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The cell mechanical phenotype is a useful measure to understand cell identity and state.

Cell mechanical properties such as deformability can provide an understanding of cellular

processes or intracellular composition without direct labeling. The cell nucleus is a signifi-

cant component of the cell and it is useful to understand how it impacts cell deformability.

However, high throughput methods to measure cell deformability largely cannot directly

integrate nuclear information. Here we present fluorescent imaging deformability cytome-

try (FI-DC), a high throughput platform capable of measuring cells in flow at 0.5 m · s−1,

while providing simultaneous brightfield and fluorescent images. This technology enables

us to identify cell subpopulations by their nuclear structure, as well as identify neutrophils

undergoing neutrophil extracellular trap (NET) generation.
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To Grammie and Grampie

We choose to go to the moon.

We choose to go to the moon in this decade and do the other things,

not because they are easy, but because they are hard . . .

– John F. Kennedy

September 12, 1962

Rice University

Houston, TX
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Li M, Muñoz HE, Goda K, & Di Carlo D. Shape-based separation of microalga Euglena

gracilis using inertial microfluidics. Scientific Reports (2017).
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CHAPTER 1

Introduction

Biological research has largely focused on gene and protein expression of cells, which provide

fine scale details of processes in cells. Mechanical phenotyping has emerged as a method

to measure mechanical properties of cells, specifically, the cells’ deformability or stiffness

under an applied load [1]. Mechanical phenotyping provides an integrative picture of the

composition and organization of cells, as it may be affected by the cytoskeleton, nucleus, cell

membrane, or other organelles. This form of phenotyping is attractive over other traditional

methods in that it generally does not require cell labeling and is mostly non-destructive.

Mechanical phenotyping has been used to determine cell identity or disease state including

changes in cell cycle [2], leukocyte activation [3], cancer malignancy [4], and cell differenti-

ation [5, 6]. There are many methods to measure cell deformability including atomic force

microscopy (AFM) [7], passing cells through constrictions [8], or deforming cells hydrody-

namically in microfluidic devices [5, 2]. All these methods measuring cells are inherently

measuring single cells, which provides granular details that may reveal cell heterogeneity,

which may otherwise be lost when measuring properties at the tissue level. Newer microflu-

idic methods often provide high throughputs, which makes it easier to measure more cells,

and understand the topology of the cells’ mechanical properties.

While some deformability methods indirectly measure cells via changes to frequency [9]

or current [10], many of these methods utilize high speed video or images for analysis. Using

images to assess deformability provides rich data that can be used to completely understand

cell shape, size, texture, and other morphological properties.

While mechanical phenotyping often aims to be label-free, there is value in understanding
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how measured cell deformability relates to intracellular composition or gene and protein

expression levels. Recent work has sought to bridge this gap in deformability cytometry by

providing fluorescence integration, although this does not provide fluorescent images [11, 12].

This follows a trend in improvements in fluorescence imaging flow cytometry [13, 14, 15].

To date, high speed cell deformability methods have been unable to leverage conventional

fluorescent imaging due to restrictions in fluoresce image integration time, but new, novel

approaches can address this. Incorporating more imaging information, by adding brightfield

and fluorescence images when possible will give us a more complete understanding of cell

mechanical phenotyping assays.

These advances can be useful in investigating neutrophils, which undergo largescale in-

ternal reorganization when creating neutrophil extracellular traps (NETs) [16]. In addition

to neutrophils’ traditionally understood role in the immune system, it is now understood

that they also create NETs, composed of their own chromatin, which serves to trap and kill

pathogens. During this process, the neutrophil’s chromatin decondenses and fills the cell as

its nuclear envelope breaks down, before being released extracellularly with antimicrobials.

Utilizing fluorescence enable cell deformability can enable us to understand how the cells’

deformability changes in relation to the internal alterations. Identifying cells by their de-

formability may be useful in assessing pathogen load, or for future study, after sorting in

flow.
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CHAPTER 2

Single-cell analysis of morphological and metabolic

heterogeneity in Euglena gracilis by fluorescence

imaging flow cytometry

2.1 Introduction

A grand challenge facing the world today is the depletion of fossil fuels, which are finite,

non-renewable, and environmentally harmful. As alternatives to petroleum-based diesel fuel,

biofuels produced by microalgae with energy-rich lipids are a promising solution [1, 2]. In

comparison with other traditional terrestrial biofuel feedstocks, such as oil crops and plants,

microalgae offer many potential advantages, including relatively higher lipid productivity

[3], no need for arable land [4], control of water pollution [5], and a viable drop-in equivalent

fuel product [6]. Moreover, microalgal biomass is rich in a variety of valuable nutrients

including vitamins, proteins, amino acids, and essential trace minerals, which have already

been utilized for dietary supplements, animal feeds, fertilizers, and biomaterials [7, 8].

Euglena gracilis (E. gracilis), a single-celled eukaryotic microalga, has been actively in-

vestigated as a production source for biofuels and biomass because of many beneficial traits.

E. gracilis has been shown to efficiently accumulate neutral lipids (primarily wax esters) [9]

that could be used for the production of lipid-based biodiesel and jet fuel, along with as

many as 59 types of nutrients, such as β-carotene, paramylon (β-1,3-glucan), vitamins C

and E, and Omega-3c [10, 11].

Unicellular microalgae (including E. gracilis) are highly diverse in terms of morphology,
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and metabolite formation (metabolism). They have distinct and multiple endosymbiotic

events, leading to substantial morphological and metabolic diversity. The size and shape

of a cell in a given species can vary dramatically depending on the phase of the growth

cycle (i.e. lag, exponential and stationary), biological clock proteins, and the conditions

for photosynthesis versus respiration [12]. Moreover, these cells change shape [13, 14] and

intracellular metabolite content [15, 16] in response to environmental conditions, such as

exposure to light or changing pH. Due to the diversity and abundance of microalgae, it is

essential to investigate large numbers of individual cells for the characterization of metabolite

productivity at the population level as well as variations and divergence within populations.

Current analysis modalities have been limited in ability to characterize rare subpop-

ulations of microalgae or incorporate morphological features in phenotypic stratification.

Conventional analytical tools, such as thin-layer chromatography (TLC) [17], liquid chro-

matography tandem-mass spectrometry (LC-MS/MS) [18], gas chromatography-mass spec-

trometry (GC-MS) [19], are unable to characterize the heterogeneity within a population,

and only assay the average phenotype, rather than identifying unique subpopulations or

outlier cells. The number of cells needed for these analyses is in the range of 5 × 105-

106 cells per sample, making it practically useless for the analysis of rare subpopulations.

Moreover, these techniques involve extraction and chromatographic analysis of bulk sam-

ples, which are relatively time-consuming and labor-intensive. Although mass spectrometry

imaging (MSI) [20], fluorescence microscopy [21], and Raman scattering microscopy [22, 23]

could aid in profiling cellular morphological variations and intracellular molecular distribu-

tions, the throughput limits their application to rapidly assay a large number of cells. The

large integration times for fluorescence acquisition with standard CMOS cameras also is pro-

hibitive in obtaining non-motion-blurred images for highly motile cells such as E. gracilis.

Flow cytometry (FC) [24] and fluorescence-activated cell sorting (FACS) [25] are widely

used tools for high-throughput analysis of single mammalian cells, but they cannot provide

morphological or molecular localization information achievable with intracellular imaging,

which may impose limitations in characterizing accumulation of metabolites per biomass of
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cells, for example. Previous work to perform IFC on E. gracilis utilized optical time-stretch

microscopy, which provided bright field images and fluorescence values, but not fluorescence

images [26] .

To overcome the limits associated with conventionally used analytical tools, it is impera-

tive to develop more information-rich approaches that can evaluate algae lipid productivity

or other metabolite productivity per biomass in a high-throughput and multiparametric

manner, and at the single-cell level. Fluorescence imaging flow cytometry (FIFC) combines

speed, statistical power, and fluorescence sensitivity of standard flow cytometry with both

spatial and temporal resolution and quantitative morphology of digital microscopy, which

is capable of reflecting cell-to-cell variability, and at the same time unraveling the complex-

ity and interdependence of cellular components in the individual cells of a heterogeneous

population.

Fluorescence Imaging using Radiofrequency-tagged Emission (FIRE) [27] is one of the

fastest techniques that have been developed to speed up the acquisition of fluorescence im-

ages with the dynamic range and sensitivity of a photomultiplier tube (PMT). By using the

beating of digitally synthesized optical fields to map the image into the radiofrequency spec-

trum, FIRE imaging enables over-kilohertz frame rate in fluorescence microscopy. Although

FIRE operates at a throughput similar to what is possible with high-speed brightfield imag-

ing flow cytometry based on serial time-encoded amplified microscopy (STEAM) [28], it is

equipped with additional capabilities to quantitatively characterize intracellular metabolites

and biomolecules, i.e. lipid droplets (LDs) and pigment autofluorescence such as chlorophyll,

which has peak emission spectra ranging from 682-731 nm [29], and carotenoids [30].

Here, we use FIRE imaging in a hydrodynamic flow cytometric sample delivery format

to analyze microalgae with a high spatial resolution, simultaneously acquiring two fluores-

cence (e.g. FITC [529/28 nm] and PE-Cy5 [679/41 nm]) and brightfield (BF) images of each

cell (Figure 2.1a). These images are reconstructed from the frequency components associ-

ated with pixel positions over time (Figure 2.1b) as the microalgae transit the excitation

line, enabling the analysis of cell morphology, intracellular lipid droplets (LDs) stained with
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BODIPY505/515 and chlorophyll distribution in BF, FITC and PE-Cy5 channels, respectively.

The quality of images generated by our setup is comparable to that of images captured by a

conventional wide-field fluorescence microscope with a metal-oxide-semiconductor (CMOS)

camera (Figure 2.1c-d). Important features calculated from FIRE images include cell aspect

ratio, cell circularity, cell area, total fluorescence, average chloroplast and lipid fluorescence,

and chloroplast and lipid area (Figure 2.1e).

Figure 2.1: FIRE imaging principle and calculated image features for E. gracilis.

(a) Simplified optical schematic of the analysis system. (b) In FIRE flow cytometry, a

two-dimensional image is generated as a cell flows through the excitation line consisting of

radiofrequency-multiplexed excitation across one spatial dimension. The time domain signal

collected from scattered and fluorescence emissions contains the spatial intensity modulations
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that can be transformed back into the 1D line via Fourier transform. These 1D lines of pixels

collected over time are assembled into the 2D image. (c) The reconstructed FIRE images

are comparable to conventional fluorescence microscopy images (d). Brightfield images (left)

provide information on cell size and shape, while merged fluorescence images (right) capture

largely intracellular chlorophyll autofluorescence (magenta, PE-Cy5 [679/41 nm]), and lipid

droplets stained with BODIPY505/515 fluorescent dye (green, FITC [529/28 nm]). Imaged

with Nikon Ti-E microscope (20x/0.45 objective), and Photometrics CoolSNAP HQ2 camera

(6.45 µm pixel pitch). Scale bars = 10 µm . (e) FIRE data can be used to extract intensity

information in fluorescence channels, but also spatial information that yields new single-cell

descriptors including cell aspect ratio, cell circularity, cell area (µm2), total fluorescence

(AFU), chloroplast and lipid fluorescence density (AFU · µm−2), and chloroplast and lipid

droplet area (µm2).

We apply the FIRE imaging flow cytometer to obtain a morphological atlas of images of

E. gracilis under heterotrophic conditions, and following dark anaerobic fermentation for up

to three days. We find that over the course of three days of fermentation, autofluorescence of

chlorophyll within chloroplasts decreases, while both the stained lipid fluorescence intensity

and area increase. We establish new chemo-morphological-based descriptors of cells which

uncover unique subpopulations of cells with high lipid biomass production per unit area,

which may not be as brightly stained for lipid dyes, and ignored by conventional flow cytom-

etry. Our FIRE imaging approach and metrics for lipid productivity are validated by a high

correlation (R2 > 0.90, p < 0.005) with bulk lipid extraction in the same population. We

anticipate that future imaging flow cytometry can enable identification of valuable strains

and image-based sorting can eventually be used as part of a selection process for evolution

of highly productive strains.
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2.2 Experimental

2.2.1 Experimental design

The primary objective of this study was to develop novel metrics to identify high lipid-

producing E. gracilis. FIRE was selected to image the cells due to its fast brightfield and

fluorescence imaging capability in flow. E. gracilis cultures were subject to dark, anaerobic

fermentation with times ranging from 0 hours to 3 days. This enabled lipid accumulation

over time, leading to different distributions of lipid content in cells for 6 samples in total.

All samples were processed and compared by FIRE on the same day after staining lipids

with BODIPY505/515, with a fraction of each sample reserved for gravimetric measurements

of lipid production at a population level. An additional culture of E. gracilis was split and

stained with different BODIPY505/515 concentrations, ranging from 1.25 µm to 50 µm , to

understand variations and effects due to staining.

2.2.2 Fluorescence imaging microscopy by beat frequency multiplexing

FIRE is an emerging technique that enables higher imaging speed (namely, temporal resolu-

tion) for fluorescence microscopy compared to conventional cameras by using high-sensitivity

PMTs to readout signal. The approach enables over-kilohertz frame rate of high-speed im-

agers with higher light sensitivity and dynamic range of conventional cytometry. The FIRE

setup uses a 100 mW, 488 nm laser, with FITC (529/28 nm) and PE-Cy5 (679/41 nm) band-

pass filters. The transmitted light is measured using a photodiode to generate brightfield

images while side scattered light is collected with a PMT to generate darkfield images. All

generated images have a pixel pitch of 0.5 µm per pixel. The technique is described in more

detail in previous work [27]. Approximately 4,000 events were recorded per sample.
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2.2.3 Image analysis

First, raw images in three channels, BF (morphology and size), FITC (LDs stained by

BODIPY505/515 and chlorophyll autofluorescence), and PE-Cy5 (chlorophyll autofluores-

cence), are measured. Cells are segmented from BF images, and morphology metrics are

calculated. Intracellular lipid and chloroplast structures are segmented from fluorescence

channels by independent thresholding according to normal levels of extracellular fluores-

cence. Regions of high similarity between FITC and PE-Cy5 channels are identified for

exclusion by computing Normalized Mutual Information (NMI) [31] and Normalized Cross-

Correlation (NCC) [32] maps to compensate for the autofluorescence signals across both

channels. Finally, various metrics such as the value of lipid droplets (LDs) to cell area ratio

(LCAR), the parameter for evaluating lipid productivity per biomass, are calculated. A

detailed workflow and information can be found in Figure 2.A.1.

2.2.4 Cell culture and treatment

The E. gracilis cells used in the study are Euglena gracilis Z (NIES-48) strain procured from

Microbial Culture Collection at the National Institute for Environmental Studies (NIES),

Japan. E. gracilis were cultured heterotrophically in 500 mL flasks using Koren-Hutner (KH)

medium (pH 3.5) [33]. The cell cultures were kept at 29 � with a shaking rate of 120 strokes

· min under continuous illumination of 100 µmol photons · m−2 · s−1. The fermentation was

performed on cells in stationary phase by bubbling with nitrogen gas and incubating the

flasks in the dark for three days.

2.2.5 BODIPY505/515 staining of intracellular lipid droplets

The BODIPY505/515 stock was prepared by dissolving original dye powder (4,4-Difluoro-

1,3,5,7-Tetramethyl-4-Bora-3a,4a-Diaza-s-Indacene, D3921, Thermo Fisher Scientific) into 4

mL dimethyl sulfoxide (DMSO) with a concentration of 2.5 mg · mL−1. The stain stock

solution was diluted 1,000 times with distilled water before use. The E. gracilis cells in the
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culture medium were washed with distilled water and resuspended in distilled water with a

final concentration of around 2 × 106 cells · mL−1. We mixed 2.5 µg · mL−1 BODIPY505/515

solution with E. gracilis cell suspension solution at a volume ratio of 1:1, which is fol-

lowed by gentle vibration and incubation in the dark for 10 min. The final concentration of

BODIPY505/515 and E. gracilis cells are 1.25 µg · mL and 106 cells · mL, respectively. The E.

gracilis cells were washed three times with distilled water by centrifugation (2000g, 1 min),

and then resuspended in distilled water and protected from light before taking imaging flow

cytometric measurements.

2.2.6 Lipid extraction and quantification

E. gracilis cells in the culture medium were collected by centrifugation (5000g, 2 min) and

washed with distilled water. The harvested E. gracilis cells were dried in a freeze dryer

(FDV-1200, EYELA), and the lipid component was extracted using n-hexane as indicated

in the previous report [34]. n-hexane was used to adhere to the cited report, but n-heptane is

a less toxic substitute. In brief, 10 mg of dried algal cells was suspended in 10 mL of n-hexane,

and the cells were disrupted twice for 90 s using a probe sonicator (Q125, QSonica). The n-

hexane aqueous solution with dissolved lipid was collected by filtering through a piece of glass

microfiber filter paper (GF/F, 1825-047, Whatman). The solution was then evaporated and

dried overnight, and the weight of the residue was measured and quantified as the extracted

total lipid. Bulk lipid extraction was performed on the samples of heterotrophically cultured

E. gracilis, fermented for different durations. Least squares linear regression was performed

with each sample’s bulk lipid extraction ratio and the proposed lipid-production metrics

(Figure 2.A.2).

2.2.7 Statistical analysis

All fluorescence-derived parameters are reported with a log10 transformation, which results

in an approximately normal distribution when unimodal. Two-tailed Student’s t tests are

used to compare changes in chloroplast area, total PE-Cy5 intensity, and chlorophyll density
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between the start (0 hours) and end (3 days) of fermentation. These follow the t test

requirements for approximately normal distributions with equal variance. The comparison of

chloroplast to cell area ratio (CCAR) at the start and end does not fulfill these requirements

and requires the non-parametric two-tailed Wilcoxon rank sum test. Similarly, lipid droplet

area, total FITC intensity, lipid density and lipid to cell area ratio (LCAR) are not normally

distributed with equal variance, so a one-tailed Wilcoxon rank sum test is used as we expected

these values to increase with fermentation time. The variability of total FITC intensity

versus LCAR when varying BODIPY505/515 staining concentrations is assessed using the

non-parametric Kruskal-Wallis H test due to their non-normal distributions. Least squares

linear regression is performed on calculated cell metrics that may vary with fermentation

time, or with cell shape or area.

2.3 Results and discussion

2.3.1 Imaging flow cytometric analysis reveals morphology and intracellular

metabolite variations

We used FIRE imaging flow cytometry to characterize morphological heterogeneity, intracel-

lular state of chlorophyll and LDs, and potential correlations between these morphological

and molecular parameters at the single-cell level. Heterotrophically cultured E. gracilis

cells undergoing fermentation in dark and anaerobic conditions up to 3 days were analyzed.

PE-Cy5 and FITC fluorescence signals show the changes in chlorophyll and LDs with fermen-

tation time, respectively (Figure 2.2a). The increase in FITC signal due to the accumulation

of intracellular LDs during fermentation [35] is clear starting at 6 hours, and continues

through 3 days. The changes in FITC signal reflect a larger spread in distribution within

the population with increased fermentation time, rather than a systemic shift in the popula-

tion. This implies that E. gracilis cells in the population are not fermenting uniformly, and

there are cells that are not accumulating much lipid, while other cells have up to 2 orders

of magnitude higher fluorescence intensity, indicating significantly higher lipid accumula-
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tion. However, from total fluorescence intensity measurements alone, which traditional FC

provides, it is difficult to ascertain whether factors such as cell size, shape or intracellular

structure contribute to these overall changes in fluorescence intensity.
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Figure 2.2: Evaluation and evolution of cellular heterogeneity for E. gracilis un-

der dark anaerobic fermentation. (a) Density scatter plots of total fluorescence signals

from pigments within chloroplasts and stained lipids throughout fermentation. Increased

fermentation time induces increased lipid accumulation on average, which can be seen in

the increasing levels of overall fluorescence in the FITC channel (529/28 nm, correlated with

higher BODIPY505/515 staining and chlorophyll levels). (b) FIRE images of E. gracilis across

the range of fermentation times reveal a variety of cell shapes, as represented by aspect ratio,

or length of major axis dived by the minor axis of the cell. Fluorescence images (right) in-

clude PE-Cy5 (679/41 nm, magenta), which contain chlorophyll autofluorescence and FITC

(green), which is dominated by BODIPY505/515 staining of lipid droplets, but also contains

autofluorescence from chlorophyll. Scale bar = 10 µm . (c1) Morphology-dependent parame-

ters calculated throughout fermentation reveal trends in intracellular composition. (c2 & c3)

Chlorophyll and lipid droplet content (AFU) are inversely correlated during fermentation,

while there is no systemic change in cell size (µm2) or shape. The decrease in intracel-

lular chlorophyll reflects decreased fluorescence density of autofluorescent pigment (AFU ·

µm−2), rather than overall diminished chloroplast area (µm2). Error bars represent standard

deviation.

