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Abstract

Background: Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive
(progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-
deficient mouse serves as an animal model of human ATP8B1 deficiency.

Methodology/Principal Findings: We investigated the effect of genetic background on phenotypes of ATP8B1-deficient
and wild-type mice, using C57Bl/6 (B6), 129, and (B6-129) F1 strain backgrounds. B6 background resulted in greater
abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background
gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels,
higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice
exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient
phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of
ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of
differing strains.

Conclusions/Significance: Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model
of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of
liver disease.
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Introduction

ATP8B1, also known as FIC1 (familial intrahepatic cholestasis

1), is an ATP-dependent membrane transport protein in the P-

type ATPase family [1]. ATP8B1 belongs to the P4 subfamily of P-

type ATPases. Members of this subfamily appear to function in

phospholipid transport [2–4]; 14 P4 P-type ATPases are encoded

in the human genome. ATP8B1 is involved in transport of

phosphatidylserine from the outer to the inner leaflet of the plasma

membrane [5–7]. Mutations in ATP8B1 result in cholestatic

disease with an autosomal recessive mode of inheritance, and

ranging in severity from mild and episodic (benign recurrent

intrahepatic cholestasis, BRIC1) to chronic and progressive

(progressive familial intrahepatic cholestasis; PFIC1) [1,8,9].

Patients with severe ATP8B1 deficiency (i.e. PFIC1) typically

require liver transplantation prior to adulthood, due to liver failure

[10,11]. While severity and penetrance of ATP8B1 deficiency is

correlated with the predicted impact of the ATP8B1 mutation(s)

that a patient carries, additional as-yet-unidentified genetic and/or

environmental factors also have an influence [9].

We previously generated mice homozygous for a mutation in

Atp8b1, the mouse ortholog of ATP8B1 [12]. These are knock-in
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mice for the 923G.T point mutation identified in Amish PFIC

patients; this mutation results in an amino acid change in a highly

conserved residue, G308V [1]. Mice homozygous for this missense

mutation are termed Atp8b1G308V/G308V mice, or ‘ATP8B1 mutant’

mice. These mice exhibited defects in bile acid homeostasis, but

did not suffer from progressive cholestatic liver disease. When

challenged with a bile salt-supplemented diet, ATP8B1 mutant

mice displayed a more severe phenotype, including rapid weight

loss, greater liver enlargement, and biochemical evidence of

cholestasis, although the phenotype was still less severe than that

seen in human patients. Subsequent studies indicated that the

canalicular membrane in ATP8B1 mutant mice is susceptible to

damage by hydrophobic bile salts, and that hepatobiliary excretion

of hydrophobic bile salts is impaired [13,14].

Published studies have characterized phenotypes in male

ATP8B1 mutant mice, and with one exception [14], have

focused upon mice in a 129 strain background [12,13,15,16];

preliminary findings suggested that the ATP8B1 mutant

phenotype might differ between 129 and C57Bl/6J (B6).

Therefore, we compared effects of the Atp8b1 mutation in 129

and B6 strain backgrounds. Here, we present evaluation of

aspects of serum and bile biochemistry, as well as body- and

liver-weight related phenotypes, in male and female WT (wild-

type) and ATP8B1 mutant mice in B6, 129, and F1 (B66129)

strain backgrounds.

Results

To investigate the simultaneous effects of mutation (WT and

ATP8B1 mutant), background strain (B6, 129, and F1), sex (male

and female), and diet (cholate-supplemented and control), we

conducted a factorial experiment. We studied $5 mice for each of

the (2636262 = 24) factorial combinations (‘‘full factorial exper-

iment’’) [17]. This approach allowed us to study not only the

individual effects (‘‘main effects’’) of each factor (mutation, diet,

genetic background, and sex), but also whether the effect of a

factor depended on other factors (‘‘interactions’’) (Table 1). Unless

otherwise indicated, p-values reported in the text were derived

from ANOVA comparing the groups mentioned; when sex

differences were not apparent, data from males and females were

sometimes combined for these latter tests. For visual clarity, means

and standard errors of the mean (SEM) are used to summarize the

data in the figures, instead of showing the many p-values from

ANOVA.

