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Neurobiology of Disease

Alzheimer’s Disease Neurodegenerative Biomarkers Are
Associated with Decreased Cognitive Function but Not
�-Amyloid in Cognitively Normal Older Individuals

Miranka Wirth,1 Cindee M. Madison,1 Gil D. Rabinovici,1,2,3 Hwamee Oh,1 Susan M. Landau,1,2 and William J. Jagust1,2

1Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, 2Life Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, and 3Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco,
California 94117

�-Amyloid (A�) plaque deposition and neurodegeneration within temporoparietal and hippocampal regions may indicate increased risk
of Alzheimer’s disease (AD). This study examined relationships between AD biomarkers of A� and neurodegeneration as well as cogni-
tive performance in cognitively normal older individuals. A� burden was quantified in 72 normal older human subjects from the Berkeley
Aging Cohort (BAC) using [ 11C] Pittsburgh compound B (PIB) positron emission tomography. In the same individuals, we measured
hippocampal volume, as well as glucose metabolism and cortical thickness, which were extracted from a template of cortical AD-affected
regions. The three functional and structural biomarkers were merged into a highly AD-sensitive multimodality biomarker reflecting
neural integrity. In the normal older individuals, there was no association between elevated PIB uptake and either the single-modality or
the multimodality neurodegenerative biomarkers. Lower neural integrity within the AD-affected regions and a control area (the visual
cortex) was related to lower scores on memory and executive function tests; the same association was not found with PIB retention. The
relationship between cognition and the multimodality AD biomarker was stronger in individuals with the highest PIB uptake. The
findings indicate that neurodegeneration occurs within AD regions regardless of A� deposition and accounts for worse cognition in
cognitively normal older people. The impact of neural integrity on cognitive functions is, however, enhanced in the presence of high A�
burden for brain regions that are most affected in AD.

Introduction
There is great interest in detecting and characterizing cognitively
normal older individuals with an increased risk of Alzheimer’s
disease (AD). The hallmark AD pathology of �-amyloid (A�)
plaque burden and neurodegeneration is seen in a substantial
proportion of cognitively normal older people (Morris et al.,
2009; Dickerson et al., 2011), suggesting a preclinical stage of AD.
Cortical A� deposition has been proposed as the initiating factor
in AD progression (Jack et al., 2010); however, this view is hypo-
thetical and other models have been suggested (Herrup, 2010).

Although preclinical AD criteria include biomarkers of A� bur-
den and neurodegeneration (Sperling et al., 2011), the relation-
ships between A�, neuronal damage, and cognition in the normal
elderly remain unclear.

Imaged in vivo with [11C] Pittsburgh compound B (PIB) pos-
itron emission tomography (PET) (Klunk et al., 2004), A� depo-
sition is found in 20 –30% of cognitively normal older people
(Mintun et al., 2006; Quigley et al., 2011). Neurodegenerative AD
pathology is known to target circumscribed posterior cortical and
hippocampal regions (Perrin et al., 2009). There it can be de-
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tected using biomarkers of neuronal function and structure, such
as glucose metabolism measured by [18F] fluorodeoxyglucose
(FDG) PET (Landau et al., 2011), as well as cortical thickness
(Dickerson et al., 2009) and hippocampal volume, both delin-
eated from structural magnetic resonance images (MRIs).

In cognitively normal older individuals, the relationship be-
tween A� and cognitive functioning is inconsistent and weak
(Aizenstein et al., 2008; Mormino et al., 2009). By contrast, neu-
rodegeneration (as reflected in MRI, FDG PET, and tau biomark-
ers) seems to be more closely tied to cognitive ability (den Heijer
et al., 2006; Dickerson et al., 2011; Desikan et al., 2012). Although
atrophy within the hippocampus (Storandt et al., 2009; Rowe et
al., 2010) and cortical AD-affected regions (Becker et al., 2011;
Chételat et al., 2012) may be related to fibrillar A� plaques, other
reports have failed to show such associations (Storandt et al.,
2012). In previous studies, AD-like neurodegeneration was
found in individuals without evidence of cortical A� deposition
(Dickerson and Wolk, 2012; Jack et al., 2012). These results imply
that neurodegenerative abnormalities in AD-affected regions
may not be invariably associated with A�.

Reductions in neural integrity may also be attributed to age-
associated degeneration (Raz and Rodrigue, 2006). This is be-
cause AD-related and age-related gray matter atrophy converges
on hetero-modal regions (Raz et al., 2004; Fjell et al., 2009). One
approach to examine the AD biomarker model in cognitively
normal older adults is therefore the definition of biomarkers that
have a high enough power to discriminate abnormal (AD-
related) from normal (age-related) neuronal properties on an
individual basis.

This study quantified neurodegeneration in cognitively nor-
mal older adults using highly sensitive AD biomarkers. First, in a
sample of AD patients and A�-negative healthy controls, a mul-
timodality parameter (reflecting neural integrity) was established
from single-modality biomarkers (cortical thickness, glucose me-
tabolism, and hippocampal volume) as extracted within AD-
affected regions. Second, we assessed whether neurodegeneration
within the AD regions would be associated with both poorer
cognitive functions and cortical A� deposition.

Materials and Methods
Study design
The design of the study entailed deriving AD neurodegenerative bio-
markers in one group of subjects, and validating them in another. The

sample used for derivation came from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) and included a group of A�-negative cogni-
tively normal controls (ADNI NC) and a group of patients with mild AD
(ADNI AD). The validation sample was comprised of a group of normal
older controls from the Berkeley Aging Cohort (BAC NC) and AD pa-
tients from the University of California, San Francisco (UCSF AD). Re-
lationships between the neurodegeneration biomarkers, PET measures
of A�, and cognition were then tested in the BAC NC group.

Subject recruitment
Written informed consent was obtained from each participant in the
study before enrollment in accordance with the local Institutional Re-
view Boards (IRBs) for the ADNI sites, and the University of California,
Berkeley, and Lawrence Berkeley National Laboratory (LBNL) for BAC
and UCSF subjects. Subject characteristics are provided in Tables 1 and 2.

ADNI NC and AD sample
The ADNI is a multisite, longitudinal, prospective, natural history study
that was launched in 2003 by the National Institute on Aging, the Na-
tional Institute of Biomedical Imaging and Bioengineering, the Food and
Drug Administration, private pharmaceutical companies and non-profit
organizations as a public–private partnership. ADNI evaluates serial
MRI, PET, and other biomarkers, as well as clinical and neuropsycholog-
ical markers for the onset and progression of mild cognitive impairment
(MCI) and early AD.

Full inclusion/exclusion criteria can be found at www.adni-info.org.
In brief, at the time of enrollment, ADNI subjects are between 55 and 90
(inclusive) years old. ADNI NC have MMSE scores 24 –30 (inclusive), a
clinical dementia rating (CDR) (Morris, 1993) of 0, no signs of depres-

Table 1. Demographic information of all samples

Derivation sample Validation sample

ADNI NC ADNI AD BAC NC UCSF AD

Demographics
Number of subjects 39 50 72 19
Age at MRI (years) 78.0 (6.4) 62–94 76.5 (7.4) 59 – 88 74.9 (5.7) 63– 88 67.8 (9.7)*** 58 – 89
Number of women 17 (44%) 20 (40%) 48 (67%) 9 (47%)
Education (years) 15.8 (2.8) 9 –20 14.6 (3.1)** 6 –20 17.0 (1.9) 12–20 16.4 (3.2) 9 –22

Measurements
� time (MRI–FDG) (years) 0.1 (0.1) 0.1 (0.1) 0.2 (0.4) 0.4 (0.5)
� time (FDG-A�) florbetapir, 3.1 years (2.1 years) n.a. PIB, 0.0 d n.a.

CSF A�, 23.2 d (35.6 d) n.a. n.a.
� time (NTS-MRI) (years) 0.1 (0.1) 0.1 (0.0) 0.3 (0.2) 0.3 (0.4)

Biomarkers
N of A�-negative (�) or A�-positive (�) 29 florbetapir�, 10 CSF A�� n.a. 47 PIB�, 25 PIB� n.a.
APOE �4 carrier 6 (15%) 36 (72%) 22 (31%) 10 (53%), missing: 3

Clinical cognitive status
MMSE 29.2 (1.2) 23.4 (2.2)* 28.8 (1.4) 20.3 (6.6)***
CDR (if available) 0/0.5/1/3 39/0/0 0/16/34 n.a. 1/5/10/1, missing: 2

Values are given as the mean (SD) and span, if helpful. NTS, Neuropsychological test session; �, absolute difference; MMSE, mini mental status examination; CDR, clinical rating scale; n.a., not available. *p �0.05; **p �0.1 comparison
between ADNI NC and ADNI AD; ***p �0.05, comparison between BAC NC and UCSF AD.

