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ABSTRACT OF THE DISSERTATION

Multivariate Spatial Modeling

of HIV Risk

by

Martiniano Jose Flores

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2018

Professor Robert Erin Weiss, Chair

We analyze data from the Los Angeles LGBT Center, a community-based healthcare or-

ganization. When patients visit the clinic, they are given a comprehensive risk-assessment

questionnaire. We develop three methods that allow us to identify the risk factors associated

with HIV seroconversion and predict who is most likely to become HIV positive.

First, we construct a two-stage multivariate logistic regression model, where stage one

models a patient’s history of illicit drug use and their history of STIs other than HIV,

and stage two models their risk of contracting HIV. Each stage of the model has ZIP code

random effects that are correlated over space, and we propose a new statistic which we term

the geometric mean ratio (GMR), which measures how much of the variability in the ZIP

code random effects for HIV is explained by the stage one random effects. We find that the

stage one random effects are negligible in the HIV model and that where a person lives is

not predictive of their risk of contracting HIV.

Next, we jointly model a patient’s time until HIV seroconversion with their clinic visit

frequency through shared frailties. For patients that seroconvert, we do not observe the

seroconversion time, only that it occurred within the interval between two visits. We show

that if clinic visit frequency is correlated with survival, then the censoring is informative.

We examine how the informativeness of the censoring depends on the frailty distributions.

We find that patients who visit the clinic more frequently tend to have a higher probability
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of contracting HIV, suggesting that patients are accurately assessing that they have a higher

risk of disease.

Finally, we take twenty of the measurements from the risk assessment questionnaire

and do a factor analysis to construct an overall measure of a patient’s propensity for risky

behavior. Because patients come to the clinic multiple times, we allow the factors to be

correlated within a patient over time, and between patients over space. We then use the

factor scores from one visit to predict whether or not a patient will seroconvert by their next

visit. We show that this model is equivalent to a larger longitudinal factor model where the

factors load onto HIV at one visit, and load onto all other outcomes at another visit. We

show that the factor scores are predictive of future risk of HIV.
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CHAPTER 1

Introduction

We analyze data from the Los Angeles LGBT Center collected between 2008 and 2014.

When patients come to the clinic, they are given an 82-item risk assessment questionnaire

that requests information about their demographic characteristics, sexual behaviors, recent

illicit drug use, recent sexually transmitted infections (STIs), and information about their

last two sexual partners. We restrict our analyses to patients living in Los Angeles County.

Further, we only consider patients who have at least two visits to the clinic during the

study period. We establish patient seronegativity with the first visit, and at least one more

visit is needed to learn about patient visit frequency and whether or not they became HIV

positive. It is often the case when patients visit the clinic after having contracted an STI

that they schedule a follow-up visit within two weeks. Full-risk assessment questionnaires

are not given at follow-up visits, and are therefore not included in our analyses. We track

patients either until the end of the study period or until they become HIV positive. In total,

we have approximately 10,000 patients across 270 ZIP codes in Los Angeles County. In this

dissertation, we propose a number of models and methods that will allow us to learn about

the characteristics of people who become HIV positive and to determine the extent to which

where a person lives influences their probability of contracting HIV. All models are run in a

fully Bayesian framework.

1.1 Scientific Contributions

It is known that people with STIs and people who use illicit drugs are at increased risk of

HIV (Fleming and Wasserheit, 1999; Buchacz et al., 2005). Presumably such individuals are

1



engaging in risky behaviors more generally. We want to help the LBGT Center estimate

which patients have an increased propensity for risky behaviors, how riskiness is distributed

across Los Angeles county, and the role that riskiness plays in their probability of becoming

HIV positive.

In Chapter 2, we use patients’ STI and illicit drug use as proxies for riskiness in predicting

their probability of becoming HIV positive. We allow for patients’ risk of becoming HIV

positive to be correlated over space to determine whether or not living in neighborhoods of

high risk puts them at increased risk of HIV irrespective of their own behaviors. Chapter

2 uses a cross sectional version of the dataset that only considers whether or not patients

become HIV positive by the end of the study, but because we have repeated visits on all

patients, we have additional information about the timing of their infections.

Therefore in Chapter 3, we use a survival model to predict not only if patients become

HIV positive, but when. We wish to learn whether a patient’s frequency of visiting the clinic

gives us any information about whether or not they’re more likely to become HIV positive.

One potential mechanism driving the correlation between clinic visits frequency and HIV

risk is that a patient who comes to the clinic more frequently is generally a less risky person,

and so clinic visit frequency should be positively correlated with seroconversion times. On

the other hand, it may be the case that patients who visit the clinic more frequently are

doing so because they have just engaged in or are more likely to engage in risky behaviors.

This hypothesis predicts that seroconversion times should be negatively correlated with clinic

visit frequency. We want to learn which of these mechanisms is more likely to be true.

In Chapter 4, we are interested in expanding the definition of what it means to be a risky

individual beyond simply whether or not patients ever had an STI or ever used drugs. For

example, it may be the case that injection drugs generally indicate much higher levels of

riskiness than drugs such as cocaine or alcohol, and so we want a model that allows for each

individual drug to separately tell us about a patients propensity for risky behavior. We also

want to learn which sexual behaviors indicate that patients are more risky. Therefore, we

use a factor analysis model to take 20 variables and reduce them to a lower dimensional set

of factors. We estimate their factor scores at each visit and allow factors within a patient

2



to evolve over time. This allows us to examine each individual patient’s risk trajectory over

time and learn how a patient’s factor scores at one visit predict HIV by their next visit.

Technical details of the three methods described in this section are discussed at greater

length in the next section.

1.2 Bayesian tests for equality of generalized variances in multi-

variate spatial models

In Chapter 2, we analyze a cross-sectional version of the dataset where we take the patients’

final records on study and determine whether or not they’ve ever had an STI or used illicit

drugs, and whether or not they became HIV positive by the end of the study. We jointly

model history of STIs, history of illicit drug use, and HIV serostatus by the end of the study

using a two-stage model. In stage 1, we jointly model history of STIs and illicit drug use with

logistic regression models that have correlated ZIP code level random effects (McCulloch,

2008; Matheron, 1982). In stage two, we treat the random effects from stage 1 as covariates

in a logistic regression model predicting HIV seroconversion by the end of the study. We

incorporate a ZIP code level random effect in the HIV model to capture any of the spatial

noise in HIV risk that was not picked up by the stage 1 random effects.

The total ZIP code level random effect in the HIV model is a linear combination of the

stage 1 random effects and the residual ZIP code level random effect. To assess the extent

to which the variability encapsulated in the covariance matrix of the total random effect

(the marginal covariance matrix ) is explained by the stage 1 random effects, we propose

to take the ratio of the determinants of the covariance matrix of the total random effect

after conditioning on the stage 1 random effects (the conditional covariance matrix ) and

the marginal covariance matrix. For interpretability, we raise the ratio by the inverse of

the dimensionality of the matrix, which gives us a ratio of the geometric means of the

eigenvalues of the conditional and marginal covariance matrices. We call this statistic the

geometric mean ratio (GMR). Estimation of determinant ratios and related quantities have

received some treatment in the literature (Wilks, 1932; SenGupta, 1987; SenGupta, 1987).

3



Typically, a question of interest is whether or not two determinants are equal. Hypothesis

tests for equality of determinants are usually done with likelihood ratio tests. We show that

the structure of our model provides a simple test for the equality of two determinants. In

addition, we show that the GMR is bounded in the interval (0,1) and has interpretation

similar to an intraclass correlation coefficient statistic.

1.3 Multivariate spatial modeling of interval-censored time-to-event

data and clinic visit counts

In Chapter 3, we extend the model for HIV seroconversion. In addition to modeling whether

or not patients become HIV positive, we model the time from the start of the study until

they become HIV positive, and jointly model the seroconversion times with their frequency

of clinic visits. For the patients who do seroconvert, we do not observe their actual serocon-

version time, only that it occurred between two of their visits. Therefore, the seroconversion

times are all interval censored. We model survival times as lognormal and clinic visit fre-

quency by an approximate Poisson process, with correlation between seroconversion times

and visit frequency modeled through shared frailty parameters (Cai et al., 2012; Liang et al.,

2009; Liu et al., 2008; Sun et al., 2007; Zhang et al., 2007). We show that if clinic visit

frequency is correlated with seroconversion time that the censoring is informative, and eval-

uate how the informativeness of the censoring is influenced by the distributions of the frailty

parameters.

1.4 Developing a risk profile for HIV seroconversion using a spatio-

temporal factor analysis

In Chapter 4, we extend the modeling approaches from Chapters 2 and 3. Rather than

jointly modeling only one or two outcomes with HIV seroconversion, we reduce twenty of

the outcomes from the risk assessment questionnaire into a lower dimensional set of factors

that model aspects of a patient’s propensity for risky behavior. The outcomes in the factor
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model are a mix of discrete and continuous, and we treat all outcomes as functions of latent

normal random variables (Ansari and Jedidi, 2000; Conti et al., 2014; Hu et al., 2004; Quinn,

2004). We have repeated measures on all patients and ZIP code information on patients at

each visit. We model longitudinal correlation among factors within a patient and spatial

correlation among factors between patients through Gaussian processes. We then model HIV

seroconversion at a given visit with a probit model, treating the factors from the previous

visit as covariates. The latent multivariate normal structure of the model allows us to derive

a Gibbs sampler for most of the model parameters in the model, reducing the computational

burden due to the large number of patients and ZIP codes.

1.5 Outline of the dissertation

The next three chapters are detailed presentations of the statistical methods described in

Sections 1.1 – 1.4. Each chapter is a version of a manuscript that is in preparation for

submission to peer-reviewed journals. Each chapter uses the same data set, and the spatial

modeling is the same across all three chapters, so some of the material is repeated across

chapters.

Finally, the dissertation finishes in Chapter 5 with a brief discussion of the conclusions

and potential areas for future research. In particular, we developed the GMR in Chapter

2 the context of a linear regression of one multivariate normal random variable on another.

We would like to extend the development of the GMR to the case of a general multivariate

normal. Further, for the survival model in Chapter 3, we modeled seroconversion times

as lognormal. This is mostly done to simplify the calculations, but this is not generally

necessary. We would like to consider other parametric survival models and provide a formal

test of which model fits the data best. Finally, for the factor model in Chapter 4, we would

like to use latent variable models other than Probit to allow more flexibility in how outcomes

load onto the factors.
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CHAPTER 2

Bayesian Tests for Equality of Generalized Variances in

Multivariate Spatial Models

Multivariate outcomes are common in studies of HIV acquisition (Bachireddy et al., 2014;

Grinsztejn et al., 2014; Vergeynst et al., 2015). When multivariate outcomes are discrete,

or a mix of continuous and discrete outcomes, one of the more common methods for jointly

modeling them introduces correlation through random effects (Arminger and Küsters, 1988;

Zhu and Weiss, 2013; Grover et al., 2015; Martins et al., 2016). To model multivariate

outcomes, we can use a conditional approach, where a random effect is introduced in the

model for one outcome and then treated as a covariate for the other outcomes (Wulfsohn

and Tsiatis, 1997). This approach can also be used to model multivariate spatial data

(Banerjee et al., 2014). We can also introduce separate random effects for each outcome

and give the multivariate random effects a joint distribution, usually multivariate normal.

This approach defines the marginal distributions and covariances directly. McCulloch (2008)

discusses consequences of these approaches in the analysis of discrete outcomes.

With multivariate spatial data, it is difficult to directly model the cross covariances

between multivariate spatial random effects in such a way that the resulting covariance

matrix for all random effects at all spatial locations is positive definite. One way to model the

cross covariances assumes that the random effects for each outcome have the same marginal

multivariate normal distribution (Banerjee and Gelfand, 2002). Another approach is the

linear model of coregionalization (LMC), which dates back at least to Matheron Matheron

(1982), with many modern applications (Gneiting et al., 2010; Orton et al., 2014; Konomi

et al., 2015). LMC approaches allow us to have different marginal distributions for the

multivariate random effects and define joint distributions for multivariate spatial processes
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as linear combinations of independent spatial processes.

We analyze medical record data on 10, 083 patients collected by the Los Angeles LGBT

Center from December 2008 through December 2014. When patients come to the clinic,

they are tested for HIV and other sexually transmitted infections and given an 82 item risk

assessment questionnaire which requests basic demographic information, history of sexually

transmitted infections, and history of drug use. The data are spatially indexed by ZIP

code, and we use Census Bureau data to convert ZIP codes to ZIP Code Tabulation Areas

(ZCTAs) to get centroid locations. Patients in our study need to come to the clinic at least

twice; once to demonstrate that they are HIV negative, and at least once more to determine

whether or not they became HIV positive.

We are primarily interested in learning how characteristics such as STIs or drug use are

associated with whether or not patients become HIV positive. We are also interested in

whether neighborhood characteristics affect HIV risk and how personal characteristics affect

HIV risk. We jointly model a patient’s history of STIs and drug use using logistic regression

models with spatial random effects and an LMC to define the correlation structure between

the random effects. We then treat the STI and drug use random effects as covariates in a

logistic regression model for HIV and include an additional spatial error term to capture

residual spatial variation not accounted for by the STI and drug use random effects.

A key research aim is to understand the spatial dependence of HIV risk among people

and how this dependence is affected by STIs and drug use. For longitudinal data, Daniels

and Zhao (2003) proposed taking a spectral decomposition of the random effects covariance

matrix, using linear and log-linear models to model the resulting parameters as functions of

covariates. For random intercept models, Hedeker et al. (2008) proposed log linear models

for modeling the within and between subject variances as functions of covariates. They

also derived intraclass correlation coefficients (ICCs) but because the ICCs are functions of

covariates, the framework does not lend itself to an overall measure of the covariate effects

on HIV risk.

To measure the overall variability in an S×S covariance matrix Σ, Wilks (1932) proposed
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the determinant |Σ|, which he called the Generalized Variance (GV). The GV is sensitive to

S, so SenGupta (1987) proposed the standardized GV (SGV) |Σ|1/S which is the geometric

mean of the eigenvalues of Σ. Inference on the GV and SGV has used likelihood ratio tests in

multivariate linear models (Iliopoulos and Kourouklis, 1999; Mathai, 1972; Bhandary, 1996,

2006; Specht, 1975; SenGupta, 1987; Hao and Krishnamoorthy, 2001). Bayesian methods

for estimation and inference for GVs and SGVs are scant.

We propose the Geometric Mean Ratio (GMR) which compares the SGVs of the HIV

random effect covariance matrix before and after conditioning on the STI and drug use

random effects. The GMR is always between zero and one and has interpretation similar

to an ICC. We are interested in testing the null hypothesis that GMR = 1 versus the

alternative hypothesis that GMR < 1. Since the GMR is almost surely less than one, we

derive a function of the model parameters that provides an equivalent test of GMR < 1.

We also wish to know whether the STI or drug use random effects contribute more to the

HIV spatial random effects SGV. GMR statistics can assess the effect of conditioning on one

covariate at a time HIV random effects SGV and provide a test of equality of the effects of

the STI and drug use random effects on the HIV spatial random effects SGV.

2.1 Notation and Model Formulation

For the ith patient, where i ∈ 1, . . . , N , let yi1 be a binary indicator for having had STIs

either before or during the study period, where the STIs we consider are syphilis, gonorrhea,

chlamydia, and herpes. Let yi2 be a binary indicator for drug use either before or during

the study period, where the drugs we consider are methamphetamine, cocaine, ecstasy, and

nitrates. Let yi3 be an indicator of having become HIV positive by the end of the study.