Pup Survival from the Mid-Nursing Period to Weaning Is
Lower in B6 Mice

Offspring of heterozygote couples were less likely to survive

from midway through the nursing period (,day 10) to weaning

(,day 21) if they were of B6, than of 129 or F1 background

(Table 1; for offspring of all genotypes, p,0.0003 for B6 versus

129 and p,0.0001 for B6 versus F1, chi-squared test; this

difference, when analyzed separately for mutants and for pooled

WT and heterozygotes, remains significant between strains).

While 7% of B6 pups died during this period, well under 1% of

F1 or 129 pups did. Amongst the B6 mice, 14% of mutant, and

5% of pooled WT and heterozygote, mice died during this period

(p = 0.065).

ATP8B1 Mutant B6 Mice Exhibit Slower Weight Gain
during the Nursing Period

Previous study had suggested that mutant mice were slightly

smaller at weaning than WT and heterozygote littermates [12].

Table 1. Summary of the factorial experiment.

Main Effects Interactions

Phenotypes Genotype Strain Diet Sex
Genotype
x Strain

Genotype
x Diet

Genotype
x Sex

Strain
x Diet

Strain
x Sex

Diet
x Sex

Pup survival - Y NA NA

Mid-nursing weight Y - NA Y

Weaning weight Y Y NA Y

% weight loss/day Y Y Y Y Y Y Y

Baseline serum cholesterol Y Y NA Y Y

Post-diet cholesterol Y Y Y Y Y Y

Baseline serum ALP Y Y NA Y Y

Post-diet ALP Y Y Y Y Y Y Y

Baseline bilirubin - - NA -

Post-diet bilirubin Y Y Y - Y

Baseline serum bile salts Y Y NA -

Post-diet serum bile salts Y - + - Y

Post-cholate biliary cholesterolˆ Y Y NA - Y

Post-cholate biliary phospholipidsˆ Y Y NA -

Post-cholate biliary bile saltsˆ Y - NA -

% liver weight relative to final body weight # Y Y Y Y Y Y Y

The first column lists the phenotypes studied. Columns 2–5 list the main effects of 4 factors- genotype, strain, diet, and sex. Columns 6–11 list the interactions between
genotype, strain, diet, and sex. ‘Y’ indicates that a main effect or interaction influences the phenotype. ‘2’ indicates no main effect. ‘+’ indicates that the factor had no
main effect, but influences the phenotype when interacting with one or more of the other factors. ‘NA’ indicates that the factor was not included or assessed in the
experiment. ˆAs more data were available for F1 and B6 mice on cholate, than control, diet, only results of analysis of cholate diet are shown here. #For percent liver
weight relative to final body weight, a 3-way interaction was detected between strain, diet, and genotype.
doi:10.1371/journal.pone.0008984.t001

ATP8B1 Mutant Mouse and Strain
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We weighed pups born to heterozygote couples midway through

the nursing period and again at weaning. At both timepoints,

mutant mice trended smaller than their WT and heterozygote

littermates (Table 1, Figure 1 a and b). There was no effect of

strain on this difference midway through the nursing period. At

weaning, however, B6 mutant mice were 12% smaller than their

WT and heterozygous littermates; this mutation-dependent weight

difference was greater than that seen in 129 and F1 mice (B6 versus

129 and F1 males: p,0.01 for both comparisons; B6 versus F1

females: p,0.001; B6 versus 129 females: p,0.05). A mutation-

associated defect in weight gain during the nursing period thus

appears greater in mice of B6 background, as compared to 129

and F1 mice.

The Proportion of Mutant Pups Is Lower than Expected
Overall, among pups born to heterozygote couples, and

genotyped at weaning, the mutant allele had a frequency of

46%, which is slightly lower than the expected 50% frequency

(p,0.002). This indicates a mild survival benefit conferred by the

wild-type allele. The genotype frequencies were in Hardy-

Weinberg equilibrium (p = 0.81), and were not observed to differ

with strain background (p = 0.85). Consistent with the allelic

analysis, 21% of pups born to heterozygote couples, and

genotyped at weaning, were mutants. This is modestly lower than

the expectation of 25%, indicating a mild decrease in rate of

survival to weaning for mutant pups, compared to WT and

heterozygote littermates (p,0.01, chi-squared test, N = 861).

Diet Studies. Findings were assessed at baseline, and after

short-term feeding of a diet supplemented with 0.5% cholate, or a

control diet.