In addition to the overall intensity of fluorescence, FIRE imaging flow cytometry provides

precise morphological information from images in brightfield and fluorescence channels that

can be combined to compute the spatial arrangement of intracellular components. E. gracilis

cells across all states of fermentation display a wide range of cell morphology, which can be

seen in brightfield images (Figure 2.2b). Brightfield images enable calculation of cell shape

metrics, including cell area, perimeter, length, width, aspect ratio and solidity. At the

beginning of fermentation (i.e. 0 hours), E. gracilis cells in the population have a mean

aspect ratio of 5.4 ± 2.0, mean circularity of 0.44 ± 0.16, and mean cell area of 596 ± 141

µm2 (Figure 2.2c1). After three days of fermentation, we measured a mean aspect ratio of 6.0

± 2.3, mean circularity of 0.41 ± 0.16, and mean cell size of 568 ± 127 µm2. Over the course
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of fermentation, there is no strong correlation between cell aspect ratio and fermentation

time (R2 = 0.12, p = 0.50), cell circularity and fermentation time (R2 = 0.08, p = 0.58), or

cell area and fermentation time (R2 = 0.01, p = 0.83).

The strong autofluorescence of chlorophyll and its relative abundance compared to other

pigments in the E. gracilis provides a clear label-free image in the PE-Cy5 channel to char-

acterize chloroplasts in terms of both size and chlorophyll content, which aligns with visi-

ble pigments (Figure 2.A.3). Chlorophyll a and b account for more than 75% of pigment

molecules in E. gracilis, including carotenoids (neoxanthin, diadinoxanthin, and β-carotene)

[30]. Changes in critical parameters at the beginning (i.e. 0 hours) and end of fermentation

(i.e. 3 days) are compared with a two-sided t-test; the log10 transform of all fluorescence

derived parameters is reported. We found that at the beginning of fermentation, mean total

PE-Cy5 intensity per cell is 3.68 ± 0.13 AFU, mean chloroplast area per cell is 381 ± 95

µm2, and mean chloroplast area per cell area is 0.65 ± 0.11. After three days of fermentation,

mean total PE-Cy5 intensity per cell is 3.43 ± 0.17 AFU (p < 0.001, 95% CI [0.24, 0.26]),

mean chloroplast area per cell is 305 ± 74 µm2 (p < 0.001, 95% CI [71, 79]), and mean

chloroplast area per cell area is 0.55 ± 0.13 (Figure 2.2c2). A Wilcoxon rank sum test indi-

cates a statistically significant change in the chloroplast area per cell area over fermentation

time (Z = 32.9, p < 0.001). These significant findings illustrate a decrease in chlorophyll

content from the beginning to the end of fermentation.

Accumulated lipid droplets are visualized in the FITC channel using BODIPY505/515

dye, however, there is an overlap of chlorophyll autofluorescence and BODDIPY505/515 when

excited at the 488 nm wavelength of FIRE (Figure 2.A.3). FIRE’s ability to generate multi-

channel images concurrently allows signals across channels to be colocalized spatially. This

is especially valuable when quantifying the lipid content of E. gracilis, as chlorophyll autoflu-

orescence may appear in the FITC channel, but fluorescence compensation is applied using

the chlorophyll signal in the PE-Cy5 channel. This allows lipid droplets to be quantified in

both size and content. Changes in critical parameters at the beginning (i.e. 0 hours) and

end of fermentation (i.e. 3 days) are compared with a one-tailed Wilcoxon rank sum test;
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the log10 transform of all fluorescence derived parameters is reported. At the beginning of

fermentation, E. gracilis cells in the population have a mean total FITC intensity per cell

of 1.15 ± 0.14 AFU, and average lipid droplet area of 14 ± 28 µm2 (Figure 2.2c3). While

after three days of fermentation, we measured a mean total FITC intensity per cell of 2.43

± 0.65 AFU (Z = -70.8, p < 0.001), and mean lipid droplet area of 240 ± 133 µm2 (Z =

-60.8, p < 0.001).

Chlorophyll and lipid structural and intensity metrics were also analyzed as a function

of the morphological properties of individuals cells, yielding more refined segmentation of

the subpopulations of cells. The entire dataset as a function of cell aspect ratio and area

is presented in Figure 2.A.4. We see that cell area correlates with LD area, chloroplast

area, and chlorophyll intensity, while aspect ratio does not have a strong correlation with

these parameters. Closer inspection of the relationship between aspect ratio, fluorescence

intensity, and fermentation time indicates that there is not an overall trend that relates

the three parameters (Figure 2.A.5). However, this same inspection applied to cell area,

fluorescence intensity, and fermentation time reveals a trend towards smaller cells during the

first 24 hours of fermentation time and increased PE-Cy5 levels in larger cells (Figure 2.A.6).

This suggests that normalization of fluorescence metrics with respect to cell area can remove

correlated effects of structural changes on molecular readouts.

Fluorescence intensity information provided by a traditional flow cytometer misses key

information that can explain cell structural and molecular changes. Changes in overall

chlorophyll or lipid fluorescence signal cannot be ascribed to either changes in structure or

density of intracellular fluorophores with an overall intensity measurement alone. There is a

noticeable decrease in overall chlorophyll signal throughout fermentation as noted previously,

which continues throughout the fermentation period, according to a least squares linear

regression (R2 = 0.95, p < 0.01). However, this decrease cannot be explained well by a

decrease in chloroplast area with fermentation time (R2 = 0.45, p = 0.14). Instead, this

decrease is more strongly correlated to the decrease in chlorophyll density (AFU/µm2) (R2

= 0.96, p < 0.001) in each chloroplast, and therefore suggests a reduction in chlorophyll
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content in each chloroplast for cells undergoing fermentation. This is further supported when

comparing the standardized coefficients of a multiple linear regression of overall chlorophyll

content as a function of chlorophyll density and chloroplast area. The standardized coefficient

of chlorophyll density (0.78) is more than 2.5 times greater than that of chloroplast area

(0.28), indicating its contribution to overall chlorophyll signal.

2.3.2 Normalizing fluorescence intensity by cell size corrects cellular lipid pro-

ductivity

Identifying high lipid per biomass producing E. gracilis by total FITC signal alone is prob-

lematic because it does not account for factors that can contribute to FITC intensity, such as

cell size, variations in BODIPY505/515 staining, background fluorescence signal, chlorophyll

autofluorescence and imaged doublets. Furthermore, we have found that cells of different

sizes can have the same FITC intensity, although smaller cells with high FITC are expected

to be more efficient in converting biomass to lipid product (Figure 2.A.6). We aimed to

address these issues using image-based metrics. We developed an algorithm to quantify lipid

production utilizing area of lipid droplets detected in FITC, corrected for any autofluores-

cence appearing to be co-localized in both FITC and PE-Cy5 images via image processing

(Figure 2.A.1). Furthermore, we normalized the lipid droplet area by cell size to calculate

the Lipid to Cell Area Ratio (LCAR), to more closely approximate lipid productivity per

biomass (Figure 2.3a). Our algorithms to automatically calculate LCAR correlated well to

manually defined LCAR with R2 = 0.68 (p < 0.001) (Figure 2.A.7).
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Figure 2.3: Normalization by size improves the evaluation of cellular lipid pro-

ductivity. (a) Schematics of Lipid to Cell Area Ratio (LCAR), which approximates mi-

croalgal lipid productivity per biomass. The area of BODIPY505/515 stained lipid droplets

detected in FITC (529/28 nm, green) uncorrelated with PE-Cy5 (679/41 nm, magenta) in-

tensity regions is normalized by cell area. (b) Calculated LCAR increases with fermentation

time (histogram) and is positively correlated with FITC intensity (R2 = 0.83, p < 0.001). (c)

E. gracilis cells stained at 5 µm BODPIY (orange) maintain similar LCAR levels with cells
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stained with a range of BODIPY505/515 concentrations (1.25 to 50 µm ; gray), despite heavy

variation in FITC intensity. (d) LCAR provides enhanced information at the single cell level

in the population fermented for 3 days. Both LCAR and FITC reveal high lipid-producing

cells (orange), but for similar LCAR levels, FITC values span orders of magnitude. At lower

FITC values (blue), LCAR identifies cells that have a small area, but high lipid accumu-

lation per biomass. Likewise, cells with high FITC and reduced LCAR (light blue) may

exhibit high chlorophyll autofluorescence in FITC, or larger cell size. Both metrics identify

non-producing cells at the lower limits of each range (yellow). Scale bar = 10 µm .

LCAR is a more attractive parameter for lipid productivity than FITC because it nor-

malizes by cell size. All values fall between 0 and 1, while FITC has a wide range that

must be calibrated for different conditions. Across all fermentation durations, there is a

strong positive correlation between LCAR and FITC signal (R2 = 0.83, p < 0.001) (Fig-

ure 2.3b). Heterotrophically cultured E. gracilis had a mean LCAR of 0.01 ± 0.03, and

after three days of dark and anaerobic culture, we measured a mean LCAR of 0.44 ± 0.23,

which was a significant increase according to a one-tailed Wilcoxon rank sum test (Z = -67,

p < 0.001). Interestingly, LCAR reveals a bimodal bifurcation of the population during fer-

mentation where a large fraction of cells maintain a value of zero LCAR, while the fraction

of the population and average value of LCAR both increase with fermentation time. This

bifurcation in the population is less clear in the FITC intensity alone. The same E. gracilis

population stained across a range of BODIPY505/515 concentrations including 1.25 µm , 5 µm

, 6.25 µm , 12.5 µm , 25 µm , and 50 µm demonstrated a wide variation between samples,

while LCAR was largely consistent across samples (Figure 2.3c). E. gracilis stained with 5

µm BODIPY505/515 had similar LCAR values to the other BODIPY505/515 staining concen-

trations, while the FITC values of all stains vary widely. It should be noted that because

LCAR relies on thresholding, the main requirement for uniformity is that sufficient staining

is necessary to maintain a signal above the background noise level.

Looking at a plot of LCAR vs. total FITC intensity following 3 days of fermentation
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reveals unique outlier cells that may be important for lipid productivity that would not be

identified with FITC intensity alone (Figure 2.3d). For example, in the upper left quadrant

two representative high LCAR cells with low FITC are shown. The smaller cell size leads to

a lower FITC signal, although it would be anticipated that these cells would produce high

levels of lipid per biomass. Cells in the lower left quadrant have similar FITC intensity, due

to high chlorophyll content, but are found to have no lipid droplets when observing images.

Both metrics can pick up high-producing cells (upper right quadrant).

Lipid droplet intensity information is also improved by normalizing according to cell area

or droplet area (Figure 2.A.8). Lipid droplet intensity per cell area is an alternative metric

to approximate lipid production per biomass. It assumes the quantitative reliability of FITC

signal, but is scaled to avoid selecting for large cells, and missing high producing small cells.

If ignoring chlorophyll contributions to FITC intensity, cell FITC per cell area can more

easily approximate this value. Lipid droplet intensity per droplet area is another potentially

useful metric to characterize the properties of lipid droplets produced by E. gracilis. Given

that BODPIY staining is correlated to lipid content, this measure can identify cells that

create higher density lipid droplets, or how lipid production varies across culture conditions.

However, these intensity-based measurements rely on BODIPY505/515 staining performance

and identical imaging conditions between samples.

Although we cannot currently test these metrics with secondary approaches to verify

lipid content at the single-cell level, when comparing at the population level using bulk lipid

extraction, area-normalized metrics performed similarly to total FITC intensity in terms

of least squares linear regression (Figure 2.A.2). All methods had R2 greater than 0.90,

(p < 0.01), with Total FITC Intensity and Droplet FITC per Cell Area achieving 0.94,

LCAR achieving 0.92, and Cell FITC per Cell Area achieving 0.93. Notably, all metrics

underestimate the bulk lipid extraction calculated for the 1-day fermentation. These results

indicate that there are multiple methods that correlate well in aggregate, although there are

differences that arise when comparing cells individually.
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2.3.3 The capability to image cells reduces false positive events

Visualizing the cell improves data collection and analysis by excluding partially visible cells,

multiple cells, and normalizing signals to cell area. As discussed, the origin of increased

fluorescence with the size of a cell is not clearly recognized in fluorescence intensity data

alone. Fluorescence intensity information will also fail to identify images with multiple cells

present, leading to an increased FITC signal (Figure 2.4a). Multi-cell images may be cap-

tured when cells are dividing or have become stuck together (Figure 2.4b). Morphology

data can be algorithmically analyzed to identify and exclude multi-cell images using shape

metrics such as cell area or cell width (Figure 2.4c). Cell solidity is the ratio of cell area

to its respective convex outlined shape and provides another useful metric to find clusters

of connected cells (Figure 2.4d). Across all fermentation times, we performed double cell

random forest classification using shape metrics and achieved 90.99% sensitivity and 99.93%

specificity in identifying multiple-cell events. In contrast, random forest classification per-

formed using only side scatter area and height, and axial light loss area and height, which

are routinely used in doublet discrimination, provided lower sensitivity and specificity of

83.78% and 99.79%, respectively. We note that even if a high FITC doublet could not be

distinguished via image processing, its LCAR value would allow it to be assessed as the

proper average of the two joined cells.

2.3.4 FIRE enhancements over flow cytometry

The images from FIRE make many approximate measurements in flow cytometry more

explicit. In traditional flow cytometry, forward scatter (FSC) is commonly associated with

the size of the particles measured, while side scatter (SSC) relates to the composition or

complexity of the particle measured. However, previous work has found that FSC can be

altered due to the refractive index of particles, particle composition, and machine design

[36]. Therefore, even the use of calibration beads used to calibrate the FSC signals with

true cell size may not be precise if the bead composition does not closely match that of the

particles. These issues are eliminated by being able to process images of particles instead, i.e.
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the use of FIRE imaging flow cytometry in our study. Additionally, measurements of FSC

and SSC pulse width and height are used to distinguish cell doublets [37, 38]. This operates

on the principle that two cells following immediately after each other may have pulses of

the same height, but a width (or time of flight) that is twice as long as a normal cell. The

use of time of flight to identify cell doublets breaks down unless the cells are oriented in

the direction of flow and maintain the same pulse width of a single cell. As we show in

Figure 2.2b, there is a normal range of E. gracilis lengths, so single cells may have similar

pulse heights, but different pulse widths. Most E. gracilis doublets can be discriminated

using images unless the two cells perfectly overlap with identical shapes. Finally, we show

here the utility of normalizing fluorescence by cell size, as well as fluorescent structure size by

cell size (Figure 2.3). The latter cannot be achieved with traditional flow cytometry, and the

former cannot be wholly trusted if the cell measurements derived from FSC are imprecise.

E. gracilis cells are generally aligned with flow, especially longer cells. Exact orientations

in the xy plane (i.e. the plane perpendicular to the laser beam) don’t impact imaging unless

orientation drastically alters cell linear velocity or rotation. We believe the sheath flow in the

flow cell helps orient the cells, and we have previously demonstrated that longer cells are more

likely to be aligned with flow, and that increasing Reynolds numbers helps to aligns shorter

cells [39]. Cells non-parallel to the xy plane can reduce image quality for both brightfield

and fluorescence images, especially for cells significantly outside the depth of focus of the

objective. The ability to see the out-of-focus components in the brightfield channel, and

discount fluorescence values may not be possible in traditional point-based flow cytometry.

The ability to discern out-of-focus components of lower aspect cells is more difficult than

with longer cells. Even if a shorter cell stays within the objective depth of focus, a partially

rotated cell in the z-direction (i.e. the laser beam direction) can obscure the fluorescence

images due to overlapping structures.
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2.3.5 Investigating cell heterogeneity

The cell heterogeneity witnessed here can be further investigated to understand the under-

lying causes. Variations in E. gracilis metabolite contents can be attributed to temporary

environmental conditions, or mutations within the cell population. Beyond the chloroplast

content and cell morphology investigated here, we expect that additional FIRE fluorescent

channels can be utilized to assess stigma carotenoid content or the cytoskeleton, which may

indicate the cells’ ability to react to, and respond to light. Understanding the exact con-

ditions that a subset of cells experience during culturing may prove to be more difficult.

But this could be studied by simulating cell populations with environmental conditions that

represent the periphery of a bioreactor that experiences maximal light, and that of the center

with reduced light. No single cell likely spends its time in only one of these settings, but this

can help characterize responses in these two extremes. Candidate E. gracilis cells can be

isolated by integration with downstream active sorting techniques such as acoustics [40], and

pulsed lasers [41], which can sort cells at rates between 7,000-23,000 per second. A method

utilizing external membrane pumps has been demonstrated with E. gracilis, and achieved a

sort rate of 23,000 cells per second [42]. Integrating any of these methods will be dependent

on image processing time, spacing of adjacent cells, cell velocity, and any effects due to the

cells’ non-circular shape.
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Figure 2.4: High FITC cells include doublet populations. (a) Selecting for high

FITC (529/28 nm) values in this sample of heterotrophically cultured E. gracilis under

fermentation for 3 days can include double cells (orange). (b) These doublets can be clearly

distinguished in FIRE images. Scale bar = 20 µm . (c) Double cell images can be excluded

based on morphology metrics including cell area, width, or (d) solidity.

2.4 Conclusion

In this work, we performed quantitative analysis of the chemo-morphological heterogeneity

at the single-cell level within E. gracilis cell populations using a fluorescence imaging flow

cytometric technique. Using FIRE, high-throughput, multi-parameter, and high-content

imaging of each cell simultaneously in brightfield, and two fluorescence channels (FITC and

PE-Cy5) enables the assembly of a morphological atlas of cells under different environmen-

tal conditions. The cell-to-cell variations of both morphology and intracellular molecular

organization (lipid droplets and chloroplasts) allowed isolation of metrics that may be better

correlated to lipid productivity per biomass at the single-cell level. The additional phenotypic

information provided by fluorescence imaging makes this approach more informative than a

bulk measurement or conventional flow cytometry, and much higher throughput than static

microscopic techniques. This approach will ultimately allow for a better understanding of

microalgal heterogeneity and potential underlying mechanisms of response to environmental
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cues, and bifurcation of response at the subpopulation level.

Although LCAR measurements are correlated with FITC values at the single-cell level,

and with bulk lipid measurements at a population level, the impact of these new metrics

can best be validated by direct measurements of lipid per biomass for individual cells. By

combining with active cell sorting based on the identified metrics, direct quantification at the

single-cell level can be enabled. Sorting based on chemo-morphological states will ultimately

enable the identification and isolation of microalgal mutants and rare cell populations with

desirable phenotypes for biomass and biofuel production.
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Figure 2.A.1: Overview of image processing and analysis workflow. FIRE imag-

ing flow cytometric technique enables imaging of E. gracilis in flow in bright-field, PE-Cy5

(679/41 nm), and FITC (529/28 nm) channels. Brightfield images are used to locate the

cell boundary and calculate morphological parameters. PE-Cy5 (magenta) captures chloro-

phyll auto-fluorescence, while FITC captures lipids stained with BODIPY505/515 and part of

the spectrum of chlorophyll auto-fluorescence. Structures in each channel may be spatially

distinct, but spatial overlap in regions with high similarity in FITC and PE-Cy5 chan-

nels are attributed to chlorophyll auto-fluorescence. FITC images are used to detect lipid

droplets via dynamic thresholding, and structures appearing in both fluorescence images are

excluded from this detection. This is achieved by calculating normalized mutual information

(NMI) and normalized cross-correlation (NCC) maps for both fluorescence channels. NMI

measures mutual dependence between corresponding regions of FITC/PE-Cy5 images, and

ranges from 0 to 1. NCC measures cross-correlation of pixel pairs between corresponding

regions of FITC/PE-Cy5 images at a fine and rougher scale (NCC2), and ranges from -1

to 1. Values from these three self-similarity maps are combined and used to determine if

a region exhibits high self-similarity, and should be excluded from the final lipid droplet

detection. ExcludedRegion = (NMI ≥ 0.6275) && (NCC ≥ 0.51) && (NCC2 ≥ 0.2).
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Figure 2.A.2: Fluorescence intensity and image-based analysis of intracellular

lipid content correlate well with bulk lipid measurements. E. gracilis cells cultured

in KH medium were treated for six different fermentation durations, 0 hours, 6 hours, 14

hours, 1 day, 2 days and 3 days. FIRE imaging flow cytometric analysis and gravimetric

bulk measurements were performed and compared. Integrated FITC (529/28 nm) intensity

is positively correlated with bulk lipid measurement with R2 = 0.94, p = 0.0015. LCAR,

which calculates the area of detected lipid droplets per cell area is also positively correlated

with bulk lipid extraction (R2 = 0.92, p = 0.0023). Normalizing lipid droplets FITC intensity

by cell area (R2 = 0.94, p = 0.0015), and normalizing cellular FITC intensity by cell area

(R2 = 0.93, p = 0.0019) are also closely, positively correlated with bulk lipid extraction.
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Figure 2.A.3: The autofluorescence of pigments in chloroplasts in E. gracilis.

Chloroplast structures that contain high levels of green pigment in E. gracilis cells also show

co-located autofluorescence in multiple channels when imaged with a fluorescence microscope.

