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ANGULAR - MOMENTUM ;, BEARING MODES IN FISSION 

Luciano G. Moretto, Graham F. Peaslee, and Gordon J. Wozniak 

Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., 
Berkeley, CA 94 720 

The angular-momentum-bearing degrees of freedom involved in the fission process are 
identified and their influence on experimental observables is discussed. The excitation of 
these modes is treated in the "thermal" limit, and the resulting distributions of observables 
are calculated. Experiments demonstrating the role of these modes are presented and 
discussed. 

1. INTRODUCTION 

The appreciation of the role of angular momentum in fission can be described as a punctuated 

evolution of ideas, some indigenous to the field itself, some borrowed from allied disciplines. The 

discovery of a critical stage in fission, involving the passage of the system through a deformed 

configuration (saddle point) by the negotiation of a barrier, brought to light the associated "rigid" 

rotational modes. The application of angular momentum to one such mode, through rotation about 

an axis perpendicular to the elongation axis, led to the conclusion that fission barriers would 

decrease and eventually vanish with increasing angular momentum. Quantitative predictions of 

such a dependence were obtained within the framework of the liquid drop model 1• 

The analogy of the axially symmetric nucleus at the saddle point with deformed ground state 

nuclei suggested a "rotational" spectroscopy in the saddle-point transition state. The assumption of 

conservation of the K quantum number from saddle to scission prompted attempts to study this 

spectroscopy by means of fission-fragment angular distributions2. Evidence for discrete rotational 

bands in the transition state of nuclei in the U - Th region was reported in low-energy fission 

induced by neutrons3, gammas4 , etc. At higher excitation energies, the introduction of the 

statistical distribution inK quantum numbers and the connection of its variance (K0
2) to the nuclear 

temperature and to the principal moments of inertia at the saddle point, led to the classical theory of 

fission-fragment angular distributions as developed by Halpern and Strutinski5. 

So much about the "rigid" rotor degrees of freedom. The possibility that other intrinsic angular

momentum-bearing modes could be active in the fission process surfaced with the early observation 

of a sizeable amount of angular momentum (and aligned, at that!) in fission fragments from the 

spontaneous fission of 252Cfi. The magnitude of the fragment angular momentum (-7fl I fragment) 

despite the o+ ground state of the parent suggested a prescission origin and thus the involvement of 

non-rigid modes. A listing of such modes at the saddle point can be found in the thesis work of 

Nix 7, but their major involvement with the fragment angular momentum had to wait for the advent 

of heavy ion reactions. 
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The lesson of heavy ion reactions was both extensive and incisive. Deeply inelastic reactions 

showed that the entrance-channel orbital angular momentum could be dissipated in a continuous 

fashion all the way down to the rigid rotation limit8•9• This implied the existence of an intrinsic 

mode coupling the orbital angular momentum to the spins of both fragments. The "wriggling" 

mode, described below, satisfies this requirement. Further studies of the magnitude of the fragment 

spins by means of y-ray multiplicity measurements suggested that the fragments had angular 

momenta in excess of what was expected from rigid rotation10 .. The explanation was found in the 

(diffusive or thermal) excitation of additional intrinsic angular-momentum-bearing modes. 

A beautiful confirmation of the excitation of these modes came from the misalignment of the 

fragment spins. The key experiments were the measurements of fragment y-ray angular 

distributions 11-20, sequential particle evaporation21-24, and sequential-fission-fragment angular 

distributions25-30. Such a misalignment was shown to arise from the coupling of the aligned 

angular momentum component associated with rigid rotation to that associated with the random 

fluctuations of those intrinsic modes, whose angular momentum is perpendicular to the rigid 

rotation component31. 

A framework for a global interpretation of these phenomena was offered in the work of Moretto 

and Schmitt31 ·32, where the angular-momentum-bearing modes in a symmetric dinuclear system 

were illustrated, and their statistical mechanics worked out. There are five intrinsic modes: two 

wriggling modes, two bending modes, and one twisting mode, plus the tilting mode arising from 

. the angle between the total angular momentum and the symmetry axis. On this basis, a large 

amount of data from heavy ion reactions found a rational and systematic explanation. 

Another degree of freedom that, while unable to carry angular momentum, is deeply affected by 

it, and requires some attention, is the mass-asymmetry degree of freedom. Recently this degree of 

freedom has come into the limelight because of its dominant role in the compound nucleus emission 

of complex fragments33•34. This process has been described as an asymmetric mode of decay 

controlled by an associated conditional barrier33 • The saddle point in this description is a 

conditional saddle, because the mass asymmetry is assumed to be frozen. The locus of these 

conditional barriers along the mass asymmetry mode coordinate is called the ridge line. Since the 

seminal work of Businaro and Gallone35, it was appreciated that the topology of the ridge line 

changes from low x values to large x values, the mass asymmetry mo?e evolving from stability to 

instability as the fissility parameter x is decreased across the "Businaro-Gallone" point 

(xaa=0.396). The Businaro-Gallone point was also found to decrease with increasing angular 

momentum 1. As a consequence, drastic changes are produced in the fragment mass distributions as 

the angular momentum is increased. Furthermore, the mass asymmetry parameter strongly affects 

the nature and importance of the intrinsic angular-momentum-bearing modes. In particular, the 

tilting mode becomes very soft with increasing mass asymmetry. A thorough study of the mass 

asymmetry dependence of these modes has been carried out by Schmitt and Pacheco36, as a 

generalization of the theory presented by Moretto and Schmitt31 for symmetric dinuclear systems. 

