our approach by deriving normal approximation results for
several geometric and topological statistics. Specifically, in Theorem 2.3 and 2.4 we use
our approach to derive normal approximation results for the total edge length of k-Nearest
Neighbor graphs and weighted k-Nearest Neighbor graph based Shannon entropy estimators.
In Theorem 2.5, we derive results for the Euler Characteristic, which is an elementary statistics
widely used in the field of topological data analysis. Finally, we discuss the applicability of
our approach for the minimal spanning tree problem in Theorem 2.6, by recovering existing
results via our approach.

Furthermore, in this thesis, we also considered a very important statistics: random forest, which
lies in this stabilization framework, where we adopted and developed a generalized version of sta-
bilization concept: region-based stabilization. Random forest (Amit and Geman, 1997; Ho, 1998;
Breiman, 2001) is an extremely successful general-purpose prediction method. It is based on ag-
gregating randomized tree-based base-learners and has been successfully applied in a wide range of
fields including remote sensing (Belgiu and Drăguț, 2016), healthcare (Khalilia et al., 2011; Qi, 2012)
and causal inference (Wager and Athey, 2018). Different versions of random forest mainly differ by
their randomized tree-building processes. Broadly speaking, there are two sources of randomness
while constructing the random forest.

• Bagging or sub-sampling: The first is due to the use of bagging or sub-sampling, where a ran-
domly chosen subset of the entire training data is used to construct the individual (random)
trees. Breiman (1996a) originally considered the random forest with bagging where the trees
are constructed by bootstrap sub-samples from the original sample. It was also shown that
for unstable base-learners, the bagging random forest can increase the accuracy; see Breiman
(1996b) for more details. Moreover, other works including those by Peng et al. (2022), Mentch
and Hooker (2016) and Wager (2014) focus on averaging all possible sub-samples of the training,
with a particular fixed size.

• Random tree construction: The second source depends on the way in which the random-tree based
base-learners are constructed. If the randomization in the tree construction only depends on the
covariates, then such random forests are called non-adaptive random forests. They are also closely
related to the kernel-based prediction techniques (Lin and Jeon, 2006; Scornet, 2016b). From
the perspective of nearest neighbor regression methods, non-adaptive random forests could also
be viewed as an implicitly adaptive nearest neighbor method. Conversely, if the randomization
in the tree construction also depends on the response, such random forests are called adaptive
random forests.

Despite the widespread usage, progress in the theoretical understanding of their statistical prop-
erties has been rather slow. Motivated by the works of Breiman (2000, 2004), the most theoretically
well-studied version of random forest has been the non-bagging and non-adaptive random forest.
Specifically Lin and Jeon (2006), Meinshausen (2006), Biau and Devroye (2010), Biau et al. (2008),
Biau (2012), Scornet (2016a), Scornet (2016b), Mourtada et al. (2020), Klusowski (2021) and Klu-
sowski and Tian (2022) studied consistency properties, with a few of them also establishing minimax
rates over various smooth function classes. Biau and Scornet (2016) provide an exposition of the
above results. Wager et al. (2014), Mentch and Hooker (2016), Zhou et al. (2021) and Cattaneo
et al. (2023) studied asymptotic normality and developed asymptotically valid confidence intervals.
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The focus in the above works are mainly about the fluctuations with respect to the bagging pro-
cedure, and are agnostic to the randomization in the base-learners. Due to the asymptotic nature,
the above works do not provide any insight into when the Gaussian behavior actually kicks-in, from
a finite-sample perspective.

Many practical versions of random forests are truly adaptive (Breiman, 2001). From a theo-
retical perspective, a condition that bridges adaptive and non-adaptive random forest is that of
honesty considered in various forms in Biau et al. (2008); Biau (2012). Roughly speaking, an honest
(random) tree is defined as a tree that avoids using the same training labels for both selecting split-
points for the tree construction process, and for making the predictions. This essentially makes the
random forest non-adaptive for all statistical analysis purposes. This condition was further exam-
ined in detail by Wager and Athey (2018). Specifically, they argue that honesty-type conditions
are essentially necessary to obtain point-wise asymptotic Gaussianity of non-bagging random forest
predictions, and provide various examples. However, we would like to remark here that Gaussian
limits (and other non-Gaussian limits) might be possible under certain non-standard scalings.

Alternatively, Scornet et al. (2015) and Chi et al. (2022) studied consistency of adaptive random
forest (without requiring any honesty-type conditions) under additive model assumptions on the
truth and with CART splitting criterion respectively. We are not aware of any further theoretical
analysis of statistical properties (e.g., minimax rates and asymptotic normality) of random forests
without honest-type conditions. Apart from studying classical statistical properties, works such as
Mentch and Zhou (2020) and Tan et al. (2022) have also looked at explanations for the better (or
worse) performance of random forests and related methods over other approaches with similar or
comparable statistical properties.

From a finite-sample inference perspective, it is essential to provide non-asymptotic Gaussian
approximation bounds for random forest predictions. To the best of our knowledge, only Peng et al.
(2022) establishes such bounds for sub-sampling based non-adaptive random forest predictions in
the univariate setting. Their approach was based on directly leveraging standard results on Berry-
Esseen bounds for U -statistics by Stein’s method (see e.g., Chen et al., 2011, Chapter 10). They
also specialized their result to the case when the base-learners are the so-called k-nearest neighbors
or k-potential nearest neighbors (see Section 3.1 for details). However, as a consequence of a direct
limitation of their proof techniques, they are only able to handle the case of fixed k. Handling the
case of growing k is highly non-trivial and requires a very different proof technique.

In contrast to the above works, our main goal is to obtain multivariate Gaussian approximation
bounds for random forest predictions (see Theorem 3.1 and Corollary 3.1), focusing on the non-
bagging and non-adaptive version in the context of regression with growing k. Apart from being
applicable to non-bagging and non-adaptive random forests, our results are also applicable to the
so-called purely random forest such as the one studied by Mourtada et al. (2020). From a technical
point-of-view, we show that random forests satisfy a certain region-based stabilization property (see
Section 3.3.2), which enables us to develop and leverage tools based on Stein’s method to establish
a Gaussian approximation result.

Standard stabilization-based approaches, in combination with Stein’s method and second-order
Poincaré inequalities are well-studied to establish Gaussian approximation for functionals of Poisson
and binomial point processes; see, e.g., Last et al. (2016); Lachièze-Rey et al. (2019, 2022); Schulte
and Yukich (2019); Shi et al. (2023+); Schulte and Yukich (2023b) and references therein for details.
Recently Bhattacharjee and Molchanov (2022) developed the notion of region-based stabilization
which strictly generalizes standard stabilization, and is more widely applicable. In this thesis, we
extend the univariate results in Bhattacharjee and Molchanov (2022) to the multivariate setting;
Theorems 3.2 and 3.3 are widely applicable to a class of multivariate functionals of a Poisson process
whose score functions satisfy the region-based stabilization property. Specializing these results to
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random forests, we obtain the multivariate Gaussian approximation bounds in Theorem 3.1 and
Corollary 3.1.

All our results for the multivariate settings are under the Poisson sampling setting. This entails
that to handle the widely studied case of independent and identically distributed (i.i.d.) observa-
tions, we need to use a de-Poissonization trick. The use of Poisson sampling setting is actually
due to the technical reason that there is no natural multivariate second-order Poincaré inequality
for the case of binomial point processes; see Remark 3.6 for more details. However, we would like
to highlight that the proof techniques in this paper are potentially valid, with some appropriate
modifications, when a univariate normal approximation of the random forest is considered under
a binomial sampling regime (i.e., i.i.d. samples). Furthermore, despite the fact that we focus on
a non-adaptive random forest as an example in Theorem 3.1 and Corollary 3.1, our approach of
using region-based stabilization theory and Stein’s method to establish Gaussian approximation
results, as stated in Theorems 3.2 and 3.3, is much more widely applicable for adaptive random
forests and other non-parametric regression problems such as Nadaraya-Watson and wavelets-type
in which case, one would need to work with appropriate regions (depending on the procedure) and
then apply our general results in Theorems 3.2 and 3.3.

2 Gaussian Approximation for General Stabilizing Statistics

In this section, we focus on general normal approximation theories on statistics that satisfy certain
stabilization property with some examples including: total edge length of k-nearest neighbor graphs,
Shannon entropy, Euler characteristic and edge length of the minimal spanning tree.

2.1 Preliminaries

2.1.1 Point process basics

Let (X,F) be a measure space with a �-finite measure Q and a metric d : X⇥X ! [0,1). Let N be
the set of all locally finite counting measures on X, which can be interpreted as point configurations
in X. Thus, we treat the elements in N also as sets. The collection N is equipped with the
smallest �-field N such that the maps mA : N ! N [ {0,1},M 7! M(A) are measurable for all
A 2 F ; see Kallenberg and Kallenberg (1997) and Last and Penrose (2011). A point process ⌘ is
a random element in N. Denote by F(N) the class of all measurable functions f : N ! R, and by
L0(X) := L0(X,F) the class of all real-valued, measurable functions F on X. Note that, as F is
the completion of �(⌘), each F 2 L0(X) can be written as F = f(⌘) for some measurable function
f 2 F(N). Such a mapping f , called a representative of F , is Q�⌘�1-a.s. uniquely defined. In order
to simplify the discussion, we make this convention: whenever a general function F is introduced, we
will select one of its representatives and denote such a representative mapping by the same symbol
F . Throughout this paper, we denote by L2

⌘ = L2
⌘(X) the space of all square-integrable functions F

of a point process ⌘ with EF 2(⌘) < 1. We mainly consider two different classes of point processes:
Poisson point process and binomial point process.

Definition 2.1 (Poisson point process). A Poisson point process with intensity measure � is a point
process P(�) on X with the following two properties:

1. 8B 2 F , P(�)(B) is a Poisson random variable with parameter �(B).
2. 8m 2 N+ and for any pairwise disjoint sets B1, B2, ..., Bm 2 F , we have that the random

variables P(�)(B1),P(�)(B2), . . . ,P(�)(Bm) are independent.
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Definition 2.2 (Binomial point process). Let P be a probability distribution and n be a fixed positive
integer. Let X1, X2, ..., Xn be i.i.d. random variables sampled from P . The binomial point process
⇠n based on P and n is defined as ⇠n :=

Pn
i=1 �Xi , where � is the Dirac measure.

We now describe the setting for developing normal approximations of functionals of Poisson
and binomial point processes. For s � 1, let � := sQ be the intensity measure of Poisson point
process P(�) := Ps. For the case when Q is the probability measure, let ⇠n be the binomial point
process based on Q and n. Consider square-integrable functionals of these two point processes, i.e.,
F (Ps) := Fs(Ps) 2 L2

Ps
(X) and F (⇠n) := Fn(⇠n) 2 L2

⇠n
(X). We then seek upper bounds for the

following two quantities:

dK

 
Fs(Ps)� EFs(Ps)p

VarFs(Ps)
, N

!
, and dK

 
Fn(⇠n)� EFn(⇠n)p

VarFn(⇠n)
, N

!
,

where N is a standard normal random variable.

2.1.2 Stabilization

The notion of stabilization is widely used in deriving normal approximation rates for functionals
of Poisson or binomial point processes (Kesten and Lee, 1996; Penrose and Yukich, 2001; Penrose,
2005; Penrose and Yukich, 2005). We start with introducing notions of stabilization for functionals
that are not necessarily representable as sums of sore functions.

Definition 2.3 (Add-one cost operator). Let F be a measurable functional of a point process ⌘ on
(X,F). The family of Add-One Cost Operators, D = (Dx)x2X, are defined as

DxF (⌘) := F (⌘ [ {x})� F (⌘).

Similarly, we can define a second-order cost operator (also called iterated add-one cost operator):
for any x1, x2 2 X,

Dx1,x2F (⌘) := F (⌘ [ {x1, x2})� F (⌘ [ {x1})� F (⌘ [ {x2}) + F (⌘).

In addition, we define for any y 2 X,

DxF
y(⌘) := F (⌘ [ {y} [ {x})� F (⌘ [ {y}).

Clearly, when {y} = ?, DxF y degenerates into the add-one cost operator.
Based on the add-one cost operator introduced above, we next introduce weak and strong sta-

bilization in the context of the functionals F of the point process ⌘.

Definition 2.4 (Weak stabilization). The functional F is said to be weakly stabilizing at x 2 X, if
and only if there exists a random variable �x such that for any sequence (Wm)m�1 in F tending to
X, as m ! 1, we have DxF (⌘ \Wm) ! �x, almost surely.

Definition 2.5 (Strong stabilization). The functional F is said to be strongly stabilizing at x 2 X,
if and only if there exists an almost surely finite random variable Rx, which is referred to as the
radius of stabilization, such that for all finite A ⇢ X\Bx(Rx), with probability 1,

DxF ((⌘ \Bx(Rx)) [ A) = DxF (⌘ \Bx(Rx)),

where Bx(Rx) := {y 2 X : d(x, y)  Rx}.
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Clearly, strong stabilization implies weak stabilization. We now discuss some special cases. In
the context of Poisson or binomial point process, the functionals Fs and Fn can sometimes be
represented as sums of the form

Fs := Fs(Ps) :=
X

x2Ps

fs(x,Ps), and Fn := Fn(⇠n) :=
X

x2⇠n

fn(x, ⇠n),

where fs, fn are called score functions. In this case, there exists a useful notion of stabilization
based on the score functions. For simplicity, we still state the definition for functionals of Poisson
point process; the binomial case is defined similarly.

Definition 2.6 (Score-based stabilization (Lachièze-Rey et al., 2019)). The score function f is said
to be stabilizing at x 2 X, if and only if there exists an almost surely finite random variable rx (the
radius of stabilization) such that for all finite A ⇢ X\Bx(rx), we have

f(x, (⌘ \Bx(rx)) [ A) = f(x, ⌘ \Bx(rx)).

Informally speaking, the above definition posits that the value of the score function f will not
be affected by the points outside the ball centered at x with radius rx. For discussing the relation
between strong stabilization and score-based stabilization, we present the following simple result.

Proposition 2.1. Given any Fs(Ps) =
P

y2Ps
fs(y,Ps), we have for all x 2 X,

DxFs(Ps) = fs(x,Ps [ {x}) +
X

y2Ps

Dxfs(y,Ps).

A similar result also holds for Fn.

Proof of Proposition 2.1. The proof is straightforward by using the definitions. See Lachièze-Rey
et al. (2019, Lemma 5.2).

Remark 2.1.

(1) In contrast to score-based notions of stabilization, strong stabilization focuses on the cost func-
tion of the functional F itself. The above result reveals the relationship between the two notions.
It plays an important role in Section 2.4.2 and its proof.

(2) Strong stabilization does not restrict the form of the functional to be expressible as a sum of
scores, and, if applicable, it thus avoids finding appropriate scores that can be handled by the
method.

The following example from the literature on Topological Data Analysis (TDA), further illus-
trates the aforementioned remarks. Readers unfamiliar with the basics of TDA are directed to the
elementary definitions provided in the Supplementary Material (Shi et al., 2023). We also refer
to Edelsbrunner and Harer (2010) and Boissonnat et al. (2018) for more on the basics of TDA.

Example 2.1 (Euler characteristic). Given a simplicial complex K, the Euler characteristic is
defined as

�(K) :=
1X

k=0

(�1)k#{Sk},

where #{Sk} is the number of simplices of dimension k.
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Typically, the simplicial complex K, is taken to be the Vietoris-Rips complex (VR complex) or
the Čech complex, constructed over a point cloud sampled from binomial or Poisson point processes
⇠n or Ps, respectively. In this case, we denote the simplicial complex as K(⇠n) or K(Ps) to denote the
dependency on the underlying point process explicitly. We now discuss the stabilization properties
of the above statistic. While it is possible to express the Euler characteristic as a sum of certain
score functions, it is not required to do so, as the Euler characteristic is strongly stabilizing with
radius of stabilization Rx = 2r for the C̆ech and the VR-complex; see Krebs et al. (2021).

The following example on the total edge length of a k-nearest neighbor graph is a canonical
example of a geometric statistic satisfying score-based stabilization and strong stabilization.

Example 2.2 (k-nearest neighbor (k-NN) graphs). Consider a configuration of a Poisson point
process Ps, where here we represent Ps by a random number of (conditionally) i.i.d. points Xi, i.e.
Ps = {Xi}|Ps|

i=1 . For some k 2 N+, and for every integer 1  j  k, denote by Xj,i the j-nearest
neighbor 1 of Xi, i.e. Xj,i is the j-th closest point to Xi. Furthermore, let ⇢j,i denote the distance
between Xj,i and Xi. Then, the (undirected) k-NN graph NGk(Ps) is the graph with the vertex set
V := Ps and an edge x ⇠ y if y is some j-nearest neighbor of X and (or) x is some j-nearest
neighbor of y. For # > 0, we define

fs(x,Ps) :=

8
>>><

>>>:

X

x⇠y

1

2
d(x, y)#, if x, y are mutual k-nearest neighbors,

X

x⇠y

d(x, y)#, if x, y are not mutual k-nearest neighbors.
(2.1)

The total edge length is defined as
Fs :=

X

x2Ps

fs(x,Ps).

According to Lachièze-Rey et al. (2019), the total edge length statistic satisfies score-based stabiliza-
tion. Additionally, by the proof of Lemma 6.1 in Penrose and Yukich (2001), we also have that it
satisfies strong stabilization. For instance, when d = 2, the radius of stabilization is Rx = 4R, where
R is defined in the following way: for each t > 0, construct six disjoint equilateral triangles Tj(t),
1  j  6, such that the origin is a vertex of each triangle, such that each triangle has edge length
t and such that Tj(t) ⇢ Tj(u) whenever t < u. Then, define R to be the minimum t such that each
triangle Tj(t) contains at least k + 1 points from Ps.

By definition, strong stabilization only focuses on the first-order add-one cost operator. In
order to deal with second-order cost operators, which are also crucial in obtaining our normal
approximation results, we introduce the following flexible notion of add-one cost operators.

Definition 2.7 (Flexible add-one cost, Lachièze-Rey et al. (2022)). For any point process ⌘ in
(X,F), any x 2 X and a set Ax 2 F (that may or may not depend on x), the flexible add-one cost
operator for the functional F is defined as

DxF (Ax) := DxF (Ax)(⌘) := DxF (⌘|Ax) := F ((⌘|Ax) [ {x})� F (⌘|Ax),

where we denote by ⌘|Ax the restriction of the point process ⌘ to the set Ax.

Informally speaking, the flexible add-one cost DxF (Ax) observes the point process in the ‘win-
dow’ Ax. Obviously, if one sets Ax = X, the flexible add-one cost function degenerates into the

1
We refer to Lachièze-Rey et al. (2019) for details about the the tie-breaking procedure.
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classical add-one cost function in Definition 2.3. The above flexible cost functions were proposed in
Lachièze-Rey et al. (2022). We here name it "flexible" as our main Theorem will allow the set Ax

to be picked adaptively.
Observe that the second-order cost functions can be expressed as the telescoping sums of differ-

ences of flexible cost functions and standard add-one cost functions:

Dx1,x2F = (Dx1F
x2 �Dx1F

x2(Ax)) + (Dx1F
x2(Ax)�Dx1F (Ax)) + (Dx1F (Ax)�Dx1F ) .

We use this simple observation in our proofs in a different way compared to Lachièze-Rey et al.
(2022) to obtain improved rates.

2.2 Assumptions

We now discuss the assumptions to obtain the normal approximation results. Following Penrose
(2007); Penrose and Yukich (2005); Yukich (2015); Lachièze-Rey et al. (2019), we make the following
assumption on the measure Q: There exist constants  > 0,! > 1 such that for r � 0 and all x 2 X,

lim sup
✏!0+

Q(Bx(r + ✏))�Q(Bx(r))

✏
 !r!�1. (2.2)

This assumption implies Q is diffuse, i.e. Q({x}) = 0 for all x 2 X (see Lachièze-Rey et al.,
2019, Lemma 5.1 (a)). For example, one can consider a measure Q on X, a full dimensional subset
of Rd, with a bounded density f with respect to the Lebesgue measure, where one can choose
 = Vd sup f , where Vd is the volume of the unit ball, and ! = d. Another example is given
by Riemannian manifolds X with non-negative Ricci curvature, with the semi-metric d being the
geodesic distance; see Lachièze-Rey et al. (2019) for more details and other examples.

We also make the following tail-bound assumption on the radius of strong stabilization. Recall
that Fs refers to a functional of a Poisson process with intensity measure sQ while Fn stands for a
functional of a binomial process associated with n i.i.d. points sampled from Q.

Assumption 2.1 (Decay of radius of stabilization). Under the setting of strong stabilization and
(2.2), we say the radius of stabilization Rx of Fs decays exponentially if and only if there exist
constants c1, c2, c3 > 0 such that for r � 0,

P(Rx � r)  c1e
�c2(s1/!r)c3 .

If Rx is the radius of stabilization of Fn, then the same definition holds with s replaced by n.

Yet another reason for why we refer to Definition 2.7 as “flexible” is that even when the tail
probability of the radius of stabilization Rx is unknown for a specific functional, it might be possible
to pick Ax “strategically” and use our approach to obtain normal approximation bounds. We
illustrate this point in the proofs of the results of Section 2.4.4 by using our approach to recover
existing results on normal approximation for the total edge length of the minimal spanning tree.

Assumption 2.2 (K-exponential bound). We say the add-one cost function DxFs satisfies a K-
exponential bound, where K is a measurable subset of X, if and only if for x, x⇤ 2 X, there exist
constants k1, k2, k3 > 0 such that

P(DxFs 6= 0)  k1e
�k2ds(x,K)k3 ,

and
P
�
|Dx,x⇤Fs| 6= 0

�
 k1e

�k2 max{ds(x,x⇤),ds(x,K),ds(x⇤,K)}k3 ,

where ds(·, ·) := s1/!d(·, ·) and d(x,K) := infy2K d(x, y). A similar assumption holds for Fn by
changing s to n.
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Here, we make the assumption directly on the cost functions, which captures a more general class
of functionals than that considered in Lachièze-Rey et al. (2019). Particularly, when the functional
is expressed as a sum of scores, the above assumption coincides with a condition mentioned in
Lachièze-Rey et al. (2019, Proof of Lemma 5.9). Moreover, a similar assumption has been made
in Lachièze-Rey et al. (2019, Equations (2.8) and (2.9)) on the score functions to capture functionals
whose variances exhibit surface area order scaling. If K = X, the second bound is directly obtained
by the definition of strong stabilization and Assumption 2.1.

Assumption 2.3 (Moment Condition). The cost function of Fs satisfies the following moment
condition: For p > 4,

sup
s�1

sup
x,x⇤2X

(E |DxFs|p + E|DxF
x⇤
s |p) =: H < 1. (2.3)

A similar assumption holds for DxFn by simply changing s to n.

Bounded moment conditions are commonly assumed when normal approximation results are
derived. For related work in the context of stabilizing functionals of point process, see Lachièze-Rey
et al. (2019), equations (2.6) and (2.7), and Lachièze-Rey et al. (2022), equations (1.5) and (1.8).
While Lachièze-Rey et al. (2019) considers moment conditions on score functions, we directly deal
with the cost functions so that it fits a more general class.

2.3 Main results

We now present our two main results on the normal approximation of a certain class of functionals
of Poisson and binomial point process, Theorem 2.1 and 2.2 respectively, that are not necessarily
expressible as sums of score functions. We discuss several applications in Section 2.4.

We first present our main result for the Poisson case. Note that while this result is not leveraging
Assumptions 2.1, 2.2 and 2.3, the refined result presented in Corollary 2.1 does.

Theorem 2.1 (Normal approximation for functionals of Poisson point processes). Let F be a
functional of the Poisson point process P(�) with F 2 L2

P(�) and E
R
(DxF )2�(dx) < 1. For any

x, x1, x2 2 X and sets Ax, Ax1 2 F , define

E|DxF �DxF (Ax)|4 =: b1(x,Ax), E|DxF (Ax)|4 =: b2(x,Ax),

and

E|Dx1F
x2 �Dx1F

x2(Ax1)|4 =: b3(x1, x2, Ax1),

E|Dx1F
x2(Ax1)�Dx1F (Ax1)|4 =: b4(x1, x2, Ax1).

