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ABSTRACT

Concerns regarding inappropriate leakage of sensitive personal information as well as unauthorized data use

are increasing with the growth of genomic data repositories. Therefore, privacy and security of genomic data

have become increasingly important and need to be studied. With many proposed protection techniques, their

applicability in support of biomedical research should be well understood. For this purpose, we have organized

a community effort in the past 8 years through the integrating data for analysis, anonymization and sharing con-

sortium to address this practical challenge. In this article, we summarize our experience from these competi-

tions, report lessons learned from the events in 2020/2021 as examples, and discuss potential future research

directions in this emerging field.
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BACKGROUND

As sequencing technology advances, the cost of short-read sequenc-

ing at greater depth and higher sensitivity has been significantly

reduced, and personalized whole genome sequencing analysis is

becoming increasingly affordable.1 As human genome data are cur-

rently available to a limited group of researchers, sharing these data

with the broader scientific community may help accelerate discov-

eries and decrease disparities in access. At the same time, privacy

and security concerns regarding inappropriate leakage of sensitive

personal information or unauthorized data access will increase. For

example, recent incidents such as the SolarWinds flaw2 allow

attackers to bypass authentication and obtain sensitive data such as

patients’ genomes. The impact of such attacks would be (1) deep:

for example, attackers may be able to find a person’s ancestors and

may try to link to additional data and predict an individual’s health

issues; (2) wide: for example, hackers can link the information to
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the person’s family members; and (3) permanent: the leaked data

will be indelible and cannot be retracted.

It is natural that most genomics researchers focus on genome

data analysis methods, with only a much smaller community of

computer scientists and informaticians working on the preservation

of privacy. Given the rapid growth of genomic data and related

analysis techniques, genome privacy (ie, information leakage)3 and

security (ie, unauthorized data access)4 have become increasingly

important,5 not only for protecting patients’ sensitive biometric data

and complying with regulations (eg, Health Insurance Portability

and Accountability Act,6 General Data Protection Regulation,7 and

others) but also for supporting biomedical research.

Both genome privacy and security have been attracting great

attention in the past decade, across multiple disciplines such as

Genetics/Heredity, Biotechnology, Microbiology, and Medical

Informatics, as shown in Figure 1 [data collected from the Web of

Science (WOS)8] These categories are predefined by the WOS, and

the counts indicate the number of papers in each category. The sta-

tistics are presented as a Tree Map Chart.

The rest of this article is organized as follows: we first summarize

our prior conference results and impact on the community in the

“The Integrating Data for Analysis, Anonymization and Sharing

Community Effort for Practical Privacy, and Security Protection”

section, followed by a competition topic introduction and analysis

in the “Topics and Methods” section. We then use the competitions

in 2020 (“Lessons Learned from the 2020 iDASH Competition” sec-

tion) and 2021 (“Lessons Learned from the 2021 iDASH Compet-

ition” section) as examples to demonstrate in detail what scientific

results were produced. Finally, we discuss potential future trends in

the “Anticipated Future Research Trends” section and conclusions

in the “Conclusion” section.

THE INTEGRATING DATA FOR ANALYSIS,
ANONYMIZATION AND SHARING COMMUNITY
EFFORT FOR PRACTICAL PRIVACY AND
SECURITY PROTECTION

Computer scientists and informaticians strive to develop practical

and rigorous privacy and security methods to help human genome

researchers protect sensitive data. In an ideal setting, we would be

equipping researchers with tools that tune the amount of data pro-

tection according to consent, trust in the data recipient, as well as

intended use. However, such tools are not yet ready and much needs

to be done to develop, implement, and test systems that rely on spe-

cific privacy protection techniques. A thorough evaluation of the

usefulness of existing privacy and security techniques that are appro-

priate for the biomedical context becomes critical. Although there

have been surveys9–11 on the protection of privacy and security for

genomic data analysis and sharing, most of them focus on theory.

The research community needs practical benchmarking datasets that

can be used for comprehensive evaluation of privacy and security

techniques in real-world applications. Without direct comparisons

of different methods in real-world scenarios, we cannot effectively

evaluate their capabilities and understand their limitations. Both

methods and technology are evolving fast, so what could be consid-

ered not feasible just a few years ago may now be ready for real-

world applications. To narrow the gap between theory and practice,

we initiated in 2012 the integrating data for analysis, anonymization

and sharing (iDASH) consortium,12 which has become a premier

biomedical privacy and security annual workshop where teams

present their solutions to carefully selected problems in genome pri-

vacy and security. Specifically, we built a community focusing on

the connection of both theoretical and practical aspects of genome

privacy and security. Our goal is to promote the development of

novel and practical protection methods to deal with the critical and

emerging privacy and security challenges in human genomic

research. Our competitions evaluate creative privacy and security

methods with real genomic analysis tasks.