ATP8B1 Mutant B6 Mice Lose Substantial Weight upon
Cholate Feeding

Rate of weight change per day was affected by genotype

(ATP8B1 mutant mice lost more weight than WT), strain (B6 mice

lost more weight than 129 and F1 mice), diet (mice lost more

weight on cholate diet), and sex (females lost more weight, or

gained less, than males); there are also several interactions (Table 1;

Figure 2). On cholate diet, mutant mice of all strains lose weight

(p,0.001 for all comparisons of mice on control versus cholate

diet, except p,0.01 for F1 females; Figure 2b). The weight loss is

greatest in mutant B6 mice, as compared to mutant 129 and F1

mice (p,0.05 to ,0.001).

Figure 1. ATP8B1 mutant B6 mice exhibit slower weight gain
during the nursing period. Pup weight in WT and ATP8B1 mutant
mice of B6, 129, and F1 backgrounds at: A) mid-nursing period (,day
10) and B) weaning. Weights of mutant pups were normalized to those
of WT and heterozygote littermates; means and SEM are shown. Range
of N’s: a) B6 (n = 14256), 129 (n = 23257), and F1 (n = 702136) and b)
B6 (n = 12253), 129 (n = 23258), and F1 (n = 502138).
doi:10.1371/journal.pone.0008984.g001

Figure 2. ATP8B1 mutant B6 mice lose substantial weight upon cholate feeding. Weight change per day in WT (A) and ATP8B1 mutant (B)
mice of B6, 129, and F1 backgrounds after feeding of control (grey) or cholate (black) diet for 4–8 days; means and SEM are shown. N’s for cholate
diet: B6 (n = 8213), 129 (n = 18235), and F1 (n = 13218); and control diet: B6 (n = 529), 129 (n = 22229), and F1 (n = 11216).
doi:10.1371/journal.pone.0008984.g002

ATP8B1 Mutant Mouse and Strain
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Among WT mice, only B6 females lost weight on cholate, as

compared to control, diet (p,0.001; Figure 2a). This finding

indicates that cholate diet may have a greater negative impact in B6

than in the other strains, even in the absence of the Atp8b1 mutation.

Atp8b1 Mutation Results in Lowered Serum Cholesterol
in B6 Mice

At baseline, factor analysis showed overall effects of genotype

(mutants,WT), strain (B6,129 and F1), and sex (females,males)

on serum cholesterol levels (Table 1). In addition, there is a strain-

genotype interaction; in B6 mice only, serum cholesterol was lower

in mutants than in WT (males: p,0.001; females p,0.05) (Figure 3

a and b). Among sex-matched WT mice, serum cholesterol was

similar between strains, except for B6 females, which had lower

levels than 129 and F1 females (p,0.001; Figure 3a). Among sex-

matched mutants, B6 mice had lower cholesterol levels than 129

mice (p,0.001, males and females); F1 mice were intermediate

(Figure 3b).

After Challenge with Cholate-Supplemented Diet,
ATP8B1 Mutant Mice of All Strains Have Low Serum
Cholesterol

Genotype, strain, and sex have similar effects on post-diet serum

cholesterol levels, as at baseline. Overall, cholate feeding lowers

Figure 3. Atp8b1 mutation results in lowered serum cholesterol and increased serum alkaline phosphatase (sALP) levels in B6 mice.
Serum cholesterol and alkaline phosphatase levels in WT (A, C) and mutant (B, D) mice of B6, 129, and F1 backgrounds at baseline (light grey) and
after feeding of cholate (black) or control (medium grey) diet for 4–8 days; means and SEM are shown. N’s at baseline: B6 (n = 7215), 129 (n = 42266),
and F1 (n = 21236); N’s for cholate diet: B6 (n = 5212), 129 (n = 15229), and F1 (n = 6219) and for control diet: B6 (n = 5212), 129 (n = 18229), and F1

(n = 11218).
doi:10.1371/journal.pone.0008984.g003

ATP8B1 Mutant Mouse and Strain
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serum cholesterol levels in ATP8B1 mutant mice compared to

control-fed mutants, and there are diet-genotype and diet-sex

interactions (Table 1). Cholesterol levels were significantly reduced

in male mutants of 129 and F1 backgrounds after consumption of

cholate, as compared to control, diet (p,0.001 for both), but not

in the groups that had low cholesterol levels after consumption of

control diet as well: B6 males, or females of all backgrounds

(Figure 3b).

In contrast, among WT mice, only B6 males had lower

cholesterol after consumption of cholate, than control, diet

(p,0.001). In WT mice, no strain differences were apparent fter

control diet, but after cholate diet, B6 mice had lower cholesterol

than 129 mice (males: p,0.05; females: p,0.01) (Figure 3a).