Then, there is an absolute constant C⇤ > 0 such that

dK
⇣F � EFp

VarF
,N

⌘
 C⇤

6X

i=1

�0i,

where

�1
0 :=

1

VarF

 Z h 2X

j=1

bj(x1, Ax1)
1
4

2X

j=1

bj(x2, Ax2)
1
4
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⇥
⇣
b1(x3, Ax3)

1
4 +

4X

j=3

bj(x3, x1, Ax3)
1
4

⌘⇣
b1(x3, Ax3)

1
4 +

4X

j=3

bj(x3, x2, Ax3)
1
4

⌘i

⇥ �3(d(x1, x2, x3))

! 1
2

,

�02 :=
1

VarF

 Z ⇣
b1(x3, Ax3) +

4X

j=3

bj(x3, x1, Ax3)
⌘⇣

b1(x3, Ax3) +
4X

j=3

bj(x3, x2, Ax3)
⌘

⇥ �3(d(x1, x2, x3))

! 1
2

,

�03 :=
1

(VarF )
3
2

Z 2X

j=1

bj(x,Ax)
3
4�(dx),

�04 :=

R P2
j=1 bj(x,Ax)

3
4�(dx)

(VarF )2

 ⇣Z 2X

j=1

bj(x,Ax)
1
2�(dx)

⌘ 1
2
+
⇣Z 2X

j=1

bj(x,Ax)�(dx)
⌘ 1

4

+ (VarF )
1
2

!
,

�05 :=
1

VarF

⇣Z 2X

j=1

bj(x,Ax)�(dx)
⌘ 1

2
,

�06 :=
1

VarF

 Z h 2X

j=1

bj(x1, Ax1)
1
2

⇣
b1(x1, Ax1)

1
2 +

4X

j=3

bj(x1, x2, Ax1)
1
2

⌘

+
⇣
b1(x1, Ax1) +

4X

j=3

bj(x1, x2, Ax1)
⌘i
�2(d(x1, x2))

! 1
2

.

Remark 2.2.

(i) Theorem 2.1 provides an alternative way of controlling the bounds derived in Last et al. (2016,
Theorem 1.2) by leveraging the cost function DxFs(Ax).

(ii) Theorem 2.1 is valid for deriving normal approximation rates for general functionals or stabi-
lizing functionals not having a known tail probability bound; see Section 2.4.4. When such tail
bounds are known, a more refined result is available (see Corollary 2.1 below).

With Ax = X and � = sQ, Assumptions 2.1, 2.2 and 2.3 can be leveraged to give upper bounds
for the following crucial probabilities that appear implicitly in the proof of Theorem 2.1:

Is(x) := P(DxFs 6= 0),

Js(x1, x2) := P
�
|Dx1,x2Fs| 6= 0

�
.

(2.4)

resulting in the following corollary.

Corollary 2.1. Suppose Fs 2 L2
Ps

and that Fs is strongly stabilizing with the radius of stabilization
satisfying Assumption 2.1. Furthermore, suppose Assumption 2.2 and Assumption 2.3 hold. Then,
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there exists a constant C0 > 0 depending only on the constants in (2.2) and (2.3) such that for
s � 1,

dK

✓
Fs � EFsp

VarFs
, N

◆
 C0

0

@ ⇥
1
2
K,s

VarFs
+

⇥K,s

(VarFs)
3
2

+
⇥

5
4
K,s +⇥

3
2
K,s

(VarFs)2

1

A ,

where

⇥K,s := s

Z

X
e
�C2

(p�4)
4p

✓
ds(x,K)

2

◆C3

Q(dx). (2.5)

Corollary 2.2. Under the conditions of Corollary 2.1, and assuming there exists a constant C > 0
such that

sup
s�1

⇥K,s

VarFs
 C, (2.6)

there exists a constant C 0

0 > 0 depending on C and the constants in (2.2) and (2.3) such that for
s � 1,

dK

✓
Fs � EFsp

VarFs
, N

◆
 C 0

0
1p

VarFs
. (2.7)

Next, we consider the binomial case, which requires some different tools as compared to the
Poisson case treated above. Indeed, for the Poisson case we leverage Theorem ?? for our proofs.
However, due to the fact that there is no nice counterpart of the second-order Poincaré inequality (see
Last et al., 2016), an analogue of Theorem ?? is not known for the binomial case. Instead, we will
use Lachièze-Rey and Peccati (2017, Theorem 5.1) in this binomial setting. This then leads to the
following result:

Theorem 2.2 (Normal approximation for functionals of binomial point process). Suppose Fn 2 L2
⇠n

and Fn is strongly stabilizing with radius of stabilization satisfying Assumption 2.1. Furthermore,
suppose Assumption 2.2 and Assumption 2.3 hold. Then, there exists a constant C0 > 0 depending
only on the constants in (2.2) and (2.3) such that for n � 2,

dK

✓
Fn � EFnp

VarFn
, N

◆
 C0

0

@ ⇥
1
2
K,n

VarFn
+

⇥K,n

(VarFn)
3
2

+
⇥K,n +⇥

3
2
K,n

(VarFn)2

1

A , (2.8)

where

⇥K,n := n

Z

X
e
�C2

(p�4)
4p

✓
dn(x,K)

2

◆C3

Q(dx).

Remark 2.3. Compared to the Poisson case, the exponent of ⇥K,n in the third component of the sum
on the right hand side of (2.8) is different. In essence, this difference can be traced back to the above
mentioned fundamental fact that there is no nice counterpart of the second-order Poincaré inequality
for the binomial case (see Last et al., 2016). Instead, we use the approach taken in Lachièze-Rey
et al. (2019, Theorem 4.2) to prove Theorem 2.2.

Corollary 2.3. Under the conditions of Theorem 2.2, assume there exists a constant C > 0 such
that

sup
n�1

⇥K,n

VarFn
 C, (2.9)
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then there exists a constant C 0

0 > 0 depending on C and the constants in (2.2) and (2.3) such that
for n � 2,

dK

✓
Fn � EFnp

VarFn
, N

◆
 C 0

0
1p

VarFn
. (2.10)

Remark 2.4. We make the following remarks on the above main results for both Poisson and
binomial cases.

(i) If K = X and Q(X) < 1, the conditions (2.6) and (2.9) can be simplified as

sup
s�1

s

VarFs
 C, (2.11)

sup
n�1

n

VarFn
 C, (2.12)

(ii) Optimality: Following Lachièze-Rey et al. (2019), we refer to cases where the bounds in (2.7)
and (2.10) can be attained, as being presumably optimal. Indeed, Corollary 2.2 and 2.3 show
that if the variance of the statistics Fs, Fn are bounded below by ⇥K,s,⇥K,n, respectively, a
presumably optimal normal approximation rate is achieved. To give an intuition on why the
above situation is referred to as being presumably optimal, note that for the case of sums of
i.i.d random variables, non-trivial i.i.d. random variables can be constructed that achieve the
upper bounds of the form in (2.7) and (2.10). Formal lower bounds on the optimality are
available for the case of integer-valued statistics in Englund (1981) and Peköz et al. (2013).
Furthermore, in a recent work, Schulte and Yukich (2023a) established lower bounds for a large
class of statistics.

(iii) Wasserstein distance: The quantitative bounds derived in this section are also valid for the
Wasserstein distance. Recall that for two random variables X,Y with E|X| < 1, E|Y | < 1,
the Wasserstein distance between X and Y is defined as

dW (X,Y ) := sup
h2Lip(1)

|Eh(X)� Eh(Y )|,

where Lip(1) stands for the set of all Lipschitz functions h : R ! R with Lipschitz constant
at most 1. Indeed, as mentioned in the remark in Section 4 in Lachièze-Rey et al. (2019), the
underlying bounds in Theorem 6.1 in Last et al. (2016) and Theorem 4.3 (see also Remark 4.3
in Lachièze-Rey and Peccati, 2017) are true for dW as well. Consequently, our results in this
section, which are derived based on the above theorems, are also immediately valid.

Comparison to related works. We now provide some comparisons to the related work.
Firstly, our proof techniques, similar to Lachièze-Rey et al. (2019), are based on several central
ideas proposed in Last et al. (2016). For the case of functionals that are expressible as sums of score
functions, Lachièze-Rey et al. (2019) established presumably optimal bounds under the score-based
stabilization assumption, for both the binomial and Poisson cases. While they too use second-order
cost operators, our Theorems 2.1 and 2.2 handle a much larger class of functionals (not necessarily
as sums of scores). The work of Lachièze-Rey et al. (2022) consider general functionals (not nec-
essarily sums) and work under strong stabilization assumption. However, they only consider the
Poisson case. To get explicit bounds (e.g., their Corollary 1.5 and Proposition 1.12), they intro-
duce a specific form of Ax in their proofs and their overall approach results in sub-optimal rates
in comparison to our results, Corollary 2.1, and to Lachièze-Rey et al. (2019) in the case when the
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functional is expressible as sums of scores. Our Theorem 2.1 generalizes Last et al. (2016), Theorem
1.2, by introducing the flexible cost function DxF (Ax) for general functionals of Poisson point pro-
cess. The work of Chatterjee (2008) also considers normal approximations of general functions (not
necessarily sums). However, their approach is only valid for the binomial case. Moreover, a further
investigation of the main theorems Chatterjee (2008, Theorem 2.2) and Lachièze-Rey and Peccati
(2017, Theorem 4.2) reveals that their normal approximation bounds are obtained by computing
certain quantities (for example, TA, T in Chatterjee (2008, Section 2) and T, T 0 in Lachièze-Rey
and Peccati (2017, Section 4)), which are complicated to deal with for some functionals, e.g., Euler
characteristic; see Krebs et al. (2021, Proof of Theorem 3.2).

Applying our main results. We conclude this section, with the following three-step procedure
illustrating how to apply our main theorems, Theorems 2.1 and 2.2.

• Step 1: Check whether the functional F is strongly stabilization (Definition 2.5); whether
the tail probability of the radius of stabilization (Assumptions 2.1) can be computed; verify
Assumption 2.2 on the cost functions.

– If the functional is not strongly stabilizing or no upper bound of the radius of stabilization
Rx is known, consider the flexible cost functions DxFs(Ax) with appropriate choice of
Ax and apply Theorem 2.1.

• Step 2: Check the bounded moment condition (Assumption 2.3).
• Step 3: In order to check for presumable optimality, one can seek to bound the variance, i.e.,

(2.11) and (2.12).

If the above three steps are satisfied, apply Corollary 2.1 and Theorem 2.2 for the Poisson and
binomial settings respectively.

2.4 Applications

In this section, we illustrate the applicability of our bounds in Theorem 2.1, Corollary 2.1 and
Theorem 2.2 on several geometric and topological statistics thereby following the agenda outlined
above.

2.4.1 Total edge length of k-nearest neighbor graphs

Recall the definition of k-NN Graphs in Example 2.2 and define the total edge length of a k-NN
graph based on a Poisson process Ps as:

F k-NN
s (Ps) :=

X

x2Ps

fs(x,Ps), (2.13)

with fs as defined in (2.1) for some # > 0. Similarly, for an underlying binomial point process ⇠n,
we define F k�NN

n (⇠n).

Theorem 2.3. Assume there exists a constant c > 0 such that, for r  diam(X) < 1,

inf
x2X

Q(Bx(r)) � cr!. (2.14)

If there exists a constant C > 0 such that

sup
s�1

s

VarF k-NN
s (Ps)

 C, (2.15)

13



then there exists a constant C0 > 0 such that for s � 1,

dK

 
F k-NN
s (Ps)� EF k-NN

s (Ps)p
VarF k-NN

s (Ps)
, N

!
 C0

1p
s
.

Moreover, if there exists a constant C > 0 such that

sup
n�1

n

VarF k-NN
n (⇠n)

 C, (2.16)

then for n � 2,

dK

 
F k-NN
n (⇠n)� EF k-NN

n (⇠n)p
VarF k-NN

n (⇠n)
, N

!
 C0

1p
n
.

Remark 2.5.

(i) Condition (2.14), is required in addition to (2.2) for the k-NN statistic; see Lachièze-Rey et al.
(2019) for details. Note that the total edge length of a k-NN graph (2.13) is expressible as
a sum of score functions. Hence, the results in Lachièze-Rey et al. (2019) already provide
presumably optimal bounds. Our results above also recover the same bounds.

(ii) Now we compare our results to Lachièze-Rey et al. (2022) in the Poisson setting. Recall that
similar to our results, they considered general functionals (not necessarily expressible as sums
of scores). However, their generality comes at the cost of not having presumably optimal
bounds in the setting of the total edge length of a k-NN graph. Specifically, Lachièze-Rey et al.
(2022, Proposition 1.12), term

p
bn/n with bn ! 1 implies that it has a slower rate than

1/
p
n. This highlights the benefit of our approach: despite its generality, we can still obtain

presumably optimal bounds.

(iii) For the binomial setting, Lachièze-Rey and Peccati (2017) obtained rates in the Kolmogorov
metric for the same statistic. However, as discussed in Lachièze-Rey et al. (2019, Remark (i)
below Theorem 3.1), their results are sub-optimal and involve additional logarithmic factors,
that we avoid.

(iv) For X a full-dimensional compact convex subset of Rd and ! = d, as shown in Penrose and
Yukich (2001, Proof of Theorem 6.1)2, the conditions (2.15) and (2.16) are satisfied.

2.4.2 Shannon entropy

Given an i.i.d. sample X1, X2, ..., Xn from a density q on Rd, the differential (Shannon) entropy is
defined as H(q) := �EX⇠q log q(X) = �

R
Rd q(x) log q(x)dx. The nearest neighbor entropy estimate,

also known as the Kozachenko-Leonenko estimator, was first proposed in Kozachenko and Leonenko
(1987) based on the 1-NN density estimator. A generalization of this estimator based on k-NN
density estimator is given by

1

n

nX

i=1

log

 
(n� 1)Vd⇢dk,i

e (k)

!
,

where ⇢k,i is the distance between Xi and its k-nearest neighbor among X1, X2, ..., Xn, Vd :=

⇡
d
2 /�(1 + d

2) is the volume of a unit d-dimensional Euclidean ball,  (k) = �� +
Pk�1

i=1 1/i is the
2
Penrose and Yukich (2001) consider the case of # = 1. However, a closer examination of the proof shows that it

can be easily extended for any # > 0.
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digamma function with � the Euler-Mascheroni constant (Penrose and Yukich, 2013; Berrett et al.,
2019).

Consistency and a CLT for the above estimator in a manifold setting were shown in Penrose and
Yukich (2013) by stabilization theory. However, a non-trivial bias term arises for d � 4, rendering
the above estimator asymptotically inefficient in the sense of Van der Vaart (2000, page 367). To
have an (asymptotically) unbiased and efficient estimator, the following weighted k-NN estimator
was proposed in Berrett et al. (2019). Defining ⇠n as the binomial point process associated with
X1, X2, ..., Xn the proposed estimator could be viewed as a functional of ⇠n, and is given by

F SE
n (⇠n) :=

nX

i=1

fw
n (Xi, ⇠n) where fw

n (Xi, ⇠n) :=
1

n

kX

j=1

wj log

 
(n� 1)Vd⇢dj,i

e (j)

!
,

where wj are weights (such that
Pn

j=1wj = 1) chosen to cancel the dominant bias term and to
make F SE

n asymptotically efficient. We now provide our normal approximation results for the above
estimator, based on a slightly modified set of assumptions considered in Berrett et al. (2019).

Theorem 2.4. Let q be a density of Q with respect to Lebesgue measure on Rd, and let X ⇢ Rd be
the support of q. Assume that q is bounded, and that m := d�e� 1 times differentiable for �>0. Let
a : (0,1) ! [1,1) be a decreasing function such that a(�) = o(��✏) as � & 0, for every ✏ > 0. For
x 2 X, let ra(x) := (8d

1
2a(q(x)))�

1
�^1 and define:

Mq,a,�(x) := max

(
max

t=1,...,m

kq(t)(x)k
q(x)

, sup
y2Bo

x(ra(x))

kq(m)(y)� q(m)(x)k
q(x)ky � xk��m

)
,

where Bo
x(r) := Bx(r)\{x}, and assume that

sup
x:q(x)��

Mq,a,�(x)  a(�), 8� > 0.

Define the class of weights as follows: for k 2 N, let

Wk :=

⇢
w 2 Rk :

Pk
j=1wj

�(j+ 2l
d )

�(j) = 0, for l = 1, ..., bd4c,
Pk

j=1wj = 1, wj = 0, if j /2
�
bkdc, b

2k
d c, ..., k

 �
.

(2.17)

Then under the conditions of Berrett et al. (2019, Theorem 1), that is, for any ↵ > d, � > d
2

and for any two deterministic sequences of positive integers k⇤0,n = k⇤0, k⇤1,n = k⇤1 with k⇤0  k⇤1,
k⇤0/ log

5 n ! 1, k⇤1 = O(n⌧1) and k⇤1 = o(n⌧2), where, with �⇤ := � ^ 1,

⌧1 < min

⇢
2↵

5↵+ 3d
,
↵� d

2↵
,

4�⇤

4�⇤ + 3d

�
, and ⌧2 := min

(
1�

d
4

1 + bd4c
, 1� d

2�

)
,

as well as the assumption (2.14), there exist constants C0 > 0, ⌧ > 0 (independent of k, n) such that

dK

 
F SE
n (⇠n)�H(q)p
VarF SE

n (⇠n)
, N

!
 C0

✓
k

n

◆⌧
,

for k⇤0  k  k⇤1, where ⌧ only depends on ↵, d and �.

Remark 2.6.
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(i) Asymptotic limit theorems for estimators of the Shannon entropy have been obtained, for
example, in Penrose and Yukich (2013), Berrett et al. (2019). The result in Penrose and
Yukich (2013) is a central limit theorem not addressing the bias. The result in Berrett et al.
(2019), is a central limit theorem characterizing the fluctuations around the population entropy
H(q), and was established under the case that the density is supported on Rd. However, no
normal convergence rate results were provided in the above works. To our best knowledge, the
above result, is the first normal convergence rate result with the true center H(q).

(ii) It is also possible to obtain a similar result using the method in Lachièze-Rey et al. (2019)
since the estimator F SE

n (⇠n) is expressible as a sum of score functions.

(iii) Furthermore, the result in Theorem 2.4 is provided for the binomial case. To the best of our
knowledge, the asymptotic unbiasedness and efficiency of the weighted k-NN estimator of the
Shannon entropy based on Poisson point process are still open problems.

2.4.3 Euler characteristic

Recall Example 2.1. Following the setting of Krebs et al. (2021), consider a bounded density q on
[0, 1]d. Let ⇠n be a binomial point process associated with n i.i.d. samples according to the density
q and let Pn be a Poisson point process with intensity measure nQ, where Q has a density q with
respect to the Lebesgue measure, i.e., we set s = n.

Construct the Čech complex or the Vietoris-Rips complex Kr(n
1
dPn),Kr(n

1
d ⇠n), see Definition

6.2 and 6.3 based on the Poisson point process Pn and the binomial point process ⇠n respectively
with r > 0 as the filtration time. Here, Kr represents both complexes for simplicity. The factor n

1
d

corresponds to the thermodynamic/critical regime (Goel et al., 2019; Owada and Thomas, 2020;
Trinh, 2017) such that this is equivalent to the case nrdn ! r 2 (0,1) with rn as the filtration time.
With the above construction, the Euler characteristic is given by

FEC
n (Pn) := �(Kr(n

1
dPn)) and FEC

n (⇠n) := �(Kr(n
1
d ⇠n))

where the Euler characteristic �(K(⌘)) for a filtration K constructed from a point cloud sampled
from a point process ⌘ is defined in Example 2.1.

Theorem 2.5. Under the above setting, for some T > 0 such that 0 < r  T , there exists a constant
C0 > 0 such that for n � 1,

dK

 
FEC
n (Pn)� EFEC

n (Pn)p
VarFEC

n (Pn)
, N

!
 C0

1p
n
,

and for n � 2,

dK

 
FEC
n (⇠n)� EFEC

n (⇠n)p
VarFEC

n (⇠n)
, N

!
 C0

1p
n
.

Remark 2.7. We make the following remarks about the above result.

(i) CLTs and functional limit theorems for the Euler characteristic have been studied in Thomas
and Owada (2021) by viewing the Euler characteristic as a process indexed by r. Normal
approximation rates of the Euler characteristic under binomial and Poisson sampling were
obtained in Krebs et al. (2021) by computing certain geometric quantities (see proof of The-
orem 3.2) appearing in the general result in Lachièze-Rey and Peccati (2017). Our flexible
stabilization method has the advantage of avoiding such computations.
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(ii) For the Poisson case, Lachièze-Rey et al. (2022) require a specific form of Ax, rendering their
result sub-optimal, i.e., the term

p
bn/n in Lachièze-Rey et al. (2022, Proposition 1.12), leads

to a slower rate than 1/
p
n that we obtain above.

(iii) While Euler characteristic could also be expressible as a sum of score functions, one could
possibly leverage the results of Lachièze-Rey et al. (2019) to derive normal convergence rate.
Our goal in this example is to demonstrate the flexibility of our general result.

(iv) As mentioned in Remark 2.4, part (ii), since the Euler characteristic is integer-valued, the
bounds in Theorem 2.5 are optimal.

All above applications consider stabilizing statistics when there are known tail bounds for the
radius of stabilization Rx, i.e., quantities in (2.4). Our Theorem 2.1, however, can deal with the case
when we do not have immediate bounds for those probabilities based on the flexible cost function
DxFs(Ax). We illustrate the above mentioned idea by the following application concerning the
minimal spanning tree.

2.4.4 Edge length of the minimal spanning tree

Consider a finite set V ⇢ Rd (usually it is embedded in an underlying graph G := (V,E)). A
spanning tree T of V is a connected graph with the vertex set V . Define

M(V ) := min
T

X

e is an edge of T

|e|,

where the minimum is taken over all possible spanning trees T of V . According to Penrose (2005)
and Chatterjee and Sen (2017), the total edge length statistic M(V ) does satisfy certain required
stabilization properties. However, to the best of our knowledge, there is no result on the rates of
stabilization including quantitative bound on the tail probability of the radius of stabilization. This
fact poses a major difficulty when attempting to derive normal approximation rate for M(V ) by
using other methods such as the approach in Lachièze-Rey et al. (2019). Our flexible stabilization
method can yield the following theorem by picking Ax “strategically” to make use of some other
existing bounds.
Theorem 2.6. Following the Euclidean setting in Lachièze-Rey et al. (2022), consider B0 as the
unit hypercube in Rd centered at the origin and let Bn := nB0, n 2 N+. Given a homogeneous
Poisson process P(�) on Rd with intensity � > 0, let

FMST
Bn

(P(�)) := M(P(�)|Bn).

Then, there exist constants C0 > 0, 1 > D1 > 0 and D2 > 0 not depending on n such that

dK

0

@FMST
Bn

(P(�))� EFMST
Bn

(P(�))
q
VarFMST

Bn
(P(�))

, N

1

A 
(
C0n

�D1 , if d = 2,

C0(log n)
�D2 , if d � 3.

Remark 2.8. The normal approximation rate of the edge length statistic of the minimal spanning
tree has been derived previously in Chatterjee and Sen (2017) and in Lachièze-Rey et al. (2022)
with similar results as Theorem 2.6. However, Chatterjee and Sen (2017) only focused on the
minimal spanning tree therefore it is hard to generalize for other stabilizing functionals. Lachièze-
Rey et al. (2022) used the similar idea of introducing the set Ax but their bounds usually give
sub-optimal normal convergence rates (for e.g., see Remark 2.5 regarding the total edge length of
k-nearest neighbor graphs in Section 2.4.1) than ours due to the specific form of their set Ax lacking
flexibility.
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3 Random Forest and Region-based Stabilization

In this section, we particular focus on one important statistic: random forest, to which we apply
our generalized region-based stabilization to obtain normal approximation.

3.1 Random forests and k-potential nearest neighbors

We consider the following regression model:

y = r(x, "), (x,y) 2 Rd ⇥ R, " 2 R, (3.1)

where x ⇠ Q with a.e. continuous density g on Rd, d 2 N and the noise " ⇠ P" independent of
x. We define the true regression function as r0(·) := EP" [r(·, ")] = EP" [r(x, ")|x = ·]. Note that
we do not necessarily assume that the function r is additive with respect to x and ". For the
special case of additive-noise models, r(x, ") assumes the form r(x, ") = r0(x) + ". We also define
�2(·) := VarP" [r(·, ")], and highlight that we allow for heteroscedastic variance in the regression
model.

