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Abstract

Recent positive selection can increase the frequency of an advantageous mutant rapidly enough 

that a relatively long ancestral haplotype will be remained intact around it. We present a hidden 

Markov model (HMM) to identify such haplotype structures. With HMM identified haplotype 

structures, a population genetic model for the extent of ancestral haplotypes is then adopted for 

parameter inference of the selection intensity and the allele age. Simulations show that this method 

can detect selection under a wide range of conditions and has higher power than the existing 

frequency spectrum-based method. In addition, it provides good estimate of the selection 

coefficients and allele ages for strong selection. The method analyzes large data sets in a 

reasonable amount of running time. This method is applied to HapMap III data for a genome scan, 

and identifies a list of candidate regions putatively under recent positive selection. It is also 

applied to several genes known to be under recent positive selection, including the LCT, KITLG 

and TYRP1 genes in Northern Europeans, and OCA2 in East Asians, to estimate their allele ages 

and selection coefficients.
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1. Introduction

Natural selection plays an important role in the recent history of human evolution, and is 

still active in shaping the genetic diversity pattern of human populations. Genes under 

positive selection may be involved in the adaption to new environments and in the resistance 
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to infectious diseases (Hamblin et al., 2002; Bersaglieri et al., 2004; Tishkoff et al., 2007; 

Simonson et al., 2010; Yi et al., 2010; Beall et al., 2010; Peng et al., 2011; Xu et al., 2011; 

Xiang et al., 2013). In recent years, interest is growing in detecting positive selection using 

DNA polymorphism data, since the rapid accumulation of genomic level molecular 

polymorphism data provides a chance to systemically investigate the footprints of natural 

selection (Tajima, 1989; Fu and Li, 1993; Fay and Wu, 2000; Akey et al., 2002; Sabeti et al., 

2002; Kim and Stephan, 2002; Nielsen et al., 2005; Voight et al., 2006; Tang et al., 2007; 

Sabeti et al., 2007; Williamson et al., 2007; Pickrell et al., 2009; Chen et al., 2010; 

Grossman et al., 2013). Recent positive selection (RPS), which occurred in the recent past 

and is still active, has gained particular attention. RPS can increase the frequency of 

advantageous alleles in a short time, and thus result in high level of haplotype sharing in the 

vicinity of the selected mutant, and higher homozygosity among the selected haplotypes 

than those carrying the neutral allele. This unique pattern of multilocus haplotype structure 

enables methodology development for identifying genes under RPS and parameter inference 

of the selection process.

Statistical tests have been developed to test for natural selection based on multilocus 

haplotype frequency distribution or haplotype structure (e.g., Ewens 1972; Slatkin 1994; 

Depaulis et al. 1998; Innan et al. 2005). Innan et al. (2005) presented a good review of these 

haplotype-based methods. Among the various haplotype-based tests, several exploit the 

specific haplotype structure caused by RPS by comparing the homozygosity level between 

selected and neutral haplotype groups (e.g., Hudson et al. 1994; Sabeti et al. 2002; Hanchard 

et al. 2005; Voight et al. 2006). The first of this kind was proposed by Hudson et al. (1994). 

Their haplotype test was designed to examine a group of high frequency haplotypes with 

little genetic variation among them. The test was carried out by estimating the probability of 

observing fewer polymorphic sites in repeated coalescent simulations given the sample size 

and allele counts. Hudson et al (1994) applied the method to analyze the Sod gene in 

Drosophila melanogaster. At this locus, there are two alleles, labelled by “slow” and “fast”. 

Hudson et al (1994) found that there was no mutation among the slow allele group, which 

has a frequency of approximately 18%, and concluded that there was a significant deviation 

from neutrality. Sabeti et al (2002) proposed a Relative Extended Haplotype Homozygosity 

(REHH) test, which starts with choosing a “core region” (Sabeti et al., 2002), a small region 

of very low historical recombination, and then calculates as the test statistic the ratio of 

Extended Haplotype Homozygosity (EHH) of the core haplotype under test over the other 

core haplotypes. The significance level of the REHH test is generated by coalescent 

simulation of neutral data that match to the real data by haplotype group numbers and 

polymorphism level. The method was applied to identify the selected core haplotypes in two 

malaria-resistance genes G6PD and CD40, and later to the HapMap data for a genome-wide 

scan (Sabeti et al., 2007). The iHS (integrated haplotype score) test, as a variant of REHH 

test, was proposed by Voight et al (2006). The integrated EHH (iHH, defined as the area 

under the EHH curve) for the ancestral and derived alleles of the mutant are first estimated. 

The iHS score is then standardized to follow a normal distribution approximately, and 

subsequently used to test the deviation from neutral model.
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In addition to detecting selection, one may be also interested in estimating the selection 

intensity and the timing of the selection process. There are several methods for this purpose 

(Slatkin and Rannala, 1997; Slatkin, 2000; Slatkin and Rannala, 2000; Slatkin, 2001, 2002; 

Kim and Stephan, 2002; Coop and Griffiths, 2004; Rannala and Reeve, 2004; Slatkin, 2008; 

Chen and Slatkin, 2013). Among them, some consider a single marker linked to the selected 

locus (Slatkin and Rannala, 1997; Slatkin, 2000, 2001; Kim and Stephan, 2002); and only a 

few of them model the haplotype structure of multiple marker loci (Coop and Griffiths, 

2004; Rannala and Reeve, 2004; Slatkin, 2008; Chen and Slatkin, 2013). Coop and Griffiths 

(2004) developed a full likelihood method under the structured-coalescent frame-work 

(Hudson and Kaplan, 1988). They adopted the time-reversible Moran model to first simulate 

the allele frequency trajectory of the selected mutant, and then conditioning on the 

trajectory, they were able to simulate the genealogical history of the sample. The limitation 

of their method is that only mutations among different haplotypes are considered and the 

method is only applicable to non-recombining regions. Rannala and Reeve (2003) modelled 

both recombination and mutation, but their method depicts the haplotype structure in the 

vicinity of mutants under neutrality and has unrealistic assumptions of constant allele 

frequencies for all loci during the selective process. Slatkin (2008) used a linear birth-and-

death process to simulate the allelic genealogies of selected mutants and modelled the 

multilocus haplotype structure under the influence of both recombination and mutation. 

Chen and Slatkin (2013) also proposed a multilocus haplotype model that describes the 

dynamics of the haplotype structure under the joint effects of selection, recombination and 

mutation, by efficiently reducing the complexity of state spaces. Their method exploits the 

importance sampling approach to generate the historical allele frequency trajectory of the 

selected mutant, and thus works for populations with temporally changing size (Slatkin, 

2001). All the methods are coalescent-based and take into account of randomness of 

trajectory and genealogies by Monte Carlo averaging, which requires intensive computation. 