Atp8b1 Mutation Results in Increased Serum Alkaline
Phosphatase (sALP) Levels in B6 Mice

At baseline, genotype (mutant.WT), strain (B6.129 and F1),

and sex (females.males) affect sALP levels (Table 1; Figure 3c and

d). Serum ALP levels are higher in mutant B6 mice, as compared

to WT (p,0.001, males and females), but there is no difference

between mutant and WT mice of the other two strains (genotype-

strain interaction). Mutant B6 mice had notably higher sALP

levels than did sex-matched mutant mice of other backgrounds

(p,0.001, each comparison).

After Challenge with Cholate-Supplemented Diet, sALP
Increases in ATP8B1 Mutant Mice of All Strains

After dietary challenge, there are overall effects of genotype

(mutant.WT), strain (B6.129.F1), diet (cholate.control) and

sex (females.males). Cholate feeding increases sALP levels in

mutant mice (diet-genotype interaction; p,0.05 to ,0.001)

(Table 1; Figure 3d). Cholate-fed mutant mice of all strains had

higher sALP levels as compared to cholate-fed WT mice (p,0.001

for all comparisons; Figure 3c and d). In mutant mice after either

diet, B6 mice have notably higher sALP than do 129 or F1 mice

(p,0.001 for all comparisons except ,0.01 for male B6 versus

129). In WT mice after cholate diet, B6 females have higher levels

than do females of 129 or F1 background (p,0.001). There are

also diet-sex and sex-genotype interactions.

Serum Bilirubin Concentration Increases in ATP8B1
Mutant Mice after Consumption of Cholate-
Supplemented Diet

At baseline, no differences in bilirubin levels between groups of

mice were detected (Table 1; values not shown). Factor analysis of

post-dietary challenge data showed an overall effect of genotype,

strain and diet, and a diet-genotype interaction. For all strains,

mutant mice have higher serum bilirubin levels than WT mice

when fed cholate diet (p,0.001); after consumption of control diet,

the effect of genotype is significant only for the 129 strain (p,0.05;

Figure 4). After cholate diet, serum bilirubin was higher in B6,

than 129 or F1, mutant mice (p,0.001; Figure 4b). In contrast, for

mutant mice after control diet, and WT mice after both diets,

serum bilirubin levels in B6 and 129 strains were similar, and

higher than those seen in F1 mice (p,0.001, each comparison).

Mutant, but not WT, mice of all strains have higher bilirubin

levels after cholate diet as compared to control diet (p,0.001; diet-

genotype interaction).

Serum Bile Salt Levels Are Higher in ATP8B1 Mutant Mice
At baseline, factor analysis showed overall effects of mutation

(mutants.WT; 129: p,0.001; F1: p,0.01; B6: p,0.05) and

strain (B6 and 129.F1) (Table 1, Figure 5). B6 mutant mice had

higher serum bile salt levels than did F1 mutant mice (p,0.05;

Figure 5b). After dietary challenge, there is an overall effect of

genotype and a genotype-diet interaction (Table 1, Figure 5).

Mutant mice fed cholate diet have higher serum bile salt levels as

compared to those fed control diet (p,0.001, each comparison); in

WT mice, effect of diet is smaller (B6 and F1: p,0.05; 129: ns).

Factor analysis did not identify an overall effect of strain after

dietary challenge. Specifically after cholate feeding, however,

serum bile salts were modestly higher in mutant mice of B6 and

129 strain background, than in those of F1 background (p,0.05,

both comparisons).

Gallbladder Bile Composition after Consumption of
Cholate Diet Is Influenced by Atp8b1 Mutation and Strain

Bile was more amenable to collection by needle aspiration from

mice after cholate diet, as they tended to have well-filled

gallbladders, than from mice after control diet, whose gallbladders

often contained very little fluid. Therefore, we analyzed bile

composition after cholate feeding only.