We model the distribution of the training samples {(xi,yi)}Ni=1, where yi := yxi = r(xi, "xi)
for 1  i  N , by assuming that the pairs {(xi, "xi)}Ni=1 are being drawn from an underlying
marked Poisson process Pnǧ with intensity measure n(Q ⌦ P") (see Section 3.3 for definition and
additional details). Here, N is a Poisson random variable with mean n, and "x’s are independent
marks associated to each point x in the sample. We refer to this sampling as the Poisson sampling
setting. This sample, as a collection of points in the product space Rd ⇥ R, can be thought of as
a mixed binomial point process

PN
i=1 �(xi,"i), where N is a Poisson random variable with mean n

and {(xi, "i)}Ni=1 are i.i.d. samples from Q ⌦ P", independent of the N ; here �(xi,"i) is the Dirac
measure at (xi, "i). In other words, we have an infinite i.i.d. sequence (x1, "1), (x2, "2), . . . with
xi ⇠ Q and independent noise "i ⇠ P" for i 2 N, and the sample size is given by an independent
Poisson random variable N with mean n. Furthermore, we denote by Png the process obtained by
projecting the marked Poisson process Pnǧ on Rd consisting of the Poisson sample {xi}Ni=1.

Before we introduce the specific form of the random forest we study in this thesis, we introduce
a geometric concept, the so-called k-Potential Nearest Neighbors (k-PNNs), which can be inter-
preted as a generalization of the classical k-nearest neighbors (k-NNs). The k-PNNs share a close
connection with random forest as we explain subsequently.

For any x1 = (x(1)1 , . . . , x(d)1 ), x2 = (x(1)2 , . . . , x(d)2 ) 2 Rd, we define the hyperrectangle Rect(x1, x2)
defined by x1, x2, and its volume respectively as

Rect(x1, x2) :=
dY

i=1

[x(i)1 ^ x(i)2 , x(i)1 _ x(i)2 ], and |x1 � x2| :=
dY

i=1

|x(i)1 � x(i)2 |.

Definition 3.1 (k-PNN). Given a target point x0, and a locally finite point configuration µ in Rd,
a point x 2 µ is said to be a k-PNN to x0 (with respect to µ) if there are fewer than k points from
µ \ {x} in Rect(x, x0).

The number of k-PNNs to a target point x0 is always larger than or equal to k, provided that
the underlying configuration µ has at least k points. Figure 1 illustrates an example of 2-PNNs to a
point x0 in a given configuration. One can also interpret k-PNNs in terms of monotone metrics. A
metric d on Rd is said to be monotone if for any two points x1, x2, and any point x in Rect(x1, x2),
one has d(x, x1)  d(x1, x2). For instance, the Euclidean distance in Rd is one such metric. Then,
given a collection of points µ, a point x 2 µ is a k-PNN of a target point x0, if and only if there
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x0

x2

x1

Figure 1: The set of 2-PNNs around a point x0 2 R2. The point configuration includes all points in
the figure except x0. The blue and red points together are the 2-PNNs to x0. The red ones such as
x2 has exactly 1 point in its corresponding rectangle. The blue ones, such as x1, are also a 1-PNN,
or LNN, with no other point in the rectangle formed by x0 and those points.

exists a monotone metric under which x is among the k closest points in µ from x0. Obviously, the
classical k-NN is a special case of k-PNN with some chosen monotone metric. The case k = 1 is
a special case, and 1-PNNs are also called layered nearest neighbors (LNNs). It has been observed
that nearest neighbor methods with adaptively chosen metrics that are monotone demonstrate good
empirical performance (Hastie and Tibshirani, 1995; Domeniconi et al., 2002).

The notion of k-PNN is also intrinsically linked with the notions of “dominance” and “number
of maximal/minimal points”; see, e.g., Bai et al. (2005, 2006) and references therein. A point
x1 = (x(1)1 , . . . , x(d)1 ) 2 Rd is said to dominate a point x2 = (x(1)2 , . . . , x(d)2 ) 2 Rd if x1�x2 2 Rd

+\{0},
i.e., x(i)1 > x(i)2 for all i 2 [d], represented by the binary relations x1 � x2 or x2 � x1. Furthermore,
points in the sample not dominating any other points are called minimal (or Pareto optimal) points
of the sample, and points that are not dominated by any other sample points are called maximal.
Thus, LNNs to a point x0 2 Rd can be thought of as a collection consisting of 2d independent copies
(one copy for each quadrant) of the classical minimal points w.r.t. x0.

With this background, we now describe the non-bagging and non-adaptive random forest pre-
dictors that we analyze here. For a given target point, all its k-PNNs in the training set are also
called its voting points. The prediction for that target point is then expressed as a (randomly)
weighted linear combination of the labels corresponding to the voting points; see, e.g., Lin and Jeon
(2006); Biau and Devroye (2010). The non-adaptiveness comes from the fact that both the weights
and the randomized splitting scheme used to construct the base decision trees of the random forest
do not depend on the labels. Furthermore, as discussed by Lin and Jeon (2006), regardless of the
tree generating schemes, as long as the terminal nodes of each randomized tree define rectangular
areas, voting points are all k-PNNs to x0 and all k-PNNs to x0 can be voting points. Particularly,
if k = 1, the above procedure is also called as Layered Nearest Neighbor based prediction (Biau and
Devroye, 2010; Wager, 2014).

For a given test point x0 2 Rd, the random forest type estimator studied in this paper is of the
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form

rn,k,w(x0) :=
X

(x,"x)2P(�̌)

Wnx(x0)yx. (3.2)

Here the weights Wnx(x0) ⌘ Wnx(x0,P(�̌)) are nonnegative Borel measurable functions of x0, of the
samples {xi}Ni=1 and of the random variables used to generate randomized trees independent of the
sample. Note here that we assume the weights to not depend on the marks "x; see Remark 3.12 for
discussions on removing this assumption. The subscript n indicates the dependence of the weights
on the given configuration of the Poisson process, which is such that Wnx(x0) = 0 if x /2 Ln,k(x0),
where Ln,k(x0) ⌘ Ln,k(x0,P(�̌)) is the set of all k-PNNs to x0 in the Poisson sample, and

X

(x,"x)2P(�̌)

Wnx(x0) =
X

(x,"x)2P(�̌)

Wnx(x0)1x2Ln,k(x0) = 1. (3.3)

In other words, one can view the weights {Wnx(x0)}x2Ln,k(x0) as a probability mass function of a
distribution over all k-PNNs of x0. If this distribution is uniform, we have the following so-called
k-PNN estimator:

rn,k(x0) :=
X

(x,"x)2P(�̌)

1x2Ln,k(x0)

Ln,k(x0)
yx, (3.4)

where Ln,k(x0) ⌘ Ln,k(x0,P(�̌)) = |Ln,k(x0,P(�̌))|. Here by convention, the sum is zero when P(�̌)
is empty, which by properties of Poisson processes happens with the exponentially small probability
e��̌(R

d
⇥R) = e�n. Unlike k-NNs, the number of k-PNNs is usually larger than k and actually, it is

increasing both in k and in n. For instance, Lin and Jeon (2006) shows that if the density g of the
distribution Q is bounded from above and below on [0, 1]d, ELn,k(x0) is of the order k logd�1 n.

3.2 Main results: Rates of multivariate Gaussian approximation for Random
Forest

3.2.1 Probability metrics

We now introduce the integral probability metrics that we use in this thesis to quantify the error
in Gaussian approximations.

Let z1 = (z(1)
1 , . . . , z(d)

1 ) and z2 = (z(1)
2 , . . . , z(d)

2 ) be two d-dimensional random vectors. Denote
by H(2)

d the class of all C2-functions h : Rd ! R such that

|h(x1)� h(x2)|  kx1 � x2k, x1, x2 2 Rd, and sup
x2Rd

kHess h(x)kop  1,

where Hess h is the Hessian of h, and let H(3)
d be the class of all C3-functions such that the absolute

values of the second and third derivatives are bounded by 1. The d2- and d3-distances between the
laws of z1 and z2 are given respectively by

d2(z1, z2) := sup
h2H

(2)
d

|E(h(z1))� E(h(z2))|,

d3(z1, z2) := sup
h2H

(3)
d

|E(h(z1))� E(h(z2))|.
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Here as well as for the metric dcvx below, to simplify notation, with a slight abuse of notation
we write the distances between the random vectors z1 and z2, while they are indeed distances
between their laws. The distances d2 and d3 are well-defined for random vectors z1 and z2 that
satisfy E(kz1k),E(kz2k) < 1, and E(kz1k2),E(kz2k2) < 1 respectively. We also use the following
non-smooth integral probability metric given by

dcvx(z1, z2) := sup
h2I

|E(h(z1))� E(h(z2))|,

where I is the set of all indicators of measurable convex sets in Rd. If we restrict the set I to sets of
the form 1⇧d

i=1(�1,ti]
for all ti 2 R, i � 1, where ⇧ here means the Cartesian product, the distance

becomes the so-called Kolmogorov distance given by

dK(z1, z2) := sup
(t1,...,td)2Rd

|P(z(1)
1  t1, . . . , z

(d)
1  td)� P(z(1)

2  t1, . . . , z
(d)
2  td)|.

Note here that we trivially have dK  dcvx. Thus, any bound on the dcvx distance also holds
for the Kolmogorov distance. The above probability metrics are widely used in the literature on
quantitative bounds for Gaussian and non-Gaussian approximations.

3.2.2 Gaussian approximation bounds for random forests

We now present our main result providing rates for the multivariate Gaussian approximation of the
random forest type estimator given by (3.2) for multiple test points x0,1, x0,2, . . . , x0,m 2 Rd for
some m 2 N. For notational convenience, when m = 1, we simply refer to x0,1 as x0.

Recall the regression model in (3.1), and the Poisson processes P(�) and P(�̌) in Section 3.1.
For m 2 N and x0,i 2 Rd, i = 1, . . . ,m, let

rn,k,w := (rn,k,w(x0,1), . . . , rn,k,w(x0,m))T (3.5)

denote the vector of corresponding random forest predictions as defined in (3.2). Below, we write
Px,⌘ := Pnǧ + �(x,"x) + ⌘ for the marked Poisson process Pnǧ with additional point (x, "x) and an
additional finite collection of points ⌘ ⇢ Rd ⇥ R.

Theorem 3.1. Assume there exist p > 0 and �2 > 0 such that

E(|r(x, ")|6+p) < 1 and �2 := inf
x

�2(x) > 0.

For m 2 N and x0,i 2 Rd, i = 1, . . . ,m, let rn,k,w be as in (3.5), with covariance matrix ⌃m. Then,
for d, n � 2 and k = O(n↵) for 0 < ↵ < 1, there exists cg > 0 depending on d, �2, g, ↵ and p > 0,
such that for Qm-almost all (x0,1, . . . , x0,m),

d
⇣
⌃�1/2
m (rn,k,w � E(rn,k,w)),N

⌘
 cgm

43/6k⌧+1 max
j2{1,4}

�
W (n, k)1/2+1/j log(d�1)/j n

 

for d 2 {d2, d3, dcvx, dK}, where,

W (n, k) :=
max

i=1,...,m

⇣
supx,|⌘|9 kWnx(x0,i,Px,⌘)kL6+p

⌘2

min
i=1,...,m

E
⇣P

x2P(�)Wnx(x0,i)2
⌘ , (3.6)

and

⌧ := 6⇣� + 6� + 1/2 + d21(1 + ⇣)/(6 + p/2)e, (3.7)

with
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• � := p
32+4p , and ⇣ := p

40+10p , for d 2 {d2, d3}, resulting in ⌧ 2
�
63
20 ,

9
2

�
.

• � := p
72+6p , and ⇣ := p

84+14p , for d 2 {dcvx, dK}, resulting in ⌧ 2
�
18
7 ,

9
2

�
.

In both cases, ⌧ is a decreasing function of p.

The main ingredient of the proof of Theorem 3.1 is a general multivariate Gaussian approx-
imation bound (see Theorems 3.2 and 3.3) for certain classes of functionals of Poisson process.
Specifically the classes of functionals are expressed as sums of score functions (as in (3.9)), with
the scores themselves satisfying the so-called region-based stabilization property (see Definition 3.3
and Section 3.3.2). Intuitively speaking, bounds on the region of stabilization control the level of
dependency in the statistic, thereby enabling the statistic to converge to a Gaussian limit. We
show that the random forest statistic satisfies region-based stabilization and leverage Theorems 3.2
and 3.3 to prove Theorem 3.1. We defer the proof of the result to Appendix 5.2.4.

Remark 3.1. The ceiling function in the exponent ⌧ is due to the proof technique required in
Lemmas 5.15, 5.17 and 5.18. While we believe the exponent could be improved by removing the
ceiling functions, it may require additional tedious arguments in the proof, which we do not pursue
for the sake avoiding a more complicated exposition.

Remark 3.2 (De-localization of weights). The factor W (n, k) is a function of n and k, and it
depends on the distribution of the random weights used to weight the set of k-PNNs for a given
test point. To have a meaningful normal approximation bound, it is required to decay to zero, as
suggested by Theorem 3.1. In effect, this entails that the weight distribution needs to be de-localized.
Indeed, even in the case of CLTs for weighted sums of general random variable, the weights need to
be sufficiently de-localized to get Gaussian limits.

Note also that using the Cauchy-Schwarz inequality followed by (3.3) and Jensen’s inequality,
for the denominator term (considering m = 1 for simplicity), we have that

E
⇣P

x2P(�)Wnx(x0)2
⌘
� E

 �P
x2P(�) Wnx(x0)

�2
Ln,k(x0)

!
� (E[Ln,k(x0)])

�1 & k�1 log�(d�1) n,

where the last inequality is due to Lemma 5.19. From the definition of W (n, k), this implies that a
smaller supremum of the weights in the numerator (meaning the weights are more equally distributed)
will result in a tighter upper bound, see Corollary 3.1.

Remark 3.3. The fractional powers 1/j, for j = 1, 4, in the bound corresponds to the fractional
powers in �1��6 from Theorem 3.3, which is used to prove Theorem 3.1. These in turn come from
the use of the multivariate second order Poincaré inequality, see Theorem 5.2.

As a corollary to Theorem 3.1, we obtain the rates of convergence for multivariate Gaussian
approximation in the case of uniform weights, i.e., for the k-PNN estimator given by (3.4). See
Appendix 5.2.4 for its proof.

Corollary 3.1. Under the setting of Theorem 3.1, let rn,k be as in (3.4) with k � 11. Then, there
exists cu > 0 depending on d, �2, ↵ and p > 0 such that for Qm-almost all (x0,1, . . . , x0,m),

d
⇣
⌃�1/2
m (rn,k � E(rn,k)),N

⌘
 cu

m43/6 k⌧

log(d�1)/2 n
, d 2 {d2, d3, dcvx, dK}, (3.8)

where ⌃m is the covariance matrix of rn,k and ⌧ is as in (3.7). In particular, for m fixed, if
k = o

�
log(d�1)/(2⌧) n

�
, then rn,k is asymptotically normal.
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Remark 3.4. As a corollary of Theorem 3.1, one could just replace the general weights in (3.2)
by the uniform weights given in (3.4) to compute the quantity W (n, k) in (3.6). However, simply
doing so will result in a slightly worse bound in the power of k as Theorem 3.1 is proved without
knowing any additional specific information on the weights thus W (n, k). We therefore adopted a
more refined proof argument for Corollary 3.1 with the uniform weights.

We now make a few additional remarks pertaining to both Theorem 3.1 and Corollary 3.1.

Remark 3.5 (Moment condition). The assumption of (6 + p) moments in Theorem 3.1 is only
needed for a multivariate normal approximation result. It can be relaxed to a (4 + p)-moment
condition when considering a univariate normal approximation, utilizing results by Bhattacharjee
and Molchanov (2022).

Remark 3.6 (Binomial Point Processes). Apart from the Poisson setting considered here, the case
of i.i.d. sampling (i.e., binomial point processes) is also of interest. According to Bhattacharjee and
Molchanov (2022), for the i.i.d. case, a univariate normal approximation result for region-based sta-
bilization can be achieved by adapting the scheme elaborated by Lachièze-Rey et al. (2019, Theorem
4.3) and bounding the required terms similarly as done in the proof of Theorem 3.3. Furthermore,
replacing the Poisson cumulative distribution function (c.d.f.) in (5.40) by a binomial c.d.f., one
can follow the subsequent line of argument to derive a univariate version of rates of normal approx-
imation paralleling our Theorems 3.1 and Corollary 3.1 for the i.i.d. sampling case. Specifically, if
we let m = 1 and consider the uniform weights based predictor rn,k(x0) as in (3.4), we obtain

dK

✓
rn,k(x0)� E(rn,k(x0))p

Var(rn,k(x0))
,N

◆
 cu

k⌧

log(d�1)/2 n
, for Q� almost all x0 2 Rd.

According to Schulte and Yukich (2023b), second-order Poincaré inequalities for the multivariate
normal approximation of Poisson functionals have no available counterparts for binomial point pro-
cesses. Thus, there are no immediate versions of multivariate (i.e., for m > 1) normal approxima-
tions (i.e., analogs of Theorem 3.2 and Theorem 3.3) of region-based stabilizing functionals under
i.i.d. samples. This remains an open problem, with applications beyond the scope of this thesis.

Remark 3.7 (Comparison to MSE rates). It has been emphasized, for instance, by Lin and Jeon
(2006), that as k increases the mean squared error (MSE) of the random forest estimator rn,k,w
is at least of the order k�1 log�(d�1) n. Hence, by picking k appropriately, one can obtain (near)
optimal rates of convergence for the MSE in regression problems under various assumptions. This
is in contrast to the dependence on k in Corollary 3.1; see also the following remarks.

Remark 3.8 (Dependence on k). Recall the random forest predictor with uniform weights as in
(3.4). As mentioned previously, we show later in Section 3.3 that the statistic in (3.4) is a sum
of certain score functions that satisfies a region-based stabilization property. In particular, as k in-
creases, the region of stabilization for each summand becomes large resulting in increased dependency
between the scores at different points, deviating much further away from a i.i.d. setup, which has a
negative effect for obtaining Gaussian limiting distributions.

In particular, a main part of our proof of Theorem 3.1 and Corollary 3.1 is related to bounding
the cumulative distribution function (in terms of k) of the Poisson probability that x is in the set
of k-PNNs to x0 denoted by Ln,k(x0). This plays a key role in controlling the size of the region
of stabilization and results in the k⌧ term in the numerator of (3.8). In Lemma 5.16, we establish
a lower bound in k matching our upper bound. This is due to the fact that, as k increases, for
points x in a set of substantial measure, the probability that x is in the region of stabilization
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given by P(Poi($) < k), where $ = n
R
Rect(x0,x)

g(z)dz, is close to 1, meaning that the region of
stabilization is substantially large; see Lemma 5.16 for more details. Hence, the k⌧ term cannot be
further improved using the current proof technique (i.e., using region-based stabilization and Stein’s
method). Resolving this question of optimal k dependency, either by demonstrating that the order
of k is necessary or by improving the k dependency is thus an important open question.

Remark 3.9 (Optimality in n). In terms of n, our bounds are presumably optimal. This can be
noted, by considering the response yx to be integer-valued. Peköz et al. (2013, Lemma 4.1) prove that
for integer-valued functionals (3.9), it leads to a lower bound matching the classical Berry-Esseen
upper bound mentioned above in terms of n, we then have the claimed optimality result.

Remark 3.10 (Extension to bagging random forests). As mentioned in Section ??, Wager (2014),
Mentch and Hooker (2016) and Peng et al. (2022) studied the bagging random forest based on sub-
sampling from the entire training data to construct the base-learners. Particularly, this random
forest is in essence expressible in the form of a U-statistic, given by

Un,s =

✓
n

s

◆
�1 X

(n,s)

h(xi1, . . . , xis;wi),

where {xi1, . . . , xis} are subsamples of size s from n i.i.d. samples {x1, . . . , xn} according to some
randomness wi and h is an estimator that is permutation invariant in its arguments. Typically, the
estimators h are tree-style base-learners such as k-NN estimators and k-PNN estimators discussed
in Section 3.1.

Among the aforementioned works, only Peng et al. (2022) derived Gaussian approximation
bounds in the univariate setting, albeit for fixed k. An approach to improve the rate in k in our
results is to combine the U -statistics based sub-sampling approach with the region-based stabilization
proof technique that we introduce in this thesis. We believe this is an intricate problem and requires
further non-trivial efforts.

Remark 3.11 (Generalization to metric-valued data). Although Theorem 3.1 is stated in the context
of the input data taking values in the Euclidean space, the proof techniques and the concept of k-
PNNs actually do not rely on the geometry or topology of Euclidean spaces as it only requires a
monotone metric. Therefore, the above result could potentially be generalized to other metric spaces
of the inputs x by considering k-PNNs under other metrics (Haghiri et al., 2018). Indeed, our main
probabilistic results (see Theorem 3.3 and Theorem 3.2) used to prove Theorem 3.1 are derived for
general metric spaces.

Remark 3.12 (Extension to adaptive random forest). In Theorem 3.1 we consider non-adaptive
random forest, i.e., the weights Wnx(x0) in (3.2) are not depending on the response yx. Indeed,
the independence between Wnx(x0) and yx due to non-adaptivity is used in (5.38). However, we
would like to highlight that our general result, stated later in Theorem 3.3, can be used to derive
multivariate Gaussian approximation of the adaptive random forest. Indeed, it might be possible
to use honesty-type assumptions to directly bound the left-hand side of (5.38) resulting in a more
complicated analysis. A detailed examination of this is left as future work.

3.2.3 Towards statistical inference

Note that the bounds in Theorem 3.1 and Corollary 3.1, could be leveraged to obtained rates for con-
structing non-asymptotically valid confidence intervals for the expected random forest predictions.
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For example, as a consequence of Corollary 3.1, for a significance level 0 < ↵ < 1, we immediately
have

P
✓
Ern,k(x0) 2

✓
rn,k(x0)�

q
Var rn,k(x0)z1�↵/2, rn,k(x0) +

q
Var rn,k(x0)z1�↵/2

◆◆

� 1� ↵� cuk
⌧ log�(d�1)/2 n,

where z1�↵/2 is the (1 � ↵/2)-quantile of the standard normal distribution. However, there are
two key issue towards using the above result in practice: (i) we need to estimate the unknown
mean E(rn,k(x0)) and variance Var(rn,k(x0)) and, (ii) we only get the confidence interval for the
expected random forest prediction (i.e., Ern,k(x0)) and not the true regression function value at x0
(i.e, r0(x0)). Replacing the mean parameter by the true regression at x0 will result in an error of
bias. Hence in order to make practical statistical inferences on the true regression function, it is
required to do data-driven bias correction, along with variance (and expectation) estimates, which
is beyond the scope of this thesis.

In the following, we give a quantitative analysis on the order of bias and show that the bias is
not small enough to be negligible compared to the standard deviation. We state a proposition (see
Appendix 5.2.6 for its proof) providing a rate of convergence to zero for the bias of the random
forest estimator (3.4) with uniform weights under some regularity conditions. Recall that a function
 : Rd ! R is said to be Hölder continuous at x0 2 Rd if there exist constants L > 0 and � > 0
such that for x 2 Rd,

| (x)�  (x0)|  L |x� x0|� .

Proposition 3.1. Let the assumptions required for Corollary 3.1 prevail. In addition, assume the
density g(x) and the function r0(x) are Hölder continuous at x0 with parameters Lg, �g > 0 and
L1, �1 > 0 respectively and assume yx = r(x, ") is uniformly bounded. Then for any 0 < ⇣ < 1 and
x0 2 Rd, the bias satisfies

|Ern,k(x0)� r0(x0)| .
�
(log�(�g^�1)⇣ n) _ (k�1/4 log�(d�1)/4 n)

�

for n large enough.

The bias of the subsampling random forest has been considered by Wager and Athey (2018,
Theorem 3.2). Our result above considers the non-subsampling version associated with k-PNN
estimators and allow k to increase with n. We want to emphasize that the bias bound here is
consistent with that derived by Biau and Devroye (2010, Lemma 3 and section 5.3), and we assume
Hölder continuity to quantify the convergence of the bias to zero as mentioned above.