In comparison to the above computationally intensive methods, Voight et al (2006)’s 

approach is simplified and computationally feasible. Their method estimates the distance at 

which the haplotype sharing decreases to a pre-chosen level, and then assumes the decaying 

of haplotype sharing follows a Poisson process. Voight et al (2006)’s method further 

assumes the independent histories of different haplotypes to avoid intensive computation 

due to the integration over unknown gene genealogies, and thus is suitable for whole-

genome analysis.

In this paper, we propose a hidden Markov model to identify the ancestral haplotypes 

retained during the selective process for the purpose of both detecting selection and 

estimating the selection intensity. Comparing to the existing methods, e.g., the REHH and 

iHS tests, which use summary statistics to evaluate the similarity of haplotypes, our method 

is model-based so that it has the potential to be extended to more complicated scenarios, 

such as, multiple ancestral haplotype groups (soft sweeps on standing variation, Hermisson 

and Pennings 2005), haplotype data from multiple populations, and genotype data with 

unknown phase.

The method is also different from the aforementioned coalescent-based models in that we do 

not try to simulate gene genealogies among individuals and the events occurring along the 

genealogies by Markov Chain Monte Carlo or importance sampling approaches (Slatkin, 
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2008; Coop and Griffiths, 2004; Chen and Slatkin, 2013). Our method is similar to that of 

Voight et al. (2006) in this respect. We treat each haplotype independently by assuming a 

“star” genealogy and ignore the randomness of frequency trajectory of the selected allele. 

Both methods are computationally efficient and applicable to genome-wide analysis. 

Compared to Voight et al (2006), our method provides a better estimation of the selection 

coefficient when the selected allele is common or nearly fixed, since we explicitly model the 

probability of effective recombination causing the break of ancestral haplotype extents, 

which is different from the simple recombination process in Voight et al (2006) and others. 

As we will show in a later section, when the selected mutant is at high frequency, the bias in 

the Voight et al (2006) method can be as high as ≈ 20%.

The aim of this paper is twofold: first, we propose a hidden Markov model (HMM) that can 

explore the haplotype structure of a genomic region, and the inferred haplotype structure can 

be used to detect the existence of selection; second, we use a simplified population genetic 

model for the ancestral haplotype extent inferred from the HMM to estimate the selection 

intensity and the allele age. In the following sections, we first elucidate the details of the 

method. We then use coalescent simulations to investigate the power of detecting RPS and 

the accuracy of parameter estimation. We apply the method to analyze several well-known 

genes under RPS to demonstrate its performance, including the lactose persistence gene 

(LCT) in Northern Europeans, and KITLG, TYRP1 and OCA2, known to confer skin 

pigmentation in Northern Europeans or East Asians.

2. Methods

In this section, we first present the HMM for identifying the extent of ancestral haplotypes. 

Two tests are further developed based on the HMM for detecting RPS. We then describe a 

population genetic model of hitchhiking. To be specific, we determine the allele frequency 

of a selected mutant and the approximate distribution of ancestral haplotype extents as a 

function of selection intensity and time, and then use this model to infer the selection 

intensity and the allele age of the selected mutant.

2.1. Data and parameters

The input data is a sample of n chromosomes (haplotypes) randomly collected from a 

contemporary population and genotyped at m SNP loci, and the phase of the chromosomes is 

assumed to be known. The data X is an n by m matrix, with the entry Xi,j encoded as 0 or 1 

to denote the allele type of the jth SNP on the ith chromosome. The physical and genetic 

positions of the SNPs are also assumed to be known. The parameter set, Γ = {s, t, A, λ}, 

includes the selection coefficient (s), the position of the advantageous mutant (λ), the mutant 

age (t), and the ancestral haplotype: A = (A1, A2, …, Am), which is not observable. Here Aj 

denotes the allele at the jth position of the ancestral haplotype. We use the term “ancestral 

haplotype” to refer to the alleles in every SNP position along the chromosome from which 

the advantageous mutant first arose. Since we assume a hard sweep model for RPS, there 

exists only one ancestral haplotype. But the assumption can be easily relaxed to model soft 

sweeps by allowing multiple ancestral haplotypes.
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2.2. A hidden Markov model

If we assume all the advantageous mutants in the current population are descended from 

single copy of the selected mutant, then recombination breaks the chromosomes and mixes 

the ancestral haplotype with the background haplotypes during the process, creating a 

“mosaic” pattern along the chromosomes. If we can record the history and trace the origins 

for every piece of the chromosomes, the SNP positions of haplotypes in the current 

population can be assigned into two classes: those descended from the ancestral haplotype 

and IBD (identical by descent) to the ancestral haplotype; or those descended from one of 

the background haplotypes. For the ith haplotype, we can label every SNP position with the 

two latent states: Si,j ∈ {AH, BH}, where AH stands for “ancestral haplotype” and BH stands 

for “background haplotype”. The states are latent in the HMM as they are unobservable. The 

transitions between the two adjacent latent states along every chromosome represent the 

extent of ancestral haplotype sharing, resulting from the joint effects of recombination and 

hitchhiking. The extent of the ancestral haplotypes is informative for learning the intensity 

and duration (or allele age) of the selective process.

Consider a single chromosome i, and assume for now that we know the mutant position λ for 

the illustration purpose. In our model, λ is actually a parameter to be estimated by estimating 

the likelihood ratio scores for each SNP as the putative mutant position along the 

chromosome. Knowing the mutant position, we divide the SNPs into two groups. We denote 

the markers to the left “−1, −2, …, −L” and the markers to the right “1, 2, …, R”. where “1” 

and “−1” are adjacent to the mutant and so on. The latent states of chromosome i are 

denoted as the following:

(1)

In the following sections, we sometimes simplify the notation by ignoring chromosome 

subscripts i when there is no confusion.

Starting from the mutant position, the two sides of the chromosome form two Markov chains 

and the time steps of the Markov chains are the SNP positions on the chromosome. The two 

chains are independent conditioned on the states of the advantageous mutant. Switching 

between the two latent states is the result of recombination during the selection process. We 

assume the occurrence of historical recombination along a chromosome follows a Poisson 

process. The transition matrix of the Markov chains is summarized as follows:

(2)

where the dj,j+1 is the genetic distance between the jth and the (j + 1)th SNP, and ν is the 

transition rate per genetic distance, which is directly related to Eqn. (11) in Section 2.5.

The model described above can be used to estimate the probability of being IBD with the 

ancestral haplotype. But the latent states are hidden and unobserved. Instead, we observe the 
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two alleles of SNPs. If a position is IBD to the ancestral haplotype, and we assume no 

mutation, the SNP allele, Xi,j, in that position will be the same as the ancestral haplotype, Aj. 