Figure 4. Serum bilirubin concentration increases in ATP8B1
mutant mice upon cholate feeding. Proportion of WT (A) and ATP8B1
mutant (B) mice of B6, 129, and F1 backgrounds with normal (light grey),
moderately elevated (medium grey), and highly elevated (black) serum
bilirubin levels in after feeding cholate or control diet for 4–8 days. N’s for
cholate diet: B6 (n = 528), 129 (n = 30231), and F1 (n = 13225); and
control diet: B6 (n = 10213), 129 (n = 39248), and F1 (n = 18223).
doi:10.1371/journal.pone.0008984.g004

ATP8B1 Mutant Mouse and Strain
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For concentrations of cholesterol and phospholipids in bile, there

were overall effects of genotype (mutant,WT) and strain (B6.129

and F1), and for cholesterol, a strain-genotype interaction (Table 1;

Figure 6 a–d). 129 and F1, but not B6, mutant mice had lower biliary

cholesterol and phospholipids concentrations than strain-matched

WT mice (p,0.01 to ,0.001; Figure 6a–d). Mutant mice of B6

background had higher cholesterol and phospholipid concentra-

tions than did mutant mice of F1 or 129 backgrounds (p,0.01 to

,0.001; Figure 6b, d). In contrast, for WT mice, B6 mice had lower

cholesterol than did 129 mice (p,0.05: Figure 6a). Factor analysis

identified an effect of genotype (mutants,WT) on biliary bile salt

concentration, which attained significance in the 129 strain

(p,0.05; Figure 6e, f).

ATP8B1 Mutant B6 Mice Have Larger Livers than Mutant
129 Mice

There were overall effects of genotype (mutant.WT), strain

(B6.129, with F1 intermediate), diet (cholate.control), and sex

(females.males) on liver weight as a proportion of final body

weight. We also detected genotype-strain, genotype-diet, and

strain-diet interactions, and a 3-way interaction between strain,

diet, and genotype (Table 1, Figure 7). Livers of mutant mice were

larger than those of sex-matched WT mice for B6 and F1 mice fed

control (B6: p,0.001; F1: p,0.05) and cholate diet (p,0.001 for

all), but in 129 mice this difference was only seen after cholate diet

(p,0.001). After consumption of control diet, mutant mice of B6

background had larger livers than those of 129 or F1 backgrounds

(p,0.001, all comparisons; Figure 7b). After cholate diet, livers of

mutant 129 and F1, but not B6, mice are enlarged relative to after

control diet (p,0.001, except F1 males: p,0.05). Nevertheless,

liver weights in male mutant mice after cholate diet consumption

were still higher in B6, than in 129 or F1, mice (p,0.001, both

comparisons); in female mutants after cholate feeding, B6 and F1

mice have larger livers than 129 mice (B6 versus F1: p,0.01; 129

versus F1: p,0.001; Figure 7b). In WT mice after either diet, livers

of B6 mice trended slightly larger than in 129 and F1 mice (control

diet: p,0.001 for B6 versus 129 males, ns for others; cholate diet:

p,0.05 to p,0.001; Figure 7a).

Hepatic Levels of Triglycerides and Cholesterol Are
Influenced by Diet and Atp8b1 Mutation

Triglycerides (TG), total cholesterol (TC), and free cholesterol

(FC) were quantified in snap-frozen liver tissue from a represen-

tative subset (143 mice) of the study sample; amount of esterified

cholesterol (EC) was calculated by subtracting FC from TC.

No overall effects of genotype, diet, strain, or sex were detected

for TG and FC; however, for both, diet-genotype and diet-

genotype-sex interactions were detected (Figure 8A–D). TG were

lower in B6 mutant females after cholate diet than in both B6

mutant females after control diet (p,0.01) and B6 WT females

after cholate diet (p,0.05).

An overall effect of diet (cholate.control) was detected for TC

and EC. After consumption of cholate diet, TC was higher in 129

WT mice (p,0.05), and EC was higher in 129 mutant mice

(p,0.01), than respective groups after control diet (Figure 8E–H).

Although factorial analysis did not detect an overall strain effect,

after cholate diet, 129 WT mice had higher EC than B6 WT mice

(p,0.05).

Discussion

We have previously shown that mice lacking Atp8b1 exhibit a

mild form of human ATP8B1 deficiency, but do not suffer from

progressive cholestatic liver disease [12–14,16]; most of this work

was performed in 129 mice. Atp8b1 mice were previously found to

exhibit some of the characteristic phenotypic features of human

ATP8B1 deficiency, such as elevation of bile salts, bilirubin and

liver enzyme activities in serum, when fed a diet supplemented

with 0.5% cholate. Results from the analyses presented here

indicate strain-genotype interaction; the manifestation of many

phenotypic features in ATP8B1 mutant mice depends on strain

background.

