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Abstract

Many of the most interesting and vexing problems in linguistic
analysis concern structures that have a hybrid character—they
show evidence of belonging to two independently motivated
types. Proposals often assign them to one or the other class,
requiring complication of the theory to handle their exception-
ality. We suggest that there is no satisfactory answer to such
conundrums under standard, type-based representational the-
ories, for those theories are founded on discrete topologies.
These are ill-suited for blending. As an alternative, we pro-
pose Metric Grammars–grammatical systems founded on con-
nected topologies (specifically on manifolds on which we can
define continuous-valued metrics—e.g., Euclidean distance).
Such topologies are the natural residence of dynamical sys-
tems. Indeed, dynamical systems theory has identified a for-
mal phenomenon–the bifurcation—that naturally models phe-
nomena of intermediacy. Bifurcations are also often used to
model structural transitions. Therefore, to explore the possi-
ble relevance of our novel representational approach, we fo-
cus on transitional linguistic phenomena, namely diachronic
grammaticalization episodes. These are cases where, over the
course of the history of a language, a morpheme (or combina-
tion of morphemes) gradually changes its grammatical status.
A metric grammar, a recurrent map with a neural network at
its core, changes its grammatical system slightly with each in-
stance of language use. Focusing on a particular episode from
the history of English—the development of “sort of” and “kind
of” from Noun-Preposition structures into adverbs—we pro-
vide evidence that metric grammars exhibit statistical anticipa-
tion of categorical change, a phenomenon that has been docu-
mented for several grammaticalization episodes and is difficult
to account for with discrete-topology models.

Keywords: metric grammars; grammaticalization; morpho-
syntax; language change; self-organization; dynamical sys-
tems; bifurcation; emergent structure; context free grammars;
neural networks; phrase embedding

Introduction
Large Language Models (LLMs) have vigorously evolved in
the past decade. Recently, a number of researchers have
offered evidence that including phrase embeddings (vector
space encodings of phrasal units), in addition to word em-
beddings, allows LLMs to better capture semantic subtleties
(Borensztajn et al., 2009; Le & Zuidema, 2014; Li et al.,
2021; Nikzad-Khasmakhi et al., 2021; Park & Kim, 2022;
Wang et al., 2021; Wu et al., 2020, 2024). This suggests po-
tentially beneficial interaction between formal linguistic the-
ory and LLM engineering, but at present such bridging is
hampered by the analytic opaqueness of LLMs. Here we pro-
pose a model called a “Metric Grammar”, which adopts sim-
ilar formal assumptions to LLMs, but can be closely related

to linguistic hierarchical analyses as they manifest in Probab-
listic Context Free Grammars (PCFGs).

Linguistic intermediacy
Having approached our topic from the engineering side, we
now approach it from the theoretical side. Many core chal-
lenges for linguistic analysis center around elements that have
a mixed character with respect to well-motivated grammatical
categories: English gerunds (Jackendoff, 1991) and Korean
hada constructions (Chae, 1997), for example, have mixed
nominal and verbal properties; clitics across languages have
the distributional properties of independent words, suggest-
ing they are atoms of syntax, but the phonological proper-
ties of bound morphemes, making them more like lexicon-
internal elements (Inkelas & Zec, 1990); certain prepositions
that have evolved from verbs (especially in serial verb lan-
guages) retain some properties associated with their verbal
origins (Lord, 1973).