TOPICS AND METHODS

The first step to initiate the community efforts is to determine a set

of highly relevant and critically needed gnomic privacy/security

research topics. During the process of data analysis across multiple

institutions, there are several possible ways to share information,

within which our topics lies (a glossary is shown in Table 1):

1. Sharing raw data. The most straightforward way is to share the

raw data across institutions. However, patient data are too sensi-

tive to be shared directly without any protection due to privacy

concerns and associated institutional data sharing policies.

Therefore, possible methods to enhance data protection during

the data sharing process include data perturbation (eg, adding

noise to the data) to avoid sensitive information leakage (pri-

vacy-preserving data sharing13) encrypting and outsourcing the

computation to a trusted third party [secure outsourcing,14

homomorphic encryption (HE),14–20 and encryption testing15]

linking patients across different institutions without using sensi-

tive data (deduplication16) hardware-supported secured analysis

(software guard extensions16,18,19 and privacy-preserving

machine learning (ML)18–20) encrypting queries and databases

for genomic data (secure search17) and adopting a decentralized

architecture to avoid central-server risks such as single point of

failure (blockchain and smart contract17,18,20)

2. Sharing intermediate analysis results but not the raw data.

Another possible way is to share partially summarized data (ie,

intermediate results) among institutions, to allow joint analysis

without sharing the raw (ie, observational level) data directly.

However, designing the computational algorithms to allow

intermediate result sharing without leaking patient-level data

can be challenging. Therefore, we focused on topics related to

algorithm developing, such as secure collaboration,14,18–20

secure multiparty computation,14–18 privacy-preserving search,15

and secure ML.18

3. Sharing only the final analysis results. Yet another way is to only

share analytical results. However, there might still be privacy

concerns (eg, exposing more information than expected by the

differential privacy (DP) criterion with a small privacy budget),

which occurs in particular when the sample size is small that the

patients’ information can be “reversed engineered” from the

shared final results. Plausible methods to mitigate the risk

include anonymizing genome-wide association studies (GWAS)

and genome sequence comparison results (secure release13) and

randomly flipping query results to avoid patients’ information

being inferred from repeated queries (eg, through the beacon

service15)

We summarize topics associated with privacy and security tech-

niques in each track of the iDASH competitions in Table 2. Most of

these 15 topics have only been emerging at the time of competition,

but most of them are now recognized to be important by the scien-
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Figure 1. Publication categories for genome privacy (top panel) and security (bottom panel), using statistics from Web of Science8 on December 14, 2021.
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tific community. This can be shown in our publication and citation

analysis (Figure 2). We observe an upward trend, with the top 5 (in

terms of publications) being blockchain, smart contracts, secure

ML, secure search, and secure outsourcing through HE. We also

present the years in which the iDASH competition selected a partic-

ular topic, showing that our community efforts were timely and in

line with current research and development directions. Also, our

competition was organized while many papers in these topics were

being published, thereby allowing us to take advantage of the grow-

ing interest in genome privacy and security as emphasized by

iDASH. To provide more details about the outcomes and lessons

learned from our competition, we use the most recent competitions,

organized in 2020 and 2021, as our examples.

To benchmark and evaluate these important topics, we organ-

ized, with the participation of community members from all over

the world, eight annual iDASH competitions (2014–2021), aimed

at tackling state-of-the-art privacy and security challenges. Each

competition contained two to four different tracks (as shown in

Table 1. Glossary of topics for iDASH competitions

# Topic Description and references

1 Privacy-preserving data sharing Allow differentially private federated data analysis with fragmented data from distrib-

uted sources21

2 Secure release Support differentially private data release with mitigated risks of information leakage22

3 Secure outsourcing Delegate data storage and analysis on untrusted third party servers23,24

4 Homomorphic encryption Support encrypted operations to match the plaintext operation with advanced crypto-

graphic techniques, without leaking information25,26

5 Secure collaboration Collaboration among two or more parties to perform a computation jointly, without

sharing their own raw data27

6 Secure multiparty computation Cryptographic techniques to perform computation jointly by two or more parties on

encrypted data28

7 Beacon service Evaluation of a human genomic data sharing service developed by the GA4GH to check

whether a human genomic dataset contains a genome with a specific variant (nucleo-