As we mentioned before, the bias given above turns out to be relatively large compared to the
standard deviation. Indeed, according to (5.68) and Lemma 5.19, note that the standard deviation
is lower bounded by (k logd�1 n)�1/2 such that (Var rn,k(x0))�1/2|Ern,k(x0)� r0(x0)| ! 1. A bias
reduction technique is hence of great importance for inferences on the true regression function r0,
for instance, deriving consistent confidence intervals. While some preliminary work is undertaken
by Mentch and Hooker (2016) with bootstrap in the context of bagging random forests, it remains
an open problem how to reduce the bias to get non-asymptotically valid confidence intervals. We
leave a detailed methodological study of this, including performing large scale simulations, for future
work.
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3.3 Region-based stabilizing functionals and Gaussian approximation

In this section, we introduce some preliminaries about point processes, region-based stabilizing
functionals, and some related notation. We refer to works by Schulte and Yukich (2023b) and
Bhattacharjee and Molchanov (2022) for additional details and background. As mentioned earlier,
the general multivariate Gaussian approximation results (i.e., Theorems 3.2 and 3.3) established in
this section form the backbone for establishing our main result in Theorem 3.1 for random forest.

3.3.1 Functionals of point processes

Let (X,F) be a measure space with a �-finite measure Q. We will generally consider marked Poisson
processes (see recent work of Schulte and Yukich (2023b) for more details) where the points live
in X while their marks live in a probability space (M,FM,QM). Let X̌ := X ⇥ M with F̌ as the
product �-field of F and FM and Q̌ := Q ⌦ QM is the product measure. When (M,FM,QM) is
a singleton endowed with a Dirac point mass, then the measure Q̌ reduces to Q. For x̌ 2 X̌, we
shall use the representation x̌ := (x,mx) with x 2 X and mx 2 M. Let N be the set of �-finite
counting measures on (X̌, F̌), which can be interpreted as point configurations in X̌. The set N is
equipped with the smallest �-field N such that the maps mA : N ! N [ {0,1},M 7! M(A) are
measurable for all A 2 F̌ . A point process is a random element in N. For ⌘ 2 N, we write x̌ 2 ⌘
if ⌘({x̌}) � 1. Furthermore, denote by ⌘A the restriction of ⌘ onto the set A 2 F̌ . For ⌘1, ⌘2 2 N,
we write ⌘1  ⌘2 if the difference ⌘1 � ⌘2 is non-negative. Denote by P(�) and P(�̌) the Poisson
processes with intensity measures � := nQ (resp. �̌ := nQ̌) on (X,F) (resp. (X̌, F̌)).

To proceed, we need additional definitions and notation. Denote by F(N) the class of all
measurable functions f : N ! R, and by L0(X̌) = L0(X̌, F̌) the class of all real-valued, measurable
functions F on X̌. Note that, as F̌ is the completion of �(⌘), each F 2 L0(X̌) can be written as
F = f(⌘) for some measurable function f 2 F(N). Such a mapping f , called a representative of
F , is Q̌ � ⌘�1-a.s. uniquely defined. In order to simplify the presentation, we make this convention:
whenever a general function F is introduced, we will select one of its representatives and denote
such a representative mapping by the same symbol F . We denote by L2

P(�̌)
(X̌) = L2

P(�̌)
(X̌, F̌) the

space of all square-integrable functions F of the Poisson process P(�̌) with E(F 2) < 1.
For n,m 2 N, and i 2 [m], consider a collection of real-valued F̌⌦N -measurable score functions

⇠(i)n (·, ·) defined on each pair (x̌, ⌘), where x̌ 2 ⌘ and ⌘ 2 N. We are interested in the following
functionals of the Poisson process P(�̌):

F (i)
n = F (i)

n (P(�̌)) :=
X

x̌2P(�̌)

⇠(i)n ((x,mx),P(�̌)). (3.9)

We define F̄ (i)
n := F (i)

n �E[F (i)
n ] and seek to have a result on rates of multivariate normal approxima-

tion for the m-vector Fn = (F (1)
n , . . . , F (m)

n ) or F̄n = (F̄ (1)
n , . . . , F̄ (m)

n ) with a appropriate normalizer
and m � 1.

Definition 3.2 (Cost/Difference Operators). Let F be a measurable function on N. The family of
add-one cost operators, D = (Dx̌)x̌2X̌, are defined as

Dx̌F (⌘) := F (⌘ + �x̌)� F (⌘), x̌ 2 X̌, ⌘ 2 N.

Similarly, we can define a second-order cost operator (also called iterated add-one cost operator):
for any x̌1, x̌2 2 X̌ and ⌘ 2 N,

D2
x̌1,x̌2

F (⌘) := F (⌘ + �x̌1 + �x̌2)� F (⌘ + �x̌1)� F (⌘ + �x̌2) + F (⌘).

26



We say that F belongs to the domain of the difference operator F 2 dom D if F 2 L2
P(�̌)

(X̌) and
Z

X̌
E((Dx̌F )2)�̌(dx̌) < 1.

Definition 3.3 (Region of Stabilization). For n,m 2 N we consider the class of F̌⌦N -measurable
score functions ⇠(i)n (x̌, ⌘) for i 2 [m]. Throughout the paper, we will always assume that if ⇠(i)n (x̌, ⌘1) =

⇠(i)n (x̌, ⌘2) for some ⌘1, ⌘2 2 N with 0 6= ⌘1  ⌘2 then

⇠(i)n (x̌, µ1) = ⇠(i)n (x̌, ⌘0) for all ⌘0 2 N with ⌘1  ⌘0  ⌘2. (3.10)

This is a form of monotonicity property that is natural to any reasonable choice of score functions.

We now introduce some additional assumptions on the score functions that are sufficient to
derive our Gaussian approximation results. Specifically, we assume that for each i 2 [m], the score
functions ⇠(i)n (x̌, ⌘) are region-stabilizing (Bhattacharjee and Molchanov, 2022), i.e., for all n � 1,

(R1) there exists a map R(i)
n from {(x̌, ⌘) 2 X̌⇥N : x̌ 2 ⌘} to F̌ such that for all ⌘ 2 N and x̌ 2 ⌘,

we have that

⇠n(x̌, ⌘) = ⇠n(x̌, ⌘R(i)
n (x̌,⌘)

); (3.11)

(R2) the set

{(x̌, y̌1, y̌2, ⌘) : {y̌1, y̌2} ✓ R(i)
n (x̌, ⌘ + �x̌)}

is measurable with respect to the �-field on X̌3 ⇥ N;

(R3) the map R(i)
n is monotonically decreasing in the second argument:

R(i)
n (x̌, ⌘1) ◆ R(i)

n (x̌, ⌘2), ⌘1  ⌘2, x̌ 2 ⌘1;

(R4) for all ⌘ 2 N and x̌ 2 ⌘, we have that

⌘
R

(i)
n (x̌,⌘)

6= 0 =) (⌘ + �y̌)R(i)
n (x̌,⌘+�y̌)

6= 0, for all y̌ /2 R(i)
n (x̌, ⌘).

Before moving on with our further assumptions, we note here that the notion of region-stabilization
is a generalization of the idea of stabilization radius. In particular, while classically it is assumed
that a stabilizing score function at a point is determined by the configuration inside a ball around
the point, our Assumption (R1) only requires a local region Rn, which is not necessarily a ball, on
which the score function ⇠n can be determined. Thus, the dependency between the score functions at
different points could be measured only by the size of regions around those points alone, which leads
to a Gaussian limit when the regions are small enough. An example where classical stabilization
works well is the k-NN distance based for entropy estimation (Berrett et al., 2019; Shi et al., 2023+),
where the ball formed by the point and its k-th nearest neighbor determines the k-NNs.

On the other hand, if we consider the k-PNNs (see Definition 3.1), it turns out that considering
balls is vastly suboptimal, and one needs to consider general regions to prove Gaussian convergence
with presumably optimal rates. Our Assumption (R3) is a geometric condition that roughly says
that if we add more points to our configuration, the stabilization region R(i)

n can only get smaller,
i.e., one would need to explore the configuration in a smaller region to determine the value of the
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score function. Such a property is very natural and is satisfied for most stabilizing functionals. The
Assumptions (R2) and (R4) are rather technical ones, in particular, as noted by Bhattacharjee and
Molchanov (2022, Section 2), Assumption (R2) ensures that

{⌘ 2 N : y̌ 2 Rn(x̌, ⌘ + �x̌)} 2 N

for all (x̌, y̌) 2 X̌2, and that

P(y̌ 2 Rn(x̌, ⌘ + �x̌)) and P({y̌1, y̌2} 2 Rn(x̌, ⌘ + �x̌))

are measurable functions of (x̌, y̌) 2 X̌2 and (x̌, y̌1, y̌2) 2 X̌3 respectively.

3.3.2 Connection to random forest

We now connect the terminology above with the random forest notation introduced in Section 3.1.
We have X = Rd and the measure Q is taken to be a probability with an a.e. continuous density g
with respect to the Lebesgue measure �d on Rd. Hence, the intensity measure � = ng. Moreover,
the mark space M which represents in this case the domain of the noise ", is taken to be R with QM
being its distribution P". Correspondingly the marked version of the intensity measure is �̌ = nǧ.
We now let Pnǧ and Png denote the canonical Poisson process on X̌ (resp. X) with intensity measure
nQ̌ (resp. nQ) for n � 1. The random forest predictor in (3.2), as well as the one in (3.4) with
uniform weights, are given respectively by

rn,k,w(x0) :=
X

(x,"x)2Pnǧ

Wnx(x0)1x2Ln,k(x0)yx, and

rn,k(x0) :=
X

(x,"x)2Pnǧ

1x2Ln,k(x0)

Ln,k(x0)
yx.

Now, observe that for rn,k,w(x0), is a region-based stabilizing functional with the region of
stabilization given by

Rn(x̌,Pnǧ) :=

(
Rect(x0, x)⇥ R, if Pnǧ((Rect(x0, x)\{x})⇥ R) < k,

?, otherwise.

This region is similar to the one considered by Bhattacharjee and Molchanov (2022, Theorem 2.2)
in the context of minimal points, and is indeed a generalized version exploiting the connection
between k-PNNs and minimal points. In particular, for most k-PNNs, this region is thin in some
directions and long in the other directions, which makes it suboptimal for it to be enclose by a ball.
Consequently, standard results on multivariate Gaussian approximation (e.g., Schulte and Yukich,
2023b) are not immediately applicable in this example due to the fact that they require a ball with
a small radius as the region of stabilization.

3.3.3 Tail condition

Going back to our general model, it is clear that with a general stabilization region as ours, we
need some control on its size, so that the score functions are only locally dependent facilitating a
Gaussian limit. This motivates the following assumption. Below, for x 2 X, we write mx to denote
the random mark associated to x independent of all else.
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(T) For each i 2 [m], assume that there exists a measurable function r(i)n : X⇥X ! [0,1] such
that

P((y,my) 2 R(i)
n ((x,mx),P(�̌) + �(x,mx))  e�r

(i)
n (x,y), x, y 2 X a.e. (3.12)

When r(i)n does not vanish, Assumption (T) is an analog of the usual exponential stabilization
condition by Schulte and Yukich (2023b). Note that r(i)n is allowed to be infinity and the probability
(3.12) is well-defined due to Assumption (R2).

3.3.4 Moment condition

(M) For some p0 > 0, there exists p > 0 such that for all i 2 [m] and ⌘ 2 N with ⌘(X̌)  3 + p0,

k⇠(i)n ((x,mx),P(�̌) + �(x,mx) + ⌘)kLp0+p  M (i)
n,p0,p(x), n � 1, x 2 X a.e., (3.13)

where M (i)
n,p0,p : X ! R, n,m � 1, i 2 [m] are measurable functions. When M (i)

n,p0,p(x) is a constant
not depending on x, it recovers the standard case by Schulte and Yukich (2023b) with uniformly
bounded moments. For brevity of notation, in the sequel we will always write M (i)

n instead of
M (i)

n,p0,p, and generally drop p0, p from all subscripts.

3.3.5 Gaussian approximation For Region-based Stabilization

We will require a few additional quantities to present our main results. For i 2 [m], let

q(i)n (x1, x2) := n

Z

X̌
P({(x1,mx1), (x2,mx2)} ✓ R(i)

n (ž,P(�̌) + �ž))Q̌(dž). (3.14)

For ⇣ > 0, y 2 X and i 2 [m], let

g(i)n (y) := n

Z

X
e�⇣r

(i)
n (x,y)Q(dx), h(i)n (y) := n

Z

X
M (i)

n (x)p0+p/2e�⇣r
(i)
n (x,y)Q(dx), (3.15)

and

G(i)
n (y) := M (i)

n (y) + h(i)n (y)1/(p0+p/2)(1 + gn(y)
p0)1/(p0+p/2). (3.16)

For ↵ > 0, i, j, l, t 2 [m], and ↵i,↵j ,↵l � 0, define for y 2 X,

f (i,j,l,t)
↵i,↵j ,↵l,↵(y) := n

Z

X
G(i)

n (x)↵iG(j)
n (x)↵jG(l)

n (x)↵le�↵r
(t)
n (x,y)Q(dx)

+ n

Z

X
G(i)

n (x)↵iG(j)
n (x)↵jG(l)

n (x)↵le�↵r
(t)
n (y,x)Q(dx)

+ n

Z

X
G(i)

n (x)↵iG(j)
n (x)↵jG(l)

n (x)↵lq(t)n (x, y)↵Q(dx).

(3.17)

Moreover, we define for x 2 X and i 2 [m],

(i)n (x) := P(⇠(i)n ((x,mx),P(�̌) + �(x,mx)) 6= 0). (3.18)
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The above quantities are essential to our multivariate Gaussian approximation of region-based
stabilizing functionals, where q(i)n (x1, x2), g

(i)
n (y) and (i)n (x) correspond to the tail probability con-

dition (T), i.e., the “size” of the region of stabilization (see Lemma 5.10), and h(i)n (x), G(i)
n (y) are

associated with the moment condition (M).
For i 2 [m], assume F (i)

n 2 dom D defined in Section 3.2. We also define

P�1
n := diag(1/%(1)n , . . . , 1/%(m)

n ),

as the normalizer for F̄n. Let ⌃ := (�ij)mi,j=1 2 Rm⇥m be any given positive definite matrix and
recall that N⌃ be the m-dimensional normal random vector with mean 0 and covariance matrix ⌃.
Define

�0 :=
mX

i,j=1

|�ij � Cov((F̄ (i)
n /%(i)n ), (F̄ (j)

n /%(j)n )|, (3.19)

�1 :=

0

@
mX

i,j=1

nQ
�
f (i,j,i,i)
1,1,0,�

�2

(%(i)n %(j)n )2

1

A

1
2

(3.20)

�2 :=
mX

i=1

nQ
�
((i)n + g(i)n )3�(G(i)

n )3
�

(%(i)n )3
. (3.21)

The following two theorems provide rates for the multivariate normal approximation of region-
based stabilizing functionals measured by d2-, d3- and dcvx distances defined in Section 3.2.1. These
results are generalizations of their univariate versions proved by Bhattacharjee and Molchanov
(2022). See Appendix 5.2.1 for the proofs.

Theorem 3.2 (Multivariate Normal Approximation in d2- and d3-distances). For i 2 [m], sup-
pose the functional F (i)

n 2 dom D assumes the form (3.9) with the score function ⇠(i)n satisfying
Assumptions (R1)-(R4), (T) and (M) for p0 = 4 and p > 0. Let ⇣ := p/(40 + 10p) in (3.15) and
� := p/(32 + 4p) in (3.19)-(3.21). Then for a positive definite matrix ⌃ as above, we have

(a) for all n � 1, there exists a constant c3 > 0 depending only on p, such that

d3
�
P�1
n F̄n,N⌃

�
 c3m

✓
�0 + �1 +m�2

◆
,

and

(b) for all n � 1, there exists a constant c2 > 0 depending only on p, such that

d2
�
P�1
n F̄n,N⌃

�
 c2

✓
k⌃�1kopk⌃k

1
2
op�0 + k⌃�1kopk⌃k

1
2
op�1 +m2k⌃�1k

3
2
opk⌃kop�2

◆
.

In order to state our next theorem for the dcvx distance, we introduce the following additional
terms. Define

�3 :=
mX

i=1

nQ
�
((i)n + g(i)n )6�(G(i)

n )3
�

(%(i)n )3
, (3.22)
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�4 :=

✓
m

mX

i=1

nQ
�
((i)n + g(i)n )6�(G(i)

n )4
�

(%(i)n )4

◆ 1
2

+

✓ mX

i,j=1

nQ
�
f (i,j,i,i)
2,2,0,3�

�

(%(i)n %(j)n )2

◆ 1
2

, (3.23)

�5 :=
p
m

✓ mX

i,j,l,t=1

mX

s=1

nQ
�
f (i,j,l,t)
1,1,1/2,�

�2

%(s)n (%(i)n %(j)n )2

◆ 1
3

, (3.24)

�6 := m3/4

✓ mX

i,j,l,t=1

mX

s=1

nQ
⇣
f (i,j,l,t)
1,1,1,�

⌘2

(%(s)n %(i)n %(j)n )2

◆ 1
4

. (3.25)

Theorem 3.3 (Multivariate Normal Approximation in dcvx-distance). For i 2 [m], suppose the
functional F (i)

n 2 dom D assumes the form (3.9) with the score function ⇠(i)n satisfying Assumptions
(R1)-(R4), (T) and (M) with p0 = 6. Let ⇣ := p/(84 + 14p) in (3.15) and � := p/(72 + 6p) in
(3.19), (3.20) and (3.22)-(3.25). Then, for any positive definite matrix ⌃ := (�ij)mi,j=1 2 Rm⇥m, we
have

dcvx
�
P�1
n F̄n,N⌃

�
 ccvx m

5
⇣
k⌃�1/2kop _ k⌃�1/2k3op

⌘
· (�0 _ �1 _ �3 _ . . . _ �6) ,

for all n � 1, where the constant ccvx depends only on p and m.

Remark 3.13. Theorems 3.2 and 3.3 admittedly involve several complicated quantities which may
seem hard to interpret. The backbone of these results is a multivariate second-order Poincaré in-
equality (see Theorem 5.2) proved by Schulte and Yukich (2019, Theorems 1.1 and 1.2). Just as the
classical Poincaré inequality provides concentration bounds for Poisson functionals in terms of their
first order difference (Wu, 2000), a second order Poincaré inequality provides a central limit theorem
with non-asymptotic bounds on various distances between a Poisson functional and a Gaussian ran-
dom variable/vector in terms of certain moments of the first and second order differences. In many
examples, one needs to make some additional assumptions on the functionals to be able to optimally
bound these moments. One such simplification is the assumption of stabilization, or as in our case,
region-stabilization. All the quantities in our bounds, except �0, are essentially upper bounds on
these quantities involving various moments of the differences, under the additional assumption of
region-stabilization. On the other hand, the term �0 simply measures the error in approximation
incurred due to replacing the sample covariance matrix by ⌃.

We would like to highlight when the region of stabilization R(i)
n is taken to be a ball with its

radius having an exponentially decaying tail, and the bound M (i)
n (x) in our moment condition (M)

is constant independent of x, Theorem 3.3 simplifies to the following bound proved by Schulte and
Yukich (2023b):

dcvx

⇣
n�1/2

F̄n,N⌃
⌘
 ccvxn

�1/d, (3.26)

where ⌃ is taken to be the limiting covariance matrix. The relative complexity of our bounds
compared to a result such as in (3.26) is mainly because of the fact that our setting and assumptions
are more general. Specifically, compared to the work by Schulte and Yukich (2023b) including: (a)
we assume general regions of stabilization instead of a ball, which is essential in our main applications
Theorem 3.1 and Corollary 3.1; (b) in our moment condition, a non-uniform bound is assumed, which
is often necessary to obtain optimal rates. It should be noted that in many statistical problems,
a ball as region of stabilization and the uniformly bounded moments suffice to obtain presumably
optimal rates of convergence, see Lachièze-Rey et al. (2019); Shi et al. (2023+); Schulte and Yukich
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(2023b) for several such statistical applications. Despite their seemingly complicated forms, our
Theorems 3.2 and 3.3 are often required to obtain optimal rates, or even to prove Gaussian limits
in some case, with the random forest results being a concrete example.

4 Discussion

Quantitative normal approximation bounds are important to obtain finite-sample, non-asymptotic
inferential guarantees for various statistical problems. A central problem in normal approximation
theory is to go beyond independence to non-independent assumptions. Motivated by the classical
Berry-Esseen theorem, which is applicable mainly to a sum of independent score functions Fn(Xn) =Pn

i=1 fn(Xi) based on i.i.d. data Xn = {X1, . . . , Xn}, one question of interest in this thesis is to
allow non-independent structures among scores functions, i.e., Fn(Xn) =

Pn
i=1 fn(Xi;Xn). By this

extension, many geometric and topological statistics including those related to k-nearest neighbor
graphs, the minimal spanning trees and the Euler characteristics could be handled. Furthermore,
there are also statistics that are not (or hard to be) expressed into sums of score functions. Hence,
extending Berry-Esseen bounds to a general class of statistics is of great importance.

Towards this goal, a flexible concept of stabilization was introduced here. Our proposed con-
cept, generalizes related notions of stabilization proposed in Lachièze-Rey et al. (2019) and refer-
ences therein. It consists of many variants: weak stabilization, score-based stabilization and strong
stabilization. While they all focus on many statistics of interest having mostly local dependence,
among them, only strong stabilization can quantify the local dependence of the statistics Fn while
not necessarily assuming Fn to be expressed as sum of score functions. Based on this and Stein’s
method, we then derive presumably optimal rates of normal approximation for strong stabilizing
statistics in terms of recovering the Berry-Esseen bounds. This improves the recent sub-optimal
rates in Lachièze-Rey et al. (2022).

Concretely, we provided Gaussian approximation bounds for a class of statistics that satisfy cer-
tain stabilization properties. Examples of such statistics include k-nearest neighbor based Entropy
estimators, Euler characteristics, minimal spanning trees and Random forests. The proof technique
is based on our observation that such statistics could be expressed as functions which subsequently
satisfy a certain stabilization property. Based on this observation, the Gaussian approximation
bounds are derived by using Malliavin-Stein’s method. Additionally, our bounds are also applied
to many other statistics of certain geometric local properties, for instance, average treatment effect
(ATE) estimators, wavelet estimators, etc.

Furthermore, as a very important example which falls in our stabilization framework, random
forest is an extremely successful general-purpose prediction method. Despite their widespread usage,
theoretical understanding of their statistical properties has been rather slow. Among many variants
of random forest, the most theoretically well-studied version of random forest is the non-bagging
and non-adaptive random forest. We refer to Biau and Devroye (2010) for an exposition of this
kind. One of the key questions that has remained open regarding non-bagging and non-adaptive
random forest is its (multivariate) normal approximation, with applications to statistical inference.

Motivated by the link of random forest with k-potential nearest neighbors in Lin and Jeon
(2006), which is an adaptive version of classical k-nearest neighbors, in this thesis, we discover that
random forest falls in the category of the region-based stabilization. Region-based stabilization
allows general regions to capture the aforementioned local dependence instead of only ball-shaped
regions. Based on this and Stein’s method, we derived rates of multivariate normal approximation
of random forest while allowing k to grow with n, which is the first in the literature. Further-
more, a smoothed Bootstrap procedure has been discussed for possible statistical inferences such as
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confidence intervals.
Specially, for random forest application, we conclude our thesis with the following potential fu-

ture direction. First note that combining our multivariate result with standard tightness arguments
will entail that trained non-adaptive and non-bagging random forests are Gaussian processes (with
a particular covariance function) in the limit. As discussed by Athey et al. (2019), honesty-type
conditions (which essentially make random forest to be non-adaptive for all statistical analysis pur-
pose) appear to be necessary to have Gaussian limits. It is interesting to explore limit theorems and
distributional approximation bounds (both at multivariate and process level) for adaptive random
forests, so as to reveal the advantages of adaptivity, when considering true regression functions to
be coming from a more general function class, and also make further advances towards develop-
ing rigorous non-asymptotically valid statistical inference for random forest predictions. Finally,
bootstrap procedures such as smoothed bootstrap can be considered for constructing practically
confidence intervals.

Finally, we want to highlight that the approach of using region-based stabilization theory and
Stein’s method to establish Gaussian approximation results, as stated in Theorems 3.2 and 3.3, is
much more widely applicable for other non-parametric regression problems such as Nadaraya-Watson
and wavelets-type in which case, one would need to work with appropriate regions (depending on
the procedure) and then apply our general results in Theorems 3.2 and 3.3. This reveals a very
important tool to handle the dedicated dependence structure in modern statistics: Controlling
dependence within a small region and moment conditions lead to rates of normal approximation.