Table 2. Demographic information of the BAC NC subsamples

BAC NC PIB� BAC NC PIB�

Demographics
Number of subjects 47 25
Age at MRI (years) 74.9 (5.5) 75.0 (6.1)
Number of women 31 (66%) 17 (68%)
Education (years) 17.3 (1.7) 16.4 (2.1)*

Measurements
� time (MRI–FDG) (years) 0.1 (0.4) 0.2 (0.5)
� time (NTS–MRI) (years) 0.3 (0.2) 0.3 (0.2)

Biomarkers
APOE �4 carrier 11 (23%) 11 (44%)

Clinical cognitive status
MMSE 29.0 (1.3) 28.5 (1.5)

Values are given as the mean (SD). �, Absolute difference; MMSE, mini mental status examination. *p �0.1.
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sion, no memory complaints, and normal memory functions as deter-
mined via the Logical Memory II subscale from the Wechsler Memory
Scaled-Revised (Wechsler, 1987). Mild AD patients demonstrate a CDR
of 0.5 or 1.0, MMSE scores between 20 and 26 (inclusive) and are re-
quired to meet NINCDS/ADRDA criteria for probable AD (McKhann et
al., 2011).

For this study, a sample of 39 (17 females, 22 males) A�-negative NC and
50 (20 women) mild AD were selected from the ADNI database. ADNI
subjects were included, if they had completed structural 1.5T MRI and FDG
PET imaging and cognitive testing. We included only A�-negative ADNI
NC, as defined by [18F] florbetapir-PET or (when florbetapir was not avail-
able) CSF A� using previously published thresholds (Shaw, 2008). ADNI
NC and AD groups were matched for age, sex, and education, as well as the
time interval between FDG and MRI measurements (Table 1).

BAC NC sample
The current sample of the BAC NC included a total of 72 (48 females, 24
males) community-dwelling cognitively intact elderly individuals. Eligibility
criteria were set to a Geriatric depression scale (GDS) (Yesavage et al., 1982)
score �10, Mini mental status examination (MMSE) (Folstein et al., 1975)
score �25, no current neurological and psychiatric illness, normal functions
on verbal and visual memory tests (all scores ��1.5 SD of age-adjusted,
gender-adjusted, and education-adjusted norms) and age of 60–90 (inclu-
sive) years. All subjects underwent a detailed standardized neuropsycholog-
ical test session and neuroimaging measurements, all of which were obtained
in close temporal proximity (Table 1).

UCSF AD sample
The sample included 19 (9 females, 10 males) patients with mild to severe
AD evaluated at the UCSF Memory and Aging Center. Subjects were
required to have FDG and PIB PET images and structural MRI scans
obtained on a 1.5T MR system. AD patients met the NINCDS/ADRDA
criteria for probable AD (McKhann et al., 2011) and were free of signif-
icant comorbid medical, neurologic, or psychiatric illnesses. AD diagno-
sis was based on a multidisciplinary evaluation.

Cognitive data
In the BAC NC sample, the dimensionality of the behavioral data were
reduced by constructing memory and executive functions composite
measures using a two-step procedure. In step 1, domain-sensitive cogni-
tive tests were defined, which were then averaged using z scores in step 2.

The domain-sensitive tests of memory and executive functions were
selected in a procedure that optimized conceptual relevance and suitable
measurement characteristics (minimum data loss and mid-range test
scores). Domain sensitivity of the cognitive tests was corroborated using
a principal component analysis (PCA) with orthogonal (varimax) rota-
tion. The analysis was performed for the test scores of the first neuropsy-
chological test session using a larger sample of the cognitively normal
older BAC participants (N � 303 at the time of analysis, mean age � 71.5
(9.0) years, age span 50 –96 years, N of women � 205 (68%), education �
16.9 (2.1) years, education span 12–20 years, MMSE � 28.8 (1.3), MMSE
span 25–30). Bartlett’s test of sphericity indicated that the intercorrela-
tions between cognitive tests were sufficiently large for the PCA. Two
factor components were confirmed using Kaiser’s criterion of an eigen-
value �1 and explained 60.3% of the total variance in combination.

The memory factor was composed of episodic memory tests, specifi-
cally the free recall trials 1–5 of the California Verbal Learning Test
(CVLT) II (Delis et al., 2000), the Logical Memory recall of story A and B
(Wechsler, 1997a), and the Visual Reproduction Delayed Recall as well as
Recognition (Wechsler, 1997a). The factor measuring executive func-
tions consisted of the Stroop Test (correct naming of printed colors)
(Trenerry et al., 1989), the Controlled Oral Word Association Test
(Benton et al., 1983), the Trail Making Test Part B (Reitan, 1958) and the
Digit Symbol-Coding Test (Wechsler, 1997b). The cognitive tests were
combined into the composite measures by converting each test to z scores
using the mean and SD of the overall BAC cohort (see above) and aver-
aging them.

Cognitive data used to describe the ADNI participants and the UCSF
AD patients were limited to the MMSE and CDR (Table 1).

Neuroimaging data acquisition and preprocessing
MRI
ADNINCandADsamples.Thehigh-resolutionT1-weightedmagnetization-
prepared rapid gradient echo (MPRAGE) were obtained at multiple ADNI
sites using a standardized acquisition protocol (http://adni.loni.ucla.edu/
research/protocols/mri-protocols/) on General Electric (GE), Siemens, or
Philips 1.5T systems. For this study, we used preprocessed MPRAGE scans
that had undergone a full set of image correction steps at the time of analysis,
including gradient warping (except Philips Scanner), intensity correction,
and scaling (available in 33/39 cases) (Jack et al., 2008).

BAC NC samples. MRI scans were acquired at LBNL on a 1.5T Mag-
netom Avanto system (Siemens) using a 12 channel head coil run in triple
mode. Each subject’s MPRAGE scans were collected axially with the
following measurement parameters: TR � 2110 ms, TE � 3.58 ms, flip
angle � 15°, field of view � 256 � 256 mm, number of slices � 160 with
a 50% gap, voxel size � 1 � 1 � 1 mm 3.

UCSF AD samples. MPRAGE scans were collected coronally via a 1.5T
Magnetom Vision System (Siemens Medical Systems, Erlangen, Germany)
with a quadrature head coil and the following acquisition parameters: TR �
10 ms, TE � 7 ms, flip angle � 15°, voxel size � 1 � 1 � 1.5 mm3.

FDG PET
ADNI NC and AD samples. Multisite FDG PET scans were acquired using
standardized FDG acquisition protocols described in detail previously
(http://adni.loni.ucla.edu/research/protocols/pet-protocols/). The FDG
PET images were collected with the same protocol used for BAC and UCSF
subjects. The “raw” FDG PET frames were averaged and processed to yield
images with standard orientation, voxel size, and 8 mm isotropic full-width/
half-maximum (FWHM) resolution (Joshi et al., 2009; Jagust et al., 2010).
The preprocessed FDG PET images (standardized orientation, intensity cor-
rection, and resolution) were normalized using the pons as the reference
region.

BAC NC and UCSF AD samples. FDG PET imaging was performed at
LBNL with an ECAT EXACT HR PET scanner (Siemens), �2 h after PIB
tracer injection. Following 6 –10 mCi of tracer injection, 6 � 5 min
frames of emission data were collected starting 30 min after injection.
All FDG PET data were reconstructed using an ordered subset expec-
tation maximization algorithm with weighted attenuation. Images
were smoothed applying a 4 � 4 � 4 mm Gaussian kernel with scatter
correction.

The six “raw” FDG PET frames were aligned to the first frame and
averaged using Statistical Parametric Mapping version 8 (SPM8;
http://www.fil.ion.ucl.ac.uk/spm). Individual FDG frames were then re-
aligned to the resultant average image and combined to create a single-
frame average image. To enhance comparability with the ADNI FDG
scans, each subject’s average FDG PET image was smoothed to a resolu-
tion of 8 mm FWHM using a Gaussian kernel of 5.5 mm in plane and 4.0
mm in the slice direction. The kernel was determined with the same
protocol used to create standard resolution images in ADNI (Joshi et al.,
2009). The smoothed FDG PET scans were intensity normalized to the
pons, as edited from the subcortical FreeSurfer 5.1. parcellation of the
native-space MRI scans (Fischl et al., 2002). The choice of reference
region was based on evidence indicating preservation of pontine glucose
metabolism in AD patients (Minoshima et al., 1995). There was no par-
tial volume correction performed.

PIB PET
For the BAC NCs, PIB PET scans were collected at LBNL. After �15 mCi
tracer injection into an antecubital vein, dynamic acquisition frames
were obtained in the 3D acquisition mode over a 90 min measurement
interval (4 � 15 s frames, 8 � 30 s frames, 9 � 60 s frames, 2 � 180 s
frames, 8 � 300 s frames, and 3 � 600 s frames) after a 10 min transmis-
sion scan. Frames 6 –34 were aligned to frame 17 using a two-pass algo-
rithm. Frames 1–5 were summed and registered to the mean of frames
6 –34, with the alignment parameters applied to each individual frame.
The realigned frames corresponding to the first 20 min of acquisition
were averaged and used to coregister the structural MRI to the native-
space PIB PET image. Distribution volume ratios (DVRs) were generated
with Logan graphical analysis on the aligned PIB frames using the native-
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space gray matter cerebellum as a reference region (Logan et al., 1996;
Klunk et al., 2004; Price et al., 2005), fitting 35–90 min after injection.

