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Abstract: In this paper we propose a hybrid control strategy to solve the problem of rendezvous,
proximity operations, and docking of an autonomous spacecraft in 3D. Due to the different
constraints and tasks to perform, a hybrid systems approach is implemented to solve the problem
in three phases: 1) rendezvous; 2) rendezvous with smaller relative distance; 3) docking phase;
and 4) docked phase; with range and angle measurements. In this approach, we implement a
supervisor that robustly coordinates the individual controllers to accomplish the whole mission.
We also present the designs of these individual controllers that solve the appropriate control
problems for the individual phases. Numerical results for both the nominal and perturbed case
validate the hybrid control strategy for the spacecraft close-proximity mission.

Keywords: Hybrid systems, Spacecraft close-proximity missions, Supervisory control,
Robustness

1. INTRODUCTION

In recent years there has been an increasing necessity to
control the dynamics of relative satellite motion for close-
proximity missions. Often the motion between two or more
satellites is modeled assuming a circular chief orbit and
a deputy orbit linearized about the chief’s motion. This
results in the Clohessy-Wiltshire-Hill (CWH) equations
Clohessy and Wiltshire (1960); Hill (1878), which is a
linear time-invariant model. Such missions include both
formation flying missions and rendezvous in 3-dimensional
space, where guidance, closed-loop control, and naviga-
tion algorithms must be designed taking into account
mission requirements and the natural orbital dynamics of
the system. Feedback control solutions for such missions
may involve LQR control Kluever (1999), time-varying
gain control Nazari and Butcher (2016), output tracking
schemes that successfully reject disturbances Lee et al.
(2014), model predictive control strategies Vazquez et al.
(2011); Di Cairano et al. (2012); Weiss et al. (2015) and
hybrid control strategies Malladi et al. (2016).

In this paper, we extend the hybrid control strategy
for rendezvous, proximity operations, and docking of an
autonomous spacecraft in Malladi et al. (2016) to a 3-
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dimensional spacecraft modeled using the CWH equations.
Similar to the strategy presented in Malladi et al. (2016),
this problem consists of the following four main phases: 1)
rendezvous with large relative distance; 2) rendezvous with
smaller relative distance; 3) docking phase; and 4) docked
phase. We consider that the range and angle measurements
are available in each phase while the state constraints and
the tasks to perform are different access phases. Precisely,
we contribute to the problem by

• Characterizing the family of individual controllers in
the 3D case and the required properties they should
induce to the closed-loop system to solve the problem
within each phase of operation.

• Designing a supervisor that robustly coordinates the
individual controllers so as to provide a solution to
the problem.

• Providing specific controller designs that appropri-
ately solve the control problems for individual phases
and validate them numerically.

The remainder of the paper is organized as follows. The
notation used throughout the paper and the needed back-
ground material on hybrid controllers is presented in Sec-
tion 2. The problem of interest is formalized in Section 3
and a general hybrid feedback control solution is presented
in Section 4. Section 5 presents specific designs for each
controller and numerical simulations for both the nominal
case as well as the more general case in which we consider



the presence of noise in measurements. Due to space limi-
tations, additional details and the proof of the main result
will be published elsewhere.

2. PRELIMINARIES

2.1 Notation

The following notation and definitions are used throughout
the paper. Rn denotes n-dimensional Euclidean space. R
denotes the real numbers. Z denotes the integers. R≥0
denotes the nonnegative real numbers, i.e., R≥0 = [0,∞).
N denotes the natural numbers including 0, i.e., N =
{0, 1, . . .}. B denotes the open unit ball in a Euclidean
space. Given a set S, S denotes its closure. Given a vector
x ∈ Rn, |x| denotes the Euclidean vector norm. Given a
closed set S ⊂ Rn and a point x ∈ Rn, |x|S := infy∈S |x−
y|. Given subsets S1, S2, S3 subsets of Rn, S1 + S2 +
S3 := {x1 + x2 + x3 : x1 ∈ S1, x2 ∈ S2, x3 ∈ S3 }. The
equivalent notation [x> y> z>]>, and (x, y, z) is used for
vectors. S(+) denotes the set of positive definitive matrices.
0 denotes a 3× 3 matrix with zeros and I denotes a 3× 3
identity matrix.