Let xi be the ith patient’s p × 1 vector of covariates and Ti denote a patient’s total time

on study, defined as the number of years between their first and last visits during the study

period. Lastly, let s ∈ 1, . . . , S index ZCTAs with S as the total number of ZCTAs in the

dataset, and define s(i) ∈ {1, . . . , S} to be the ZCTA where the ith patient lives.

We construct a multivariate generalized linear model to jointly model a patient’s risk of

8



HIV with their STI and drug use behaviors. To start we jointly model yi1 and yi2 as Bernoulli

random variables with success probabilities πi1 and πi2 using a bivariate hierarchical logistic

regression model with correlated random effects. For j = 1, 2,

yij|πij ∼ Bern(πij)

logit (πij) = x′iαj + bs(i)j,

where αj is a vector of regression coefficients for yij, j = 1, 2, and (bs(i)1, bs(i)2) are correlated

ZCTA level spatial random effects with prior distributions developed in the next section.

We model yi3 conditional on STIs and drug use as a Bernoulli random variable with success

probability πi3,

yi3|πi3 ∼ Bern(πi3)

logit (πi3) = x′iα3 + cs(i) + λ1yi1 + λ2yi2 + log(Ti) (2.1)

where λ1 and λ2 are regression coefficients, cs(i) = β1bs(i)1 + β2bs(i)2 + bs(i)3 is the full HIV

spatial random effect, and bs(i)3 is a residual spatial random effect that depends on the

STI and drug use spatial random effects. Including log(Ti) on the right hand side of (2.1)

means that we are modeling patient i’s odds of HIV in a given year and allows the model to

accommodate heterogeneity in patients’ times on study.

In general, larger values of bs(i)1, bs(i)2, and cs(i) indicate that patient i lives in an area

with higher rates of STIs, drug use, and HIV, respectively. Sex and Drug risk outcomes yi1

and yi2 are included in (2.1) to capture the non-spatial effects of the patient’s STI and drug

use on individual HIV risk. Large positive values of λ1 and λ2 indicate that having STIs or

using drugs increase HIV risk, while large positive values of β1 and β2 indicate that living in

a ZCTA with comparatively higher prevalences of STIs or drug use increases HIV risk.

2.2 Random Effect Distributions

Let r, s ∈ 1, . . . , S, and D be a symmetric S × S matrix with (r, s) element drs, where drs is

the distance in miles between the centroids of ZCTAs r and s. Let b1 = (b11, . . . , bS1)′, b2 =
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(b12, . . . , bS2)′, and b3 = (b13, . . . , bS3)′ be vectors of STI, drug use, and residual HIV spatial

random effects.

We define a joint prior for b1 and b2 as a multivariate Gaussian process using a Linear

Model of Coregionalization (LMC). For all s, let Var(bs1) = η2
1, Var(bs2) = η2

2, Corr(bs1, bs2) =

ρ. Define

T = Var

bs1
bs2

 =

 η2
1 ρη1η2

ρη1η2 η2
2


as the within ZCTA covariance matrix for bs1 and bs2 and let A be the Cholesky decompo-

sition of T , with AA′ = T and A lower triangular. We model b1 and b2 as functions of

independent spatial processes w′1 = (w11, . . . , w1S) and w′2 = (w21, . . . , w2S) with S × S ex-

ponential decay correlation matrices R1 = exp (−φ1D) and R2 = exp (−φ2D) respectively,

with decay parameters φ1, φ2 > 0. Setbs1
bs2

 = A

ws1
ws2

 ,

w1

w2

∣∣∣∣∣∣φ1, φ2 ∼ N

0S×1

0S×1

 ,

 R1 0S×S

0S×S R2

 ,

and let Bj = aja
T
j , j = 1, 2, where aj is the jth column of A. Thenb1

b2

∣∣∣∣∣∣φ1, φ2, ρ ∼ N

(
02S×1,

∑
j

[Bj ⊗Rj]

)
,

where

∑
j

[Bj ⊗Rj] =

Σ11 Σ12

Σ12 Σ22


and

Σ11 = η2
1R1,

Σ12 = ρη1η2R1,

Σ22 = η2
2

(
ρ2R1 + (1− ρ2)R2

)
.
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This specification models the within ZCTA correlation between the random effects as a

function of ρ and the across ZCTA correlation for the random effects as functions of φ1 and

φ2 and ρ.

We a priori model b3 as a univariate Gaussian Process with a scaled exponential decay

covariance matrix Σ33 = η2
3exp (−φ3D) with decay parameter φ3 > 0 and scale parameter

η2
3 > 0

b3|φ3, η
2
3 ∼ NS (0S×1,Σ33) .

2.2.1 Random Effect Variances and Covariances

Let c = β1b1 + β2b2 + b3 be the S × 1 vector of marginal spatial random effects for HIV,

φ = (φ1, φ2, φ3)′, η = (η2
1, η

2
2, η

2
3)′, and β = (β1, β2)′. Then

c|φ,β,η ∼ NS (0,Σcc) ,

where

Σcc = (β1η1 + ρβ2η2)2R1 + β2
2η

2
2(1− ρ2)R2 + Σ33

is positive definite and Var (cs) = β2
1η

2
1 + 2ρβ1β2η1η2 + β2

2η
2
2 + η2

3. The joint distribution of

b1, b2, and c is 
b1

b2

c


∣∣∣∣∣∣∣∣∣φ,β,η ∼ N




0S×1

0S×1

0S×1

 ,


Σ11 Σ12 ΣT

c1

Σ12 Σ22 ΣT
c2

Σc1 Σc2 Σcc


 ,

where

Σc1 = (β1 + ρβ2)R1,

Σc2 = ρβ1R1 + β2

[
ρ2R1 + (1− ρ2)R2

]
.

To assess the effect of b1 and b2 on |Σcc|, we also need the following conditional densities,

c|b1 ∼ N
(
Σc1Σ

−1
11 b1,Σcc −Σc1Σ

−1
11 Σc1

)
,

c|b2 ∼ N
(
Σc2Σ

−1
22 b2,Σcc −Σc2Σ

−1
22 Σc2

)
,
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and

c|b1, b2 ∼ N (β1b1 + β2b2,Σ33) .

2.2.2 Effective Range

For a spatial exponential decay process with parameter φ, the correlation between the ran-

dom effects for ZCTAs r and s is exp(−φdrs). A large value of φ indicates that the cor-

relation decreases more rapidly across space. Define the effective range of the process as

the distance Φ where the correlation has decreased to 0.05. For the STI random effects,

Φ1 = −log (0.05) /φ1. For drug use, the correlation between random effects br2 and bs2 is

Cor (br2, bs2) = ρ2exp (−φ1drs) +
(
1− ρ2

)
exp (−φ2drs) . (2.2)

For HIV risk, the correlation between cr3 and cs3 is

Cor (br3, bs3) =

∑3
j=1 vjexp (−φjdrs)∑3

j=1 vj
, (2.3)

where v1 = (β1η1 + ρβ2η2)2, v2 = β2
2η

2
2(1 − ρ2), and v3 = η2

3 are the marginal variances of

the STI, drug use, and residual random effects. To calculate the effective ranges Φ2 and Φ3

for the drug use and HIV random effects, set the left hand side of equations (2.2) and (2.3)

equal to 0.05 and solve numerically for drs.

2.3 Geometric Mean Ratio Statistics

The vector of marginal random effects c for HIV is a function of b1, b2, and b3. To assess

the contribution of the STI and drug use random effects b1 and b2 to the covariance matrix

Σcc, we take the ratio of the SGVs of the marginal covariance matrix Σcc and conditional

covariance matrix Σ33. Define the GMR as

GMR =
|Var (c|b1, b2)|1/S

|Var (c)|1/S
. (2.4)

The GMR directly measures how much smaller the geometric mean eigenvalue of the HIV

spatial covariance matrix becomes after conditioning on b1 and b2. Similarly, the effect of
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conditioning on just b1 or b2 can be calculated by replacing the conditional covariance matrix

Var(c|b1, b2) in (2.4) with Var(c|b1) or Var(c|b2), which gives

GMR1 =

∣∣Σcc −Σc1Σ
−1
11 Σc1

∣∣1/S
|Σcc|1/S

,

and

GMR2 =

∣∣Σcc −Σc2Σ
−1
22 Σc2

∣∣1/S
|Σcc|1/S

,

respectively.

The GMR statistics GMR, GMR1, and GMR2 have a maximum value of one when

the conditional covariance matrices equal to the marginal covariance matrix, meaning that

conditioning on b1 or b2 does not reduce the SGV at all. Conversely, the GMR statistics

have a minimum value of zero when the conditional covariance matrix has determinant zero,

meaning that all of the spatial heterogeneity in HIV risk is explained by STIs and drug use.

Thus, the GMR statistics have interpretation similar to an intraclass correlation coefficient

or to a regression model R2.

To determine whether conditioning on b1 or b2 has a greater effect on reducing the SGV

of the marginal covariance matrix, we can also look at the ratio GMRR12 of GMR1 to GMR2,

GMRR12 =
GMR1

GMR2

=

∣∣Σcc −Σc1Σ
−1
11 Σc1

∣∣1/S∣∣Σcc −Σc2Σ
−1
22 Σc2

∣∣1/S .
When GMRR12 = 1, the STIs and drug use random effects have the same effect on the

marginal covariance matrix Σcc. If GMRR12 > 1, then the SGV of Var(c|b1) is larger than

the SGV of Var(c|b2), and drug use has a greater effect on the spatial heterogeneity in HIV

risk.

2.3.1 Hypothesis Tests for GMR Statistics

We want to test the hypothesis that GMR = 1, meaning that the spatial distribution of STIs

and drug use have no effect on spatial heterogeneity in HIV risk. Since P(GMR < 1) = 1,

we cannot do this directly. However GMR = 1 if and only if β1 = β2 = 0, so a Bayes Factor
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BGMR in favor of the null H0 β1 = β2 = 0 against the alternative, H1 : β1 6= 0 or β2 6= 0 is

equivalent to a Bayes Factor in favor of GMR = 1 against H1 : GMR < 1. We calculate the

Bayes Factor BGMR with the density ratio first proposed by Dickey and Lientz (1970) and

Dickey (1971) and extended by Verdinelli and Wasserman (1995). Let Y be the data and

ω = (β1, β2), and ψ be the collection of all parameters excluding ω. A priori β1 and β2 are

independent of all other parameters so the Bayes factor BGMR is,

BGMR =
p(ω|Y )

p(ω)

∣∣∣∣
ω=0

(2.5)

Thus, BGMR is the ratio of the posterior density over the prior density evaluated at zero.

Values of BGMR greater than one indicate data support for H0 : GMR = 1 against H1 :

GMR < 1.

Unlike the GMR, both GMR1 and GMR2 are complex functions of β and both are

almost surely less than 1, therefore we cannot use β to test GMR1 = 1 versus GMR1 < 1

or GMR2 = 1 versus GMR2 < 1. In contrast, the GMRR is supported on the positive real

line, so we can test GMRR = 1 versus GMRR 6= 1 by directly setting ω = GMRR in (2.5)

and evaluating the density ratio at GMRR12 = 1.

2.4 Prior Distributions

For each of the regression parameters α1, α2, α3, and λ, we set multivariate normal priors

with mean zero and covariance matrix identity. For the variance parameters η2
j , we set

half-normal priors to prevent the variances from becoming too large,

η2
j ∼ N (0, 1) 1{η21>0},

for j = 1, 2, 3.

For ρ, the within-ZCTA correlation between the STI and drug use random effects, we

rescale a Beta(4, 4) distribution to be in the interval (−1, 1)

p(ρ) ∝
(
ρ− 1

2

)3(
1− ρ− 1

2

)3

1{−1≤ρ≤1}.
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For the effective range parameters Φj > 0 for j = 1, 2, 3, the minimum observed distance

between any two ZCTAs in our dataset is approximately 0.5 miles. While it is possible that

Φj < 0.5, it is unlikely that the data could provide evidence for this. The Φj are functions

of the decay parameters φj and the within ZCTA correlation ρ. Setting Gamma priors on

the φj,

φj ∼ Gamma(2, 2),

induces more than 99% of the prior mass to be above 0.5 for all the respective range param-

eters Φj.

We want the GMR to have a prior distribution that is roughly uniform on the unit

interval. Setting normal priors for β1 and β2,

β1 ∼ N(0, 0.85),

β2 ∼ N(0, 0.85),

with our specification induces prior densities for GMR plotted in Figure 2.1. While the prior

for the GMR is roughly uniform on the unit interval, this is not true for GMR1 and GMR2.

2.5 Results from the Joint Model of STIs, Drug Use, and HIV

We sampled from the posterior distribution using a random walk Metropolis-Hastings sam-

pler programmed in R version 3.3.1 using the Rcpp package version 0.12.7. We ran four chains

with 250, 000 iterations, giving a total effective sample size at least 10, 000 for all parame-

ters including the spatial random effects b1, b2, and b3. Convergence within each chain was

checked using Raftery and Lewis statistics (Raftery and Lewis, 1992) and Geweke statis-

tics (Geweke, 1992), and convergence between chains was checked using Gelman statistics

(Gelman and Rubin, 1992). No convergence issues were found.

The next section details the results of the data analysis in two parts. First, we examine

the posterior distributions for the regression coefficients from the logistic regressions. Then

we take a more detailed look at the spatial decay parameters and random effects and at the

posterior distribution of the GMR statistics.
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2.5.1 Regression Results

We included a patient’s baseline age and race as covariates in the model. For age, we fit

a cubic B-spline with knots at the quintiles. For HIV, we also included binary indicators

of whether a patient had STIs or used drugs. For a patient with median random effects of

zero, posterior predicted probabilities for HIV are plotted as a function of age, STIs, and

drug use in Figure 2.2 (top). The mean predicted probabilities and 95% pointwise credible

bands for having STIs or of using drugs as a function of age are also plotted in Figure 2.2

(bottom). The observed proportions of individuals at each age who seroconverted, had an

STI, or used drugs are plotted as points. If the probabilities are not a function of age, then

the predicted lines should be flat and age B-spline coefficients would be jointly zero. To test

the relationships between age and HIV, STIs, and drug use, we calculate the Bayes Factors

supporting no relationship with age.

The risk of HIV seroconversion decreases with age, and the estimated probability de-

creases by half from 0.02 at age 18 to 0.01 at age 45. In contrast, probability of ever having

had and STI increases almost two fold from 0.35 to 0.66 for the same age group. The prob-

ability of ever having used drugs peaks at 0.55 at age 30 and decreases to about 0.30 by age

75, indicating that if a patient has not yet used drugs by age 30, they are not likely to use

drugs in the future. The log Bayes Factor supporting no age trend for HIV is −1.55, which

is weak evidence against the null. For STIs and drug use, the log Bayes Factors are −114

and −38 which are very strong evidence against their respective nulls.

Summaries of the regression coefficient posteriors for HIV seroconversion and history of

STIs and drug use are presented in the top part of Table 2.1. Compared to Whites, African

Americans and Hispanics have higher odds of having had STIs and of acquiring HIV, and

Hispanics have higher odds of drug use.