These structures are visible in the FITC channel (green) and Cy5 channels (magenta). FITC

and Cy5 images are exposed for 6 s and 200 ms, respectively. Imaged with Nikon Ti-E

microscope (20x/0.45 objective with 1.5x), Nikon DS-Fi3 camera (color image, 2.4 µm pixel

pitch), and Photometrics Prime camera (fluorescence images, 6.5 µm pixel pitch). Scale bar

= 20 µm .
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Figure 2.A.4: Relationship of E. gracilis intracellular components with cell mor-

phology. (a) Density scatter plots of E. gracilis cultured in KH medium and fermented

for 3 days. Least squares linear regression is calculated and shown with Pearson correlation

coefficient p value. Cell area is positively, significantly correlated with lipid and chloroplast
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areas, as well as chloroplast PE-Cy5 (679/41 nm) intensity. Cell aspect ratio has smaller,

significant correlations with chloroplast area, and chloroplast and lipid fluorescence intensity.

(b) Density contours for several fermentation times (0 hours, 14 hours, 3 days), are compared

for the same morphology and intracellular component metrics. Contours and shaded regions

indicate 80th and 10th percentiles of the estimated density, respectively. Cells fermented for

3 days have clear increased lipid droplet amounts and associated FITC intensity. All days

have conserved distributions and trends with chloroplast area, but cells show a negative

relationship between fermentation time and chlorophyll PE-Cy5 fluorescence, in addition to

an altered distribution shape for cell area at 3 days.
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Figure 2.A.5: E. gracilis aspect ratio (AR) has no strong relationship with fer-

mentation time or fluorescence intensity. E. gracilis cells cultured in KH medium were

treated for six different fermentation durations, 0 hours, 6 hours, 14 hours, 1 day, 2 days

and 3 days. (a) Cells imaged with FIRE were divided into three groups based on AR: 1–5,

5–7, and 7–13. There is no discernable relationship between these groups and fermentation

time. (b) Density contours of total FITC (529/28 nm) and PE-Cy5 (679/41 nm) fluorescence

intensity binned by these three AR groups are not distinctly different, except at 14 hours,

when AR 7–13 cells have a lower range of FITC intensity. Contours and shaded regions

indicate 80th and 10th percentiles of the estimated density, respectively.
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Figure 2.A.6: E. gracilis area shows some relationship with fermentation time

and fluorescence intensity. E. gracilis cells cultured in KH medium were treated for six

different fermentation durations, 0 hours, 6 hours, 14 hours, 1 day, 2 days and 3 days. (a)

Cells imaged with FIRE were divided into three groups based on cell area: 125-500, 500-625,

and 625-1,250 µm2. During the first 24 hours of fermentation, there is a trend towards an

increased proportion of smaller cells. (b) Density contours of total FITC (529/28 nm) and

PE-Cy5 (679/41 nm) fluorescence intensity, when binned in these three area groups show

a positive trend between cell area and PE-Cy5 fluorescence, which is consistently observed

with cells 625-1,250 µm2. Contours and shaded regions indicate 80th and 10th percentiles of

the estimated density, respectively.
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Figure 2.A.7: Automated calculation of lipid to cell area ratio (LCAR) of E. gra-

cilis is positively correlated with manually measured LCAR. 88 cells were selected

from a culture grown in KH medium and fermented for 2 days, across a range of LCAR.

Cells and lipid droplets were segmented manually using MIPAV software. Least squares

linear regression was performed with manual and automatic LCAR values, resulting in a line

with equation y = 0.8904x + 0.1043 (R2 = 0.68, p < 0.001). Our automatic method has a

slight bias to overestimate LCAR as indicated by the y-intercept, especially at low values of

LCAR.
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Figure 2.A.8: Normalized intracellular component measurements of E. gracilis

reveal new relationships with morphology parameters. (a) Density scatter plots

of E. gracilis cultured in KH medium and fermented for 3 days. Previous intracellular

measurements are normalized by cell area to yield lipid to cell area ratio (LCAR), lipid FITC
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per cell area (529/28 nm), chloroplast to cell area ratio (CCAR), and chloroplast PE-Cy5 per

cell area (679/41 nm). Least squares linear regression is calculated and shown with Pearson

correlation coefficient p value. Normalization reduces the correlation of cell area with lipid

measurements, while revealing new negative correlations with chloroplast measurements.

The same negative chloroplast trends are also now seen with cell aspect ratio measurements.

(b) Density contours for several fermentation times (0 hours, 14 hours, 3 days), are compared

for the same morphology and intracellular component metrics. Contours and shaded regions

indicate 80th and 10th percentiles of the estimated density, respectively. Cells fermented for

3 days have clear increased LCAR levels and associated normalized FITC intensity. All days

have conserved distributions and trends with CCAR, but cells show a negative relationship

between fermentation time and chlorophyll PE-Cy5 fluorescence, in addition to an altered

distribution shape for cell area at 3 days. These plots reveal a subpopulation of small, round

cells that are extremely dense with chlorophyll content.
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CHAPTER 3

Fractal-LAMP: Label-free analysis of fractal

precipitate for digital loop-mediated isothermal nucleic

acid amplification

3.1 Introduction

The detection of nucleic acids is widely used in the diagnosis of disease, including identifying

mutations in tumors [1, 2] or microbial and viral pathogens obtained from patient samples

[3]. Nucleic acid detection has also become vital in assessing food and water quality by

detecting pathogens, allergens, or genetic identity of food [4]. Ongoing research is aimed at

detecting nucleic acids, such as DNA and RNA, at lower concentrations, more cheaply, or in

a more portable, accessible manner [5].

Innovations in nucleic analysis include approaches to isolate and amplify target DNA, quan-

tify the amount of target, as well as instrumentation to detect the isolated/amplified targets.

When target DNA is present at sufficiently low concentrations, it must first be amplified by

any number of methods including polymerase chain reaction (PCR) [6], rolling circle ampli-

fication [7], or loop-mediated isothermal amplification (LAMP) [8]. Once the target DNA

has been sufficiently amplified, its presence is often measured using fluorescent dyes, whose

intensity is correlated to the amount of DNA present, or through electrical signals [9, 10, 11].

Improved quantification and limits of detection can be achieved by partitioning the sample

into micro-compartments, each independently amplified and read [12], i.e. digital nucleic

acid amplification. Finally, readout instruments that leverage low-cost consumer electronic

devices can lower costs and increase portability of these assays [13, 14, 15].
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LAMP is an attractive method of amplifying DNA for its thermal simplicity and speed.

Unlike some other DNA amplification methods, LAMP proceeds at a single temperature,

simplifying the equipment needed to run it. It can also create a large quantity of amplified

DNA on short timescales, with more than 50 times more product than PCR at comparable

scales [16]. While many DNA amplification tests use fluorescent dyes directly on the main

product, LAMP progress can be assessed by one of its byproducts. During the LAMP

reaction, pyrophosphate forms as a byproduct and can precipitate with magnesium ions

in solution to form magnesium pyrophosphate (Figure 3.1a) increasing solution turbidity

as a function of DNA amplification [17, 18]. Solution turbidity has been shown to be a

valid indicator for DNA amplification with LAMP and possesses particular advantages. In

contrast one class of fluorescent dyes, intercalating dyes, which are usually incorporated into

reaction solutions prior to reaction, has been shown to interfere with DNA reaction kinetics

[19, 20, 21, 22], although there have been advances to counter this effect [23]. Previous work

also showed that intercalating dyes can be variable and heat sensitive [23]. Other advantages

of using intrinsic reaction products are that non-fluorescence measures such as turbidity in

LAMP can avoid the need for extra dyes, fluorescence excitation and reading equipment,

and improve amplification times.

Digitization of DNA amplification provides improved limits of detection and quantitative

accuracy. DNA amplification has traditionally been carried out and measured in bulk so-

lution. In that case, DNA content is correlated to a single analog measure describing the

amplification in the bulk fluid. In a digital assay, the bulk solution is partitioned into many

small volumes, such as wells or aqueous droplets [12]. Compartmentalization binarizes the

initial readout, where the analog signal in each compartment can be thresholded to yield

either a positive or negative event, which at sufficiently low DNA counts can be related to

a single starting DNA molecule. Finally, the percentage of negative compartments is di-

rectly correlated to the original bulk concentration. Previous work has demonstrated this

digital assay concept using LAMP whereby fluorescent intercalating dyes led to amplified

compartment-specific fluorescent signals [24, 25, 23, 26, 27]. The use of the magnesium py-
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rophosphate product of LAMP (Figure 3.1b) has not been used to our knowledge to detect

amplified signal in a digital format.

Here we report Fractal-LAMP, a droplet-based method to perform label-free, digital DNA

quantification. This is achieved by encapsulating target DNA samples and LAMP reaction

mix in thousands of sub-nanoliter scale droplets. Following reaction, droplets with target

DNA molecules accumulate magnesium pyrophosphate precipitate inside. This coalesced

precipitate, with a unique fractal-like structure, is tens of microns in size and is clearly

visible using brightfield imaging. We detect the precipitate with relatively low magnification

brightfield microscopic imaging followed by image analysis with a customized computer vision

algorithm. Utilizing partitioning statistics, the percentage of droplets containing precipitate

is correlated with the original bulk DNA concentration, enabling automated detection of

precipitate droplets and calculation of bulk DNA concentration. Combined with the reduced

instrument complexity required for isothermal LAMP amplification, this new approach to

digital detection of amplification should further reduce final instrument complexity and cost

by employing cost-effective portable brightfield microscopy systems [14, 15].

3.2 Results

3.2.1 Overview

We have implemented a label-free, brightfield digital DNA amplification detection method

using droplets. A droplet-based approach is preferred for Fractal-LAMP given that precipi-

tate observed in wells after performing LAMP is not concentrated and may variably adhere

to well walls (Figure 3.A.1). We hypothesize performing Fractal-LAMP in droplets promotes

the accumulation of precipitate at a single point, due to droplet shape and reduced volume,

further facilitating imaging and image analysis. Target DNA solution is combined with

LAMP reaction mix and primers, and introduced into droplets using a 3D printed droplet

generator. Droplets are heated to initiate the LAMP reaction and accumulate reaction prod-

ucts. Precipitate that accumulates within droplets that amplify target DNA is imaged and
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analyzed, and compared to standard intercalating dye-based readout. We characterize how

precipitate correlates with fluorescence at the single droplet level and how the number of

droplets with precipitate correlates with overall differences in DNA target concentration.

Finally, we develop image analysis tools based on a Bag of Visual Words (BOVW) [28]

to identify precipitate in droplets in an automated fashion and report on our automated

label-free results for predicting target DNA concentration.

Solutions of LAMP reaction mix, fluorescent nucleic acid intercalating dye, and target

bacteriophage DNA were encapsulated in droplets via a 3D droplet generator [29] (Fig-

ure 3.1c) and incubated at 67� for 2 hours. After incubation, the droplets were transferred

to a 120 µm slit chamber for brightfield and fluorescence imaging at 10x magnification (Fig-

ure 3.1d). Multiple fields of view across multiple sample chambers were imaged for each

DNA concentration (5.7 × 101 copies DNA · µL−1, 5.7 × 102 copies DNA · µL−1, 5.7 ×

103 copies DNA · µL−1, 5.7 × 104 copies DNA · µL−1, and 5.7 × 105 copies DNA · µL−1).

Droplets with coalesced magnesium pyrophosphate are also positive with the nucleic acid

intercalating dye. The precipitate aggregates into clumps that are typically found in the

center of droplets. Imaged droplets with diameters 65 – 96 µm (76.9 ± 6.9 µm ) are de-

tected and extracted from both brightfield and fluorescence images using a custom MATLAB

script. 30,138 droplet images are extracted in total, with at least 2,700 droplets from each

DNA concentration. Each droplet image is manually inspected to determine the presence of

precipitate.
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Figure 3.1: Fractal-LAMP: Detection of DNA via LAMP byproducts in droplets

imaged using brightfield microscopy. (a) During DNA amplification by DNA poly-

merase, pyrophosphate (blue) is cleaved from the deoxynucleotide (dNTP) as a byproduct.

Pyrophosphate reacts with magnesium ions in the LAMP solution mix, and precipitates

at sufficiently high concentrations. (b) DNA amplification can be assessed via fluorescent

dyes, or by turbidity in the case of LAMP. In bulk solution, the fluorescence or turbidity

increases with DNA concentration, but may be difficult to discern at low concentrations or
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across small differences in concentration. Compartmentalization of volume creates a digi-

tal readout, where fractal-like precipitate or fluorescence are not diluted by a large volume.

The percentage of negative compartments are directly correlated to compartment size and

the original bulk concentration. (c) LAMP reaction mix and DNA are compartmentalized

with a 3D printed droplet generator and are incubated at 67� for 2 hours before imaging.

(d) After incubation, the droplets are transferred to a 120 µm slit chamber for brightfield

and fluorescence imaging. Magnesium pyrophosphate precipitate is visible in brightfield and

corresponds to droplets with increased fluorescent intercalating dye signal.

3.2.2 Characterization of precipitate in droplets

We find that the presence of magnesium pyrophosphate precipitate is correlated with nucleic

acid intercalating dye fluorescence in a droplet. The presence of precipitate in a droplet

is compared with the integrated fluorescence of the droplet in corresponding fluorescence

images. The precipitate-positive droplets (n = 5,390, Mdn = 5.25, SD = 1.44), have a clear

increase in fluorescence over precipitate-negative droplets (n = 19,399, Mdn = 2.33, SD =

0.65) (Figure 3.2a). A point-biserial correlation is used to determine the relationship between

fluorescence and precipitate presence. There is a positive correlation between fluorescence

and precipitate, which is statistically significant (rpb = 0.81, n = 24,789, p < 0.001).

Precipitate presence in droplets is correlated to bulk target DNA concentration. As bulk

DNA concentration increases, the percentage of empty droplets decreases (Figure 3.2b).

Partitioning of original target DNA in droplets is governed by the binomial and Poisson

distributions [12]. As a result, the average number of target DNA molecules per droplet,

λ is defined as λ = ConcDNA · V oldrop , where ConcDNA is the bulk DNA concentration,

and V oldrop is the droplet volume. λ can also be related to the percentage of droplets (E),

through the relationship λ = −ln(E). The extent to which our observed λ values deviate

from the ideal λ for each DNA concentration is defined as the inefficiency factor ω (λideal =

ω · λobserved) and is determined with hierarchical Bayesian inference [30]. The posterior of ω

(median=127.14, 99% CI [121.81, 132.65]) indicates that there is a ∼127x inefficiency with

47



either partitioning the DNA molecules, or the LAMP reaction (Figure 3.2c). Nonetheless,

there is a clear linear relationship between our measured λ values, based on counting droplets

positive for precipitate, and DNA concentration. Despite deviations in observed λ from the

regression, moderately informed priors in the Bayesian inference can produce 99% Highest

Posterior Density (HPD) intervals that intersect the regression confidence band.

Figure 3.2: The presence of precipitate in LAMP droplets is correlated to the

integrated droplet fluorescence and the bulk DNA concentration. (a) The presence

of magnesium pyrophosphate precipitate in droplets where LAMP was performed is corre-

lated to integrated droplet fluorescence. Images where droplets moved between brightfield

and fluorescence imaging or with fluorescence aberrations are excluded. (b) The percentage
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of droplets containing precipitate increases as the target DNA concentration in a sample in-

creases. (c) The percentage of droplets without precipitate is used to calculate λ (blue), the

average number of target DNA molecules per droplet, which is linearly related to the original

DNA concentration (λ = ω−1 · ConcDNA · V oldrop). Bayesian inference yields a median in-

efficiency factor ω of 127.14 and confidence interval (gray band, 99% HPD), indicating that

there is a ∼127x inefficiency factor when performing LAMP in droplets. Inference also yields

99% HPD intervals (black) for each sample’s λ estimate that are drawn back to linearity.

When performing the same Bayesian inference using thresholded fluorescence values

instead of precipitate presence (Figure 3.A.2) ω is larger and has a wider posterior (me-

dian=204.48, 99% CI [195.09, 214.47]). Improved efficiency for reading precipitate presence

vs. fluorescence can be attributed to the loss of some fluorescent droplets that are removed

due to fluorescence photobleaching or droplet movement. Additionally, the fluorescence

threshold used is determined by finding a local minimum in the intensity distribution, which

may be imprecise or difficult to determine with an imbalanced distribution.

3.2.3 Automated classification of precipitate images

Automated classification of droplet images is enabled by image processing. To process and

analyze droplet images for the presence of precipitate, some form of image processing is

required. Detecting the precipitate is a challenge because although the fractal-like precip-

itate structures look similar, they vary in their size, morphology, location, and sharpness.

A simple approach to droplet classification entails generating intensity-based statistics for

each image, including mean and median intensity, sharpness, and measuring the result of

automated thresholding. This approach is useful, but does not account for differences in

lighting, or small or out of focus precipitates. Convolutional neural nets are another viable

approach to automated classification [31]. This solution would likely be able to recognize

the fractal subunits of the precipitate in a few different presentations. However, there is a

degree of reduction of interpretability of neural nets, which would make it more difficult to
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understand why an image was misclassified. In this paper we have chosen to implement the

previously mentioned BOVW algorithm, which builds a dictionary of image patches (visual

words) and then matches and counts the occurrence of image patches in each image [28].

Given a dictionary of a specified size, a feature vector of word counts is generated for each

image, which can be utilized by a machine learning algorithm for automated classification of

droplets. This method excels by recognizing a set of visually similar image patches, such as

the fractal sub-units, that appear a variable number of times per image. We’re able to diag-

nose the BOVW model by seeing which image patches are extracted from a droplet image,

and whether they are indicative of precipitate positive or negative droplets. The entirety of

the 30,138 extracted images are randomly assigned to Training, Validation, and Testing sets

according to a 64/16/20 split.

We build our BOVW model by automatically extracting Speeded Up Robust Features

(SURF) keypoints [32] from regions of high contrast(Figure 3.3a). SURF keypoint extraction

is scale and rotation invariant, yielding the keypoints with highest contrast in a small region.

Each SURF keypoint is then described by dividing the region around the keypoint into a 4 ×

4 grid, where 4 horizontal and vertical wavelet responses are summed in each cell, resulting in

a 64-dimensional feature space for each keypoint. Additionally, the sign of Laplacian (SoL),

which indicates if the keypoint represents a dark blob on a light background (positive) or a

light blob on dark background (negative) is also calculated. SURF keypoints from the Train-

ing set droplets are clustered based on their 64 features into a predefined number of words to

form the BOVW dictionary (Figure 3.3b). SURF keypoints with positive or negative SoL are

clustered separately to form Dark and Light words, respectively (Figure 3.A.3). Addition-

ally, SURF keypoints can be filtered by a metric representing their contrast. Low-contrast

features are likely image artifacts, but there are potential benefits to creating low-contrast

words that do not dilute the predictive power of high-contrast keypoints with similar ap-

pearance. Therefore, we also generate a set of low-contrast (Fuzzy) visual words that map to

the same 64-dimensional feature space as corresponding high-contrast (Sharp) visual words.

The number of SURF keypoints extracted from precipitate-negative and precipitate-positive
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droplets are Poisson-distributed, with an average of 0.4 and 15.3 keypoints, respectively.

The traditional BOVW model can be further extended by generating meta-features, such as

number of total words per image, number of Sharp words, likely-precipitate words (based on

the premise that precipitate is normally found near the center of the droplet), in addition to

image statistics.

Figure 3.3: Creation of Bag of Visual Words model from SURF keypoints. (a)

SURF keypoints, highlighted in colored boxes, are extracted from previously isolated images

of droplets. SURF keypoints are scale and rotation invariant and are described with a
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64-dimensional feature space. (b) The BOVW model is created by clustering SURF keypoints

within their feature space to define words. Dark and Light words are clustered separately,

according to the positive and negative Sign of Laplacian, respectively. SURF keypoints

closest to the cluster centers are shown for some word examples. Words are further divided

into Sharp and Fuzzy words, which overlap in the same feature space, but have different levels

of contrast. (c) Example images of droplets with and without precipitate are processed

in a BOVW model containing 32 words, with 8 words each of Dark/Sharp, Dark/Fuzzy,

Light/Sharp, and Light/Fuzzy. The frequency of each type of word appearing in the images

(circles), is compared to mean frequencies in the entire dataset (bars).

Several competing BOVW models are created that vary in the dictionary size, inclusion

of low contrast keypoints, contrast cutoffs, meta-features, or image statistics. Each of these

models is trained using a random forest classifier [33] using the set of Training droplet

images, and compared against the Validation set. The ideal model has a high precision-

recall Area Under the Curve (AUC), and receiver operating characteristic curve (ROC)

AUC. The base selected BOVW model maximizes both measures and features 8 Dark words

(and corresponding Fuzzy), 8 Light words (and corresponding Fuzzy) for a total of 32 words

(Figure 3.3c, Figure 3.A.4). This model is augmented with BOVW meta-features and image

statistics features. Feature importance calculation reveals that the tendency of a visual word

to be found in the middle of the droplet (“Likely Precip Words”), droplet image sharpness

(99th percentile of the Laplacian of Gaussian), and total number of visual words in a droplet

are most useful in classifying precipitate-positive droplets (see Figure 3.A.5 for the list of

features, and relative importance via permutation importance [34]).