Mental topology
We suggest that these cases are challenging because the the-
ories are built on an inappropriate topology. To formalize
things, we can think of mental states as points in a space.
Topology of the space refers to fundamental assumptions we
make about relationships between the states. In a discrete
topology, the states are all separated from each other, there
are no partial relationships between states. Standard model-
theoretic treatments of language syntax and semantics operate
on discrete topologies—this is sensible if one is mainly inter-
ested in properly classifying mental entities into distinct cat-
egories. In a connected topology, by contrast, there is no way
to cleanly divide the space into separated subsets of points—
in a sense, all points are in partial relationships to one another.
One type of connected topology can be generated by posit-
ing real-valued distances between points that range from 0 to
some (or all) positive values. This is called a metric space.
Euclidean space has a connected topology with its standard
metric, Euclidean distance. Artificial neural network mod-
els assign, typically via training, model states to a finite set
of observed data points (their training set), and in doing so
induce predictions about a continuum of other possible be-
havioral circumstances. They accomplish this by embedding
that finite set of hypothesized mental states into a connected
metric topology, thereby positing specific degrees of proxim-
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ity between pairs of mental states.
Here, we use connected metric topologies as the founda-

tion for mental representations of sentences. An advantage
of working in a connected topology is that the framework not
only handles intermediacy, but there is a way to model cat-
egories: they are collections of experience-prompted encod-
ings that cluster together in the metric space. In particular,
the theory posits an important role for usage in the sense of
usage-based theories of grammar (J. Bybee, 2006; J. L. By-
bee et al., 1994; Schmid, 2020): a pattern that gets used fre-
quently creates a dense region of encoding which, if it is suf-
ficiently dense and separated from other clusters, will warrant
characterization as a category.

This paper is primarily a conceptual paper, but the con-
ceptual account is backed up by a computer implementation.
Near the end, we will report on an initial simulation result
which provides evidence that, in this system, usage systemat-
ically affects form.

Bifurcations
Dynamical systems theory, which studies state-change func-
tions on (connected) metric spaces, has useful tools for un-
derstanding intermediacy and transformations of form. We
focus on discrete dynamical systems which have the form (1)

xt+1 = f (xt , t) for x ∈ S (1)

Here, S is the connected state space, x is a vector specifying
the mental state, xt is the mental state at time t, f is a function
from S to S. The inclusion of the time index, t, as a param-
eter of f amounts to letting f characterize the environment
of the system, which stimulates the system in various ways at
various times, in addition to inherent system biases which put
constraints on the evolution of x. Here, we will take the envi-
ronment to be a corpus of sentences, and the inherent biases
to be knowledge of how to parse the sentences.

In a metric grammar, f has tunable parameters—these
are instantiated as real-valued weights in an artificial neu-
ral network. In dynamical systems theory, such parame-
ters are called control parameters. A particular setting of
the control parameters typically generates a specific system
whose behavior is organized around stable trajectories called
attractors—these are sets in the state space such that if the
system is started near one such set, it will converge on it un-
der the dynamics (f) over time (this will generally depend on
the environment behaving in a particular, reliable way). A bi-
furcation point, z, is a point in control parameter space such
that if the system follows a continuous path in this parameter
space which passes through z, then the attractor configura-
tion just before it reached z is categorically different from the
configuration just after it has passed z. In the present case,
the attractor configuration not only determines which parses
(if any) of a perceived word sequence are perfectly grammat-
ical, but it also assigns graded grammaticality values (called
harmonies) to all possible sequences.

We use metric grammars to model change over histori-
cal time of the inventory of parses that speakers find gram-
matical. The model we describe is a model of the system-
atic language knowledge of an individual speaker (Chomsky,
1986). However, unlike classical I-language models (e.g.,
Gibson & Wexler, 1994) which are not able to track arbitrar-
ily fine-grained variations in statistical language behavior be-
cause they have only finitely many parameter settings, metric
grammars are sensitive to such variation and model it as part
of their language system knowledge. Moreover, ensembles
of metric grammars can show swarm behavior, and are thus
relevant for modeling social contagion phenomena which ar-
guably play a central role in grammar change (Enfield, 2008).

