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LETTER Opportunistic attachment assembles plant–pollinator networks

Lauren C. Ponisio,1,2,3* Marilia P.

Gaiarsa4 and Claire Kremen1

Abstract

Species and interactions are being lost at alarming rates and it is imperative to understand how
communities assemble if we have to prevent their collapse and restore lost interactions. Using an
8-year dataset comprising nearly 20 000 pollinator visitation records, we explore the assembly of
plant–pollinator communities at native plant restoration sites in an agricultural landscape. We
find that species occupy highly dynamic network positions through time, causing the assembly
process to be punctuated by major network reorganisations. The most persistent pollinator species
are also the most variable in their network positions, contrary to what preferential attachment –
the most widely studied theory of ecological network assembly – predicts. Instead, we suggest
assembly occurs via an opportunistic attachment process. Our results contribute to our under-
standing of how communities assembly and how species interactions change through time while
helping to inform efforts to reassemble robust communities.

Keywords
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INTRODUCTION

When a species goes locally extinct, it threatens the loss of
more than one species in the community. Species interact with
many other species in their community in ways that likely
support essential ecosystem functions such as pollination,
nutrient flow, water storage and herbivore regulation (Cardi-
nale et al. 2012; Kaiser-Bunbury et al. 2017). As the world
continues to lose species locally and globally at an alarming
rate (Ehrlich & Daily 1993; Dunn et al. 2009; Barnosky et al.
2011), anticipating a community’s ability to maintain function
and resist collapse will depend on the patterns of interaction
between species (Memmott et al. 2004; Rezende et al. 2007;
Bascompte & Stouffer 2009; Th�ebault & Fontaine 2010).
Thus, to safeguard ecological function, it has become increas-
ingly imperative to aid the recovery of lost interactions and
component biodiversity by facilitating the assembly of robust
interaction networks via ecological restoration (Menz et al.
2010; Kaiser-Bunbury et al. 2017). However, very little is
known about how ecological networks assemble in general,
often forcing efforts to restore interacting communities to pro-
ceed without a firm grounding in ecological theory.
Preferential attachment, the most widely explored mecha-

nism of network assembly, predicts that species entering a net-
work are more likely to interact with species that are already
well-connected (the ‘rich-get-richer’ principle, Simon 1955;
Barabasi and Albert 1999). In pollination systems, a particu-
larly ubiquitous mutualism (Klein et al. 2007; Ollerton et al.
2011), some studies have found support for the preferential
attachment assembly mechanism. Investigating the day-to-day,

temporal assembly of a plant–pollinator network within a sea-
son, Olesen et al. (2008) found that new plant and pollinator
species entering the community tended to interact with
already well-connected species, potentially because these spe-
cies are either more abundant or temporally persistent. As
specialist species attach to the well-connected, generalist core
via preferential attachment, we expect network nestedness (i.e.
a topology in which a core group of generalists interacts with
both specialist and generalist species, Albrecht et al. 2010)
and network-level specialisation to increase. Because nested-
ness is associated with resilience to species loss (e.g. Memmott
et al. 2004), preferentially attaching communities would
increase in robustness as they assembled. In addition, if as a
community assembed via preferential attachment, multiple
generalist cores emerged, the modularity of the network
would increase though time.
Properties that enable a species to interact with a broad

range of partners and thus serve as ‘hubs’ for preferential
attachment (i.e. generalisation), will also enable them to
switch partners depending on community context (Kaiser-
Bunbury et al. 2010; Cuartas-Hern�andez & Medel 2015;
MacLeod et al. 2016). According to the optimal foraging the-
ory, for an individual to maximise the fitness benefit of an
interaction, there must be a balance between specialising on a
less abundant/lower quality resource or sharing an abundant/
high quality resource with other species (e.g. Brosi 2016;
Emlen 1968; Stephens & Krebs 1986). Thus, as a community
assembles and the context changes, generalist species can
switch their interaction partners to explore different, less com-
petitive, resources – an ‘opportunistic attachment’ process.
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The signature of the opportunistic attachment process is that
instead of being part of a persistent species core as with pref-
erential attachment, generalist species continually adapt their
interactions to exploit the most favourable resources (Val-
dovinos et al. 2016), leading to significant reorganisations of
interactions, or change points (Peel & Clauset 2015). A
change point is caused by a merge, split, fragmentation or
formation of modules of interacting species within a network
(Peel & Clauset 2015). In contrast, in communities assembling
via preferential attachment, any change points would be dri-
ven primarily by changes in the interactions of peripheral,
temporally variable species, while a stable, well-connected
core of species remained stable in their interactions. Another
indication of opportunistic attachment is that interaction pat-
terns (e.g. nestedness) would not develop through time as
might be expected with preferential attachment. With both
assembly mechanisms, we might expect species entering the
network to lead to higher rates of species and interaction
turnover than in already assembled communities. However,
with preferential attachment, the peripheral species that were
turning over would essentially replace each other as they filled
similar roles in the network, whereas in opportunistic attach-
ment we might expect unique interactions to more continually
form and then disappear. No studies, however, have exam-
ined how networks assemble across years to test whether net-
work change points occur and/or how these changes relate to
species behaviour.
Understanding network assembly is particularly relevant to