Finally, in recent times there has been a revisitation of the rigid rotation modes in the study of 
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fission-fragment angular distributions associated with heavy-ion-induced fission 37-46 . These 

studies have demonstrated that the K quantum number may not be f~ozen at the saddle point after 

all, but may be detennined at scission, or somewhere in between. This opens up a problem that has 

never been truly solved, namely whether this and the other angular-momentum-bearing modes arc 

thermally or dynamically excited, and, if they are thermally excited, whether the statistical 

equilibrium relevant for the description of the various observables is at the saddle or at the scission 

,. point. A great deal of information bearing on this problem is about to be released from the study of 

the fission fragment spins obtained by means of the latest, most powerful techniques made available 

..._J by high spin spectroscopy47 . So, despite the large amount of work performed in the first half 

century of fission, there seems to be enough work left for a second half century. 

2. THE DINUCLEAR SYSTEM: ITS DEGREES OF FREEDOM AND STATISTICAL 

.MECHANICS 

lf the nucleus anhe saddle point (or for that matter, at the scission point) is considered as a 

single rigid body, it can be characterized by a total of six degrees of freedom: three translational 

modes associated with the motion of the center of mass, an.d three rotational modes. Furthermore, 

if the nucleus is axially syrrupetric, as it is conunonly assumed, the three rotational degrees of 

freedom can be reduced to a rotation about the synunetry axis, plus a (doubly degenerate) rotation 

about an axis perpendicular to the symmetry axis. This requires that the component K of the 

i;lngular momentum along the symmetry axis be a constant of motion. Thus, the angle between the 

:~: -~~ 

,··:t.-:.~. !j 

. .: ' /~ 

angular momentum and the symmetry axis is conserved; because of its relevance, such an angle is !:':- '"" 

·.I .. 

called the "tilting" angle. 

The experimental measurements of fragment angular momentum 11 -30, and its alignment, 

indicate the relaxation of the rigid body condition, and require the introduction of intrinsic angular

momentum-bearing modes characteristic of a dinuclear system. These modes are easily visualized 

for a symmetric dinuclear system constituted by two equal spheres in contact31 , although the 

generalization to an asymmetric system of two touching, unequal spheroids is rather 

straightforward. 

The enumeration of the degrees of freedom of a dinuclear system is immediate: two rigid bodies 

require 6+6=12 degrees of freedom. The condition of contact removes one, which leaves eleven. 

Of these, three are translational degrees of freedom, so there are eight angular-momentum-bearing 

modes left. Of these, three are associated with the "rigid" rotation of the dinuclear system. The 

remaining five degrees of freedom are "intrinsic" angular-momentum-bearing modes. These modes 

are associated with rotations of one nucleus with respect to the other in such a way that the 

whole system need not carry a net amount of angular momentum. The five normal modes (plus the 

tilting mode) are illustrated in figure 1. They are: two degenerate "bending" modes, two degenerate 

"wriggling" modes and one "twisting" mode. These names have been chosen to correspond with 

the normal modes at the saddle point as described by Nix7, although the correspondence is not 

completely obvious. 
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Figure 1. (Left) Schematic illustrating the twisting and the doubly degenerate bending modes 
for a two-equal-spheres model. In each case the spin vectors of the fragments (symbolized by the 
shorter arrows) are of equal length but point in opposite directions. (Right) Schematic illustrating 
the tilting mode and the doubly degenerate wriggling modes for a two-equal-spheres model. The 
long arrows originating at the point of tangency of the two spheres represents the orbital angular 
momentum vectors3I. 

The bending mode consists in the rotation of one sphere about an axis perpendicular to the 

symmetry axis, and in the corresponding counterrotation of the other sphere. This mode is doubly 

degenerate. 

The twisting mode consists in the rotation of one sphere about the symmetry axis, and in the 

corresponding counterrotation of the other sphere. This mode is not degenerate. 

The wriggling mode is somewhat more complicated. Both spheres corotate about parallel axes 

perpendicular to the symmetry axis, and simultaneously counterrevolve about each other about an 

axis parallel to the rotation axes. This mode is doubly degenerate. 

In the bending and twisting modes, the spin of one sphere is compensated by that of the other, \.' 

so that the net angular momentum is always zero. In the wriggling modes, the spins of the two 

spheres are equal and parallel, and they are exactly compensated by the orbital angular momentum 

associated with the revolution which is antiparallel to the fragment spins. Therefore, the excitation 

of the bending and twisting modes produces fragment spins which are antiparallel, while the 

excitation of the wriggling (and tilting) modes produces fragment spins that are parallel. 
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2.1. Statistical Coupling Between Orbital and Intrinsic Angular Momenta: The Wriggling Modes 

As we have mentioned above, the coupling between orbital and intrinsic angular momentum is 

mediated by one wriggling mode. This is illustrated in figure 2, where it is shown that the addition 

of orbital motion to an excited wriggling mode leads to a decrease of the orbital and to an increase of 

the intrinsic angular momentum. 