If mutation is taken into account, the conditional probability is

(3)

where μ is the “mutation rate” for a single SNP, and Δ is the indicator function:

(4)

If a locus is IBD to a background haplotype, we can use two distributions to describe the 

probability of observing allele 1 at that locus. First, a simple binomial distribution is 

adopted. We use P(Xi,j = 1|Si,j = BH) = Pj(1) to denote the probability of observing allele 1 

at the jth position, and Pj(1) can be learned from data by the EM algorithm (Durbin et al., 

1998). Linkage disequilibrium or the correlation between adjacent loci is not considered in 

this approach. Second, we model the dependence between adjacent loci using a first order 

Markov chain (see Zheng and McPeek 2004; Tang et al. 2006 for the applications of the first 

order Markov chains in modelling linkage disequilibrium). The probability P(Xi,j = 1|Si,j = 

BH, Xi,j−1) needs to be estimated from all haplotypes in the background haplotype groups. 

So far, we have obtained the probability of observing an allele, xi,j, at a locus given its latent 

state, si,j, being AH or BH, exi,j(si,j) (called emission probability in the HMM literature).

With the above emission probabilities, the probability of observing the data at a single 

position is obtained by summing over all possible latent states of that locus. The likelihood 

function for the chain to the right side of the mutant is estimated by recursion, the so called 

forward algorithm. First, we define fi,j(si,j) = P(Xi,1, Xi,2, …, Xi,j, Si,j = si,j), which is the joint 

probability for the observed sequence up to jth step and the latent state at the jth step. It is 

easy to get the recursion equation by the Markov property (Durbin et al., 1998):

(5)

Next, starting from position 0, we set the initial condition as fi,0(AH) = P(Si,0 = AH), which 

is the probability that the haplotype is descended from the ancestral haplotype. Then by the 

recursion equation we can get the likelihood function for the right chain of chromosome i:

(6)

With a similar expression for the left chain, the likelihood function for chromosome i is:

(7)
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We assume that different chromosomes are independent Markov chains, so we can multiply 

the likelihood function for each chromosome to form the full likelihood function for the 

entire data set:

(8)

This HMM and the dependencies among variables are graphically illustrated in Fig. 1. Only 

the right chain of the ith chromosome is shown in the figure. The shaded circles denote the 

observed allele for every SNP position. The hollow circles represent the missing data or 

unobserved variables, and the directed lines represent probabilistic dependence among these 

variables.

2.3. Optimization

The ancestral haplotype, A = {A−L, …, A−1, A1, …, AR}, is an unknown parameter which 

needs to be reconstructed when maximizing the likelihood function over parameters. One 

possible scheme is to exhaustively search over the space of all the possible haplotypes. This 

is infeasible for large genomic regions since the possible number of haplotypes grows 

exponentially with the number of SNPs. McPeek et al (1999) used a branch-and-bound 

algorithm to solve a similar problem in fine-scale disease mapping (McPeek and Strahs, 

1999). We use a candidate list method. The candidate list method simply provides a 

candidate list of ancestral haplotypes chosen from the data and enters into the model each 

one of them as the ancestral haplotype when estimating the likelihood function. We also 

tried the branch-and-bound algorithm and another dynamic programming scheme, and found 

that the candidate list method runs fast and can recover the ancestral haplotype efficiently. 

Provided a candidate ancestral haplotype, we can iteratively update the transition 

probabilities and emission probabilities (Eqns. (2),(3)) using the routine Baum-Welch/EM 

algorithm for HMM (see Durbin et al. 1998 for details).

2.4. Hypothesis testing

With the ancestral haplotype identified from the HMM, we propose two tests to detect 

selection. The selected haplotype group under RPS is expected to be more homogeneous 

than all the other background haplotypes. The null hypothesis of neutrality corresponds to 

the case that all the haplotypes are in a similar level of homogeneity. Similar to the former 

section, we use a first order Markov chain to model the linkage disequilibrium of all 

background haplotypes. As the neutrality and selection hypotheses are not nested (the two 

are not overlapping at neutrality), we cannot directly apply the asymptotic theory of 

likelihood ratio tests here. Instead, we adopt two approaches for hypothesis testing:

• empirical criterion for likelihood ratio scores. If we know the population history, 

we can carry out coalescent simulations to generate a set of neutral samples with 

allele frequency matching that of the selected allele in the real data, apply the 

HMM to obtain the likelihood and finally use the simulated likelihood ratios to 

generate the null distribution for hypothesis testing. With the advent of large-

sample genomic sequencing data and the development of efficient methods for 
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inferring population history, it is realistic to have fine-scale population history 

models that can accurately approximate the true history (Gutenkunst et al., 2009; 

Gravel et al., 2011; Lukić and Hey, 2012). In genome wide data analysis, we can 

also use the empirical distribution of the likelihood ratio scores from the genome 

scan, and pick the top signals (Nielsen et al., 2005; Voight et al., 2006; Pickrell et 

al., 2009; Chen et al., 2010).

• permutation test. Samples are randomly generated by permutating the mutant 

alleles of haplotypes for M times to allow for the shuffling of haplotype structure 

linked to the mutant locus. For each of the M samples, the HMM is used to estimate 

the likelihood ratio, which is used to generate the null distribution for the test. 

Since computation is intensive for simulating large number of samples by 

permutation, this approach is feasible only for analyzing data from a local region. 

And also note that, during the permutation, we only shuffle the mutant alleles or the 

labels of each haplotype (belonging to the selected or neutral haplotype groups), 

and thus the linkage disequilibria among marker loci are not broken.

2.5. A population genetic model for recent positive selection

The hidden Markov model presented in Section 2.2 is used to identify the ancestral 

haplotype and detect the breaking points of the ancestral haplotypes retained around each 

putative selected mutant. The identified ancestral haplotype extent can not only be used to 

detect the existence of selection, but also to infer the parameters, such as, the section 

intensity s and the duration of the selective process t. In this section, we describe the 

population genetic model needed for parameter inference, and in the next section, we show 

how the model can be used to infer the two parameters.

Consider a selective sweep that starts with a single copy of the selected allele (a.k.a. a hard 

sweep, Hermisson and Pennings 2005). Assume that the selected locus has two alleles A and 

a, with A being the selected allele. Let yt be the allele frequency of the selected allele A at 

time t. The frequency trajectory of A over time is random. But when selection is strong 

enough, we can ignore the randomness of the allele frequency trajectories at the very 

beginning stage of the selection, and thus the trajectory yt can be approximated by a 

deterministic curve (Stephan et al., 1992; Braverman et al., 1995). The deterministic process 

of the selected mutant and the hitch-hiking effect were well studied (Maynard Smith and 

Haigh, 1974; Ohta and Kimura, 1975; Stephan et al., 1992; Durrett and Schweinsberg, 

2004). We demonstrate here how the classic theory can be adopted to obtain the allele 

frequency of the advantageous mutant as a function of the selection intensity and allele age, 

and the probability distribution of ancestral haplotype extents during the selective process.

Assume an additive model for selection, and let the selective advantage of the allele A be s. 

The change of allele frequency in one generation follows the logistic differential equation 

(Ohta and Kimura, 1975):

(9)
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This logistic equation has a solution:

(10)

with y0 being the initial allele frequency of the mutant in generation 0, which can be chosen 

to be a small value, such as, 1/Ne, for a hard sweep process (Kaplan et al., 1988; Stephan et 

al., 1992).