The augmented BOVW model achieves high levels of precision (positive predictive value)

and recall (sensitivity) on the droplet Testing set. The default setting of the random forest

classifier yields a precision of 0.988 and recall of 0.982 (Figure 3.A.6). The random for-

est classifier yields prediction scores of whether a droplet is a precipitate-positive droplet,

which is shown for a set of droplets from the Training and Testing sets (Figure 3.4a, see
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Figure 3.A.7 for representative droplet images across the range of prediction scores). Note

that blurry/smaller precipitate with a lower prediction score are still classifiable.

At the default random forest setting, the classifier produces estimates for the average

number of DNA molecules, λ, per sample that closely approaches the known values. There

is a higher deviation from the known λ at the lowest concentration (on a logscale), due to a

tendency towards false positives, as seen in the precision (Figure 3.4b, horizontal lines). Us-

ing the previously estimated inefficiency factor, ω, new Bayesian models generate posterior

λ values for the Testing set ground truth and machine learning results as if the DNA con-

centration is unknown. The HPD intervals of the ground truth can recover linearity, but the

HPD intervals of the machine learning results of the lowest DNA concentration are affected

by false positives. This overestimation in λ would result in an overestimation of predicted

bulk DNA concentrations. Overestimation for low numbers of precipitate-positive droplets

could be mitigated by training a classifier that includes multiple classes, including one for

droplets that may contain debris or image artifacts, which contribute to false positives.

Limits of detection are determined as a function of number of droplets and machine

learning performance and can approach one copy per microliter with a million droplets. The

average DNA per droplet (λ) for a given Poisson distribution can be more precisely estimated

with a larger number of sampled droplets (Figure 3.A.8a). With the previously established

linear relationship between λ and DNA concentration, we generate curves of required droplets

to distinguish a sample from 0 DNA at 95% and 99% confidence levels (Figure 3.4c, see

Bootstrapping performance boundary curves for more detail). In this study, 9,185 droplets

are imaged for the lowest DNA concentration (57 copies DNA · µL−1), which is less than

the 15,617 droplets needed to differentiate from a 0 DNA sample with 95% confidence.

Distinguishing a sample with 11.3 copies DNA · µL−1 would require 83,000 and 138,000

droplets to achieve 95% and 99% confidence, respectively. On average, approximately 2

times as many droplets are required to move from 95% to 99% confidence levels. Achieving

this level of performance can be made more feasible by improving the machine learning

model, or decreasing the droplet size, which would speed up imaging.
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Figure 3.4: Classification of droplets predicts Testing set λ, and DNA concen-

tration. (a) Random forest classification of droplets. Testing set droplets indicated with

black circle markers, all others are from Training and Validation sets. Color on outlining

circles indicate prediction score of a precipitate-positive droplet. The threshold to classify a

droplet as precipitate-positive can be adjusted but is 0.5 by default. (b) λ values for droplet

predictions (blue, horizontal) and ground truth (yellow, horizontal) are computed as before

(with 0.5 threshold) and related to bulk DNA concentration. The predicted λs with this

classifier score threshold are consistently higher than the ground truth, indicating a system-

atic propensity to classify false positives, and limitations of low droplet count. Bayesian

estimates of the λ HPD intervals (vertical) illustrate the ability to recover valid ranges of
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λ values for unknown DNA concentration but can be susceptible to false positives at low

concentrations. (c) Bootstrapping across a range of λs and droplet sample sizes enables the

calculation of the minimum number of droplets needed to distinguish a sample from 0 DNA

at 95% or 99% confidence levels (Figure 3.A.8, see Bootstrapping performance boundary

curves for more detail).

3.3 Discussion

In this paper we have presented Fractal-LAMP, a method to perform label-free DNA de-

tection and quantification using a digital assay. Performing LAMP in droplets allows us

to detect DNA amplification via magnesium pyrophosphate precipitate accumulation. This

precipitate is visible in droplets in brightfield and is correlated to overall DNA intercalating

dye fluorescence. We were able to develop an automated computer vision algorithm utilizing

BOVW to accurately detect the presence of precipitate that varied in presentation. The

practical limit of detection is affected by the performance of our computer vision algorithm,

as well as the number of droplets imaged, however, high quantitative accuracy in predicting

DNA concentration is achieved over at least 3 orders of magnitude.

Digital, label-free LAMP is an attractive method to detect low concentrations of DNA

and quantify the amount of target DNA in a sample. A label-free approach eliminates the

need for extra optical equipment and dyes to generate and read fluorescence. Brightfield

microscopic imaging systems can be more cost-effective, larger field of view, and longer

depth of field to fluorescence systems [35, 36]. Furthermore, by only requiring brightfield

imaging, we can image droplets on cell phone imaging platforms, which are more portable

than conventional microscopes. In addition, common intercalating dyes have been shown

to delay the speed of DNA amplification and may be unstable [23]. We have previously

observed the instability of EvaGreen fluorescence over time, with changing temperatures, and

witnessed photobleaching in this paper. Independence from fluorescence dyes also obviates

the need to determine fluorescence value cutoffs, as the presence or absence of precipitate is

a clear binary state.
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Droplets are an advantageous method to partition bulk solution for digital assays. Whether

using serial generation with 3D printed devices [37], or massively parallelized implementa-

tions [38], droplet generators can quickly partition bulk solution into monodisperse volumes.

Engineered carrier microparticles can even be used to emulsify a bulk solution into con-

trolled volumes without the need for microfluidics or droplet generators for the end user.

The imaging of static droplets in this paper can be accelerated using wide-field brightfield

imagers based on consumer electronic devices, which have been previously demonstrated by

us [39, 35, 36, 40] and others and may be compatible with this system.

While this paper imaged static droplets, there is the potential for droplets to also be

imaged in continuous flow, enabling high-throughput potential, especially if detecting pre-

cipitate presence without the need for fluorescence analysis, which has been previously re-

quired [27, 41, 42]. The recent work by Yelleswarapu et al. demonstrates multichannel

high throughput imaging of droplets in flow. Our droplets and fractal precipitate are likely

compatible with this imaging setup and eliminate the need for fluorescence readout, which

requires longer exposure time. In combination with the system detailed in Yelleswarapu et

al., extremely intense illumination and sub-microsecond exposure times could potentially

eliminate the need for streak imaging. We anticipate measurement in flow is also possible

using high-speed cameras that intrinsically have high sensitivity and short exposure times.

For example we have used high-speed cameras with frame rates of hundreds of thousands

of frames per second in previous work analyzing deformation of cells [43]. For droplets we

expect that internal motion of precipitates in moving droplets in a channel could be frozen

in space at sufficiently high frame rates, and therefore analyzed without motion blur. The

localization of precipitate at the bottom of the droplet may be disturbed in this case unless

clever design of the channels is used to minimize disturbing recirculating flows in droplets,

which would be a concern for any method of imaging in flow. Nevertheless, imaging droplets

in flow would be an exciting next step for analysis of precipitate-producing reactions in

droplets, reducing practical limits of detection that our current imaging imposes.

Our computer vision algorithm excelled at detecting the magnesium pyrophosphate frac-
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tal precipitate in droplets. This precipitate varied in both size, shape and focus, but with

sufficiently high numbers of example images, our algorithm was able to learn to distinguish

precipitate from debris or small incorporated oil drops. Precipitate detection from brightfield

images could be improved by restricting the imaging chamber height, to reduce out-of-focus

precipitate, and collecting more example images. Alternative algorithms such as convolu-

tional neural nets [31] may also provide a boost in performance that allows us to achieve lower

limits of detection while imaging fewer droplets. Imaging and computer vision algorithms

may not be needed entirely if digital LAMP shows enhanced turbidity or light scattering

for individual drops, and precise fiber optics can be aligned to detect alterations in light

transmission.

There are several important future directions that can further enhance Fractal-LAMP as

a label-free, digital assay. To start, there are some limitations in the amplification reporting

signals. Neither the intercalating dyes nor magnesium pyrophosphate precipitate generated

are sequence specific, which is a general limitation of LAMP. They can report that the ampli-

fication occurred, but not guarantee which DNA was amplified. That will rely on the DNA

primers, which are also susceptible to self-amplification. Using brightfield imaging alone we

also cannot chemically confirm that the identified particles are in fact magnesium pyrophos-

phate precipitate, which at low quantities can resemble debris. We have not investigated

the long-term stability of the precipitate in droplets, but it is expected that precipitate will

remain stable over longer periods of time than intercalating dyes, which can photobleach.

Performing Fractal-LAMP without any intercalating dyes should also reduce reaction time.

This hints at the exciting possibility to collect and run Fractal-LAMP continuously with

low cost instrumentation but analyze results of several experiments at a future date at a

central location with higher complexity instrumentation. If we maintain the use of images

to observe precipitate, we can use more robust methods such as wide-field imaging or holo-

graphic imaging augmented by neural networks which would allow detecting precipitate on

more planes of focus [44, 45] at extreme throughputs, leading to lower limits of detection

and higher quantitative accuracy.
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3.4 Materials and methods

3.4.1 LAMP/DNA mix

The LAMP reaction was performed as described in previous work [23], with a few key

changes. The polymerase concentration was doubled, and the EvaGreen (Biotium) concen-

tration used was 2.5 µm . Studies were performed by serially diluting bacteriophage lambda

DNA (Thermo Fisher) to yield concentrations of 5.7 × 101 copies DNA · µL−1, 5.7 × 102

copies DNA · µL−1, 5.7 × 103 copies DNA · µL−1, 5.7 × 104 copies DNA · µL−1, and 5.7 ×

105 copies DNA · µL−1.

3.4.2 Droplet formation and incubation

The prepared LAMP solution and DNA was co-injected into a microfluidic 3D droplet gener-

ator [29] with FC-40 and RAN fluorosurfactant to produce 0.56 ± 0.1 nL (diameter: 102.03

± 6.02 µm ) droplets. Generating 1,000 droplets took approximately 1.12 seconds. The

emulsified samples were transferred from the droplet generator via tubing into 0.5 mL mi-

crocentrifuge tubes and incubated at 67�for 2 hours, followed by 2 minutes at 80�.

3.4.3 Droplet imaging

After incubation, the droplets were transferred via pipette to a 120 µm slit chamber for

brightfield and fluorescence (FITC [535/45 nm]) imaging at 10x magnification. Images of

several fields of view are captured for each sample chamber. Imaging 1,000 took approxi-

mately 200 seconds.

3.4.4 Image processing

Brightfield microscopy images are processed by a MATLAB script that identifies droplets

(n=30,138, captured over 31 imaging sessions on the same day) with diameters 65 – 96

µm using a circle Hough Transform [46]. Brightfield images of droplets and corresponding
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fluorescence images are cropped and resized for each detected droplet. Fluorescence intensity

is calculated by integrating total fluorescence intensity of the image. When comparing droplet

fluorescence values, 7% of the field of views across all DNA concentrations are discarded due

to droplet movement between acquiring brightfield and fluorescence images, photobleaching

of the intercalating dye, or inconsistent illumination across the fluorescence images. This

results in an 18% reduction to the total number of droplets considered (n=24,789) in our

comparative analysis.

3.4.5 Dataset creation

All droplet images are manually inspected and marked for presence of precipitate. Droplet

images are divided into Training, Validation, and Testing sets following a 64/16/20 split.

Competing models are trained on the Training set and compared on the Validation set.

Finally, the most performant model is run with the Testing set.

3.4.6 Bayesian regression

Bayesian inference is conducted with PyMC3 [47] and No U-Turn MCMC Sampler [48] to

perform a regression and calculate an inefficiency factor (slope) from which the observed

λ deviates from the ideal λ. This is performed by creating a hierarchical Bayesian model

where the likelihood for each jth DNA concentration is a binomial distribution based on the

number of precipitate-positive droplets nj in its Training set Nj:

N∑
i

1 {Xi > 0} = nj ∼ Binomial(Nj, θj) (3.1)

θj = 1− e−λj (3.2)

λj is distributed as a product of a gamma prior and inefficiency factor, ω, which is shared

across all DNA concentrations:
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λj ∼ Gamma (αj, β) · 1

ω
(3.3)

ω has a log-normal prior which is centered at 1, with 0.01 and 100 being equally as likely:

ω ∼ LogNormal (µ = 0, σ = 4) (3.4)

The gamma prior for each concentration is moderately informed by its ideal λ value, and

the confidence we would have after measuring this λ value from 5,000 droplets:

αj = λj, ideal · 5, 000 (3.5)

β = 5, 000 (3.6)

Three chains of 2,000 steps and 2,000 discarded tuning steps are used by the sampler (Fig-

ure 3.A.9).

3.4.7 Bag of visual words creation

A BOVW model is constructed from Training brightfield droplet images. Image patches

of interest are identified via SURF keypoint extraction, which yields image patch centroids,

orientation, and 64 wavelet responses. Visual words are created by clustering 64-dimensional

wavelet features. SURF keypoints with negative (Light) and positive SoL (Dark) are clus-

tered separately. SURF keypoints are further divided according to a sharpness metric

(Fuzzy/Sharp), yielding 4 sets of visual words with 8 words each. The frequency of vi-

sual words appearing in droplet images is used to construct features used to classify images

for presence of precipitate.
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3.4.8 Random forest classification

BOVW features are combined with meta features and image statistics to create a final feature

set. A random forest classifier uses this feature set to identify precipitate-positive droplets.

Feature generation and classification per 1,000 droplets took approximately 13 seconds on a

standard computer.

3.4.9 Bayesian inference of testing set

Two Bayesian models are constructed similarly to the previous model used on the Training

set using either the Testing ground truth, or the predicted machine learning results. The

posterior of the previously estimated ω is used instead of the relatively uninformed prior

used before. In this case, we want to evaluate the models if the actual DNA concentration is

unknown, so an uninformed gamma prior is used where α = 0.001, β = 0.001 (Figure 3.A.10).

3.4.10 Limit of detection calculation

Repeated sampling of a specified number of droplets from a Poisson distribution can be used

to generate a confidence interval for the estimate of λ. True positive and false positive rates

from the machine learning algorithm is applied to simulated repeat sampling of droplets to

generate confidence intervals for estimates of λ (Figure 3.A.8b). Confidence intervals for a

given λ across a range of droplet sample sizes is compared to confidence intervals for λ =

0 (DNA concentration = 0). The point at which the confidence intervals for the two λs no

longer overlap, tells us the minimum number of droplets needed to distinguish a sample from

a 0 DNA condition (Figure 3.A.8c-d, see Bootstrapping performance boundary curves for

more detail).
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3.A Appendix

Figure 3.A.1: LAMP precipitate presence in microwells. LAMP performed in 100

µm wide microwells produces magnesium pyrophosphate precipitate that adheres to the

surfaces.
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Figure 3.A.2: Performance with fluorescence thresholding. (a) Integrated droplet

fluorescence is used to distinguish positive and negative droplets with a manually selected

threshold (gray). Droplets with differing labels via precipitate and fluorescence thresholding

are indicated in yellow. (b) Bayesian inference is performed with a fluorescence-thresholded

ground truth. The näıve λ calculations (blue) are lower than that of the precipitate derived

ground truth. Bayesian inference yields a median inefficiency factor ω of 204.48 and confi-

dence interval (gray, 99% HPD), indicating that there is a ∼204x inefficiency factor when

performing LAMP in droplets when reading out with fluorescence. Inference also yields 99%

HPD intervals (black) for each sample’s λ estimate that are drawn back to linearity.
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Figure 3.A.3: Visualization of SURF clustering into visual words. (a) The 64-di-

mensional feature space of Training set SURF keypoints are embedded in two dimensions via

the U-MAP algorithm [49]. Keypoints are colored by Sign of Laplacian, which is embedded

in the SURF feature-space, and is later used to separate Light (negative), and Dark (pos-

itive) words. (b-c) U-MAP dimensionality reductions performed separately on Light and

Dark words demonstrates clustering of visual words. A random selection of 5,000 points are

plotted after each dimensionality reduction.
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Figure 3.A.4: Examples of visual words. Members of visual words groups whose fea-

ture-space is closest to the centroid of the group. Sharp and Fuzzy words map onto the same

feature-space of the corresponding Light and Dark words. Image patches are rotated based

on initial extracted keypoints.
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Figure 3.A.5: Estimated importance of features in final random forest model.

Feature importance in a random forest model is calculated by permuting a feature’s values

and measuring a decrease in model performance. Features with lower performance may be

unhelpful or may be redundant to other features higher on the list. Original BOVW features

are shown in blue, meta-BOVW features are in dark blue, and image statistic features are

in yellow.
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Figure 3.A.6: Augmented BOVW model outperforms simpler models. (a) A

Precision-Recall (P-R) curve is used to assess the BOVW performance on the Testing set,

due to the precipitate-empty droplet class balance (∼20:80). The P-R curve of the BOVW is
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compared to simpler models, such as integrated fluorescence, and total number of words per

image. These curves are summarized by the area under the curve (AUC). In order to compare

the performance of the integrated fluorescence model, droplets are excluded that moved

during imaging, or have fluorescence aberrations, as before. The unfilled circle indicates the

default operating point of the BOVW (b) Examples of false positives from random forest

classification, which has detected small oil droplets within the LAMP droplets. The model

misses some precipitate that are out of focus, which are labeled as false negatives.
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Figure 3.A.7: Visual examples of random forest classifier scores. Droplets randomly

selected from 5 classifier score ranges (Figure 3.4) are shown. The middle range (0.4 – 0.6)

includes droplets that will be classified as positive (≥ 0.5) and negative (< 0.5).
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Figure 3.A.8: Bootstrapping determines minimum number of droplets to sample

for a given Poisson distribution and confidence interval. (a) For a Poisson distribu-

tion of droplets with a known λ (0.1 DNA per droplet), the number of droplets sampled will

affect the ability to estimate the true λ. As more droplets are sampled, the estimated λ con-

verges on the true λ. (b) In addition to increasing the sample size of droplets to determine

the true λ, repeat sampling (10,000 iterations) of a given sample size (200 droplets) will con-

verge on the true λ, in the form of a normal distribution (blue). Our ability to estimate the
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true λ is affected by the sensitivity (true positive rate) and specificity (true negative rate) of

our BOVW system (yellow). Circles mark means of corresponding samples. (c-d) These sim-

ulations taking into account the performance of the machine learning system are run across

a range of droplet sample sizes and λ ranges. For each simulation, an aribitrary confidence

interval can be calculated, since it is normally distributed. For a given confidence level (95%

in c, 99% in d), the point at which the confidence interval for a given λ (blue shaded region)

separates from the confidence interval of λ = 0 (yellow shaded region), indicates how many

sampled droplets are necessary to distinguish the two samples. After converting λ into bulk

DNA concentrations (ConcDNA = λ ·ω · V oldrop−1), we can determine the minimum number

of droplets needed to distinguish a given concentration from 0 at confidence intervals of 95%

or 99% (Figure 3.4c, see Bootstrapping performance boundary curves for more detail).
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Figure 3.A.9: Hierarchical Bayesian model for Training set. A hierarchical Bayesian

model is used to perform a regression and calculate an inefficiency factor ω from which the

observed λ deviates from the ideal λ. The likelihood for each jth sample is a binomial

distribution (
∑N
i 1 {Xi > 0} = n+

j ∼ Binomial(Nj, θj) based on the number of precipitate–

positive droplets n+
j in its Training set Nj, and θj = 1− e−λj . λj is distributed as a product

of a gamma prior and inefficiency factor ω, which is assumed to be shared across all samples

(λj ∼ Gamma (αj, β)· 1
ω

). ω has a log-normal prior (ω ∼ LogNormal (µ = 0, σ = 4)) which

is centered at 1. The gamma prior for each concentration is moderately informed by its ideal

λ value (αj = λj, ideal · 5, 000; β = 5, 000).
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Figure 3.A.10: Hierarchical Bayesian model for Testing set. A Bayesian model is

constructed similarly to the previous model used on the Training set using either the Testing

ground truth, or the predicted machine learning results. The posterior of the previously

estimated ω is used by fitting a normal distribution to ω. When evaluating unknown DNA

concentrations an uninformed gamma prior is used where α = 0.001, β = 0.001.
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3.A.1 Bootstrapping performance boundary curves

We use a bootstrapping method to assess our ability to measure a given Poisson distribution

from a specified sample size. In this style of digital assay, we are not able to determine the

number of original DNA copies loaded into each droplet and fit the Poisson distribution.

Rather, we must estimate λ by counting the number of positive droplets n+ in a sample of

N droplets:

Xi ∼ Poisson(λ,N) (3.A.1)

n+ =
N∑
i

1 {Xi > 0} (3.A.2)

λ = −ln

(
1− n+

N

)
(3.A.3)

Our ability to measure a Poisson distribution accurately is dependent on the random

sampling of droplets from a population and the number of droplets. Sampling a larger num-

ber of droplets allows us to more consistently approach the true λ of a Poisson distribution

(Figure 3.A.8a). With a defined sample size, repeatedly drawing new random samples from

a distribution will have some variation in estimating λ. By estimating λ of many (10,000)

random samples of fixed size from the same distribution, we can create a distribution that

illustrates the likelihood of estimating the true λ (Figure 3.A.8b).