ecological restoration, which is essentially ‘applied succession’
(e.g. Parker 1997). In pollination systems, the structure of net-
works in restored areas changes over time (Forup et al. 2008;
Devoto et al. 2012), suggesting that interactions shift as a
community develops. Facilitating network restoration is
imperative in areas where species interactions provide essential
ecosystem services, such as crop pollination in agricultural
landscapes. To promote pollination services in agriculture
(Garibaldi et al. 2014), some farmers plant strips of native
vegetation along farm edges (hedgerows). By providing habi-
tat, hedgerows augment the richness, abundance and trait
diversity of pollinators in agricultural landscapes (Morandin
& Kremen 2013; Kremen & M’Gonigle 2015; Ponisio et al.
2016), and promote the persistence and colonisation of floral
resource specialists (M’Gonigle et al. 2015), while also
enhancing adjacent pollination services (Morandin & Kremen
2013; Morandin et al. 2016) but see (Sardiñas & Kremen
2015). As the community assembles, it is important to under-
stand how these new species are incorporated into the net-
work as well as the consequences of adding species for
network topology and robustness to species loss.
We explore the process of network development using

8 years of observations of plant–pollinator community assem-
bly following hedgerow instalment in the highly simplified and
intensively managed agricultural landscape of California’s
Central Valley. We first test whether network assembly was
punctuated by significant reorganisations of interactions. We
next test whether the species that are most variable in their
network position – and thus important contributors to net-
work reorganisations – are the most persistent and connected
species, as would be expected by opportunistic attachment, or

least persistent and peripheral species, as expected under pref-
erential attachment. We also examined patterns of species and
interaction temporal turnover to determine whether as species
turnover, they replace each other (preferential attachment) or
form novel interactions (opportunistic attachment). Finally,
we investigated whether networks assemble towards specific
network topologies (i.e. nestedness, specialisation and modu-
larity) as expected under preferential attachment, and the
ramifications for the robustness of the networks. Our results
contribute to our understanding of how communities assem-
bly while helping to inform efforts to reassemble robust com-
munities through restoration.

MATERIALS AND METHODS

Study sites and collection methods

Study sites were located in the Central Valley of California in
Yolo, Colusa and Solano Counties. This area is composed of
intensively managed agriculture – primarily monocultures of
conventional row crops, vineyards and orchards. Hedgerows
border large (c. 30 ha) crop fields and measured between 3
and 6 m wide and c. 350 m long. Hedgerows consist of native,
perennial, shrub and tree plantings (Fig. S1, Menz et al. 2010;
Kremen & M’Gonigle 2015; M’Gonigle et al. 2015).
We selected five farm edges to be restored as hedgerows.

We monitored these locations before the hedgerow was
planted, and tracked the assembly of the community for up to
7 years after the hedgerow was planted (from 2006 to 2014).
For controls, we concurrently monitored non-assembling com-
munities within mature hedgerows (> 10 years since planting,
N = 29) and unrestored, weedy field margins (N = 19). The
mean distance between monitoring sites was 15 km, and the
minimum distance between sites sampled in the same year was
1 km. The entire area surveyed spanned almost 300 km2. The
crop fields adjacent to all sites were similarly managed as
intensive, high-input monoculture.
Sites were sampled between two and five times per year

(Tables S1–S3, mean 3.4 samples per year). In each round of
sampling, the order in which sites were sampled was ran-
domised. Surveys were conducted under sunny conditions
when the temperature was above 21 °C and wind speed was
below 2.5 m s�1.
During each sampling round, flower visitors to plants in

assembling hedgerows and non-assembling controls were netted
for 1 h of active search time (the timer was paused when han-
dling specimens). The identity of the plant being visited was
recorded for each floral visitor. Honey bees (Apis mellifera)
were not collected because, as managed pollinators whose hives
are placed near pollinator-dependent crops, they occur perva-
sively throughout this landscape in high abundances.
All other insect flower visitors that touched the reproductive

parts of the flower were collected; however, here, we focus
only on wild bees and syrphids – the most abundant and
effective pollinators in the system (representing 49 and 19%
of records, respectively, C. Kremen, A. Klein and L. Moran-
din, unpublished data). Bee and syrphid specimens were iden-
tified to species (or morphospecies for some bee specimens in
the genera Nomada and Sphecodes) by expert taxonomists.
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Quantitative networks were generated for each site through
time. Because the number of sampling rounds varied between
years (Tables S1–S3), we used the mean of the interactions
between a pair of plants and pollinators within a year to rep-
resent interaction frequency.