Consistent with the literature, having STIs (Fleming and Wasserheit, 1999) and using

drugs (Buchacz et al., 2005; Plankey et al., 2007; Fisher et al., 2011) are both associated with

an increased risk of HIV. Our results further indicate that the prevalence of STIs and drug

use where people live does not contribute to risk of HIV acquisition. Thus a patient’s own
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behaviors are important while whether they live in close proximity with others who engage

in risky behaviors is not.

2.5.2 Spatial Parameters

The bottom part of Table 2.1 gives posterior summaries of Var(bs1), Var(bs2), and Var(cs),

and the associated range parameters Φ1, Φ2, Φ3. The 95% posterior intervals are (0.93, 5.88)

for the STI effective range Φ1 and (1.05, 7.58) for the drug use effective range Φ2, units in

miles. Thus, the spatial correlation for the STI and drug use random effects drops off rapidly

with distance. The posterior 95% interval for the HIV range Φ3 is comparatively larger at

(3.51, 38.6).

The 95% posterior interval for the within ZCTA correlation ρ between the STI and drug

use random effects is (−0.23, 0.31), indicating that the sign of the random effects correlation

for STI and drug use within a given ZIP code is uncertain. The log Bayes Factor Bρ (2.5)

supporting the null hypothesis ρ = 0 against the alternative that ρ 6= 0 is 0.74, which

represents weak evidence in favor of the null.

Prior and posterior densities for the GMR statistics are plotted in Figure 2.3. Condi-

tioning on the STIs and drug use random effects b1 and b2 does not significantly reduce

the size of the marginal covariance matrix Σcc. The log Bayes Factor log BGMR = 3.49,

supporting the null hypothesis that GMR = 1. The posterior distributions for GMR1 and

GMR2 are also very close to one, and the posterior distribution for GMRR shows that there

is no difference in the effect of the STI spatial effects b2 and the drug use random effects b2

on Σcc(log BGMRR = 2.25).

2.6 Discussion

A key result of our analyses is that the coefficients associated with the STI and drug use ZIP

code level random effects were not different from zero. After controlling for a patient’s age

and race, this means that a patient’s own behaviors are much more important for estimating
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their risk of HIV than the behaviors of people who live around them. From a public health

perspective, this suggests that targeting high risk neighborhoods is much less important then

targeting individually risky people.

A benefit of using the GMR instead of the ratio of determinants is that it is not heav-

ily dependent on the dimensionality S of the covariance matrix, so sampling more spatial

points does not lead to a drastically different GMR. Since the GMR statistics are complex

functions of model parameters, Bayesian methods provide natural advantages in estimation.

We modeled all spatial covariances using exponential decay, but it is possible to calculate

the GMR for any situation where we can calculate the determinants for the conditional and

marginal covariance matrices, including for CAR models and multivariate longitudinal data.

For any two positive definite matrices A and B, the Minkowski determinant theorem

(Marcus and Minc, 1992) implies that (|A|/|A+B|)1/S+(|B|/|A+B|)1/S ≤ 1. Thus, strictly

speaking the GMR is not the fraction of the HIV spatial variance due to the STI and drug use

random effects. However, in our data analysis and in preliminary simulations (not presented),

P
(
(|A|/|A+B|)1/S + (|B|/|A+B|)1/S > 0.95

)
= 1 so near equality holds in the inequality

and it is not unreasonable to interpret the GMR as the fraction of the HIV spatial variance

explained by the STI and drug use random effects. To ensure (|A|/|A+B|)1/S + (|B|/|A+

B|)1/S = 1, rather than looking at |Σ33Σ
−1
cc |

1/S
, we can instead look at tr(Σ33Σ

−1
cc )/S (See

appendix C). However, the trace tr(Σ33Σ
−1
cc )/S is not directly interpretable as a comparison

of the eigenvalues of Σ33 and Σcc, which is one of the more desirable properties of the GMR.
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Tables and Figures

Table 2.1: Summary of the posterior for STI, Drug Use, and HIV logistic regression models.

Odds Ratio (95% CI)

Variable History of STIs Drug Use HIV Infection

Race

White REF REF REF

Black 1.370 (1.035, 1.762) 1.009 (0.687, 1.399) 1.648 (1.145, 2.277)

Hispanic 1.709 (1.462, 1.985) 1.235 (1.006, 1.487) 1.634 (1.305, 2.024)

Other 0.910 (0.699, 1.154) 0.805 (0.587, 1.080) 0.920 (0.620, 1.280)

STI Spatial – – 0.975 (0.756, 1.244)

STI Personal – – 2.215 (1.690, 2.831)

Drug Use Spatial – – 0.960 (0.746, 1.213)

Drug Use Personal – – 4.233 (3.199, 5.410)

Mean (95% CI)

SpatialVariance 0.168 (0.101, 0.263) 0.266 (0.140, 0.455) 0.945 (0.686, 1.271)

Range 2.760 (0.931, 5.884) 3.324 (1.054, 7.577) 13.71 (3.509, 38.60)
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Figure 2.1: Prior distribution for GMR, GMR1 and GMR2.
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Figure 2.2: Posterior mean predicted probabilities for HIV by STI and Drug use (Top). Pos-

terior predicted mean probability and 95% pointwise bands for having STIs (Bottom Left),

and having used drugs (Bottom Right) as a function of age. For each age, the proportions

of individuals who experienced the events are plotted as points.
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Figure 2.3: Plots of the prior and posterior for the GMR statistics. Log Bayes Factor in

favor of GMR = 1 is 3.49, indicating good posterior evidence for GMR = 1. Log Bayes

Factor in favor of GMRR = 1 is 2.25, indicating that the data support GMRR = 1.

Appendix A - Properties of Total Random Effect c for HIV

We derive the marginal distribution for c = β1b1 +β2b2 +b3 and the conditional distribution

for c|b1, b2, where b1, b2, and b3 are the spatial random effects for STIs, drug use, and HIV,

respectively. We start with the following result.

Let X ∼ N2S(0,Σx) and let Y ∼ NS(0,Σy) be independent of X. Let Z = AX + BY ,

where AS×2S and BS×S are known matrices. Then

Z ∼ N (0, AΣxA
′ +BΣyB

′)

and

Z|X ∼ N (AX,BΣyB
′)

Proof The marginal distribution of Z is follows from the properties of multivariate normal
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distributions. For the conditional distribution, we have

Cov(Z,X) = Cov(AX +BY,X)

= AΣx

which implies that

Z|X ∼ N
(
µ̄, Σ̄

)
µ̄ = AΣxΣ

−1
x X

= AX

Σ̄ = AΣxA
′ +BΣyB

′ − AΣxΣ
−1
x ΣxA

′

= BΣyB
′.

Since b3 is independent of b1 and b2,

c = β1b1 + β2b2 + b3

=
(
β1IS β2IS IS

)
b1

b2

b3

 ,

Var (c) = (β1η1 + ρη2β2)2R1+

β2
2η

2
2(1− ρ2)R2 + η2

3Σ33

E (c|b1, b2) = β1b1 + β2b2

Var (c|b1, b2) = Σ33
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Appendix B - Properties of the Geometric Mean Ratio (GMR)

From (2.4), we have

GMR =
|Σ33|1/S

|Σcc|1/S

=
∣∣Σ33Σ

−1
cc

∣∣1/S
=

|A|1/S

|A+B|1/S
,

where A = Σ33 and B = (β1η1 + ρβ2η2)2R1 + β2
2η

2
2(1− ρ2)R2. Further, since A and B are

positive definite,

0 ≤ |A|
|A+B|

≤ |A|
|A|+ |B|

≤ 1,

so the GMR is between 0 and 1. Further it approaches zero as |A| approaches zero, which

occurs as η2 or φ3 approach zero. The GMR is equal to one when B = 0, which happens if

and only if β1 and β2 are both equal to zero, as we prove below.

Theorem 1 GMR = 1 if and only if β1 = β2 = 0.

Proof Suppose β1 = β2 = 0. Then

GMR =
|Var (c|b1, b2)|1/S

|Var (c)|1/S
,

=
|Σ33|1/S∣∣(β1η1 + ρβ2η2)2R1 + β2

2η
2
2(1− ρ2)R2 + Σ33

∣∣1/S ,
= 1.

Now, suppose that GMR = 1. Then

|Σ33|1/S =
∣∣(β1η1 + ρβ2η2)2R1 + β2

2η
2
2(1− ρ2)R2 + Σ33

∣∣1/S
By the Minkowski determinant theorem, for two non-negative definite S × S Hermitian

matrices A and B it holds that

|A+B|1/S ≥ |A|1/S + |B|1/S .
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Repeated applications of the theorem yield

|Σ33|1/S =
∣∣(β1 + ρβ2)2R1 + β2

2(1− ρ2)R2 + Σ33

∣∣1/S ,
≥
∣∣(β1 + ρβ2)2R1 + β2

2(1− ρ2)R2

∣∣1/S + |Σ33|1/S ,

≥
∣∣(β1 + ρβ2)2R1

∣∣1/S +
∣∣β2

2(1− ρ2)R2

∣∣1/S + |Σ33|1/S ,

= (β1 + ρβ2)2 |R1|1/S + β2
2(1− ρ2) |R2|1/S + |Σ33|1/S .

This implies that (β1 + ρβ2)2 |R1|1/S + β2
2(1 − ρ2) |R2|1/S = 0, and since R1, R2, and Σ33

are positive definite, this implies that β1 = β2 = 0.

As a corollary to the Minkowski determinant theorem,

|A|1/S

|A+B|1/S
+

|B|1/S

|A+B|1/S
≤ 1.

This implies that strictly speaking, the GMR is not the proportion of the geometric mean

of the eigenvalues of Σcc coming from Σ33. As an alternative to the GMR, we could take

the arithmetic mean eigenvalue of Σ33Σ
−1
cc , which is just tr(A(A+B)−1)/S, Unlike with the

GMR,

tr
(
A (A+B)−1)

s
+

tr
(
B (A+B)−1)

s
= 1,

So this is a true proportion of the trace that is due to the stage one random effects. However,

since the trace of a product is not a product of the traces, this is not directly interpretable

in terms of the eigenvalues of Σ33 and Σcc in the way that the GMR is.
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CHAPTER 3

Multivariate spatial modeling of interval-censored

time-to-event data and clinic visit counts

We analyze electronic health records of Los Angeles County residents from the Los Angeles

LGBT Center. We wish to jointly model a patient’s risk of HIV with their frequency of

clinic visits. Patients must have at least two visits to be included in the analysis. Their

first visit establishes seronegativity at the start of the study and at least one more visit is

needed to assess serostatus later in the study and to allow us to estimate visit frequency. All

survival times for seroconverters in our data are interval censored, meaning we only know

that they became HIV positive between two clinic visits. A common assumption in analyses

of interval-censored data is that the censoring is non-informative, meaning that aside from

knowing the event time lies in the interval, the interval conveys no additional information

about the distribution of survival (Gómez et al., 2009; Oller et al., 2004; Zhang and Sun,

2010). If the censoring is actually informative, it is important to model the informativeness

appropriately to avoid biased estimates of survival (Campigotto and Weller, 2014).

Modeling informative censoring is typically done by specifying a joint distribution for

the event time and censoring time. For right censored data, one option is to assume that

the marginal distribution of the censoring time is of the same family as the conditional

distribution of the censoring time given survival, however with the latter depending on the

parameters in the survival density (Bompotas et al., 2017; Siannis et al., 2005). Zhang et al.

(2005) use proportional hazards models for the survival and censoring times, modeling corre-

lation with random effects. Similar approaches can be used to model informative censoring

for recurrent events (Zeng et al., 2014) and in interval censored data (Sinha et al., 1999;

Zhao et al., 2015).
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To jointly model survival times with clinic visit frequency, one method would be to treat

a patient’s number of visits per year as a fixed covariate in the survival model (Verity et al.,

1995). A drawback of this framework is that it prevents us from making inferences on visit

frequency. It also ignores the likely substantial measurement error in visit frequency. If we

instead treat the survival outcome as a terminal event and the individual visits as recurrent

events, then survival and clinic visits can be modeled using correlated frailties. This can be

done using fully parametric models (Belot et al., 2014; Cowling et al., 2006; Crowther, 2017;

Ma and Krings, 2008) or semi-parametric proportional hazards models (Huang and Liu, 2007;

Król et al., 2016) or by writing the survival likelihood as a Poisson likelihood and jointly

modeling the survival and count outcomes as correlated Poisson random variables (Aitkin

and Clayton, 1980; Chib and Winkelmann, 2001; Sunethra and Sooriyarachchi, 2016).

We model HIV seroconversion times as lognormal random variables and the number

of clinic visits by approximating a Poisson process that has been truncated at zero. We

model correlation between clinic visits and seroconversion with correlated random effects.

In general, seroconversion times have a long right tail, and patients who have a longer time

on study will have a larger total number of clinic visits, so we include the patient’s time on

study as an offset. The model gives rise to informative censoring when survival times are

correlated with clinic visit frequency.

Suppose survival times are negatively correlated with clinic visit frequency. Clinic visit

frequency is inversely proportional to the average length of time between visits, so patients

with shorter intervals will tend to have shorter survival times, suggesting that their unknown

seroconversion time is likely earlier in any given interval. In contrast, a person with longer

average times between visits will likely have seroconverted later in a given interval. Thus, the

correlation between the survival and clinic visit random effects is an important parameter

in our model because it controls both the marginal correlation between survival and clinic

visits as well as the informativeness of the censoring.

Our work builds on the existing literature in some key ways. First, we use a fully Bayesian

model, which aids in estimation of the model parameters. Second, we believe that the inter-

visit times follow a Poisson process, which is equivalent to modeling all of the inter-visit
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times as exponentially distributed. Because one visit is required for patients to enter the

study, we treat the first visit as fixed. Further, patients must have at least two total visits,

so a patient’s total number of visits will then follow a zero-truncated Poisson distribution,

which to our knowledge has not received attention in the literature for jointly modeling the

visit process with survival. Finally, the existing literature has explored in detail the effect

that informative visit times have on parameter estimates in regression models. We build on

these results with simulation studies that show how the informativeness of the censoring is

affected by the right censoring rate, the clinic visit random effect variance, and the strength

of the correlation between the survival and clinic visit random effects.

The next section presents a detailed description of the model, including random effect

distributions and prior distributions. Section 3.2 calculates the marginal correlation between

a person’s survival time and clinic visits. Section 3.3 analytically demonstrates that infor-

mative censoring arises when the clinic visit rate is correlated with survival time and section

3.4 shows that the informativeness of the censoring is influenced by the strength of the corre-

lation between survival times and clinic visits, the right censoring rate, and the distribution

of clinic visits. Section 3.5 presents the results of our data analysis, and section 3.6 offers

concluding remarks.