+ 
Figure 2. Schematic showing how the addition of orbital angular momentum (symbolized by 

the long arrow) to an excited wriggling mode leads to a decrease of the orbital angular momentum 
and an increase of the intrinsic angular momentum. 

If the total angular momentum is I arid the fragment spin is s, the energy for an arbitrary parption 

between orbital and intrinsic angular momentum is: 

(I - 2s) 
2 

2s 
2 12._ + 2_] 2 21 r 

E(s) = +- = 2 ("t s - -s +-. 
2Jlr2 ~ J..Lr ..., Jlr2 2Jlr2 

(1) 

The flrst term is the orbital and the second is the intrinsic rotational energy, ~ being the moment of 

inertia of one of the two equal spheres. The partition function is: 

f -E(s) IT 
Z cc e ds = exp I- 12 

2 ] . 
2~ + J..Lr2 zr (2~ + J..Lr ) 

The average spin for both fragments is given by: 

5 
-E(s)IT 

2 
s = 2 _s e ds = 2~ 

z J..L?+~ 

2 
= 7 1 = 2lR. 

This is, of course, the rigid rotation limit. The second moment s2 is given by: 

2J..Lr
2 ~ T 4 1

2 ~2 

4s
2 

= + -----
J..Lr2 + ~ (J..L/ + ~)2 

From this we obtain the standard deviation: 

2 
= 2~J.l.r T = _!£~T 

J.lr2 + 2~ 7 
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The result in (3) is temperature independent, as one should expect from the fact that (1) is quadratic 

m s. This result could be obtained by solving the equation: 
dE 
ds = 0. (6) 

This result corresponds to the mechanical limit of rigid rotation when the orbital and the intrinsic 

angular velocities are matched. 

The result in (5) could have been obtained also by appreciating that the thermal fluctuations :.. 

about the average in (3) are controlled by the second derivative of (1) at the minimum, or: 

4 cr2 = 4 Tlb 
s (7) 

where: 

(8) 

In the case of I= 0, the fragments are still going to acquire angular momentum as shown by (4): 
2 

s2 = 2_ J.lr ~ T = ~ ~ T. 
2 J.lr2 + 2~ 14 

(9) 

Since there are two wriggling modes, the mean square angular momentum of each fragment is: 
2 

52 = 2 s2 = ~r S T 

~2 +25 
5 
7~T. 

2.2. The Bending and Twisting Modes 

(10) 

These three degrees of freedom are illustrated in figure 1. They are degenerate in our 

two-equal-sphere model. A splitting of the degeneracy could easily occur in the case of fragment 

deformation. We shall not consider this important possibility at the moment, although it is 

completely trivial, because of the arbitrariness in the choice of deformation. 

The partition function for these three degenerate modes can be written as: 

R2 

Z oc: J R2 e- m dR, 

from which: 

_JiT 
R = 2V -;-

or 1/2 ST per degree of freedom. 

3 1 
lnZ=A--ln-

2 ~T 

2 
R =-

(11) 

(12) 

Notice that R is the angular momentum of each fragment and that, for each mode, ihe angular 

momenta of the two fragments cancel out pairwise. Furthermore, for each fragment the resulting 
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angular momentum is randomly oriented. It is worth stressing again that, as for the wriggling 

modes, this angular momentum can exist even when the total angular momentum is zero because of 

the pairwise cancellation mentioned above. 

At this point the (frequently asked) question may arise: "The bending and twisting modes in the 

two sphere model have no restoring force. Wouldn't the results be different if we were to introduce 

them?" The answer is no.· Neglecting the degeneracy for the moment, the Hamiltonian would look 

like: 

H 
R2 1 2 
- + -kro 
~ 2 

(13) 

where w is the conjugate angle and k is the stiffness. The partition function thus factors the kinetic 

and potential energy components: 

R2 k,..;. 

Z = J e - i-f dR J e 2
T doo (14) 

As a consequence, any moment of R is strictly independent of the value of the stiffness k. 

2.3. The Tilting Mode 

This mode is unlike the other five "intrinsic" modes in the sense that it cannot conf~! angular ~-~),. ~ 

momentum to the fragments, while keeping the total angular momentum equal to zero. However, 

we treat its statistical mechanics here because of its importance. 

In their most stable configuration, the two touching fragments are aligned with their common 

axis perpendicular to the total angular momentum. Because of thermal fluctuations, this condition 

can be relaxed. If we now assume that the two fragments are rigidly attached one to the other, the 

energy is given by: 

I2 - K2 K2 J2 K2 
E=---+--=--+-

2~ 
.L 2~ II ~ .L 2~err 

(15) 

where~ 1. = 2 ~ + ~. ~II= 2 ~ and ~eff-1 = ~ 11 -
1 - ~ .l-1 

; K is the projection of the angular 

momentum I along the line of centers. The partition function is: 

Z = /;, exp [- --t--] .J 2~ ffT' erf [ J ~ T] 2_, .L T e eff 

from which: 

K 2 = n T -'err -

[
. !2 ] 

exp - 2~ T 
eff 
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For small I we have: 

K2 = ~ 12 ' 
3 

while for large I we have: 
2 14 
K = ~err T = 5 ~ T . 