tide) at a specific chromosomal location29

8 Privacy-preserving search Support for the calculation of distances between two genome sequences, without reveal-

ing variants30

9 Encryption testing Allowing genetic testing on encrypted data and results that can only be decrypted by

data owners who have the secret key

10 Deduplication Removal of duplicate records in a database31

11 Software guard extensions Application of isolation techniques developed by Intel hardware to protect data in use32

12 Secure search Identification of a query record in an encrypted database33

13 Blockchain and smart contract Distributed ledger technology that allows both decentralized sharing of data (block-

chain34–36) and code (smart contracts37–39)

14 Secure machine learning Building of machine learning models from encrypted data40–42

15 Privacy-preserving machine learning Execution of plaintext models on encrypted data to preserve data privacy43–47

iDASH: integrating data for analysis, anonymization and sharing.

Table 2. Topics for iDASH competitions, by year13–20

# Topic 2014 2015 2016 2017 2018 2019 2020 2021

1 Privacy-preserving data sharing X

2 Secure release X

3 Secure outsourcing X

4 Homomorphic encryption X X X X X X X

5 Secure collaboration X X X X

6 Secure multiparty computation X X X X X

7 Beacon service X

8 Privacy-preserving search X

9 Encryption testing X

10 Deduplication X

11 Software guard extensions X X X

12 Secure search X

13 Blockchain and smart contract X X X

14 Secure machine learning X

15 Privacy-preserving machine learning X X X

iDASH: integrating data for analysis, anonymization and sharing.
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Supplementary Table ST1), and the iDASH consortium generated

40 publications13–17,21–26,30,40–67 from 23 tracks. These papers

have been cited 1491 times (max¼137, min¼3, median¼29.5,

average¼37.3) as of April 2022,68 demonstrating the impact of

the competition on the field (a diagram of the total citations, as

well as the citations per year published, is shown in Supplementary

Figure SF1). Two meetings were virtual, while the others were

scheduled right before or after a relevant conference in a particular

city (so we referred to them as being “colocated” with a confer-

ence). Participants were mainly from North America in 2014,

while in 2021 the community had expanded to multiple conti-

nents, representing an ever-growing, world-wide group of

researchers whose focus is on tackling practical genome privacy

and security issues. Particularly, the following three regions have

demonstrated strong interest in this field: North America, Europe,

and Asia.

Figure 2. General trends in scientific publications and citations for iDASH competition topics. The data source is WOS8 as of December 14, 2021. We also show

the years (shaded boxes) in which the iDASH competition focused on a particular topic, showing that our community efforts are timely and in line with these

research topics.13–17 In general, the trends are upwards in both publications and citations, with the largest numbers for blockchain and smart contracts (topic #

13), secure machine learning (topic # 14), secure search (topic # 12), homomorphic encryption (topic # 4), and encryption testing (topic # 9). Citations and publica-

tions for Software Guard Extension seem to be trending down. iDASH: integrating data for analysis, anonymization and sharing; WOS: Web of Science.
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LESSONS LEARNED FROM THE 2020 iDASH
COMPETITION

The iDASH community effort has promoted pragmatic privacy

research in key biomedical areas; it has been producing new and

promising results that enable practical biomedical data protection at

rest or in use. For example, in 2020:

• In track 1 (Secure multilabel tumor classification using HE), we

observed that most teams were utilizing linear/logistic regression

models to implement cancer classifiers. These models had been

improved significantly over the years through the HE competi-

tion, and HE is quite scalable and efficient now. The top solu-

tions achieved a micro-Area Under the receiver operating

characteristic Curve (micro-AUC, a measure for multilabel classi-

fication69) of �0.97 to classify 11 cancer types from encrypted

genetic variants of 909 samples, within 5 minutes. These results

show the feasibility of applying plaintext ML models to

encrypted data for secure classification within acceptable time.
• In track 2 [Privacy-preserving clustering of single-cell transcrip-

tomics data in Software Guard eXtension (SGX)], we observed

that two submission teams achieved comparable accuracy for

Clustering through Imputation and Dimensionality Reduction

algorithms70 when running on up to 10 000 single-cell sequences.