3.1 Notation and Model Formulation

For i ∈ 1, . . . , N , where N is the number of patients, let yi1 be the log of patient i’s unknown

survival time, yi2 be patient i’s number of clinic visits after their first visit during the study

period, counted either until they become HIV positive or until the time of patient i’s last

visit, and xi be an (M + 1)× 1 baseline covariate vector for person i. Let Ti be the time of

their last visit measured in years since their initial visit and let s(i) ∈ 1, . . . , S be the ZIP

Code Tabulation Area (ZCTA) for patient i, where S = 270 is the total number of ZCTAs

in the data set.
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We model log survival time yi1 as normal

yi1 = x′iα1 + εi1 + δi1 + bs(i)1 (3.1)

εi1|σ2
y1 ∼ N

(
0, σ2

y1

)
(3.2)

δi1|σ2
δ1 ∼ N

(
0, σ2

δ1

)
, (3.3)

where α1 = (α10, α11, . . . , α1M)′ is an (M + 1)× 1 vector of unknown regression coefficients,

bs(i)1 is a ZCTA level random effect and δi1 is a subject level random effect with variance

σ2
δ1. The random effect δi1 will not be identifiable but is used to induce correlation between

yi1 and yi2. We discuss treatment of δi1 in detail shortly.

Let patient i’s clinic visit schedule be the result of a Poisson process. Then the total

number of visits will follow a zero-truncated Poisson distribution. We approximate the zero-

truncated Poisson distribution by modeling yi2 as a Poisson random variable with mean

exp(λi)Ti, with exp(λi) as the expected number of visits per year,

f(yi2|λi) =
[exp(λi)Ti]

yi2 exp(−exp(λi)Ti)

(yi2)!
(3.4)

with

λi = x′iα2 + δi2 + bs(i)2, (3.5)

where α2 = (α20, α21, . . . , α2M)T is an (M + 1)× 1 vector of unknown regression coefficients,

bs(i)2 is a second spatially correlated ZCTA level random effect that is also correlated with

bs(i)1 and δi2 is a non-spatial random effect correlated with δi1 and distributed

δi2|δi1, σδ1, σδ2, ρδ ∼ N

(
σδ2
σδ1

ρδδi1,
(
1− ρ2

δ

)
σ2
δ2

)
, (3.6)

where σ2
δ2 is the variance of δi2 unconditional on δi1 and ρδ is the correlation between δi1

and δi2. Including δi2 in (3.5) induces overdispersion in yi2, and induces non-spatial corre-

lation between yi1 and yi2 when ρδ is nonzero and allows a test of whether visit rate and

seroconversion time are independent by testing H0 : ρδ = 0. The Poisson approximation to

the zero-truncated Poisson is justified in the appendix.
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In model (3.1) and (3.3), none of δi1, εi1, σ2
δ1, or σ2

y1 are identified. Only εi1 = δi1 + εi1

and σ2
1 = σ2

y1 + σ2
δ1 are identified with εi1 ∼ N (0, σ2

1). Integrating out δi1 gives a bivariate

normal distribution for (yi1, δi2),yi1
δi2

∣∣∣∣∣∣α1, bs(i)1, ρ, σ
2
1, σ

2
δ2 ∼ N

x′iα1 + bs(i)1

0

 ,

 σ2
1 ρσ1σδ2

ρσ1σδ2 σ2
δ2

 , (3.7)

where ρ = ρδ (σ2
δ1/σ

2
1)

1/2
. For the observed survival data, we do not observe the exact

survival time yi1; instead, we only observe the event li < yi1 < ri, where li is the log of

the second to last visit time and ri = log(Ti) if patients seroconvert, or for patients who do

not seroconvert, li = log(Ti) and ri = ∞. Therefore conditional on α1, bs(i)1, and σ2
1, the

observed data for survival are Bernoulli random variables with success probabilities

P (li < yi1 < ri|α1, bs(i)1, δi1, σ
2
y1) = Φ

(
ri −

(
x′iα1 + bs(i)1

)
σ1

)
−

Φ

(
li −

(
x′iα1 + bs(i)1

)
σ1

)
,

(3.8)

where Φ(·) denotes the CDF of a standard normal random variable.

3.1.1 Likelihood

Let y1 = (y11, . . . , yN1), y2 = (y12, . . . , yN2), δ2 = (δi1, . . . , δN2), b1 = (b11, . . . , bS1), b2 =

(b12, . . . , bS2) θ1 = (α1, b1, σ1) and θ2 = (α2, b2, σδ2), where b1 and b2 are S × 1 vectors

of HIV and clinic visit spatial random effects with sth elements bs1 and bs2, s ∈ 1, . . . , S.

In model (3.1) – (3.6), conditional on δi, yi1 is independent of yi2. The likelihood of the

observed data is

L(θ1,θ2|y1,y2, δ2) =
∏
i

P (li < yi1 < ri|θ1, δi2)f(yi2|θ2, δi2)f(δi2|θ2), (3.9)

where (3.9) follows from the conditional independence assumptions.

3.1.2 ZCTA Level Random Effect Distributions

Let r, s ∈ 1, . . . , S index ZCTAs and let drs be the distance in miles between the centroids of

ZCTAs r and s. Let Var(bs1) = η2
1, Var(bs2) = η2

2, and Corr(bs1, bs2) = ρb. Define the within
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ZCTA covariance matrix Tb between the ZCTA level HIV and clinic visit random effects

Tb = Var

bs1
bs2

 =

 η2
1 ρbη1η2

ρbη1η2 η2
2

 . (3.10)

We jointly model b1 and b2 as multivariate normal using the linear model of coregionalization

(Matheron, 1982),b1

b2

∣∣∣∣∣∣ η2
1, η

2
2, φ1, φ2, ρb ∼ N

0S×1

0S×1

 ,

 η2
1R1 ρbη1η2R1

ρbη1η2R1 η2
2 (ρ2

bR1 + (1− ρ2
b)R2)

 , (3.11)

where the r, s entry of R1 and R2 are exp (−φ1drs) and exp (−φ2drs) respectively and φ1

and φ2 are decay parameters.

3.1.3 Prior Distributions For Regression Parameters

The maximum time a patient could be on the study is 6 years, and as 96% of the data are

right censored, we specify a Normal(3, 0.52) prior for the intercept term α10 in the survival

model, which puts more than 95% of the prior mass for the survival times above 6 years,

giving a high a priori right-censoring rate. Similarly, choosing a Normal(1, 0.52) prior for α20

puts 95% of the prior mass between one and four visits per year. For the other regression

coefficients α1m and α2m, m ∈ 1, . . . ,M , we set N(0, 1) priors.

For the non-spatial variance parameters σ2
1 and σ2

δ2 and the spatial variance parameters η2
1

and η2
2, we set half standard normal priors σ2

j ∼ N(0, 1)1
{
σ2
j > 0

}
, η2

j ∼ N(0, 1)1
{
η2
j > 0

}
,

j = 1, 2. For the decay parameters φ1 and φ2, larger values result in faster decay in the

correlation between ZCTA level random effects with increasing distance. We set gamma

priors φj ∼ Gamma (2, 2), j = 1, 2, which specifies a priori that the correlation between

ZCTA level random effects should decay to less than 0.05 between 1 and 25 miles with

95% prior probability. For the correlation parameters, ρb and ρδ, we re-scale Beta(4, 4)

distributions to the interval (−1, 1),

p(ρb) ∝
(
ρb − 1

2

)3(
1− ρb − 1

2

)3

1 {−1 ≤ ρb ≤ 1} , (3.12)

p(ρδ) ∝
(
ρδ − 1

2

)3(
1− ρδ − 1

2

)3

1 {−1 ≤ ρδ ≤ 1} . (3.13)
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3.2 Covariance Calculations

Because random effects and residuals are unobserved, the spatial and non-spatial correlations

ρb and ρδ are not as easily interpretable for clinicians as the correlation Cor(exp (yi1) , yi2)

between survival and clinic visits unconditional on residuals and random effects. We calculate

Cor(exp (yi1) , yi2) using iterated expectations and covariances. First, the joint distribution

of εi1 + bs(i)1 and δi2 + bs(i)2 in the survival and clinic visits models isεi1 + bs(i)1

δi2 + bs(i)2

∣∣∣∣∣∣ ρ, ρb, σ2
1, σ

2
2, η

2
1, η

2
2 ∼ N2

0

0

 ,

γ2
1 γ12

γ12 γ2
2

 (3.14)

where

γ2
1 = σ2

1 + η2
1 (3.15)

γ12 = ρσ1σ2 + ρbη1η2 (3.16)

γ2
2 = σ2

2 + η2
2, (3.17)

and Cor(εi1 + δi1 + bs(i)1, δi2 + bs(i)2) ≡ ργ = γ12/(γ1γ2). This allows us to calculate the mean

and variance of yi1 and yi2 unconditional on random effects. For yi1,

E
[
exp (yi1) |α1, γ

2
1

]
= exp

(
x′iα1 +

1

2
γ2

1

)
(3.18)

and

Var
(
exp (yi1) |α1, γ

2
1

)
=
{

E
[
exp (yi1) |α1, γ

2
1

]}2 (
exp

(
γ2

1

)
− 1
)
. (3.19)

For yi2, we use conditional expectation and variance formulas

E
[
yi2|α2, γ

2
2

]
= exp

(
x′iα2 +

1

2
γ2

2

)
(3.20)

and

Var
(
yi2|α2, γ

2
2

)
= E

[
Var

(
yi2|α2, δi2, bs(i)2

)]
+ Var

(
E
[
yi2|α2, δi2, bs(i)2

])
, (3.21)

= E [exp(λi)Ti] + Var (exp(λi)Ti) , (3.22)

= E
[
yi2|α2, γ

2
2

]
+
{

E
[
yi2|α2, γ

2
2

]}2 (
exp

(
γ2

2

)
− 1
)
. (3.23)
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We use the law of total covariance to calculate Cov (exp (yi1) , yi2)

Cov(exp (yi1) , yi2|α1, γ
2
1 ,α2, γ

2
2) = E

[
Cov(exp (yi1) , yi2|α1,α2, δi1, δi2, bs(i)1, bs(i)2)

]
+

Cov
[
E
{

exp (yi1) |α1, δi1, bs(i)1, σ
2
y1

}
,E(yi2|α2, δi2, bs(i)2)

] (3.24)

= exp

(
x′iα1 +

1

2
σ2
y1

)
exp (x′iα2 + log(Ti))×

Cov
[
exp
(
δi1 + bs(i)1

)
, exp

(
δi2 + bs(i)2

)] (3.25)

= exp

(
x′iα1 +

1

2
σ2
y1

)
exp (x′iα2 + log(Ti))×{

exp

(
1

2

[
σ2
δ1 + σ2

δ2 + η21 + η22 + 2ρδσδ1σδ2 + 2ρbη1η2
])
− 1

} (3.26)

= exp

(
x′iα1 +

1

2

[
σ2
y1 + σ2

δ1 + η21
])
×

exp

(
x′iα2 + log(Ti) +

1

2

[
σ2
δ2 + η22

])
×

{exp (ρδσδ1σδ2 + ρbη1η2)− 1}

(3.27)

= E
[
yi1|α1, γ

2
1

]
E
[
yi2|α2, γ

2
2

]
[exp (γ12)− 1] , (3.28)

where the first term in (3.24) is zero because yi1 and yi2 are independent conditional on the

random effects δi2, bs(i)1, and bs(i)2, equation (3.26) follows from the covariance between two

lognormal random variables, and (3.28) follows by substituting ρσ1 for ρδσδ1. We calculate

the marginal correlation Cor (exp (yi1) , yi2) using (3.19), (3.23), and (3.28). The marginal

correlation does not depend on x′iα1, but is monotone increasing (decreasing) in x′iα2 if

ργ > 0 (ργ < 0). Furthermore,

0 ≤ |Cor (exp (yi1) , yi2)| ≤ |Cor (exp (yi1) , exp(δi2))| ≤ ργ, (3.29)

where

Cor (exp (yi1) , exp(λi)) =
exp (γ12)− 1√

[exp (γ2
1)− 1] [exp (γ2

2)− 1]
, (3.30)

is the correlation between two lognormal random variables. Figure 3.1 plots Cor (exp (yi1) , exp(λi))

as a function of γ1 and γ2, with γ1 = γ2 and ργ = 0.25, 0.50, 0.75, and 0.90. Even when ργ

is large, the maximum value that Cor (yi1, yi2) can take decreases rapidly as the variances

increase.
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3.3 Correlation Between Survival and Clinic Visits Leads to In-

formative Censoring

Non-informative censoring implies that given the endpoints (li, ri) of the censoring interval,

the density for log survival yi1 is the marginal density f(yi1|α1, bs(i)1, σ
2
1) truncated to the

interval (li, ri). However, yi1 is correlated with subject i’s visit rate λi through δi2. The joint

conditional density for yi1 and δi2 given the censoring interval is

f(yi1, δi2|α1,α2, bs(i)1, bs(i)2, σ
2
1, σ

2
δ2, ρδ, li, ri) =

f(yi1|δi2,α1,α2, bs(i)1, bs(i)2, σ
2
1, σ

2
δ2, ρδ, li, ri)f(δi2|α2, bs(i)2, σ

2
δ2, li, ri), (3.31)

where the first term on the right hand side of (3.31) is the conditional density

f(yi1|δi2,α1,α2, bs(i)1, bs(i)2, σ
2
1, σ

2
2, ρδ) of yi1 given δi2 truncated to the interval (li, ri). To

calculate the distribution of yi1 given the interval (li, ri) unconditional on δi2, we need to

integrate the joint density (3.31) with respect to δi2,

f(yi1|α1,α2, bs(i)1, bs(i)2, σ
2
1, σ

2
2, ρδ, li, ri) =∫

f(yi1|δi2,α1,α2, bs(i)1, bs(i)2, σ
2
1, σ

2
2, ρδ, li, ri)f(δi2|α2, bs(i)2, σ

2
2, li, ri) (3.32)

If ρδ = 0, then the first term in the integrand of (3.31) is f(yi1|α1, bs(i)1, σ
2
1) truncated to the

interval (li, ri) and the second term integrates to one. Therefore, when ρδ = 0, the censoring

is not informative.

Conversely, when ρδ is nonzero, then the censoring will be informative. We demonstrate

this by comparing the integral (3.32) with f(yi1|α1, bs(i)1, σ
2
1) restricted to the interval (li, ri).

We cannot evaluate the integral in closed form so we approximate the integral numerically.

We compare the densities for different values of ρδ and censoring intervals (li, ri) and plot

the results in Figure 3.2. For small interval widths the differences between the two densities

are not large, irrespective of the value of ρδ. However, for large interval widths, even modest

correlations make the censoring highly informative, which leads to biased estimates of model

parameters and survival times. We further examine the behavior of the bias at the population

level with the following simulation studies.
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3.4 Simulation Studies: Informativeness of Censoring

We want to evaluate how the informativeness of the censoring varies with the correlation ργ,

the right censoring rate, and the distribution of the clinic visit mean λi. We simulate data

from the model in section 3.1, setting the spatial random effects b1 and b2 equal to zero and

fixing the linear predictors x′iα1 and x′iα2 at µ1 and µ2. In our observed data, patients’ start

of study time is random after a study start date, and data are collected until a fixed study

end date exp(Ci). We give all simulated patients the same start of study time and generate

lognormal survival times exp(yi1) and lognormal end of study times exp(Ci), where exp(yi1)

and exp(Ci) are independent. We then generate exponentially distributed visit times with

mean µ2 until a visit time is generated that is greater than exp (yi1) or exp(Ci). The total

visits for patient i is yi2, and patients with yi2 = 1 are removed from the dataset.

Let tij be the ith simulated patient’s jth visit time with final visit time tiyi2 . Simulated

patients can be right censored if Ci < yi1, or if log (tiyi2) < yi1, and we set li = log (tiyi2) and

ri =∞. Simulated patients with log
(
ti(yi2−1)

)
< yi1 < log (tiyi2) < Ci are interval censored,

and li = log
(
ti(yi2−1)

)
and ri = log (tiyi2).