2.2 Hybrid controllers

In this paper, we consider stabilization problems for non-
linear control systems of the form

P : η̇ = fP (η, u), y = hP (η) (η, u) ∈ CP × UP (1)

where UP ⊂ RmP is a set defining the available input
values, CP ⊂ RnP is a set where the plant state η ∈
RnP is allowed to evolve, fP : CP × UP → RnP is
a function defining the continuous dynamics, and hP :
CP → RnP is the output function. A hybrid controller
Hc = (Cc, fc, Dc, Gc, hc) takes the form (see Goebel et al.
(2012))

Hc :

 yc = hc(uc, xc)
ẋc = fc(uc, xc) (uc, xc) ∈ Cc
x+c ∈ Gc(uc, xc) (uc, xc) ∈ Dc

(2)

where uc ∈ Rmc denotes the input to the controller,
yc ∈ Yc ⊂ Rrc denotes the controller output, xc ∈ Rnc

is the controller state, the sets Cc and Dc define regions
where the controller state can flow and jump, respectively,
hc : Cc → Yc defines the output of the controller and
fc : Cc → Rnc the flows, while Gc : Dc ⇒ Rnc is a
map that defines how the controller state xc is updated
at jumps. When Yc = UP and system (1) is controlled by
Hc via the interconnection conditions uc = y, and u = yc,
the resulting hybrid closed-loop system Hcl is given by

H :



η̇ = fP (η, hc(hP (η), xc))
ẋc = fc(hP (η), xc)

}
=: F (x)

(η, xc) ∈ C,
η+ = η
x+c ∈ Gc(hP (η), xc)

}
=: G(x)

(η, xc) ∈ D

(3)

where, C := {(η, xc) : (η, hc(hP (η), xc)) ∈ CP × UP ,
(hP (η), xc) ∈ Cc}, D := {(η, xc) : (hP (η), xc) ∈ Dc}.

If Hc is such that Cc and Dc are closed, fc and hc
are continuous, Gc is outer semicontinuous and locally

bounded, and Gc(xc, uc) is a nonempty subset of Rnc

for all (xc, uc) ∈ Dc, then Hc is said to be well-posed.
Note that this interconnection is well-posed when its data
satisfies the hybrid basic conditions. For more details on
the definitions of hybrid time domain, hybrid arc, hybrid
basic conditions, asymptotic stability and well-posedness
of a hybrid system, see Goebel et al. (2012).

3. PROBLEM DESCRIPTION

We consider a model of the chaser spacecraft given by
Clohessy-Wiltshire equations, namely,

ẍ− 2nẏ − 3n2x =
Fx
mc

ÿ + 2nẋ =
Fy
mc

z̈ + n2z =
Fz
mc

(4)

where (x, y, z) and (ẋ, ẏ, ż) are the position and velocity
of the chaser spacecraft with respect to the target space-
craft resolved into the target LVLH (local-vertical - local-
horizontal) frame, respectively; Fx, Fy and Fz are the
control forces in the x, y and z directions, respectively,

mc the mass of the chaser, and n :=
√

µ
ro3 , where µ is the

gravitational parameter of the Earth and ro is the orbit
radius of the target spacecraft. The target spacecraft is
located at (x, y, z) = (0, 0, 0) and has mass mt.

The state space representation of (4) is given by:

η̇ = Aη +Bu (5)

where η := [x y z ẋ ẏ ż]
> ∈ R6 is the state vector,

u := [Fx Fy Fz]
> ∈ R3 is the input vector, and

A :=


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0

 , B :=
1

mc

[
0
I

]

are the state and input matrices, respectively. The relative
position between the chaser and the target is represented

by ρ(x, y, z) :=
√
x2 + y2 + z2. In addition, let Nn(0, σ2)

be the set of measurable functions in an n-dimensional
Euclidean space with Gaussian distribution having zero
mean and variance σ2.

With these details, the problem to solve is the following.