For each subject, a global cortical PIB index was derived from the
native-space DVR image over frontal (cortical regions anterior to the
precentral sulcus), temporal (middle and superior temporal regions),
parietal (supramarginal gyrus, inferior/superior parietal lobules, and
precuneus), and anterior/posterior cingulate regions-of-interest (ROIs),
previously demonstrated to exhibit higher PIB retention in AD subjects
compared with cognitively normal controls (Price et al., 2005). ROI-
specific values were extracted from the automated FreeSurfer 5.1 ana-
tomical parcellation using the Desikan-Killiany atlas (Desikan et al.,
2006) and combined as a weighted average. There was no partial volume
correction performed.

The BAC NC subjects were dichotomized into a high (BAC NC PIB�)
and low (BAC NC PIB�) PIB binding status, indicating the presence or
absence of abnormal PIB retention, respectively. The specific cutoff score
for PIB positivity was two SDs above the mean of the PIB index estimated
in an independent group of healthy young adults (Oh et al., 2011;
Mormino et al., 2012), yielding a value of 1.08. Demographic information
for PIB� and PIB� subgroups of the BAC NC are provided in Table 2.

Neuroimaging data analysis
MRI
Surface-based cortical thickness maps were estimated from the native-
space MRI scans for each individual using the FreeSurfer 5.1 software
package (http://surfer.nmr.mgh.harvard.edu/). The processing pipeline
is described previously and will only be explained in brief (Dale et al.,
1999; Fischl et al., 1999a). In an automated procedure each MPRAGE
scan was bias-field corrected, intensity normalized, and skull stripped
using a watershed algorithm (Dale et al., 1999; Segonne et al., 2004). The
resulting image was subjected to a white matter segmentation algorithm
to define the white/gray matter boundary. After topology correction of
the reconstructed white/gray matter border surfaces (Dale et al., 1999;
Fischl et al., 2002; Segonne et al., 2004), the pial surfaces were estimated
(Fischl and Dale, 2000). A triangular mesh represented the structures of
white and gray matter (or pial) surfaces, such that image properties could
be mapped to each node (or vertex) of the triangular mesh. Cortical
thickness surface maps were derived by calculating the distance between
the two surfaces at each vertex across the entire cortex (Fischl and Dale,
2000). The corresponding values were projected onto each subject’s re-
constructed cortical surface (Fischl et al., 1999a).

FDG PET
We adopted a procedure previously described (Park et al., 2006). Each
subject’s preprocessed FDG PET image was coregistered to the MRI scan
using an SPM-based coregistration algorithm (Ashburner and Friston,
1997). The coregistered volumetric FDG image was then sampled onto
the cortical surface by means of maximum projection. Namely, an inten-
sity profile was created by sampling 10 equal proportions of the FDG PET
intensity values between white matter and pial surface at each vertex. The
FDG surface maps were created by mapping the maximum intensity
value derived from the vertex-wise intensity profile to the reconstructed
surface. Maximum projection was chosen because it is more robust to
minor registration and MRI segmentation errors (Park et al., 2006).

Derivation and validation of neurodegenerative biomarkers
We began by defining the single-modality biomarkers of cortical thick-
ness, glucose metabolism (FDG PET), and hippocampal volume (HV)
using the ADNI NC and AD groups within brain regions most affected by
AD. The single-modality biomarkers were then combined into an AD-
sensitive multimodality biomarker. To examine whether biomarker ef-
fects were stronger within AD-affected regions, a non-AD “control”
region was chosen. Similar to a prior study (Dickerson et al., 2009), the
bilateral primary visual cortex of the automated FreeSurfer 5.1 Desikan-
Killany parcellation was used.

Definition of cortical AD-affected regions and
biomarker extraction
The individual thickness surface maps were registered to a template sur-
face using a spherical morphing procedure that aligns cortical folding

patterns (Fischl et al., 199b). The resulting registration also mapped the
FDG surface maps into a common surface space. All surface maps were
smoothed by an iterative nearest-neighbor averaging procedure (Fischl
et al., 1999b) with a FWHM Gaussian kernel of 15 mm for cortical thick-
ness and 10 mm for FDG PET. To validate data quality, we first generated
statistical surface maps for FDG PET and cortical thickness using general
linear models (GLMs) with the predictors of diagnosis (ADNI NC, ADNI
AD) and demeaned covariates of no interest (education and age). The
single-modality group contrasts (ADNI NC � ADNI AD) produced
maps of AD-related cortical thinning and hypometabolism.

To limit neurodegenerative biomarkers to regions that were affected
by both AD-related cortical thinning and hypometabolism, we defined
the convergence of cortical thinning and hypometabolism maps. This
was done, because our preliminary data analyses indicated that the con-
vergence map comprised a minimum set of cortical regions without
reductions in AD-sensitivity and specificity compared with the single-
modality (FDG PET or cortical thickness) statistical surface maps. To
extract the convergence map, a binary mask was created from the statis-
tical hypometabolic surface map to spatially restrict the computation of
the statistical thinning map using an equivalent GLM. Within each hemi-
sphere, ROIs with an area larger than 300 mm 2 were defined in the
statistical thinning map and converted to an ROI template of cortical AD
regions (or cortical AD template). For all analyses, the statistical thresh-
old was set to p � 0.00005 (uncorrected); the equivalent false discovery
rate (FDR) threshold is provided.

Using the cortical AD and control templates, cortical thickness and
FDG PET were derived for each subject of each sample (ADNI NC, ADNI
AD, BAC NC, UCSF AD). The templates were mapped onto each sub-
ject’s native-space cortical thickness and FDG PET surface image using
the spherical registration of the MRI scan to the standard brain. For each
ROI, mean cortical thickness and FDG PET were estimated. ROI-specific
values were averaged and weighted by the number of vertices.

Hippocampal volume was obtained within each hemisphere of the
native-space MRI scan using the automated subcortical FreeSurfer 5.1
parcellation and averaged across hemispheres. The HV was adjusted for
head size (abbreviated as HVicv) via a regression model including all
available subjects. The method removed shared variance with the Free-
Surfer 5.1 derived total intracranial volume (ICV); i.e., an estimate that
includes brain tissue, CSF-filled, and blood-filled spaces (Mathalon et al.,
1993).

Finally, each biomarker was age-adjusted using the ADNI NC sample.
Age was regressed on the biomarker of interest within the ADNI NC
reference population. The unstandardized regression coefficients esti-
mated age-adjusted residuals for each individual of each sample. The
age-adjusted values were z-transformed using mean and SD of the ADNI
NC sample.

Multimodality biomarker combination
Using the derivation sample (ADNI NC, ADNI AD) and discriminant
function analysis (DFA) the single-modality biomarkers were merged
into a continuous multimodality parameter. The DFA determined a lin-
ear combination (or function) that best separated (or discriminates)
target groups using several predictors (Field, 2005). Diagnostic group
(ADNI NC, ADNI AD) was entered as the-dependent variable of interest;
the three single-mode age-adjusted and z-transformed biomarkers
(cortical thickness, FDG uptake, and HVicv) were fitted as indepen-
dent variables. The DFA identified one discriminant function (canonial
R 2 � 0.66) that significantly discriminated the diagnostic groups of the
derivation sample (Wilk’s lamda (�) criterion: � � 0.34, � 2 (3) � 91.95,
p � 0.001). This function correctly classified 90% of the ADNI AD pa-
tients. Discriminant function scores were estimated for every subject of
each sample (ADNI NC, ADNI AD, UCSF AD, BAC NC); scores of �0
indicate that the individual would be classified as AD, �0 implies normal
control classification. The multimodality biomarker of the control re-
gion was created by averaging the z-transformed and age-adjusted mean
cortical thickness and FDG PET values of the visual cortex.

Validation of the neurodegenerative biomarkers
The multimodality and single-modality biomarkers were compared be-
tween AD patients and NC individuals of the derivation and validation
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samples using the 95% confidence interval (CI) of the difference. If this
CI did not include 0, the group differences were significant.

The discriminatory power of the multimodality and single-modality
biomarkers was validated using the BAC NC and UCSF AD groups and
the area under the curve (AUC) of the receiver operating characteristic
(ROC). The AUC is a measure that represents the ability of a classifier
variable to correctly discriminate individuals with and without the dis-
ease (Metz, 1978). AUC values may vary between 0.5 (indicating random
classification) and 1 (indicating perfect classification).

Application of the neurodegenerative biomarkers in
cognitively normal older individuals
After development and validation of the neurodegenerative biomarkers,
they were related to PIB binding status and cross-sectional cognitive

performance in cognitively normal older indi-
viduals of the BAC NC sample.