Under non-informative censoring,

E [yi1|li ≤ yi1 ≤ ri] = E

[
f(yi1)1 {li < yi1 < ri}

P (li < yi1 < ri)

]
. (3.33)

We assess the effect of the clinic visit and right censoring distributions on the informativeness

of the censoring under three simulation schema with 16 scenarios each. In all schema, we set

µ1 = 2.25 and σ2
1 = 0.3, which puts 95% of simulated survival times between 3.2 and 27.7

years.

In schema 1, we fix the clinic visit random effect variance σ2
δ2 at 0.25, and consider right

censoring rates of 0, 0.25, 0.5, and 0.9, and average visits per year µ2 of 0.5, 1, 2 and 6. In

schema 2, we fix the average number of visits per year µ2 at 1, let the right censoring rates be

the same as in schema 1, and let the random effect variance for visits σ2
δ2 be 0.1, 0.25, 0.5 and

0.75. In schema 3, we fix the censoring rate at 0.25, and let µ2 and σ2
δ2 vary, using the same

values as in schema 1 and 2 respectively. Table 3.1 describes all 48 simulation scenarios.
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For each of the 48 simulation scenarios, we construct 10, 000 simulated datasets with

10, 000 IID log survival times and clinic visit schedules. For dataset g, g ∈ 1, . . . , 10, 000 for

a given scenario, we calculate the difference between the patients’ known survival times yi1

and expected survival times
∫ ri
li
yfyi1(y)/P (li < yi1 < ri)dy under non-informative censoring.

We then calculate the average difference across patients within a dataset as

Diffg =
1

10, 000

10,000∑
i=1

yi1 −
∫ ri

li

yfyi1(y)/P (li < yi1 < ri)dy, (3.34)

which gives us in years the difference between the true expected value of yi1 and the expected

value of yi1 assuming non-informative censoring. For each scenario, we get a distribution of

averaged differences Diffg, and if the distribution is not centered at zero, then the censoring

is informative. We conduct the simulation for all three schema three times, one for each

ργ ∈ {−0.5, 0, 0.5}.

3.4.1 Simulation Results

The results for interval-censored patients and right-censored patients are presented in Figures

3.3 and 3.4 for ργ = 0 and σ2
2 fixed (schema 1). Consistent with non-informative censoring, in

every scenario the distribution of the averaged differences (3.34) is centered at zero, showing

that the censoring is not informative. The results are similar when we fix the censoring rate

(schema 2), and µ2 (schema 3).

The results for interval-censored patients and right-censored patients are presented in

Figures 3.5 and 3.6 for ργ = 0.5 and σ2
δ2 fixed (schema 1). The dotted lines show the

distribution of the averaged differences (3.34), and the solid lines show the distribution

of the average differences when we replace the marginal density fyi1(y) in (3.34) with the

conditional density fyi1|λi(y|λ). We see bias for the interval-censored subjects or the right

censored subjects in every scenario. When the interval censored predictions are biased,

the marginal density consistently underestimates mean survival time. For right censored

patients, when the right censoring rate is low the marginal density underestimates survival,

and as the right censoring rate increases, the bias becomes more and more positive. In all

scenarios, the bias decreases with increased rate of clinic visits.
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The results for schema 2 (µ2 fixed) for ργ = 0.5 are similar (Figures 3.7 and 3.8). For

interval censored patients, survival times are consistently underestimated except at very high

right censoring rates, and the magnitude of the bias increases with the random effect variance

σ2
2. Estimates of survival for right censored patients are negatively biased at modest right

censoring rates, and the bias becomes more positive as the right censoring rate increases.

The results for schema 3 (right censoring rate fixed) are consistent with the results for

schemas 1 and 2 (Figures 3.9 and 3.10). The magnitude of the bias increases with µ2 and

with σ2
δ2. For all scenarios and schemas, when ργ = −0.5 (not shown), the results are similar,

but the direction of the bias is reversed. Additionally, when we replace the marginal density

fyi1(y) in (3.34) with the conditional densitiy fyi1|λi(y|λ), the bias goes away.

Thus, when ργ is zero, the censoring is not informative irrespective of the censoring and

clinic visit distributions. Conversely, the censoring is informative when the censoring is non-

zero. In general, the informativeness of the censoring increases with the right censoring rate

and clinic visit variance, and decreases with the average number of clinic visits.

3.5 Data Analysis

We ran the model in section 3.1 using a Random Walk Metropolis-Hastings algorithm coded

in C++ using R Version 3.3.1 and the Rcpp package Version 0.12.7. We ran four chains

in parallel to generate 10, 000 samples from the posterior. Convergence within chains was

checked using Geweke statistics (Geweke, 1992) and Raftery and Lewis statistics (Raftery and

Lewis, 1992). Convergence between chains was checked using Gelman diagnostics (Gelman

and Rubin, 1992), and convergence was deemed satisfactory.

3.5.1 Results

The results of the regression analysis are presented in Table 3.2. For HIV, results are

consistent with what we would typically expect; African Americans and Hispanics have

shorter seroconversion times than Whites, reflecting their increased risk of HIV. Drug use
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and having an STI are associated with shorter survival times. For clinic visits, Hispanics

have significantly fewer visits per year than whites, and illicit drug users come to the clinic

more frequently.

3.5.2 Covariance Matrix Parameters

Table 3.2 shows that the non-spatial variances are much larger than the spatial variances

for both HIV survival time and clinic visits. Further, the correlation between the spatial

random effects drops off rapidly with distance for both outcomes (not shown in the table).

For HIV seroconversion, the correlation decays to 0.05 between 1 and 17 miles, and for clinic

visits the correlation decays to 0.05 between 0.7 and 2.5 miles.

Posterior densities for the within-person correlation ρ, within-ZCTA random effects cor-

relation ρb, and total random effects correlation ργ are plotted in Figure 3.11. The posterior

95% interval for ρb is (−0.25, 0.24), and the log Bayes Factor testing ρb = 0 versus the al-

ternative that ρb 6= 0 is 0.98, suggesting that the spatial correlation between the survival

time and clinic random effects is negligible. However, the posterior 95% interval for ρ is

(−0.3,−0.1), and the log Bayes Factor comparing ρ = 0 versus the alternative that ρ 6= 0

is −21. This is strong evidence in favor of survival time being negatively associated with

frequency of clinic visits suggesting that people who come in more frequently tend to have

shorter seroconversion times. Similarly, for ργ the posterior 95% interval is (−0.24,−0.11),

and the log Bayes Factor comparing ργ = 0 versus the alternative that ργ 6= 0 is −13.

We plot the marginal correlation between exp(yi1) and yi2 as a function of the linear

predictor xTi α2 along with the limiting correlation (3.30) in Figure 3.12. The Lognormal

variance γ2
1 is quite large and as discussed in section 3.2, despite the strong posterior evidence

that ργ < 0, the correlation between yi1 and yi2 unconditional on the random effects is small.
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3.6 Discussion

Our data analysis shows that patients who come to the clinic more frequently have lower

survival times on average. A plausible mechanism for the negative correlation is that patients

may tend to come into the clinic quickly after engaging in behaviors that put them at risk

for HIV, suggesting that patients are accurately assessing their risk of HIV. The negative

correlation also implies that if we ran the model without clinic visits that the censoring would

be informative, which could potentially bias inferences and estimates of seroconversion times.

Modeling log(yi1) and λi as bivariate Normal gives the Poisson process model a number

of useful properties. First, the properties of the Multivariate Normal distribution have been

well studied (Crow and Shimizu, 1987; Aitchison and Ho, 1989; Mostafa and Mahmoud,

1964), allowing us to analytically calculate the likelihood (3.9) which facilitates sampling

from the joint posterior of yi1 and δi2. Another benefit of the bivariate Normal specification

for yi1 and λi is that it simplifies the calculations in sections 3.2 and 3.3.

Other researchers have used shared frailty parameters to model dependency between the

visit process and the survival times (Cai et al., 2012; Liang et al., 2009; Liu et al., 2008; Sun

et al., 2007, 2012; Zhang et al., 2007), and we have tried to expand upon the previous work

by considering more detailed simulation scenarios. We have also presented the results in

terms of the bias in our estimates of the survival times as opposed to individual parameter

estimates, as this is usually more of interest to clinicians, and found that even in the most

extreme scenarios, the bias is not so large that ignoring the informativeness of the censoring

would render results useless.

One limitation of our work is that for rare events, corresponding survival times are long,

and the survival time variance can be large, so even given strong posterior evidence for the

sign of ργ, the correlation between survival and clinic visits can be small. Another limitation

is that in the simulation studies, we are making two potentially strong assumptions. First,

we assume a homogeneous visit process where the visits are iid exponential, which has the

well-known and probably unrealistic property of being memoryless. Further, we are assuming

that survival is only correlated with the expected value of the visit process, and not with
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the visits themselves. It may in fact be the case that patients visit the clinic more (or less)

frequently when they are engaging in more (or less) risky behavior. If we believe this to

be the case, modeling a visit process where visit times are independent, but not necessarily

identically distributed, may make the model a more accurate representation of the data

generating process.
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Tables and Figures

Schema 1 (σ2
2 = 0.5) Schema 1 (µ2 = 1) Schema 3 (RCR = 0.25)

RCR µ2 RCR σ2
2 µ2 σ2

2

0 0.5 0 0.10 0.5 0.10

0 1.0 0 0.25 0.5 0.25

0 2.0 0 0.50 0.5 0.50

0 6.0 0 0.75 0.5 0.75

0.25 0.5 0.25 0.10 1.0 0.10

0.25 1.0 0.25 0.25 1.0 0.25

0.25 2.0 0.25 0.50 1.0 0.50

0.25 6.0 0.25 0.75 1.0 0.75

0.50 0.5 0.50 0.10 2.0 0.10

0.50 1.0 0.50 0.25 2.0 0.25

0.50 2.0 0.50 0.50 2.0 0.50

0.50 6.0 0.50 0.75 2.0 0.75

0.90 0.5 0.90 0.10 6.0 0.10

0.90 1.0 0.90 0.25 6.0 0.25

0.90 2.0 0.90 0.50 6.0 0.50

0.90 6.0 0.90 0.75 6.0 0.75

Table 3.1: Parameter values for simulation study in Section 3.4. RCR is Right Censoring

Rate. For all scenarios and schemas, we use a lognormal distribution with mean parameter

2.25 and variance parameter 0.3 for yi1.
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Mean (95% CI)

Parameter HIV Survival Clinic Visits

Race

White REF REF

African American -0.59 (-1.00, -0.18) 0.03 (-0.03, 0.09)

Hispanic -0.50 (-0.76, -0.25) -0.10 (-0.13, -0.06)

Other 0.17 (-0.23, 0.58) -0.05 (-0.10, 0.001)

STI -0.75 (-1.04, -0.47) 0.03 (-0.01, 0.06)

Drug -0.80 (-1.04, -0.56) 0.05 (0.02, 0.08)

Spatial variance 1.02 (0.08, 2.52) 0.05 (0.04, 0.07)

Residual Variance 6.31 (5.55, 7.17) 0.33 (0.31, 0.34)

Table 3.2: Posterior summaries for regression parameters. Spatial variance parameters are

η2
1 and η2

2. Non-spatial residual variance parameters are σ2
1 and σ2

2.
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Figure 3.1: Plots of limiting Lognormal correlation for Normal correlations of 0.25 (Solid),

0.50 (Dashed), 0.75 (Dotted), and 0.90 (Dot-dash). Standard deviations γ1 and γ2 are equal.
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Figure 3.2: Differences between truncated marginal density for yi1 (dotted), and truncated

conditional density of yi1|λi after integrating out δi2 (solid). Top label for each plot in-

dicates the correlation ργ between yi1 and δi2, which ranges from −0.75 to 0.75. Bottom

label indicates width of the censoring interval, which increases from 0.1 to 4. In all plots,

yi1 ∼ N (1, 0.252), and δi2 ∼ N (2, 0.252).
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Figure 3.3: Simulation results estimating bias of E [yi1|li ≤ yi1 ≤ ri] for predicting sur-

vival for interval-censored patients when ργ = 0; vertical line at zero. When ργ = 0,

E [yi1|li ≤ yi1 ≤ ri] is an unbiased estimate of survival for interval-censored patients.
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Figure 3.4: Simulation results estimating bias of E [yi1|li ≤ yi1 ≤ ri] for predicting survival for

right-censored patients when ργ = 0; vertical line at zero. When ργ = 0, E [yi1|li ≤ yi1 ≤ ri]

is unbiased estimate of survival for right censored patients.
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Figure 3.5: Simulation results estimating bias of E [yi1|li ≤ yi1 ≤ ri] for predicting survival

for interval-censored patients when ργ = 0.5; vertical line at zero. Top label is the average

number of visits per year, and the left label is the right censoring rate. Bias decreases with

increasing frequency of clinic visits, and is unaffected by right censoring rate
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Figure 3.6: Simulation results estimating bias of E [yi1|li ≤ yi1 ≤ ri] for predicting survival

for right-censored patients when ργ = 0.5; vertical line at zero. Top label is the average

number of visits per year, and the left label is the right censoring rate. Bias decreases

with increasing frequency of clinic visits, and becomes more positive as right censoring rate

increases.
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Figure 3.7: Simulation results estimating bias of E [yi1|li ≤ yi1 ≤ ri] for predicting survival

for interval-censored patients when ργ = 0.5; vertical line at zero. Top label is the random

effect variance σ2
δ2, and the left label is the right censoring rate. Bias increases with σ2

δ2, and

is unaffected by right censoring rate
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Figure 3.8: Simulation results estimating bias of E [yi1|li ≤ yi1 ≤ ri] for predicting survival

for right-censored patients when ργ = 0.5; vertical line at zero. Top label is the random

effect variance Var(δi2), and the left label is the right censoring rate. Bias increases with

increasing σ2
δ2, and becomes more positive as right censoring rate increases.
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Figure 3.9: Simulation results estimating bias of E [yi1|li ≤ yi1 ≤ ri] for predicting survival

for interval-censored patients when ργ = 0.5; vertical line at zero. Top label is the random

effect variance σ2
δ2, and the left label is the average visits per year. Bias increases with σ2

δ2,

and decreases with increasing frequency of clinic visits.
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Figure 3.10: Simulation results estimating bias of E [yi1|li ≤ yi1 ≤ ri] for predicting survival

for right-censored patients when ργ = 0.5; vertical line at zero. Top label is the random

effect variance Var(δi2), and the left label is the average visits per year. Bias increases with

σ2
δ2, and decreases with increasing frequency of clinic visits.
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total random effect correlation ργ (Dot-dash).
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Appendix: Approximating the Zero Truncated Poisson Distribu-

tion

Suppose we have count data Y = 1, 2, . . . which we model as zero-truncated Poisson,

f(Y |λ) =
λY

(exp (λ)− 1)Y !
(3.35)

so that

E[Y |λ] =
exp (λ)

exp (λ)− 1
λ (3.36)

= cλ, (3.37)

where c = exp (λ) (exp (λ)− 1)−1. Let X = Y − 1. Then

f(X|λ) =
λX+1

(exp (λ)− 1)(X + 1)!
, (3.38)

and

E[X|λ] = E[Y |λ]− 1 = cλ− 1. (3.39)

Suppose conditional on λ, we approximate X as a Poisson random variable with mean cλ−1,

so that

g(X|λ) =
(cλ− 1)X

exp (cλ− 1)X!
.