Change point analysis

Identifying change points
We employed a change point detection method (Peel &
Clauset 2015) to identify fundamental reorganisations in
large-scale network topology. A change point could be the
splitting, merging or formation of network modules or some
combination therein (Peel & Clauset 2015). Change point
detection methods are yet to be generalised to quantitative
networks; hence, for this analysis, we focused on qualitative
(binary) networks. To detect change points, we must first fit
a model of the structure of the graph in each year. Follow-
ing Peel & Clauset (2015), we fit a generalised hierarchical
random graph model (GHRG). The GHRG model captures
both assortative and disassortative structure at all scales in
the network, and produces accurate fits to ecological net-
works (Peel & Clauset 2015). The GHRG model decomposes
the vertices (species) of a network into a series of nested
groups, the relationships among which are represented by a
dendrogram. The GHRG model builds on the more classic
hierarchical random graph model (HRG) (Clauset et al.
2007) but allows each node of the dendrogram to have any
number of subbranches, instead of requiring a fully binary
dendrogram. Relaxing the binary tree requirement allows the
the GHRG model to capture more large scale patterns than
the HRG model. The GHRG model is not designed specifi-
cally for bipartite networks, but is able to detect significant
change points in the structure when fitted to simulated
bipartite networks (Peel, pers. comm). The GHRG model is
fit to the network using Bayesian posterior inference and
techniques from phylogenetic tree reconstruction (Peel &
Clauset 2015).
Once the GHRG model was fitted to the networks,

whether a change point occurred between two time slices
was determined. To detect a change point, we used Bayes
factors to compare the fit of two models – one where a
change point occurred between two time slices and one
where no change occurred. We used sliding window of fixed
length of 4 years to detect if any changes have occurred with
respect to a GHRG model fitted over the window. Larger
windows allowed for more gradual changes, and 4 was a
balance between a window as large as possible and the con-
straint of 8 years of data. Lastly, to calculate P-values for
the Bayes factors, we used parametric bootstrapping to
numerically estimate the null distribution (100 000 samples,
Peel & Clauset 2015). We modified the code published online
by L. Peel for the change point analysis (https://piratepeel.
github.io/code.html). We reran the change point detection
algorithm 1000 times, and identified robust change points as
those that were selected in 95% of iterations. Change points
analyses were conducted in Python 2.7.10 and R 3.3.2 (R
Core Team, 2015). The fully reproducible code and explana-
tions for all analyses is available on GitHub at https://

github.com/lponisio/hedgerow_assembly (Ponisio & Gariarsa
2017).
We next tested whether the change points occurred at simi-

lar rates between the assembling and non-assembling commu-
nities. We modelled the number of change points as successes
and the total number of sample years at each site as trials,
and used a generalised linear model with binomial error to
test whether the probability of a change point occurrence var-
ied by site type. We used standard techniques to determine
whether the assumptions of the models were met for this and
all subsequent models. For the non-assembling controls, only
sites with five or greater survey years were included in this
analysis (field margins, N = 11, mature hedgerows, N = 5).
All statistical analyses were conducted in R 3.3.2 (R Core
Team, 2015).

Characteristics of species that contribute to change points
To further elucidate the nature of the change points, we
examined the characteristics of the species that contributed to
interaction reorganisation. We calculated species persistence
as the proportion of surveys in which a plant or pollinator
was observed. Species observed consistently within and
between years were thus maximally persistent. Species degree
was calculated from interaction observations from an exten-
sive dataset from Yolo County (c. 18 000 interaction records)
that included both the data included in this study and addi-
tional data from sites where we collected flower visitors using
the same methods (M’Gonigle et al. 2015; Ponisio et al.
2016). Degree was estimated using the Chao2 estimator (Chao
et al. 2009; Winfree et al. 2014), which approximates the num-
ber of plant species from which a given pollinator species
would have been observed visiting, given sufficient sampling.
To represent network position variability, we computed the

coefficient of variation of weighted closeness centrality (Free-
man 1978) at each site through time. Zeros (the absence of
the species in the network) were not included in the calcula-
tion of the coefficient of variation to avoid confounding per-
sistence with variability in network position. Closeness
centrality represents the importance of a species by calculating
the path lengths to other vertices (species) in the network
(Freeman 1978). The shorter the mean path length to other
species, the higher the closeness centrality. We used linear
mixed models to test whether the species closeness variability
(log) is related to the persistence or degree of that species
(Bates et al. 2014; Kuznetsova et al. 2014). We included ran-
dom effects for species and site. P-values for mixed models
were calculated based on Satterthwaite’s approximations for
degrees of freedom (Kuznetsova et al. 2014). We used vari-
ance inflation factors (VIF) to estimate the collinearity
between explanatory variables (Zuur et al. 2010). Because
variability in network position could be the result of log close-
ness centrality increasing through time – as would be expected
with assembly by preferential attachment – we tested for this
relationship as well.