However, the computing overhead of the best-performing solu-

tion increased 5 times for the input of 3000 cells up to over 20

times for the input of 10 000 cells, indicating that there is still

plenty of room for further improvement to reduce the computa-

tion overhead of the SGX-based algorithms. These results suggest

that the implementation of clustering algorithms for single-cell

RNA-seq data on SGX is efficient on a moderate single-cell data-

set but is still not efficient enough for large datasets.
• In track 3 (Differentially private federated learning for a cancer

prediction model), we were impressed by the innovative solu-

tions, which achieved almost perfect model accuracy while

enforcing a high DP standard (ie, DP with a privacy budget of

3.0 or lower). The training process of the best-performing solu-

tion was very fast, comparable with the efficiency of training an

ML model on all data, unprotected, by a single party. These

results suggest that the federated learning methods have

advanced significantly in the past few years and could be ready

for practical applications in biomedical research today.

LESSONS LEARNED FROM THE 2021 iDASH
COMPETITION

Another set of examples comes from our competition in 2021:

• In track 1 (Data sharing consent for health-related data using

contracts on blockchain), we found that it was feasible to store

patients’ willingness to share their digital health records in seven

categories (demographics, mental health, biospecimen, family

history, genetic, general clinical information, and sexual/repro-

ductive health) for a given clinical/genomic study on blockchain,

at up to �6800 records per hour (or �1.889 records per second).

These results show that this emerging blockchain and smart con-

tract technology has improved over past years and could become

increasingly feasible in supporting real-world applications (eg,

recording patients’ data sharing consents), without requiring

high-throughput storage.
• In track 2 (HE-based secure viral strain classification), the per-

formance of the solutions was highly impressive. Almost all

teams did very well in classification performance (many reported

micro-AUC >0.99), indicating that secure viral strain classifica-

tion was a highly practical task. There was large variability for

the time cost in the secure computation, ranging from a few sec-

onds to hours. The best solutions balanced the computation

involved in all steps (preprocessing, key generation, encryption,

classification, and decryption), and optimized computational

costs to classify four SARS-CoV2 viral strains from 2000 homo-

morphically encrypted genomes within a few seconds. These

results are highly encouraging for the practical use of HE to safe-

guard data privacy in high-performance classification models (eg,

deep learning) for viral strain identification.
• In track 3 (Confidential computing), we observed that federated

learning algorithms submitted by participating teams were very

efficient (ie, produced results within a minute) in training an ML

model jointly by two parties (with each holding their individual

training datasets). The task was to predict the potential risk of

wild-type transthyretin amyloid cardiomyopathy from thousands

of features extracted from electronic health records (EHRs).

These solutions achieved comparable accuracy, and the ML

model trained directly on the joint datasets under DP with a

required protection level, ensuring that no private information in

the EHR held by one party was leaked to the other party during

the learning process. These evaluation results suggest that effi-

cient DP-based algorithms could be used to build ML models

from distributed training sets with satisfactory accuracy.

ANTICIPATED FUTURE RESEARCH TRENDS

We identify the following five directions of future genomic privacy

research, which represent the emerging challenges that we plan to

explore in the future competitions:

1. Combining federated learning and secure computing. There are

some recent trends in this direction to combine the strength of

both techniques to achieve better performance and a stronger

privacy guarantee. Multikey HE71,72 is an example in which HE

and secure multiparty computation can crossfertilize to improve

efficiency and reduce the memory footprint in federated learning.

Another example is the combination of DP and HE to enable a

“refreshed” calculation of gradient with mitigated privacy and

the development of a DP global ML model.73 A challenge for

these hybrid solutions is the unification of security standards so

that the overall security will not be lowered by the least secure

component in the combined architecture. This is a very active

area of research, and we expect highly innovative models to be

developed.

2. Efficient training and evaluation of deep learning models on

encrypted genomic data. We observe that many secure opera-

tions on encrypted genomic data, which were originally consid-

ered to be purely theoretical, have become more practical for

real deployment.74 For example, recent work on secure genome

imputation67 demonstrates that well-optimized HE-based regres-

sion models can meet the time and memory requirements that

are comparable to or lower than those of nonsecure methods.