To assess how well g approximates f , we calculate the Kullback–Leibler divergence from g

to f ,

DKL(f ||g) =
∞∑
k=0

f(k|λ)× log

(
f(k|λ)

g(k|λ)

)
for values of λ ranging from 0.001 up to 20. The results are plotted in Figure 3.13. For

very small values of λ, the divergence is approximately zero. The divergence increases to a

maximum of 0.015 when λ = 3.4, and then decreases monotonically after.

A table of the density values for f(X|λ = 3.4) and g(X|λ = 3.4) are presented in Table

3.3 for X ranging from 0 to 8. The divergence between the two densities is always less than
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about 0.03, and is generally much smaller. Therefore, even at the maximum divergence,

the Poisson approximation to the zero-truncated Poisson is still decent. Therefore a zero-

truncated Poisson distribution for Y can be approximated by using a Poisson distribution

for Y − 1.
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Figure 3.13: Kullback–Leibler divergence from g to f . Vertical dotted line at maximum

divergence.
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X ZTP Poisson

0 0.117 0.081

1 0.200 0.203

2 0.226 0.256

3 0.192 0.214

4 0.131 0.135

5 0.074 0.068

6 0.036 0.029

7 0.015 0.010

8 0.006 0.003

Table 3.3: Densities for f(X|λ = 3.4) and g(x|λ = 3.4) for X ∈ {0, . . . , 8}.
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CHAPTER 4

Developing a risk profile for HIV seroconversion using

a spatio-temporal factor analysis

In behavioral studies of HIV, researchers often collect large amounts of data on each patient

with the goal of identifying which measurements are associated with a patient’s risk of

contracting HIV. It is often assumed that a low dimensional set of latent factors explains

most of the correlation among these measurements. When the measurements are discrete, or

a mix of discrete and continuous data, it is common to model them using a latent multivariate

normal distribution (Ansari and Jedidi, 2000; Conti et al., 2014; Hu et al., 2004; Quinn, 2004).

Factors within and between records are usually assumed to be uncorrelated, however this is

not a reasonable assumption when the data are correlated over space and/or time.

One method to introduce spatio-temporal correlation among factors is through the use

of separable models, which are models where the spatial and temporal processes can be

decomposed into a sum or product of spatial and temporal correlations. Among multiplica-

tive separable models, unique factor loadings are typically assigned to each spatial unit and

the loadings are correlated over space, while the factors evolve over time within a subject

(Luttinen and Ilin, 2009; Schmidt and Laurberg, 2008; Schmidt, 2009). These models are

similar to spatial dynamic factor models, which use an autoregressive process to model the

evolution of factors over time, and then model the spatial correlation in the factor loadings

(Lopes et al., 2008, 2011; Strickland et al., 2011; Thorson et al., 2016).

Despite their flexibility, multiplicative separable models and spatial dynamic factor mod-

els are not stationary, making them difficult to interpret. In contrast, additive separable

models treat the factors as a sum of independent spatial and temporal processes (Cramb
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et al., 2015; Richardson et al., 2006; Schliep et al., 2018). As long as the spatial and tempo-

ral processes themselves are stationary, the total process will also be stationary. The factor

variances can be fixed by treating them as a convex combination of the spatial and temporal

factor variances(Abellan et al., 2008; Cheng et al., 2018; Richardson and Green, 1997).

We analyze repeated clinic visit data from the Los Angeles LGBT Center collected be-

tween 2008 and 2014. When patients visit the clinic they are given an 82-item risk assessment

questionnaire that asks for basic demographic information and risk behaviors such as drug

use and history of sexually transmitted infections for the patients and their last two sexual

partners.

One of our goals is to reduce the outcomes at one visit to a set of latent factors that

identify features of a patient’s propensity for risky behavior which in turn are used to predict

their HIV status at the next visit. We model correlation among the outcomes through latent

factors and specify a lower triangular structure for the loadings matrix to fix rotational

identifiability problems (Dunson, 2007; Geweke and Zhou, 1996). We know when patients

come to the clinic and the ZIP code where they live at each visit. We assume that factors

are uncorrelated within visits and ZIP Codes and model spatio-temporal correlation among

the factors using a weighted additive separable model for the spatial and temporal processes.

We treat the factor scores from the current visit as covariates in a probit model to predict

a patient’s probability of being HIV positive at the next follow-up visit and show that this

is equivalent to a factor model that allows the factors to load onto different outcomes at

different times.

The next section presents the factor model and how we use the factors to predict a

patient’s risk of becoming HIV positive. Section 4.2 describes the spatio-temporal correlation

in the factor model. Section 4.3 presents the prior distributions. Section 4.4 presents the

results of the analysis and section 4.5 concludes the paper with a brief discussion.
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4.1 Data Structure and Model

We only consider men who have sex with men (MSM) who reside in Los Angeles County

with at least two clinic visits. The first visit establishes seronegativity at baseline, and later

visits determine whether or not they have become HIV positive since the previous visit. It

can take at least three months for a patient to test positive after becoming infected, so to

reduce the probability of including patients in our sample who actually entered the study

HIV positive, patients need to have visits spanning at least six months. The final data set

we use has 7, 890 patients and 29, 737 records.

4.1.1 Factor Model

The data contains K = 25 risk-associated outcomes that are a mix of binary and continuous

variables. Let yij = (yij1, . . . , yijK) be a K × 1 vector of risk outcomes and xi be an

(M + 1) × 1 covariate vector with first element equal to one, where i = 1, . . . , N indexes

patients, j = 1, . . . , ni indexes visits where ni as the number of visits for patient i, and

k = 1, . . . , K indexes outcomes. Define tij as the time from baseline of person i’s jth visit,

and s(i, j) as the ZCTA where person i lives at visit j, where s(i, j) ∈ {1, . . . , S}. We want

to reduce yij to a lower dimensional set of P � K unobserved factors ξij = (ξij1, . . . , ξijP )T .

We model the yij as functions of latent normal random variables y∗ij = (y∗ij1, . . . , y
∗
ijK)

yijk =


I
[
y∗ijk > 0

]
, if yijk is binary,

y∗ijk, otherwise.

(4.1)

Conditional on latent factors ξij, outcomes y∗ijk are independent and modeled longitudinally

as

y∗ijk = xTi αk + ΛT
k ξij + εijk, (4.2)

where αTk = (αk0, αk1, . . . , αkM) is a vector of M + 1 unknown regression coefficients, and

ΛT
k is the kth row of the K×P loadings matrix Λ and the residuals εijk are independent and

60



identically distributed

εijk ∼ N
(
0, σ∗2k

)
, (4.3)

with variances σ∗2k . For binary outcomes, we fix σ∗2k at 1, but any constant value can be

chosen without loss of generality.

For HIV seroconversion, once a patient contracts HIV they can never be HIV negative.

Further, patients who are on the study for longer have more time to contract HIV. Let zij = 1

if patient i is HIV positive at visit j, and zero otherwise. For j = 1, necessarily zij = 0. For

j ∈ 2, . . . , ni, we model zij as a function of a latent random variable z∗ij,

zij = 1
[
z∗ij > 0

]
, (4.4)

z∗ij = xTi β + γTξi(j−1) + log
(∣∣tij − ti(j−1)

∣∣)+ δij, (4.5)

where β = (β0, β1, . . . , βM)T is a set of M regression coefficients and γ = (γ1, γ2, . . . , γP )T is

a set of P regression coefficients multiplying the latent factors and log
(∣∣ti(j+1) − tij

∣∣) is an

offset term. Modeling δij as a standard logistic random variable would give a logit model

for zij, allowing us to model the odds of HIV seroconversion per unit time. However, one of

the benefits of using a probit model for HIV seroconversion is that we can then do Gibbs

sampling. Therefore we approximate a standard logistic distribution for δij by matching the

moments of a normal distribution to the moments of the standard logistic distribution so

that

δij ∼ N

(
0,
π2

3

)
. (4.6)

Finally, appending z∗ij to y∗i(j−1) and we can re-write (4.2) and (4.5) asy∗i(j−1)

z∗ij

 =

αT
βT

xi +

Λ

γT

 ξi(j−1) +

 0K

log
(∣∣tij − ti(j−1)

∣∣)
+

εi(j−1)

δij

 , (4.7)

for j ∈ 2, . . . , ni where α = (α1, . . . ,αK), showing that model (4.1) – (4.6) is equivalent to

a single larger factor model.
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4.1.2 Identification of the Parameters

From (4.7), the variance of
(
y∗Ti(j−1), z

∗
ij

)T
is

Var

y∗i(j−1)

z∗ij

 =

Λ

γT

 ξi(j−1)

Λ

γT

T

+



σ∗21 0 . . . 0 0

0 σ∗22 . . . 0 0
...

...
. . .

...
...

0 0 . . . σ∗2K 0

0 0 . . . 0 π2

3


, (4.8)

=

Λ

γT

Ω

Λ

γT

T

+

Σy 0K

0TK
π2

3

 , (4.9)

where for all j, Ω = Var (ξij) and Σy = Var (εij). Pre-multiplying ξij and post multiplying(
ΛT , γ

)T
by an orthogonal matrix leaves Var

(
y∗ij|Λ,Ω,Σy

)
unchanged, so (4.9) is unique

only up to orthogonal rotations of the factors ξij and loadings (ΛT , γ)T .

We fix the scale of the factors by setting Ω to be the P×P identity matrix IP . To remove

the remaining rotational identifiability problems, at least P (P − 1)/2 additional constraints

need to be placed on the elements of Λ. We choose a lower triangular specification for Λ,

Λ =


λ11 0 . . . 0

λ21 λ22 . . . 0
...

...
...

...

λK1 λK2 . . . λKP

 , (4.10)

and restricting the diagonal elements to be positive for λpp > 0, p ∈ 1, . . . p.

4.2 Spatio-temporal Factors

Each patient has multiple records indexed by ZCTA. To model spatiotemporal correlation

among the latent normal random variables, we decompose the factors ξij additively into a

weighted sum of independent temporal processes τij and spatial processes ψs(i,j). Define

R = diag (ρ1, . . . , ρP ), where for p ∈ 1, . . . , p, ρp ∈ (0, 1) is a weighting factor that indicates
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the relative strength of the temporal factors in comparison to the spatial factors. Then

ξij = R1/2τij + (IP −R)1/2ψs(i,j). (4.11)

We have no reason to believe a priori that the effect of the spatial and temporal factors on

each of the outcomes should be equivalent, so a priori we model

τij ∼ N (0P×1, IP ) , (4.12)

and

ψs(i,j) ∼ N (0P×1, IP ) . (4.13)

This fixes the prior variance of ξij while simultaneously allowing inference about the relative

importance of the spatial and temporal processes in predicting outcomes. Substituting (4.11)

into (4.7) givesyi(j−1)

zij

 = µij +

Λ

γT

(R1/2τi(j−1) + (IP −R)1/2ψs(i,(j−1))

)
+

εi(j−1)

δij

 , (4.14)

= µij +

 Λ Λ

γT γT

 R1/2τi(j−1)

(IP −R)1/2ψs(i,(j−1))

+

εi(j−1)

δij

 , (4.15)

= µij + Λnewξnew,i(j−1) + εnew,i(j−1), (4.16)

where

µij =

α
β

xi +

 0K

log
(∣∣tij − ti(j−1)

∣∣)
 , (4.17)

are the fixed effects plus offset in (4.14),

Λnew =

 Λ Λ

γT γT

 , (4.18)

is a (K + 1)× 2P matrix of factor loadings,

ξnew,i(j−1) =

 τi(j−1)

ψs(i,(j−1))

 , (4.19)
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is a 2P × 1 vector of factors, and

εnew,i(j−1) =

εi(j−1)

δij

 , (4.20)

is a (K + 1)× 1 vector of residuals.

Thus, equation (4.14) is equivalent to a confirmatory factor model with factors ξnew,i(j−1)

with Var
(
ξnew,i(j−1)

)
= I2P , and loadings matrix Λnew. Because we have P (P − 1)/2 con-

straints on the first P columns of Λnew and the second P columns of Λnew are constrained

to be equal to the first P , the parameters are still identified.

4.2.1 Factor Prior Distributions

Let τi =
(
τ Ti1 , . . . , τ

T
ini

)T
be the (niP )×1 collection of factor scores for patient i. Also let Hip

be an exponential decay correlation matrix with decay parameter φp for the pth temporal

factor over time, where the (j, j′) element of Hip is exp (φp|tij − tij′|) and the subscript i is

needed because each patient has a unique visit schedule. Then τi has a multivariate normal

prior,

τi ∼ N (0niP ,Στ i) , (4.21)

where Στ i is a block diagonal matrix,

Στ i =


Hi1 0 . . . 0

0 Hi2 . . . 0
...

...
. . .

...

0 0 . . . HiP

 . (4.22)

We define the distribution of the spatial factors analogously. Let ψs = (ψs1, . . . , ψsP ) be

the P vector of factor scores for ZIP code s, where s ∈ 1, . . . , S and ψ = (ψT
1 , . . . ,ψ

T
S )T be

the collection of factors over all ZIP codes. Also for p ∈ 1, . . . , P , let Gp be an exponential

decay correlation matrix with decay parameter νp for the pth spatial factor over space, where

the (j, j′) element of Gp is equal to exp
(
νp|sj − s′j|

)
and |sj − s′j| is the distance in miles
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between the centroids of ZIP codes j and j′ for j, j′ ∈ 1, . . . S. Then

ψ ∼ N (0SP ,Σψ) , (4.23)

where Σψ is a block diagonal matrix,

Σψ =


G1 0 . . . 0

0 G2 . . . 0
...

...
. . .

...

0 0 . . . GP

 . (4.24)

4.3 Prior Distributions

We choose N(0, 102) priors for intercepts αk0, k ∈ 1, . . . K, and for β0. For the factor loadings

λpp, p = 1, . . . , P on the diagonal of Λ we specify positive half standard normal priors. For

all other regression coefficients and factor loadings we choose standard normal priors. For

residual variances σ2
k we set Inverse-Gamma(4,3) priors which puts 95% of the prior mass

between 0.34 and 2.75, which is relatively uninformative on the probit scale.

For the temporal decay parameters φp, roughly 95% of patients are in the study for

between 0.25 and 5.5 years. Since Cor (τijp, τij′p) = exp (φp|tij − tij′ |) for factor p for patient

i, we want to choose a prior for φp that places appreciable mass on Cor (τijp, τij′p) > 0.05

given a |tij− tij′ | > 0.25. Choosing Gamma(2,1) priors for φp a priori sets a prior probability

of more than 99% that the Cor (τijp, τij′p) decays to less than 0.05 after 0.25 years.