Grammaticalization
The morphemes that form a language can largely be divided
into two types: content morphemes and function morphemes.
Content morphemes are nouns, verbs, and adjectives—they
directly specify elements of a world that speakers wish to talk
about (English examples: house, plum, algebra, drone, tit-
ter, blunt, delicious). Function morphemes are grammatical
morphemes—e.g., prepositions (on, near), complementizers
(that, whether), affixes (un-, -ly), etc. Over historical time,
new function morphemes often evolve from instances of con-
tent morphemes used in a particular context. Examples in-
clude the development of a Romance adverb-forming suffix
from the Latin noun mente “mind” (e.g., Latin pura mente
“(of) a pure mind” [Adjective Noun] > Italian puramente
“purely” [Adverb]; Detges (2015)); Ewe bé “say” [Verb] >
“that” [Complementizer] (Lord, 1976); English sort/kind of
“‘type of” [Noun Preposition] > “to a mild degree” [Adverb]
(Tabor, 1995).

Such structural changes are generally accompanied by
changes in the statistical behavior of the language. For ex-
ample, the frequency of the grammatical morpheme-to-be
substantially rises. This makes sense because grammatical
morphemes are generally much more frequent than content
morphemes. De Smet (2012) and Tabor (1995) provide ev-
idence that not only do frequencies change during the pro-
cess of grammaticalization, but they change in an anticipatory
way—certain frequency changes foreshadow the appearance
of the form in new structures. For example, Tabor (1995) of-
fers evidence that, prior to the first clear uses of English sort
of and kind of as adverbs (1-c), there was a rise in the fre-
quency of sort/kind of in environments ambiguous between
Noun-Preposition and Adverb senses (1-b). We will show via
computational simulation that an evolving metric grammar
system, driven by usage that simply heightens the occurrence
rate of sort/kind of before adjective becomes more likely (al-
beit only very slightly in simulations run so far) to generate a
novel adverbial form.

(1) a. We found a sort of crab. [Original: Noun + Prep]

b. We sought a sort of large pebble. [Ambiguous]
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c. We sort of changed our plan. [Modern: Adverb]

Metric Grammars
It is helpful to introduce metric grammars in the context of
formal languages. Let Σ be a finite alphabet of symbols. A
formal language is a subset of Σ∗, where Σ∗ is the set of finite
strings of symbols drawn from Σ. Context Free Grammars
(CFGs) are generation and recognition devices that specify
one particular class of formal languages (Context Free Lan-
guages) that is arguably relevant to the characterization of
natural languages. A Context Free Grammar is a finite set
of rules of the form M → D1D2 . . .Dn (n finite; at least one of
the rules is designated a “Starting Rule”). The symbol on the
left of each rule is called the “Mother” symbol. The symbols
on the right are called “Daughters”. A Probabilistic Context
Free Grammar (PCFG) is a CFG in which the rules are asso-
ciated with probabilities (probabilities on rules with the same
mother symbol sum to 1). (Figure 1) PCFGs support a cor-
pus generation process in which the system repeatedly starts
with a starting rule, recursively connecting mother nodes be-
low to daughters above, under the constraints that the labels
must match if a mother is to attach to a daughter, and multi-
ple matching options are sampled according to their probabil-
ities. The resulting hierarchical analysis is called a (P)CFG
tree. Figure 2 shows a CFG tree of (1-a) under Grammar 1.

Metric Grammar Trees. Metric grammars employ Met-
ric Grammar Trees. These are similar to CFG trees, but
lie in a connected space. The space is high dimensional
and is occupied by points which lie in clusters which corre-
spond closely (but not exactly) to the classes of mother nodes
in a Context Free Grammar. The dimensions of the high-
dimensional space encode the statistics of observed word and
phrase forms—this makes them analogous to Large Large
Language Model (LLM) vector encodings, but we do this in a
way, explained below, that makes the vector dimensions pre-
cisely interpretable. The elements of a metric grammar are
not points, however, but metric grammar treelets—these are
either triples of points consisting of a mother and two ordered
daughter nodes (these correspond to branching rules in a stan-
dard CFG) or doubles of points (these correspond to lexical
rules). Each lexical treelet specifies a word form. Figure 3
illustrates. This figure can be thought of as a 2-dimensional
projection of a higher-dimensional space (14-dimensional in
the simulations described below), where we have taken the
liberty of positioning the clusters of points in a way that
makes the geometry of the structure on the page roughly re-
semble the geometry of a standard tree diagram. The black
lines indicate the treelets that are involved in the parse of sen-
tence (1-a). However, all the points have treelet lines connect-
ing them to other points—these are generally oriented simi-
larly to the ones shown in the diagram, but we have omitted
them to make the figure clearer.