Now we show how to obtain the distribution of the extent of ancestral haplotypes. Consider 

a continuous segment between the mutant and a biallelic neutral marker. We use [AB] to 

denote a segment of ancestral haplotype with hidden states A and B being the end points, 

and [A–] a segment with hidden state A at one end while the other end point of the ancestral 

fragment arbitrary. Let PB|A(t) be the population frequency of fragment [AB] among the A 

haplotypes at time t. Assume that A first appears as on a single haplotype [AB] in the 

population, and all the other haplotypes are [ab], that is, the two loci are in absolute linkage 

disequilibrium. Note that both A and B take value of “AH” in this context. According to 

Ohta and Kimura (1975), the proportions of chromosomes segments [AB] in the “A” group 

and [aB] in the “a” group at time t are respectively (Ohta and Kimura, 1975):

(11)

and

(12)

where r is the recombination fraction between two loci (see Ohta and Kimura (1975) for 

details). The above two equations provide the probability distribution for a retained ancestral 

haplotype with A/a and B/b be the two ends at any time t in the selective sweep process. But 

since the computation involves integration without analytical form we use the following 

simple approximation. For a random ancestral haplotype [AB], if it recombines with any 

[A–] haplotype during the duration [0, t], it does not change the population frequency 

PB|A(t). The only possible change comes from recombination with a haplotype from the 

neutral haplotype group. The expected number of effective crosses between haplotype [AB] 

and any [a–] haplotype is (Durrett and Schweinsberg, 2004; Chen and Slatkin, 2013):

(13)

Assume that the number of effective crossovers occurring to ancestral haplotype [AB] during 

the time interval [0, t] follows a Poisson distribution. Then the probability of no effective 

recombination between the [AB] haplotype and any [ab] haplotypes is
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(14)

Eqn. (14) provides a very accurate approximation for Eqn. (11) for a wide range of r and s 

values. For example, when y0 = 0.0001, t = 1200, r = 0.001 and s = 0.01, PB|A(t) is 0.5926 

from Eqn. (11), and is 0.5995 from Eqn. (14).

Let ΔrR be the recombination fraction between locus BR and BR+1, the probability for the 

break point occurring at position BR is

(15)

Note that in Eqn. (14) and (15), when st is small, either the selective process is at the early 

stage or the selection intensity is weak, the term (1 − (1 − est)y0)r/s ≈ 1, and thus similar to 

the case under neutrality (Voight et al., 2006; Chen and Slatkin, 2013). However, if st is 

large, the term cannot be ignored. For example, for the same parameter setting as above (r = 

0.001, s = 0.01, y0 = 0.0001, and t = 1200), methods which ignore the term, such as the one 

presented in Voight et al (2006), can cause a relative bias ≈ 18% (Voight et al., 2006).

2.6. Parameter estimation

The ancestral haplotype extents identified by the HMM can be used to estimate the 

parameters by the importance sampling approach in Chen and Slatkin (2013). Here we show 

how to estimate the two parameters with a simple but computationally more efficient 

approach, using the population genetic model presented in the former section.

We take the break points for each chromosome carrying the selected allele, {Bj,L, Bj,R, 1 ≤ j 

≤ nsel}, as the input data, where Bj,L and Bj,R are the left and right ends of the jth ancestral 

haplotype, and nsel is the number of chromosomes in the sample carrying the selected 

mutant. Since we assume that recombination occurs along the chromosomes following a 

Poisson process, the probability for an ancestral haplotype retained between Bj,L and Bj,R 

follows Eqn. (15). We then write the likelihood for the nsel chromosomes as:

(16)

Furthermore, we assume the frequency of the selected mutant in the current generation is 

known (estimated from the sample, if the sample size is sufficiently large), and a 

deterministic instead of random frequency trajectory of the mutant (Eqn. (10)), which is 

reasonable under strong selection. And from Eqn. (10), we obtain the deterministic relation 

between s and t:
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(17)

This expression can be substituted into Eqn. (16) to reduce the likelihood as a function of a 

single parameter s. We can easily obtain the estimate ŝ, and then get t̂ from Eqn. (17).

3. Results

3.1. Power to detect selection

We used the coalescent simulator msms to generate haplotype samples under RPS, and used 

the samples to evaluate the power of this method in detecting RPS, and the accuracy and 

precision of selection coefficient estimation (Ewing and Hermisson, 2010). msms adopts a 

structured coalescent scheme to model the effect of a selective sweep on the genealogies of 

nearby loci. The allele frequency of the mutant at present was chosen to be 0.40 and 0.80, 

representing selected mutants with moderate and high frequencies. We simulated a sample 

of 100 haplotypes spanning a region of 1Mb, with the selected mutant located in the middle. 

The point mutation rate was set to be 1.0 × 10−8 per site per generation and the 

recombination rate 1.0 × 10−8. For each level of selection coefficient (2Ns = 50, 100, 200, 

300, 500, 1000), 200 samples were generated. To mimic the effect of phase inference for 

genotype data, haplotypes were randomly paired to simulate genotype for each individual, 

and the fastPHASE software was applied to the simulated genotype data to infer haplotypes 

(Scheet and Stephens, 2006). The output haplotypes were used to evaluate the power of the 

tests. To give a criterion for hypothesis testing, we generated samples in the neutral case 

with the same parameters except that the selection coefficient s = 0.0. 2000 samples were 

generated such that the allele frequency of the central SNP was the same as in the selection 

case. The HMM method was then applied to these neutral samples and the 99th percentile 

score was recorded as the criterion for significance, which is equivalent to controlling the 

type-I error to be under 1%. For samples simulated with the given setting (the allele 

frequency of the selected allele and the selection coefficient), the HMM method was 

applied, and the likelihood ratio score was recorded and compared to the significance 

criterion. The proportion of samples with a likelihood ratio score that exceeded the threshold 

was recorded as the power of the method for the setting.

We compared the performance with two existing popular methods: the allele frequency 

spectrum-based CLR test by Nielsen et al. (2005), and one long-range haplotype method: the 

iHS test by Voight et al. (2006). The null distributions for the two statistics were also 

generated by applying to the simulated data under neutrality, similar to the HMM method.

All the results are plotted in Fig. 2. The haplotype based methods (HMM and iHS) are 

overall more powerful than the allele frequency spectrum-based method for the two 

simulated settings (allele frequencies: 0.80 and 0.40), and the difference in performance is 

more apparent when the selected allele has frequency 0.4. This is not surprising and 

consistent with the previous conclusion (Sabeti et al., 2002), since the allele frequency 

spectrum-based method models the hitch-hiking effects of a fixed allele instead of a RPS. 
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The haplotype-based methods, the HMM method and the iHS test, have similar power for 

both parameter settings.