Problem 1: Given positive constants mc, mt, µ, ro, umax,
ρmax > ρr > ρd, V , Vmax, σ1, σ2, σ3, σ4, tf > te,
θ ∈ [0, π2 ), and (xp, yp, zp) ∈ R3, design a feedback
controller that measures angle and range

y = h(η) + v
i.e.,

h(η) =


arctan

(y
x

)
arcsin

(
z

ρ(x, y, z)

)
ρ(x, y, z)

 (6)

where arctan : R → [−π, π], arcsin : R → [0, 2π]
are four-quadrant inverse tangent and inverse sine, re-



spectively, v ∈ N (0, σ2
n), n ∈ {1, 2, 3, 4}; and as-

signs u such that for every initial condition η0 ∈
M0 :=

{
η ∈ R6 : ρ(x, y, z) ∈ [0, ρmax], ρ(ẋ, ẏ, ż) ∈ [0, V ]

}
of the chaser with dynamics as in (5) under the constraints

• The control signal t 7→ u(t) satisfies the “maximum
thrust” constraint

sup
t≥0

max{|Fx(t)|, |Fy(t)|, |Fz(t)|} ≤ umax

namely, for each t ≥ 0,

u(t) ∈ UP :=
{
u ∈ R3 : max{|Fx|, |Fy|, |Fz|} ≤ umax

}
;

(7)
• For each η ∈M1 :=

{
η ∈ R6 : ρ(x, y, z) ∈ [ρr,∞)

}
,

angle and range measurements are available as in (6),
and v ∈ N (0, σ2

1);
• For each η ∈M2 :=

{
η ∈ R6 : ρ(x, y, z) ∈ [ρd, ρr)

}
,

angle and range measurements are available as in (6),
and v ∈ N 2(0, σ2

2);
• For each η ∈ Ma

3 :=
{
η ∈ R6 : ρ(x, y, z) ∈ [0, ρd)

}
,

angle and range measurements are available as in (6)
and v ∈ N 2(0, σ2

3); While, in addition, if η ∈ Ma
3 ∩

Mb
3, where Mb

3(θ) :=η ∈ R6 :

sin(θ/2) cos(θ/2) 0
sin(θ/2) − cos(θ/2) 0
sin(θ/2) 0 cos(θ/2)
sin(θ/2) 0 − cos(θ/2)

[xy
z

]
≤

0
0
0
0




namely, the position state is in a 3-dimensional cone
with aperture θ centered about the x axis, then the
following constraint on closing/approaching velocity
is satisfied:

η ∈Mc
3:=
{
η ∈ R6 : ρ(ẋ, ẏ, ż) ≤ Vmax

}
where ρ(ẋ, ẏ, ż) :=

√
ẋ2 + ẏ2 + ż2.

When the chaser docks to the target (docked-phase), the
chaser-target dynamics are given as in (5) with mc + mt

in place of mc under the constraint (7) and with available
position measurements relative to a partner at location
(xp, yp, zp). The constrained dynamics of the chaser-target
are

η̇ = Aη +BRu
yb = hR(η) := h3(η)

}
(η, u) ∈ CR × UP (8)

where

BR :=
1

mc +mt

[
0
I

]
, CR :=M,

hR(η) =


arctan

(
rx(x)

ry(y)

)
arcsin

(
rz(z)

ρ(rx, ry, rz)

)
ρ(rx, ry, rz)

 ,

rx(x) = x−xp, ry(y) = y−yp, rz(z) = z−zp, v ∈ N 2(0, σ2
4)

and ρ(rx, ry, rz) :=
√
rx(x)2 + ry(y)2 + rz(z)2.

The following holds for the η-component t 7→ η(t) of each
solution to the closed-loop system: for some t2f < t3f <
t4f such that t3f ≤ te, t4f ≤ tf , we have

(1) η(t2f ) ∈Ma
3 ∩Mb

3 and ρ(x(t2f ), y(t2f ), z(t2f )) = ρd;
namely, the chaser reaches the cone first;

(2) η(t3f ) ∈ Mc
3 =

{
η ∈ R6 : η = 0

}
; namely, the

chaser docks on the target next, no later than t3f
time units;

(3) η(t4f ) ∈M4, where
M4:=

{
η∈R6 : (x, y,z)=(xp, yp, zp),(ẋ, ẏ, ż)=(0,0,0)

}
;

namely, the docked chaser (or chaser-target) reach the
partner location no later than t4f time units. 4

Remark 3.1. The values of the constants mc, mt, µ, ro,
umax, and (xp, yp, zp) are imposed by the vehicles and

their environment. The constants ρmax, ρr, ρd, V , Vmax,
θ, tf , and te are imposed by the mission and the desired
performance.