In our method, we are not only sampling droplets, but also applying a machine learning

algorithm to classify them. When using an algorithm with imperfect sensitivity and speci-

ficity, negative and positive droplets will be misclassified according to the False Positive Rate

(FPR) and False Negative Rate (FNR), resulting in a modified number of positive droplets

observed, n+∗:

n+∗ = n+ · FNR + (N − n+) · FPR (3.A.4)
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By repeatedly sampling as before but applying the FPR and FNR to each sample sim-

ulates how the machine learning algorithm would estimate λ (“Simulated BOVW”). This

affects our calculated λ for a sample, including a sample drawn from a λ=0 distribution,

which could have a non-zero estimate due to the FPR. Recovering the true λ is important,

but we may not always be able to do so, especially as λ approaches zero. However, we can

still predict whether a particular sample would have a λ distinguishable from λ=0. Given

how our machine learning algorithm can affect positive droplet counts, we want to distinguish

samples from a λ=0 sample to understand our limit of detection. We can approximate the

λ distributions as normal, allowing us to calculate 95% and 99% confidence intervals from

the standard deviations. If confidence intervals of a particular λ and λ=0 do not overlap,

we can distinguish the given Poisson distribution from λ=0, at the given confidence level.

For a range of λ, we generate distributions across a range of sample sizes, and determine

where they no longer overlap with λ=0 at 95% and 99% confidence intervals (Figure 3.A.8d).

Finally, the sampled λ values are converted into concentration according to:

ConcDNA = λ · ω · V oldrop−1 (3.A.5)
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CHAPTER 4

A comparison of microfluidic methods for high

throughput cell deformability measurements

4.1 Introduction

Cell mechanical phenotype is a valuable indicator of changes in internal cell structure and is

tightly associated with cell state and function [1, 2, 3]. Alterations in the mechanical prop-

erties of cells have been linked to many processes including cell cycle progression [4], cancer

malignancy [5, 6, 7, 8], leukocyte activation [9, 10, 11, 12, 13], and stem cell differentiation

[14, 11, 15, 16]. Measurements of cell mechanics circumvent the need of extrinsic labels, such

as fluorescent dyes, and therefore constitute an attractive, non invasive biomarker for cell

identification. Furthermore, as cell mechanics determines the magnitude of the mechanical

response of cells to environmental forces, it can provide a biophysical perspective on cellular

processes such as vascular circulation or migration in development and metastasis [17, 18].

Traditionally, methods such as atomic force microscopy [19], micropipette aspiration [20],

optical stretching [21], and parallel-plate rheology [22] are used to quantify deformation of

single cells under exposure to external stresses (compared in detail with a broader range of

methods in a recent publication [23]). These methods evaluate time resolved responses to

force and enable extraction of physical properties such as elastic modulus or viscosity. They

suffer, however, from technically demanding and time consuming procedures that limit mea-

surement throughput and their extendibility beyond specialized laboratories. Microfluidic

based approaches developed in recent years constitute an attractive alternative [2]. They

allow for robust, high throughput assessment of the ability of cells to change shape under
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applied forces—their deformability—and enable thorough characterization of homogeneous

and heterogeneous cell populations. Moreover, due to the ease of handling, these approaches

have the potential to be implemented in biological laboratories and clinical settings.

The currently available microfluidic-based methods vary in type and magnitude of ap-

plied stress, the rate at which cells are deformed, and the way deformability is parametrized.

One major class, constriction-based deformability cytometry (cDC), relies on driving cells

through a constriction smaller than their diameter and measuring the time cells need to pass

through the constriction [24, 5, 25, 26, 12]. The translocating cells are detected by means of

optical imaging [25, 26, 12], electrical resistance measurements [24], or mechanical frequency

changes of a suspended microchannel resonator (SMR) [5]. The deformability of cells is typ-

ically directly deduced from their passage time; however, in some variations of the method,

additional image-based evaluation of cell deformation over time is performed and viscoelas-

tic cell properties are extracted [25, 26]. The remaining classes of deformability cytometry

employ hydrodynamic flow to induce cell deformation in a contactless manner and infer cell

deformability from image-based evaluation of cell shape. One class of such contactless meth-

ods, shear flow deformability cytometry (sDC), employs shear stress and pressure gradients

in a long, narrow channel to deform cells into a bullet-like shape within a few milliseconds.

A prominent example of this class constitutes real-time deformability cytometry (RT-DC)

[4] operating at strain rates on the order of 0.1 kHz. Another class of contactless methods,

extensional flow deformability cytometry (xDC), uses an extensional flow usually associated

with a cross slot microfluidic architecture. A well-established representative of this class is

deformability cytometry (DC) [11], typically operating at high strain rates on the order of

10 kHz. By increasing the viscosity of the measuring buffer and lowering flow rates, xDC

can be adjusted to operate at lower strain rates (<2 kHz) [27, 28]. Variabilities in the mode

and timescales of operation, types of samples analyzed, and preparation conditions render

it challenging to compare the published results obtained with the different deformability cy-

tometry methods. Despite substantial work on identifying cellular structures that contribute

to deformability changes with the individual methods [5, 29, 11, 15, 4], a direct comparison
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of their performance is still missing.

To close this gap, we performed a highly-standardized cross-laboratory study comparing

representatives of the three deformability cytometry classes: (i) an SMR-based cDC vari-

ant [5], (ii) RT-DC [4] as an example of sDC, and (iii) DC [11] as an example of xDC.

With these methods, we evaluated deformability of human promyelocytic leukemia (HL60)

cells—from the same source and passage number—in two standardized assays subjecting the

cells to osmotic changes and to latrunculin B-induced actin disassembly. Our results show

that the deformability is altered by osmotic changes in all presented methods. In contrast,

the deformability increase due to actin disassembly is detectable with cDC and sDC, but not

with the xDC method implemented in this study. The direct comparison presented here pro-

vides context for interpretation of deformability measurements performed with the different

high-throughput microfluidic-based techniques for measuring cell mechanics that operate at

different strain rates and stress magnitudes.

4.2 Results

4.2.1 Microfluidic-based methods to assess cell deformability

In this work we employ three representatives of the major classes of microfluidic-based tech-

niques for measuring cell deformability—cDC, sDC, and xDC. cDC refers here to an SMR-

based variant utilizing a fluidic microchannel embedded in a silicon microcantilever [5]. Close

to the cantilever apex, the microchannel features a constriction smaller than the cell size (6

µm wide, 15 µm high, and 50 µm long; Figure 4.1a). Cells are driven through this constric-

tion by a constant pressure of 1 kPa, and deform upon contact with the channel walls. The

time taken by the cell to enter and pass through the constriction is assessed using changes

in the resonance frequency of the microcantilever (Figure 4.1a). In cDC, cell deformability,

D, is defined as the inverse of cell passage time (Figure 4.1a). The characteristic passage

time of untreated HL60 cells is 23 ms (Figure 4.A.1), entailing a throughput of a few cells

per second and a strain rate of 0.04 kHz.
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sDC and xDC (here referring to RT-DC [4] and DC [11], respectively) both rely on

hydrodynamic flow to deform cells in a contactless manner, and on high speed imaging to

assess the ensuing cell deformation. Yet they operate using different channel geometries, and

more importantly, different probing timescales and Reynolds numbers (see Table 4.1). The

dimensionless Reynolds number (Re = ρvL/η, where ρ is the fluid density, v the mean flow

velocity, L the characteristic length of the flow system, and η the dynamic viscosity of the

fluid) expresses the relative importance of inertial versus viscous forces and is equal to 0.4

for sDC and 150 for xDC. The very low Re in case of sDC (� 1) indicates a dominance of

viscous forces, characteristic for the type of laminar flow called Stokes flow. xDC, in turn,

operates in an inertial flow regime, where inertial forces cannot be neglected and can lead

to useful effects such as cell focusing(Dino Di Carlo 2009).

In sDC, cells are driven into a funnel like constriction in a microfluidic channel where

they are deformed by shear forces and pressure gradients [30, 4]) into a bullet like shape

(Figure 4.1b). At the end of the ∼300 µm long channel, the steady-state cell deformation,

defined as 1-circularity (Figure 4.1b), is evaluated, and constitutes cell deformability, D.

Cells take a few milliseconds to travel through the channel and the strain is induced at a rate

of 0.2 kHz. Typically, over 100 cells per second can be analyzed. For HL60 cells, chips with

a square channel cross-section of 20 × 20 µm were used; which, together with hydrodynamic

focusing implemented upstream of the deformation channel, assures that cells are not in

contact with the channel walls. The stress acting on the cells during sDC measurements

reaches values on the order of 1 kPa (see Estimation of stress and strain).

In xDC, cells are stretched by an extensional flow in a cross junction of a microfluidic

chip (Figure 4.1c). The cells are delivered to the cross junction at several meters per second,

where they are fully decelerated and deformed via inertial forces within a few microseconds.

This allows for analysis rates of over 1,000 cells per second. Cell size is determined from

images recorded before the cell extension, and deformability, D, is defined as the maximal

aspect ratio observed in the extensional flow region. The channels of the xDC chip have

a rectangular cross-section of 60 × 30 µm . Before entry to the analysis region, cells are
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aligned via inertial focusing, and do not interact with the channel walls. Compared to sDC

and cDC, xDC applies several-fold higher stress to the cells, and reaches a relatively high

strain rate of 20 kHz (See Table 4.1 and Estimation of stress and strain Section 4.2).

The raw data obtained with all three methods is typically displayed on a scatter plot

of deformability versus cell diameter (Figure 4.1). Hallmark parameters of the operation of

cDC, sDC, and xDC are summarized in Table 4.1.

Figure 4.1: Comparison of the microfluidic-based approaches for the determina-

tion of cell deformability used in this study. (a-c) Operation principle of cDC (a), sDC
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(b) and xDC (c). The upper row of each panel illustrates a schematic representation of the

chip geometry used in the respective method. The middle row provides an overview of how

the deformability, D, is defined for each method. The numbers 1-5 in the plot of frequency

vs time correspond to the cell positions in the cDC microchannel indicated in the scheme

above. In the lower row, typical scatter plots of D versus cell diameter from the respective

measurements are presented. The color map corresponds to event density. The strain rate

and stress applied to the cells in cDC, sDC and xDC are indicated on the corresponding

axes at the bottom of the panel.

Table 4.1: Operation parameters of cDC, sDC, and xDC.

cDC sDC xDC

deformability measure passage time−1 1-circularity aspect ratio

detection frequency shift imaging imaging

analysis offline real-time offline

throughput (cells · s−1) 1 100 1,000

timescale of cell deformation, τ (ms) 10 1 0.01

cell contact with channel walls yes no no

channel width × height (µm ) 6 × 15 20 × 20 60 × 30

mean flow velocity, v (m · s−1) 0.01 0.1 3.5

viscosity of measuring buffer, η (mPa · s) 1 5.7 1

Re number in the measuring channel 0.1 0.4 150

mean absolute strain, ε̄ 37% 17% 24%

strain rate, ε̇ (kHz) 0.04 0.2 20

applied stress, σ (kPa) ∼ 1 ∼ 1 ∼ 6
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4.2.2 Osmotic shock-induced deformability changes are detectable consistently

across methods

To compare the deformability measurements among cDC, sDC, and xDC, we first performed

a series of osmotic shock experiments on HL60 cells. In hyperosmotic solutions water is

driven out of cells (Figure 4.2a), leading to a decrease in cell size and increased molecular

crowding inside the cell, which has been linked to elevated cell stiffness [31, 32, 33, 34]. On

the contrary, in hypoosmotic conditions water enters the cells to compensate for the os-

molyte concentration difference, leading to cell swelling and dilution of intracellular material

(Figure 4.2a), and a decrease in cell stiffness [31, 33].

To induce an osmotic shock response, the buffer’s osmolarity was altered with respect to

the HL60 physiological osmolarity of 300 mOsm. Hyperosmotic solutions with osmolarities

ranging from 400 to 700 mOsm were prepared by adding mannitol to the measurement buffer.

Hypoosmotic solutions with osmolarities of 250 and 200 mOsm were prepared by diluting

the measurement buffer with water. To minimize biological batch-to-batch variability in cell

properties, we shared an HL60 cell subline (HL60/S4) between the three participating labora-

tories at the same passage number. Cells were exposed to altered osmolarity for 10 minutes

before measuring. Consistently across the methods, we observed that the hyperosmotic

conditions caused a decrease in cell size and deformability, while hypoosmotic conditions

caused an increase of both parameters (Figure 4.2b-d, Figures 4.A.2 and 4.A.3). Since the

observed deformability response to hypoosmotic shock shows non-monotonic evolution over

time (Figure 4.A.4), we excluded the hypoosmotic conditions from further analysis.

To facilitate the comparison of deformabilities measured with the individual methods, we

introduced relative deformability, RD, calculated with respect to the control condition (see

Online Methods and Figure 4.3). The relationships between RD and the normalized extra-

cellular osmolarity upon hyperosmotic shock for each method were fit with an exponential

curve (Figure 4.2e, Table 4.A.1) with the following formula: RD = eλ(1−Osm/Osmiso), where

λ is the decay constant that describes the sensitivity of RD to the change in the osmolarity,

Osm, normalized to the isosmotic condition, Osmiso. The exponential fits provide the best
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description of the obtained results, as compared to linear and power law fits (Figure 4.A.5).

Although all three methods follow the same exponential trend of decreasing RD with

increasing osmolarity, the decay constants λ differ. This is confirmed by the results of

pairwise F -tests, which show that there is a significant difference between the cDC and xDC

curves (F1,35 = 70.6, p = 6.5 × 10−10), cDC and sDC curves (F1,35 = 29.8, p = 3.9 × 10−6),

as well as between sDC and xDC curves (F1,38 = 89.6, p = 1.5 × 10−11). The sensitivity of

the exponential decay, λ, is highest for cDC, reaching values that are 1.5 and 3 times higher

than those obtained for sDC and xDC, respectively (Table 4.A.1).
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Figure 4.2: Effects of osmolarity changes on cell deformability. (a) Extracellular

osmolarity when decreased beyond physiological (isoosmotic) conditions causes cell swelling

and dilution of intracellular material, whereas an increase of extracellular osmolarity results
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in cell shrinkage and an increase in macromolecular crowding inside the cell. Arrows indi-

cate the direction of water flow. (b–d) Deformability changes upon osmolarity treatment

observed in exemplary cDC (b), sDC (c) and xDC (d) experiments. 50%-density contour

plots of deformability, D, versus cell diameter for HL60 cells treated with increasing osmolar-

ity is accompanied by deformability and cell diameter histograms. (e) Relative deformability,

RD, as a function of normalized osmolarity, Osm/Osmiso, for cDC (purple), sDC (green)

and xDC (yellow) measurements. Data points represent means of medians of multiple ex-

perimental replicates (n = 3, 4, and 4, for cDC, sDC, and xDC, respectively), and error bars

represent standard deviation. Lines represent exponential fits to data. Hypoosmotic shock

data excluded from the fitting procedure is shaded in gray.

4.2.3 Sensitivity to actin disassembly is method-dependent

To further interrogate the differences in deformability measurements between cDC, sDC, and

xDC, we compared their performance in detecting actin disassembly induced by latrunculin

B (LatB). The actin cytoskeleton is recognized as a prominent contributor to cell mechanics

at low strains, and its destabilization with chemical agents is known to reduce cell stiffness

[27, 29, 28, 26, 35]. In suspended cells, actin filaments are predominantly organized into an

actin cortex—a thin, crosslinked network underlaying the plasma membrane [36]. LatB binds

free actin monomers (G-actin) thereby inhibiting actin polymerization and destabilizing

filamentous actin structures (F-actin), such as the actin cortex, in a dose-dependent manner

[37, 38](Figure 4.3a).

We treated HL60 cells with a range of LatB concentrations (1-100 ng · mL−1, corre-

sponding to 2.53-253 nM), along with a DMSO vehicle control, and performed deformability

measurements with cDC, sDC, and xDC (Figure 4.3b-d). As revealed by analysis of variance

(ANOVA), LatB treatment had a significant effect on the cell deformability as measured with

cDC (F6,16 = 17.2, p = 3.6 × 10−6) and sDC (F6,28 = 34.3, , p = 1.2 × 10−11). In contrast,

the xDC measurements did not reveal significant deformability changes upon LatB treat-
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ment (F6,21 = 0.38, p = 0.89), though a subtle deformability decrease at the highest LatB

concentration (100 ng · mL−1) was observed (Figure 4.3d-e, and Figure 4.A.6). Interestingly,

when an increased flow rate was used in sDC, cell deformability reached its maximum at

50 ng · mL−1 LatB concentration and showed a decline at 100 ng · mL−1 (Figure 4.A.7a).

Additionally, with increased flow rate the overall magnitude of the RD response showed

a decrease (Figure 4.A.7b). Increase of LatB concentration beyond 100 ng · mL−1 caused

decrease of deformability as observed with cDC and sDC (Figure 4.A.8), consistent with the

trend observed previously with xDC [11]. For all three methods, cell size remained fairly

constant at low LatB concentrations. However, at LatB concentrations of 50 ng · mL−1

(cDC) and 100 ng · mL−1 (all three methods) the determined cell size decreased slightly

(Figure 4.A.9).

The change of RD in response to increasing LatB concentration exhibited a sigmoidal

dose-response trend for cDC and sDC, while xDC results did not yield a significant fit

(Figure 4.3e, Table 4.A.2). The half-maximal effective concentration, EC50, reached 11.9 ng

· mL−1 for cDC and 14.9 ng · mL−1 for sDC. The upper RD response limit was also similar

for these two methods, reaching 1.46 for cDC and 1.52 for sDC. Concurrently, there was no

significant difference between the obtained cDC and sDC fits (F4,50 = 0.6, p = 0.69), whereas

significant differences were found between separate cDC and xDC curves (F4,43 = 44.3, p =

1.0 × 10−14), as well as between sDC and xDC curves (F4,55 = 63.7, p = 5.3 × 10−20).
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Figure 4.3: Effects of LatB-induced actin disassembly on cell deformability. (a)

LatB causes dose-dependent disassembly of actin cytoskeleton by scavenging actin monomers.

(b–d) Deformability changes of HL60 cells upon LatB treatment observed in exemplary cDC

(b), sDC (c), and xDC (d) experiments. 50%-density contour plots of deformability, D,
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versus cell diameter for HL60 cells treated with increasing dose of LatB are accompanied by

deformability and cell diameter histograms. (e) Relative deformability, RD, as a function of

LatB dose for cDC (purple), sDC (green) and xDC (yellow) measurements (closed circles).

Data points represent means of medians of multiple experiment replicates (n = 3, 5, and 4,

for cDC, sDC, and xDC, respectively), and error bars represent standard deviation. Lines

are four-parameter log-logistic fits, with LatB half maximal effective concentration, EC50,

indicated with open circles.

4.3 Discussion

Integrating mechanical characterization into the current view of cellular behavior is paving

the way towards a more comprehensive understanding of many physiological and pathological

processes [17, 18] with potential clinical diagnostic value [1, 39, 3, 13, 8]). Establishment

and validation of methods measuring the mechanical properties of cells is providing grounds

for further developments in the field. In a recent publication [23], elastic and viscous moduli

of a standardized cell line were measured with several traditional techniques, revealing a

spread of obtained values over several orders of magnitude. This variability was attributed

to the magnitude of applied stress and strain rate, probe size, probing length scale, and

whether the cells were attached or in suspension. Here we complemented this analysis by

performing a cross laboratory comparison of three widely used microfluidic cell deformability

measurement techniques, cDC, sDC, and xDC. While applying different strain rates and

stresses (see Table 4.1), all three methods probe whole cell deformation in a suspended cell

state which reduces potential sources of variability.

All three techniques consistently measured an exponential decrease of deformability with

increasing osmolarity, albeit with varying sensitivity (see Figure 4.2 and Table 4.A.1). The

change in cell volume induced by osmotic shock leads to a multifaceted change in the in-

ternal structure not only within the cytoplasm, but also in the cell nucleus [40]. Although
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the osmotic response can trigger changes in the relative F-actin content [41] and actin cy-

toskeleton structure [31], the overall changes in mechanical properties were shown to be

actin-independent and attributed mostly to macromolecular crowding inside the cell [34].

We therefore conclude that the density of packing of the colloidal fraction inside the cell

induces deformability changes detectable across all tested methods.

Deformability measured with cDC and sDC increased with increasing dose of the actin

destabilizing drug LatB, while xDC measurements yielded no significant change in deforma-

bility upon treatment. This discrepancy can likely be attributed to the difference in applied

strain rates. cDC and sDC induce strain at the rate of 0.04 and 0.2 kHz, respectively, and

show an almost identical change in the measured deformabilities upon LatB treatment (see

Figure 4.3 and Table 4.A.2). xDC, on the other hand, applies strain at a rate of 20 kHz,

and has been previously reported to not measure significant responses to actin cytoskeletal

perturbations [11], presumably due to fluidization of actin networks observed at high strains

magnitudes and strain rates [42, 43]. This is further supported by the fact that adapting

xDC to operate at lower strain rates enables detection of deformability changes upon dis-

ruption of actin cytoskeleton in cells [27, 28] and by the decreased dynamic range of relative

deformability response when using increased flow rates in sDC (Figure 4.A.7). At high doses

of LatB, corresponding to drug-induced substrate detachment observed for adherent cells

[11, 38], the cells exhibit a reduction of deformability (Figure 4.A.8 and previously published

xDC measurements [11]), indicating a biphasic nature of the cell mechanical response to

LatB-induced actin disassembly.