Similarly, for the spatial decay parameters νp, the minimum and maximum distance

between ZCTA centroids in Los Angeles county are 0.5 and 72 miles respectively. Putting

Gamma(2, 2) priors on the νp means that Cor
(
ψs(i,j)p, ψs(i,j)p′

)
will decay to less than 0.05

between 1 mile and 25 miles with 95% prior probability. Finally, for the spatio-temporal

scale parameters ρp, we choose Unif(0, 1) priors.
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4.4 Results

We ran the model described in section 4.1 with one factor using a combination of Gibbs

sampling and Random Walk Metropolis Hastings steps using 8 chains until an effective

sample size of at least 2, 000 was reached for all parameters including the temporal factors

τij and the spatial factors ψs(i,j). Convergence between chains was checked using Geweke

diagnostics Geweke (1992), and convergence within chains was checked using Raftery and

Lewis Diagnostics (Raftery and Lewis, 1992) and Gelman diagnostics (Gelman and Rubin,

1992). No issues were found. Details of the sampler are provided in the appendix.

4.4.1 Regressions for Risk Outcomes

Covariates included in the model are indicators for race and a cubic B-spline for age at

initial visit, with knots at the quintiles. Posterior summaries of the regression coefficients

αmk,m ∈ {0, . . . ,M}, and k ∈ {1, . . . , 25} are provided in the web appendix. Generally, a

patient’s age at baseline is inversely related to the age of their partners, so younger patients

tend to have slightly older partners, and older patients tend to have younger partners.

Younger patients also tended to have more partners than older patients.

In comparison to Whites, African Americans and Hispanics had fewer partners and

slightly older partners, and were much more likely to have partners of the same race. African

Americans had lower risk of all STIs aside from Syphilis, and lower rates of all hard drug

use among the drugs we considered. African Americans were also more likely to either have

HIV positive partners or partners of unknown status. Hispanics had higher rates of STIs

and lower rates of use of most drugs aside from meth.

4.4.2 Results for One Factor Model

Posterior summaries for the factor loadings are presented in Table 4.1. Other than having

had partners of unknown HIV status or of a different race, all outcomes load substantially

and positively onto the factor except for the indicators, which suggests that the factor corre-
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sponds to a patient’s overall propensity for risky behavior. Summaries of the factor covari-

ance parameters are presented in Table 4.3. The 95% posterior interval for the weighting

parameter ρ is (0.988, 0.996), suggesting that spatial factors do not contribute much to a

patient’s overall riskiness.

Table 4.3 presents the longitudinal and spatial decay parameters φt and φs and their

associated effective ranges, defined as the distance (in miles) or time (in years) at which

the correlation decays to less than 0.05. The estimated correlation between a person’s

longitudinal factors that are one year apart is 0.72, and does not decay to 0.05 until about

nine years, which is longer than the maximum possible time between visits within the study.

The spatial correlation decays relatively rapidly, decreasing to less than 0.05 after about 10

miles. Taken together, these results suggest that a patient’s propensity for risky behavior

remains relatively constant over time, and is essentially uncorrelated with other patients

irrespective of how close they live.

Posterior summaries for the HIV regression coefficients β and γ are presented in Table

4.4. African Americans and Hispanics are at increased risk of becoming HIV positive in

comparison to whites, which is consistent with the literature. Further, a patient’s factor

score at one visit is significantly associated with whether or not they become HIV positive

by their next visit.

To evaluate the ability of our model to discriminate between seroconverters and non-

seroconverters, we take the posterior MCMC samples and for each iteration, calculate all

of the patients predicted probabilities of becoming HIV positive at their last visit. This

gives us posterior samples of each patient’s predicted probability. We then calculate a kernel

density estimate of the predicted probabilities across patients for each of the samples. The

posterior mean density and 95% pointwise confidence bands for seroconverters’ and non-

seroconverters’ predicted probabilities are presented in Figure 4.1. The two solid lines show

the pointwise mean density curve. Comparing the mean curves, the predicted probabilities

for non-seroconverters is between (0.001, 0.055) with 95% posterior probability. For non-

seroconverters, the predicted probabilities are between (0.004, 0.087) with 95% posterior

probability. So while our model predicts higher probabilities for seroconverters than non-
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seroconverters on average, there is still a large amount of overlap.

To further assess the performance of our model in discriminating between seroconverters

and non-seroconverters, Figure 4.2 plots ROC curves and 95% credible bands for models

with and without factors. For the model without factors the area under the ROC curve

(AUC) is 0.60 (95% posterior interval (0.58, 0.61)). When we include the factors into the

model, the AUC increases to 0.73 (95% posterior interval (0.71, 0.75)), which shows that the

factors substantially improve the performance of our model.

To calculate the positive predictive value (PPV), negative predictive value (NPV), sen-

sitivity, and specificity, we calculate Youden’s Index (Youden, 1950) to classify patients as

predicted seroconverters and non-seroconverters. The posterior mean (95% CI) PPV, NPV,

sensitivity, and specificity are 0.073 (0.066, 0.081), 0.982 (0.979, 0.985), 0.704 (0.636, 0.770),

and 0.51 (0.575, 0.70), respectively. Despite the relatively low specificity, we are able to

capture 75% of the total HIV cases while simultaneously maintaining reasonable assurances

that the patients we classified as being non-seroconverters are in fact overwhelmingly likely

to be non-seroconverters.

4.4.3 Results for the Two Factor Model

Posterior summaries for the factor loadings and HIV regression coefficients for the two-factor

model are presented in Table 4.2. Qualitatively, the results are very similar to the one factor

model. The key difference is that the factor loadings for the indicators of having partners

of a different race are non-zero in column two of the loadings matrix. However, the HIV

regression coefficient for factor two is tightly centered at zero, which suggests that the race

difference indicators do not predict HIV. Both of the weighting parameters ρ1 and ρ2 are

greater than 0.99 with posterior probability 1, which implies that the spatial correlation

among the factors is negligible.
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4.5 Discussion

We propose a fully Bayesian two-stage factor analysis model for spatio-temporally correlated

data. In the first stage, we reduced 25 outcomes that are known or thought to be associated

with increased risk of contracting HIV into a latent factor with temporal and spatial corre-

lation. In the second stage, we used the factor to predict a patient’s probability of becoming

HIV positive by their next visit. We show that this is equivalent to a factor model where

the factors can load on to outcomes measured at different visits.

An alternative to a factor analysis model would be to treat the K outcomes as covariates

in a regression model. One of the advantages that a factor analysis provides for this data

is that it is a parsimonious model of the correlation among outcomes within patients over

time and between patients over space. This allows us to predict HIV at follow-up visits. If

we were to directly include the outcomes into a model for HIV, we would still be able to

assess which risk factors are associated with increased risk of HIV, but we would not have a

mechanism for predicting risk at future visits.

There are several ways to extend our model. First, we assume that the spatial and tem-

poral variances are constant. Aguilar and West (2000) proposed to use stochastic volatility

modeling to model the loadings as constant over time while modeling the log of the factor

variances and error variances using an autoregressive process. Further, if it is believed that

the spatial or temporal processes are non-stationary, a Kalman filter model can also be used

to estimate the variances at each time point or each spatial location (Zuur et al., 2003). In

addition, Banerjee et al. (2014) provide a number of other non-separable spatio-temporal

processes that we can use in place of the additive specification used in this paper.

One way in which clinicians can use our results is by simply presenting patients with their

model-based estimates of contracting HIV so that they can be more informed. However, an

important point is that the model-based estimates of risk are not equivalent to a test for

HIV, so clinicians can also use these results in relatively inexpensive behavioral interventions,

including more frequent reminders to come to the clinic or counseling for high risk patients.
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Tables and Figures

Outcome1 Mean (95% CI) Loading

Log(Partners + 1) (Past 30 Days) 0.17 (0.16, 0.18)

Partner 1 Age Difference 2.85 (2.69, 2.99)

Partner 2 Age Difference 2.61 (2.44, 2.77)

Gonorrhea / Chlamydia (Past Year) 0.14 (0.11, 0.16)

Syphilis (Past Year) 0.17 (0.15, 0.22)

Herpes (Past Year) 0.17 (0.13, 0.20)

Genital Warts (Past Year) 0.13 (0.09, 0.17)

Anal Sex (Past 3 Months) 0.24 (0.22, 0.26)

Sex with IDU (Past 3 Months) 0.94 (0.85, 1.02)

Sex with HIV+ Person (Past 3 Months) 0.76 (0.72, 0.79)

Sex with Sex Worker (Past 3 Months) 0.34 (0.36, 0.43)

Ecstasy (Past Year) 0.55 (0.52, 0.59)

Meth (Past Year) 1.11 (1.06, 1.20)

Nitrates (Past Year) 0.61 (0.58, 0.64)

ED Drugs (Past Year) 0.52 (0.48, 0.56)

Cocaine (Past Year) 0.57 (0.54, 0.6)

Alcohol (Past Year) 0.07 (0.05, 0.09)

Used IV Drugs (Past 3 Months) 0.85 (0.75, 0.93)

Partner 1 HIV positive 0.64 (0.59, 0.68)

Partner 1 HIV Status unknown -0.01 (-0.04, 0.03)

Partner 1 different race 0.04 (0.01, 0.07)

Partner 2 HIV Positive 0.60 (0.55, 0.64)

Partner 2 HIV status Unknown 0.02 (0.00, 0.03)

Partner 2 different race 0.01 (-0.02, 0.03)

Intimate Partner Violence 0.26 (0.24, 0.28)

Table 4.1: Posterior summaries of loadings in one-factor model. Abbreviations: IDU means

intravenous drug user, IV means intravenous, and ED means erectile dysfunction. Partner

1 is last partner, and Partner 2 is next to last partner.
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Outcome1 Loading 1 (Mean, 95% CI) Loading 2 (Mean, 95% CI)

Log(Partners + 1) 0.127 (0.087, 0.151) -0.011 (-0.027, 0.003)

Partner 1 Age Difference 3.511 (2.946, 4.355) 0.255 (-0.144, 0.72)

Partner 2 Age Difference 3.211 (2.705, 3.957) 0.249 (-0.115, 0.669)

Gonorrhea / Chlamydia 0.082 (0.026, 0.121) -0.014 (-0.028, -0.001)

Syphilis 0.105 (0.051, 0.15) -0.008 (-0.023, 0.013)

Herpes 0.119 (0.068, 0.166) 0.027 (0, 0.055)

Genital Warts 0.101 (0.058, 0.144) 0.028 (0, 0.058)

Anal Sex Past 3 Months 0.206 (0.171, 0.232) -0.005 (-0.03, 0.02)

Sex with IDU 0.658 (0.489, 0.772) -0.003 (-0.087, 0.081)

Sex with HIV+ Person 0.613 (0.465, 0.704) 0.007 (-0.065, 0.076)

Sex with Sex Worker 0.291 (0.193, 0.361) -0.034 (-0.072, 0.002)

Ecstasy 0.377 (0.242, 0.469) 0.015 (-0.032, 0.058)

Meth 0.523 (0.251, 0.797) 0.026 (-0.05, 0.095)

Nitrates 0.44 (0.307, 0.531) 0.009 (-0.045, 0.057)

ED Drugs 0.364 (0.241, 0.448) 0.005 (-0.042, 0.048)

Cocaine 0.39 (0.252, 0.482) 0.007 (-0.041, 0.052)

Alcohol 0.021 (-0.028, 0.058) 0.003 (-0.007, 0.013)

Used IV Drugs 0.624 (0.491, 0.728) 0.013 (-0.071, 0.099)

Partner 1 HIV positive 0.532 (0.412, 0.61) 0 (-0.065, 0.061)

Partner 1 HIV Status unknown -0.01 (-0.032, 0.009) -0.022 (-0.033, -0.012)

Partner 2 HIV Positive 0.493 (0.379, 0.58) 0.002 (-0.06, 0.061)

Partner 2 HIV status Unknown 0.01 (-0.012, 0.032) -0.021 (-0.032, -0.01)

Intimate Partner Violence 0.182 (0.117, 0.227) -0.007 (-0.033, 0.015)

Partner 1 different race 0.015 (-0.037, 0.065) 0.408 (0.375, 0.439)

Partner 2 different race -0.016 (-0.07, 0.037) 0.446 (0.412, 0.479)

Table 4.2: Posterior summaries of loadings in two-factor model. Abbreviations: IDU means

intravenous drug user, IV means intravenous, and ED means erectile dysfunction. Partner

1 is last partner, and Partner 2 is next to last partner.
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Factor Type Covariance Parameters Decay Parameters Effective Range

Longitudinal σt 0.996 (0.994, 0.998) φt 0.32 (0.30, 0.35) 9.3 (8.5, 10.1)

Spatial σs 0.085 (0.060, 0.110) φs 0.29 (0.14, 0.51) 11.0 (4.9, 21.7)

Table 4.3: Factor distribution parameters and derived quantities. Effective range is in years

for longitudinal factors and miles for spatial factors, posterior mean (95% CI) for weighting

parameter ρ1 is 0.993(0.988, 0.996).
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Covariate Mean (95% CI)

Race

White REF

Black 0.34 (0.16, 0.50)

Hispanic 0.32 (0.23, 0.42)

Other 0.01 (-0.16, 0.18)

Factor Score 0.37 (0.32, 0.42)

Table 4.4: Posterior summaries of regression coefficients for HIV model. Age effects (not

shown) were small and not significant.

73



0

20

40

60

80

0.00 0.05 0.10 0.15 0.20 0.25

Predicted Probability

D
en

si
ty Seroconverted

No

Yes

Figure 4.1: Plot of posterior densities for predicted probabilities for seroconveters (light gray)

and non-seroconverters (dark gray). Solid lines are mean density for the samples at each

point, and shaded regions are 95% pointwise credible bands for the density at each point.

Probabilities calculated using each patient’s final two visit times.
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Figure 4.2: Plots of ROC curves with 95% pointwise credible bands for the model with

factors (solid line, dark grey bands) and without factors (dashed, light gray bands).
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Appendix A - MCMC Sampler Details

Let i ∈ 1, . . . , N , index patients, j ∈ 1, . . . , ni index visits, p ∈ 1, . . . , P index factors,

and k ∈ 1, . . . , K index outcomes. We use random walk Metropolis Hastings steps for the

temporal decay parameters φp, spatial decay parameters νp, and spatio-temporal scaling

factor ρ. For all other parameters including the temporal factors τij and spatial factors ψs,

we use Gibbs steps.

Let yijk be the kth outcome for patient i at visit j, and yk = (y11k, . . . , yNnNk)
T be the

vector of measurements for all patients and visits for outcome k, k ∈ 1, . . . , K, where nN is

the last visit for patient N . Let zij be a binary indicator for patient i becoming HIV positive

at visit j, and let z = (z11, . . . , zNnN
)T . Let Xi be an ni ×M covariate matrix with rows

xTij for person i, and XT = (XT
1 , . . . , X

T
N) be the full covariate matrix over all patients and

visits. For the factors at visit j, let ξ =
(
ξT11, . . . , ξ

T
1n1
, . . . , ξTNnn

)T
as a n × P matrix with

rows ξij.