Relationships between the
neurodegenerative biomarkers and
PIB uptake
For the multimodality biomarker, a univariate
analysis of covariance (ANCOVA) was con-
ducted with PIB binding status (BAC NC PIB�,
BAC NC PIB�) as a predictor. In addition a mul-
tivariate ANCOVA was performed to evaluate ef-
fects of each single-modality biomarker (cortical
thickness, FDG uptake, and HVicv) as-
dependent variables and dichotomous PIB up-
take as independent predictors. In addition, the
statistical analyses were restricted to PIB� sub-
jects, since findings suggest relationships between
neurodegenerative biomarkers and A� presence,
particularly for individuals with lower levels of
CSF A� (Fjell et al., 2010c). In the ANCOVA
model, the PIB index was fitted as a continuous
predictor and the neurodegenerative biomarkers
as dependent variables.

To explore the possibility that our results
may be impacted by our choice of PIB uptake
threshold, we repeated the analysis using a
more conservative threshold. Fourteen indi-
viduals with highest A� burden (high BAC NC
PIB�) were isolated from the BAC NC sample
using the iterative outlier approach (Aizenstein
et al., 2008). Cases with slight or ambiguous
PIB elevation were excluded in these analyses
(Mormino et al., 2012).

Unless otherwise stated, model-specific as-
sumptions of homogeneity of covariance ma-
trices and/or regression slopes were confirmed
for all ANCOVA models. The statistical thresh-
old was set to p � 0.05, two-tailed. Pillai’s trace
values (V) were chosen to evaluate predictor
effects. Covariates of age, education, and gen-
der were only included, when a considerable
relationship (here p � 0.1) with the dependent
variable of interest was empirically indicated.

Relationships between the
neurodegenerative biomarker
and cognition
To evaluate relationships between the neurode-
generative biomarker and cognition for the
AD-affected and control regions, omnibus mul-
tivariate ANCOVA models were performed with
cognitive (memory and executive function) per-
formance as dependent variables and the multi-
modality biomarker as well as PIB uptake status
(BAC NC PIB�, BAC NC PIB�) as independent
predictors. Education and age were fitted as cova-

riates of no interest. Post hoc univariate ANOCA models evaluated predictor
effects on either memory performance or executive functions.

Relationships between the neurodegenerative biomarker and high
PIB uptake on cognition
For the multimodality biomarkers of the AD-affected and control re-
gions, omnibus multivariate ANCOVAs were performed with memory
performance and executive functions as dependent variables. The mod-
els assessed main and interactive effects between dichotomous PIB up-
take status (high BAC NC PIB�, BAC NC PIB�) and the multimodality
biomarker. Age and education were fitted as categorical covariates (de-
fined by median split) of no interest. In the statistical models with inter-
action, the multimodality biomarker was z-transformed. The procedure
provided a meaningful zero-point, because the main effect of one predic-
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tor represents a “conditional” effect at the
value of 0 of the other predictor, when an in-
teraction term is fitted.

The following post hoc analysis was per-
formed to examine whether the interaction
effect between PIB uptake and the neurodegen-
eration biomarkers on cognition were en-
hanced for the AD biomarker compared with
the control region biomarker. Two partial cor-
relation coefficients were obtained for each PIB
uptake group from within group-regression
models, one for the AD-affected regions (r1)
and one for the control region (r2). Within
each group, the correlation coefficients (r1, r2)
were compared by applying the formula for de-
pendent correlations (Cohen and Cohen,
1975). The significance level was set to p � 0.05
(one-tailed).

Results
Definition of cortical AD-affected regions
Single-modality comparisons of surface-
based FDG PET and cortical thickness maps
for the derivation sample (ADNI NC, ADNI
AD) replicated well known regional pat-
terns of hypometabolism and thinning in
AD patients. AD-related hypometabolism
(p � 0.00005 uncorrected, equivalent to
FDR � 0.0005; Fig. 1A) was mainly present
in bilateral temporal (inferior, middle, me-
dial temporal) and inferior parietal (angular
gyrus) regions, the frontal (superior) cortex,
and the precuneus. AD-related cortical
thinning was detected in highly compara-
ble, though somewhat smaller regions
(p � 0.00005 uncorrected, equivalent to
FDR �0.001; Fig. 1B).

The statistical maps reflecting conver-
gence of AD-related hypometabolism and cortical thinning were
extracted in the derivation sample as a set of posterior cortical
ROIs (p � 0.00005 uncorrected, equivalent to FDR � 0.005, cs �
300 mm 2; Fig. 1C). These cortical regions included temporal
areas (mostly middle and medial temporal), inferior parietal cor-
tex (angular gyrus) and the posterior cingulate to precuneus re-
gions. The topographical distribution of the AD-affected ROIs
was similar across hemispheres, although somewhat different in
size.

Validation of the neurodegenerative biomarkers
There was a clear reduction in the multimodality neurodegenera-
tive biomarker of the AD-affected regions between the AD pa-
tients compared with NC individuals of the derivation sample
(ADNI NC � ADNI AD, 95% CI of the difference [2.34, 3.19])
and the validation sample (BAC NC � UCSF AD, 95% CI of the
difference [2.36, 3.84]) (Fig. 2A). Similar effects were measured
for the single-modality biomarkers of cortical thickness, FDG
uptake and HVicv (all 95% CIs of the difference excluded 0, data
displayed in Fig. 2B–D).

Classification accuracy of the single-modality and multimo-
dality biomarkers within the AD regions was excellent (all p val-
ues �0.001) and similar across the derivation and validation
samples. Highest accuracy was measured for the multimodality
biomarker (derivation sample: AUC � 0.98, validation sample:
AUC � 0.97). For the single-modality biomarkers, highest accu-
racy was achieved for HVicv (derivation sample: AUC � 0.95,

validation sample: AUC � 0.92), followed by cortical thickness
(derivation sample: AUC � 0.94, validation sample: AUC �
0.90) and FDG PET (derivation sample: AUC � 0.87, validation
sample: AUC � 0.92).

For the multimodality biomarker of the control region (visual
cortex, data not depicted), there was no significant difference
between the AD patients and the NC individuals of the derivation
sample (ADNI NC � ADNI AD, 95% CI of the difference [�0.10,
0.50]). However, there was a difference in the validation sample
(BAC NC � UCSF AD, 95% CI [0.23, 1.04]), reflecting what is
likely more extensive AD pathology in the UCSF AD patients.
The biomarker classification accuracy was random for the deri-
vation sample (AUC � 0.58, p � 0.2), and poor, although signif-
icant for the validation sample (AUC � 0.70, p � 0.01).

Relationships between the neurodegenerative biomarkers and
PIB uptake
In the BAC NC sample, the multimodality biomarker values of
AD-affected regions were similar (F(1,70) � 0.08, p � 0.8) for
PIB� and PIB� individuals (Fig. 3A), as estimated using a uni-
variate ANCOVA. The single-modality biomarkers were also
comparable for high and low PIB uptake status (V � 0.01,
F(3,67) � 0.24, p � 0.9) as confirmed using a multivariate ANCOVA
controlling for gender (V � 0.18, F(3,67) � 4.8, p � 0.01) (Fig.
3B–D). Likewise, within PIB� individuals there were no signifi-
cant relationships of the PIB binding index (evaluated as contin-
uous rank transformed and original values) and the AD-sensitive
neurodegenerative biomarkers (all p values �0.1, data not
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shown). For the biomarker of the control region, no significant
effects of PIB uptake status on the neurodegenerative biomarker
were obtained (all p values �0.2, data not shown).

Relationships between the neurodegenerative biomarker
and cognition
In the BAC NC sample, the omnibus multivariate ANCOVA
demonstrated that the multimodality biomarker of the AD regions

was significantly associated with poorer
cognition (V � 0.22, F(2,66) � 9.21, p �
0.001, �2 � 0.22) accounting for age (V �
0.20, F(2,66) � 7.99, p � 0.01) and educa-
tion (V � 0.10, F(2,66) � 3.79, p� 0.05).
Post hoc univariate ANCOVAs corrobo-
rated that lower neural integrity explained
reductions in memory (F(1,67) � 5.06, p �
0.05, �2 � 0.07) and executive (F(1,67) �
18.26, p � 0.001, �2 � 0.21) functions
(Fig. 4).

For the multimodality biomarker of the
control region (data not depicted), the
ANCOVA model demonstrated that lower
values were significantly related to poorer
cognition (V � 0.23, F(2,66) � 10.04, p �
0.001, �2 � 0.23) along with effects of age
(V � 0.15, F(2,66) � 5.74, p � 0.05) and ed-
ucation (V � 0.18, F(2,66) � 7.35, p � 0.01).
Post hoc univariate ANCOVAs corrobo-
rated that lower biomarker values ac-
counted for reduced memory (F(1,67) �
5.63, p � 0.05, �2 � 0.08) and executive
(F(1,67) � 19.82, p � 0.001, �2 � 0.23)
functions.

There were no effects of dichotomous
PIB uptake (all p values �0.5) on the cog-
nitive measures in any of the statistical
models for the AD-affected or the control
region.