Besides being specified by points in a connected metric
space, Metric Grammar Trees are different from CFG trees
in that that the featural specification of the mother of a treelet

1.00 S → NP VP

0.33 NP → Det N’

0.67 VP → V NP
0.33 VP → Adv VP

0.27 N’ → AdjP N’
0.18 N’ → N’ PP

0.67 AdjP → Adj
0.33 AdjP → Adv AdjP

1.00 PP → P N’

1.00 Adv → Adj ly

NP → 0.37 we, 0.18 they, 0.12 I
N’ → 0.30 bear, 0.15 crab, 0.10 sort
Adj → 0.67 real, 0.33 mild
P → 0.67 of, 0.33 near
V → 0.55 found, 0.27 loved, 0.18 deplored
Det → 0.67 a, 0.33 this

Figure 1: Grammar 1: A PCFG description of a fragment of
English that includes relevant Early Modern English distribu-
tional characteristics of sort of and kind of. In the simulation
reported below, for efficiency of training, we simplified the
grammar by omitting determiners and pronouns and elimi-
nating all but one lexical item of each type.

S

NP

We

VP

V

found

NP

Det

a

N’

N

sort

PP

P

of

N’

crab

Figure 2: A plausible Early Modern English (as well as Mod-
ern English) parse of sentence (1-a) generated by Grammar
1.
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“bear”

“sort”

“of”

AdjP

VP

S

“large”

“really”

“loved”

AdvP
“a”

Det

NP

N’

P

“found”

“this”
“crab”

“near”

“quite”

“deplored”

V

PP

“portentous”

“I”

“They”
“We”

Figure 3: Schematic diagram of a metric grammar parse cor-
responding to the PCFG parse in Figure 2. Branching treelets
are shown with two types of lines: solid lines for left daugh-
ters and dashed lines for right daughters. Squiggly lines high-
light the distance from ‘mother below’ to ‘daughter above’
(the longer the squiggly lines, the lower the harmony of the
parse). Two types of clusters are highlighted by circles in the
diagram: solid circles surround lexical node clusters and dot-
ted circles surround phrasal node clusters.

below that attaches to the daughter of a treelet above need
not exactly match. This property is emphasized in Figure 3
by the wavy lines that connect daughters-above to mothers-
below. Based on these separations, we define a measure of
the grammaticality of the structure called its harmony, h as
shown in (2).

h = ∑
i

log(1−di/r) (2)

Here, i indexes the mother nodes in the parse, di is the dis-
tance between the i’th mother-below and the corresponding
daughter-above, and r is a constant that is slightly bigger than
the diameter of the entire set of points in the metric grammar
space. Note that harmony is always non-positive but highly
grammatical sentences approach a harmony value of 0.

Generation. Generation is accomplished similarly to the
way it occurs in a PCFG, with clusters of points playing the

role of rules with the same mother label (cf. Eisner, 1996).
There is a labeled starting cluster (the S cluster in Figure 3).
A point is picked at random from this cluster. Then the daugh-
ters of this point are considered in order. For each daughter,
if the daughter is not a lexical daughter, a point is picked near
the daughter by sampling among all the points in the metric
space with nearby points more likely to be sampled (see 3).
If the daughter is a lexical daughter, then the corresponding
word is generated. This process is recursively applied until it
ceases. The result is an ordered string of words.

pi =
e−α·di

∑ j e−α·d j
(3)

pi is the probability of choosing point i,
di is the distance from the current locus to point i