The total fragment spin is given by: 

2s = J K2 
+ 4~ [ I

2 
- K

2 J 
and the averaged square quantity is: 

4 S2 _ K2 4 I2 _ 4 K2 _ 45 -K2 4 I2 
- +- - -- +-49 49 49 49 

and for large I: 

4 s2 = ..:! ~ T + ~ 12 

7 49 

2.4. Summary and Generalization to Asymmetric Dinuclear Systems 

(18) 

(19) 

(20) 

(21) 

(22) 

The overall statistical treatment of the angular-momentum-bearing modes allows us to describe 

the angular momentum distribution of one of the two fragments as a tridimensional Gaussian 

distribution in the angular momentum components I , I , I : 
- X y Z 

[ 

I
2 

I
2 o -r /] X y Z Z 

P .( I ) oc exp - - + - + , 
2cr2 2cr2 2cr2 

X y Z 

(23) 

where Iz is the rigid rotation component: 

- ~i 1 I =_......;.._I= -I 
z 2 7 

JJI + 2~i 
(24) 

for equal touching spheres, and: 

cr2 = cr2 . + cr2 = 1. ~ T + .:L ~ T = ~ ~ T 
X tWISt tilt 2 10 5 

(25) 

cr2 = cr2 + cr2 . = I.~ T + 2_ ~ T = ~ ~ T 
y bend wng 2 14 7 

(26) 

cr2 = cr2b + cr2 . = ..!. ~ T + ~ ~ T = ~ ~ T . 
z cod wng 2 14 7 

(27) 

In the case of an asymmetric system, the results are qualitatively similax-36• The three variances in 

dimensionless units are shown in figure 3 as a function of mass asymmetry for two touching 

spheres. The most remarkable feature of this figure is the rapid increase of the variance crx 2 with 

increasing asymmetry. Titis effect is almost exclusively due to the softening of the tilting mode. 
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Figure 3. The heavy fragment spin variances 
for a dinuclear complex are shown as a function 
of mass asymmetry. The variances are shown 
in dimensionless units after division by ;} T, sym 
the moment of inertia of a mass symmetric 

As one of the two spheres becomes smaller, the 

rotational energy increase associated with an 

increasing projection K becomes smaller. The 

corresponding K 0 2 increase for the very asym

metric configurations associated with the 

emission of an alpha particle, a proton, or a 

neutron is responsible for the small anisotropy in 

the angular distributions of these particles in 

comparison with those for symmetric fission. 

3. ANGULAR MOMENTUM DEPENDENCE 

OF THE FISSION BARRIERS AND THE 

MASS ASTivfMETRY COORDINATE 

The decrease of the fission barrier height with 

increasing angular momentum, and its eventual 

disappearance, was appreciated by the earliest 

studies based upon the liquid drop model. The 

classical work by Cohen, Plasil and Swiatecki 1 

describes all the stationary points of a rotating 

liquid drop potential-energy surface in terms of 

two dimensionless parameters: 
spherical fragment times the temperature60. 

X = ( Ecoulomb /2Esurface ) ; Y= ( Erot /Esurface) 
where the various energies, Ecoulomb• Erot• and Esurface are calculated for the equivalent spherical 

configuration. However, the topology of the potential energy surfar:e with explicit incorporation of 

mass asymmetry was already understood in the pioneering work of Businaro and Gallone35. 

Within the two sphere model, the symmetric saddle point is unstable (degree of instability 2) below 

the value x = x80 (x80 = ~.396 in the liquid drop model and x80 =0.6 for two touching spheres at 
y = 0). For x > x80 the s.addle point branches .out into three new saddles: one, at symmetry, is 

stable with respect to the mass-asymmetry mode (degree of instability 1), and the other two move 

out at mirror asymmetry and have degree of instability 2. They are sometimes vividly called 

Businaro-Gallone mountains. This topology is retained at higher angular momentum, with the 

Businaro-Gallone point decreasing with increasing angular momentum. More recently, the 

association of the ridge line (locus of conditional saddle points at fixed mass asymmetry) with 

complex fragment emission33-34 has prompted the calculation of the potential energy surface as a · 

function. of mass asymmetry, using both the liquid drop model and the finite range model48
• The 

latter model, an improvement upon the liquid drop model, explicitly treats the surface-surface 

interaction that is so important for highly necked-in configurations. 

An example of the overall dependence of the fission barrier upon angular momentum and mass 

asymmetry is shown in figure 4. The calculation has been performed for the nucleus 110Sn with 
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Figure 4. Surface plot of the asymmetry and 
angular-momentum-dependent barriers for the 
decay of 110 S n • calculated with a 
finite-range-corrected rotating liquid drop 
model49 . 

5 

• •• 
• • 

10 15 20 25 

Figure 5. Differential cross sections for 200 
MeV 45 Sc + 65Cu (solid symbols ) and 781 
MeV 93 Nb + 9Be (open symbols)49 • The 
compound nuclei formed in the two reactions 
are very similar in mass and excitation energy, 
differing primarily in angular momentum. 

the finite range model49. At zero angular momentum the nucleus is very close to the Businaro

Gallone point, and the ridge line is very flat. With increasing angular momentum, the Businaro-

Gallone point moves downward and the ridge line develops a minimum at symmetry which 

becomes more pronounced as the angular momentum increases. 