5 Proof

5.1 Proof of Section 2

Proof of Theorem 2.1. The idea is to use the above theorem, and to bound the first and second
order cost functions appearing in the quantities �i, i = 1, . . . , 6 by using our flexible approach. To
this end, we rewrite the first and second order cost functions as:

DxF = (DxF �DxF (Ax)) +DxF (Ax),

and

Dx1,x3F = (Dx3F
x1 �Dx3F

x1(Ax3)) + (Dx3F
x1(Ax3)�Dx3F (Ax3)) + (Dx3F (Ax3)�Dx3F ).

We start with �3. By the fact that (a+ b)3  4(a3 + b3) for any a � 0, b � 0, we have

(VarF )
3
2 �3 =

Z
E|(DxF �DxF (Ax)) +DxF (Ax)|3�(dx)


Z

4E|DxF �DxF (Ax)|3�(dx) +
Z

4E|DxF (Ax)|3�(dx).

By Hölder’s inequality and the assumptions in Theorem 2.1, we then have

E|DxF (Ax)|3  (E|DxF (Ax)|4)
3
4 11�

3
4  b2(x,Ax)

3
4 . (5.1)

Similarly,

E|DxF �DxF (Ax)|3  b1(x,Ax)
3
4 .
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Therefore,

(VarF )
3
2 �3  C

Z 2X

j=1

bj(x,Ax)
3
4�(dx) =: C(VarF )

3
2 �03.

Next, we turn to �4. According to Last et al. (2016, Lemma 4.3), we have

E(F � EF )4  max

(
256

✓Z
(E(DxF )4)

1
2�(dx)

◆2

, 4

Z
E(DxF )4�(dx) + 2(VarF )2

)
.

Consequently,

�4 
R
(E(DxF )4)

3
4 �(dx)

2(VarF )2

⇣
4
�R

(E(DxF )4
� 1

2 �(dx))
1
2 +

p
2
�R

E(DxF
�4
�(dx))

1
4 + 2

1
4 (VarF )

1
2

⌘
.

By calculations similar to �3, we have
Z

(E(DxF )4)
1
2�(dx)  C

Z 2X

j=1

bj(x,Ax)
1
2�(dx).

Similarly,
Z

(E(DxF )4)
3
4�(dx)  C

Z 2X

j=1

bj(x,Ax)
3
4�(dx),

Z
E(DxFs)

4�(dx)  C

Z 2X

j=1

bj(x,Ax)�(dx).

Combining all above, we have

�4 
C
R P2

j=1 bj(x,Ax)
3
4�(dx)
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1
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◆ 1
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✓Z 2X
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◆ 1
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+ (VarF )
1
2

◆
=: C�04.

Furthermore, by similar arguments on bounding �3, it leads to

�5 
C

VarF

0

@
Z 2X

j=1

bj(x,Ax)�(dx)

1

A

1
2

=: C�05.

We next move on to bounding the remaining part: �1, �2 and �6, that involve the second
order cost functions. Before we proceed, for notational convenience, we would like to define for all
x1, x2 2 X and Ax1 2 F ,

b5(x1, x2, Ax1) := b1(x1, Ax1).

Although it is true that b5 actually doesn’t depend on x2, this slight abuse of notation allows us to
write

E(Dx1,x2F )4  C
4X

j=3

bj(x1, x2, Ax1) + b1(x1, Ax1)

34



= C
5X

j=3

bj(x1, x2, Ax1), (5.2)

as a compact form, similar to the first order cost function.
Using Cauchy-Schwarz inequality, we have

(E(Dx1F )2(Dx2F )2)
1
2  E(Dx1F )4)

1
4E(Dx2F )4)

1
4 , (5.3)

(E(Dx1,x3F )2(Dx2,x3F )2)
1
2  E(Dx1,x3F )4)

1
4E(Dx2,x3F )4)

1
4 . (5.4)

With all results above, according to (5.1) to (5.4), we give an upper bound for �1 in a similar way
by Hölder’s inequality:
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Similarly, we have
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Combining the obtained bounds above for �i, 1  i  6, we complete the proof.

5.1.1 Proof of Corollary 2.1

Without loss of generality, we assume c1 = k1 := C1, c2 = k2 := C2 and c3 = k3 := C3. In Theorem
2.1, we set Ax = X and � = sQ. Then, we can set

b1(x,Ax) = 0,

b3(x1, x2, Ax1) = 0,

b5(x1, x2, Ax1) = 0.

Recall that as mentioned in Section ??, for notational convenience, we would like to define for all
x1, x2 2 X and Ax1 2 F ,

b5(x1, x2, Ax1) := b1(x1, Ax1).

According to Assumption 2.3, by Hölder’s inequality, we have:

b2(x,X) := E|DxFs|4  E|DxFs|pP(DxFs 6= 0)1�
4
p  CP(DxFs 6= 0)1�

4
p ,
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and

b4(x1, x2,X) := E|Dx1F
x2
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With all bi, 1  i  5, given above, we will bound all �0i, 1  i  6 in Theorem 2.1. We again start
with �03:
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Similarly, as for �03, it holds that
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For �04, we have
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From the above calculations, we see that the exponent (p� 4)/2p is set so that indeed �s provides
an upper bound for all the terms appearing in the right hand of (5.6). Hence, we have
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For terms that include bj , 3  j  5, we have
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Therefore, combining all bounds for �0i, 1  i  6, we have by Theorem 2.1,
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We next proceed to obtain refined bounds for �s and  s(x1, x2). Before proceeding, we recall
the following definitions from (2.4):

Is(x) := P(DxFs 6= 0),

Js(x1, x2) := P
�
|Dx1,x2Fs| 6= 0

�
.

Lemma 5.1. Assume that all conditions in Corollary 2.1 hold, and recall that Rx denotes the radius
of stabilization. Then,

�s  Cs

Z

X
e
�C2

p�4
2p ds(x,K)C3Q(dx),

and

 s(x1, x2)  Ce�C2
p�4
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.

Proof of Lemma 5.1. Based on the Assumptions 2.1 and 2.2, we immediately obtain

Is(x)  C1e
�C2ds(x,K)C3 ,

Js(x1, x2)  C1e
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Recall the definition of �s in (5.5). Applying the above bound for Is(x), we have
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X
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Similarly, applying the bound for Js(x1, x2), we obtain the stated upper bound for  s(x1, x2).
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Lemma 5.2. Suppose the condition (2.2) holds. Then, for any x 2 X and r � 0, we have

Q(Bx(r))  r!.

Proof of Lemma 5.2. For any x 2 X fixed, consider Q(r) := Q(Bx(r)), r � 0 as an increasing
function of r. According to Lebesgue’s theorem for the differentiability of monotone functions, the
derivative Q0(r) exists almost everywhere and then with the condition (2.2),

Q(Bx(r))�Q(Bx(0)) 
Z r

0
Q0(u)du 

Z r

0
!u!�1du = r!.

Note that Q(Bx(0)) = 0. Therefore, we obtain the desired result.

Lemma 5.3. Suppose the condition (2.2) holds. For any x 2 X, r � 0 and ↵ > 0, there exists a
constant C > 0 such that
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is bounded on ⇥ := {(s, r) : s � 1, r � 0}. Since ⇣(s, r) is a continuous function, then we only need
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Then,
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Consequently, noting
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we have
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giving us the desired result.

Lemma 5.4. For any s � 1, r � 0 and � > 0, there exists a constant C > 0 such that
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Proof of Lemma 5.4. Let
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It suffices to prove
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Similar to ⇣(s, r) in Lemma 5.3, we only need to show
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where ⇥ := {(s, r) : s � 1, r � 0}. We note that the above claim follows by calculations similar to
that in the proof of Lemma 5.3 and the fact that ��/2 < 0, thus providing the desired result.

Before proceeding, we recall the definition of ⇥K,s from (2.5) for convenience:

⇥K,s := s
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X
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Note that by Lemma 5.1, we also have that �s  C⇥K,s, for a constant C > 0.

Lemma 5.5. Suppose the conditions in Corollary 2.1 hold. Then, there exists a constant C > 0
such that

s2
Z

X2
 s(x1, x2)

2Q2(d(x1, x2))  C⇥K,s.

Proof of Lemma 5.5. Without loss of generality, we assume ds(x1,K) � ds(x2,K). Similar reasoning
can be used for the other case. According to Lemma 5.1,

 s(x1, x2)  Ce�C2
p�4
4p max{ds(x1,x2),ds(x1,K)}C3

.

Let
Lx2,s := s

Z

X
 s(x1, x2)

2Q(dx1).
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It suffices to show there exists a constant C > 0 such that

Lx2,s  Ce
�C2

p�4
2p

⇣
ds(x2,K)

2

⌘C3

.

Let r := 1
2d(x2,K) and note the fact that max{x, y} � x,max{x, y} � y for any x, y, then

Lx2,s  Cs

Z

X
e�C2

p�4
2p max{ds(x1,x2),ds(x1,K)}C3Q(dx1)

 Cs

Z

Bx2 (r)
e�C2

p�4
2p ds(x1,K)C3Q(dx1) + Cs

Z

X\Bx2 (r)
e�C2

p�4
2p ds(x1,x2)C3Q(dx1)

:= CL1 + CL2.

By the triangle inequality, 2r  d(x2,K)  d(x1, x2)+d(x1,K), then when d(x2, x1)  r, d(x1,K) �
r. Therefore, according to Lemma 5.2 and lemma 5.4, there exists a constant C > 0 such that

L1  s

Z

Bx2 (r)
e�C2

p�4
2p (s1/!r)C3Q(dx1)  sr!e�C2

p�4
4p (s1/!r)C3  Ce�C2

p�4
4p (s1/!r)C3

.

According to Lemma 5.3, there exists a constant C > 0 such that

L2  s · C
s
e�C2

p�4
4p (s1/!r)C3

= Ce�C2
p�4
4p (s1/!r)C3

.

Then,

Lx2,s  Ce�C2
p�4
4p (s1/!r)C3

= Ce
�C2

p�4
4p

⇣
ds(x2,K)

2

⌘C3

,

giving us the desired result.

Lemma 5.6. Suppose the conditions in Corollary 2.1 hold. Then, there exists a constant C > 0
such that

s3
Z

X

✓Z

X
 s(x1, x2)Q(dx2)

◆2

Q(dx1)  C⇥K,s.

Proof of Lemma 5.6. We can prove this lemma in a similar way as Lemma 5.5. Let

L0

x1,s := s

Z

X
 s(x1, x2)Q(dx2).

Similar to Lx2,s, one can show there exists a constant C > 0 such that

L0

x1,s  Ce
�C2

p�4
8p

⇣
ds(x1,K)

2

⌘C3

.

Therefore,

s3
Z

X

✓Z

X
 s(x1, x2)Q(dx2)

◆2

Q(dx1) = s

Z

X

✓
s

Z

X
 s(x1, x2)Q(dx2)

◆2

Q(dx1)

 Cs

Z

X
e
�C2

p�4
4p

⇣
ds(x1,K)

2

⌘C3

Q(dx1)

 C⇥K,s.
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With the above ingredients in place, we are finally in a position to prove Corollary 2.1.

Proof of Corollary 2.1. Recall the definition of ✓1, ✓2 and ✓3 respectively in (5.8), (5.9) and (5.10).
According to Lemma 5.1, Lemma 5.5 and Lemma 5.6, there exists a constant C > 0 such that

✓1  C
(⇥K,s)

1
2

VarFs
, ✓2  C

(⇥K,s)
1
2

VarFs
, �s  C⇥K,s.

Therefore, according to (5.7), we complete the proof.

5.1.2 Proof of Theorem 2.2

The proof of the Poisson case applies mutatis mutandis to the binomial case. We now highlight the
main changes. First, recall that we do not have a similar result like Theorem 2.1 for Poisson case due
to the fact that there is no nice counterpart of the second order Poincaré inequality (see Last et al.
(2016)). Hence, Theorem 2.2 cannot follow from Theorem 2.1. Instead, we use (Lachièze-Rey et al.,
2019, Theorem 4.2) that provides an auxiliary result for the binomial case. While Lachièze-Rey
et al. (2019) provided a general result for marked binomial point process, we state the following
result for the unmarked binomial point process.

Theorem 5.1 (Lachièze-Rey et al., 2019). Let n � 3 and let F be a functional of a binomial point
process ⌘n with EF (⇠n)2 < 1. Assume that there are constants c, ⇢ 2 (0,1) such that

E|DxF (⇠n�1�|A| [ A)|4+⇢  c, Q� a.e., x 2 X,A ⇢ X, |A|  2.

Then, there is a constant C := C(c, ⇢) 2 (0,1) such that

dK

✓
F � EFp
VarF

,N

◆
 C(S0

1 + S0

2 + S0

3),

with

�n
0 := n

Z

X
P(DxF (⇠n�1) 6= 0)

⇢
8+2⇢Q(dx),

 0

n(x, x
0) := sup

A⇢X:|A|1
P(Dx,x0F (⇠n�2�|A|) 6= 0)

⇢
8+2⇢ ,

S0

1 :=
n

VarF

sZ

X2
 0
n(x, x

0)Q2(d(x, x0)),

S0

2 :=
n

3
2

VarF

sZ

X

✓Z

X
 0
n(x, x

0)Q(dx0)

◆2

Q(dx),

S0

3 :=
(�0n)

1
2

VarF
+

�0n

(VarF )
3
2

+
�0n + (�0n)

3
2

(VarF )2
. (5.11)

Remark 5.1. The exponent of �0n in the third component of the sum on the right hand side of
(5.11) is different than that of Poisson case, due to the fact that it is not derived by the counterpart
of the second order Poincaré inequality. In fact, it is obtained by Lachièze-Rey et al. (2019, Theorem
4.3).

Now, based on Theorem 5.1, we start to prove Theorem 2.2.
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Proof of Theorem 2.2. The proof of the binomial point process is similar to that of the Poisson case,
based on Theorem 5.1 for binomial case. We treat Theorem 5.1 for binomial as a counterpart of
(5.7) for Poisson noting Dx,x0Fn = DxF x0

n � DxFn. Starting with this, one can follow the same
procedure to get the required counterparts of Lemma 5.1 to Lemma 5.6 by changing s as n. This
provides the desired result.

5.1.3 Total edge length of k-NN

Proof of Theorem 2.3. We begin with the Poisson point process case and consider the statistic
F k-NN
s (Ps) :=

P
x2Ps

fs(x,Ps), with fs as defined in (2.1).

Step 1: From Example 2.2, F k-NN
s (Ps) is a strongly stabilizing functional with the radius of

stabilization Rx = 4R, with R being defined as follows: for each t > 0, construct six disjoint
equilateral triangles Tj(t), 1  j  6, such that the origin is a vertex of each triangle, such that
each triangle has edge length t and such that Tj(t) ⇢ Tj(u) whenever t < u. Then, define R to be
the minimum t such that each triangle Tj(t) contains at least k + 1 points from Ps. Consequently,
we have

P(R > r)  P
�
Ps

�
[6
j=1Tj(r)

�
 6k)

�
 P

⇣
Ps

⇣
Bx

⇣
r
p
3/2

⌘⌘
 6k

⌘
,

where Ps
�
Bx

�
r
p
3/2

��
follows Poisson distribution with parameter sQ

�
Bx

�
r
p
3/2

��
. According

to the assumption (2.14) and a Chernoff bound for Poisson tail, (Penrose, 2003, Lemma 1.2), we
have that there exits a constant c0 > 0 such that

P(R > r)  P
 
Ps

 
Bx

 
r
p
3

2

!!
 6k

!

 P
 

Poi

 
cs

 
r
p
3

2

!!!
 6k

!

 6ke�c0sr! .

This implies the radius of stabilization Rx = 4R decays exponentially. Furthermore, we set K = X
for the K�exponential bound.

Step 2: As for the bounded moment condition, according to Lachièze-Rey et al. (2019, Lemma
5.5), for some p > 4, the bounded moment condition holds.

Step 3: As for the variance condition, by the assumption (2.15), it is satisfied.
Therefore, according to Corollary 2.2, we end the proof for the Poisson case. The proof for

the binomial case is similar to the Poisson case by considering a Chernoff bound for the binomial
distribution as in Penrose (2003, Lemma 1.1) and Lachièze-Rey et al. (2019, Lemma 5.6).

5.1.4 Shannon entropy estimation

Proof of Theorem 2.4. We start by replacing the biased center EF SE
n (⇠n) by the true parameter

H(q). By triangle inequality, we have that

dK

 
F SE
n (⇠n)�H(q)p
VarF SE

n (⇠n)
, N

!
 dK

 
F SE
n (⇠n)� EF SE

n (⇠n)p
VarF SE

n (⇠n)
, N

!

| {z }
=:d1
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+ dK

 
F SE
n (⇠n)�H(q)p
VarF SE

n (⇠n)
,
F SE
n (⇠n)� EF SE

n (⇠n)p
VarF SE

n (⇠n)

!

| {z }
=:d2

.

We first apply Corollary 2.3 to bound d1, using the three step approach.
Step 1: Similar to the total edge length of k-NN, following the proof of Penrose and Yukich

(2001, Lemma 6.1), F SE
n (⇠n) is strongly stabilizing with the radius of stabilization Rx decaying

exponentially and we take K = X.
Step 2: As for the moment condition, again, by Lachièze-Rey et al. (2019, Lemma 5.6), the

bounded moment condition holds for p > 4.
Step 3: For the variance, note that for d1, we have

F SE
n (⇠n)� EF SE

n (⇠n)p
VarF SE

n (⇠n)

d
=

nF SE
n (⇠n)� E

�
nF SE

n (⇠n)
�

p
Var (nF SE

n (⇠n))
,

where d
= means equal in distribution. Therefore, we can consider the variance condition for the

nF SE
n (⇠n) instead. According to Berrett et al. (2019, Lemma 7), there exits a constant C > 0 such

that for k⇤0  k  k⇤1,
sup
n>0

n

Var (nF SE
n (⇠n))

 C. (5.12)

By Corollary 2.3, we immediately have that d1  C 0

0(k, p)/
p
n. Since k also diverges as n goes

to 1, it is necessary to calculate the constant C 0

0(k, p) more explicitly. Therefore, we derive the
following lemma, which is a refined version of Theorem 5.1 as it reveals how the constant C 0

0(k, p)
is related to the constant p and the functional F, and thus k.

Lemma 5.7. Assume there are constants c > 0, p0 > 0 such that

E|DxF (⇠n�1�|A| [ A)|4+p0  c, |A|  2.

Then, there exists some constant C not depending on n nor F such that

dK

✓
F � EFp
VarF

,N

◆
 C(S1 + S2 + S3 + S4 + S5),

where

S1 := c
2

4+p0
n

VarF

sZ

X2
 n(x, x0)Q2(d(x, x0)),

S2 := c
2

4+p0
n

3
2

VarF

sZ

X

✓Z

X
 n(x, x0)Q(dx0)

◆2

Q(dx),

S3 := c
2

4+p0

p
�n

VarF
,

S4 :=

✓p
3max

8
<

:4
p
2c

1
4+p0

�
1
2
n

(VarF )
1
2

,
p
2c

1
4+p0

�
1
4
n

(VarF )
1
2

+ 1

9
=

;

+ c
1

4+p0
�

1
4
n

n
1
4 (VarF )

1
2

◆
c

3
4+p0

�n

(VarF )
3
2

+ c
4

4+p0
�n

(VarF )2
,
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S5 := c
3

4+p0
�n

(VarF )
3
2

.

Here,

�n := n

Z

X

P(DxF (⇠n�1) 6= 0)
p

8+2p0 Q(dx),

 n(x, x
0) := sup

A⇢X:|A|1
P(Dx,x0F (⇠n�2�|A| [ A) 6= 0)

4
8+2p0 .

The proof of Lemma 5.7 follows in a straightforward manner by Lachièze-Rey et al. (2019, Proof
of Theorem 4.2). Now, we proceed to calculate moment bounds to see how k is related to the
constant C 0

0. Let

⇣i :=
kX

j=1

wj log

 
(n� 1)Vd⇢dj,i

e (j)

!
.

Following Lachièze-Rey et al. (2019, Lemma 5.6), by Jensen’s inequality, for p = 4 + p0, p0 > 0,

E|DyF
SE
n (⇠n�1�|A| [ A)|4+p0

= E

������
⇣k(y, ⇠n�1�|A| [ {y} [ A) +

X

x2⇠n�1�|A|[A
Dy⇣k(x, ⇠n�1�|A|)

������

4+p0

 43+p0E|⇣k(y, ⇠n�1�|A| [ {y} [ A)|4+p0 + 43+p0
X

x2A
E|Dy⇣k(x, ⇠n�1�|A|)|4+p0

+ 43+p0
X

x2⇠n�1�|A|

E|Dy⇣k(x, ⇠n�1�|A|)|4+p0 .

Then, following Lachièze-Rey et al. (2019, Proof of Lemma 5.6), the constant c in Lemma 5.7
satisfies

c . 43+p0ca + 43+p0cb + 45+
3
2p0c

4+p0
4+2p0
b k

4
4+2p0 ,

where A . B means there is a constant C > 0 such that A  CB. Note that according to the
definition of weights (2.17), there only exist finitely many terms in the sum of ⇣i and according to
Singh and Póczos (2016, Section 3.2),

ca := E|⇣k(y, ⇠n�1�|A| [ {y} [ A)|4+p0 . kwk4+p0
1 E

�����log
 
(n� 1)Vd⇢dk,i

e (k)

!�����

4+p0

< 1,

and similarly,

cb : = E|Dy⇣k(x, ⇠n�1�|A|)|4+p0 < 1.

Then,
c . k

p0
4+2p0 ,

and by Lachièze-Rey et al. (2019, Theorem 4.3) and Lachièze-Rey and Peccati (2017, Theorem 5.1),
the constant C in Lemma 5.7 does not depend on either n or k.
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Therefore, according to Corollary 2.3 and Lemma 5.7,

d1 .
1p
n
⇥ c

4
4+p0 . 1p

n
k

4p0
(4+p0)(4+2p0) . (5.13)

Next, we focus on d2, which is related to the bias, EF SE
n (⇠n)�H(q). Let

hw :=
F SE
n (⇠n)� EF SE

n (⇠n)p
VarF SE

n (⇠n)
and �h :=

H(q)� EF SE
n (⇠n)p

VarF SE
n (⇠n)

.

Then we have

d2 : = dK

 
F SE
n (⇠n)�H(q)p
VarF SE

n (⇠n)
,
F SE
n (⇠n)� EF SE

n (⇠n)p
VarF SE
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�����P
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VarF SE
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VarF SE
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= sup
t2R

|P(hw  t+�h)� P(hw  t)|

 2d1 + sup
t2R

|�(t+�h)� �(t)|

= 2d1 + 2

✓
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✓����
�h

2

����

◆
� 1

2

◆

 2d1 + 1� e
�

1
2 (�h)2�

q
2
⇡ |�h|

. d1 + |�h|,

where � is the c.d.f. of the standard normal distribution and actually, we applied a tight bound for
standard normal distribution function according to Mastin and Jaillet (2013). Therefore,

dK

 
F SE
n (⇠n)�H(q)p
VarF SE

n (⇠n)
, N

!
. max{d1, |�h|}.

The bias of F SE
n (⇠n) satisfies the following bound according to Berrett et al. (2019, Corollary 4):

for every ✏ > 0,

sup
f2Fd,✓

|Ef Ĥ
w
n �H(f)| = O

0

@max

8
<

:

✓
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n

◆ ↵
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✓
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◆ 2(b d
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✓
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n

◆�
d

9
=

;

1

A . (5.14)

Note that ↵ > d and � > d
2 . With (5.12) and (5.14) , by elementary algebraic manipulation we

have that

|�h| . max

8
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✓
k
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,

✓
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◆ 2(b d
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1
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,

✓
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◆�
d�

1
2

9
=

; . (5.15)

Comparing (5.13) and (5.15), we obtain the desired result.
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5.1.5 Euler characteristic

Proof of Theorem 2.5. We follow the 3-step procedure.
Step 1: According to Example 2.1, the Euler characteristic is strongly stabilizing with the radius

of stabilization Rx = 2r. Clearly, as a constant, Rx can be bounded exponentially as one can choose
c1 large enough and c2, c3 > 0 such that for 0  t  2r,

1  c1e
�c2(n1/dt)c3 .