3.2. Precision and accuracy of the parameter estimation

We also evaluated the accuracy of the parameter estimation. Box plots of the estimated 

selection coefficients stratified by the true values of selection coefficients from 200 

simulations using the above procedures are shown in Fig. 3. The horizontal dashed lines 

indicate the true selection coefficients in simulation. The bars inside the boxes indicate the 

medians and the two borders of the box correspond to the first and the third quantiles of the 

estimates. The medians of the boxes match the true values well, demonstrating that the 

estimates are accurate. The inter quantile range (IQR) indicates the precision of the 

estimates for selection coefficients.

Box plots of the estimated allele ages stratified by the true values of selection coefficients 

from 200 simulations are shown in Fig. 4. The inferred allele ages were from applying the 

HMM method to the simulated data. The true allele ages of the simulated samples were 

obtained by outputting the allele frequency trajectories during simulations. Since the allele 

ages vary among simulated samples, we present the log2 of the ratio of inferred allele age t̂ 

over the true allele age t: . From Fig. 4, we can see the estimates of allele ages for the 

tested selection coefficient levels s = 0.005, 0.01 and 0.05 are quite good. In general, the 

estimates are unbiased, and most of the ratios are within the 2 times and 0.5 times range.

We compared the performance of the HMM method with two existing methods: the forward 

simulation method presented in Beleza et al. (2013) (referred to as ForSim in the following 

paragraphs), and the importance sampling-based method by Chen and Slatkin (2013) 

(referred to as IS-Age). We applied the two methods to the same simulated data. The 

inferred selection intensity and allele age were recorded, and the mean and root-mean-square 

error (RMSE) of the inferred parameters are shown in Tables 1 and 2 for the comparison 

with the HMM method.

Overall, the HMM method outperforms ForSim and IS-Age for the tested parameter range 

(0.005 ≤ s ≤ 0.05, see Tables 1 and 2). The ForSim results show large bias. ForSim only 

simulates ≤ 8 markers (four on each side of the selected mutant) since the forward 

simulation is computationally intensive. ForSim adopts a rejection sampling approach to 

match the real data and simulated data. Instead of using the full sample configuration, the 

implementation of Beleza et al. (2013) only chooses two summary statistics for the rejection 

sampling: the allele frequencies of the selected mutants, and the frequencies of the whole 

intact ancestral haplotypes across all markers. This simplification may explain the bias and 

big variance of their estimate. However, increasing summary statistics numbers to improve 

the accuracy may be unrealistic, since the acceptance rate of the rejection sampling becomes 

extremely low.

IS-Age was expected to performs better than or equally with HMM. The population genetic 

model for parameter inference in HMM is simplified and approximated with a deterministic 

process (see Eqn. (9)). When selection is strong (e.g., 0.005 ≤ s ≤ 0.05), the approximation is 

valid, therefore similar results are expected for the two approaches. However, we observed 
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that the results of IS-Age show higher bias and RMSE than HMM for the tested parameter 

range. It may be due to the following down-sampling procedures when implementing IS-

Age. The simulated data was too large to be analyzed by IS-Age, and to implement the 

analysis, we reduced the size of each simulated sample by randomly choosing 20 

haplotypes, and further randomly dropping 50% SNPs. This procedure may reduce sample 

information and cause potential bias.

In addition to the difference in accuracy and precision of parameter estimation, the 

computational efficiency of the three methods is also apparent. ForSim of Beleza et al. 

(2013) uses forward simulation to generate a population of haplotypes, which evolves by 

generations. The acceptance rate of the rejection algorithm adopted by their method is very 

low, even when only two summary statistics, instead of the full sample configuration, are 

used in the rejection sampling. IS-Age uses importance sampling and makes several efficient 

approximations to reduce the state space of the genealogical process, but it still requires a 

down-sampling step to reduce sample size and marker numbers. Analyzing a single sample 

with IS-Age or ForSim typically takes several days. Both ForSim and IS-Age are 

computationally too intensive, while the HMM method only takes minutes to analyze a 

sample, and thus is applicable to analyze genome-wide data.

3.3. Genome scan on HapMap data

We applied the method to analyze the HapMap Phase III data. The HapMap Phase III data 

contains genome wide SNP data from 11 world populations. We focused on the three major 

populations: the Utah residents with Northern and Western European ancestry from the 

CEPH collection (CEU), the Han Chinese and Japanese populations from East Asia (ASN), 

and the Yoruban Africans from West Africa (YRI). The phased haplotype data and SNP 

positions were downloaded from the HapMap Ftp server. The top 20 most significant 

regions for the three populations from the genome scans are listed in Tables 3–5.

Some most well-known examples of genes under RPS are among the top lists, and are 

highlighted in Tables 3–5 with bold type fonts. For example, as shown in Fig. 5, the 135–

136.5 Mb of Chromosome 2 is one of the most extreme signal in the CEU population. The 

Lactase gene (LCT) is located in the region, and is a famous example of genes under RPS in 

human populations (Swallow, 2003; Bersaglieri et al., 2004). The ectodysplasin A receptor 

(EDAR) was shown to be one of most significant signals in the ASN population. One non-

synonymous mutation of the EDAR gene (EDARV370A) was absent in other populations, but 

nearly fixed in the ASN population. Molecular experiments have shown that the mutant is 

functional for hair thickness and the increase of active eccrine gland numbers, and may 

contribute to the local adaptation to humid environments in East Asia (Bryk et al., 2008; 

Kamberov et al., 2013). The other well known examples include pigmentation genes, such 

as, KITLG in CEU; genes related to resistance to infectious disease, such as, HLA and IL3; 

skeletal development genes, such as, GDF5, and genes related to brain development, such 

as, SLC6A4 and SNTG1. The extensive identification of well known RPS-target genes 

demonstrates that the hidden Markov method can efficiently identify the haplotype structure 

pattern caused by a RPS.
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Notice that most of these top regions are identified as targets of RPS by one of former 

studies (e.g., Akey et al. 2002; Sabeti et al. 2007; McEvoy et al. 2009; Pickrell et al. 2009; 

Chen et al. 2010; Grossman et al. 2013 etc.). We also carried out a genome-wide analysis 

using the iHS test by Voight et al. (2006). The iHS scores for all these regions of Tables 3–5 

are among top 1% of genome level. This is not surprising, since these most significant 

regions should be identifiable by various methods. But interestingly, we also found that the 

ranking of the signals identified by the HMM method is different from that based on the iHS 

method.

The first example is the 49.10–50.09 Mb region of Chromosome 3 in the ASN population. 

This regions is one of the most significant signals of RPS in ASN genomes, while was not 

identified as top signals using iHS. We checked the haplotype structure using the HapMap 

web server and noticed that the ASN haplotypes of this region indeed show very significant 

haplotype structure related to a RPS (see Fig. S1). There are multiple genes located in this 

region. Among them, MST1 (macrophage stimulatory protein 1) is functional for 

inflammation and wound healing; APEH (APH), a serine peptidase, is known for the 

“degradation of bacterial peptide breakdown products in the gut to prevent excessive 

immune response” (Nguyen and Pei, 2005; Raelson et al., 2007). And there are several 

SNPs identified to be associated with Crohn’s disease by GWAS studies (Raelson et al., 

2007). The exact reason for this region being under strong RPS remains unclear, and 

requests further biological studies. A second example is the gene SLC25A46. Its HMM score 

indicates very significant haplotype structure in CEU caused by a RPS (see Fig. S2). This 

region was identified as top signals in several other studies based on different approaches, 

including Chen et al. (2010) and Grossman et al. (2013). The mechanism for it being under 

RPS is not reported in former literature yet.