Species and interaction turnover

To better understand the mechanisms underlying the temporal
dynamics of the assembling networks, we examined patterns

© 2017 John Wiley & Sons Ltd/CNRS
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of species and interaction turnover. To estimate the temporal
species and interaction turnover, we used an approach similar
to calculating spatial b-diversity. Instead of calculating the
variation in community composition across sites within a
year, we estimated turnover across years at a site. We first cal-
culated the pairwise dissimilarity of plants, pollinators and
interactions between years within each site using the Chao dis-
similarity estimator that incorporates abundances, while also
accounting for unobserved records (Chao et al. 2005). Dissim-
ilarity estimates can be affected by the total number of species
and individuals sampled at a site (e.g. Ponisio et al. 2016).
For example, the probability that two sites do not share any
species is higher when there are few individuals at those sites.
Following Ponisio et al. (2016), we used null models that con-
strained species richness to estimate the deviation of the
observed dissimilarity from that which would be expected
under a random community assembly process. With the cor-
rected dissimilarity values, we then calculated the multivariate
dispersion of community composition across years (Anderson
et al. 2011). In order to test whether assembling hedgerows
had more species and interactions turnover than non-assem-
bling communities, the species and interaction temporal turn-
over estimates were modelled as responses in a linear mixed
model with site type as an explanatory variable and site as a
random effect (Bates et al. 2014; Kuznetsova et al. 2014).
We developed a method to examine the temporal turnover

of interactions with weightings based on their similarity
(Fig. 1). We followed the algorithm of Ahn et al. (2010) to
cluster all the interactions (edges) hierarchically across sites
and years based on their similarity, and built a dendrogram.
The interaction similarity is based on how many vertex neigh-
bours (plants and pollinators) two edges share (Ahn et al.
2010; Kalinka & Tomancak 2011). The more neighbours
edges shared in common, the shorter the branch length
between them on the dendrogram. We next calculated the
temporal turnover of interactions weighted by their similarity,
as approximated by cophenetic distance (Graham & Fine
2008; Kembel et al. 2010). We then used linear mixed models
to test whether the weighted turnover of interactions varied
between assembling and non-assembling networks, including

site as a random effect (Bates et al. 2014; Kuznetsova et al.
2014).

Temporal changes in interaction patterns

Network structure
To evaluate network nestedness, we used the estimator
weighted NODF (nestedness overlap and decreasing fills)
(Almeida-neto et al. 2008). NODF evaluates whether species
with fewer partners interact with subsets of partners with
which more connected species interact (Almeida-neto et al.
2008). To estimate modularity, we used an approach based on
edge betweenness (Newman & Girvan 2004; Csardi & Nepusz
2006). This hierarchical clustering algorithm generates a den-
drogram based on potential modules, and selects the partition
that maximises modularity (Newman & Girvan 2004; Csardi
& Nepusz 2006). We evaluated network specialisation with
the metric H2, which estimates the deviation of the observed
interaction frequency between plants and pollinators from a
null expectation where all partners interact in proportion to
their abundances (Bl€uthgen et al. 2006, 2008). H2 describes
specialisation in terms of exclusiveness (or reciprocal speciali-
sation). We also included another measure of specialisation,
connectance, calculated as the proportion of observed out of
possible interactions. Connectance measures the degree of
generalisation or redundancy in a system (Bl€uthgen et al.
2008). We calculated standardised z-scores so that nestedness,
modularity and specialisation metrics could be compared
across communities. The z-scores were calculated by generat-
ing an ensemble of 999 null assembled communities, subtract-
ing the mean of the statistic calculated across these
communities from the observed value, and then dividing by
the standard deviation. To assemble null communities, we
reshuffled the interactions between species but fixed the total
number of interactions, species and interaction frequency dis-
tributions (Galeano et al. 2009).
To test whether network modularity, nestedness, con-

nectance or specialisation changed linearly with assembly, we
used linear mixed models with the descriptive network met-
rics as the response variable, year of assembly as the
explanatory variable, and random effects of site and year.
The number of species in a network affects the network
topologies possible, so we also examined the change in plant
and pollinator species richness through time. We employed
generalised linear mixed models with Poisson error to model
richness (Bates et al. 2014). We scaled all continuous
explanatory variables.