There is ample but scattered experimental evidence for the development of a minimum in the 

ridge line with increasing angular momentum49, as seen in figure 5. Extensive evidence of the 

angular momentum dependence of the ridge line should come from the study of complex fragment 

emission throughout the periodic table. 

4. ANGULAR MOMENTUM PARTITION BETWEEN FRAGMENTS: RIGID ROTATION 

AND ANGULAR MOMENTUM FRACTIONATION 

The partition of the total angular momentum between the fragment spin and the orbital rotation is 

strongly affected by the mass asymmetry. In the limit of rigid rotation, the expected spin Ii of one 

of the fragments is: 

Ii = gi IT I ( L. gi + J.ld2) 
I 

(28) 

where g i are the relevant fragment moments of inertia, J.ld2 is the moment of inertia associated 
with the dinuclear system, and IT is the total angular momentum. 

This apparently trivial effect has been demonstrated in some reactions like Ne + Ag at 175 Me y& 
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and Ar + Yb at 237 MeV9, by measuring the 

y-ray multiplicity (My> as a function of mass 

asymmetry. M'Y should be approximately pro

,----,---,----..--.....---,---r--., portional to the sum of the fragment spins, and 
• 237 MeV 40Ar+ 89 Y thus should increase with increasing asymmetry 

175 MeV 20Ne+Ag 
as predicted by (28). This signature is indeed 

0 

seen in these reactions, as shown in figure 6. It 

is in fact seen more clearly in reactions like Kr + 

Ag23 and Ar + Ni21 where the spin of one of the 

two fragments was measured from the 

out-of-plane angular distributions of sequentially 

emitted alpha particles, as shown in figure 7. On 

the other hand, this signature is singularly absent 
so~-~-~--~--~----~--~--~ 

5 10 AT6~IC ~SMsl~ 30 in many other reactions where rigid rotation is 

expected because of the complete relaxation of the 

Figure 6. y-ray multiplicity versus .fragment kinetic energies50-53. In these reactions 
fragment atomic number for the reactions 175 . . . 
MeV 20Ne + natAg (open circles)& and 237 the total fragment spm IS nearly mdependent of 

MeV 40 Ar + 89Yb (filled circles) 9. mass asymmetry (see figure 8). 
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Figure 7. (Left) Experimental intrinsic spins of the individual fragments compared with the 
results of calculations for the sticking limit for rigid bodies21. (Right) The spin of the heayy 
fragment extracted from the a-particle angular distributions (full circles) and the sum of the spms 
inferred from the a-particle angular distributions (squares) and from~ data (open circles), for the 
reaction 664 MeV 84K.r + natAg 23. The lines correspond to rigid rotation calculations. 
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The explanation for this apparent contradiction 

lies in what has been called angular momentum 

fractionation32, namely a predominance of low 

I 

zo_t-

T 
2Qi-

1\ 0:._ 
'::':' )...., 

:E 
v 30-

20'-: 
1 

I r 

618 MeV 86Kr TKE (MeV) 
101, 109 Ag 90_250 

++··············~·····; -l · 1-wave populations at large asymmetries. This 

II 
I • 

0 

Q 

0 

Q 

1 
250·360~ 

i 

j 
fractionation of angular momentum along the 

mass-asymmetry coordinate can be one of two 

kinds. The first kind arises from statistical 

equilibration along the mass asymmetry 

coordinate31. The larger the 1-wave, the deeper 

the potential energy minimum at symmetry. As a 

1 consequence, high 1-waves should be 
f 

..J concentrated in more nearly symmetric divisions, 
270-420 I 

_ while low 1-waves should be spread out more 

evenly, and thus dominate at larger _, 
; asymmetries31. 

The second kind is a dynamical fractionation 

typically associated with deeply inelastic 

Figure 8. M'Y vs. atomic number for the processes32. The lower 1-waves are associated 
reactions 618 MeV 86Kr + natAg and 618 MeV 
86Kr + 165Ho. The full and the open symbols with a long interaction time and spread out their 
are data for a TKE gate on the deep inelastic and population to asymmetries far removed from that 
quasi- elastic reactions, respectively. The 
curves are diffusion model calculations61 of the injection point, while the higher 1-waves 

are associated with a short interaction time and concentrate their strengths in the vicinity of the 

entrance channel asymmetry. 

5. TilE TILTING MODE AND FISSION FRAGMENT ANGULAR DISTRIBUTIONS 

The standard assumption employed in calculating the fission fragment angular distribution is 

that the orientation in space of the saddle or scission configuration corresponds to the distribution of 

fragments at infinity. This is correct only in the limit in which the velocity arising from Coulomb 

repulsion is much greater than the velocity that the fragments possess because of their orbital 

rotation. Thus, this assumption is adequate for relatively small angular momenta, but should be 

used with caution in the case of the large angular momenta present in heavy ion reactions. 

The role of the tilting mode in the angular distribution can be observed by substituting in the 

Gaussian K distribution: K = I cos a. : 

1 ] [ 1
2 

cos
2 a.] d("\ -- exp - .u., 

~ 2 K
2 

c 0 

(29) 
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where a is the emission angle, K02 = ( ~ 11 -1 - ~ .L •1 ) "1 T, and ~ 11, ~ .L are the principal 

moments of inertia of the saddle or· scission configuration, and ~ c is the moment of inertia of the 

compound nucleus. 