3.4. Lactase in Northern Europeans

Individuals carrying the lactose tolerance allele in pastoral populations gain some selective 

advantage for the nutrition provided from dairy. One group of haplotypes in the Northern 

Europeans has a frequency of ≈ 77%, and extends for > 1Mb. This is consistent with the 

signals of haplotype structure caused by a RPS. Bersaglieri et al. (2004) used the decay of 

linkage disequilibrium in the Northern European population to estimate the age of the 

lactose tolerance associated haplotype to be 2, 538 – 23, 954 years ago. They further 

estimated the selection coefficient of the selected mutant based on the allele age, the allele 

frequency at present, and a discrete-generation Wright-Fisher model to be 0.014 – 0.15.

We focused our analysis on the 5Mb region of the LCT gene from the CEU population of 

HapMap III (Fig. 5). The genetic distances among SNPs are needed for inferring selection 

coefficient. We used the Oxford genetic map (Myers et al., 2005), which was also 

downloaded from the HapMap web page. The genetic position of each SNP was obtained by 

interpolation. The two SNPs, −13910C/T (rs4988235) and −22018 G/A (rs182549) are 

believed to be functionally important for lactase persistence in Northern Europeans. We 

treated rs88235 as the selected mutant when applying the HMM method. We successfully 

identified the ancestral haplotype in the vicinity of the putative mutant. The posterior 

probabilities of being at ancestral state for each SNP along the chromosome are inferred. 
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When it is larger than 0.5, the position is labelled as being descended from the ancestral 

haplotype. The inferred ancestral states of each SNP along the 120 chromosomes are 

presented in Fig. 6. The ancestral haplotype regions are dark blue and the background 

haplotypes are cyan. In agreement with former studies, we found the extent of ancestral 

haplotypes to be more than 1Mb. Some ancestral haplotypes are as large as 2–3 Mb. We 

then used the method in Section 2.6 to estimate the selection coefficient to be 0.0560 (95% 

CI: 0.0486 – 0.0654), and the age of the selected allele to be 5, 350 (95% CI: 4, 580 – 6, 

163) years, assuming a generation time of 29 years. The 95% confidence intervals were 

obtained by bootstrapping over haplotypes. This result is consistent with Bersaglieri et al 

(2004), indicating that LCT is one of the genes known to be under the strongest selection 

effect in humans.

3.5. Skin pigmentation genes in Northern Europeans and East Asians

We also investigated three skin pigmentation genes, KITLG and TYRP1 in Northern 

Europeans, and OCA2 in East Asians. Light skin color was favoured in Northern Europe and 

East Asia since it facilitates vitamin D synthesis at higher latitude (Jablonski and Chaplin, 

2000). Genes related to the melanosome biogenesis or the melanin bio-synthetic pathways, 

including TYR, TYRP1, OCA2/HERC2, SLC45A2, SLC24A5, SLC24A4, MC1R, ASIP, 

KITLG, IRF4 and TPCN2, confer light skin color and show signals of strong RPS (Lao et 

al., 2007). The evolutionary mechanism of skin pigmentation is at least partially different in 

Northern Europeans and East Asians. SLC24A5, KITLG and TYRP1 are believed to play 

important roles in light skin color evolution in Northern Europeans (Lao et al., 2007). In a 

recent study on pigmentation genes, Beleza et al (2013) used forward simulation and 

rejection algorithm to get an estimate of the age. They found that selection on KITLG 

happened ≈ 30, 000 years ago, after the out-of-Africa migration; and the selective sweep 

that acted on an European-specific alleles at TYRP1, occurred within the last 11, 000 – 19, 

000 years, after the first migrations of modern humans into Europe. The mechanism of skin 

color is less studied in East Asians. A recent association study demonstrated that one non-

synonymous polymorphism rs1800414 (His615Arg) of OCA2 is important for the skin 

pigmentation in East Asians (Edwards et al., 2010). The time and intensity of selection on 

the OCA2 gene in East Asians haven’t been investigated yet.

We applied the HMM method to these three gene regions, which are downloadable from 

HapMap II. Following the results from Beleza et al(2013), we chose rs642742 for KITLG 

and rs2733831 for TYRP1 as the putative selected mutants in Northern Europeans. The 

ancestral states determined by the posterior probabilities of being descended from ancestral 

haplotypes for each position along the 120 CEU chromosomes are plotted in Fig. 7 and 8. 

Our estimate of selection coefficient for KITLG is 0.0190 (95% CI: 0.0088 – 0.0297), and 

the allele age is 16, 480 (95% CI:10, 540 – 35, 580) years, assuming a generation time of 29 

years. The estimate of selection coefficient for TYRP1 is 0.0240 (95% CI: 0.0154 – 0.0343), 

and the allele age is 11, 930 (95% CI:8, 350 – 18, 590) years. Our estimates are roughly 

consistent with Beleza et al. (2013), and supported the hypothesis that the onset of selection 

on TYRP1 may be more recent than KITLG, and likely after the split of Eurasian 

populations. Our estimate of the onset time of selection on KITLG is younger than Beleza et 
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al (2013), and does not support the conclusion that it was selected before the separation of 

Eurasian populations.

We also inferred the time and intensity of selection on OCA2 in East Asians by assuming the 

non-synonymous polymorphism rs1800414 (His615Arg) as the functional mutant under 

RPS. The haplotype structure of the OCA2 region for the 90 Han Chinese haplotypes is 

presented in Fig. 9. The estimated selection coefficient is 0.0265 (95% CI: 0.0179 – 0.0350), 

and the allele age is 10, 660 (95% CI:8, 070–15, 780), which implies that natural selection 

on OCA2 in East Asians started independently after the separation of Eurasian populations, 

and may suggest distinct adaptation mechanisms of skin pigmentation in East Asian and 

Northern Europeans.

4. Discussion

We present an HMM method for detecting recent positive selection and inferring selection 

intensity and allele age when there was a selective sweep. We have shown that the HMM 

method is effective in capturing the multi-locus haplotype structure caused by a RPS. Using 

coalescent simulations, we showed that the HMM method has more power to detect 

selection under a range of selection parameters than the allele frequency spectrum-based 

methods, such as the CLR test (Nielsen et al., 2005). We also demonstrated that its estimates 

of selection coefficients and allele ages are quite accurate for strong selection. We further 

illustrated the use of the method by doing a genome scan on the HapMap III data, and 

analyzing four genes known as the targets of RPS: the LCT gene, which conferred to lactose 

persistence in Northern Europeans, and KITLG, TYRP1 and OCA2, which are related to the 

skin pigmentation adaptation in Northern Europeans and East Asians. The inferred selection 

coefficients, ancestral haplotypes and other parameters are consistent with former population 

genetic studies and human history.