4. GENERAL HYBRID FEEDBACK CONTROL
STRATEGY

Following Malladi et al. (2016), we extend the algorithm
that supervises multiple hybrid controllers that are de-
signed to cope with the individual constraints and to
satisfy the desired temporal properties to 3-dimensional
chaser proximity mission. Similar to Malladi et al. (2016),
the supervising algorithm is modeled as a hybrid system,
which we denote Hs, and is in charge of supervising the
following individual hybrid controllers:

• Hybrid controller for rendezvous from distances far
from target (Phase I): this controller is denoted Hc,1
and its goal is to steer the chaser to a point in
the interior of M, in particular, from points in the
compact set M1 ∩M0.

• Hybrid controller for rendezvous in close-proximity to
target (Phase II): this controller is denoted Hc,2 and
its goal is to steer the chaser to a point in the interior
of Xlos ⊂M2∪Ma

3 , in particular, from points inM2.
• Hybrid controller for docking to target (Phase III):

this controller is denoted Hc,3 and its goal is to steer
the chaser to nearby η = 0 from points in M2 ∪Ma

3 .
• Hybrid controller for relocation of target (Phase IV):

this controller is denoted Hc,4 and its goal is to steer
the chaser-target from nearbyMc

3 to a neighborhood
of the partner position (xp, yp, zp).

The operations described above are subject to the con-
straints stated in Problem 1. Similar to the 2-dimensional
chaser close-proximity mission presented in Malladi et al.
(2016), each of the hybrid controllers operates in specific
regions of the state space. The tasks performed by the
controllers Hc,3 and Hc,4 are practical, in the sense that
the trajectories η are steered from and to neighborhoods
of the desired sets respectively. With this problem formu-
lation, the goals of the individual hybrid controllers are
formalized next.

Due to space limitations, the formal results about the
specific controllers and the supervisor will be published
elsewhere.

5. SPECIFIC DESIGNS AND SIMULATIONS

5.1 An observer-based 3D LQR design of Hc,1

The controller Hc,1 is designed such that the inflated
closed set A1 + δ1B ⊂ M, where δ1 > 0, is finite-time
attractive for the initial conditions starting from basin
of attraction induced by Hc,1 in η space. A controller
with linear continuous-time state feedback κ1 given by
κ1(η) := −K1η, where K1 ∈ R6×6, is obtained from a LQR



controller design. A saturation on the controller is im-
plemented to satisfy the maximum thrust constraint and
the resulting closed-loop hybrid system, denoted H1 :=
(C1, F1, D1, G1), has data given by

F1(η) = Aη +Bκ1(η) ∀η ∈ C1 (9)

where C1 := R6, D1 := ∅ and arbitrary G1 (that is, no
jumps).

5.2 A logic-based line-of-sight controller design of Hc,2

The hybrid controller Hc,2 is designed to render the in-
flated closed set A2 + δ2B finite-time attractive for the
solution components η, η2 starting from D12. For this
purpose, using the fact that initial conditions of the
chaser belong to D12, we exploit the ideas in Kluever
(1999) (in particular, the change of coordinates), where a
proportional-derivative control law that guides the chaser
to dock with the target at a desired docking direction (α∗)
and position (ρ∗) is proposed. We introduce a logic variable
to handle the topological obstruction of stabilizing a set on
a manifold. In fact, with a continuous state feedback law,
there will be antipodal points to A2 (nearby α = 0) from
where the chaser can move either left or right to reach the
desired line of sight. While, alternatively, a discontinuous
controller can be designed, such a discontinuous controller
would not be robust to small measurement noise as previ-
ously shown in literature Sanfelice et al. (2006). We design
a logic-based hybrid controller that steers the chaser can
either clockwise or counter-clockwise to take shortest route
and reach a point in X εδlos and be robust to small perturba-
tions. With the proposed controller, the resulting closed-
loop hybrid system is denoted H2 := (C2, F2, D2, G2), and
has data given by

F2(η, h) :=

[
Aη +Bκ2(hη)