Network robustness
Finally, we tested whether the changes in network topology
associated with network assembly affect the robustness of the
network to species loss and cascading perturbations. Follow-
ing Memmott et al. (2004), we simulated plant species extinc-
tion and the subsequent extinction cascades of pollinator
species. Because the reproduction of plant species is facilitated
by active restoration efforts, it is unlikely the extinction of
pollinator species would affect plant populations in the hedge-
rows. However, plants ceasing to bloom, for example, in
response to drought, will likely affect the pollinators that

Year 2Year 1

1

1 2 3 1 2 34 2

3

4

Figure 1 Diagram illustrating the weights used to examine the temporal

turnover of interactions based on their similarity. Light colored nodes

represent animal species and dark colored nodes represent plant species.

Interactions between species (edges) are numbered. The dendrogram

depicts the similarity of the edges based on their shared neighbour species

(animals and plants), across years. Edge 4 is gained between year one and

two, while edges 1, 2 and 3 remain the same. Since edge 4 shares an

interaction partner with edge 1, edge 4 appears in the same cluster as

edges 1 and 2 in the dendrogram.
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depend on them. We eliminated plants species based on their
degree or abundance, and then calculated the number of polli-
nators that secondarily went extinct. The area below the
extinction curve is an estimate of network robustness (Mem-
mott et al. 2004; Burgos et al. 2007; Dormann et al. 2008).
We also explored how the robustness to cascading perturba-

tions changed as the community assembled, using algebraic
connectivity – the second smallest eigenvalue of the Laplacian
matrix (Fiedler 1973) – as a proxy for network robustness.
Algebraic connectivity relates to how difficult it is to turn a
network into completely disconnected groups of species
(Costa et al. 2007; Gibert et al. 2013). The larger the algebraic
connectivity, the more sensitive a network is to cascading per-
turbations. Perturbations, such as the decrease in abundance
of a plant or pollinator, can have negative consequences for
the species in the network. For example, a decrease in abun-
dance of a pollinator will diminish the pollination services it
provides to plants. The affected plants would set less seeds,
and decrease in abundance he subsequent year. Consequently,
other pollinators that depend on those plant species would
also be affected, and the effects of this perturbation would
continue to propagate throughout the network. Alternatively,
perturbations could also have a positive effect if, for example,
the increase in the abundance of a plant species lead to an
increase in resource availability for pollinators. The examples
of negative perturbations (e.g. resource collapse, disease
spreading, parasites), however, outnumber possible positive
perturbations. It is important to note that both robustness
and algebraic connectivity assume that the network is static –
they do not account for the ability of species to alter their
interaction depending on circumstances and the resource
availability.
In order to test whether hedgerows changed in robustness

as the communities assembled, the three measures of robust-
ness were modelled as responses in a linear mixed model with
site type as an explanatory variable and site as a random
effect (Bates et al. 2014; Kuznetsova et al. 2014).

RESULTS

Over 8 years and from 747 samples, we collected and identi-
fied 19 547 wild bees and syrphids comprising 173 species
from 50 genera. We observed 1521 unique interactions
between plants and pollinators.

Change point analysis

Identifying change points
Four of the five of assembling hedgerows underwent at least
one significant interaction reorganisation (Figs 2 and 3,
Table S2–S4), while only 20% of non-assembling communities
experienced a change point (one field margin and two non-
assembling hedgerows each underwent one change point). The
proportion of years with change points in assembling hedge-
rows was 21.2%, whereas only 8.6% of years in non-assem-
bling hedgerows and 1.3% of years in field margins were
changing points. Assembling hedgerows had significantly more
changing points than the non-assembling field margin net-
works (difference in the odds ratios estimate between

assembling and non- assembling networks, 0.057, 95% CI
[0.003, 0.34], z-value = �2.6216, P-value = 0.0089), but not
significantly more than the non-assembling (mature) hedge-
rows. Because the sample sizes are small and unbalanced
(N = 33 for assembling hedgerows, 23 for non-assembling
hedgerows, and 66 for non-assembling field margins, where N
is the number of consecutive years assessed totalled over all
sites within a site type, Table S4), this may induce bias which
may skew the odds ratios away from one.