α is a free parameter

Treelet coding. Now we turn to the question of how the
points that form the treelets are located in the metric space.
The encodings are initialized with a PCFG that models sen-
tence distribution in a language of interest. The PCFG is used
to generate a large corpus of parsed sentences. To align the
account with the description of metric grammars, we refer
to each rule as a Context Free Grammar (CFG) “treelet”.
When such a CFG treelet occurs in the corpus, it spans a
sequence of lexical items, called its lexical span—e.g., the
treelet V P → V NP in Figure 2 spans the sequence, found-
a-sort-of-crab. For each treelet-plus-lexical-span (TpLS), we
catalog the sequences of preceding and following words in
every place where it occurs. This info is compiled into a
branching probability tree, specifying the probability of each
next word given the sequence of preceding words. In the gen-
eral model, the branching probability trees are compressed
into a fixed-width vector which functions as the encoding of
the TpLS. Here, to keep the model simple, we only consider
one word of preceding and following context for each TpLS.
The encoding of a TpLS is the concatenation of the vectors of
preceding and following word probabilities. For the grammar
at hand, this method creates a unique encoding locus (mean-
ing a small volume of nearby points) for each mother node in
the PCFG. As noted above, one can think of this encoding as
a simple-minded form of LLM encoding, where the dimen-
sions are directly interpretable as next-word and preceding-
word probabilities. Note that different TpLS’s that belong to
the same syntactic type under the CFG (e.g., ⟨VP → V NP
+ found-a-sort-of-crab⟩ and ⟨VP → V NP + deplored-this-
bear⟩), tend to be nearby but not at the same point on account
of the random sampling of the PCFG generation process. It
is this variation that gives rise to the variance in each cluster
illustrated in Figure 3.

Parsing. The model parses by using a trained neural net-
work to invert the generation process (Borensztajn et al.,
2009; Le & Zuidema, 2014). The network has an input layer
with 2N units and N output units, where N is the dimension-
ality of the metric grammar space. The network is trained
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to invert the map from mothers to daughters that was used
in the generation process. Each branching treelet specifies a
training pattern: the two daughter points are concatenated to-
gether to make an input vector of length 2N; the mother point
is the target. We used simple backpropagation to train the
network. We achieved good results in the simulation below
using a network with one hidden layer.

With the trained network at hand, parsing of any word-
sequence proceeds as follows. All unlabeled binary branch-
ing trees over the word-sequence are considered. Each such
tree is traversed in a bottom up fashion. First, each word is
considered in the context of the surrounding words–this spec-
ifies a left + right probability vector with 100% probability on
the observed surrounding words. A lexical point close to this
vector is chosen for each word. Then, the first binary branch-
ing tree is considered. If two successive lexical items are the
daughters of a single mother in this tree, then, to be parsed
as a unit, they need a mother in the metric grammar space to
which they can be joined. The two daughter point locations
are fed into the neural network, and its output is taken to be
their mother location. Then, distance-based-sampling as de-
scribed above is used to find a daughter-above in the metric
grammar that is proximal to this mother location. The pro-
cess is repeated until mothers-below and daughters-above are
found for each connection locus in the binary branching tree.
In this fashion a metric grammar tree with the structure of
the current binary branching tree is built. Once this has been
done for all binary branching trees, the harmony of each parse
is evaluated and the parses are sampled with probability pro-
portional to eharmony. The selected tree becomes the chosen
metric grammar parse of the sentence.