0

]
∀(η, h) ∈ C2

G2(η, h) :=

[
η
−h

]
∀(η, h) ∈ D2

(10)

where h ∈ {−1, 1} is the logic state variable of the
controller, % ∈ (0, π) is a controller parameter, C2 :=
{(η, h) ∈ R6 × {−1, 1} : h(α− α∗) ≥ −%}, D2 := {(η, h) ∈
R6×{−1, 1} : h(α−α∗) ≤ −%}. The continuous-time state
feedback κ2 is given by

κ2(η) :=

[
κa2(ηa)
κb2(ηb)

]
where ηa := (x, y, ẋ, ẏ) ∈ R4 and ηb := (z, ż) ∈ R2. For the
PD controller done on the xy system we can express

κa2(ηa) :=

[
ax
ay

]
=

[
cos(α) − sin(α)
sin(α) cos(α)

] [
aρ
aα

]
(11)

aρ=uρ + nρ, aα = uα + nα

uρ=−k1ρ̇e − k2ρe, uα = −ρ(k3α̇e + k4αe)

nρ=−[3n2x+ ẏ(2n+ α̇)] cos(α) + ẋ(2n+ α̇) sin(α)

nα=[3n2x+ ẏ(2n+ α̇)] sin(α) + ẋ(2n+ α̇) cos(α) + vρα̇

with k1, k2, k3, k4 positive constants, ρe = ρ−ρ∗, αe = α−
hα∗ 1 , ρ̇ = v̇ρ, and vρ = ẋ cos(α) + ẏ sin(α).

1 Once again to avoid the discontinuities associated with angle
calculations, we embed the angle error on a unit circle, i.e. the error

calculation is performed as αe = atan2
(

sin(αe)
cos(αe)

)
.

This construction is obtained by changing to a coordinate
system (in polar coordinates) that is fixed to the target
spacecraft with its origin moving at a constant angular
rate n. The resulting hybrid feedback is such that, from
points in C2 nearby α = 0, with % ∈ (0, π), it steers the
chaser clockwise to −α∗ if α < % and counter-clockwise to
α∗ if α > −%.
An additional LQR controller is implemented for the z
component, with the state feedback given by κb2(ηb) and
a saturation on both controllers is implemented to satisfy
the maximum thrust constraint.

5.3 A uniting local and “global” design of Hc,3

The hybrid controller Hc,3 steers the η components of
the solutions from A2 + δ2B to X εlos in finite time. This
controller is designed to induce forward invariance and
to satisfy the closing speed constraints for the chaser.
We do this in two stages. First, a controller with output
κ13, thrusts the chaser towards the reference way-point

ηr := [xr 0 0 0 0 0]
> ∈ X εlos (in the y axis) within T3a

seconds while guaranteeing forward invariance of X εlos ∪
X εδlos. Second, a controller with output κ23 implements a
damping control law that guides the chaser from X εlos to
the inflated set A3+δ3B within T3b, along the vertical axis
and slowing down the vehicle so as to satisfy the closing
speed constraint. The data of the resulting hybrid closed-
loop system, which is denoted H3 := (C3, F3, D3, G3), is
given by

F3(η, p) :=

[
Aη +Bκp3(η)

0

]
∀(η, p) ∈ C3

G3(η, p) :=

[
η

3− p

]
∀(η, p) ∈ D3

(12)

where p ∈ {1, 2} is a logic variable the denotes the
subcontroller (κ13 or κ23) being used, C3 := ∪p∈{1,2}Cp3 ×
{p}, D3 := ∪p∈{1,2}Dp

3 × {p}. The set C1
3 is taken to be a

compact neighborhood of the reference way-point ηr that
is contained in the basin of attraction of κ23. The set D2

3 is
taken as a compact neighborhood of ηr such that solutions
using κ13 that start in D2

3 do not reach the boundary of C1
3 .

Then, we define C2
3 = R6 \D2

3 and D1
3 = R6 \ C1

3 .
All the controllers are tuned in a way to satisfy the
maximum thrust constraint.