The similar argument also holds for Poisson case. Also, we take K = [0, 1]d.
Step 2: Moreover, for the bounded moment condition, note that for p > 4, there exists a constant

C(d, T ) > 0 such that

sup
n>0,x2[0,1]d

E|DxF
EC
n (⇠n)|p E

����
nX
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#{� 2 Kr

⇣
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1
d (⇠n [ {x})

⌘
: (5.16)
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����
p



������
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xj1 2 Bx

⇣
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1
d r
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������

p



�����

nX
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✓
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`
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�����

p



�����

nX

`=0

(C(d, T )kqk1rd)`

`!

�����

p

(eC(d,T )kqk1rd)p < 1.

Also, by Yogeshwaran et al. (2017, Lemma 4.1) and Krebs et al. (2021, Proof of Lemma 4.2),

sup
n>0,x2[0,1]d

E|FEC
n (Pn)|p < 1.

Moreover, consider

DxF
EC
n (⇠n)

x⇤
= �

⇣
Kr

⇣
n

1
d (⇠n [ {x} [ {x⇤})

⌘⌘
� �

⇣
Kr

⇣
n

1
d ⇠n

⌘⌘

+ �
⇣
Kr

⇣
n

1
d ⇠n

⌘⌘
� �

⇣
Kr

⇣
n

1
d (⇠n [ {x⇤})

⌘⌘
,

and following a similar argument like (5.16), we have

sup
n>0,x2[0,1]d,x⇤2[0,1]d

E|DxF
EC
n (⇠n)

x⇤ |p < 1.

The bounded moment condition is satisfied and similar arguments can be utilized to show for Poisson
case.

Step 3: According to Penrose and Yukich (2001, Theorem 2.1) and Krebs et al. (2021, Proposition
4.6), there exists a constant C > 0 such that

sup
n>0

n

VarFEC
n (⇠n)

 C,

and it also holds for Poisson case.
Therefore, according to Corollary 2.2 and Corollary 2.3, we complete the proof.
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5.1.6 Edge length statistic of the minimum spanning tree

Proof of Theorem 2.6. According to Penrose (2005, Theorem 3.3), the total edge length M(V ) of
the minimal spanning tree satisfies the strong stabilization with a radius of stabilization Rx almost
surely finite. Without knowing the tail probability of Rx, we need to use Theorem 2.1. Set

Ax1 = Bn \ {x1 + n↵B0},

where 0 < ↵ < 1 and {x + A} := {x + y : y 2 A} for any set A. According to Lachièze-Rey et al.
(2022, Proposition 3.7), for any q0 > 0 and x 2 Bn, there exists a constant Cq0 > 0 independent of
n, x such that uniformly

E|DxF
MST
Bn

(P(�))|q0  Cq0 . (5.17)

The same bound also holds for DxF
y,MST
Bn

As for the second order cost, according to Lachièze-Rey et al. (2022, Proposition 3.11)3, for
any q0 � 1, there exist constants E0 > 0, E1 > 0, E2 > 0 such that for any x1 2 Bn with
d(x1, @Bn) > n↵,

E|Dx1F
MST
Bn

(Ax1)�Dx1F
MST
Bn

(P(�))|q0 
(
E0n

�E1 , if d = 2,

E0(log n)
�E2 , if d � 3.

(5.18)

The same bound also holds for Dx1F
y,MST
Bn

. On the other hand, the variance bound is directly from
Lachièze-Rey et al. (2022, Propostion 3.9): there exists a constant c > 0,

VarFMST
Bn

(P(�)) � c|Bn| ⇣ nd.

Then, plugging these two bounds (5.17) and (5.18) in Theorem 2.1, we get that there exist
constants Cfirst > 0 and Csecond > 0 such that,

2X

j=1

bj(x1, Ax1)
1
4  Cfirst,

and for x3 2 Bn, d(x3, @Bn) > n↵ and d(x1, x3) � n↵,

4X

j=3

bj(x3, x1, Ax3)
1
4 + b1(x3, Ax3)

1
4 

(
2E0n

�E1 , if d = 2,

2E0(log n)
�E2 , if d � 3,

and for other (x1, x3) 2 Bn ⇥ Bn, the points near the boundary of Bn, similar to Lachièze-Rey
et al. (2022, proof of Proposition 3.11), we just apply uniform moment bounds for the flexible cost
functions and get

4X

j=3

bj(x3, x1, Ax3)
1
4 + b1(x3, Ax3)

1
4  Csecond.

Therefore, by the fact that

|{(x, y) 2 B2
n : Ax \Bn \Ay 6= ?}| ⇣ ndnd↵,

3
This proposition is provided for q0 = 1. However, a closer examination of the proof reveals that it can be extended

to any q0 � 1 in a straightforward manner.
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then we have,
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8
>>><

>>>:

n
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2

n
d
2
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n
d↵
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n
d
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Similarly, one can derive
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n
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Csecond + 2E0(log n)
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0

4, �
0

5 .
1

n
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2

,

and

�06 .
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>>><

>>>:

n
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2

n
d
2

Csecond + 2E0n
�E1 , if d = 2,

n
d↵
2

n
d
2

Csecond + 2E0(log n)
�E2 , if d � 3,

Therefore, we complete the proof by invoking Theorem 2.1.

5.2 Proof of Section 3

5.2.1 Proofs of results in Section 3.3

For multivariate normal approximation of Poisson functionals, the second order Poincaré inequalities
(see, e.g., Schulte and Yukich, 2019, Theorem 1.1 and 1.2) serve as a key tool. Even though the
result therein is stated for an unmarked Poisson process, we can obviously apply it to a marked
point process by simply considering the marked space as the underlying space. Since we consider
the marked Poisson process P(�̌) with independent marks distributed as QM and intensity measure
�̌ = �⌦QM = nQ⌦QM, where Q is a �-finite measure, we state in Theorem 5.2 below the marked
version of the results. According to Schulte and Yukich (2019, Theorem 1.1 and 1.2), and upon
using the Cauchy-Schwarz inequality, we have the following result; see the proof of Theorem 4.5
therein for more details.

Let H := (H(1), . . . , H(m)) be a vector of functionals of the Poisson process P(�̌) with E[H(i)] = 0
and H(i) 2 dom D for all i 2 [m]. Denote Dx̌H := (Dx̌H(1), . . . , Dx̌H(m)) and D2

x̌1,x̌2
H :=

(D2
x̌1,x̌2

H(1), . . . , D2
x̌1,x̌2

H(m)) for x̌, x̌1, x̌2 2 X̌ and define
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�2 :=
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We note here that by a slight abuse of notation for the sake of brevity, in the expressions of �i,
1  i  6 above as well as in integrals in the rest of this section, we write x̌1, x̌2 and x̌2 to mean
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(x1,mx1), (x2,mx2) and (x3,mx3) respectively, i.e., we integrate only over x1, x2 and x3, while
their marks are random, and are integrated as part of the various expectations in the integrands.

Theorem 5.2 (Schulte and Yukich (2019) Theorems 1.1 and 1.2, and 4.5). For H := (H(1), . . . , H(m))
a vector of functionals P(�̌) with E[H(i)] = 0 and H(i) 2 dom D for all i 2 [m], let �i, 1  i  6
be as above. Then, for a positive semi-definite matrix ⌃ := (�ij)mi,j=1 2 Rm ⇥ Rm, we have

d3 (H, N⌃) 
m

2

mX

i,j=1

|�ij � Cov(H(i), H(j))|+m�1 +
m

2
�2 +

m2

4
�3.

Additionally, if ⌃ is positive definite, we have

d2(H, N⌃)  k⌃�1kopk⌃k
1
2
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mX
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����ij � Cov(H(i), H(j))
���+ 2k⌃�1kopk⌃k

1
2
op�1

+ k⌃�1kopk⌃k
1
2
op�2 +

p
2⇡m2

8
k⌃�1k

3
2
opk⌃kop�3,
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dcvx(H, N⌃)  941m5
⇣
k⌃�1/2kop _ k⌃�1/2k3op

⌘

⇥
⇣ mX

i,j=1

����ij � Cov(H(i), H(j))
��� _ �1 _ . . . _ �6

⌘
,

where ⌃1/2 is the positive definite matrix such that ⌃1/2⌃1/2 = ⌃ and ⌃�1/2 := (⌃1/2)�1.

5.2.2 Proof of Theorem 3.2

The key idea of proving Theorem 3.2 is to bound the terms �i, 1  i  6, appearing in Theorem
5.2 by combining properties of region of stabilization, Assumptions (R1)-(R4), (T) and (M) with
p0 = 4. We start by noicing that by Hölder’s inequality, for q 2 (0, 4 + p/2) and y̌, y̌1, y̌2 2 X̌, we
have

E|Dy̌F
(i)
n |q  (E|Dy̌F

(i)
n |4+p/2)

q
4+p/2P(Dy̌F

(i)
n 6= 0)
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and

E|D2
y̌1,y̌2F

(i)
n |q  (E|D2

y̌1,y̌2F
(i)
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q
4+p/2P(D2

y̌1,y̌2F
(i)
n 6= 0)

4+p/2�q
4+p/2 . (5.20)

The following result, whose proof is immediate from definitions, reveals the connection between the
cost functions Dy̌F

(i)
n , D2

y̌1,y̌2F
(i)
n and the score function ⇠(i)n for i 2 [m] and n � 1.

Lemma 5.8. For y̌, y̌1, y̌2 2 X̌, i 2 [m] and n � 1,

Dy̌F
(i)
n (P(�̌)) = ⇠(i)n (y̌,P(�̌) + �y̌) +

X

ž2P(�̌)

Dy̌⇠
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n (ž,P(�̌)),
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n (P(�̌)) = Dy̌1⇠

(i)
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(i)
n (ž,P(�̌)).
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The next lemma implies the cost operator Dy̌ vanishes if y̌ is outside the region of stabilization.

Lemma 5.9. Let Assumptions (R1)-(R4) hold. For y̌, y̌1, y̌2 2 X̌, i 2 [m] and n � 1, we have that
if y̌ /2 R(i)

n (x̌,P(�̌) + �x̌),

Dy̌⇠
(i)
n (x̌,P(�̌) + �x̌) = 0,

and if {y̌1, y̌2} ( R(i)
n (x̌,P(�̌) + �x̌),

D2
y̌1,y̌2⇠

(i)
n (x̌,P(�̌) + �x̌) = 0.

Proof. According to Bhattacharjee and Molchanov (2022, Lemma 5.3), for the marked Poisson
process Pnǧ and all i 2 [m], the result follows.

Lemma 5.10. Let Assumptions (R1)-(R4) and (T) hold. For y, y1, y2 2 X, we have

P(Dy̌F
(i)
n 6= 0)  (i)n (y) + g(i)n (y),
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P(D2
y̌1,y̌2F

(i)
n 6= 0)  e�r

(i)
n (y2,y1) + e�r

(i)
n (y1,y2) + q(i)n (y1, y2).

Proof. According to the Mecke formula, (3.15), (3.18), Lemma 5.8 and Lemma 5.9, we have

P(Dy̌F
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1
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P(Dy̌⇠

(i)
n (ž,P(�̌) + �ž) 6= 0)Q̌(dž)

 (i)n (y) + g(i)n (y),

where the last inequality follows from the fact that 0 < ⇣ = p/(40 + 10p) < 1. Similarly, the Mecke
formula, (3.12), (3.14), Lemma 5.8 and Lemma 5.9 yield

P(Dy̌1,y̌2F
(i)
n (P(�̌)) 6= 0)

 P(Dy̌1⇠
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Lemma 5.11. Under Assumptions (R1)-(R4), (T) and (M) with p0 = 4, there exits a constant
Cp 2 (0,1) depending only on p such that for all i 2 [m], n � 1, y 2 X and ⌘ 2 N with ⌘(X̌)  1,
we have
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⇣
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Proof of Lemma 5.11. The proof of the first inequality is an extension of a result by Bhattacharjee
and Molchanov (2022, Lemma 5.5) to the marked Poisson process P(�̌), noting additionally that
the intensity measure nQ̌ = nQ ⌦ QM assumes a product form due to independent marks, and
hence the marks can be integrated using the Cauchy-Schwarz inequality. The second inequality is
stratghforward from Lemma 6.1.

Now, we are in a position to prove Theorem 3.2.

Proof of Theorem 3.2. According to Theorem 5.2, d2- and d3-distances only involve �1, �2 and �3.
We begin by bounding �1.

For i 2 [m], let H(i) := (%(i)n )�1F̄ (i)
n . By Hölder inequality, for i, j 2 [m],
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According to (5.19) and Lemma 5.11, we have
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By definition,
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Consequently, by Lemmas 6.1 and 5.11, we have
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Combining (5.23) and (5.25), and recalling (3.17), we obtain
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Using (5.25) again, we obtain
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As for �3, note that by letting q = 3 in (5.19), we have for i 2 [m],
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Arguing similarly as for (5.23), by Lemma 5.11 we have
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Combining (5.26), (5.27) and (5.28) and invoking Theorem 5.2, the result follows.

5.2.3 Proof of Theorem 3.3

Since dcvx is a distance with non-smooth test functions, it requires relatively stronger assumptions.
We now take p0 = 6 in (3.13). Again, we make use of Theorem 5.2 with H(i) := (%(i)n )�1F̄ (i)

n for
i 2 [m]. Note that the bound on dcvx involves three additional �i, i = 4, 5, 6 compared to the bound
on d2 and d3. We will need a slightly modified version of Lemma 5.11 as stated below in Lemma
5.12, whose proof follows from that of Lemma 5.11 by observing that 6 + p/2 = 4 + (2 + p/2).

Lemma 5.12. Under Assumptions (R1)-(R4), (T) and (M) with p0 = 6, there exits a constant
Cp depending only on p such that for all i 2 [m], n � 1, y 2 X and ⌘ 2 N with ⌘(X̌)  1, we have
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Proof of Theorem 3.3. We start by bounding �i, i = 1, 2, 3 in a similar way as in the proof of
Theorem 3.2. By considering similar (changing p0 = 4 to p0 = 6) Hölder inequalities as for (5.19),
(5.20), (5.21) and (5.22) in the proof of Theorem 3.2 and using Lemma 5.12, we have for i, j 2 [m],
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Combining all the bounds above and recalling (3.17), we obtain
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Next, we proceed to bounding the remaining terms �i, i = 4, 5, 6. First, we focus on �4.
Appplying Hölder’s inequality as before and using Lemma 5.12, we have
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Thus, by (5.29) and (5.30), we obtain
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Next, we turn to �5 and �6. By Lemmas 6.1 and 5.12, we have
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and
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Then, by the Hölder inequality (noting that p
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being for the factor one), we have
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Plugging in (5.31) and (5.32) and by Lemma 5.12, we have
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Also, we have by Lemma 5.12,
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Therefore, by writing �35 := �5.1 + �5.2 for the first term and the second term in �5, we have by
(5.33) and (5.34),
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where we have pulled the sum out of the integral, and used the fact that
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Consequently, according to (5.35) and (5.36), we have
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where we have pulled the sum (over the probabilities) out of the integral resulting in the extra factor
m by Lemma 6.1. Similar arguments also yield that
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Combining the bounds on �51 and �52, we obtain
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Similar to �5, one can derive
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where in the last step, we use the Lemma 6.1. Putting together all the bounds on �1 to �6 above
yields the desired conclusion.

5.2.4 Proofs of results in Section 3.2

Additional Notation: For a 2 R, b := (b(1), . . . , b(d)) 2 Rd and  : R ! R, we write ab :=
(ab(1), . . . , ab(d)), a + b := (a + b(1), . . . , a + b(d)) and  (b) := ( (b(1)), . . . , (b(d))). Let I be a
subset of [d] and denote by xI := (x(i))i2I the subvector indexed by the set I. We also write
Ic = [d]\I.

Given a target point x0 2 Rd, recall from (3.2) the random forest estimator at x0 associated to
k-PNNs for some k � 1, which is given by

rn,k,w(x0) =
X

(x,"x)2Pnǧ

Wnx(x0)1x2Ln,k(x0)yx,

Particularly, for the case (3.4) with uniform weights, we have,

rn,k(x0) =
X

(x,"x)2Pnǧ

1x2Ln,k(x0)

Ln,k(x0)
yx,

where yx := r(x, "x). As mentioned briefly in Section 3.3, rn,k,w(x0), rn,k(x0) can be viewed as
sums of score functions of the marked Poisson process Pnǧ with intensity measure nQ⌦ P", where
Q has an a.e. continuous density g on Rd. Given a target point x0 2 Rd, we can consider the score
function ⇠n associated to rn,k,w(x0) given by

⇠n(x̌, ⌘) = Wnx(x0, ⌘)1x2Ln,k(x0,⌘) yx, 0 6= ⌘ 2 N, x̌ 2 ⌘,

while in the special case of uniform weights in rn,k(x0), the score function becomes

⇠n(x̌, ⌘) =
1x2Ln,k(x0,⌘)

Ln,k(x0, ⌘)
yx, 0 6= ⌘ 2 N, x̌ 2 ⌘.

By the definition of k-PNNs, it is straightforward to see that the score functions above are region-
stabilizing in the sense of (3.11) with the region of stabilization given by

Rn(x̌, ⌘) :=

(
Rect(x0, x)⇥ R, if ⌘((Rect(x0, x)\{x})⇥ R) < k,

?, otherwise
(5.37)
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for ⌘ 2 N and x̌ 2 ⌘. Therefore, we aim to apply the theorems in Section 3.3. Throughout this
section, we shall omit �d in integrals and simply write dx instead of �d(dx). It is straightforward
to check that Assumptions (3.10) and (R1)-(R4) are satisfied for this score function and the region
(5.37). For ⌘ 2 N with ⌘(Rd ⇥ R)  9 (since p0 = 6 here), and x 2 Rd, recall that Px,⌘ :=
Pnǧ + �(x,"x) + ⌘. By independence, for any p > 0 we have
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Since Ln,k(x0,Px,⌘) � 1 for all x 6= x0, Assumption (M) is satisfied for x 6= x0 with p0 = 6 and
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which does not depend on x, and r⇤6+p(x) :=
�
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�1/(6+p). Also, from (5.37), we have
for x̌, y̌ 2 Rd ⇥ R,
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where for notational convenience, for n, k � 1 and x0, x 2 Rd, we define
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Noting that for any t > 0 and 0  j  k�1, e�ttj  j!, so that e�(1�(j+2)�1)t((1�(j+2)�1)t)j 
j!, we obtain
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Note that (1 � (j + 2)�1)�j  ej/(j+2)  e. Therefore, we can upper bound the probability in
Assumption (T) as

P(y̌ 2 Rn(x̌,Pnǧ + �x̌))  e
k�1X

j=0

e
�

1
j+2n

R
Rect(x,x0)

g(z)dz
=: e�rn(x,y), (5.42)

when y 2 Rect(x0, x), while we take rn(x, y) = 1 otherwise. Therefore, Assumption (T) is also
satisfied. It remains to estimate the quantities appearing in Theorems 3.2 and 3.3.

To this end, we first introduce a function that will play a key role in the estimation. For an a.e.
continuous function �(x) : Rd ! R+ with

R
Rd �(x)g(x)dx < 1, ↵, s > 0, d � 1 and x0 2 Rd, define

the function c↵,s,x0 : Rd ! R as

c↵,s,x0(y) := s

Z

Rd
1y2Rect(x0,x)e

�↵s
R
Rect(x,x0)

g(z)dz
�(x)g(x)dx, (5.43)

where we suppress the dependence on � for ease of notation. Observe that c↵,s,x0 has the following
scaling property: for all ↵, s > 0,

c↵,s,x0(y) = ↵�1c1,↵s,x0(y). (5.44)

Therefore, we will often take ↵ = 1 without loss of generality. While a similar function was also
studied by Bhattacharjee and Molchanov (2022, Section 3) in the context of minimal points, it is
important to emphasize here that we relax several assumptions made therein. For instance, we do
not require a uniform density g on a compact set [0, 1]d, and consider instead an a.e. continuous
density g on Rd. The way we deal with such a general density is to divide the integral over Rd into
one over a suitable compact hyperrectangle A which we choose to be a neighborhood of the point
x0, and another integral over its complement Ac. For the integral over A, we can apply similar
arguments as done by Bhattacharjee and Molchanov (2022, Section 3), since up to finitely many
rotations, translations and scalings, any hyperrectangle in Rd is “equivalent” to [0, 1]d. On Ac, we
bound the integral over the coordinates that are within the neighborhood and those outside the
neighborhood separately.

For ✏ > 0, we write the m-dimensional vector ✏ := (✏, . . . , ✏). Note that we can choose a set
A ✓ Rd with Q(A) = 1 such that for x0 2 A we have g(x0) > 0 and �(x), g(x) are continuous at
x0. For such an x0 and � 2 (0, 1/2 g(x0)), by continuity, there exists ✏ := ✏(x0, �) > 0 such that for
x 2 Rect(x0 � ✏, x0 � ✏),

|�(x)� �(x0)| < � and |g(x)� g(x0)| < �. (5.45)

Also recall that for x 2 Rd and j 2 [d], we denote x[j] := (x(1), . . . , x(j)). For j 2 {0} [ [d] let
C✏(x

j
0) := x

j
0 + [�✏, ✏]j , where j denotes a j-tuple with elements in {0} [ [d].

Lemma 5.13. Let x0 2 A be as above and � 2 (0, 1/2 g(x0)). Then there exists ✏ > 0 such that for
all ↵ > 0 and n, d, k � 1, we have
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where
P

j denotes the sum over all of j-tuples in [d], and for j 2 [d], Dj > 0 is a constant depending
only on j, while ⇤j ⌘ ⇤(j, ✏) > 0 is a constant depending on x0, j, ✏,� and g. In particular, we can
take ⇤d := (�(x0) + �)(g(x0) + �).

Proof. Fix x0 2 A, � 2 (0, 1/2 g(x0)). By arguments similar to Biau and Devroye (2010, Proof of
Theorem 2.2), for n > 0,

c1,n,x0(y) = n
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where C✏(x0) = C✏(xd0) = Rect(x0 � ✏, x0 + ✏). We first bound c1(y). Fix ✏ 2 (0, ✏(x0, �)), and
denote �d = (g(x0) � �)

1
d . Let ⇤d 2 (0,1), depending only on x0, j, ✏,� and g, be such that

�g is uniformly bounded by ⇤d on C✏(x0). In particular, By (5.45) we see that we can take ⇤d 
(�(x0) + �)(g(x0) + �). Thus we obtain
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First note that c1(y) = 0 for y /2 C✏(x0), since the indicator 1y2Rect(x0,x) in the first step is then
always zero. Also note that the indicator 1�d(y�x0)2Rect(0,x) enforces that x in the integral can only
be in one of the 2d orthants. Let abs(y) := (|yi|)i2[d] denote the vector of absolute values of the
coordinates of y 2 Rd. Then, by symmetry we obtain
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Next, we note the following inequality which is due to Bhattacharjee and Molchanov (2022, Lemma
3.1): for ↵ > 0 and n � 1, there exists a constant D > 0 depending only on d such that

n

Z

[0,1]d
1x�ye

�↵n|x|dx  D

↵
e�↵n|y|/2(1 + | log(↵n|y|)|d�1). (5.47)

Using the transformation x̃ = (�d✏)�1x in the first step and (5.47) in the second (replacing n
by n|�d✏| and taking y = ✏�1(y � x0)), from (5.44) we obtain

n

Z

0�x��d✏
1abs(�d(y�x0))2Rect(0,x)e

�n|x|dx
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= n|�d✏|
Z

[0,1]d
10�✏�1 abs(y�x0)�x̃e

�n|�d✏||x̃|dx̃

 De�n|�d✏||✏�1(y�x0)|/2(1 + | log(n|�d✏||✏�1(y � x0)|)|d�1)

= De�n|�d(y�x0)|/2
⇣
1 + | log(n|�d(y � x0)|)|d�1

⌘
. (5.48)

To bound c2, we argue similar to Biau and Devroye (2010, Proof of Theorem 2.2). Note that

Rd\C✏(x0) =
d�1[

j=0

Cj , (5.49)

where, Cj , j 2 {0} [ [d� 1] denotes the collection of all y 2 Rd\C✏(x0) which have exactly j of the
d coordinates within an ✏-neighborhood of the corresponding coordinates of x0. By symmetry, for
each j 2 {0} [ [d� 1],

Cj =
[

j

Cj , (5.50)

where the index j runs over all
�d
j

�
possible j-tuples in [d], and Cj ⌘ Cx0

j denotes the collection
of points for which the coordinates in j are within an ✏-neighborhood of those coordinates of x0.
Denote the function

(�g)j(x
j) :=

Z

Rd�j
�(x)g(x)dx[d]\j .