Language evolution. With both generation and parsing de-
fined, the system can be used to model language evolution.
Language evolution is modeled as a discrete dynamical sys-
tem, albeit one that makes very small changes in its state at
each time step. The core assumption that permits the mod-
eling of evolution is that every instance of language com-
prehension slightly modifies the metric grammar. How does
this work? A metric grammar consists of a finite sample
of treelets (in the simulations reported below, we used 1000
treelets). If the metric grammar is presented with a sentence,
it parses it in the manner just defined. If the sentence has k
words, then its parse has 2k-1 treelets (k lexical treelets, and
k-1 branching treelets). Presented with such a sentence, the
system randomly selects 2k - 1 of its treelets and deletes them.
It then installs k-1 branching treelets of the new parse and it
adjusts each lexical treelet of the new parse by slightly in-
creasing the probability mass on the dimensions correspond-
ing to the observed preceding and following words, decreas-
ing the others to compensate. In this fashion, the metric gram-
mar always maintains the same number of treelets but the
structure of the system subtly shifts.

We noted in the introduction that dynamical systems can
either evolve autonomously or be driven. We first consider
the metric grammar system evolving autonomously. In this

case, the metric grammar is used to generate a sentence using
the random generation procedure just described, removing 2k
- 1 treelets and adding 2k-1 treelets. This process is iterated
many times. At each iteration, the neural network does a few
trials of training on the new treelets. In this case, since the
network is generating the very sentences that it is parsing,
the network tends to find mothers for daughter sequences that
are close to the locations of the original generating mothers
(recall that it was originally trained on these very daughter-
mother pairings). Therefore, the structure of the point dis-
tribution in the metric space does not change much; nor do
the neural net’s weights change much. Now consider the case
where this is going on all the time, but additionally, forces
originating in the extra-linguistic world cause some shift in
the distribution of what is being said. In the case of content
morpheme distribution changes (e.g., people used to talk a lot
about “population growth”; now they talk a lot about “climate
change”), the shift in distribution will not have a big effect
on the higher grammatical structure of the metric grammar.
This is because the grammatical co-occurrence privileges of
different content morphemes belonging to the same class are
largely similar. However, as noted, there are changes relevant
to grammatical behavior that can trend statistically over time.
This can be carried by social valuation—when there are al-
ternative forms for expressing different ideas, social relation-
ships often mediate the form choice (Labov, 1973). Addition-
ally, such shifts can be driven by processing factors which fa-
vor one form over another one (Kroch, 1989; Hawkins, 2014).
A novel prediction that metric grammars make is that such
mere statistical adjustments can, in certain cases, result in al-
teration of the grammatical system, causing new grammatical
behaviors to emerge. To explain how this works, we turn to
our case study of English sort/kind of.

Case study: English sort/kind of

As we mentioned, Tabor (1995) presented evidence that, prior
to the first appearance of the novel adverbial uses of sort of
and kind of, there were statistical shifts in the use of these
phrases that seemed to foreshadow the structural shift. In
particular, the rate of use of these expressions before adjec-
tives increased substantially in comparison to the rate of use
of other Noun-of sequences over the period 1550-1850. Ta-
bor (1995) identify the first clear adverb use in 1804. We
initiated a metric grammar with a PCFG similar to Grammar
1, which models the Early Modern English distribution rele-
vant to sort/kind of. Although we have not yet fully imple-
mented an evolution simulation that brings about the innova-
tive change, we have done a test of the model that indicates
that it has the right causal properties to produce this result.
We noted that, if the frequency of sentences of the form (1-b)
shifts upward relative to their expected rate of occurrence
under Grammar 1 in the input to the metric grammar, then
some instances of lexical treelet sort will shift their encod-
ings in the direction of more following of. Relatedly, subse-
quent instances of the word of, shift their distribution toward
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Figure 4: Distance of sort of mother from the Adverb locus in
the metric grammar as a function of the degree to which the
word sequence is correlated with a following Adjective.