ATP8B1 mutant B6 mice manifest a number of phenotypes

that have correlates in human ATP8B1 deficiency, and are not

detected, or less readily apparent, in the 129 strain background.

In the B6 strain, Atp8b1 mutation is associated with lower serum

cholesterol, higher sALP, and higher serum bilirubin, mirroring

Figure 5. Serum Bile salts levels are higher in ATP8B1 mutant mice. Serum bile salt levels in WT (A) and Atp8b1 mutant (B) mice of B6, 129,
and F1 backgrounds at baseline (light grey) and after feeding of cholate (black) or control (medium grey) diet for 4–8 days; means and SEM are
shown. N’s at baseline: B6 (n = 9215), 129 (n = 48243), and F1 (n = 43245). N’s for cholate diet: B6 (n = 7213), 129 (n = 18235), and F1 (n = 13218);
and control diet: B6 (n = 529), 129 (n = 22229), and F1 (n = 11216).
doi:10.1371/journal.pone.0008984.g005

ATP8B1 Mutant Mouse and Strain
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findings in human ATP8B1-deficient patients [18–20]. Similarly,

slow growth during the nursing period, and substantial weight

loss on cholate diet, phenotypes reminiscent of the failure-to-

thrive seen in human patients, are most notable in mutant mice of

B6 background. Mutant mice of B6 background also exhibit

greater hepatomegaly. Results of the hepatic lipid assays

performed, as well as histological evaluation of a subset of study

samples (data not shown), indicate that this enlargement is not

due to lipid accumulation, in agreement with findings in human

ATP8B1-deficient patients. Instead, histologic assessment of

mitotic activity (data not shown) suggests that B6 mutant mice

may have increased cell proliferation, relative to 129 and F1

mutant mice. With respect to these phenotypes, the ATP8B1

mutant mouse in the B6 background strain may be a better

model of human ATP8B1 deficiency than is the mutant mouse in

the 129 strain.

A consistent finding in our study was that serum cholesterol was

decreased in mutant, as compared to WT, mice in the B6

background; after cholate feeding, this mutation effect was present

in all strains. It has been well-established both in mice and humans

that cholestasis leads to a decrease in HDL and its main

apolipoprotein apoA1 [21,22]. On the other hand, some forms

Figure 6. Composition of gallbladder bile after feeding of cholate-supplemented diet is influenced by ATP8B1 mutation and strain.
Bile cholesterol, phospholipid, and bile salt levels in WT (A, C, & E) and ATP8B1 mutant (B, D, & F) mice of B6, 129, and F1 backgrounds after feeding of
cholate diet for 4–8 days; means and SEM are shown. N’s: B6 (n = 11219), 129 (n = 39252), and F1 (n = 19222).
doi:10.1371/journal.pone.0008984.g006
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of chronic cholestasis are associated with increased cholesterol in

the VLDL/LDL fraction, at least partly due to the appearance of

Lipoprotein X (LpX) in the serum [23]. Formation of LpX

critically depends on the canalicular transporters responsible for

biliary lipid secretion and LpX is not found in states of cholestasis

caused by transport defects, including PFIC [24,25]. In addition,

in mice the majority of serum cholesterol is in HDL, and therefore

decreased HDL formation in cholestasis will have a lowering effect

on total serum cholesterol. Feeding of a cholate-supplemented diet

aggravates the intrahepatic cholestasis, which will lead to a further

reduction of serum cholesterol.

Results for most of the evaluated phenotypes indicate greater

abnormalities in mutant mice of B6, as compared to 129, strain

background; however, regarding bile composition, we detect

differences between WT and mutant mice of 129 background

that are not apparent in the B6 strain. We have previously

reported that ATP8B1 mutant mice characteristically have

increased biliary secretion of cholesterol compared with WT of

the same genetic background [13,14]. This enhanced secretion

occurs independent of the function of Abcg5/8 and therefore

most likely represents direct extraction of cholesterol due to a

reduced resistance of the canalicular membrane to the detergent

action of bile salts. In the present study, we find reduced

concentration of cholesterol (and phospholipids) in bile of mutant

mice of 129 and F1 background. These contrasting results are

likely due to important differences between these studies. In

previous studies, we evaluated hepatic bile secretion after acute

infusion of taurocholate, while the current study is focused on

composition of gallbladder bile after chronic challenge by feeding

of a cholate-supplemented diet. Based on these observations, we

hypothesize that the increased cholesterol secretion occurs only

during acute bile salt challenge, in mutant mice of 129 and F1

background. Cholesterol extraction from the canalicular mem-

brane subsequently leads to decreased membrane cholesterol

content and cholestasis, also reducing the normal Abcg5/8

mediated cholesterol secretion into bile [26]. Hence, in a chronic

situation reduced cholesterol secretion may be observed, as

opposed to increased cholesterol secretion in an acute situation of

bile salt infusion.