In coalescent likelihood methods, the randomness of trajectories and genealogies are 

integrated by Monte Carlo methods, which are computationally intensive and only work for 

investigating a local region (Griffiths and Tavaré, 1994; Kuhner et al., 1995; Chen and 

Slatkin, 2013). Our method gains computational efficiency by assuming independence 

among different chromosomes, and constructing the composite likelihood as the product of 

the marginal likelihood for each chromosome. The performance and the computational 

efficiency of the HMM method enable its potential applications to genome-wide studies on 

large-scale data sets. But some simplified assumptions may cause biased estimation when 

the selection intensity is medium or weak. It is reasonable to believe that if selection is weak 

or moderate, coalescent-based approaches work better than the HMM method, since 

ignoring the randomness during early stages of selection can cause bias in estimation 

(Stephan et al., 1992; Braverman et al., 1995). But on the other hand, the current coalescent-

based methods, such as, Chen and Slatkin (2013) are computationally intensive, and are only 

applicable to a small sample of haplotypes of a local region. A hybrid of the HMM frame-

work and coalescent models, and making use of analytical forms of coalescent distributions 

to imrpove the computational efficiency (e.g., Griffiths 1984; Chen and Chen 2013), may be 

a potential direction for further improvement.
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The HMM presented in this paper has a potential to incorporate more complex scenarios. 

For example, it can be used to detect soft sweeps on standing variations, which contain two 

or more ancestral haplotypes (Hermisson and Pennings, 2005). Another useful extension is 

to model the haplotype structure in multiple populations.

Note that the proposed method is designed for recent positive selection. If selection is 

ancient and the mutant has already been fixed in the population, the proposed method will 

not be useful. For alleles fixed at an earlier time, allele frequency spectrum-based methods, 

such as Chen (2012), may be a better choice.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Graphical representation of the hidden Markov model for right chains of the 
haplotypes from a sample
The first row represents the ancestral haplotype and the dash-lined box is the ith haplotype 

from the sample. The shaded circles denote the observed data, which are the alleles for every 

SNP position. The hollow circles stand for missing data or unobserved variables. The 

directed lines represent the probability dependence between the two variables.
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Figure 2. The power of detecting selection for a range of selection intensities. The derived allele 
frequencies of the selected mutant are (A) 0.80 (B) 0.40
The curve with squares is the proportion of significant results by the likelihood ratio test of 

the HMM method; the curve with circles is for the iHS test by Voight et al. (2006); and the 

curve with diamonds is for the composite likelihood ratio test by Nielsen et al. (2005); The 

1% cutoff level for the three tests were generated by simulation by assuming the 

demographic history of the population is known.
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Figure 3. The accuracy of the estimation of selection coefficient for selected mutants with the 
derived allele frequencies 0.80 (A) and 0.40 (B)
The X-axis shows the true values of selection coefficients in the simulations (s = 0.005, 

0.01, 0.05). The Y-axis shows the inferred selection coefficients. The box plots are 

estimated values for 200 simulations. Bars inside the box indicate the median of the 

estimates and the two borders of the boxes correspond to the first and the third quantiles of 

the estimates.
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Figure 4. The accuracy of the estimation of allele age for selected mutants with the derived allele 
frequencies 0.80 (A) and 0.40 (B)
The X-axis shows the values of selection coefficients in the simulations (s = 0.005, 0.01, 

0.05). The Y-axis shows the log2(inf erred age/true age) values. The box plots are estimated 

from 200 simulations. Bars inside the box indicate the median of the estimates and the two 

borders of the boxes correspond to the first and the third quantiles of the estimates.
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Figure 5. The plot of likelihood ratio scores along chromosome 2 of the Northern European 
population (CEU) of HapMap III
Lactase gene is located around 136 Mb.

Chen et al. Page 25

Theor Popul Biol. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. The inferred ancestral states for LCT gene region for the Northern European samples 
from HapMap
Each row represents a single haplotype and each column corresponds to a SNP position. 

Blue(dark) denotes being inherited by descent from the ancestral haplotype and cyan (light) 

denotes background haplotypes. The putative mutant is chosen to be –13910C/T 

(rs4988235), and its position is indicated by the vertical line.
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Figure 7. The inferred ancestral states for KITLG gene region for the Northern European 
samples from HapMap
Each row represents a single haplotype and each column corresponds to a SNP position. 

Blue (dark) denotes being inherited by descent from the ancestral haplotype and cyan (light) 

denotes background haplotypes. The putative mutant is chosen to be rs642742, and its 

position is indicated by the vertical line.
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Figure 8. The inferred ancestral states for TYRP1 gene region for the Northern European 
samples from HapMap
Each row represents a single haplotype and each column corresponds to a SNP position. 

Blue(dark) denotes being inherited by descent from the ancestral haplotype and cyan (light) 

denotes background haplotypes. The putative mutant is chosen to be rs2733831, and its 

position is indicated by the vertical line..
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Figure 9. The inferred ancestral states for OCA2 gene region for the Han Chinese (East Asian) 
samples from HapMap
Each row represents a single haplotype and each column corresponds to a SNP position. 

Blue(dark) denotes being inherited by descent from the ancestral haplotype and cyan (light) 

denotes background haplotypes. The putative mutant is chosen to be rs1800414, and its 

position is indicated by the vertical line.
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Table 3

The top 20 regions of the human genome based on the genome-wide scan on the ASN data from HapMap III 

using the HMM test.

Popul Chr Positions (Mb) Genes

ASN

3 49.10 – 50.09 AMIGO3, AMT, APEH, BSN, C3orf54, C3orf60, C3orf62, CAMKV, CCDC36, CCDC71, DAG1, DALRD3, 
GMPPB, GPX1, IHPK1, IMPDH2, KLHDC8B, LAMB2, LOC389118, LOC646498, MON1A, MST1, 

NICN1, PH-4, QARS, QRICH1, RBM5, RBM6, RHOA, RNF123, SEMA3F, TCTA, TRAIP, UBE1L, USP19, 
USP4, WDR6

6 27.44–28.04 LOC346157, ZNF184, HIST1H, OR2B2, OR2B6, PRSS16

17 24.96 – 25.85 ANKRD13B, BLMH, CCDC55, CORO6, CPD, DKFZP434O047, EFCAB5, GIT1, GOSR1, LOC116236, 
SLC6A4, SSH2, TAOK1, TMIGD1, TP53I13