more preceding sort and more following Adjective. This last
change has the consequence that the distribution after of be-
comes more similar to the distribution after Adverbs, which
are often followed by Adjectives. This suggests performing
an experiment on the neural network to see how it responds to
a potential combination of sort and of as a constituent (prior
to the point in history, there had been no grammatical parses
with sort and of joined into a single constituent). We tested
the neural network of Metric Grammar 1 by giving it, as in-
put, a series of points along a 1-dimensional manifold in the
2N dimensional encoding space of its input layer. This se-
ries points specified a sequence of inputs in which the fre-
quency of “sort” + “of” before Adjective gradually increased
as described above. This adjustment approximates a control
parameter change, as described in Bifurcations above–we are
interested in how this continuous change in frequency val-
ues may affect the structure of the grammar system. Figure
4 shows, on the x-axis, the degree of adjustment along the
1-dimensional manifold in frequency space, and it shows, on
the y-axis, the distance between the output vector (Mother
node location) and the average of the Adverb class.

What does this imply about interaction of the metric gram-
mar with mere statistical changes in the distribution of exist-
ing forms? The model chooses parses in proportion to their
harmony values. The Figure 4 result suggests that the con-
trol parameter manipulation increases the relative likelihood
of picking an adverbial parse for sort of when presented with
sentences structured like example (1-b) because it makes the
harmony of the adverbial parse slightly higher than it was be-
fore. Producing this parse would establish a foothold in the
treelet population for an adverb-like sort of. The treelet with
the novel mother value discussed above would then become a
member of the population of treelets and would thus be a part,
albeit a rare part initially, of the grammatical system. This, in
turn, implies that this treelet would have a chance of being se-
lected not only with a following Adjective, but also, because
it is near the Adverb Phrase locus, with a following verb. (In
PCFG 1 and therefore also in the derived metric grammar,

Adverbs tend to modify both Adjectives and Verb Phrases).
If that becomes a significant tendency, we can say that sort
of has become a member of the Adverb class. This does not
mean it has ceased being a Noun-Preposition sequence be-
cause there were originally multiple “sort” and “of” lexical
items, and only a proper subset of these have made the tran-
sition away from the Noun and Preposition loci. In this way,
the model captures the A → A/B pattern that is typical of
grammaticalization episodes (Hopper & Traugott, 1993).

Conclusions
We have described metric grammars, language generation
and parsing systems that reside in connected metric spaces.
We have suggested that these systems offer a way of mod-
eling phenomena that point to a close relationship between
formal language properties and the statistics of language use.
In particular, we focused on cases in which grammatical cat-
egory change is anticipated by frequency changes which ap-
pear to prepare the ground for a structural shift. Classical
symbolic models (like PCFGs) fail to predict such correla-
tions because their statistical properties are independent of
their structural properties. Neural network models predict
such correlations (Tabor, 1994) but their encoding systems
are black boxes; metric grammars predict them in an ana-
lytically interpretable way: grammaticalization innovations
come about through cluster disturbances prompted by exter-
nal forces that modulate usage frequencies, and these snow-
ball into category bifurcations.

The model constitutes an integration of linguistic theory,
neural networks, and dynamical systems theory. It is well-
known that recurrent neural networks, as well as gradient
descent learning mechanisms are dynamical systems and are
thus plausibly organized around complexly structured attrac-
tors. This observation seems promising because attractors are
category-like, and thus seem naturally suited to treating cog-
nitive phenomena which show a lot of evidence of complex
categorical patterning. So far, however, this promise has not
borne great fruit, possibly because we do not yet adequately
understand the kinds of attractor structures that cognition re-
lies. The current framework offers a way to explore the dy-
namics of attractors that capture complex syntactic patterns in
natural languages, potentially enriching both dynamical sys-
tems theory and cognitive science.

Our model is still very nascent. One challenge is that we
have only implemented a 1-word window radius for charac-
terizing linguistic context. An important question is how to
handle more distant correlations that are important for charac-
terizing word and phrase classes. We have also not addressed
pragmatics, widely acknowledged to be at play in grammati-
calization developments (Traugott, 1988).

Recognizing the validity of these questions, we neverthe-
less suggest that metric grammars offer a potentially helpful
fresh perspective on the challenging problem of relating lan-
guage form to language use.
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