5.4 A 3D LQR design of Hc,4

In Phase IV, the controller Hc,4 has to steer the docked
chaser-target from points in D34 to M4 + δ4B, δ4 > 0, in
finite time.
A controller with linear continuous-time state feedback
κ4 given by κ4(η) := −K4(η − ηp) is designed using
the LQR method. The gain K4 is designed to satisfy
the maximum thrust constraint and with this controller,
the resulting closed-loop hybrid system, denoted H4 :=
(C4, F4, D4, G4), has data given by

F4(η) = Aη +BRκ4(η) ∀η ∈ C4 (13)

where C4 := R6, D4 := ∅ and arbitrary G4 (that is, no
jumps).



5.5 Simulation results for the nominal case

We use n =
√

µ
ro3 , µ = 3.986 × 1014m

3

s2 , ro = 7100000m,

mc = 500Kg and mt = 2000Kg in the simulations. In
the problem definition provided in the previous paper
Malladi et al. (2016), which we also use here for this invited
session, the chaser starts at a distance of no more than
ρmax = 10Km away from the target. Once docked, the
chaser-target has to reach a relocation position with range
ρ(x, y, z) = 20Km, which is 10Km away from the partner
spacecraft in worst-case time of tf = 12hr. In Phase I-IV
both range ρ and angle α measurements are available and
hence we consider that the states η ∈ R6 can be easily
reconstructed.

With these mission parameters, simulations for the entire
closed-loop system are performed for the chaser starting
from η ∈ M0 ∩ M1, which corresponds to various ini-
tial conditions in the 10Km radius with a initial velocity
ρ(ẋ(0, 0), ẏ(0, 0), ż(0, 0)) ∈ [0, 0.707m/sec]. At this step we
are assuming to have all measurements known and two
LQR-based controllers are implemented for the xy and z
system, respectively, with the following choice of weight

matrices: Q1a = 0.015× I4×4, R1a =

[
20× 104 0

0 11× 104

]
,

Q1b = 1.5×10−2×I2×2, and R1b = 99×103. The trajecto-
ries of the chaser during Phase I are shown in Figure 1, and
the chaser completes the desired maneuver in this phase
in T1 ≈ 1, 7hr. Due to the interesting chaser motion,
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Fig. 1. Trajectories of the chaser during Phase I

we also perform multiple simulations when Hc,2 is used,
for initial position (x(0, 0), y(0, 0), z(0, 0)) ∈ D12, where
D12 := {η ∈ R4 : ρ(x, y, z) ∈ [0, ρr]}, ρr = 700m, and ini-
tial velocity ρ(ẋ(0, 0), ẏ(0, 0), ż(0, 0)) ∈ [0, 0.64m/s]. With
ρ∗ = 100m, α∗ = 179deg, and % = 10deg, the motion of
the chaser with both h = 1 and h = −1 are shown in
Figure 2, which highlights the capabilities conferred by
the logic variable in the hybrid controller. For the PD
controller κ2a the gains are chosen as: k1 = 40, k2 = 0.1,
k3 = 25, and k4 = 0.047; instead, for the LQR controller,

the weight matrices are: Q =

[
138 0
0 10

]
and R = 30× 106.

The trajectories of the chaser during Phase II, shown in
Figure 2, are completed in this phase in T2 ≈ 1hr. We
also show the chaser evolution during the approach/closing
stage (Phase III) and highlight the specific motion pro-
vided by our controller Hc,3. Multiple simulations from
(x(0, 0), y(0, 0), z(0, 0)) ∈ A2 + δ2B, where A2 = {η ∈
R6 : ρ = 150m,α = h 179deg} and δ2 = 10m, are
presented in the Figure 3. The reference way-point, where
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Fig. 2. Trajectories of the chaser during Phase II

the hybrid controller switches between subcontrollers is

given by ηr = [−25m 0m 0m 0m/sec 0m/sec 0m/sec]
>

.
The chaser reaches δ3B with δ3 ∈ [2cm, 8cm] for several
initial conditions as presented in Figure 3.
Before that switching, the controller κ13 has weight matri-
ces given by Qa = 38.4 × I4×4, Ra = 9.7 × 103 × I2×2,

Qb =

[
138 0
0 10

]
, Rb = 30 × 106 and after the switch-

ing the controller κ23 has gains given by k1 = 0.0007,
k2 = 0.15, k3 = 0.006, k4 = 0.22, for the xy system and

