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Multihop Progressive Decentralized
Estimation in Wireless Sensor Networks

Yi Huang and Yingbo Hua, Fellow, IEEE

Abstract—A multihop progressive decentralized estimation
scheme is presented for 1-D, 2-D, or 3-D sensor networks where
routing trees are available. The bit allocation for each sensor is
optimized in a multihop setting. This new scheme is shown to be
much more efficient in energy consumption than the nonprogres-
sive decentralized estimation scheme available in the literature.
The transmission energy model is based on spectrum-limited
applications.

Index Terms—Decentralized estimation, distributed estimation,
multihop progressive scheme, sensor networks.

I. INTRODUCTION

RECENTLY, a class of decentralized estimation algorithms
have been introduced in [1]–[4]. A central idea in those

algorithms is as follows. Consider a sensor network where the
th sensor measures a discrete-time observation modelled

as

(1)

where is the desired signal and assumed to be deterministic
spatially, and is the measurement noise with zero mean
and -dependent variance . A primary purpose of the de-
centralized estimation algorithms is to find the number of bits

to quantize into at sensor and time such that
the quantized data, for all , will consume the minimum
amount of transmission energy for them to be transmitted to a
fusion center and then used at the fusion center to estimate
within a given error margin. Since this process is repeated for
any given , we will drop for notational convenience. In all
of the above-referenced works, the choice for is based on
a primary assumption that each sensor can transmit bits to
a fusion center either directly or indirectly. For this reason, we
will refer to those algorithms as nonprogressive decentralized
estimation algorithms or simply nonprogressive scheme.

In this letter, we present a multihop progressive decentral-
ized estimation scheme or simply called progressive scheme.
In the progressive scheme, each sensor only forwards bits
to a neighboring sensor among a path toward a fusion center.
Hence, each sensor must first perform the best estimation based
on the data received from all of its immediate upstream sensors
and the data collected by itself and then forward bits of the
best estimation to its immediate downstream sensor. For the pro-
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Fig. 1. Illustration of the multihop progressive decentralized estimation
scheme for a 1-D network. The square on the far right is the fusion center.

gressive scheme, we take advantage of a multihop routing tree
from sensors to a fusion center. Such a routing tree is feasible
for networks of zero or low mobility. We develop an algorithm
for computing for each sensor such that the total network
transmission energy is minimized subject to an error tolerance at
the fusion center. The progressive scheme is shown to be much
more energy efficient than the nonprogressive scheme in [1].

In Section II, the progressive scheme is presented in detail.
This scheme exploits an optimization of bit allocation and will
also be referred to as proposed progressive (PP) scheme. In
Section III, the performance of the PP scheme is compared to
that of the nonprogressive (NP) scheme in [1] as well as a uni-
form progressive (UP) scheme. The UP scheme uses a uniform
bit allocation for each sensor. Unless specified otherwise, by
progressive scheme, we imply the PP scheme.

II. PROGRESSIVE DECENTRALIZED ESTIMATION

A. The 1-D Network

Let us start with a 1-D sensor network as shown in Fig. 1,
where there are total sensors. The sensor nearest to the fu-
sion center is indexed by , and the sensor farthest from
the fusion center is indexed by . The input to the th
sensor consists of and , where is the measurement
at the th sensor as described in (1), and is the data re-
ceived from sensor . The output from the th sensor is de-
noted by , which is quantized from the best linear unbiased
estimator (BLUE) of at sensor . The BLUE is traditionally
known as minimum variance unbiased linear estimation, which
is discussed in many textbooks on estimation theory. Let the
variances of and be denoted by and , re-
spectively. Obviously, . Then, assuming ,
the BLUE of based on and at sensor is

(2)

and the variance of is

(3)

With bits for quantization of , we have as the output
of sensor . Assume that is bounded within , and
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then, the variance of quantization error at sensor is
, where . If the quanti-

zation error is uniformly distributed, we have . Since
it is difficult to know the exact distribution of the quantization
error of , which generally also depends on , we will use the
upper bound of corresponding to . The variance of

is , i.e.,

(4)

which holds for all , even if we set for all .
Note that when is computed by using (4), we obtain the

upper bounds of for all . Using the upper bound of

in (2), the corresponding value of is an approximate (not
exact) BLUE of . For convenience, by , we will refer to
its upper bound computed by (4).

As shown in (2), is needed for BLUE at sensor . This
means that for all should be computed in advance using
(4) and made available at the corresponding sensors before the
distributed estimation of is conducted in the network. Note
that used in BLUE at each sensor is obtained by (4), not by
(5) shown later. The inequality (4) is tighter than the inequality
(5).

To determine for all , we use an idea also used in [1],
i.e., we will formulate a criterion that minimizes a measure of
the network transmission energy subject to a mean-square-error
(MSE) constraint. However, the details are somewhat different,
as shown next.

Since (4) is a nonlinear recursion for , it is hard to find
the exact form of that is the MSE of the final estimate

transmitted to the fusion center. However, we can use the
following inequality:

(5)

which follows from (4) and . The
above inequality may or may not be tight, depending on whether
or not is close to . However, this does not matter for
our application. The above inequality recursion leads to

MSE

MSE (6)

Assume that the communication channel between sensors has
additive white Gaussian noise with power spectral density ,
and the channel power attenuation factor is , where is
the transmission distance from sensor to sensor and is
the path loss exponent. Then, to transmit bits reliably from
sensor to sensor , the minimum required transmission
energy must satisfy the following, based on Shannon theory:

(7)

The above transmission energy model is valid for spectrum-
limited applications. If the spectrum is unlimited, should be
close to zero and the transmission energy becomes linearly pro-
portional to . In this letter, we are interested in spectrum-lim-
ited applications. One such example is an opportunistic sensor
network that operates in a spectrum mostly occupied by other
users. Under a practical coding and modulation scheme, the
right side of (7) should be multiplied by a factor larger than one
but independent of . This factor, however, does not affect our
theory on the choice of .