In addition to measuring cell deformability, each of the presented methods features a

set of distinct functionalities that expand the dimensionality of performed measurements.

The SMR-based cDC provides additional parameters describing cell passage through the

constriction such as entry and transit velocities, and enables a highly sensitive readout of

cell buoyant mass [44, 5]. sDC stands out with its real time data processing that renders the

method compatible with active sorting downstream of deformability analysis [45]. Moreover,

for sDC an integrated FACS-like readout of cell and cell compartment fluorescence is available
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[46], as well as a theoretical framework allowing for the extraction of Young’s moduli from

deformability data [30, 47]. Recently developed dynamic RT-DC enables assignment of

viscosity to measured cells by analyzing the time evolution of cell deformation in the channel

[48]. xDC surpasses cDC and sDC with its immense throughput. Finally, in all techniques

bright-field cell images are collected and can be used for extraction of additional image-based

features for further cell characterization.

In the light of our results, the use of cDC or sDC is recommended when probing cellular

changes involving the actin cytoskeleton, and all three methods are equally recommended

when changes in cytoplasmic packing are at play. Since cDC is the only method which

involves physical contact of cells with the channel walls, it is recommend for studies in which

cell friction or retention in processes such as microcirculation is of interest. xDC, in turn,

was previously shown to provide a good readout of changes in structures localized deeper in

the cells, such as the nucleus [11]. For further reference, a comprehensive overview of studies

performed using these deformability cytometry classes is presented in Table 4.A.3.

Taken together, the comparison study presented here aids the understanding of the

strengths and limitations of existing deformability cytometry methodologies, provides con-

text for interpreting deformability measurements across various platforms, and fosters cell

deformability as a powerful metric for mechanophenotyping at throughputs that mark a new

era of measuring cell mechanics [49].

4.4 Methods

4.4.1 Cell culture

Cell culture. The HL60/S4 cell subline (RRID: CVCL II77; received from Donald E. Olins

and Ada L. Olins, Department of Biology, Bowdoin College, Brunswick, Maine, 04101, USA)

was cultured in ATCC-modified RPMI 1640 medium (Gibco) with 1% penicillin/streptomycin

(Gibco) and 10% heat-inactivated FBS (Gibco). Cells were grown at 37�, with 5% CO2, at

densities between 105 and 106 cells · mL−1 with subculturing every second day. The cell line
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stocks were shared between the three participating laboratories at the same initial passage

number and were used within 10 passages upon receipt.

4.4.2 Osmotic shock

The measured osmolarity of the cell culture media and measurement buffers was 300 mOsm

(Fiske 210 Micro-Sample Osmometer, Advanced Instruments, Nordwood, MA). Hyperos-

motic media was prepared by adding 18.22, 36.43, 54.65, and 72.86 mg of D-Mannitol (MW:

182.172 g · mol−1, Sigma Aldrich, St. Louis, MO) per 10 mL of the appropriate measure-

ment buffer to obtain solutions of 400, 500, 600, and 700 mOsm, respectively. Hypoosmotic

media was prepared by adding 1 part of DI H2O to 2 or 5 parts of the measurement buffer

to obtain a solution of 200 or 250 mOsm, respectively. HL60 cells at a density between

0.5–1.0 × 106 · mL−1 were centrifuged at 180g for 5 minutes and resuspended in osmolarity-

adjusted measurement buffer. Cells were then incubated for 10 minutes at 37�, 5% CO2

before measurement. The subsequent deformability measurements were conducted at room

temperature (22-24�).

4.4.3 LatB treatment

Latrunculin B (MW 395.5 g mol−1, Sigma Aldrich, St. Louis, MO) stock solution was

prepared by dissolving the powder in DMSO at a concentration of 1 mg · mL−1 and the

same stock solution was shared between the participating laboratories. The stock solution

was further diluted in DMSO to 10,000x the desired concentration, to achieve equal DMSO

concentration in all treatments (0.01 % v/v). Subsequently, LatB was diluted 10,000x in the

appropriate measurement buffer to final LatB concentrations of 1, 5, 10, 25, 50 and 100 ng ·

mL−1. HL60 cells at a density between 0.5–1.0 × 106 ·mL−1 were harvested by centrifugation

at 180g for 5 minutes, resuspended in LatB-containing solution, and incubated for 30 minutes

at 37�, 5% CO2 prior to measurement. The subsequent deformability measurements were

conducted at room temperature (22-24�).
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4.4.4 cDC measurements

The suspended microchannel resonator (SMR) utilized in this manuscript consisted of a 6 µm

wide, 50 µm long, and 15 µm deep constricted fluidic channel. Device dimensions and fabri-

cation were similar to those described previously [5]. However, the device used in this study

(fabricated by CEA-Leti, France) operated via piezoceramic actuation and had a piezoresis-

tive readout system to monitor cantilever vibration frequency, similar to other types of SMR

devices published previously [50, 51]. Prior to each experiment, channel walls were passi-

vated with 1 mg · mL−1 polyethylene glycol (PLL(20)-g[3.5]-PEG(2), SuSoS, Switzerland).

The applied pressure differential driving the fluid flow through the system remained constant

at 1.0 kPa for each experiment. Single cell buoyant mass and passage time were determined

from changes in the resonant frequency of the microcantilever. Individual cell diameters

were determined by assuming a spherical shape for each cell, with its volume obtained by

combining SMR buoyant mass measurements with Coulter counter volume measurements

(Multisizer 4, Beckman Coulter, Brea, CA) as described previously [5].

4.4.5 sDC measurements

The production of the polydimethylsiloxane (PDMS) chip used for sDC measurements was

performed according to previously described procedures [52, 4]. The experimental procedure

for sDC measurements is described in detail elsewhere [16]. In brief, cells were suspended

in a viscosity-adjusted measurement buffer [phosphate saline buffer without Mg2+ and Ca2+

(PBS-) containing 0.5% (w/v) methylcellulose; adjusted in HAAKE Falling Ball Viscometer

type C (Thermo Fisher Scientific, Waltham, MA) using ball number 3 to a viscosity of 15

mPa · s, which corresponds to a viscosity of 5.7 mPa · s at the measurement conditions

[53]] and introduced to the device via a syringe pump. The overall flow rate during the

experiments was equal to 0.04 µL · s−1 (0.01 µL · s−1 sample flow together with 0.03 µL · s−1

focusing sheath flow) unless indicated otherwise. The imaging was performed at the end of a

∼300 µm long channel with a 20 × 20 µm square cross-section with a high-speed camera at

2,000 frames · s−1, and stroboscopic illumination with pulse duration < 3 µs to avoid motion
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blurring. The cell area and deformation were determined from cell contours in real-time by

an image processing algorithm developed in house [4]. Cell diameter was calculated during

offline analysis from measured surface area and defined as for a circle with an equivalent

surface area. To discard events with rough or incomplete contours, the results were filtered

for an area ratio between 1.00 and 1.05. Area ratio is the ratio between the area enclosed

by the convex hull of the cell contour and the raw area enclosed by the contour.

4.4.6 xDC measurements

The xDC microfluidic device has been previously described [11]. Conventional soft lithogra-

phy was used to fabricate the PDMS devices which were then bonded to glass slides. Cell

suspensions were injected via a syringe pump at 750 µL · min−1 into the microfluidic device

with the channel dimensions of 60 × 30 µm . The region surrounding the cross-slot channel

was imaged with a high-speed bright-field camera at approximately 500,000 frames · s−1, with

sub-microsecond exposure time. Videos were automatically analyzed by a MATLAB program

that measures cell diameter before deformation, and cell aspect ratio while deforming the

cells. Cell diameter is defined as the minimum cell diameter in the direction perpendicular

to flow ± 30◦ prior to the cell arrival at the cross-slot junction.

4.4.7 Relative deformability calculation

Relative deformability, RD, expresses the deformability of the treated cells, Dt, normalized to

the median deformability of cells in the control condition for a given experimental series, D̃ctrl,

according to the following formula: RD=Dt/D̃ctrl. Since the magnitude of deformability can

be influenced by the cell size, RD calculations were based only on cells contained within the

same 1 µm wide diameter bin most represented among all treatment and control samples

for a given experimental set (see Figures 4.A.3 and 4.A.6). This procedure facilitates the

assessment of the effects of a treatment on deformability, independent of the effect on cell

size. The influence of the bin selection on the observed trends is illustrated in Figures 4.A.10

and 4.A.11.
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4.4.8 Osmolarity data curve fitting

The response of cells to an osmotic shock is a dynamic process and, after initial cell swelling or

shrinking, cells are known to undergo a regulatory volume response [54]. Using sDC, we ob-

served the response of cells between 2 and 30 minutes after exposure to osmotic shock. In the

case of the hyperosmotic shock, the deformability and cell size decrease saturated in the first

few minutes, whereas for the hypoosmotic shock, deformability and cell size values initially

increased, but then began to slowly return to their original values (Figure 4.A.4). Therefore,

the values obtained for hypoosmotic shock at the fixed 10 minute measurement time were

not included in the fitting procedure. The effect of normalized osmolarity, Osm/Osmiso,

on relative deformability, RD, for hypertonic conditions was fit with: (i) exponential, (ii)

power law, and (iii) linear functions, adjusted to pass through a fixed point (1,1) repre-

senting control measurement at the isotonic osmolarity, Osmiso. The fitting was performed

using the nonlinear least-square nls function from the stats package in R (R Development

Core Team). The goodness of different fits was assessed by evaluating their mean absolute

residuals and Bayesian information criterion, BIC (BIC function in stats package in R). Ex-

ponential fit curves were compared in pairs via the F -test in R [55]. To account for multiple

pairwise comparison across the three datasets, Bonferroni adjusted p values were calculated

by multiplying p values by three [56].

4.4.9 LatB dose–response curve fitting

RD values calculated with respect to DMSO vehicle control for different LatB concentrations

were used to fit a four parameter log-logistic regression curve with the following formula [57]:

RD([LatB], (b, c, d, e)) =
d− c

1 + exp(b(log([LatB])− log(e)))
(4.1)

where [LatB] is the concentration of the drug, and b, c, d, e are the fit parameters,

denoting: b – the steepness of the dose-response curve, c, d – the lower and upper limits of

the response, and e – the effective does EC50 at which half-maximum response is obtained.
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The fitting was performed using drm function in drc package [57] in R (R Development Core

Team). Fit curves were compared in pairs via the F -test in R [55]. To account for multiple

pairwise comparison across the three datasets, Bonferroni adjusted p values were calculated

by multiplying p values by three [56].
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4.A Appendix

Table 4.A.1: LatB curve fitting The decay constants, λ, for the exponential curve fit

to the relative deformability versus normalized osmolarity data for hyperosmotic shock

obtained with cDC, sDC, and xDC. Fits were performed on medians from n = 3, 4, and

4 independent experiments, for cDC, sDC, and xDC, respectively. The fitted λ values are

reported together with 95 % confidence intervals, CI, and associated p-values from two-sided

t-tests for this parameter

cDC sDC xDC

λ

1.206 0.780 0.397

95% CI [1.065, 1.366], 95% CI [0.695, 0.873], 95% CI [0.363, 0.433],

t(16) = 17.26, t(19) = 18.14, t(19) = 24.02,

p = 9.14 × 10−12 p = 1.86 × 10−13 p = 1.12 × 10−15
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Table 4.A.2: Osmolarity curve fitting Fit parameters for the four-parameter log-logistic

regression fit to the relative deformability versus LatB concentration data obtained with

cDC, sDC, and xDC. Fits were performed on medians from n = 3, 5, and 4 independent

experiments, for cDC, sDC, and xDC, respectively. The fitted values are reported together

with 95% confidence intervals, CI, and associated p-values from two-sided t-tests for each

parameter.

cDC sDC xDC

b (slope)

-4.47 mL · ng−1 -2.06 mL · ng−1 8.71 mL · ng−1

95% CI [-14.13, 5.18] 95% CI [-3.20, -0.94] 95% CI [-72.57, 89.99]

t(19) = -0.97 t(31) = -3.74 t(24) = 0.22

p = 0.34 p < 2.20 × 10−16 p = 9.03 × 10−5

c (lower limit)

1.04 1.00 0.96

95% CI [0.97, 1.10] 95% CI [0.95, 1.05] 95% CI [0.54, 1.38]

t(19) = 35.31 t(31) = 38.13 t(24) = 4.69

p < 2.20 × 10−16 p < 2.20 × 10−16 p = 9.03 × 10−5

d (upper limit)

1.46 1.52 1.03

95% CI [1.38, 1.53] 95% CI [1.44, 1.60] 95% CI [1.00, 1.06]

t(19) = 39.71 t(31) = 37.73 t(24) = 77.72

p < 2.20 × 10−16 p < 2.20 × 10−16 p < 2.20 × 10−16

e (EC50)

11.92 ng · mL−1 14.85 ng · mL−1 78.24 ng · mL−1

95% CI [6.82, 17.01] 95% CI [9.62, 20.07] 95% CI [-273.0, 430]

t(19) = 4.90 t(31) = 5.80 t(24) = 0.46

p = 9.93 × 10−5 p < 2.20 × 10−16 p = 0.65
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Table 4.A.3: Deformability cytometry demonstrations Demonstrated applications

of deformability cytometry methodologies. Summary of studies employing different types of

deformability cytometry to investigate various processes in cell lines and in primary tissue

samples.

method demonstrated biological applications

cDC cytoskeleton perturbations [24, 5, 58, 25, 26, 12], chromatin reorganization [25],

nuclear envelope alteration [25, 59], inflammation mediation [12], leukostasis

[12], cancer cell discrimination [26, 60], cancer cell invasion potential [60],

endothelial-mesenchymal transition [61], osmotic stress [58], protein synthe-

sis inhibition [58], cell cycle progression [58], neutrophil differentiation [59],

oxidative damage of erythrocytes [62], circulating tumor cells and blood cells

discrimination [63, 61]

sDC cytoskeleton perturbations [64, 29, 4], cell cycle progression [4, 46], blood cell

type discrimination [48, 4, 13], cancer malignancy [64, 65], erythrocyte patholo-

gies [66, 13], leukocyte activation [9, 67, 13], leukemia subtypes discrimination

[13], stem cell differentiation [68, 16, 69], characterization of hematopoietic

stem and progenitor cells [70], characterization of rod photoreceptors [71],

yeast dormancy [72], viral infection of a human cell line [68], ability to pass

through microcirculation [73]

xDC cytoskeleton perturbation (at low probing rates) [27, 28], chromatin reorganiza-

tion [74], nuclear envelope alteration [74], stem cell differentiation [11, 15, 74],

characterization of blood cells [61] and cells in pleural fluids [11, 8], cancer

malignancy [8], leukocyte activation [75, 11], heat-treated erythrocytes [76]
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Figure 4.A.1: Distribution of passage times measured with cDC for untreated

HL60 cells. Bars represent binned data of control HL60 cells pulled from 10 experiments

(total cell number, n = 9,734). Dashed curve represents Kernel density estimation (KDE)

of probability distribution with vertical line at the most represented value equal to 23 ms.
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Figure 4.A.2: Cell diameter of HL60 cells exposed to different osmotic shock

conditions. (a–c) Violin plots of cell diameter in a single experiment as measured by cDC

(a), sDC (b) and xDC (c). Black boxes extend from 25th to 75th percentiles, with a dot at

the median, whiskers indicate 1.5x IQR (interquartile range). (d–f) Summary of median cell

diameter values obtained in all experiment series with cDC (d), sDC (e) and xDC (f). Data

points correspond to medians of individual experiments (n = 3, 4 and 4, for cDC, sDC and
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xDC, respectively). Conditions measured in the same experimental series are color-coded.

Boxes span 2x standard deviation with a line at the mean of all medians. In (d–f) statistical

significance of overall differences among mean cell sizes at different osmolarities was tested

using analysis of variance (ANOVA) and its result is shown on top of the horizontal line

overarching all conditions. The p-values reported above each box come from comparison

of the given treatment to the control condition (300 mOsm) obtained through post hoc

analysis using two-sided pairwise t tests for multiple comparison with Benjamin-Hochberg

p-value adjustment.
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Figure 4.A.3: Visualization of bin selection and data processing for osmolarity

experiments. (a–c) 50%-density contour plots of deformability vs cell diameter for an ex-

emplary experiment on HL60 cells subjected to different osmolarity conditions. The contour

plots are accompanied by deformability and cell diameter histograms for cDC (a), sDC (b),

and xDC (c). The most represented 1-µm wide diameter bins used for relative deformability,

RD, calculations and and the corresponding deformability histograms are outlined in grey.
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(d–f) Jitter plots showing distribution of RD from cDC (d), sDC (e), and xDC (f) measure-

ments for a single experiment. Boxes extend from 25th to 75th percentiles, with a dot at the

median, whiskers indicate 1.5x IQR (interquartile range) and each data point corresponds

to an individual cell. (g–i) Summary of RD values obtained in all experimental series with

cDC (g), sDC (h) and xDC (i). Data points correspond to medians of every experiment and

conditions measured in same experimental series are color-coded. Boxes span 2x standard

deviation with a line at the mean of all medians. (j) Number of events in the selected 1-µm

wide diameter bin for each condition and method. (k) Events selected within the 1-µm wide

diameter as a percentage of all events measured. In j and k, the boxes span 2x standard

deviation with a line at the mean. In g-k, the statistics have been calculated for n = 3, 4

and 4 independent measurement replicates, for cDC, sDC and xDC, respectively.
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Figure 4.A.4: Time-resolved effect of osmotic shock on HL60 deformability and

size as measured by sDC. (a–c) The changes in HL60 deformability, D (a), and cell

diameter (b) over time after exposure to medium with altered osmolarity as measured by

sDC. The experiments were performed in 30 × 30 µm channels at a flowrate of 0.16 µL ·

s−1. Data points represent medians of consecutive measurements taken at different times

after the exposure to altered osmolarity medium. On average 3,000 events (and not less than

1,800) are analyzed for each data point.
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Figure 4.A.5: Fitting of the relation between osmolarity and relative deformabil-

ity for hyperosmotic shock data. (a-c) Exponential (red), power law (green) and linear

(blue) fits to relative deformability, RD, vs osmolarity data obtained with cDC (a), sDC (b)

and xDC (c). Data points in a-c represent means of medians of multiple experimental repli-

cates (n = 3, 4, and 4, for cDC, sDC, and xDC, respectively), error bars represent standard

deviation. (d-e) Bar graphs of mean absolute residuals (d) and Bayesian information crite-

rion (BIC) (e), that assess the quality of different fits. Values estimated for each method,

as well as mean of values for all methods (n = 3) for given fit function, are presented. The

error bars on the mean plots represent standard deviation. Mean absolute residuals give

an information on how much the values predicted by the fitted function deviate from the

experimental data. Lower values of residuals indicate better agreement of experimental data

with proposed function. In case of BIC, lower values indicate a better fit.
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Figure 4.A.6: Visualization of bin selection and data processing for LatB treat-

ment experiments. (a–c) 50%-density contour plots of deformability vs cell diameter for

an exemplary experiment on HL60 cells treated with increasing concentration of LatB. The

contour plots are accompanied by deformability and cell diameter histograms for cDC (a),

sDC (b), and xDC (c). The most represented 1 µm wide diameter bins used for relative

deformability, RD, calculations and the corresponding deformability histograms are outlined

in grey. (d–f), Jitter plots showing distribution of RD from cDC (d), sDC (e), and xDC

(f) measurements for a single experiment. Boxes extend from 25th to 75th percentiles, with

a dot at the median, whiskers indicate 1.5x IQR (interquartile range) and each data point

corresponds to an individual cell. (g–i), Summary of RD values obtained in all experimen-

tal series with cDC (g), sDC (h) and xDC (i). Data points correspond to medians of every

experiment and conditions measured in the same experimental series are color-coded. Boxes

span 2x standard deviation with a line at the mean of all medians. (j) Number of events

in the selected 1 µm wide diameter bin for each condition and method. (k) Events selected

within the 1 µm wide diameter as a percentage of all events measured. In (j) and (k) the

boxes span 2x standard deviation with a line at the mean. In (g-k), the statistics have been

calculated for n = 3, 5 and 4 independent measurement replicates, for cDC, sDC and xDC,

respectively.
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Figure 4.A.7: Dose-response to LatB treatment measured with sDC at three

different flow rates. Deformability, D (a), and relative deformability, RD (b), as a func-

tion of LatB concentration at three different flowrates (fr1 = 2.4 µL · min−1, fr2 = 4.8 µL

· min−1, and fr3 = 7.2 µL · min−1). The different flowrates are color-coded as indicated

in the figure legend (fr1 – gray, fr2 – blue, fr3 – green). Open circles indicate medians of

individual measurements, lines connect means of measurement replicates for each flowrate

(n = 5), error bars correspond to standard deviation of the mean distributions. Bin-selected

data was used.