Our findings imply the existence of modifier loci regulating the

ATP8B1 mutant phenotype; the presence of similar loci in people

may underlie, at least in part, the varying severity and nature of

disease manifestations that can be seen, even between patients

carrying the same, or similar, ATP8B1 mutations [9]. For many of

these phenotypes, mutant F1 and 129 mice are similar to each

other, while mutant B6 mice differ, and are more abnormal. These

findings suggest that susceptibility to cholestasis-related pheno-

types in these mice is recessive; however such determination can

only be made after studying the phenotypes in an experimental

cross. Genetic mapping studies of Atp8b1 mutant mice, employing

an intercross, or a backcross onto B6 background, will allow us to

identify modifier loci of ATP8B1 mutant phenotypes. Mapping of

such loci in mice, and correlating of results with human genotype-

phenotype studies, may provide novel insight into the function of

ATP8B1 and the biological mechanisms of ATP8B1 deficiency in

humans.

We have also identified strain-dependent differences in WT

mice apparent at baseline and/or after dietary challenge. B6 WT

mice have lower serum cholesterol (both sexes), and higher sALP

(females), as well as greater weight loss (both sexes), and more

enlarged livers (both sexes) than do WT 129, and sometimes F1,

mice. Some of these findings are magnified upon cholate feeding,

suggesting a greater innate sensitivity to cholate feeding in the B6,

than 129, strain. Our findings may have general implications for

choice of strain when studying hepatobiliary phenotypes, either in

WT mice, or in mice with targeted mutations in other genes

influencing hepatobiliary phenotypes.

Materials and Methods

All mice were maintained in a specific-pathogen-free animal

facility in San Francisco; studies were conducted under a protocol

approved by the UCSF IACUC. The embryonic stem cell line

used in generation of the mice was derived from the 129S4 strain,

and mice of the genetically most closely related commercially

available 129 substrain, 129S1, were subsequently used for

breeding [12]. We therefore backcrossed the Atp8b1 mutation

separately onto the B6, 129S1, and 129S4 strains. The studies

Figure 7. ATP8B1 mutant B6 mice have larger livers than mutant 129 mice. Liver weight as a proportion of final body weight in WT (A) and
ATP8B1 mutant (B) mice of B6, 129, and F1 backgrounds after feeding of cholate (black) or control (grey) diet for 4–8 days; means and SEM are shown.
N’s for cholate diet: B6 (n = 7213), 129 (n = 18235), and F1 (n = 13218); and control diet: B6 (n = 529), 129 (n = 22229), and F1 (n = 11216).
doi:10.1371/journal.pone.0008984.g007
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Figure 8. Hepatic levels of triglycerides and cholesterol are influenced by diet and Atp8b1 mutation. Hepatic triglycerides and
cholesterol in WT (A, C, E, and G) and mutant (B, D, F, and H) mice of B6, 129, and F1 background after cholate (black) and control (grey) diet for 4–8
days; mean and SEM are shown. N’s for cholate diet: B6 (n = 4210), 129 (n = 8220), and F1 (n = 429); and control diet: B6 (n = 4211), 129 (8219),
F1 (n = 428).
doi:10.1371/journal.pone.0008984.g008

ATP8B1 Mutant Mouse and Strain

PLoS ONE | www.plosone.org 9 February 2010 | Volume 5 | Issue 2 | e8984



reported here were performed during the course of this

backcrossing. For B6, the first experiments were performed on

mice after 5 generations of backcrossing, with a median of 12

backcross generations for phenotyped mice. For phenotypes

presented here, little or no effect of 129 substrain (129S1 versus

129S4) was detected, so data for these 129 substrains were pooled.

A minority of WT mice was of pure strain stock, rather than

derived from backcrossing. For F1 mice, similar numbers were

generated with B6 as the paternal, and as the maternal, strain.