Characteristics of species that contribute to change points
Inconsistent with the predictions of assembly by preferential
attachment, degree and persistence were not negatively related
to variability in network position. Instead, pollinator persis-
tence was significantly positively related to network position
variability (Fig. 4, estimate of the slope of closeness centrality
variability and persistence � SE of the estimate, 0.742 � 0.246,
t- value = 3.01215.42, P-value = 0.0086), although degree was
not. The slope of persistence and closeness centrality remained
significant when the species with the top 10 persistence scores
were dropped. Plant persistence and degree were not signifi-
cantly related to network position variability (Fig. 4). In both
models, we tested collinearity in degree and persistence using
variance inflation factors (VIF), and did not find strong evi-
dence for collinearity (all VIF < 2, Zuur et al, 2010). The vari-
ability of species network position was not the result of
closeness linearly increasing through time, and, in fact, plant
and pollinator closeness decreased slightly through time
(Fig. S5, estimate of the slope of closeness through time � SE,
pollinators: �0.082 � 0.021, t-value = �3.87944.66; plants
�0.089 � 0.044, t-value=�2.026610.2).

Species and interaction turnover

Contrary to expectations, the rates of plant, pollinator and inter-
action temporal turnover were similar across assembling hedge-
rows, non-assembling mature hedgerows and field margins,
although mature hedgerows had significantly less pollinator turn-
over than field margins (Fig. 5, estimate � SE of the difference
in turnover between field margins and mature hedgerows,
�0.051 � 0.026, t-value = �1.979195, P-value = 0.0493). When
interactions were weighted by their similarity, both assembling
and mature hedgerows had higher rates of turnover than field
margins (Fig. 5, estimate � SE of the difference in turnover
between field margins and assembling hedgerows, 0.115 � 0.027,
t-value = 4.21631.12, P-value = 0.0002; field margins and mature
hedgerows, 0.082 � 0.024, t-value = 3.435.13, P-value = 0.002).
The weighted interaction turnover at assembling hedgerows,
however, was not significantly higher than in non-assembling,
mature hedgerows.

Temporal changes in interaction patterns

Network structure
As predicted by opportunistic attachment, nestedness,
modularity and specialisation did not increase linearly with
assembly (Fig. 6). All the networks were significantly nested
(z-scores > 1.96 assuming a Gaussian distribution of null
community network metrics), but not modular (z-scores

© 2017 John Wiley & Sons Ltd/CNRS
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< 1.96, Fig. 6). Most communities were more generalised
than expected when interactions were reshuffled between spe-
cies (z-scores < 1.96, Fig. 6). Connectance decreased as the
community assembled (Fig. 6, estimate of the slope of

connectance through time � SE of the estimate, �0.023 �
0.008, t-value = �2.7830.733, P-value = 0.007).
Both plant and pollinator species richness increased through

time (Fig. 6, estimate of the slope of richness through

*

*

*

*

*

Figure 2 Assembling hedgerow networks had more changing points (vertical lines) than non-assembling hedgerows and weedy field margins (a

representative sample of non-assembling sites are depicted here, the time series for all survey sites are represented in Figs S2–S4). In each network, plants

and pollinators are represented by dark and light circles, respectively, weighted by their degree. Each species has a consistent position in the perimeter of

the network across years and survey sites. Asterisks indicate the year the hedgerow was planted. Before that, the sites were weedy field margins.
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time � SE, pollinators: 0.136 � 0.064, z-value = 2.12, P-value
= 0.034; plants: 0.140 � 0.060, z-value = 2.519, P-value =
0.012). Unsurprisingly, pollinator species are colonising and per-
sisting at the assembling hedgerows. Plant species richness in the
networks is based on the flowers actually visited by pollinators
and not the presence of a particular plant species at a site. Thus,
although some new plant species may establish themselves in the
hedgerows, the increase in plant richness in the networks is likely

due to previously unvisited plants attracting visitors as they
mature and offer better rewards.

Network robustness

Assembly did not affect network robustness to species extinc-
tion when species were removed incrementally by degree or
abundance (Fig. S6). Similarly, the sensitivity of networks to
cascading perturbations, as measured by the algebraic connec-
tivity of the network, did not change linearly as the commu-
nity assembled (Fig. S6).

DISCUSSION

We show that the temporal assembly of plant–pollinator net-
works following restoration is a highly dynamic process punc-
tuated by change points, indicating that interactions undergo
significant reorganisations. Degree and persistence were not
negatively related to network position variability as might be
expected if the network was assembling by preferential attach-
ment, and, in pollinators, persistence and network variability
were in fact positively related. Finally, of the descriptive met-
rics of network topology, only connectance showed a signifi-
cant linear relationship with assembly. Together, these results
suggest an opportunistic attachment process.
Change points did not occur consistently across all sites in

specific years (Fig. 2), suggesting that community-specific bio-
tic factors such as the abundance and identity of species pre-
sent in each year – likely in addition to abiotic drivers such as
rainfall – contribute to interaction reorganisations. Most
assembling hedgerows did not undergo a significant interac-
tion reorganisation immediately after planting (i.e. the transi-
tion from weedy field margin to hedgerow). This result is

Figure 3 The species module membership between network changing points as fit by the GHRG model. Two representative assembling hedgerows are

depicted. In the top panel, species are grouped by module. The bottom panels visualize the flow of species to different modules between change points.