Finally, define the matrix Pi as an (ni−1)×ni subsetting matrix which is the first ni rows

of the ni × ni identity matrix, and define X∗i = PiXi, X
∗ = (

⊕
i Pi)X, and ξ∗ = (

⊕
i Pi) ξ,

where A
⊕
B denotes the direct sum of two matrices A and B,

A
⊕

B =

A 0

0 B

 , (4.25)

and
⊕

i Pi denotes the direct sum over i of the matrices Pi. Then we can write the models

in (4.2) and (4.5) as

yk = Xαk + ξΛk + εk, (4.26)

εk ∼ N
(
0, σ2

kIn
)
, (4.27)

and

z = X∗β + ξ∗γ + δ (4.28)

δ ∼ N (0, In) , (4.29)
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where Λ is the K×P matrix of factor loadings with rows Λk and γ is a p vector of regression

coefficients. Thus for the regression coefficientsαk, the full conditional distributions are given

by

αk|yk,Λ, ξ, σ2
k ∼ NM

(
µ∗αk

,Σ∗αk

)
, (4.30)

µ∗αk
=

(
XTX

σ2
k

+ Σ−1
α

)−1(
XT (yk − ξΛk)

σ2
k

)
, (4.31)

Σ∗αk
=

(
X ′X

σ2
k

+ Σ−1
α

)−1

, (4.32)

where Σα = diag(102, 1, . . . , 1) is the prior covariance matrix for α. Similarly, the full

conditionals for the rows Λk of the loadings matrix Λ are truncated multivariate normal if

k ≤ P and multivariate normal if k > P ,

Λk|yk,αk, ξ, σ2
k ∼


NP

(
µ∗Λk

,Σ∗Λk

)
1 {λkk > 0} , if k ≤ P

NP

(
µ∗Λk

,Σ∗Λk

)
if k > P,

(4.33)

µ∗Λk
=

(
ξTξ

σ2
k

+ IP

)−1(
ξT (yk −Xαk)

σ2
k

)
, (4.34)

Σ∗Λk
=

(
ξTξ

σ2
k

+ IP

)−1

. (4.35)

For the regression coefficients β, the full conditionals are given by

β|yk,γ, ξ ∼ NM

(
µ∗β,Σ

∗
β

)
, (4.36)

µ∗β =
(
X∗TX∗ + Σ−1

β

)−1 (
X∗T (yk − ξ∗γ)

)
, (4.37)

Σ∗β =
(
X∗TX∗ + Σ−1

β

)−1
, (4.38)

where Σβ = diag(102, 1, . . . , 1) is the prior covariance matrix for β. For the regression

coefficients γ,

γ|yk,γ, ξ ∼ NM

(
µ∗γ ,Σ

∗
γ

)
, (4.39)

µ∗γ =
(
ξ∗Tξ∗ + IP

)−1 (
ξ∗T (yk −X∗β)

)
, (4.40)

Σ∗β =
(
ξ∗Tξ∗ + IP

)−1
, (4.41)
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To derive the full conditionals for the longitudinal factors τij, we first write the density

for yij as

f(yij|α,Λ, τij,ψs(i,j),Σy) ∝ |Σy|−
1
2 exp

{
−1

2

[(
yij −αxi − Λψs(i,j)

)
− Λτij

]T
Σ−1
y[(

yij −αxi − Λψs(i,j)
)
− Λτij

]}
., (4.42)

where α = (α1,α2, . . . ,αk)
T is a K ×M matrix of regression coefficients. Then letting τi

be an niP × 1 vector of longitudinal factors formed by stacking the ni vectors τij, we can

take advantage of the conditional independence of the yij given the factors and write the log

likelihood for y as

log L(τi|y) ∝ τ Ti
(
Ini
⊗ ΛTΣ−1

y Λ
)
τi−

2τ Ti
[
Ini
⊗ ΛTΣ−1

y

]
(
[
yTi1, . . . , y

T
ini

]T − 1ni
⊗ (αxi)− (Ini

⊗ Λ)ψs(i,.)), (4.43)

where ⊗ denotes the Kronecker product. Similarly, for seroconversion, the density for zi is

given by

f(zi|β, γ, τij,ψs(i,.)) ∝ exp

{
−1

2

[(
zi −

(
βT ⊗ 1ni

)
xi − Piψs(i,.)γ

)
− Piτiγ

]T
[(
zi −

(
βT ⊗ 1ni

)
xi − Piψs(i,.)γ

)
− Piτiγ

]}
,

(4.44)

We can write Piτiγ = (γT ⊗ Pi)τi, which allows us to write

log L(τi|zi) ∝ τ Ti
[(
γT ⊗ Pi

)T (
γT ⊗ Pi

)]
τi−

2τ Ti
(
γT ⊗ Pi

)
(zi −

(
βT ⊗ 1ni

)
xi − Piψs(i,.)γ). (4.45)

Therefore, the full conditional for τi is multivariate normal,

f(τi|y,α, λ,Σy) ∼ N
(
µ∗τi ,Σ

∗
τi

)
(4.46)

Σ∗τi =
(
Ini
⊗ ΛTΣ−1

y Λ +
(
γT ⊗ Pi

)T (
γT ⊗ Pi

)
+ Σ−1

τi

)−1

(4.47)

µ∗τi = Σ∗τi
[(
Ini
⊗ ΛTΣ−1

y

)
(y − 1ni

⊗αxi) +(
γT ⊗ Pi

) (
zi −

(
βT ⊗ 1ni

)
xi
)]
.

(4.48)
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Finally, for the spatial factors, we again take advantage of the conditional independence

of the yij and zij given all the factors, and write for s ∈ 1, . . . , S,

log L(ψs|y) ∝ ψTs (nsΛ
TΣ−1

y Λ)ψs−

2ψTs ΛTΣ−1
y

 ∑
i,j:s(i,j)=s

(yij −αxi − Λτij)

 ,
(4.49)

and

log L(ψs|z) ∝ ψTs (ns−1γγ
T )ψs−

2ψTs γ

 ∑
i,j:s(i,(j−1))=s

(zij −αxi − γT τi(j−1))

, (4.50)

where ns is the sum over i and j of records on patients living in ZIP code s, and ns−1 is the

sum over i and j − 1 of records on patients living in ZIP code s. Thus, the full conditional

for ψ is also multivariate normal

ψ|y, z,α,β,γ,Λ,Σy ∼ N
(
µ∗ψ,Σ

∗
ψ

)
, (4.51)

where

Σ∗ψ =
(
diag(ns)⊗ ΛTΣ−1

y Λ + diag (ns−1)⊗ γγT + Σ−1
ψ

)−1
(4.52)

µ∗ψ = Σ∗ψ
[(
IS ⊗ ΛTΣ−1

y

)
µψy + (IS ⊗ γ)µψz

]
, (4.53)

where

µψy =


∑

i,j:s(i,j)=1(yij −αxi − Λτij)
...∑

i,j:s(i,j)=S(yij −αxi − Λτij)

 (4.54)

and

µψz =


∑

i,j:s(i,(j−1))=1(zij −αxi − γT τi(j−1))
...∑

i,j:s(i,(j−1))=S(zij −αxi − γT τi(j−1))

 . (4.55)
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CHAPTER 5

Conclusions and Future Work

In Chapter 2, we presented a multivariate logistic regression model with spatially correlated

random effects to jointly model history of STIs, history of illicit drug use, and HIV serocon-

version by the end of the study. We then developed a statistic called the GMR to assess the

extent to which the spatial heterogeneity in HIV risk is explained by the STIs and drug use

random effects. In Chapter 3, we jointly modeled a patient’s time to HIV seroconversion and

frequency of clinic visits, and showed that if seroconversion is correlated with visit frequency

that the censoring is informative. Finally in Chapter 4, we used a spatio-temporal factor

analysis model to construct a set of measures that capture aspects of a patient’s propensity

for risky behavior. We then treated the factor scores as predictors in a model for predicting

HIV seroconversion by the time of their next visit. In the rest of this chapter, we discuss

some potential areas for further developing our methods.

5.1 Extensions to the GMR

To construct the GMR in Chapter 2, we started with a model for the random effects that

had the form

Y =
K∑
k=1

akXk + ε, (5.1)

where Y is an S×1 multivariate normal random variable, theXk are correlated S-dimensional

Gaussian processes, and ε is an S-dimensional Gaussian process independent of the Xk. We

then defined GMR = {det (Var (Y |X1, . . . ,Xk)) /det (Var (Y ))}1/S and showed that the

GMR is bounded in the interval (0, 1) and equals 1 if and only if all the ak are zero.

A more general way to construct the GMR is to start with a multivariate normal vector
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(XT
1 ,X

T
2 ) distributed as X1

X2

 ∼ N

0

0

 ,

Σ11 Σ12

Σ21 Σ22

 (5.2)

so that

X2|X1 ∼ N
(
0,Σ22 −Σ21Σ

−1
11 Σ12

)
, (5.3)

where X1 has dimension S1 and X2 has dimension S2. We can then define the GMR as

GMR =

[
det (Var (X2|X1))

det (Var (X2))

]1/S2

, (5.4)

=

[
det
(
Σ22 −Σ21Σ

−1
11 Σ12

)
det (Σ22)

]1/S2

. (5.5)

Under the construction in 5.5, the GMR is still bounded within the interval (0,1) but now

GMR = 1 if and only if Σ21 is the zero matrix.

In addition to the potential theoretical developments for the GMR, we can also examine

its behavior under a variety of models. For example, we made the claim that strictly speaking,

the GMR is not the fraction of the spatial variability in the stage two random effects that

is explained by the stage 1 random effects, because for any two positive definite matrices A

and B,

|A|
|A+B|

+
|B|

|A+B|
≤ 1. (5.6)

In (5.5), A = Σ22 −Σ21Σ
−1
11 Σ12, and B = Σ21Σ

−1
11 Σ12. Our simulations showed that under

the construction in (5.1), the left hand side of (5.6) is approximately equal to 1 under a wide

range of values for the Gaussian process variances and decay parameters, and we would like

to investigate whether this is the case under the more general construction in (5.5).

5.2 Survival Model for HIV Seroconversion Times

In Chapter 3, we modeled patients’ HIV seroconversion times as lognormally distributed

and modeled their total number of clinic visits by approximating a zero-truncated Poisson
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process with a non-truncated Poisson process. We model correlation between seroconversion

times and clinic visit frequency with correlated frailties. The main reason for approximating

the zero-truncated Poisson distribution with a non-truncated Poisson distribution was to

analytically evaluate the marginal correlation between survival and clinic visits, but if we

instead model clinic visits as an exact zero-truncated Poisson process, we can still approx-

imately calculate the marginal correlation between survival and clinic visit frequency with

the MCMC samples. This would also make the simulations match exactly the model that

we are using to fit the data.

We also want to extend the survival portion of the model by considering other parametric

distributions such as Weibull or log-logistic. The interval-censoring will still be informative if

the survival times are correlated with clinic visits, and we can compare different distributions

to determine which one fits the data best, and under which distribution or distributions the

interval censoring is most informative.

5.3 Generalizing the Factor Model

In the factor model in Chapter 4, we modeled all outcomes, including HIV serostatus, as

functions of latent normal random variables. One of the outcomes we considered was the

log of a patient’s number of partners in the last month. Because this is a count outcome, it

may be more appropriate to model it as a Poisson or Negative Binomial random variable.

More generally, instead of treating yijk as a function of a latent normal random variable,

where yijk is outcome k for patient i at visit j, we would like to consider more general models

of the form

gk(E [yijk]) = xTijαk + ΛT
k ξij, (5.7)

where xij is a covariate vector allows for time-varying covariates, gk is a link function, αk are

regression coefficients, Λ is a loadings matrix with rows ΛT
k , and ξij are factors. This more

general model structure for the factors is nice because it allows the yijk to come from any

member of exponential family distributions. It may be the case that this negatively impacts
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the autocorrelation of the factors and loadings. Ghosh and Dunson (2009) used parameter

expansion to improve the mixing of a factor model with all normal outcomes, and we could

potentially extend their methods to the more general model in (5.7).
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Gómez, G., Calle, M. L., Oller, R., and Langohr, K. (2009). Tutorial on methods for interval-

censored data and their implementation in R. Statistical Modelling 9, 259 – 297.

Grinsztejn, B., Hosseinipour, M. C., Ribaudo, H. J., Swindells, S., Eron, J., Chen, Y. Q.,

et al. (2014). Effects of early versus delayed initiation of antiretroviral treatment on clinical

outcomes of HIV-1 infection: results from the phase 3 HPTN 052 randomised controlled

trial. The Lancet Infectious Diseases 14, 281 – 290.

Grover, G., Swain, P. K., Deo, V., and Varshney, M. K. (2015). A joint modeling approach to

assess the impact of CD4 cell count on the risk of loss to follow up in HIV/AIDS patients

on antiretroviral therapy. International Journal of Statistics and Applications 5, 99 – 108.

Hao, J. and Krishnamoorthy, K. (2001). Inferences on a normal covariance matrix and

generalized variance with monotone missing data. Journal of Multivariate Analysis 78,

62 – 82.

Hedeker, D., Mermelstein, R. J., and Demirtas, H. (2008). An application of a mixed-

effects location scale model for analysis of ecological momentary assessment (EMA) data.

Biometrics 64, 627 – 634.

Hu, Z., Wong, C., Thach, T., Lam, T., and Hedley, A. (2004). Binary latent variable

modelling and its applicationin the study of air pollution in hong kong. Statistics in

Medicine 23, 667 – 684.

87



Huang, X. and Liu, L. (2007). A joint frailty model for survival and gap times between

recurrent events. Biometrics 63, 389 – 397.

Iliopoulos, G. and Kourouklis, S. (1999). Improving on the best affine equivariant estimator

of the ratio of generalized variances. Journal of Multivariate Analysis 68, 176 – 192.

Konomi, B., Karagiannis, G., and Lin, G. (2015). On the Bayesian treed multivariate

Gaussian process with linear model of coregionalization. Journal of Statistical Planning

and Inference 157, 1 – 15.

Król, A., Ferrer, L., Pignon, J.-P., Proust-Lima, C., Ducreux, M., Bouché, O., Michiels,

S., and Rondeau, V. (2016). Joint model for left-censored longitudinal data, recurrent

events and terminal event: Predictive abilities of tumor burden for cancer evolution with

application to the FFCD 2000 – 05 trial. Biometrics 72, 907 – 916.

Liang, Y., Lu, W., and Ying, Z. (2009). Joint modeling and analysis of longitudinal data

with informative observation times. Biometrics 65, 377 – 384.

Liu, L., Huang, X., and O’Quigley, J. (2008). Analysis of longitudinal data in the presence

of informative observational times and a dependent terminal event, with application to

medical cost data. Biometrics 64, 950 – 958.

Lopes, H. F., Gamerman, D., and Salazar, E. (2011). Generalized spatial dynamic factor

models. Computational Statistics & Data Analysis 55, 1319 – 1330.

Lopes, H. F., Salazar, E., and Gamerman, D. (2008). Spatial dynamic factor analysis.

Bayesian Analysis 3, 759 – 792.

Luttinen, J. and Ilin, A. (2009). Variational Gaussian-process factor analysis for modeling

spatio-temporal data. In Advances in Neural Information Processing Systems, pages 1177

– 1185.

Ma, Z. and Krings, A. W. (2008). Multivariate survival analysis (i): shared frailty approaches

to reliability and dependence modeling. In Aerospace Conference, 2008 IEEE, pages 1 –

21. IEEE.

88



Marcus, M. and Minc, H. (1992). A Survey of Matrix Theory and Matrix Inequalities,

volume 14. Courier Corporation.

Martins, R., Silva, G. L., and Andreozzi, V. (2016). Bayesian joint modeling of longitudinal

and spatial survival AIDS data. Statistics in Medicine 35, 3368 – 3384.

Mathai, A. (1972). The exact distributions of three multivariate statistics associated with

wilks’ concept of generalized variance. Sankhyā: The Indian Journal of Statistics, Series
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