113



Figure 4.A.8: Response to high LatB concentrations measured with cDC and

sDC. The graph shows relative deformability, RD, as a function of LatB concentration.

Dots represent medians of individual measurements. Error bars represent median absolute

deviation. Bin-selected data was used. One measurement series was performed using cDC

(purple, from left to right n = 296 and 271 analyzed cells in the selected size bin per data

point) and two measurement series were performed using sDC (bright and dark green, from

left to right n = 656, 537, 420, 550, and n = 734, 615, 336, 541 analyzed cells in the selected

size bin, for bright and dark green data points, respectively). The concentration range used

for main analysis is shaded in gray.
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Figure 4.A.9: Cell diameter of HL60 cells treated with different concentrations

of LatB. (a–c) Violin plots of cell diameter in a single experiment as measured by cDC
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(a), sDC (b) and xDC (c). Black boxes extend from 25th to 75th percentiles, with a dot

at the median, whiskers indicate 1.5x IQR (interquartile range). (d–f) Summary of median

cell diameter values obtained in all experiment series with cDC (d), sDC (e) and xDC (f).

Data points correspond to medians of individual experiments (n = 3, 5 and 4, for cDC, sDC

and xDC, respectively). Conditions measured in same experimental series are color-coded.

Boxes span 2x standard deviation with a line at the mean of all medians. In (d–f) statistical

significance of overall differences among mean cell sizes at different concentrations was tested

using analysis of variance (ANOVA) and its result is shown on top of the horizontal line over-

arching all conditions. The p-values reported above each box come from comparison of the

given treatment to the control condition obtained through post hoc analysis using pairwise

two-sided t-tests for multiple comparisons with Benjamin-Hochberg p-value adjustment.
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Figure 4.A.10: The influence of size bin selection on relative deformability re-

sponse to osmotic shock. For all three methods RD was calculated for either all data,

3-µm wide cell diameter bin or 1-µm wide cell diameter bin. For the ease of comparison, the

data is grouped based on binning strategy and all three methods are plotted together (a),

or the data is grouped by method and all binning strategies are compared (b). The lines

connect the data points representing means of medians from measurement replicates (n = 3,

4, and 4, for cDC, sDC, and xDC, respectively). Error bars present the standard deviation

of the medians.
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Figure 4.A.11: The influence of size bin selection on relative deformability re-

sponse to LatB treatment. For all three methods RD was calculated for either all data,

3-µm wide cell diameter bin or 1-µm wide cell diameter bin. For the ease of comparison, the

data is grouped based on binning strategy and all three methods are plotted together (a),

or the data is grouped by method and all binning strategies are compared (b). The lines

connect the data points representing means of medians from measurement replicates (n = 3,

5, and 4, for cDC, sDC, and xDC, respectively). Error bars present the standard deviation

of the medians.
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4.A.1 Estimation of stress and strain

4.A.1.1 Rotational symmetry of deformed cells

During a microfluidic deformation experiment, a spherical cell adapts a three-dimensional

deformed shape: a prolate ellipsoid in case of cDC and xDC, and a bullet-like shape in case

of sDC (Figure 4.A.12). Depending on the geometry of the microfluidic system used, the

obtained shape can be rotationally symmetric with respect to the angle φ about the rotation

axis x aligned with the longest shape dimension, or rotationally asymmetric. In case of

cDC, the measurement channels used were 6 µm wide and 15 µm high which resulted in a

deformation into a rotationally asymmetric ellipsoid (Figure 4.A.12a). sDC channels had

a square cross-section of 20 µm × 20 µm resulting in a rotationally symmetric bullet-like

shape (Figure 4.A.12b). In xDC, the channels were 60 µm wide and 30 µm high. The

extensional flow comes from both sides along the y-axis and exits the cross-junction towards

the x-direction causing the cells to compress in y, and extend in x and z in an asymmetric

way. This resulted in an ellipsoid that was not rotationally symmetric about the x axis

(Figure 4.A.12c).

Figure 4.A.12: The 3D shapes obtained during microfluidic deformation of spher-

ical objects and their rotational views. (a-c) 3D projections of shapes obtained during

cDC (a), sDC (b) and xDC (c) measurements presented from two rotational angles φ.

The xyz-directions are given for reference in the upper left corner of each image. The gray

119



transparencies in the upper row indicate xy-plane.

4.A.1.2 Strain estimation

We define strain, ε, experienced by the cell as a deviation of the local cell radius, r, from

the radius of an undeformed cell, r0, along the polar angle θ within a plane of interest at a

given rotation angle φ about the rotation axis x aligned with the longest shape dimension

(as depicted in Figure 4.A.12):

ε(θ, φ) =
r(θ, φ)− r0

r0
(4.A.1)

The local strains in xy-plane, εxy, and xz-plane, εxz, can be formalized as follows

εxy(θ) = ε(θ, 0) (4.A.2)

εxz(θ) = ε(θ,
π

2
) (4.A.3)

The maximum absolute strain experienced by the cell, εmax, is defined as

εmax = max(|ε(θ, φ)|) (4.A.4)

while the mean absolute strain, ε , experienced over all polar angles θ ∈ (−π, π) at every

rotation angle φ ∈ (−π, π) can be denoted as

ε = 〈|ε(θ, φ)|〉 (4.A.5)

For cDC, r0 is estimated for each cell from the measured cell volume as described in

Methods section, and r(θ, φ) is calculated assuming volume conservation and a deformation

into an ellipsoid with the maximum principal axes length in y and z determined by the width

(6 µm ) and height (15 µm ) of the microconstriction, respectively. The graphical represen-

tation of the cell deformation in xy-plane together with the mean local strain estimates in
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xy- and in xz-planes are presented in Figure 4.A.13a. The maximum absolute strain, εmax,

for an cDC measurement on untreated HL60 cells was located at the ellipse tip along the

major axis and amounted to 92%, while the average absolute strain, ε, amounted to 37%.

For sDC, r0 is estimated for each cell assuming a sphere of volume equivalent to the

volume calculated by rotating a bullet-shaped contour of deformed cell around its symmetry

axis. r(θ, φ) represents the distance of the fitted contour to the shape’s center of mass. The

graphical representation of the cell deformation in the imaging plane xy as well as mean

local strain estimates εxy(θ) and εxz(θ) are presented in Figure 4.A.13b. The maximum

absolute strain, εmax, for an sDC measurement on untreated HL60 cells is located at the tip

of bullet-like shape and amounted to 47%, while the mean absolute strain, ε, amounted to

17%.
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Figure 4.A.13: Radial representation of local strain experienced by untreated

HL60 cells during microfluidic deformation experiments. (a-c) A graphical repre-

sentation of undeformed and deformed sphere cross-section in the xy-plane together with

local strain estimate in xy- and xz-planes along the polar angle θ for cDC (a), sDC (b), and

xDC (c). (d) An overlay of local strain in xy- (left-hand side) and xz-planes (right-hand

side) for all three methods. For all plots, lines represent means over n = 1,428, 928, and

6,157 events for cDC, sDC and xDC, respectively, gathered in one representative experiment

on untreated HL60 cells. Shaded areas represent standard deviations.

For xDC, r0 is specified for each cell based on the cell diameter estimated from undeformed

cell images, and r(θ, φ) is calculated assuming volume conservation and a deformation into

an ellipsoid with the experimentally determined major and minor axes in the xy-plane (a

and b in Figure 4.1c, respectively). The graphical representation of the cell deformation in

the imaging plane xy as well as mean local strain estimates εxy(θ) and εxz(θ) are presented in

Figure 4.A.13c. The maximum absolute strain, εmax, for a xDC measurement on untreated

HL60 cells was located at the ellipse tip along the major axis and amounted to 60%, while

the mean absolute strain, ε, amounted to 24%.

An overlay of εxy(θ) and εxz(θ) for all three methods is depicted in Figure 4.A.13d.

4.A.1.3 Strain rate estimation

The strain rate is calculated for the individual methods according to the formula

ε̇ =
dε

dt
=
ε

τ
(4.A.6)

where ε is the mean absolute strain defined in Equation (4.A.5) and τ is the characteristic

timescale of the measurement or, in other words, the time in which the cell is deformed, and

is specified for each method in Table 4.1.
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4.A.1.4 Stress estimation

The stress applied to cells passing through the microconstriction in an cDC measurement

can reach a maximal value corresponding to the total applied pressure differential that drives

the fluid flow in the system set to 1 kPa. This stress is applied providing that the cell fills

the entire cross-section of the constriction. In reality, there are gaps between the cell and

channel walls. The expected total applied stress is therefore close to, but below, 1 kPa.

There are two types of stresses acting on a cell during an sDC experiment: hydrodynamic

shear stress, σsh, arising from velocity gradient inside the channel and acting tangentially on

the cell surface, and hydrodynamic pressure, σp, which arises from pressure gradients and

acts in the direction perpendicular to the cell surface. The magnitude of these stresses can

be derived analytically for a case of a channel with circular cross-section using a flow-field

calculated with stream function approach as previously described [30]. The calculations for

the channel with circular cross-section were shown to deliver a good approximation of the

stresses acting on the cell in a square channel of corresponding dimensions [30]. The results

of the estimations for the parameters used during sDC experiments in our study are show

in Figure 4.A.14. The peak shear stress acting on the cell surface amounts to roughly 0.43

kPa, and the peak hydrodynamic pressure to 0.78 kPa. Therefore, we can conclude that the

deformation-relevant peak stresses in sDC are on the order of 1 kPa.
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Figure 4.A.14: Analytical estimation of surface stresses acting on an undeformed

sphere passing through a circular channel approximating an sDC experiment. A

map of hydrodynamic shear stress (a) and hydrodynamic pressure (b) on a surface of a sphere

of radius 6.5 µm passing through a cylindrical channel with a diameter of 20 µm at a flowrate

of 0.04 µL · s−1 and medium viscosity of 5.7 mPa · s, corresponding to the shear-adjusted

viscosity of the used measurement buffer [53].

In xDC, there are two type of forces acting on a cell in the extensional-flow region, the

drag force and the shear force, with the drag force being three order of magnitudes bigger

than the shear force [11]. The drag force acting on a cell is estimated to exceed 1 µN [11],

therefore the corresponding estimated stress acting on a cell with a diameter of 15 µm would

amount to values exceeding 5.7 kPa.
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Martin Bornhäuser, Edwin R Chilvers, Reinhard Berner, and Jochen Guck. Detection
of human disease conditions by single-cell morpho-rheological phenotyping of blood.
eLife, 7:e29213, 2018.

[14] Andrew E. Ekpenyong, Graeme Whyte, Kevin Chalut, Stefano Pagliara, Franziska Laut-
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[68] Martin Kräter, Jiranuwat Sapudom, Nicole Bilz, Tilo Pompe, Jochen Guck, and Claudia
Claus. Alterations in Cell Mechanics by Actin Cytoskeletal Changes Correlate with
Strain-Specific Rubella Virus Phenotypes for Cell Migration and Induction of Apoptosis.
Cells, 7(9):136, 2018.

[69] Miguel Xavier, Philipp Rosendahl, Maik Herbig, Martin Kräter, Daniel Spencer, Martin
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CHAPTER 5

Fluorescence imaging deformability cytometry:

integrating nuclear structure with mechanical

phenotyping

5.1 Introduction

In the past few decades, tools measuring the mechanical properties of cells have grown in

sophistication and diversification [1]. Cell mechanical phenotypes are the culmination of

intracellular components such as the cytoskeleton and nucleus. As these components reor-

ganize or change form or function, the cell’s mechanical properties can change with them.

These changes have been related to changes in cell cycle [2], leukocyte activation [3], cancer

malignancy [4], and cell differentiation [5, 6], among many others. A variety of tools have

been used to probe cells’ response to force, such as atomic force microscopy (AFM) [7], mi-

cropipette aspiration [8], or optical tweezers [9], but all these methods can be labor intensive,

affected by user variability, and do not scale well. Recently, several microfluidics methods

have been developed that allow cells to be measured robustly, and at higher throughput

[5, 10, 2]. Higher throughput methods enable more cells to be measured, providing a more

complete picture of cell heterogeneity or rare subpopulations. Although all these meth-

ods aim to measure the mechanical properties, they vary widely in implementation, applied

stress, time scales, and quantification of deformation [11]. These methods generally quan-

tify cell deformation in a way that considers a cell to be a uniform elastic object, without

isolating nuclear contributions, or identifying local deformation.

As a major component of the cell, the nucleus has been found to alter overall deformability
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via chromatin reorganization [12, 13], nuclear envelope alteration [12, 13, 14], and cell cycle

progression [15, 2, 16]. The nucleus’s mechanical properties have also taken a more active

role in the cell’s function by facilitating cell migration [17, 14, 18] and genomic architecture

reorganization [19, 20].

Massive nuclear reorganization also occurs in neutrophils when generating neutrophil

extracellular traps (NETs) [21]. Neutrophils are a vital part of the innate immune system. In

the defense against pathogens, neutrophils were long thought to attack invading organisms

via phagocytosis, or release of anti-microbials from their granules. However, a third role

has somewhat recently been discovered, where neutrophils release NETs [22]. NETs are

comprised of the neutrophil’s decondensed chromatin, embedded with cytosolic and granule

proteins. These NETs are intended to trap and neutralize pathogens including bacteria,

fungi, viruses and parasites [21]. During the process of creating NETs, or NETosis, the

neutrophil’s chromatin decondenses, the nuclear envelope breaks down, and the chromatin

mixes with the cell’s anti-microbials before being released into the extracellular environment.

This process normally results in the death of the neutrophil, although there is a form of

non-lytic NETosis where the NETs are released, and the chromatin-less cells remain intact.

Despite the advantages of NETs in an immune response, NETs have been implicated in

various autoimmune diseases including rheumatoid arthritis, psoriasis, and gout [23], as well

as infertility and preeclampsia during pregnancy [24].

NETosis induces large structural changes in neutrophils within hours. This has been

observed in vitro by inducing NETosis with Phorbol myristate acetate (PMA), and utilizing

fluorescence microscopy to observe the chromatin decondense and pervade the cell before

rupturing [25]. NETosis has also been characterized using imaging flow cytometry, utiliz-

ing PMA or lipopolysaccharide (LPS) to induce NETosis [26]. In addition to staining and

characterizing the nuclear structure, this work also stained myeloperoxidase (MPO), a key

biomarker of NETosis, which is normally compartmentalized in the neutrophil granules, but

is collocated by the end of NETosis. Due to the massive structural reorganization needed

to produce NETs, we believe that neutrophils undergoing NETosis should have significant
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changes in deformability, which should be measurable with FI-DC. This has not been specif-

ically measured or reported. The nuclear composition in neutrophil-like cells has previously

been shown to impact the cells’ deformability, and ability to pass through small spaces [14],

which indicates that chromatin decondensing or nuclear envelope breakdown in NETosis

should have a significant impact on cell deformability. Identifying NETosing cells in flow

may be valuable to potentially assess pathogen loads or assessing the efficacy of autoimmune

treatments.

However, high throughput cell deformability methods have been unable to directly in-

clude nuclear information. Many of these nuclear findings have been extracted by experi-

ments carefully designed to alter or isolate nuclear changes. A real-time fluorescence and

deformability cytometry technique has been recently developed, which is only able to pro-

vide fluorescent pulse information [27, 16]. This method has been able to identify nuclear

envelope breakdown and distinguish between anaphase and metaphase cells with proper

staining. Fluorescent images of nuclear structure have not been utilized in high throughout

deformability methods due to the incompatibility of the time needed to integrate fluorescent

images, and the speed at which cells are often flowing through the microchannels. With high

resolution information of nuclear structure, we can understand how it contributes to overall

cell mechanical properties, and use it to identify cell types.

To overcome these challenges, we have developed fluorescence imaging deformability cy-

tometry (FI-DC), which uses sensitive photomultiplier tubes (PMTs) to image fluorescence

channels while flowing at 0.5 m · s−1. This method utilizes fluorescence imaging using

radiofrequency-tagged emission (FIRE) [28], which generates images by integrating a line of

pixels across the channel of a microfluidic device. We combine this imaging with a shear

flow deformability method [2] that features tunable sheath flow geometry that allows us to

tune cell deformation. When used with appropriate nuclear or other intracellular stains, this

platform allows us to directly combine intracellular imaging with cell deformation.
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5.2 Results

5.2.1 Overview

We have developed FI-DC, a platform for deforming cells in flow, while delivering simulta-

neous brightfield and fluorescent images. FI-DC is the first deformability method of its kind

that is able to operate at modest throughputs (0.5 m · s−1) while delivering images that

reveal both the shape and size of the cells, in addition to internal cellular structure. Here we

demonstrate its capability by providing spatial information about nuclear structure, which

had not yet been realized by high throughput deformability techniques. This is achieved by

combining a shear flow deformability method [2] with fast fluorescent and brightfield imaging

using FIRE [28] (Figure 5.1a). We use a microfluidic device that has a center sample inlet,

flanked by two additional inlets to provide sheath co-flows. A similar method has recently

been used to probe cell and spheroid mechanics [29]. The streams join in a straight channel,

with cross section 25 µm × 30 µm , where the cells are deformed into a bullet shape and

imaged. The center sample stream contains cells suspended in 1.5% w/v Alginate in PBS,

and the sheath flows are 5.0% w/v Alginate in water. The viscosity in the sample stream

serves to increase the average shear stress experienced by the cells. Creating a viscosity

mismatch between the sample and sheath flows pinches the velocity profile in the center of

the channel (Figure 5.1a inset), creating a higher velocity gradient, and higher shear stress.

FIRE provides rich, multimodal images of cells in flow. FIRE acts as a type of line

scan imaging system, building images as the cells flow past the interrogation region of the

microfluidic channel. The interrogation region is exposed with a 488 nm laser, and emitted

and scattered light is reconstructed to create brightfield and darkfield images, and multiple

fluorescent channels. Here, we use brightfield and FITC [529/28 nm] images to measure cells

and their stained nuclear structure (Figure 5.1b). The fluorescent images can reveal nucleus

size, location, or cell cycle, all of which might affect cell mechanical properties. FIRE images

can be acquired by setting side scatter or fluorescence thresholds, which provides initial

filtering of debris, and allows for long, continuous acquisition of sparse samples. With a
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sufficient cell concentration, FIRE can provide a throughput of up to hundreds of events per

second.

Figure 5.1: FI-DC schematic and analysis overview. (a) Cells flow through a mi-

crofluidic device with viscous sheath flows that create a pinched velocity profile (inset). Af-

ter deforming, cells are interrogated in the straight channel via FIRE, producing brightfield

and fluorescence images. (b) Jurkat and neutrophil images demonstrating varied nuclear

structure. (c) Cells and nuclei are segmented from images using U-Net neural networks.

Curvature is measured from extracted boundaries, which is integrated to yield a scale-in-

variant bending factor, which we use for cell deformability. Chromatin content is calculated

as the ratio of nuclear and cell area. (d) Cell area, cell deformability and chromatin content

capture fundamental features of cell populations. Unlabeled scale bars are 10 µm .
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FIRE images are automatically analyzed to extract cell and nucleus morphology mea-

sures. Exported FIRE images are first filtered by a neural network to remove images with

multiple cells, debris, dead cells, or partial cells. Cells and nuclei are segmented from bright-

field and FITC images, respectively, using U-Net neural networks [30], which excel at seg-

menting biological images (Figure 5.1c). To avoid the pixelation effects from measuring

the segmented objects directly, we extract smoothed contours first. We can then calculate

standard morphology measurements such as cell area, perimeter, aspect ratio, and solidity.

Previous hydrodynamic deformability methods have measured cell deformability as devi-

ations from circularity. This has been achieved by measuring the cell aspect ratio [5], or by

measuring the cell’s circularity [2]. Both measures do reflect some information about changes

in a cell’s shape, but we believe that there is some information lost about the local changes

in deformation. Therefore we calculate local curvature of the extracted cell and nucleus

boundaries, and use this to calculate a unit-less scale-invariant bending energy to describe

the entire object [31, 32]. In this paper we will refer to this measurement as the bending

factor as it is not a physical measure of energy. The bending factor gives us local information

about deformation of the cell and gives us a scale-invariant measure that describes how a cell

deviates from circularity. According to this scale-invariant bending factor, all perfect circles

would have a value of 4π, which is the minimum possible value. The bending factor for

sections along the boundaries can also be calculated, accumulating curvature measurements

for any region. The bending factor is calculated for both cells and nuclei, and we use it for

our definition of cell deformability. The FITC FIRE images give us information about the

size and location of stained chromatin in the cells. We can leverage this information first

by calculating the ratio of the chromatin area and cell area, which we refer to as chromatin

content. Cell area, cell deformability, and chromatin comprise the most useful features in

our analysis (Figure 5.1d).
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5.2.2 Deformation characterization

Deformation of cells in FI-DC is controlled by altering the viscosity of the sample and sheath

streams, while maintaining constant volumetric flow rate. Here we demonstrate the change

in deformation of suspension Jurkat cells by adjusting the sample stream viscosity, as well

as the differential of the sample and sheath viscosities (Figure 5.2a). As an illustration,

we show cells in the following sample:sheath configurations: PBS:PBS (indigo), PBS: 2.0%

w/v Alginate (violet), and 1.5% w/v Algiante:5.0% w/v Alginate (orange). As both the

sample stream and sheath streams increase in viscosity, the shear stress on the cells increases,

changing the cell shape from that close to a circle, to a bullet. To estimate the stress

experienced by the cells, we model the channel in 3D in COMSOL, and calculate the average

shear stress of a 10 µm × 10 µm lumen in the center of the channel (Figure 5.2a). Using

the most extreme flow condition shown here, this gives us ∼44-fold increase in estimated

shear stress over a PBS filled channel. The differences in cell shape seen by eye are also

clear when calculating cell deformability (Figure 5.2b). Using the bending factor as the

measurement for deformability, the 1.5% w/v Algiante:5.0% w/v Alginate condition gives

us a clear separation from the largely undeformed cells in PBS:PBS, leading us to use this

condition for the rest of the following work.