Time progresses from the left to the right of the figure. Within a time slice modules are colored according to the module membership representation above.

The thicker the line, the more species that belong to that module. Between change points, some species move between modules, represented by the change

in the grouping and color of the lines through time.

Figure 4 The variation coefficient of network position, as represented by

closeness, plotted against pollinator persistence and degree. Only

persistence was positively related to network position variability in

pollinators. Points represent means for each species across sites. The solid

line indicates the mean slope estimate and the dashed lines are the 95%
confidence intervals around the estimate.
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consistent with the finding that hedgerow restoration takes
several years to have an impact on the plant–pollinator com-
munities in our study system, as well as with the observation
that hedgerows do not begin to produce many flowers until
3�5 years following planting (Kremen & M’Gonigle 2015).
The change point analysis we employed is only able to

detect large-scale changes in network structure (Peel & Clau-
set 2015), and does not consider interaction weights. Pollina-
tors can adapt to changing context by shifting their
interaction partners, the frequency with which they visit them,
or both (Valdovinos et al. 2016), and the method currently
does not detect such interaction frequency-driven change
points. Methods to directly model entire time-varying graphs
and compare networks more generally are an active area of
research, and thus in the future, we may be able to describe
more subtle changes in network structure that may build our
understanding of how communities respond to change (Jacobs
& Clauset 2014). Even so, much of network science is con-
cerned with modelling in data-rich fields with large networks
and long time series and minimal observation error, unlike
what is currently available in ecology. To our knowledge, the
interaction data from this study represents the longest contin-
uous sampling of multiple, species-level ecological networks to
date. However, due to the constraints of funding, human
effort and working on private land, our sample size is unbal-
anced and relatively small in comparison to the networks for

which graph comparison methods are developed. In order to
gain insights into how ecological networks change, ecology
must match the data needs of network methods through inno-
vations that will facilitate more efficient collection of data
(e.g. image recognition, Hall 2011) along with efforts to tailor
the methods themselves through interdisciplinary collabora-
tions between ecologists and researchers developing network
methods.
Interestingly, although assembling hedgerows generally had

more network reorganisations than non-assembling communi-
ties, pollinator species and interaction turnover occurred at
similar rates across site types. Assembling hedgerows have
higher turnover than non-assembling field margins only when
interactions were weighted by their similarity. This is likely
because although species and interactions are turning over at
the unrestored field margins, species and interactions that fill
similar roles in the network are replacing each other as would
be expected with opportunistic attachment. In contrast, at the
assembling hedgerows, unique interactions are turning over as
the networks continually reorganise and community richness
increases (M’Gonigle et al. 2015). Non-assembling mature
hedgerow communities had not only similar rates of weighted
interaction turnover as assembling hedgerows but also the
lowest pollinator turnover. Pollinators at mature hedgerows
may generally be more persistent, and rare and/or specialised
pollinators could generate this pattern they formed unique but

Figure 5 Species interaction and weighted interactions turnover of plant–pollinator networks at non-assembling field margins sites (N = 138, across 29

sites), assembling hedgerows (N = 14, across five sites) and non-assembling, mature hedgerows (N = 46, across 19 sites). Rates of species and interaction

turnover were similar between site types, though mature hedgerows had significantly less pollinator turnover. However, when interactions were weighted by

their similarity, both hedgerow types had higher turnover than unrestored field margins. Boxplots represent medians (black horizontal line) first and third

quartiles (box perimeter) and extremes (whiskers).
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transient interactions with plants that did not previously share
pollinators. These species would not contribute strongly to
network reorganisation or species turnover, but would
enhance weighted interaction turnover. Mature hedgerows,
therefore, support more persistent pollinator communities,
while also providing resources for rare and/or specialised spe-
cies (Kremen & M’Gonigle 2015; M’Gonigle et al. 2015).
Although persistence and not degree was significantly related

to network position variability, because degree and persistence
are traits that are often related in pollinator species, it is difficult
to disentangle the causal mechanism for why persistent pollina-
tors tended to be more variable in their network positions. The
most persistent bee species in our landscape (Halictus ligatus,
Halictus tripartitus and Lasioglossum incompletum) have multi-
ple generations within a year enabling them to have long phe-
nologies and high abundances. These species can then visit
many different flowers over the season, resulting in a higher
degree (V�azquez et al. 2009; Fort et al. 2016). Species that can
interact with a relatively high number of partners may be better
able to exploit the limited floral resources in the intensively
managed agriculture landscape, and thus also be the most per-
sistent (in ant–plant mutualisms, D�ıaz-Castelazo et al. 2010).
Either way, our results suggest that given the opportunity and
ability to use different resources, pollinator species will often
change their network positions, likely to utilise the most advan-
tageous floral resources available which will depend on both the
other pollinator species that are present and the state of the