2 108.82 – 109.34 EDAR, FLJ32745, LOC729164, RANBP2

10 73.74 – 74.29 ASCC1, C10orf104, CBARA1, CCDC109A, DDIT4, DNAJB12, OIT3, PLA2G12B

14 65.90 – 66.78 ATP6V1D, C14orf54, GPHN, MGC88374, MPP5

6 25.59 – 26.77 ABT1, BTN2A1, BTN2A2, BTN2A3, BTN3A1, BTN3A2, BTN3A3, HFE, HIST1H, HMGN4, LRRC16, 
SCGN, SLC17A1, SLC17A2, SLC17A3, SLC17A4, TRIM38, ZNF322A

1 92.53 – 93.40 BTBD8, C1orf146, C1orf82, CCDC18, EVI5, FAM69A, GFI1, GLMN, MTF2, RPL5, TMED5

3 137.28 – 138.0 MSL2L1, PPP2R3A, MSL2L1, PCCB, PPP2R3A, NCK1, STAG1, TMEM22

15 61.35 – 62.52 APH1B, CA12, CSNK1G1, DAPK2, FBXL22, HERC1, KIAA0101, RAB8B, TRIP4, USP3, ZNF609

4 144.48 – 144.56 GAB1, SMARCA5

7 126.62 – 126.88 GRM8, ZNF800

2 72.92 – 72.99 EMX1, SFXN5, SPR

1 172.94 – 173.09 RABGAP1L, GPR52

11 48.22 – 48.26 OR4B1, OR4C3, OR4S1, OR4X1, OR4X2, PTPRJ

2 84.59 – 84.74 FLJ37357, SUCLG1, LOC388965

6 18.36 – 18.62 AOF1, DEK, IBRDC2, TPMT

2 125.20 – 125.33 CNTNAP5

20 34.14 – 34.26 C20orf152, C20orf4, EPB41L1

20 24.79 – 24.85 ACSS1, C20orf3, CST7

10 94.42 – 94.98 CYP26A1, CYP26C1, EXOC6, FER1L3, HHEX, IDE, KIF11

1 153.58 – 153.60 ASH1L, C1orf104, C1orf2, CLK2, FDPS, HCN3, PKLR, RUSC1, SCAMP3
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Table 4

The top 20 regions of the human genome based on the genome-wide scan on on the CEU data from HapMap 

III using the HMM test.

Popul Chr Positions (Mb) Genes

CEU

6 30.0 – 31.68 ABCF1, AIF1, APOM, ATP6V1G2, BAT, C6orf134, C6orf136, C6orf15, C6orf205, C6orf47, CCHCR1, 
CDSN, CSNK2B, DDR1, DHX16, DPCR1, FLJ45422, FLOT1, GNL1, GTF2H4, HCG27, HCG9, HCP5, 

HLA, IER3, LST1, LTA, LTB, LY6G5B, LY6G5C, MDC1, MICB, MRPS18B, NCR3, NFKBIL1, NRM, 
POU5F1, PPP1R10, PPP1R11, PRR3, PSORS1C1, RNF39, RPP21, SFTPG, TCF19, TNF, TRIM, TUBB, 

VARSL, ZNRD1

2 135.43 – 136.51 ACMSD, CCNT2, CXCR4, DARS, LCT, MCM6, R3HDM1, RAB3GAP1, UBXD2, YSK4, ZRANB3

10 73.88 – 74.06 CBARA1, CCDC109A, DNAJB12

14 66.08 – 66.36 GPHN, MGC88374, C14orf54

10 74.31 – 74.36 CCDC109A, OIT3, P4HA1, PLA2G12B

5 130.75 –131.36 FNIP1, RAPGEF6, ACSL6, CSF2, IL3, CDC42SE2

3 51.06 – 51.33 DOCK3, ARMET, RBM15B, VPRBP

1 172.56 – 172.90 GPR52, RABGAP1L

1 35.94 – 36.03 CLSPN, EIF2C4, FLJ38984, PSMB2, EIF2C1

17 17.62 – 17.89 ATPAF2, C17orf39, DRG2, LRRC48, MYO15A
RAI1, SREBF1, TOM1L2

15 41.51 – 41.64 ADAL, CATSPER2, CKMT1B, HISPPD2A, LCMT2, MAP1A, STRC, TP53BP1, ZNF690

11 48.51 – 49.92 OR4A47, OR4C12, OR4C13, FOLH1

4 52.66 – 52.69 LOC339977, SGCB, SPATA18

15 69.95 – 70.28 BRUNOL6, GRAMD2, MYO9A, PARP6, PKM2, SENP8, NR2E3, THSD4

2 178.06 – 178.26 AGPS, PDE11A, TTC30A, TTC30B

5 109.97 – 110.01 SLC25A46

12 87.53 – 87.57 KITLG

12 110.89 – 111.30 C12orf30, ERP29, MAPKAPK5, TMEM116, TRAFD1, PTPN11, RPL6

20 33.49 – 34.04 C20orf152, PHF20, RBM39, SCAND1, C20orf44, CEP250, GDF5

8 51.52 – 51.53 SNTG1
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Table 5

The top 20 regions of the human genome based on the genome-wide scan on on the YRI data from HapMap 

III using the HMM test.

Popul Chr Positions (Mb) Genes

YRI

6 33.13 – 33.26 B3GALT4, BRD2, COL11A2, HLA, HSD17B8, RING1, RPS18, RXRB, SLC39A7, VPS52, WDR46

14 65.93 – 66.35 GPHN, MGC88374, MPP5

9 94.19 – 94.60 ASPN, ANKRD19, BICD2, CENPP, ECM2, IARS, IPPK, NOL8, OGN, OMD, ZNF484

3 47.60 – 48.33 CAMP, CDC25A, CSPG5, FBXW12, NME6, PLXNB1, SCAP, SMARCC1, SPINK8, TMEM103, ZNF589

3 51.17 – 51.32 ARMET, DOCK3, RBM15B, VPRBP

4 52.39 – 52.45 DCUN1D4, LOC339977, SGCB, SPATA18

4 48.44 – 48.49 FRYL, OCIAD1, OCIAD2

7 65.29 – 65.48 ASL, GUSB, KCTD7, RABGEF1, RCP9, TPST1, LOC285908

10 104.57–104.63 AS3MT, C10orf26, C10orf32, CNNM2, CYP17A1, SFXN2

11 49.15– 50.03 FOLH1, OR4C12, OR4C13

8 99.83 – 99.86 STK3, VPS13B

3 138.08 – 138.16 IL20RB, NCK1, TMEM22

4 100.21 – 100.28 ADH4, ADH5, ADH6, METAP1

8 113.94 – 113.94 CSMD3

6 63.92 – 63.97 GLULD1

14 59.56 – 59.57 C14orf135

13 56.55 – 56.55 FLJ40296

7 68.65 – 68.90 AUTS2

19 43.09 – 43.12 SIPA1L3

11 46.91 – 46.95 C11orf49, CKAP5, LRP4

1 172.16 – 172.18 DARS2, RC3H1, SERPINC1, ZBTB37

1 181.24 – 181.38 C1orf14, LAMC1, LAMC2

13 57.08 – 57.09 PCDH17
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