At approximately 21 days after birth, pups were weaned,

weighed and tagged. For many litters born to heterozygote

couples, pups had also been weighed at approximately day 10, and

uniquely identified at that time, so that weight gain during the 2nd

half of the nursing period could be evaluated; we did not want to

disturb the litters earlier than that, to avoid increasing the risk of

mothers abandoning their litters. To account for effects of factors

such as litter size and precise age in days on pup weight, weights of

mutant pups were normalized to those of WT and heterozygous

littermates.

Mice were aged a minimum of 3 months prior to study diet

administration (Dyets, Inc. catalog number 10191460.5% cholic

acid, sodium salt [Calbiochem]; a small, initial pilot study was

performed with a highly similar diet [K4068.02, Arie Blok

Diervoeders, Woerden, The Netherlands]). Mice were anesthe-

tized, and a ‘baseline’ blood collection was performed. Then,

standard mouse chow was replaced with control or cholate-

supplemented diet. To optimize the number of days mice would

be on study diet, we assessed impact of diet administration for

varying lengths of time, monitoring mouse body weight and

condition. Mutant B6 mice could not consistently remain on the

cholate diet for .6 days without demonstrating excessive weight

loss. Therefore, .95% of the mice in this study underwent dietary

challenge for 6–7 days. To make fullest use of data from animals

studied while optimizing diet length, we assessed impact of

number of days on diet on phenotypes. Regression analysis did not

identify differences attributable to number of days on diet over 4–8

days, so data from all mice on the diet for 4–8 days were pooled for

analysis. In total, results from 396 mice are included in this study,

tallied by strain as follows: 72 B6, 108 129S1, 100 129S4, and 116

F1 (the latter including mice derived from crossing B6 with 129S1,

and B6 with 129S4).

We established a standard protocol in which mice were fasted

for $4 hours, then anesthetized, and blood, gallbladder bile,

liver, and spleen (for isolation of DNA to confirm genotype)

were collected at sacrifice. Serum ALP, cholesterol, and

bilirubin were assayed in a clinical laboratory. Serum bile salts

were assayed using the Total Bile Acid Assay kit (DZ042A-K,

Diazyme Labs, USA). Cholesterol, phospholipids, and bile salts

in gallbladder bile were assayed as previously described [27].

Free cholesterol, total cholesterol, and total triglycerides were

measured in lipid extracts from snap-frozen liver tissue using

commercial assay kits (Wako Free Cholesterol E [435-35801,

Wako Diagnostics]; Infinity cholesterol reagent [TR13521,

Fisher Diagnostics]; Infinity triglyceride reagent [TR22321,

Fisher Diagnostics]).

Statistical Analysis
Since 24 factorial combinations are present, there were 276

possible ways of grouping the mice into two groups based on their

mutation status, genetic background, diet and sex. To reduce the

number of comparisons examined, and simplify the process of

determining which factors affect a trait of interest, we adopted the

following procedure: For each trait of interest, we fit a full factorial

model with all main effects, two-factor, three-factor and the four-

factor interaction [17]. Then we performed backward selection

using the Bayesian Information Criterion [28]. This approach

balanced the explanatory power of the model against model

complexity, yielding a parsimonious list of factors that influenced

the trait of interest. Lower order terms were always included if a

higher-order interaction was present. For most phenotypes we used

linear regression to fit the models. Serum bilirubin was analyzed as

an ordinal variable. Baseline bilirubin data were binned into 2

levels, normal (,0.1 mg/dl) and elevated ($0.1 mg/dl), and

analyzed using a binomial linear model. Post-diet data were binned

into 3 levels, normal (,0.1 mg/dl), moderately elevated (0.1–2 mg/

dl), or highly elevated (.2 mg/dl), and analyzed using proportional

odds models. To reduce co-linearity in the proportional odds model,

we used ridge regression, using the equivalent of one mouse with no

association with any of the factors. These analyses were designed

using the R programming language [29]; for the annotated code,

see Supplementary Files S1, S2, S3.

P-values reported in the text are derived from analysis of

variance (ANOVA) with Tukey’s post-test (performed on the

relevant sub-groups), or the chi-square test. These analyses were

performed using PRISM 5.0 (Graphpad Software, Inc.) or

programmed in Excel (Microsoft Corp.). Except for serum

bilirubin and rate of weight loss, data were log-transformed for

all analyses. (As serum bile salt levels were undetectable in a small

number of mice, and therefore recorded as zero, we added 0.1

prior to log transformation.) For subtle effects, significance is

occasionally obtained in the factorial analysis, but not in ANOVA,

due to differences in power.
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