plant community (Waser et al. 1996; G�omez & Zamora 2006;
Cuartas-Hern�andez & Medel 2015; MacLeod et al. 2016).
When we explored how network topology changed through

time, we found few trends. Connectance decreased, as would
be expected if the network is being colonised by specialist spe-
cies (M’Gonigle et al. 2015). However, network specialisation,
as measured by the degree to which species deviate from inter-
acting with partners in proportion to their abundances, did
not change linearly with assembly. Decreasing connectance
without an accompanying increase in specialisation would be
possible if the increased colonisation of specialised species was
accompanied by an increase in the diet breath of resident spe-
cies. This would be expected if resident species were able to
minimise their foraging time by expanding their diet breath as
plant diversity and/or intraspecific competition increases with
hedgerow maturation (Pyke 1984; Waser et al. 1996; Bl€uthgen
et al. 2007; Albrecht et al. 2010; Brosi 2016). Connectance
may also decrease simply because as species richness increases,
the number of potential links grows exponentially (Kay &
Schemske 2004).
Hedgerow network resilience as measured by robustness to

species extinction or susceptibility to cascading perturbations
also did not increase linearly with assembly. While these
results differ with other studies that have found network
robustness increases after restoration (Forup et al. 2008; Kai-
ser-Bunbury et al. 2017), such studies either used space for
time substitution to compare sites over a much longer time

Figure 6 Plant richness and pollinator richness increased through time in the assembling hedgerows. Nestedness, modularity and specialisation did not

change linearly across years, while connectance decreased. The nestedness, modularity and specialisation scores represent z-scores. Scores > c. 1.96 or

< c.�1.96 are significantly more or less structured than randomly assembled networks. Points are the metric value for each site at each year of assembly,

and the colours indicate the different survey sites. The solid line indicates the mean slope estimate and the dashed lines are the 95% confidence intervals

around the estimate.
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sequence (> 250 years, Forup et al. 2008) or examined
restoration processes based on non-native species removal
(Kaiser-Bunbury et al. 2017). Our study looks at species addi-
tion and rapid assembly. Although both community assembly
and non-native species removal (Kaiser-Bunbury et al. 2017)
can contribute and are often needed to restore communities,
these processes are not necessarily opposites that mirror each
other in their effects on network properties. The process of
network disassembly may be related to the process of network
build-up, but little is known about either process and even less
about their relationship (Bascompte & Stouffer 2009).
We show rapid assembling and successional communities

assemble opportunistically such that species continually
change their positions in the network in response to shifting
biotic and abiotic contexts. If opportunistic assembly, or
‘rewiring’, also occurs as a habitat degrades or is destroyed,
then species in each time slice will reorganise their interactions
based on the species remaining, and novel interactions may
compensate for function lost from species extinction (Kaiser-
Bunbury et al. 2010). Such reorganisations within networks
would be likely to provide substantial buffering capacity to
maintain plant–pollinator interactions, since it is the gener-
alised and abundant species that are most prone to reorganis-
ing their interactions, and least likely to be lost first with
habitat loss (Aizen et al. 2012; Winfree et al. 2014). For
example, in an experiment where the most abundant bumble
bee species was removed from sub-alpine meadows, the
remaining bumble bees shifted their interactions by expanding
the diversity of plant species they visited during a foraging
bout (Brosi & Briggs 2013). However, the only empirical
study examining the disassembly of both species and interac-
tions in habitat fragments of different sizes within an agricul-
tural matrix, found that the interactions present in each
fragment tended to be proper subsets of those in the next, lar-
ger fragment (Aizen et al. 2012). This work suggests a more
ordered progression of network disassembly where there is
minimal interaction reorganisation to compensate for the lost
species; however, we do not know if this is a common pattern,
or one that is tied to the specific ecology and evolutionary his-
tory of the species in those communities. Further, the path-
way of disassembly may differ from reassembly (hysteresis,
Suding & Hobbs 2009). Understanding under what ecological
circumstances species rewire will also be important for devel-
oping new methods for estimating a community’s robustness
to species extinction or susceptibility to cascading perturba-
tions, which is currently based on static networks. In order to
facilitate management, restoration and conservation, future
studies should explore the prevalence of opportunistic attach-
ment in both network assembly and disassembly, and the spe-
cies life histories and biological contexts that enable it to
occur.
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