Relationships between the
neurodegenerative biomarker and high
PIB uptake on cognition
The multivariate ANCOVA confirmed
the significant main effect of the multimo-
dality biomarker of the AD regions on
cognition (V � 0.39, F(2,54) � 17.10, p �
0.001, �2 � 0.39). Importantly though,
the model also detected a significant inter-
action between PIB uptake status (high
PIB� BAC NC, PIB� BAC NC) and the
multimodality biomarker (V � 0.16,
F(2,54) � 5.22, p � 0.05, �2 � 0.16), con-
trolling for age and education (Fig. 5,
top). Post hoc univariate ANCOVA mod-
els indicated that the interaction effect was
significant for memory (F(1,55) � 5.07,
p � 0.05, �2 � 0.08) and executive func-
tions (F(1,55) � 9.30, p � 0.01, �2 � 0.15).

For the control region, the multivari-
ate ANCOVA confirmed the significant
main effect of the multimodality bio-
marker on cognition (V � 0.27, F(2,54) �
9.09, p � 0.001, �2 � 0.27), controlling

for age and education (Fig. 5, bottom). Importantly though,
there was no significant interaction between the PIB uptake
status and the neurodegenerative biomarker (V � 0.02,
F(2,54) � 0.65, p � 0.5).

Post hoc comparisons of the dependent partial correlation co-
efficients from the neurodegenerative biomarker– cognition re-
lationships within each PIB group (BAC NC PIB�, BAC NC
PIB�) specified the following: For the high PIB� individuals, the
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partial correlation coefficient obtained for
the AD-affected regions was significantly
higher compared with the correlation co-
efficient of the control region (visual cor-
tex) with regard to memory (rAD � 0.90,
rcontrol � 0.72, t (11) � 2.03, p � 0.05) and
executive functions (rAD � 0.82, rcontrol �
0.55, t (11) � 2.53, p � 0.05). For the
PIB� group, the partial correlation coef-
ficients, as computed for the AD and con-
trol regions, were comparable (all p values
�0.4) for memory (rAD � 0.22, rcontrol �
0.27) and executive functions (rAD � 0.48,
rcontrol � 0.48).

Discussion
It is increasingly important to identify
older individuals who experience cogni-
tive decline and may be in the process of
developing AD. Current criteria for preclin-
ical AD propose that cognitively normal
older people, who harbor both amyloid bur-
den and associated neuronal injury, are at an
advanced preclinical stage (Jack et al., 2010;
Sperling et al., 2011). This study therefore
assessed relationships between AD bio-
markers of A� and neurodegeneration and
their relation to cross-sectional cognitive
performance in cognitively normal older
adults.

There were four important findings:
Using an optimized combination of corti-
cal thickness, FDG PET and hippocampal
volume, we created a multimodality bio-
marker with high power to differentiate AD patients from healthy
(A�-negative) older individuals. This AD-sensitive biomarker
can be interpreted to capture the presence or loss of neural integ-
rity within regions that are severely affected by AD pathology.
Sampled from cognitively normal older individuals (BAC NC
sample), there was no association between the biomarkers of A�
burden (measured by the PIB uptake status) and neurodegenera-
tion (measured by the multimodality biomarker). Lower levels of
neural integrity within the AD-affected and the control region
(visual cortex) were related to poorer cognitive abilities. For the
AD regions, this biomarker– cognition relationship was stronger
for individuals with the highest A� burden.

The amyloid cascade model postulates that abnormal A�-
plaque accumulation is a necessary trigger of AD-typical neuro-
degeneration (Jack et al., 2010). One can therefore reason that
individuals with abnormal neurodegenerative biomarkers would
be A�-positive. Using a hypothesis-driven approach that defined
neural properties within AD-affected regions, we found consid-
erable variability in neural integrity among our normal older
individuals, regardless of A� burden. The finding conflicts with
the biomarker model, but is consistent with emerging data. A
recent study classified the A� and the neurodegenerative bio-
marker status of normal older people according to criteria for
preclinical AD (Jack et al., 2012). In this sample, neurodegenera-
tive AD biomarker abnormalities were found in a substantial
proportion (23%) of A�-negative individuals. In another study,
the presence of cortical thinning in AD signature regions was
associated with AD-like CSF A� in 60% of subjects, leaving the

high proportion of 40% of such individuals exhibiting normal
CSF A� (Dickerson and Wolk, 2012).

Our data and others (Fjell et al., 2010a; Jack et al., 2012) thus
converge on the fact that neuronal damage within AD target re-
gions is non-specific for A� pathology in normal older adults.
This suggests that biomarker models and preclinical AD stages
proposing A�-plaque burden as the initiating factor of AD-
typical neurodegeneration could be incorrect (Jack et al., 2010;
Sperling et al., 2011). In older people, reductions of neural integ-
rity may be the result of non-AD (pathological) factors that mod-
ulate neuronal structure and function over the lifespan. Further,
recent demonstrations of trans-neuronal propagation of tau pa-
thology (de Calignon et al., 2012) raise the possibility that the
early appearance of entorhinal cortical neurofibrillary tangles
could be associated with alterations of function in neocortical
neurons projecting to the medial temporal lobe. Thus, in an al-
ternative model to that which proposes A� as the initiating event,
tau-related neurodegeneration may arise independently from A�
deposition (Mesulam, 1999; Small and Duff, 2008). Scenarios
where neurodegenerative abnormalities emerge before or in par-
allel with A� may converge with theoretical models that posit an
initiating role of neuronal injury in the development of AD
(Herrup, 2010).

In our study, lower neural integrity within (but not limited to)
AD-affected regions was a close predictor of decreased cognitive
abilities. The observation mirrors earlier findings that docu-
mented a positive relationship between cognitive abilities and
cortical thickness in distributed brain areas (Fjell et al., 2006). A�
burden itself was a poor predictor of cognitive performance in the
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same individuals corroborating previous inconsistent effects in
cross-sectional data (Pike et al., 2007; Aizenstein et al., 2008;
Mormino et al., 2009; Oh et al., 2011, 2012). Other studies have
highlighted the notion that neuronal injury within AD-affected
regions is not benign and may increase the risk for time-
dependent cognitive decline and AD conversion in normal older
adults (den Heijer et al., 2006; Dickerson et al., 2011). Moreover,
in patients with mild cognitive impairment (MCI), medial tem-
poral lobe degeneration without A� abnormalities yielded almost
as high risk of AD conversion than having both A� and neurode-
generative abnormalities (Heister et al., 2011). Our results con-
tribute to these findings by showing that neurodegeneration is
associated with poorer cognition regardless of A� burden in cog-
nitively intact older adults.

Neuronal injury in AD-affected regions seemed to increase
the vulnerability of the brain to late-life A� pathology. This was
supported by the interaction between the biomarkers of A� de-
position and neurodegeneration. Specifically, although A� bur-
den itself was unrelated to the neurodegenerative biomarker and
cognitive abilities, worse cognition occurred when A� deposits
coincided with lower neural integrity, specifically within the AD
regions. The observation agrees with theoretical conceptualiza-
tions (Jack et al., 2010; Sperling et al., 2011) and empirical data
(Knopman et al., 2012) that denote heightened risk for poor cog-
nitive functions in those individuals that harbor A� burden and
neurodegeneration. However, the presence of neurodegenera-
tion without A�, and the potentiation of neurodegenerative ef-
fects by A�, are not consistent with these models. The
observation that neurodegeneration and A� are not simply addi-
tive suggests that these two processes interact through mecha-
nisms that remain unclear. Similar to our present findings,
deleterious A� effects on longitudinal cognition change were pre-
viously moderated by the presence of tau (Desikan et al., 2012)
and signs of neuronal damage within the hippocampus as well as
cortical AD regions (Wirth et al., 2013). At the same time, cogni-
tive functioning was maintained in our high A� burden individ-
uals with normal neural integrity, suggesting that A� burden per
se might not be detrimental (Desikan et al., 2012). The data con-
vey that AD-like neurodegeneration, as emerging from A�-
independent pathways, could act as a catalyst of A�-associated
effects.

In a broader view, the present findings imply that different
(other than A�) neurodestructive and/or neuroprotective factors
cause intersubject variability in neural structure and function,
which is relevant to cognitive abilities in advanced age. In partic-
ular, age (or aging) itself is associated with cognitive worsening
(Hedden and Gabrieli, 2004) and gray matter shrinkage within
heteromodal cortices (Raz et al., 2004; Fjell et al., 2009, 2010b).
Although the present neurodegenerative biomarkers were ad-
justed for chronological age, it could be possible that there were
residual effects of age that remained. Alternatively, non-AD vas-
cular pathology, even subclinical cerebrovascular risk factors,
may cause brain atrophy in normal elderly adults in distributed
brain areas (Raz et al., 2004; Leritz et al., 2011). In addition, tau
pathology could arise independently from A� in advanced ages,
affect neural integrity and interact with A� in producing cogni-
tive decline (Small and Duff, 2008). Finally, as a developmental
modifier of brain properties, a person’s intellectual “baseline”
needs to be considered. Intellectual ability in old age is related to
intelligence in early life stages (Deary, 2000), where it is associated
with enhanced gray matter structure (Hulshoff Pol et al., 2006;
Karama et al., 2009; Luders et al., 2009). Thus, a form of brain

reserve could be reflected in these measures of brain volume and
metabolism.