5.2.3 Revealed nuclear structure heterogeneity

FIRE’s fluorescent images allow us to discover nuclear heterogeneity in Jurkat cells. Without

these fluorescent intracellular images, we may only analyze cells by area and deformability.

But by measuring the chromatin area per cell, we can see a subpopulation in Jurkat cells

that exhibits reduced chromatin area for similarly sized cells (Figure 5.2c). This reduced

chromatin content subpopulation is relatively rare (1.9%), and generally has a larger cell size

and increased cell deformability than the rest of the Jurkat sample. When comparing cells

within a narrow size range(Figure 5.2d), it is difficult to determine if similarly sized cells

have different cell deformability due to the rare occurrence of the low chromatin content cells

(Figure 5.2e).
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Figure 5.2: FI-DC features tunable deformation and reveals nuclear and mem-

brane details. (a) Increasing the sample stream viscosity and the ratio of sample:sheath

viscosity increases visible deformation. (b) Bending factor as a form of cell deformability

captures the change in shape visible in images. (c) Nuclear images of Jurkat cells reveal a

subpopulation with reduced chromatin content. (d) This reduced chromatin content subpop-

ulation features a higher cell size and deformability than the rest of the cell population. (e)

When comparing cells of similar size, there is not a drastically difference in cell deformability.

(f) Jurkats of similar size with low (yellow) and high (blue) cell deformability are selected for

comparison. (g) These cells do not exhibit drastically different levels of chromatin content.

(h) Median shapes of cells in these populations reveal the high cell deformability cells are

deformed more in the lower (back) corners of the cell. (i) Differences in the deformation of

sections of the cell quantitatively demonstrates the sections of the cell responsible for overall

cell deformability differences. Unlabeled scale bars are 10 µm .
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5.2.4 Investigating differences in cell deformability

FI-DC’s fluorescent images enable us to investigate why similarly sized cells deform differ-

ently. When comparing the mechanical properties of cells, it is useful to understand how

cells of a similar size may have different deformability. This may be true when comparing

different cell types or treatments, or even the natural spread within the same population. We

select a sampling of approximately 100 cells at low and high deformability for the same size

range, while excluding outlier cells with high deformability (Figure 5.2f). These cell groups

do not have noticeably different levels of chromatin content, indicating that the difference in

deformation may not be due to nuclear structure (Figure 5.2g). Instead, when using the fact

that our cell boundaries have been aligned to the same polar coordinate, we can calculate

median cell shapes for each of the groups (Figure 5.2h). This indicates that the group of

higher deforming cells have more pronounced corners at the base of the bullet shape, as well

as some negative curvature in between the corners. This observation is demonstrated quan-

titatively by dividing the cells into thirds (gray lines) and calculating the bending factor for

each section (Figure 5.2i). This analysis illustrates that there is some increased deformation

at the front of the cell (Section 0), but that the back thirds (Section 1 & Section 2) have

a much higher bending factor. This, along with the chromatin content indicates that the

difference in deformation is likely due to differences in the actin cortex in the cytoskeleton,

rather than due to nuclear effects. Similar spread in deformability may be visible with other

imaging methods or deformability calculations, but FI-DC is able to give more insight into

the local changes that may contribute to deformation differences.

5.2.5 Neutrophil extracellular traps

We use FI-DC to study changes associated with NETosis in neutrophils. We induce NETosis

in neutrophils from two healthy donors by stimulating in vitro with 2 nM PMA for 1.5 hours

and comparing to a vehicle control. In both donors, we observe a decrease in chromatin

content, with an increase in cell deformability (Figure 5.3a). Cell and nuclear traces from

five cells from the center of the cell distributions illustrate the changes in the cells. The
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cells appear to have grown, and become more bullet shaped, indicating that the chromatin

content may not have decreased with PMA treatment. The nuclear bending factor of the

PMA treated neutrophils shows a trend towards lower values, which is loosely correlated with

chromatin content (Figure 5.3b). We do not use the nuclear bending factor as a measure of

nuclear deformation, but instead to describe its shape. In this case, the lower nuclear bending

factor indicates the nuclei have become less lobular and are becoming rounder. Finally, while

both cell deformability and nuclear bending factor have changed with PMA stimulation, the

two measures do not appear to be correlated (Figure 5.3c).

Figure 5.3: FI-DC reveals changes in NETosing neutrophil deformation and

structure. (a) Stimulated neutrophils from two donors have increased cell deformabil-

ity and reduced chromatin content. Traces from 5 cells from each condition reveal cells have

increased in size. (b) The nucleus bending factor of stimulated neutrophils is slightly lower,

as the cells begin the NETosis process. (c) There is not visible correlation between cell
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deformability and the shape of nuclear structure (nuclear bending factor).

Stimulation of neutrophils with PMA results in marked increases in cell area and cell

deformability (Figure 5.4a) in both blood donors. The PMA-treated distributions have a

clear shift in their center of mass, but it is clear via the density contours that there remains a

portion of the distributions co-located with the untreated neutrophils, indicating that not all

neutrophils are stimulated equally. To compare how the mechanical properties of similarly

sized cells compare, we have previously developed a measure of relative deformability [11].

Relative deformability normalizes the median deformability of treated cells within a narrow

size range by the median deformability of control cells. This normalization allows us to

compare values more confidently between experiments, and across platforms. Selecting a

narrow size range, we can see that there is a clear shift in cell deformability of the PMA

treated neutrophils, and that all distributions are strongly skewed (Figure 5.4b). Rather

than converting thousands of cell measurements into a single value of relative deformability,

or risk taking the median of a complex distribution, we construct relative deformability

distributions instead.

Relative deformability distributions normalize entire deformability distributions, not just

measures of central tendencies. Relative deformability distributions are bootstrapped by

randomly sampling pairs of values from each treatment and its corresponding control and

dividing them (Figure 5.4c). In this way, we get a more complete understanding of the

control distribution, which is normalized against itself, instead of simply having a relative

deformability of 1. Sampling in this way, we can still observe a shift in the PMA-treated

neutrophils. Additionally, because of the resampling, the relative deformability distributions

are roughly t-distributed, making them easier to model and compare. These distributions

are compared and modeled with Bayesian inference [33]. The difference in treatment means

from control is significantly greater for both Donor 1 (median=0.0649, 94% CI [0.0578,

0.0728]) and Donor 2 (median=0.04, 94% CI [0.0307, 0.0486]). The scale parameter σ for

Donor 1 is significantly greater than that of the control (median=0.011, 94% CI [0.00524,
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0.0177]), while the difference for Donor 2 is not significantly greater (median=0.0037, 94%

CI [-0.00368, 0.0108]). We believe this calculation of a relative deformability distribution is

a more accurate and richer metric for changes in deformability.

Figure 5.4: NETosing neutrophils have increased cell deformability. (a) NETosing

neutrophils demonstrate a drastic increase in cell size and deformability. (b) The cell de-

formability of neutrophils from a narrow size range is compared, which illustrates a small shift

in deformability. (c) Distributions of cell deformability are normalized, which also show an

increase in treated neutrophils. Bayesian analysis indicates that there is a significant change

in the distributions’ means when modeled as t-distributions.

5.2.6 NETosing neutrophil classification

With this platform we not only want to measure NETosing neutrophils but detect them in

flow as well. We perform random forest classification on the treated and untreated neu-
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trophils by pooling the measured cells from both donors. These cells are split into training

(n=67,530) and test (n=22,510) sets. The classifier is trained using features calculated from

the brightfield and fluorescence images, and achieves 85% classification accuracy, with un-

treated and treated precision values of 84% and 86% respectively, and recall values of 88%

and 82% respectively. We perform permutation importance tests that reveal the cell area is

by far the most useful feature to classify treated neutrophils, followed by cell deformability

(See Supp Figure 5.A.1a for list of features and relative importance). Due to the dras-

tic change in cell size following PMA stimulation, we construct a new classifier, excluding

features relating to cell size including cell area, cell length, cell width, cell perimeter, and

chromatin content. This classifier has decreased performance, but not by much, as it has a

classification accuracy of 79.7%. This classifier has untreated and treated precision values of

80% and 79% respectively, and recall values of 82% and 77% respectively. Permutation tests

reveal that this classifier’s most useful features are overall cell deformability, followed by the

bending factor of the two back corners of the cell, and then the bending factor of the front

of the cell (See Figure 5.A.1b for list of features and relative importance). These results are

consistent with the higher deformability Jurkat cells which experienced more deformation

in the back corners (Figure 5.2h). These classification results indicate that NETosing neu-

trophils can be identified in FI-DC, not only due to their increase in size, but due to their

deformation as well.

5.3 Discussion

Here we have presented FI-DC, a platform that enables fluorescence imaging with high

throughput cell deformability in flow. This technology enables morphological cell measure-

ments to be combined with intracellular information, such as nuclear structure. Additionally,

we have proposed a new method to quantify the deformation of hydrodynamically deformed

cells, by calculating local curvature along the cell perimeter, which can be integrated into

a summary bending factor. These measurements allow us finer insight into how cells may

deform locally. Using this platform, we have been able to identify Jurkat subpopulations
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by nuclear structure and characterize the change in mechanical properties of NETosing neu-

trophils. Finally, we developed a new measure to compare changes in deformability by

generating relative deformability distributions.

Deformability methods can be characterized by how they deform cells, and how that

deformation is measured. With the exception of AFM-based methods [7], many deformability

cytometry platforms measure the entire deformation of the cell. This is even though the

cell is comprised of multiple components including the actin cortex and nucleus, and all

regions of a cell may not experience the same stresses. To that end, we have calculated

the curvature of the cell perimeter, which gives us local information about the shape of the

cell membrane. This type of analysis can help explain the difference in the shape of cells

with different deformability. By itself, understanding the magnitude and sign of curvature

is valuable. But the curvature can be summarized via the scale-invariant bending factor,

which quantifies how the cell deviates from a perfectly undeformed circle. Additionally, the

bending factor can be calculated for sections along the cell perimeter, giving a standardized,

midlevel quantification between overall bending factor and curvature. These measurement

techniques can be applied to any image-based deformability platform, although it requires

sufficiently smooth and accurate cell boundaries.

Using this platform, we investigated the natural variation in mechanical properties of

Jurkat cells. FI-DC allowed us to identify cells with varying chromatin content, that would

have been missed with non-fluorescent imaging. The identified cells with reduced chromatin

content had increased cell size and cell deformability, although we were unable to determine

if the increase in deformability was independent of the size change. Using the capability to

measure chromatin content and local cell membrane deformation, we were able to determine

that cells of similar size with different levels of deformation do not differ in their chromatin

content, but in how the actin cortex is likely deforming.

We further demonstrated the capabilities of the FI-DC by measuring neutrophils under-

going NETosis. In NETosis, the neutrophil’s chromatin decondenses and is released extracel-

lularly. We expected during this process that we would be able to witness the visible spread
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of chromatin in the cell, as well as a change in mechanical properties. While we did observe

an increase in deformability over control cells, we did not witness the change in nuclear

structure, likely because our incubation timescales or PMA dose was not high enough.

In addition to measuring the change in mechanical properties in flow, we would like

to be able to identify and eventually sort the cells, which may further study or utility of

NETosing neutrophils. Using features calculated from the brightfield and FITC images,

we developed a random forest classifier that was able to classify untreated and treated

neutrophils with 85% accuracy. This classifier identified the large change in cell area of

PMA treated neutrophils as the most useful feature in classification. When excluding cell

size related features, we were still able to achieve a classification accuracy of almost 80%,

with cell deformability and the bending factor of the back region of the cell being most

important. More accurate classification may be possible with a neural network, but in our

experiments, the cell populations were run through FI-DC separately, which could induce

some batch effects in images. Finally, here we were trying to classify cells that came from

treated and untreated samples. But that does not address whether cells were NETosing.

A more useful classifier would predict which cells are actively NETosing. NETosis status

could perhaps be indicated by nuclear changes or staining for MPO [26]. In our case, we

were unable to find a suitable fluorescent biomarker probe that did not require fixing or

permeabilizing the neutrophils.

In the future, we would like to more completely characterize the NETosing landscape.

This would entail measuring neutrophils that have been stimulated for different durations,

with different PMA doses. We believe that with the dose and duration used here, the

neutrophils have only just begun to undergo internal changes, and have not yet decondensed

their chromatin, or broken down the nuclear envelope. One challenge we face in this regard

is handling and preserving cells undergoing NETosis. This process makes them especially

sticky and fragile, and we cannot fix the cells as some other imaging studies have done.

We would like to our understanding of the capabilities of our platform for future use.

We have demonstrated the effect that the fluid viscosity has on our ability to deform cells.
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This type of shear flow deformability cytometry may be capable of deforming the nucleus,

although that was not shown here [11]. It may be possible to achieve these higher levels

of deformation by further increasing the viscosity of solutions, or perhaps by increasing the

duration of time that the cells are being deformed. Furthermore, we can demonstrate our

ability to differentiate cells in different stages of the cell cycle using the fluorescent nuclear

images of FI-DC. Cells in different cell stages have been shown to deform differently [2], but

this required chemically synchronizing cells. With FI-DC, intricately designed experiments to

ensure synchronized cells would become less necessary. Beyond imaging and characterizing

nuclear structure, FI-DC may be leveraged to stain for other biomarkers or intracellular

components, which will create a more complete understanding of cell identity and its resulting

mechanical properties.

5.4 Materials and methods

5.4.1 Alginate solution preparation

Alginate solutions were prepared by dissolving sodium alginate in deionized water (sheath)

or sterile PBS (sample). The solutions were stirred overnight at room temperature on a

stir plate until visibly dissolved. Sample stream alginate solutions were prepared at 2x

concentration in order to reach proper concentration when added to cell solution.
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5.4.2 Cells and treatment

The Jurkat cell line was cultured in ATCC-modified RPMI 1640 medium (Gibco) with

1% penicillin/streptomycin (Gibco), 1% 1M HEPES buffer and 10% heat-inactivated FBS

(Gibco). Cells were grown at 37�, with 5% CO2, at densities between 105 and 106 cells ·

mL−1 with subculturing every second day.

5.4.3 Neutrophil isolation

Neutrophils were isolated as previously described [34], and cultured in ATCC-modified RPMI

1640 medium (Gibco) with 1% penicillin/streptomycin (Gibco), 1% 1M HEPES buffer and

2% heat-inactivated FBS (Gibco). Cells were cultured at 37�, with 5% CO2 in non-tissue

treated well plates on an orbital shaker at densities between 5 × 105 and 106 cells · mL−1.

5.4.4 Neutrophil stimulation

Neutrophils were stimulated at 2 nM PMA using 2 µm PMA solution prepared in DMSO

at 1:1,000 dilution. Unstimulated receive equivalent vehicle control of DMSO at 1:1,000

dilution. After stimulation and incubation on an orbital shaker in the incubator, neutrophils

were collected following vigorous pipetting, followed by a PBS wash step. Cells were spun

at 400g for 5 minutes and resuspended in 325 µL 1% BSA PBS solution. Cells were stained

with 1 µL Syto16 nuclear stain and incubated on the orbital shaker in the incubator for 10

minutes. The solution was spiked with 3 µL of 10 µm fluorescent beads and 325 µL alginate

solution was added to achieve final alginate concentration. The solution was gravity filtered

with a pre-wet 20 µm cell strainer before being loaded into a 1 mL syringe.

5.4.5 Device design and operation

Soft lithography was used to fabricate polydimethylsiloxane (PDMS) devices which were

bonded to glass slides. The device has one sample inlet and two sheath flow inlets that meet

and flow together through a straight channel. The straight channel has a width of 25 µm
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and height of 30 µm . The sample stream was injected via syringe pump at 10 µL · min−1,

and each of the sheath flow were injected at 5 µL · min−1. Cells were imaged via FIRE in

the middle of the straight channel section. The FIRE equipment was operated with a 488

nm laser operating at 80 mW with a FITC (529/28 nm) bandpass filter. The transmitted

light was measured using a photodiode to generate brightfield images while side scattered

light was collected with a PMT to generate darkfield images. Image capture was triggered

by a sufficiently low fluorescence signal threshold to capture any object with fluorescence in

FITC channel. All generated images have a pixel pitch of 0.25 µm per pixel. Devices were

cleaned after each use by running 800 µL dilute bleach followed by 800 µL PBS through the

tubing and device between each sample. Images are analyzed by custom Python scripts.

5.4.6 Cell image classification with neural network

A neural network was trained to distinguish clean images of single cells from debris, dead

cells, doublets, etc. A VGG16 architecture pretrained on ImageNet [35] was finetuned on

48,000 FIRE images using Keras and TensorFlow2. Results were human verified and cor-

rected to ensure only single, live cell images were analyzed.

5.4.7 Cell segmentation with U-Net

Segmentation of cells and nuclear structure, from brightfield and FITC images, respectively

was performed by a U-Net neural network [30]. The brightfield and FITC image neural

networks were trained on 560 and 275 FIRE cell images, respectively. We filled in holes and

performed small morphological opening and closing on cell binary images.

5.4.8 Contour extraction and smoothing

Boundaries of cells and nuclei were extracted from binary masks. Boundaries were smoothed

to remove pixelation effects by first downsampling so that all vertices are 1.5 pixels widths

apart, followed by local regression. Standard shape measurements are extracted from the
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boundaries including cell area, width, length and perimeter.

5.4.9 Calculation of bending factor

For easy comparison, all cell and nucleus boundaries were converted to polar coordinates

and interpolated to 120 points (3° apart). Curvature along the arc length parametrized

boundaries (κ(s)) was calculated at each point according to [31]:

κ(s) =
x(s)′y(s)′′ − y(s)′x(s)′′(
x(s)′2 + y(s)′′2

)3/2 (5.1)

The scale-invariant bending factor (known as scale-invariant bending energy in other fields)

was calculated from the curvature along the boundaries and allowed for comparison of similar

shapes of different size, where P is the perimeter along the boundary [32]:

B = P
∫ P

0
κ(s)2ds (5.2)

Finally, the bending factor of a portion of the boundary from a to b can be calculated as

well:

Bab = P
∫ b

a
κ(s)2ds (5.3)

5.4.10 Bayesian inference

Bayesian inference is conducted with PyMC3 [36] and No U-Turn MCMC Sampler [37] to

model relative deformability distributions as a t-distribution.
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5.A Appendix

Figure 5.A.1: Relative feature importance from neutrophil classifiers. (a) A ran-

dom forest classifier is trained to distinguish treated and untreated neutrophils using features

generated from FIRE images. Relative feature importance shows that cell area is the most

important feature, followed by the cell bending factor. (b) A second random forest classifier

is trained only features that exclude information on cell size. Cell bending factor is the most

important feature, followed by the section bending factors of the lower sections of the cell.
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CHAPTER 6

Concluding remarks

Mechanical phenotyping has been shown to be a useful tool in characterizing cell identity

and function. It has largely been utilized in a manner that summarizes the mechanical

properties of the entire cell, but there is a great value in understanding how components of

a cell differentially contribute to overall deformability. Until now, understanding how the

intracellular components contribute to cell mechanical properties required careful experiment

design to isolate effects to the cytoskeleton or nucleus. Combining cell deformability with

fluorescent imaging allows us to visualize intracellular components, and understand how their

size, structure and location influence overall cell deformation. These developments require

improvements in imaging technologies and deformability platform design.

This approach may give us a greater understanding and confidence in the mechanical

phenotypes measured, and further the field. Although not all existing methods can be

integrated with new imaging technologies, this would further our understanding of how

different deformability platforms deform cells, and what they are measuring.

Throughout biological research, images provide a valuable resource. Despite the rich

information that images provide they have not always been able to provide speed that high

throughput methods require. As imaging methods improve and become faster and cheaper,

they can be used more widely, and improve the speed of growth in science. These improve-

ments will be integral in novel cell sorting methods. Cell sorting has been largely been

absent from cell deformability platforms until recently. But the greater capabilities that

arise from the intersection of these technologies will improve our study of cells and validate

our hypotheses that surround cells’ deformability and their identity or behavior.
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