For a decay following complete fusion, the angular distribution becomes ( r F < r n)33: 

[ 
. ~ 12 

{ 2 1 } ] W(S) oc: exp (- smax) I0(sm) + 11 (sm) + T 10(sm) + 311 (sm)- 3 12(sm) (30) 

where sm= ~2 sin2e I 4K02, Im is the maximum angular momentum, and I 0 , Ip I2 are the 

modified Bessel functions of order 0, 1, 2. There are two interesting limits: 

lim W(S) oc: (sin 8 )"
1 

, lim W(S) = constant (31) 
P-+ o 

where p = Im2 I 4K02. 

An analysis of the fission-fragment angular distribution allows one to extract the quantity K02 

which, in turn provides information regarding the shape of the critical stage. What should this 

critical stage be? Early opinions favored the saddle point configuration, presumably because of its 

fundamental role in controlling the decay rate5. The reason why this configuration should be 

relevant to the angular distributions has never been made clear. Conservation of the K quantum 

number from saddle to scission is assumed, but there is no fundamental conservation law requiring 

it. The reasons advanced for the conservation of the K quantum number seem rather unconvincing. 

In fact, to at least one of the authors, such a K conservation appears little short of a miracle. 

Miracle or not, early measurements at extremely low energies showed rapid variations of the 

angular distribution with changes of excitation energy in the 100 KeY range, which were interpreted 

in terms of discrete states at the saddle point with well-defined K quantum numbers3•
4

• At 

somewhat higher excitation energies, angular distributions and angular momenta seemed to be in 

accord with the statistical K distributions at the saddle, and the deduced moments of inertia appeared 

to agree with the saddle shapes predicted by the liquid drop model2. However, more recent data 

from fission induce~ by heavy ion reactions covering a broader range of excitation energies and 

angular momenta seem to be somewhat inconsistent with the predicted compact saddle shapes, and 

perhaps more in line with the more elongated scission configurations37-46• 

An alternative theory by Ericson54, in which fission rates and angular distributions are predicted 

from the phase space of the fragments at infinity and the inverse cross section, has been revisited 

recently42•43 •45• In a way, it could also be considered a "scission" theory. A comparison of the 

data with all three theories55 seems to indicate that none is fully adequate to explain all the data and 

their energy dependence. An incomplete relaxation of the K quantum number from saddle to 

scission may be responsible for the observed features 56. Unfortunately, knowledge of the 

relaxation times associated with this and possibly other degrees of freedom together with the 

knowledge of the transit time from saddle to scis.sion are necessary to test this theory. 
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- 6. INTRINSIC ANGULAR - MOMENTUM- BEARING MODES: THEIR EFFECT ON 

THE MAGNITUDE AND ALIGNMENT OF THE FRAGMENTS SPIN 

We have already illustrated how the thermal excitation of the bending, twisting, and wriggling 

modes can provide the fragments with spin, even when the total angular momentum is zero. This 

thermally-excited fragment angular momentum adds to that arising from rigid rotation, thus 

increasing the overall fragment spin, but, at the same time, introduces a misalignment of the 

fragment spin with respect to the normal of the fragment separation axis. ·The excitation of the 

tilting mode cannot provide any fragment spin if the total angular momentum is zero. However, it 

can increase the angular momentum of the fragments and can contribute to its misalignment. For 

instance, a full excitation of the tilting mode (I = K) leads to a complete transfer of the total angular 

momentum into fragment spin (IT = I1 + I2) and to a spin alignment parallel, rather than 

perpendicular to the separation axis. 

The first effect, an increase of the fragment spin over the amount expected from rigid rotation 

should be more evident in low angular momentum systems. It has been observed in a v<¢ety of 

reactions leading to fission, but also in many deeply inelastic reactions57• The observed fragment 

spin is always higher than that expected from rigid rotation, and seems to be consistent with the 

thermal excitation of the angular-momentum-bearing modes. Recent determination of the fragment 

spins based upon the measurement of discrete y-ray lines associated with individual isotopes seems 

to indicate a high variability of the primary fragment spin, possibly associated with different shapes 

at the scission point47. 

The second effect, the fragment spin misalignment, is perhaps the most obvious expression of 

the excitation of the angular-momentum-bearing modes. It has been studied experimentally in rather 

extensive work on deeply inelastic reactions involving the measurement of in-plane and out-of-plane 

angular distributions of sequential fission fragments25-29, or sequential y-decay from the primary 

deeply inelastic fragmentsll-20. 

6.1. Angular Distribution of Sequentially Emitted Particles 

The decay width of a particle as a function of the angle with respect to the angular momentum 

direction is given by (29). If the angular momentum has an arbitrary orientation with respect to our 

chosen frame of reference, defined by its components Ix, ~, Iz. the angular distribution can be 

easily rewritten by noticing that: 
II II 

K = I cos Ct = I • n = IX sin 8 cos 4> + Iy sin 8 sin 4> + Iz cos 8 (32) 

II 

where n is a unit vector pointing along the direction ?f particle emission with polar angles 8 , 4> . 