Our study has several strengths. We created highly sensitive
neurodegenerative biomarkers using an independent sample of
AD patients and A�-negative, carefully screened cognitively nor-
mal older individuals. We further combined single- into multi-
modality biomarkers using a linear function. Although we had
only a small and variable clinical validation group, the results of
the validation process coincided with previous observations that
multimodality biomarker fusion can increase diagnostic accu-
racy (Oishi et al., 2011; Zhang et al., 2011). An optimized combi-
nation of functional and structural biomarkers has been
suggested to increase the power to capture different neuropatho-
logical processes in different brain areas. This can be used to
improve the differentiation of normal and pathological neuronal
properties (Knopman et al., 2012). However, it is important to
note that the cross-sectional nature of our study limits interpre-
tation regarding biomarker causality as well as AD progression.

Together, our data concur with some aspects of the amyloid
hypothesis of AD but conflict with others. In agreement with the
amyloid hypothesis, we find that neurodegeneration is more
strongly associated with cognition than is A�. However, the in-
teraction between the two processes suggests that neurodegen-
eration does not simply mediate the effects of A� on the brain.
The data further conflict with the amyloid hypothesis by showing
that A� is not required to develop neurodegeneration within
AD-affected regions. The present findings have major bearings
on current conceptualizations of aging and preclinical AD.
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de Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH,
Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones
TL, Hyman BT (2012) Propagation of tau pathology in a model of early
Alzheimer’s disease. Neuron 73:685– 697. CrossRef Medline

Delis DC, Kramer JH, Kaplan E, Ober BA (2000) California verbal learning
test, Ed 2. San Antonio, TX: Psychological Corporation.

den Heijer T, Geerlings MI, Hoebeek FE, Hofman A, Koudstaal PJ, Breteler
MM (2006) Use of hippocamal and amygdalar volumes on magnetic
resonance imaging to predict dementia in cognitively intact elderly peo-
ple. Arch Gen Psychiatry 63:57– 62. CrossRef Medline

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buck-
ner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006)
An automated labeling system for subdividing the human cerebral cortex

Wirth et al. • AD Neurodegenerative Biomarkers in Normal Elderly J. Neurosci., March 27, 2013 • 33(13):5553–5563 • 5561

http://dx.doi.org/10.1001/archneur.65.11.1509
http://www.ncbi.nlm.nih.gov/pubmed/19001171
http://dx.doi.org/10.1006/nimg.1997.0290
http://www.ncbi.nlm.nih.gov/pubmed/9344825
http://dx.doi.org/10.1002/ana.22333
http://www.ncbi.nlm.nih.gov/pubmed/21437929
http://dx.doi.org/10.1212/WNL.0b013e318246d67a
http://www.ncbi.nlm.nih.gov/pubmed/22302548
http://dx.doi.org/10.1006/nimg.1998.0395
http://www.ncbi.nlm.nih.gov/pubmed/9931268
http://dx.doi.org/10.1016/j.neuron.2011.11.033
http://www.ncbi.nlm.nih.gov/pubmed/22365544
http://dx.doi.org/10.1001/archpsyc.63.1.57
http://www.ncbi.nlm.nih.gov/pubmed/16389197


on MRI scans into gyral based regions of interest. Neuroimage 31:968 –
980. CrossRef Medline

Desikan RS, McEvoy LK, Thompson WK, Holland D, Brewer JB, Aisen PS,
Sperling RA, Dale AM (2012) Amyloid-beta-associated clinical decline
occurs only in the presence of elevated P-tau. Arch Neurol 69:709 –713.
CrossRef Medline

Dickerson BC, Wolk DA (2012) MRI cortical thickness biomarker predicts
AD-like CSF and cognitive decline in normal adults. Neurology 78:84 –90.
CrossRef Medline

Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, Grod-
stein F, Wright CI, Blacker D, Rosas HD, Sperling RA, Atri A, Growdon
JH, Hyman BT, Morris JC, Fischl B, Buckner RL (2009) The cortical
signature of Alzheimer’s disease: regionally specific cortical thinning
relates to symptom severity in very mild to mild AD dementia and is
detectable in asymptomatic amyloid-positive individuals. Cereb Cor-
tex 19:497–510. CrossRef Medline

Dickerson BC, Stoub TR, Shah RC, Sperling RA, Killiany RJ, Albert MS,
Hyman BT, Blacker D, Detoledo-Morrell L (2011) Alzheimer-signature
MRI biomarker predicts AD dementia in cognitively normal adults. Neu-
rology 76:1395–1402. CrossRef Medline

Field AP (2005) Discovering statistics using SPSS: and sex, drugs and rock
‘n’ roll, Ed 2. London: Sage.

Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral
cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:
11050 –11055. CrossRef Medline

Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis. II:
inflation, flattening, and a surface-based coordinate system. Neuroimage
9:195–207. CrossRef Medline

Fischl B, Sereno MI, Tootell RB, Dale AM (1999b) High-resolution inter-
subject averaging and a coordinate system for the cortical surface. Hum
Brain Mapp 8:272–284. CrossRef Medline

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der
Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N,
Rosen B, Dale AM (2002) Whole brain segmentation: automated label-
ing of neuroanatomical structures in the human brain. Neuron 33:341–
355. CrossRef Medline

Fjell AM, Walhovd KB, Reinvang I, Lundervold A, Salat D, Quinn BT, Fischl
B, Dale AM (2006) Selective increase of cortical thickness in high-
performing elderly–structural indices of optimal cognitive aging. Neuro-
image 29:984 –994. CrossRef Medline

Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat
DH, Greve DN, Fischl B, Dale AM, Walhovd KB (2009) High consis-
tency of regional cortical thinning in aging across multiple samples. Cereb
Cortex 19:2001–2012. CrossRef Medline

Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Hol-
land D, Brewer JB, Dale AM (2010a) CSF biomarkers in prediction of
cerebral and clinical change in mild cognitive impairment and Alzhei-
mer’s disease. J Neurosci 30:2088 –2101. CrossRef Medline

Fjell AM, Amlien IK, Westlye LT, Stenset V, Fladby T, Skinningsrud A, Eil-
sertsen DE, Bjørnerud A, Walhovd KB (2010b) CSF biomarker pathol-
ogy correlates with a medial temporo-parietal network affected by very
mild to moderate Alzheimer’s disease but not a fronto-striatal network
affected by healthy aging. Neuroimage 49:1820 –1830. CrossRef Medline

Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Hol-
land D, Blennow K, Brewer JB, Dale AM (2010c) Brain atrophy in
healthy aging is related to CSF Levels of A beta 1– 42. Cereb Cortex 20:
2069 –2079. CrossRef Medline

Folstein M, Folstein S, McHugh P (1975) “Mini-mental state”: a practical
method for grading the cognitive state of patients for the clinicians. J Psy-
chiatric Res 12:189 –198. CrossRef Medline

Hedden T, Gabrieli JD (2004) Insights into the ageing mind: a view from
cognitive neuroscience. Nat Rev Neurosci 5:87–96. CrossRef Medline

Heister D, Brewer JB, Magda S, Blennow K, McEvoy LK (2011) Predicting
MCI outcome with clinically available MRI and CSF biomarkers. Neurol-
ogy 77:1619 –1628. CrossRef Medline

Herrup K (2010) Reimagining Alzheimer’s disease: an age-based hypothe-
sis. J Neurosci 30:16755–16762. CrossRef Medline

Hulshoff Pol HE, Schnack HG, Posthuma D, Mandl RC, Baare WF, van Oel C,
van Haren NE, Collins DL, Evans AC, Amunts K, Burgel U, Zilles K, de
Geus E, Boomsma DI, Kahn RS (2006) Genetic contributions to human
brain morphology and intelligence. J Neurosci 26:10235–10242. CrossRef
Medline

Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D,
Borowski B, Britson PJ, Whitewell JL, Ward C, Dale AM, Felmlee JP,
Gunter JL, Hill DL, Killiany R, Schuff N, Fox-Bosetti S, Lin C, Studholme
C, DeCarli CS, et al. (2008) The Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI): MRI methods. J Magn Reson Imaging 27:685– 691.
CrossRef Medline

Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW,
Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic
biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol
9:119 –128. CrossRef Medline

Jack CR Jr, Knopman DS, Weigand SD, Wiste HJ, Vemuri P, Lowe V, Kant-
arci K, Gunter JL, Senjem ML, Ivnik RJ, Roberts RO, Rocca WA, Boeve
BF, Petersen RC (2012) An operational approach to National Institute
on Aging-Alzheimer’s Association criteria for preclinical Alzheimer dis-
ease. Ann Neurol 71:765–775. CrossRef Medline

Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA, Price JC,
Reiman EM, Skovronsky D, Koeppe RA (2010) The Alzheimer’s Disease
Neuroimaging Initiative positron emission tomography core. Alzheimers
Dement 6:221–229. CrossRef Medline

Joshi A, Koeppe RA, Fessler JA (2009) Reducing between scanner differ-
ences in multi-center PET studies. Neuroimage 46:154 –159. CrossRef
Medline