For ✏ = ✏(x0, �), note that for each j 2 {0}[ [d� 1], there exists ⇤j 2 (0,1) depending only on x0,
j, ✏,� and g such that the functions (�g)j are uniformly bounded over C✏(x

j
0) by ⇤j .

Considering the integral in c2 over C0, by (5.45) we have

n

Z

C0

1y2Rect(x0,x)e
�n

R
Rect(x,x0)

g(z)dz
�(x)g(x)dx

 n

Z

C0

1y2Rect(x0,x)e
�n

R
C✏(x0)

g(z)dz
�(x)g(x)dx

 ne�n(g(x0)��)✏d
Z

Rd
�(x)g(x)dx. (5.51)

Similarly, for j 2 [d� 1], one may write

n

Z

Cj

1y2Rect(x0,x)e
�n

R
Rect(x,x0)

g(z)dz
�(x)g(x)dx

= s
X

j

Z

Cj

1y2Rect(x0,x)e
�n

R
Rect(x,x0)

g(z)dz
�(x)g(x)dx

 n
X

j

Z

Cj

1y2Rect(x0,x)e
�n(g(x0)��)✏d�j Q

l2j |x
(l)

�x
(l)
0 |
�(x)g(x)dx

 n
X

j

Z

C✏(x
j
0)
1
yj2Rect(x

j
0,x

j)
e
�n(g(x0)��)✏d�j Q

l2j |x
(l)

�x
(l)
0 |

(�g)j(x
j)dxj ,

where in the final step, we have integrated �(x)g(x) over the coordinates [d]\j. We again note that
the integral inside the sum is zero when yj 2 C✏(x

j
0)

c. Thus, the sum is zero when the number
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of coordinates i 2 [d] where y(i) 2 [x(i)0 � ✏, x(i)0 + ✏] is less than j. Since each (�g)j is uniformly

bounded by ⇤j over C✏(x
j
0), letting �j := (g(x0)� �)

1
j , arguing sumilarly as for c1, we obtain

n

Z

Cj

1y2Rect(x0,x)e
�n(g(x0)��)✏d�j Q

l2j |x
(l)

�x
(l)
0 |
�(x)g(x)dx

 ⇤jn

Z

C✏(x
j
0)
1
yj2Rect(x

j
0,x

j)
e
�n(g(x0)��)✏d�j Q

l2j |x
(l)

�x
(l)
0 |

dxj

= ⇤jn

Z

[0,✏]j
1
abs(yj�x

j
0)2Rect(0,xj)

e
�n(g(x0)��)✏d�j Q

l2j |x
(l)

|
dxj

=
⇤j

(g(x0)� �)✏d�j
n

Z

[0,�j✏d/j ]j
1
abs(yj�x

j
0)2Rect(0,��1

j ✏�(d�j)/jxj)
e�n|xj

|dxj . (5.52)

Note that the integral in the last step in (5.52), when we take j = d, is exactly the same as the
integral in (5.46). Therefore, a similar argument as used in bounding c1 can be applied here, and
we obtain for j 2 [d� 1],

n

Z

Cj

1y2Rect(x0,x)e
�n

R
Rect(x,x0)

g(z)dz
�(x)g(x)dx

 ⇤jDj

(g(x0)� �)✏d�j

X

j

e�n|�j✏(d�j)/j(yj�x
j
0)|/2

⇣
| log(n|�j✏

(d�j)/j(yj � x
j
0)|)|

j�1 + 1
⌘
, (5.53)

where the constant Dj 2 (0,1) depends only on j by (5.47). Now, combining (5.51) and (5.53), we
have

c2(y)  ne�n(g(x0)��)✏d
Z

Rd
�(x)g(x)dx+

d�1X

j=1

⇤jDj

(g(x0)� �)✏d�j

X

j

e�n|�j✏(d�j)/j(yj�x
j
0)|/2

⇥
⇣
| log(n|�j✏

(d�j)/j(yj � x
j
0)|)|

j�1 + 1
⌘
1
yj2C✏(x

j
0)
. (5.54)

Combining (5.46), (5.48) and (5.54), the result now follows by (5.44) upon replacing n as ↵(k +
1)�1n.

Remark 5.2. We will often make use of this translation yj � x
j
0 and the scaling 1/✏, as done

in the proof of Lemma 5.13 above, in various similar integrals in later proofs: up to the term
ne�↵(k+1)�1n(g(x0)��)✏d

R
Rd �(x)g(x)dx, for y /2 C✏(x0), the terms in the sum in the bound in Lemma

5.13 are obtained from lower dimensional versions of c↵,n,x0 , where we upper bound the integral of
�g over coordinates that are not within an ✏ neighbourhood of the corresponding coordinates of x0.
This approach enables us to make use of some results by Bhattacharjee and Molchanov (2022) in
the setting where X = [0, 1]d and g is a uniform density.

For ↵, s > 0, d 2 N, define another function c̃↵,s : Rd ! R+ as

c̃↵,s(x0) := s

Z

Rd
e
�↵s

R
Rect(x,x0)

g(z)dz
�(x)g(x)dx,

where the function �(x) : Rd ! R as before is a.e. continuous with
R
Rd �(x)g(x)dx < 1. As for

c↵,s,x0 , the function c̃↵,s also satisfies a scaling property. Consequently, we will often take ↵ = 1.
Below we use the notation O� to mean that the constant in the O term may depend on � (it may
also depend on other parameters and functions, such as ↵, g,�, x0, which remain fixed for us).
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Lemma 5.14. Under the same setting of Lemma 5.13, for all n, d � 1 and ↵ > 0, we have

c̃↵(k+1)�1,n(x0)  ne�↵(k+1)�1n(g(x0)��)✏d
Z

Rd
�(x)g(x)dx

+
dX

j=1

�d
j

�
⇤j

↵(g(x0)� �)

✓
k + 1

✏d�j

◆
O
✓
logj�1

✓
n(g(x0)� �)✏d

k + 1

◆◆
,

where ⇤j for j 2 [d] is as in Lemma 5.13. Moreover, for fixed 0 < � < 1/2 g(x0), we have

c̃↵(k+1)�1,n(x0) = (k + 1)O�

✓
logd�1

✓
n

k + 1

◆◆
. (5.55)

Proof. We follow a very similar argument as in the proof of Lemma 5.13 and also use notation
introduced there. For s > 0, write

c̃1,n(x0) = n

Z

Rd
e
�n

R
Rect(x,x0)

g(z)dz
�(x)g(x)dx

= n

Z

C✏(x0)
e
�n

R
Rect(x,x0)

g(z)dz
�(x)g(x)dx

+ n

Z

Rd\C✏(x0)
e
�n

R
Rect(x,x0)

g(z)dz
�(x)g(x)dx

:= c̃1(x0) + c̃2(x0).

Arguing as for bounding c1 in the proof of Lemma 5.13, with ⇤j as therein, we have

c̃1(x0)  2d
⇤d

g(x0)� �
n

Z

0�x��d✏
e�n|x|dx

 2d
(�(x0) + �)(g(x0) + �)

g(x0)� �
n

Z

0�x��d✏
e�n|x|dx, (5.56)

where the additional 2d is due to identical integrals over the 2d different orthants. It is well known
that (see, e.g., Bai et al., 2005) for n � 1 and d 2 N.

n

Z

[0,1]d
e�b|x|dx = O(logd�1 n),

Similar to the proof of Lemma 5.13, by the transformation x̃ = (�d✏)�1x, we obtain

n

Z

0�x��d✏
e�n|x|dx = O(logd�1(n�d

d✏
d)) = O�(log

d�1 n). (5.57)

Next, we bound c̃2(x0). Note using the same notation as in (5.49) and (5.50), arguing similarly
as in (5.51) we have

n

Z

C0

e
�n

R
Rect(x,x0)

g(z)dz
�(x)g(x)dx  ne�n(g(x0)��)✏d

Z

Rd
�(x)g(x)dx. (5.58)

For j 2 [d � 1], the argument for Cj also mimics the same in Lemma 5.13. As in there, one may
write upon integrating �(x)g(x) over the coordinates [d]\j and bounding (�g)j by ⇤j and letting

�j := (g(x0)� �)
1
j ,

n

Z

Cj

e
�n

R
Rect(x,x0)

g(z)dz
�(x)g(x)dx
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X

j

Z

C✏(x
j
0)
e
�n(g(x0)��)✏d�j Q

l2j |x
(l)

�x
(l)
0 |

(�g)j(x
j)dxj

 2j⇤jn
X

j

Z

[0,✏]j
e�n(g(x0)��)✏d�j

|xj
|dxj


2j
�d
j

�
⇤j

(g(x0)� �)✏d�j
n

Z

[0,�j✏d/j ]j
e�n|x[j]

|dx[j]. (5.59)

Note that the integral on the last inequality (5.59) is exactly the same as the integral in (5.56) when
j = d. Therefore, arguing as for bounding c̃1 above, we have for j = 1, . . . , d� 1,

n

Z

Cj

e
�n

R
Rect(x,x0)

g(z)dz
�(x)g(x)dx 

2j
�d
j

�
⇤j

(g(x0)� �)✏d�j
O(logj�1(n�j

j✏
d)). (5.60)

Combining (5.58) and (5.60), we have

c̃2(x0)  ne�n(g(x0)��)✏d
Z

Rd
�(x)g(x)dx+

d�1X

j=1

2j
�d
j

�
⇤j

(g(x0)� �)✏d�j
O(logj�1(n�j

j✏
d)). (5.61)

The result now follows from noting that c̃↵(k+1)�1,n(x0) = (k+1)↵�1c̃1,↵(k+1)�1n(x0), by replac-
ing n as ↵(k + 1)�1n and combining the bounds in (5.56), (5.57) and (5.61).

Denote by I+ ✓ [d] the coordinates i 2 [d] with x(i) � 0, so that for j 2 [d]\I+, x(j) < 0.
Define Rect(x, @Rd) :=

Q
i2I+,j2Ic+

(�1, x(j)] ⇥ [x(i),1) as the "hyperrectangle" defined by x and
the boundary of Rd. Let Ax0(x) denote the set of points in Rd which are in the same orthant as
x 2 Rd w.r.t. x0. For x1, x2 2 Rd with x2 2 Ax0(x1) (i.e., x1 and x2 are in the same orthant
w.r.t. x0), denote by (x1 _ x2)x0 the unique point in Rect(x1, @Rd)\Rect(x2, @Rd) 6= ? having the
minimal distance to x0. In particular, when x0 = 0 and x0 � x1, x2, we have (x1 _ x2)x0 = x1 _ x2.

In the setting when g is uniform on X = [0, 1]d and � ⌘ 1 on X, all three bounds in the following
result follow according to Bhattacharjee and Molchanov (2022, Lemma 3.2). Here, we extend these
results to the general setting we consider.

Lemma 5.15. For all i 2 N, ↵, t > 0, n, d � 2 and x0, � as in Lemma 5.13, when k < n � 1, we
have

n

Z

Rd
c↵(k+1)�1,n,x0

(y)t�(y)g(y)dy = (k + 1)t+1O�

⇣
logd�1

�
(k + 1)�1n

�⌘
, (5.62)

n
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Rd
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((x _ y)x0)�(x)g(x)dx

◆i

g(y)dy

= (k + 1)2i+1O�

⇣
logd�1
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�⌘
,

n

Z
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✓
n

Z

Rd
1x2Ax0 (y)

e
�↵(k+1)�1n

R
Rect(x0,(x_y)x0 )

g(z)dz
�(x)g(x)dx

◆i

g(y)dy

= (k + 1)i+1O�
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�⌘
. (5.63)
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Proof. The arguments employed to prove the bounds are similar to that used by Bhattacharjee and
Molchanov (2022, Lemma 3.2), upon using the approach outlined in Remark 5.2, and demonstrated
in the proof of Lemma 5.13. Therefore, we will only give a very brief outline of the proofs here by
using notation introduced in the proofs above. We start by proving the first two bounds. Note that
for all t > 0, n � 1, j 2 [n] and ↵ > 0, we trivially have

nt+1e�j↵(k+1)�1n(g(x0)��)✏d = (k + 1)t+1O�

⇣
logd�1((k + 1)�1n)

⌘
.

On the other hand, as argued in Remark 5.2, for the terms in the sum in the upper bound in Lemma
5.13, for each j with yj 2 C✏(x

j
0), we can first integrate over the other d � j coordinates and then

upper bound (�g)j uniformly over C✏(x
j
0) by ⇤j , and finally arguing as in the proof of (Bhattacharjee

and Molchanov, 2022, Equation (3.10) in Lemma 3.2) with s there replaced by n(g(x0)��)✏d�j

k+1 , we
can obtain an upper bound for the integrals of each of these summands. Since

R
Rd �(x)g(x)dx < 1,

the first conclusion follows by a simple application of Lemma 6.1. The second conclusion now also
follows arguing exactly as in (Bhattacharjee and Molchanov, 2022, Equation (3.12) in Lemma 3.2).
Arguing similarly using Lemma 5.14 instead of Lemma 5.13, the last bound also follows mimicking
arguments in the proof of (Bhattacharjee and Molchanov, 2022, Equation (3.11) in Lemma 3.2).

Before we proceed to more results related to the function c↵,n,x0 , which serves as an upper bound
on the probability (5.40) that a point y̌ is in the region of stabilization of another point x̌, we present
the following lemma providing a lower bound to this probability. The result indeed shows that the
upper bounds in Lemma 5.15 which are polynomial in k are tight by our method.

Lemma 5.16. Let � be bounded from below by a constant C� > 0. Then for t > 0, there exists
a constant Clow > 0 depending only on d,↵ and t such that for y 2 Rect(x0, x), when k  2n, we
have:

n

Z

Rd

✓
n

Z

Rd
(P(y̌ 2 Rn(x̌,Pnǧ + �x̌)))

↵ �(x)g(x)dx

◆t

�(y)g(y)dy � Clowk
t+1.

Proof. Since by (5.45), the density g can be lower bounded by a positive constant in some rectangle
around x0, without loss of generality, we consider the density g = 1[0,1]d and x0 = 0. Thus from
(5.40) we have

n

Z
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✓
n

Z

Rd
(P(y̌ 2 Rn(x̌,Pnǧ + �x̌)))

↵ �(x)g(x)dx
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= n

Z

[0,1]d

 
n

Z

[0,1]d
1y2Rect(0,x) (n, k,0, x)

↵�(x)dx

!t

�(y)dy

� Ct+1
� n

Z

[0,1]d

 
n

Z

[0,1]d
1y2Rect(0,x) (n, k,0, x)

↵dx

!t

dy,

where  (n, k,0, x) is defined at (5.41). Note that for g being uniform and x0 = 0, the parameter of
the Possion distribution in (5.41) simply becomes n|x|. By Poisson concentration (see Lemma 6.2),
we have for x with n|x|  1

2k,

 (n, k,0, x) � 1� e�
k
8 .
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Therefore, by restricting the integral over y to region A := {(k/(4n))1/d1 � x � (k/(2n))1/d1}, and
noting that the volume of this region is larger than (1 � d(21/d � 1))k/(4n), we obtain the lower
bound

n

Z

[0,1]d

 
n

Z

[0,1]d
1y2Rect(0,x) (n, k,0, x)

↵dx

!t

dy

� n
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✓
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 (n, k,0, x)↵dx
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dy

� (1� e�
k
8 )↵t(1� d(21/d � 1))t

1

4t+1
kt+1.

Remark 5.3. By Lemmas 5.15 and 5.16, it follows that the bound on the double integral therein of
the tail probability P(y̌ 2 Rn(x̌,Pnǧ+�x̌)) of the region of stabilization is tight in k, i.e, the rate kj+1

cannot be improved by our method. This is due to the fact that the Poisson distribution concentrates
around its mean. This along with (5.42) results in a tail bound that is exponential decaying in n, at
the cost of having a polynomial growth in k.

Lemma 5.17. For ↵1,↵2 > 0, 0 < ⇣ < �, i 2 N, j 2 {1, 2} and n � 2,

n
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logd�1

�
(k + 1)�1n

�⌘
.

Proof. The proof of the first bound for j = 2 is similar to the proof of Lemma 5.15 by applying
Lemma 3.4 (rather than Lemma 3.2) in Bhattacharjee and Molchanov (2022) and replacing s by
n(g(x0)��)✏d�j0

k+1 for j0 2 [n]. The bounds of A2 from the proof of Lemma 3.5 in Bhattacharjee and
Molchanov (2022), yield the second bound in Lemma 5.17 for j = 2. For j = 1, the desired two
bounds follow by mimicking the derivation of the bounds of A1 and A2, respectively, in the proof of
Lemma 3.3 in Bhattacharjee and Molchanov (2022) with s replaced by n(g(x0)��)✏d�j0

k+1 , j0 2 [n].

Lemma 5.18. For ↵ > 0, p > 0, i 2 {1, 2} and n � 2,

n
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1x2Rect(x0,y)e
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Rect(y,x0)

g(z)dz
�(x)g(x)dx

◆i
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= (k + 1)i+1O�
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.

Proof. Note that when x 2 Rect(x0, y), we have (x _ y)x0 = y. Thus, replacing Rect(y, x0) by
Rect((x _ y)x0 , x0) in the exponent in the integral in Lemma 5.18 and dropping the indicator
1x2Rect(x0,y), the double integral is upper bounded by the integral in (5.63), and hence the result
follows by invoking Lemma 5.15.
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Recall the definiton (5.41) of the c.d.f. of the Poisson distribution. In the following lemma, we
show that the function  (n, k, x0, x) has a localizing effect, "forcing" the integral of the product
 (n, k, x0, x)�(x)g(x), where � is an a.e. continuous and integrable function, to converge to �(x0)
with the rate k logd�1 n.

Lemma 5.19. Under the setting of Lemma 5.13, for n, d � 2, k � 1 and k = O(n↵) with 0 < ↵ < 1,
we have

2d

(d� 1)!

(�(x0)� �)(g(x0)� �)

g(x0) + �
kO�(log

d�1 n)

 n

Z
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 2d

(d� 1)!

(�(x0) + �)(g(x0) + �)

g(x0)� �
kO�(log

d�1 n).

Particularly, taking �(x) ⌘ 1, there exist constants C1 > C2 > 0 (depending on the parameters �, ✏
and g, x0) such that

C2k log
d�1 n  ELn,k(x0)  C1k log

d�1 n.

Proof. Arguing as in the proof of Lemma 5.14, we have
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k�1X

j=0

(ej,1 + ej,2),

where the inequality follows due to the decresingness of the c.d.f. of Poisson distribution with
respect to the Poisson parameter.

We first consider ej,1 for 0  j  k � 1. Note by (5.45) that
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Now, with similar calculations as in Bai et al. (2005), we have

n

Z

[0,1]d
e�n|x| (n|x|)j

j!
dx

=
1

j!

Z

[0,n
1
d ]d

e�|u||u|jdu (x = n�1/du)

=
1

j!

Z

[�d�1 logn,1)d
exp

8
<

:e�
Pd

j=1 zj � (j + 1)
dX

j=1

zj

9
=

; dz (zj = � log uj)

=
1

j!(d� 1)!

Z
1

� logn
(log n+ x)d�1exp(�(j + 1)x� e�x)dx

0

@x =
dX

j=1

zj

1

A

=
1

j!(d� 1)!

Z n

0
(log n� log y)d�1e�yyjdy (y = e�x)

=
logd�1 n

j!(d� 1)!

X

0ld�1

✓
d� 1

l

◆
(�1)l

logl n

Z
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(logl y)e�yyjdy +O(e�nnj logd�1 n)

=
logd�1 n

(d� 1)!
+O(log j logd�2 n),

where, noting that
R
1

0 (logl y)e�y yj

j! dy is the l-th moment of logX with X following a gamma
distribution Gamma(j + 1, 1) for 0 < l < d, according to the moment generating function of log-
Gamma distribution, we have

Z
1

0
(logl y)e�y y

j

j!
dy =

�(l)(j + 1)

�(j + 1)
= O(logl j),

with �(·) as the gamma function and �(l)(·) denotes its l-th derivative.
Therefore, with the transformation x̃ = (�d✏)�1x, we obtain

k�1X

j=0

ej,1 
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(d� 1)!
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(d� 1)!
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g(x0)� �
k O�

⇣
logd�1 n

⌘
. (5.64)

Next, for ej,2, 0  j  k � 1, similar to bounding c̃2 in Lemma 5.14, we have

k�1X
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k�1X

j=0

ne�n(g(x0)��)✏d (n(g(x0)� �)✏d)j
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Z
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log j logl�1(n�l
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d)
⌘

= O�

⇣
k log k logd�2 n

⌘
. (5.65)

Combining (5.64) and (5.65), we obtain the upper bound.
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As for the lower bound, we trivially have

n

Z

Rd
 (n, k, x0, x)�(x)g(x)dx �

k�1X

j=0

ej,1.

Using a similar argument as for the upper bound, letting �0

d = (g(x0) + �)1/d, we have for 0  j 
k � 1,

ej,1 �(�(x0)� �)(g(x0)� �)n

Z
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e�n(g(x0)+�)|x�x0|
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j!
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=2d
(�(x0)� �)(g(x0)� �)
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Z

0�x��0
d✏
e�n|x| (n|x|)j
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=
2d

(d� 1)!
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(logd�1(n�0d
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Consequently, it yields

k�1X

j=0

ej,1 �
2d

(d� 1)!

(�(x0)� �)(g(x0)� �)

g(x0) + �
kO�

⇣
logd�1 n

⌘
.

This proves the first assertion. By taking �(x) ⌘ 1, we have the second assertion.

Remark 5.4. A slightly more careful computation in the proof of Lemma 5.19 above (first fixing
0 < � < g(x0)/2 and letting n ! 1, and then letting � ! 0 with k = o(log(d�1)/(2⌧) n) in Corollary
3.1) gives the following limit:

lim
n!1

n
R
Rd  (n, k, x0, x)�(x)g(x)dx

k logd�1 n
=

2d

(d� 1)!
�(x0).

Remark 5.5. It was shown by Lin and Jeon (2006) that if the density g is bounded above and
away from zero from below, the expected number of k-PNNs ELn,k(x0) to a target point x0 2 Rd is
of the order k logd�1 n. For general g, one might expect that the size of ELn,k(x0) depends on the
smoothness of g. Lemma 5.19 shows that the same order holds for any a.e. continuous density g.