Qb =

[
138 0
0 10

]
, Rb = 30 × 106 as weight matrices for the

z-axis LQR control. The trajectories of the chaser during
Phase III are shown in Figure 3 and the chaser completes
the desired maneuver in this phase in T3 ≈ 0.8hr.
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Fig. 3. Trajectories of the chaser during Phase III

In the last phase (Phase IV), the specific motion is
provided by the controller Hc,4 and the goal is to reach
a desired partner position for the two system given by

ηp = [0km 20km 0km 0km/sec 0km/sec 0km/sec]
>

. For
that phase the 3D LQR controller has weight matrices:

Qa = 6×10−1×I4×4, Ra = 11×104×I2×2, Qb =

[
138 0
0 10

]
and Rb = 30 × 106. The motion of the chaser with mass
mc + mt is presented in Figure 4 and this maneuver is
completed by the chaser in T4 ≈ 1.7hr.

20
15

-4.5

-4

-3.5

10

-3

0.8

-2.5

-2

-1.5

0.6

-1

-0.5

0

0.4 0.2 50 -0.2 -0.4 -0.6 -0.8 0

Fig. 4. Trajectories of the chaser during Phase IV



The total time constraint is satisfied: T1 + T2 + T3 +
T4 ≈ 5.2hr < tf . An overview of the nominal motion of
the chaser is given in Figure 5.

10

5
-10

0

-8

-6

-4

10

-2

0

8

2

4

6

6

8

4

10

-52 0 -2 -4 -6 -10-8 -10

(a) Phase I

-1

1

-0.5

10.5

0

0.5

0.5

0

0

1

-0.5
-0.5

-1 -1

(b) Phase II

-0.3

-0.25

-0.2

0.6

-0.15

-0.1

-0.05

0.5 0.6

0

0.05

0.50.4
0.40.3 0.30.2 0.20.1 0.10 0-0.1 -0.1

(c) Phase III

20
15

-4.5

-4

-3.5

10

-3

0.8

-2.5

-2

-1.5

0.6

-1

-0.5

0

0.4 0.2 50 -0.2 -0.4 -0.6 -0.8 0

(d) Phase IV

Fig. 5. Overview of the nominal motion

5.6 Simulation results with noise

A more complete overview of the simulations can be
done by considering noise added into the system. A small
zero-mean Gaussian residual noise (considering the best
performance of a chosen filter) is added to the position
and velocity components in every phase. The measurement
noises added to each phase are shown in Table 1.

Table 1. Variance of residual error, Phase I-IV

Phase xy system Residual error z system Residual error
(σres)2 (σres)2

I (σpos)2 = (0.5m)2 (σpos)2 = (0.5 × 10−3m)2

(σvel)
2 = (5 × 10−5m/sec)2 (σvel)

2 = (5 × 10−8m/sec)2

II (σpos)2 = (0.5m)2 (σpos)2 = (0.5 × 10−3m)2

(σvel)
2 = (5 × 10−5m/sec)2 (σvel)

2 = (5 × 10−8m/sec)2

III (σpos)2 = (0.5 × 10−3m)2 (σpos)2 = (0.5 × 10−7m)2

(σvel)
2 = (5 × 10−5m/sec)2 (σvel)

2 = (5 × 10−9m/sec)2

IV (σpos)2 = (0.5m)2 (σpos)2 = (0.5 × 10−3m)2

(σvel)
2 = (5 × 10−5m/sec)2 (σvel)

2 = (5 × 10−8m/sec)2
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Fig. 6. Full simulation of the chaser with noise

The robustness of the controllers for small level of noise
is shown in the simulations result, Figure 6, where the

chaser reaches the desired neighborhood of the target while
maintaining the input constraint ‖u‖∞ ≤ 0.02m/sec2.
The total worst case time to reach for the chaser ren-
dezvous, docking and chaser-target rendezvous maneuver
is T1 + T2 + T3 + T4 ≈ 8.88hr < tf , which is within
specifications. 2

6. CONCLUSION

A family of individual controllers is implemented to solve
the problem of rendezvous, proximity operations and dock-
ing of an autonomous spacecraft in the 3D space. The
design controllers proposed in each phase are chosen to
satisfy the given constraints and the approach is validated
with numerical results. Additional results on robustness of
the proposed hybrid supervisory controller in presence the
of measurements noise are also discussed.
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