Karama S, Ad-Dab’bagh Y, Haier RJ, Deary IJ, Lyttelton OC, Lepage C, Evans
AC (2009) Positive association between cognitive ability and cortical
thickness in a representative US sample of healthy 6 to 18 year-olds.
Intelligence 37:145–155. CrossRef Medline

Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom
M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J,
Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA,
Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with
Pittsburgh Compound-B. Ann Neurol 55:306 –319. CrossRef Medline

Knopman DS, Jack CR Jr, Wiste HJ, Weigand SD, Vemuri P, Lowe V, Kant-
arci K, Gunter JL, Senjem ML, Ivnik RJ, Roberts RO, Boeve BF, Petersen
RC (2012) Short-term clinical outcomes for stages of NIA-AA preclini-
cal Alzheimer disease. Neurology 78:1576 –1582. CrossRef Medline

Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL,
Weiner MW, Jagust WJ (2011) Associations between cognitive, func-
tional, and FDG-PET measures of decline in AD and MCI. Neurobiol
Aging 32:1207–1218. CrossRef Medline

Leritz EC, Salat DH, Williams VJ, Schnyer DM, Rudolph JL, Lipsitz L, Fischl
B, McGlinchey RE, Milberg WP (2011) Thickness of the human cerebral
cortex is associated with metrics of cerebrovascular health in a normative
sample of community dwelling older adults. Neuroimage 54:2659 –2671.
CrossRef Medline

Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Dis-
tribution volume ratios without blood sampling from graphical analysis
of PET data. Cereb Blood Flow Metab 16:834 – 840. Medline

Luders E, Narr KL, Thompson PM, Toga AW (2009) Neuroanatomical cor-
relates of intelligence. Intelligence 37:156 –163. CrossRef Medline

Mathalon DH, Sullivan EV, Rawles JM, Pfefferbaum A (1993) Correction
for head size in brain-imaging measurements. Psychiatry Res 50:121–139.
CrossRef Medline

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas
CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC,
Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH
(2011) The diagnosis of dementia due to Alzheimer’s disease: recommen-
dations from the National Institute on Aging–Alzheimer’s Association
workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers
Dement 7:263–269. CrossRef Medline

Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridg-
ing the gap between plaques and tangles. Neuron 24:521–529. CrossRef
Medline

Metz CE (1978) Basic principles of ROC analysis. Sem Nucl Med 8:283–298.
CrossRef Medline

Minoshima S, Frey KA, Foster NL, Kuhl DE (1995) Preserved pontine glu-
cose metabolism in Alzheimer disease: a reference region for functional
brain image (PET) analysis. J Comput Assist Tomogr 19:541–547.
CrossRef Medline

Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, Klunk WE,
Mathis CA, DeKosky ST, Morris JC (2006) [11C]PIB in a nondemented
population: potential antecedent marker of Alzheimer disease. Neurology
67:446 – 452. CrossRef Medline

5562 • J. Neurosci., March 27, 2013 • 33(13):5553–5563 Wirth et al. • AD Neurodegenerative Biomarkers in Normal Elderly

http://dx.doi.org/10.1016/j.neuroimage.2006.01.021
http://www.ncbi.nlm.nih.gov/pubmed/16530430
http://dx.doi.org/10.1001/archneurol.2011.3354
http://www.ncbi.nlm.nih.gov/pubmed/22529247
http://dx.doi.org/10.1212/WNL.0b013e31823efc6c
http://www.ncbi.nlm.nih.gov/pubmed/22189451
http://dx.doi.org/10.1093/cercor/bhn113
http://www.ncbi.nlm.nih.gov/pubmed/18632739
http://dx.doi.org/10.1212/WNL.0b013e3182166e96
http://www.ncbi.nlm.nih.gov/pubmed/21490323
http://dx.doi.org/10.1073/pnas.200033797
http://www.ncbi.nlm.nih.gov/pubmed/10984517
http://dx.doi.org/10.1006/nimg.1998.0396
http://www.ncbi.nlm.nih.gov/pubmed/9931269
http://dx.doi.org/10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO%3B2-4
http://www.ncbi.nlm.nih.gov/pubmed/10619420
http://dx.doi.org/10.1016/S0896-6273(02)00569-X
http://www.ncbi.nlm.nih.gov/pubmed/11832223
http://dx.doi.org/10.1016/j.neuroimage.2005.08.007
http://www.ncbi.nlm.nih.gov/pubmed/16176876
http://dx.doi.org/10.1093/cercor/bhn232
http://www.ncbi.nlm.nih.gov/pubmed/19150922
http://dx.doi.org/10.1523/JNEUROSCI.3785-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20147537
http://dx.doi.org/10.1016/j.neuroimage.2009.09.029
http://www.ncbi.nlm.nih.gov/pubmed/19800012
http://dx.doi.org/10.1093/cercor/bhp279
http://www.ncbi.nlm.nih.gov/pubmed/20051356
http://dx.doi.org/10.1016/0022-3956(75)90026-6
http://www.ncbi.nlm.nih.gov/pubmed/1202204
http://dx.doi.org/10.1038/nrn1323
http://www.ncbi.nlm.nih.gov/pubmed/14735112
http://dx.doi.org/10.1212/WNL.0b013e3182343314
http://www.ncbi.nlm.nih.gov/pubmed/21998317
http://dx.doi.org/10.1523/JNEUROSCI.4521-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/21159946
http://dx.doi.org/10.1523/JNEUROSCI.1312-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/17021179
http://dx.doi.org/10.1002/jmri.21049
http://www.ncbi.nlm.nih.gov/pubmed/18302232
http://dx.doi.org/10.1016/S1474-4422(09)70299-6
http://www.ncbi.nlm.nih.gov/pubmed/20083042
http://dx.doi.org/10.1002/ana.22628
http://www.ncbi.nlm.nih.gov/pubmed/22488240
http://dx.doi.org/10.1016/j.jalz.2010.03.003
http://www.ncbi.nlm.nih.gov/pubmed/20451870
http://dx.doi.org/10.1016/j.neuroimage.2009.01.057
http://www.ncbi.nlm.nih.gov/pubmed/19457369
http://dx.doi.org/10.1016/j.intell.2008.09.006
http://www.ncbi.nlm.nih.gov/pubmed/20161325
http://dx.doi.org/10.1002/ana.20009
http://www.ncbi.nlm.nih.gov/pubmed/14991808
http://dx.doi.org/10.1212/WNL.0b013e3182563bbe
http://www.ncbi.nlm.nih.gov/pubmed/22551733
http://dx.doi.org/10.1016/j.neurobiolaging.2009.07.002
http://www.ncbi.nlm.nih.gov/pubmed/19660834
http://dx.doi.org/10.1016/j.neuroimage.2010.10.050
http://www.ncbi.nlm.nih.gov/pubmed/21035552
http://www.ncbi.nlm.nih.gov/pubmed/8784228
http://dx.doi.org/10.1016/j.intell.2008.07.002
http://www.ncbi.nlm.nih.gov/pubmed/20160919
http://dx.doi.org/10.1016/0925-4927(93)90016-B
http://www.ncbi.nlm.nih.gov/pubmed/8378488
http://dx.doi.org/10.1016/j.jalz.2011.03.005
http://www.ncbi.nlm.nih.gov/pubmed/21514250
http://dx.doi.org/10.1016/S0896-6273(00)81109-5
http://www.ncbi.nlm.nih.gov/pubmed/10595506
http://dx.doi.org/10.1016/S0001-2998(78)80014-2
http://www.ncbi.nlm.nih.gov/pubmed/112681
http://dx.doi.org/10.1097/00004728-199507000-00006
http://www.ncbi.nlm.nih.gov/pubmed/7622680
http://dx.doi.org/10.1212/01.wnl.0000228230.26044.a4
http://www.ncbi.nlm.nih.gov/pubmed/16894106


Mormino EC, Kluth JT, Madison CM, Rabinovici GD, Baker SL, Miller BL,
Koeppe RA, Mathis CA, Weiner MW, Jagust WJ (2009) Episodic mem-
ory loss is related to hippocampal-mediated beta-amyloid deposition in
elderly subjects. Brain 132:1310 –1323. CrossRef Medline

Mormino EC, Brandel MG, Madison CM, Rabinovici GD, Marks S, Baker SL,
Jagust WJ (2012) Not quite PIB-positive, not quite PIB-negative: slight
PIB elevations in elderly normal control subjects are biologically relevant.
Neuroimage 59:1152–1160. CrossRef Medline

Morris JC (1993) The Clinical Dementia Rating (CDR): current version and
scoring rules. Neurology 43:2412–2414. Medline

Morris JC, Roe CM, Grant EA, Head D, Storandt M, Goate AM, Fagan AM,
Holtzman DM, Mintun MA (2009) Pittsburgh compound B imaging
and prediction of progression from cognitive normality to symptomatic
Alzheimer disease. Arch Neurol 66:1469 –1475. CrossRef Medline

Oh H, Mormino EC, Madison C, Hayenga A, Smiljic A, Jagust WJ (2011)
Beta-Amyloid affects frontal and posterior brain networks in normal ag-
ing. Neuroimage 54:1887–1895. CrossRef Medline