If the orientation of the angular momentum is controlled by the distribution in (23), we can integrate 

over the distribution of orientations and the fragment decay width becomes58: 

. [ -2 2 ] 1 cos 8 
exp - dQ 

2 S2(8, ¢>) 
_j {{

2 
1 1 ] 1 1 (8,¢>) dn oc exp -:- ---

. 2T ~ .L ~c S(8,¢>) 
(33) 
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where: 

S
2 

(8,<1>) = K0
2 

+ (cr2 cos
2 

<I> + cr2 sin
2 

<!>) sin
2 

8 + cr2 cos~ 8 . 
X y Z (34) 

In (33) we set Iz. = I, in other words we average o·ver the orientation but allow the decay width to 

depend upon only the average angular momentum, set equal to its z component. This expression 

should then be considered only as a high angular momentum limit (cr II << 1). 

The final angular distribution is obtained by integrating over the fragment angular momentum 

distribution, which is assumed to reflect the entrance-channel angular momentum distribution. One 

obtains58: 

( 
1
2

. 12 ] 
W(8,<1>) =..!.. ~ exp(-A.)-~ exp(-A ) 

SA. ~ A ~. 
mJO -~ 

If !min = 0, then: 

where: 

W (8,<1>) = - 1
-[ 1 - exp (-A)] 

SA 

(35) 

(36) 

( 2] [ 2] [ ] 2 cos 8 2 cos 8 1 1 1 
A = A = I - 2 - ~ ; A . = I . 2 - ~ ; ~ =- --- . (37) 

max max ZS mJo min ZS 2T ~ ~ 
0 1. 

The quantity ~ 
0 

is the moment of inertia of the nucleus after neutron emission, ~ 1. is the moment of 

inertia of the critical shape for the decay (e.g. saddle point). It is important to notice that the angular 

momentum dependence of the particle/neutron competition or fission/neutron competition is 

explicitly taken into account through p. 
The final ingredient necessary for an explicit calculation of the angular distributions is the 

quantity K02. This quantity can be expressed in terms of the principal moments of. inertia of the 

critical configuration for the decay: 

K2 = [ _..!.._ - _1 ] -IT CT T 
0 ;3 ;3 = .,J cff · 

II J. 

(38) 

For fission ~ eff can be taken from liquid drop calculations 1• For light particle emission, the 

calculation of ;3 eff can be worked out trivially. 

6.2. Angular Distribution of Sequentially -Emitted y- rays 

Fragments with large amounts of angular momentum are expected to dispose of it mainly by 

stretched E2 decay. If the angular momentum of the fragment is aligned, the typical angular pattern 

of quadrupole radiation should be observed. Any misalignment should decrease the sharpness of 

this angular distribution. If the distribution of the angular momentum components lx, ly, lz is 
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statistical, it is straightforward to derive an analytical expression for the angular distributions52. 

For a perfectly aligned system: 

3 2 5 4 
W (a) = 4 (1 +cos a) W (a) = 4 (1 -cos a) (39) 

For E1 For E2 

If the angular momentum is not aligned with the z axis, one must express a in terms of 8 and <j>, 

which define the direction of the angular momentum vector. In particular: 

r. t1 
cosa = -- = 

1 

IX sin 8 cos <!> + Iy sin 8 cos <!> + Iz cos 8 

(12 + 12 + 12) 112 
X y Z 

(40) 

For any given I, the angular distribution is obtained by integrations over the statistical distribution 

P(i) of the angular momentum components: 

W (8, <j>) = J W (a) P (f) df . (41) 

It is not possible to obtain an exact analytical expression for the general case. However, if we are 

willing to assume a 2 = a 2 = a 2 = a 2
, then an exact result can be obtained. For the E 1 

X y Z 

distribution one obtains58 : 

W (8)E1 = ~ { 1 + cos
2 

8 + ~2 [ 1- D(~)] (1- 3 cos
2 

8) } . (42) 

For the E2 distribution one obtains: 

W(9)E2 = ~ { 1.,. cos 'e - 2P' [ 3 sin
2
9 cos

2
9- 2 cos 

4
9- {o<P> (sin2

9 -4 cos
2
9) sin

2
9 ] 

- 3 p4(4 cos 49 +~sin 'e - 12 sin 'e cos 
2
9) 11 - D(p )J } (43) 

In these equations~= a I~ and D CP) = fi~ F( ...fTi2 f3) where: 

X 

F(x) = e-x'" f / dt (44) 

0 

is the Dawson's integral. One can verify immediately that both expressions behave as expected in 

the limits of f3 = 0 and f3 = oo •. The anisotropy W(0°) I W(90°) tends to 1 when f3 tends to 

infinity for both E1 and E2 transitions, while it tends to 0 for E2 and to 2 for E1 when f3 = 0. 

These results are graphically summarized in figure 9, where the anisotropy is plotted as a 
function of the fraction of El radiation for various values of a2 1 j2 . The two extreme 

z 
possibilities of stretched and nonstretched E 1 decay are considered. If one has a fairly good 

experimental idea of the amount of El radiation to be expected from a given fragment and of its 

degree of stretching, the measurement of the anisotropy yields c? 1 j2 , which is of course the 
z 

most direct information about the misalignment 
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Figure 9. Calculated y-ray anisotropies for 
mixtures of stretched El and E2 transitions as a 
function of the fraction of E1 radiation for 
various values of a2 ! j2 58. 
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Figure 10. Sum of the spin magnitudes (I 1 + 

12) as a function of Q value for the reactions 
1400 MeV 165Ho + natAg,l4Bsm and 176yb 20. 