We believe that this is just the beginning of a new era of secure

deep learning on encrypted genomic data and that the commun-

ity will witness the emergence of new models that are highly

secure and efficient. Despite exciting progress, there are still

many challenges in making encrypted genomics data analysis

practical and scalable. HE algorithms are not friendly to high-
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order polynomials, and efficient implementation requires a deep

understanding of parallelization. We will focus on closing the

technology gap in future competitions by designing challenges

related to these issues to push the front of encrypted genomic

data analysis with state-of-the-art deep learning models.

3. Trusted hardware/software combinations. Recent studies show

that the hybrid approaches that combine hardware (eg, SGX)

and software (eg, HE and secure multiparty computation) offer

efficient solutions to genomic data analyses. For example,

SAFETY75 and DyPS76 are hybrid computational frameworks to

perform secure GWAS on distributed genomic datasets using HE

and SGX techniques. Kockan et al77 developed an approxima-

tion algorithm to accelerate a secure GWAS algorithm running

in SGX that achieves comparable accuracy and efficiency to

those of nonsecure counterparts. Bomai et al78 developed

another hybrid approach combining multikey HE and SGX for

GWAS and human genome computing. Widanage et al79 devel-

oped an SGX-based big-data analytics workflow HySec-Flow,

which showcases privacy-preserving genomic computing tasks

such as reads’ alignment. The future challenges along the direc-

tion include the extension of the approaches to emerging hard-

ware architectures for confidential computing, such as Intel’s

Trust Domain eXtension80 and AMD’s Secure Encrypted Virtu-

alization,81 and the development of novel approaches that com-

bine the hardware and software solutions to achieve stronger

data protection and better performance for privacy-preserving

genomic data analyses.

4. Distributed database and secure computing using smart con-

tracts. Recent studies proposed to adopt smart contracts for con-

sent management in genomic data sharing,82 COVID-19 data

tracking,83 clinical X-ray image storing,84 and biomedical train-

ing certificate recording.85 As blockchain technology becomes

more mature, we anticipate more genomic/biomedical applica-

tions to be proposed and developed. That said, the scalability of

blockchain is still considered a bottleneck for large-scale data

storage. Therefore, we plan to focus on performance improve-

ment when designing future competition tasks on this topic.

5. Use of genome privacy technologies to support Ethical, Legal

and Social Implications (ELSI) research. Novel genome privacy

technologies can serve as enablers to circumvent ELSI barriers to

support data sharing and federated learning. For example,

researchers are implementing HE and DP within Informatics for

Integrating Biology and the Bedside framework86 to enable an

efficient privacy-preserving explorer for genetic cohorts. Secure

multiparty computing models have been developed to enable

privacy-preserving drug-target interaction protocols87 and large-

scale GWAS analysis.3 We expect that future research in

genomics privacy will be more tightly connected to ELSI require-

ments (specifically, to understand the emerging ELSI issues) and

provide novel technology solutions to support scientific discov-

eries.

CONCLUSION

Our efforts to organize competitions and workshops to address

practical privacy and security topics for genomic data analysis have

created a solid global community, attracted interest from interdisci-

plinary teams around the world, and pushed the frontier of safe-

guarding patient data while advancing genomic research. Although

the biomedical and healthcare privacy community is still small and

iDASH competitions have started less than a decade ago, the

impacts of our competitions/workshops start to become prominent

with the citations generated by the 40 papers related to our com-

munity efforts in the past 8 years. From these experiences, we

learned that such a community-driven approach could attract more

researchers to devote themselves to genomic privacy and security

research. We plan to continue this endeavor to grow the interna-

tional community and facilitate biomedical privacy and security

studies. In the 2022 iDASH competition, for example, we are focus-

ing on four emerging topics:88 (1) blockchain-based recording of

human subjects’ compliance training certificates, (2) secure model

evaluation on homomorphically encrypted genotype data, (3) confi-

dential computing for clustering single-cell transcriptomics data,

and (4) secure record linkage. Using cutting-edge technology, theo-

retical developments and practical implementations can be inte-

grated to provide highly deployable solutions that improve privacy

protection and security for genomic data analysis and sharing. Spe-

cifically, we suggest that the following mature technologies can

readily be implemented and even deployed today by entities stew-

arding genomic data: secure genome imputation, homomorphic

encrypted GWAS, secure ancestry inference for admixed popula-

tions, ML-based confidential-computing for disease prognosis,

secure single-cell data analyses, and polygenic risk score.89
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