Oh H, Madison C, Haight TJ, Markley C, Jagust WJ (2012) Effects of age and
beta-amyloid on cognitive changes in normal elderly people. Neurobiol
Aging 33:2746 –2755. CrossRef Medline

Oishi K, Akhter K, Mielke M, Ceritoglu C, Zhang J, Jiang H, Li X, Younes L,
Miller MI, van Zijl PC, Albert M, Lyketsos CG, Mori S (2011) Multi-
modal MRI analysis with disease-specific spatial filtering: initial testing to
predict mild cognitive impairment patients who convert to Alzheimer’s
disease. Front Neurol 2:54. CrossRef Medline

Park HJ, Lee JD, Chun JW, Seok JH, Yun M, Oh MK, Kim JJ (2006) Cortical
surface-based analysis of 18F-FDG PET: measured metabolic abnormal-
ities in schizophrenia are affected by cortical structural abnormalities.
Neuroimage 31:1434 –1444. CrossRef Medline

Perrin RJ, Fagan AM, Holtzman DM (2009) Multimodal techniques for di-
agnosis and prognosis of Alzheimer’s disease. Nature 461:916 –922.
CrossRef Medline

Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, Maruff P, Mathis CA,
Klunk WE, Masters CL, Rowe CC (2007) Beta-amyloid imaging and
memory in non-demented individuals: evidence for preclinical Alzhei-
mer’s disease. Brain 130:2837–2844. CrossRef Medline

Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, Holt DP, Meltzer
CC, DeKosky ST, Mathis CA (2005) Kinetic modeling of amyloid bind-
ing in humans using PET imaging and Pittsburgh Compound-B. Cereb
Blood Flow Metab 25:1528 –1547. CrossRef Medline

Quigley H, Colloby SJ, O’Brien JT (2011) PET imaging of brain amyloid in
dementia: a review. Int J Geriatr Psychiatry 26:991–999. CrossRef
Medline

Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns, cogni-
tive correlates and modifiers. Neurosci Biobehav Rev 30:730 –748.
CrossRef Medline

Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, Acker JD
(2004) Aging, sexual dimorphism, and hemispheric asymmetry of the
cerebral cortex: replicability of regional differences in volume. Neurobiol
Aging 25:377–396. CrossRef Medline

Reitan RM (1958) Validity of the trailmaking test as an indication of organic
brain damage. Percept Mot Skills 8:271–276. CrossRef

Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, Fripp J,
Tochon-Danguy H, Morandeau L, O’Keefe G, Price R, Raniga P, Robins
P, Acosta O, Lenzo N, Szoeke C, Salvado O, Head R, Martins R, Masters
CL, et al. (2010) Amyloid imaging results from the Australian Imaging,
Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 31:
1275–1283. CrossRef Medline

Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004)
A hybrid approach to the skull stripping problem in MRI. Neuroimage
22:1060 –1075. CrossRef Medline

Shaw LM (2008) PENN biomarker core of the Alzheimer’s Disease Neuro-
imaging Initiative. Neurosignals 16:19 –23. CrossRef Medline

Small SA, Duff K (2008) Linking A beta and Tau in late-onset Alzheimer’s
disease: a dual pathway hypothesis. Neuron 60:534 –542. CrossRef
Medline

Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo
T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC,
Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M,
Wagster MV, Phelps CH (2011) Toward defining the preclinical stages
of Alzheimer’s disease: recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on diagnostic guidelines for
Alzheimer’s disease. Alzheimers Dement 7:280 –292. CrossRef Medline

Storandt M, Mintun MA, Head D, Morris JC (2009) Cognitive decline and
brain volume loss as signatures of cerebral amyloid-beta peptide deposi-
tion identified with Pittsburgh compound B: cognitive decline associated
with Abeta deposition. Arch Neurol 66:1476 –1481. CrossRef Medline

Storandt M, Head D, Fagan AM, Holtzman DM, Morris JC (2012) To-
ward a multifactorial model of Alzheimer disease. Neurobiol Aging
33:2262–2271. CrossRef Medline

Trenerry MR, Crosson B, DeBoe J, Leber WR (1989) Stroop Neuropsycho-
logical Screening Test Manual. Odessa, FL: Psychological Assessment
Resources.

Wechsler D (1987) Manual for Wechsler memory scale, revised. San Anto-
nio, TX: Psychological Corporation.

Wechsler D (1997a) Wechsler memory scale: administration and scoring
manual, Ed 3. San Antonio, TX: Psychological Corporation.

Wechsler D (1997b) Wechsler adult intelligence scale: administration and
scoring manual, Ed 3. San Antonio, TX: Psychological Corporation.

Wirth M, Oh H, Mormino EC, Markley C, Landau SM, Jagust W (2013) The
effect of beta-amyloid on longitudinal cognitive decline is modulated by
neural integrity in cognitively normal elderly. Alzheimers Dement, in
press.

Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, Leirer VO (1982)
Development and validation of a geriatric depression screening scale: a
preliminary report. J Psychiatric Res 17:37– 49. CrossRef Medline

Zhang D, Wang Y, Zhou L, Yuan H, Shen D (2011) Multimodal classifica-
tion of Alzheimer’s disease and mild cognitive impairment. Neuroimage
55:856 – 867. CrossRef Medline

Wirth et al. • AD Neurodegenerative Biomarkers in Normal Elderly J. Neurosci., March 27, 2013 • 33(13):5553–5563 • 5563

http://dx.doi.org/10.1093/brain/awn320
http://www.ncbi.nlm.nih.gov/pubmed/19042931
http://dx.doi.org/10.1016/j.neuroimage.2011.07.098
http://www.ncbi.nlm.nih.gov/pubmed/21884802
http://www.ncbi.nlm.nih.gov/pubmed/8232972
http://dx.doi.org/10.1001/archneurol.2009.269
http://www.ncbi.nlm.nih.gov/pubmed/20008650
http://dx.doi.org/10.1016/j.neuroimage.2010.10.027
http://www.ncbi.nlm.nih.gov/pubmed/20965254
http://dx.doi.org/10.1016/j.neurobiolaging.2012.02.008
http://www.ncbi.nlm.nih.gov/pubmed/22429886
http://dx.doi.org/10.3389/fneur.2011.00054
http://www.ncbi.nlm.nih.gov/pubmed/21904533
http://dx.doi.org/10.1016/j.neuroimage.2006.02.001
http://www.ncbi.nlm.nih.gov/pubmed/16540349
http://dx.doi.org/10.1038/nature08538
http://www.ncbi.nlm.nih.gov/pubmed/19829371
http://dx.doi.org/10.1093/brain/awm238
http://www.ncbi.nlm.nih.gov/pubmed/17928318
http://dx.doi.org/10.1038/sj.jcbfm.9600146
http://www.ncbi.nlm.nih.gov/pubmed/15944649
http://dx.doi.org/10.1002/gps.2640
http://www.ncbi.nlm.nih.gov/pubmed/21905095
http://dx.doi.org/10.1016/j.neubiorev.2006.07.001
http://www.ncbi.nlm.nih.gov/pubmed/16919333
http://dx.doi.org/10.1016/S0197-4580(03)00118-0
http://www.ncbi.nlm.nih.gov/pubmed/15123343
http://dx.doi.org/10.2466/PMS.8.7.271-276
http://dx.doi.org/10.1016/j.neurobiolaging.2010.04.007
http://www.ncbi.nlm.nih.gov/pubmed/20472326
http://dx.doi.org/10.1016/j.neuroimage.2004.03.032
http://www.ncbi.nlm.nih.gov/pubmed/15219578
http://dx.doi.org/10.1159/000109755
http://www.ncbi.nlm.nih.gov/pubmed/18097156
http://dx.doi.org/10.1016/j.neuron.2008.11.007
http://www.ncbi.nlm.nih.gov/pubmed/19038212
http://dx.doi.org/10.1016/j.jalz.2011.03.003
http://www.ncbi.nlm.nih.gov/pubmed/21514248
http://dx.doi.org/10.1001/archneurol.2009.272
http://www.ncbi.nlm.nih.gov/pubmed/20008651
http://dx.doi.org/10.1016/j.neurobiolaging.2011.11.029
http://www.ncbi.nlm.nih.gov/pubmed/22261556
http://dx.doi.org/10.1016/0022-3956(82)90033-4
http://www.ncbi.nlm.nih.gov/pubmed/7183759
http://dx.doi.org/10.1016/j.neuroimage.2011.01.008
http://www.ncbi.nlm.nih.gov/pubmed/21236349

	Alzheimer’s Disease Neurodegenerative Biomarkers Are Associated with Decreased Cognitive Function but Not -Amyloid in Cognitively Normal Older Individuals
	Introduction
	Materials and Methods
	Study design
	Subject recruitment
	Neuroimaging data acquisition and preprocessing
	Neuroimaging data analysis
	Derivation and validation of neurodegenerative biomarkers
	Results

	Definition of cortical AD-affected regions
	Validation of the neurodegenerative biomarkers
	Relationships between the neurodegenerative biomarker and cognition
	Discussion
	References