6.3. Experimental Spin Alignment from "(-Ray Angular Distributions 

The continuum y-ray anisotropy in heavy ion reactions has been extensively studied for the deep 

inelastic reaction 8.5 MeV/ A Ho+Ho18·19 and extended to the reactions 8.5 MeV/A Ho + Yb, Sm, 

Ag 20. The Q-value spectrum was divided into a series of energy bins for which the y-ray 

multiplicity, energy spectra, and anisotropy were measured. 

The sum of the spins obtained from the y-ray multiplicity as a function of Q value is shown 

in figure 10. As in other reactions32 , an increase in the energy loss leads to an initially rapid 

transfer of angular momentum to the fragments, followed by a relatively slow ·decrease as one 

moves toward the greatest inelasticities. These data (figure 1 0) show that each fragment can pick up 

as much as 35 - 40 n of angular momentum. 

The anisotropy of the y-rays (in the region of the y-ray spectrum dominated by quadrupole 

radiation) as a function of Q value is shown in figure 11. In all cases, but more visibly for Ho + 
Yb, the anisotropy rises initially with increasing energy dissipation to values as high as two, and 

then declines slowly with further energy dissipation. 

Qualitatively, the rise and fall of the y-ray anisotropy with increasing energy dissipation is 

easily understood if studied simultaneously with the spin transfer. For small energy dissipations 

there is a small amount of angular momentum transferred to the fragments, which in tum can be 

easily depolarized by in-plane components arising from specific spectroscopic effects. As the 

energy dissipation increases, angular momentum is rapidly transferred to the fragments. This 
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transferred angular momentum is aligned .and is 

little perturbed by the in-plane thermally-fluctuat

ing components, which increase very slowly with 

excitation energy (dl oc T oc Q112). The 

resulting strong alignment is manifested in the 

substantial rise of the y-ray anisotropy. 

A further increase in the energy dissipation docs 

not increase the transferred angular momentum 

~ but it increases the excitation energy and thus the ( .. .,._ 

thermal fluctuations of the in-plane components. 

Q(MeV) As a consequence the total angular momentum 

F. 11 · tr f t. f becomes progressively less aligned and the y-ray tgure . y-ray anxso opy as a unc IOn o 
Q value for the reactions 1400 MeV l65Ho + anisotropy decreases. Of course, there are 
natAg, 148 Sm and 176 Yb, for heavy ions additional sources of angular momentum mis-
detected near the grazing angle. Error bars for . . . . 
the three s!tstems are similar and are shown alignment, like particle evaporation from the 
only for 16 Ho + 176Yb 20• primary fragments, but it appears that the main 

cause of angular momentum misalignment is the "thermal" excitation of the angular

momentum-bearing modes. The inclusion of thermal fluctuations provides us with picture almost 

coincident with the experimental data, as seen in figure 12. It should be pointed out that the 

calculation uses the experimental My as input for the fragment angular momentum and uses 

0.80 MeV< Er < 0.95 MeV 

l 
.-~ -.-H,...1o---r-t - -· 

- o Yb 
o) 

. 
_j 

1 'UHo•~~y(~ 
-' _ .I _. ___ . _l_ ______ L . . _ I. 

-400 -300 -zoo -100 
_j 

0 -400 0 ·300 

Q(MeV) 

Figure 12. (Left) Comparison between experimental ~circles) anisotro~ies of )·-rays (~ = 0.8 -
0.95 MeV) in the reactions 1400 MeV 165Ho + natAg,14 Sm and 176Yb 2 and a calculation based 
on the equilibrium statistical model (squares) as a function of Q value. Lines are drawn through the 
calculated points to guide the eye. (Right) Alignment parameter Pzz as a function of Q value, for 
each of the two inelastic fragments. 
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the theory only to calculate the cr's. In this way, the use of the theory may be valid even in Q-value 

regions where the full equilibrium limit has not been attained~ since it is well known that 

fluctuations tend to their equilibrium limit a great deal faster than the average values59. 

From the above analysis one can calculate the alignment for each individual fragment, although 

this decomposition is far less certain that the calculation of the anisotropy. In figure 12 the 

alignment P zz is shown for each of the two fragments. In general, alignments as great as 0. 7 are 

observed, with the greatest alignments being associated with the heavier partner. 

7. CONCLUSIONS 

The relevance of the angular-momentum-bearing modes to the fission process at large is quite 

clear at this point, but specific understanding of their behavior is still somewhat elusive. More 

specifically, the outstanding question is: "Do the relevant observables reflect conditions frozen at the 

saddle point or at the scission point?" Fission decay widths seem to indicate that angular

momentum degrees of freedom depress the fission barriers and affect the transition state at the 

saddle point. However, fission angular distributions suggest K quantum numbers are frozen at the 

saddle point only for low energy and angular momentum, but not at higher energies and angular 

momenta. The intrinsic modes such as wriggling, bending and twisting should be relevant at 

scission. However, the most important experiments involving them have been carried out for deep 

inelastic reactions, and not for fission. Thus, the role of the angular-momentum-bearing modes in 

fission will remain an interesting and open question for quite a few years to come. 
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