5.2.5 Proofs of Theorem 3.1 and Corollary 3.1

We will employ Theorems 3.2 and 3.3 to prove the results. In view of this, we take F̄n therein as
rn,k,w, we pick the normalizer ⇢(i)n :=

p
Var rn,k,w(x0,i) for all i 2 [m] and take

�ij :=
Cov(rn,k,w(x0,i), rn,k,w(x0,j))p
Var rn,k,w(x0,i)

p
Var rn,k,w(x0,j)

,

for all i, j 2 [m] so that ⌃ = Cov(P�1
n F̄n) in Theorems 3.2 and 3.3. We define ⇢(i)n and �ij similarly

for the uniform weights case rn,k(x0,i). We have already checked the Assumptions (R1)-(R4), (T)
and (M) with p0 2 (0, 6] for the score functions associated to rn,k,w and rn,k. We fix p0 = 6 in
the sequel. Thus we can apply Theorems 3.2 and 3.3. By our choice of ⌃, we have that �0 = 0 in
(3.19). Also, letting �2 := infx VarP" r("x, x), note that for all i 2 [m], by the law of total variance,
we have

⇣
⇢(i)n

⌘2
= Var rn,k,w(x0,i)
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A . (5.67)

Specializing to the uniform weights case rn,k(x0,i), i 2 [m], with �2 as before, by Jensen’s inequality
we obtain the lower bound

⇣
⇢(i)n

⌘2
� �2E

0

@ 1

Ln,k(x0,i)2

X

x2Png

1x2Ln,k(x0,i)

1

A

= �2E
✓

1

Ln,k(x0,i)

◆

� �2
1

ELn,k(x0,i)
. (5.68)

Recall from (5.39) the moment bound M (i)
n (x) = ⌦i,nr⇤6+p(x) for i 2 [m], with r⇤6+p(x) :=

�
EP" |r(✏x, x)|6+p

�1/(6+p) and

⌦i,n :=

8
><

>:

sup
(x,⌘):|⌘|9

kWnx(x0,i,Px,⌘)kL6+p
for rn,k,w(x0,i),

sup
(x,⌘):|⌘|9

kLn,k(x0,i,Px,⌘)
�1kL6+p for rn,k(x0,i),

(5.69)

where Px,⌘ := Pnǧ + �(x,mx) + ⌘.
Recall from (5.42) that

e�r
(1)
n (x,y) := e

k�1X

j=1

e
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1
j+2n

R
Rect(x,x0,1)

g(z)dz . ke
�

1
k+1n

R
Rect(x,x0,1)

g(z)dz
, y 2 Rect(x0,1, x), (5.70)

and r(1)n (x, y) = 1 otherwise. Then, from (3.15) we have

h(1)n (y) = n

Z

Rd
M (1)

n (x)6+p/2e�⇣r
(1)
n (x,y)g(x)dx

. ⌦6+p/2
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Z
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1y2Rect(x0,1,x)e
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R
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r⇤6+p(x)

6+p/2g(x)dx

 ⌦6+p/2
1,n k⇣c⇣(k+1)�1,n,x0,1

(y),

and

g(1)n (y) = n

Z

Rd
e�⇣r

(1)
n (x,y)g(x)dx . k⇣c⇣(k+1)�1,n,x0,1

(y), (5.71)

with c⇣(k+1)�1,n,x0,1
is defined in (5.43) with � as above. Plugging these in (3.16), we obtain

G(1)
n (y)

=⌦1,nr
⇤

6+p(y) + ⌦1,n(k
⇣c⇣(k+1)�1,n,x0,1

(y))1/(6+p/2)(1 + (k⇣c⇣(k+1)�1,n,x0,1
(y))6)1/(6+p/2)
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⌦1,nr
⇤

6+p(y) + ⌦1,n(1 + (k⇣c⇣(k+1)�1,n,x0,1
(y))7/(6+p/2))

.⌦1,n(r
⇤

6+p(y) _ 1) + ⌦1,n(k
⇣c⇣(k+1)�1,n,x0,1

(y))7/(6+p/2). (5.72)

Also, from (3.14) we obtain

q(1)n (x1, x2) = n

Z

Rd⇥R
P({x̌1, x̌2} ✓ R(1)

n (ž,Pnǧ + �ž))Q(dž)

. kc(k+1)�1,n,x0,1

�
(x1 _ x2)x0,1

�
1x12Ax0,1 (x2). (5.73)

Finally, according to (3.18), we have

(1)n (x) = P(⇠(1)n (x̌,Pnǧ + �x̌) 6= 0) . ke
�(k+1)�1n

R
Rect(x0,1,x)

g(z)dz
. (5.74)

While it is complicated to deal with general weights ⌦i,n from (5.69), we can start with the
following estimate of ⌦i,n in the uniform case.

Lemma 5.20. In the case of uniform weights, for k � 11, k = O(n↵) with 0 < ↵ < 1 and i 2 [m],
we have

⌦i,n = sup
(x,⌘):|⌘|9

kLn,k(x0,i,Px,⌘)
�1kL6+p . 1

k logd�1 n
⇣ 1

ELn,k(x0,i)
. (5.75)

Proof. Fix i 2 [m], x 2 Rd, ⌘ with |⌘|  9. According to Adamczak et al. (2022, Proposition 4.20)
and Lemma 6.1, it follows that for any integer r � 1,

E(L� EL)2r .r
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5 ,

where L ⌘ Ln,k(x0,i,Px,⌘) and D�

x̌ L(⌘) := L(⌘) � L(⌘ � �x̌) for x̌ 2 ⌘ is the remove-one cost
operator, similar to the add-one cost function in Definition 3.2. Then for the first summand above,
using Hölder’s inequality we obtain
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. (5.76)

Now, we also have by Hölder’s inequality that
⇥
E(Dy̌L)

2r
⇤1/r  (E|Dy̌L|2r+1)

2
2r+1P(Dy̌L 6= 0)

1
r(2r+1) .

Notice, that Dy̌L 6= 0 implies that Rect(y, x0,i) has at most k�1 points from the configuration Px,⌘

(since if not, then adding y̌ won’t change the value of L), and hence also from the configuration
Pnǧ. Thus, by (5.70),

P(Dy̌L 6= 0) . ke
�

1
k+1n

R
Rect(y,x0,i)

g(z)dz
.

On the other hand, E|Dy̌L|2r+1 can be bounded similarly as in Lemma 5.11. Indeed, letting

L0 =
X

x2Pnǧ

1x is a k-PNN to x0,i in Px,⌘ =:
X

x2Pnǧ

⇠0(x,Pnǧ),
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we have |L � L0|  10, so that E|Dy̌L|2r+1 .r 1 + E|Dy̌L0|2r+1. Also, the scores ⇠0 has region of
stabilization as defined at (5.37). Now arguing as in Lemma 5.11 with 4 + p/2 replaced by 2r + 1
(i.e., p replaced by 4r� 6), since L0 is a sum of indicators, taking the bound on the L4r�2 (in place
of L4+p) norm in Lemma 5.11 trivially as 1, we obtain

E|Dy̌L
0|2r+1 .r 1 + gn(y̌)

5

with gn defined as in (3.15) with ⇣ = ⇣0 := (2r � 3)/(2r + 17) (in place of p/(40 + p)) and rn as in
(5.42). Thus, by (5.71), we have
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where the final step is due to (5.55) and (5.62). Thus, (5.76) yields
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where we have ⌧conc :=
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r .

For the second summand, using Lemma 6.1, followed by an application of the Mecke formula, a
similar argument as above yields
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Now by Chebyshev’s inequality,

P(L  EL/2) . E(L� EL)2r
(EL)2r .

Next we need a lower bound on EL. Since k > 10, even in the presence of additional points x and
⌘ (which together are at most 10), we have L = Ln,k(x0,i,Px,⌘) � Ln,k�10(x0,i,Pnǧ), so that by
Lemma 5.19,

EL � ELn,k�10(x0,i,Pnǧ) ⇣ k logd�1 n.
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Combining this with the above tail bound, we obtain

P(L  EL/2) .r (k log
d�1 n)�2rkr(⌧conc+1) logr(d�1) n = k�r(1�⌧conc) log�r(d�1) n.

Thus, since L � 1, we have:

EL�(6+p) . 1

(EL)6+p
+ P(L  EL/2) .r (k log

d�1 n)�(6+p) + k�r(1�⌧conc) log�r(d�1) n,
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6+p log�
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Now since ⌧conc  10/r, we have r(1�⌧conc)
6+p � 1

7(r � 10). Thus, choosing r = 17 yields

kL�1kL6+p . 1

k logd�1 n
.

Since the choice of s and ⌘ were arbitrary and the upper bound above doesn’t depend on this choice,
taking a supremum yields the desired bound. The final part of the result is due to Lemma 5.19.

Remark 5.6. Note that although Lemma 5.20 focuses on the first moment of Ln,k(x0,i) for i 2
[m], the proof arguments provided above are actually valid for generalizing it to any moment, i.e,
(k logd�1 n)q ⇣ ELq

n,k(x0,i) for i 2 [m] and q 2 Z.

In the following, we will bound the �i’s in Theorems 3.2 and 3.3. Throughout, we take �(x) =
r⇤6+p(x)

6+p/2 _ 1 in (5.43). Write
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We first consider then case when i = j = l = t, and without loss of generality, we fix i, j, l, t = 1.
We start with �1 defined at (3.20). By (5.72), (5.77), (5.78), (5.79) and Lemma 6.1, we have
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Also, from (5.80), we have that
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For the rest of this proof, we fix � 2 (0, 1/2mini g(x0,i)) and ✏ as in Lemma 5.13 such that the
conclusion therein holds for all x0,i, i 2 [m]. To simplify notation, we also drop the dependence on
� and simply write O ⌘ O�. Recalling that �(x) = r⇤6+p(x)
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Combining (5.84) and (5.85), from (5.80) we obtain

nQ
⇣
f (1,1,1,1)
1,1,0,�,1

⌘2
= ⌦4

1,n(k + 1)2�+3+28(1+⇣)/(6+p/2)O(logd�1((k + 1)�1n)). (5.86)

Next, we note by (5.82) that

⇣
f (1,1,1,1)
1,1,0,�,3(y)

⌘2
. ⌦4

1,n

✓
n

Z

Rd
(r⇤6+p(x)

2 _ 1)q(1)n (x, y)�g(x)dx

◆2

75



+ ⌦4
1,nk

28⇣/(6+p/2)

✓
n

Z

Rd
c⇣(k+1)�1,n,x0,1

(x)14/(6+p/2)q(1)n (x, y)�g(x)dx

◆2

.

For 0 < ↵ < 1 and y 2 Rd, we observe that

c1,n,x0,1(y)
↵ =

✓
n

Z

Rd
1y2Rect(x0,1,x)e

�n
⇣R

Rect(x0,1,x)
g(z)dz�

R
Rect(x0,1,y)

g(z)dz
⌘

⇥e
�n

R
Rect(x0,1,y)

g(z)dz
(r⇤6+p(x)

6+p/2 _ 1)g(x)dx
⌘↵

= e
�↵n

R
Rect(x0,1,y)

g(z)dz
✓
n

Z

Rd
1Rect(x0,1,x)e

�n
⇣R

Rect(x0,1,x)
g(z)dz�

R
Rect(x0,1,y)

g(z)dz
⌘

⇥ (r⇤6+p(x)
6+p/2 _ 1)g(x)dx

◆↵

 e
�↵n

R
Rect(x0,1,y)

g(z)dz
✓
1 + n

Z

Rd
1Rect(x0,1,x)

⇥ e
�n

⇣R
Rect(x0,1,x)

g(z)dz�
R
Rect(x0,1,y)

g(z)dz
⌘

(r⇤6+p(x)
6+p/2 _ 1)g(x)dx

◆

= e
�↵n

R
Rect(x0,1,y)

g(z)dz
+ c↵,n,x0,1(y). (5.87)

Thus, using (5.73) in the first step and (5.87) in the second, for 0 < � < 1), Lemma 5.15 yields
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On the other hand, using (5.87) again, arguing same as above yields
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=: A1 +A2. (5.89)

Since for any ↵, t � 1, we have c↵,n,x0,1(x)
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have that A1, A2 = (k+ 1)4�+3+d28/(6+p/2)eO(logd�1((k+ 1)�1n)). Therefore, by (5.88) and (5.89),
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For the first term, using (5.70) and Lemma 5.18 yields
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As for the second term, changing the order of integration in the second step and using the Cauchy-
Schwarz inequality in the third, (5.62) and Lemma 5.17 yield
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where A2 is defined at (5.89).
Combining (5.91) and (5.92), we have
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Now, putting together (5.86), (5.90) and (5.93), we obtain
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Therefore, by (5.67), (5.69) ((5.68) and (5.75), respectively, in the uniform case) and Lemma 5.19,
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Next, we focus on �3 and �4 defined at (3.22) and (3.23), respectively. For i 2 {3, 4}, by Lemma
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Applying (5.62) in Lemma 5.15, from (5.71) and (5.72) we also have
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where the last step is by (5.55) and (5.62). Combining (5.96) and (5.97), we obtain
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Therefore, (5.67), (5.69) ((5.68) and (5.75), respectively, in the uniform case) and Lemma 5.19 yield
that for i 2 {3, 4},
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yielding a bound for �3 and the first summand of �4.
For the second summand in �4, note that by (5.77) and (5.72), we have
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Since 0 < 3� < 1, using (5.73) and arguing as for (5.87) in the second step, Lemma 5.15 yields
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By (5.70) and Lemma 5.18, we have
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R
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(r⇤6+p(x)

4 _ 1)g(x)dxg(y)dy

= (k + 1)3�+2O(logd�1((k + 1)�1n)). (5.105)

Again using that ⇣ < 3�, (5.70) and (5.62) yield
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From (5.105) and (5.106), we have

nQf (1,1,1,1)
2,2,0,3�,2 = ⌦

4
1,n(k + 1)3�+2+d28&eO(logd�1((k + 1)�1n)). (5.107)

Combining (5.101), (5.104) and (5.107), we obtain
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2,2,0,3� = ⌦4

1,n(k + 1)6�+2+d28&eO(logd�1((k + 1)�1n)). (5.108)

Now (5.98) and (5.108) together with (5.67), (5.69) ((5.68) and (5.75), respectively, in the uniform
case) and Lemma 5.19 yield
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k3⇣�+3�+1+d14&eW1(n, k)O(log(d�1)/2 n), for general weights,

k3⇣�+3�+d14&eO(log�(d�1)/2 n), for uniform weights.
(5.109)

Finally, we are left to bound �5 and �6 defined at (3.24) and (3.25) respectively. By similar
arguments as those used in bounding �1 (with i = j = l = t = 1 and s = 1), one can show
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for general weights,
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and
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3/4O(log(d�1)/4 n),

for general weights,

k�+d21&/2eO(log�(d�1)/2 n), for uniform weights.
(5.111)

Therefore, combining (5.95), (5.98), (5.109), (5.110) and (5.111) and recalling that �0 = 0, we
conclude that the sums of all the contributions from �s, s 2 {0, 1, 3, 4, 5, 6} with i = j = l = t (after
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writing the power of the sums as sums of powers, up to constants, using Lemma 6.1) is of the order
8
>>><

>>>:

k6⇣�+6�+3/2+d21&e max
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⇣
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,

for general weights,
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(5.112)

where we recall from (3.6) that
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E [
P

xWnx(x0,i)2]
.

Next, we will consider the case when i, j, l, t are not all equal. According to Theorems 3.2 and 3.3,
only �1,�4,�5 and �6 will change. We first focus on the case when i 6= j, and without loss of
generality, take i = 1 and j = 2.

Again, we start with �1. Note that by (5.77), (5.72) and Cauchy’s inequality,
⇣
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Therefore, it suffices to derive bounds for the final additional term compared to (5.83). Denote
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Fix � 2 (0, 1/2(g(x0,1)^ g(x0,2))) and ✏ as in Lemma 5.13 such that the conclusion therein holds
for both x0,1, x0,2. We argue as in Lemma 5.13 using the partition (5.49) for the inside integral in
Iadd. For any j

1
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Now, we further bound c⇣(k+1)�1,n,x0,2
(x) using Lemma 5.13. In the upper bound therein, the first
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is exponentially small, so consider the summand corresponding to j
2

with |j
2
| = j2  d � 1, i.e.,
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= 1. First assume that j
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where we have used the Cauchy-Schwarz inequality in the penultimate step. Since j1 + j2  d, this
is at most of the order k3 logd�2 n.

Now, we are left with the case when j
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Since j1 + j02  d, this is again at most of the order k3 logd�2 n. The case when j
1
\ j

2
6= ?, but

j
2
\j

1
= ? can be dealt with similarly as above, by putting the exponential factor corresponding

to the common coordinates in one of the exponential factors, instead of in both. Finally, the case
when j1 = 0 is trivial, since in this case,

e��r
(1)
n (x,y) . k�e�

�
k+1n✏

d(g(x0,1)��).

Combining all the above analysis, we conclude that the additional term appeared Iadd is of lower
order compared to the corresponding bound for f (1,1,1,1)

1,1,0,�,1.

Using similar arguments as for
⇣
f (1,2,1,1)
1,1,0,�,2(y)

⌘2
and

⇣
f (1,2,1,1)
1,1,0,�,3(y)

⌘2
, combining the cases i = j in

(5.95) and the case when i 6= j, from (3.20) we finally obtain
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mk2�+3/2+d14&eW (n, k)O(log(d�1)/2 n), for general weights,

mk2�+1/2+d14&eO(log�(d�1)/2 n), for uniform weights,

where & is given in (5.94) and W (n, k) is defined in (3.6).
Similar arguments using (5.109), (5.110) and (5.111) as well as (3.23), (3.24) and (3.25) yield
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(
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and
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m2k�+3/4+d21&/2eW (n, k)3/4O(log(d�1)/4 n), for general weights,

m2k�+d21&/2eO(log�(d�1)/2 n), for uniform weights.

Proofs of Theorem 3.1 and Corollary 3.1. Putting together all bounds above on �s for s 2 {0, 1, 3, 4, 5, 6}
as well as a similar bound for �2, and �1 with p0 = 4, we obtain the proof of Theorem 3.1 and
Corollary 3.1 by invoking Theorems 3.2 and 3.3.

5.2.6 Proof of Proposition 3.1

Proof of Proposition 3.1. We start with studying the following general integral more carefully. By
the Mecke formula, for any function �(x) as considered in Lemma 5.19 and Remark 5.4, we have

E
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�(x)1x2Ln,k(x0)

◆
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 (n, k, x0, x)�(x)g(x)dx.

When g and � are assumed to be continuous, by Remark 5.4, we in particular have that
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n!1

n
R
Rd  (n, k, x0, x)�(x)g(x)dx

k logd�1 n
=

2d

(d� 1)!
�(x0).

The rate of convergence for this limit, which we estimate below in (5.116), plays a key role in
analyzing the bias.
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Let � and g be a Hölder continuous functions at x0 with parameters L�, �� > 0 and Lg, �g > 0,
respectively. Note for any � 2 (0, 1/2 g(x0)) and ✏ > 0 as in (5.45), according to the proof of Lemma
5.19, by (5.64), (5.65) and (5.66), we have
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⌘
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Now to obtain a rate of convergence, instead of fixing the pair (�, ✏) as in the proofs of Theorem
3.1 and Corollary 3.1, we use the assumed Hölder continuity to determine (�, ✏) more explicitly as
a function of n. We have for any x 2 C✏(x0),

|g(x0)� g(x)|  Lg(d✏
2)

�g
2 = Lgd

�g
2 ✏�g =: �g, (5.114)

and

|�(x0)� �(x)|  L�(d✏
2)

��
2 = L�d

��
2 ✏�� =: ��. (5.115)

To make sure that ✏�(d�l) logl�1 n = o(logd�1 n) in (5.113), we pick ✏ ⌘ ✏(n) = log�⇣ n for some
0 < ⇣ < 1. Thus for 1  l  d� 1,

1

✏d�l
logl�1 n = log(d�l)⇣+(l�1)  logd�2+⇣ n = o(logd�1 n),

while for l = d� 1, we have
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logl�1 n = logd�2+⇣ n > logd�2 n.

Now, from (5.114), we have �g = Lgd
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2 log�⇣�g n so that choosing n � exp
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◆ 1
⇣�g

#
, ensures

that �g < 1/2 g(x0). Also, noting that �� = L�d
��
2 log�⇣�� n, starting with � ⌘ �(n) = �g _ ��, we

have that the above choice of ✏ ⌘ ✏(n) satisfies (5.45). Thus from (5.113) we obtain
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⌘
. (5.116)

Moreover, when �(x0) = 0, we have
����
n
R
Rd  (n, k, x0, x)�(x)g(x)dx

k logd�1 n

���� = O(�g _ ��) = O(log�⇣(�g^��) n). (5.117)

85



The above is now being applied for the actual proof of Proposition 3.1. From (3.4), by Fubini’s
theorem, we have
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1x2Ln,k(x0)

Ln,k(x0)
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A ,

where the final step is due to the fact that E[yx|x] = r0(x). In order to apply (5.117) with
�(x) = r0(x)� r0(x0), we aim to substitute Ln,k(x0) with ELn,k(x0) and bound the error term. To
this end, by the triangle inequality we can write
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����
1

Ln,k(x0)
� 1

ELn,k(x0)

����1x2Ln,k(x0)(r0(x)� r0(x0))

1

A

=: J1 + J2. (5.118)

Plugging �(x) = r0(x) � r0(x0), which is Hölder continuous at x0 with parameters L1, �1 > 0 by
our assumption, in (5.117) and using Lemma 5.19, we conclude that for any ⇣ 2 (0, 1),

J1 = O(log�⇣(�g^�1) n).

To estimate J2, we proceed with the following two subcases. First, on E := {|Ln,k(x0)�ELn,k(x0)| <
(ELn,k(x0))3/4}, we have
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Next, on Ec = {|Ln,k(x0)� ELn,k(x0)| � (ELn,k(x0))3/4}, we simply bound
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���� . 1, (5.119)

which holds since ELn,k(x0) = O(k logd�1 n) by Remark 5.4. On the other hand, arguing as in the
proof of Lemma 5.20, we have for any r � 1 that
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= kr(⌧conc+1)�3r/2 log�(d�1)r/2 n, (5.120)

where ⌧conc are defined in the proof of Lemma 5.20 and it satisfies ⌧conc  10/r. Taking r = 29 so
that ⌧conc  10/29, we thus have

P(Ec) . k�9/2 log�29(d�1)/2 n.

Using the above bounds with the fact that both r0(x) and r0(x0) are uniformly bounded (almost
surely) by our assumption, we now obtain

J2 .
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where in the penultimate step, we have also used Remark 5.6. Putting the bounds for J1 and J2

together in (5.118) now yields

|Ern,k(x0)� r0(x0)| = O
⇣
(log�⇣(�g^�1) n) _ (k�1/4 log�(d�1)/4 n)

⌘
(5.121)

completing the proof.

6 Auxillary Results

Lemma 6.1. The two inequalities below, follow by elementary analysis:

• For {ai}`i=1 ⇢ R and ◆ � 1,
⇣P`

i=1 ai
⌘◆

 `◆�1P`
i=1 a

◆
i.

• For {ai}◆i=1 ⇢ R+ and 0 < ◆ < 1, we have that
⇣P`

i=1 ai
⌘◆


P`

i=1 a
◆
i.

Lemma 6.2 (Poisson concentration). Let h : [�1,1) ! R be given by h(x) := 2(1+x) log(1+x)�x
x2 ,

and let Poi(�0) be a Poisson random variable with parameter �0 > 0. Then, for any x > 0, we have

P(Poi(�0) � �0 + x)  e
�

x2

2�0
h
⇣

x
�0

⌘

,

and, for any 0 < x < �0,

P(Poi(�0)  �0 � x)  e
�

x2

2�0
h
⇣
�

x
�0

⌘

.

In particular, this implies that for x > 0,

max
⇥
P(Poi(�0) � �0 + x),P(Poi(�0)  �0 � x)

⇤
 e

�
x2

2(�0+x) .

The proof of Lemma 6.2 follows by a standard use of Chernoff’s bound, and is hence omitted.
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6.1 Background on TDA

Definition 6.1 (Simplicial Complexes). An abstract simplicial complex over a (finite) vertex set
An := {a1, . . . , an} is a collection S of subsets of An with the properties that

(i) {ai} 2 S, i = 1, . . . , n,

(ii) � 2 S and ⌧ ⇢ � implies that ⌧ 2 S.

Every ⌧ ⇢ � is called a face of �. Every � 2 S with |�| = `+ 1, ` � 0, is called `-simplex.

Note that the vertices do not necessarily have to be elements of a Euclidean space. If they are
(affinely independent) elements of Rd, one can think of every simplex of order `  d as a convex
hull of ` + 1 (affinely independent) vertices, so that 0-simplices are points, 1-simplices are lines,
2-simplices are triangles, etc. The following two types of simplicial complexes, the Vietoris-Rips
complex (VR complex) and the Čech complex, are widely used in TDA.

Definition 6.2 (VR Complex). Following the definition 6.1, let the vertex set An be in a metric
space with the metric d. Then, the VR complex VRr(An) for a given postive real number r > 0
is a collection of simplices, where a simplex � 2 VRr(An) if and only if for any pair of vertices
ai, aj 2 �, d(ai, aj) < r.

Definition 6.3 (Čech Complex). Following the definition 6.1, let the vertex set An be in a metric
space with the metric d. Then, the Čech complex Cr(An) for a given postive real number r > 0 is a
collection of simplices, where a simplex � := {ai}i2I 2 Cr(An) for some I ⇢ {1, 2, ..., n} if and only
if for \

i2I
Bai

�
r
2

�
6= ?.

Definition 6.4 (Filtrations). A filtration S of a simplicial complex S is a nested sequence of sim-
plicial complexes ? = S0 ⇢ S1 ⇢ · · · ⇢ SI = S, where Si = Si�1 [ �i, i = 1, . . . , I for some �i 2 S.
A filtration is thus equivalent to an ordering of the simplices in the complex. Usually, a filtration
is given in form of a filtration function  : S ! R that assigns a real value  (�) to each simplex
� 2 S. The filtration itself is then defined via S(r) = {� 2 S :  (�)  r}. Note that while r is
a continuous parameter, there are only finitely many values of r at which the complex is changing
for a simplex over a finite set of vertices as considered here. Additionally, the parameter r here is
called as the filtration parameter or the filtration time.

Remark 6.1. The real number r in Definition 6.2 and 6.3 is called the filtration parameter/time
for the VR complex and the Čech complex respectively.
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