It is therefore meaningful to set up the following criterion for
determination of :

(8)

subject to

MSE MSE (9)

where (8) is the -norm of an upper bound of the minimum
required network transmission energy, and MSE is a pre-spec-
ified tolerance of the upper bound on the MSE at the fusion
center. An equivalent form of (9) is

(10)

where

(11)

Then, by applying the fact that for any real numbers and
with equality when ,

we have

(12)

with equality when

(13)

Combining (10) and (12), we have

(14)

Note that the right-hand side of (14) is independent of and
hence, if achieved, must be the minimum of (8). This minimum
is indeed achieved if (13) holds, and (13) implies that

(15)

where if and if . Note that we
require to be nonnegative.
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Fig. 2. Example of 2-D sensor network with a routing tree. The fusion center
is denoted by the circle in the center. Here, there are 200 nodes, each denoted
by �.

We define . Since all
sensors indexed with are upstream sensors of sensor

, we should set for to save unnec-
essary energy consumption. Now using (15) in the equality of
(10) yields

(16)

The computation of (15) and (16) may require several itera-
tions before convergence, and at each iteration, the value of
may be altered. After convergence, we round up each of the final
values of .

B. The 2-D or 3-D Networks

For a 2-D or 3-D network, a routing tree must be first es-
tablished as illustrated in Fig. 2, where each branch of the tree
represents a path of data flow.

Let each sensor in the network have a unique label , where
. The set containing the children of sensor

is denoted by , and the size of is denoted by . Sensor
first conducts the BLUE of the signal parameter using

its local measurement and the data received
from . Then, sensor uses bits to quantize to generate

, which is to be transmitted to its parent sensor. Following
the same analysis as in the 1-D case, one can verify that the
variance of is

(17)

with and

(18)

where , and is the size
of . For convenience, we can let the fusion center be indexed

by and set . Then, at the fusion center, the
estimation variance (denoted by MSE) is bounded as follows:

MSE (19)

where and are inde-
pendent of the number of bits assigned to sensors. (For the 1-D
network shown earlier, we have MSE . How-
ever, for 2-D networks where the fusion center receives data
from more than one sensor, we have MSE
in general.) The exact expressions of and depend on the
tree topology. To compute , we can start from the fusion
center, where . Then, for all ,
compute recursively , where .
Once we have for all , we can compute

.
Following the same technique used for the 1-D network, one

can verify the following solution for a 2-D or 3-D network:

(20)

where and
MSE . Since in general depends

on , the above computation may need to iterate several
times until convergence. The initial selection of assumes
that for all . After convergence, the final values of

for all are rounded up.

III. PERFORMANCE EVALUATION

We now compare the performance of the PP scheme with that
of the NP scheme in [1]. For comparison, we also include a UP
scheme for which a constant number of bits for each sensor is
assigned and the desired MSE at the fusion center
is computed by following the recursion of (17) and the first
equality in (18).

We will consider a 2-D network of 200 sensors as shown in
Fig. 2. This network is constructed in such a way that the dis-
tance between a parent sensor and its child sensor is , where

is uniformly distributed within the range [0.5, 1.5], and is
unspecified. We further assume that ,
and .

Under the constraint MSE at the fusion center,
Fig. 3 compares the bit allocations by the NP, PP, and UP
schemes. The figure shows the number of bits for each sensor
versus the Euclidean distance (divided by ) from the sensor to
the fusion center. For the UP scheme, each sensor is allocated
with the same number of bits. We see that the number of bits
allocated by either the PP scheme or the UP scheme for a
sensor at medium or high distance is much higher than that by
the NP scheme. This is because of the short transmission range
for each sensor under the progressive scheme. We also see that
the PP scheme allocates a much smaller number of bits for
each sensor at medium or high distance than the UP scheme.
This is because of the optimization used in developing the PP
scheme. In fact, under the UP scheme, much of the information
from sensors at medium or high distance becomes lost as the
information moves closer to the fusion center. Compared to
the PP scheme, the NP scheme collects too little information
from sensors at medium or high distance, and the UP scheme
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Fig. 3. Number of quantization bits allocated for each sensor versus
the normalized Euclidean distance from the sensor to the fusion center.
MSE = 0:0043. The network used is Fig. 2.

Fig. 4. Amount of normalized energy transmitted by each sensor versus the
normalized Euclidean distance from the sensor to the fusion center. MSE =

0:0043. The network used is Fig. 2.

collects too much information from sensors at medium or high
distance.

Under the same constraint MSE at the fusion
center, Fig. 4 shows the amount of normalized energy
transmitted by each sensor versus the Euclidean distance (di-
vided by ) from the sensor to the fusion center. Here, we see
that the energy consumed by the PP scheme is much less than
that by the NP and UP schemes. The left equation in (7) is used
to compute the transmission energy. For the NP scheme, in
(7) is replaced by the distance from sensor to the fusion center.
For the PP and UP schemes, in (7) is the distance between
sensor and its immediate downstream sensor.

Fig. 5 shows the total normalized transmission energy con-
sumed by the network, i.e., , versus the target
MSE . The highest curve is for the NP scheme, the middle curve
is for the UP scheme, and the lowest curve is for the PP scheme.
The NP and UP curves cross each other at certain values of
MSE . We see that the PP scheme requires the least amount
of energy throughout the whole MSE region. At high MSE ,
the PP scheme and the NP scheme consume approximately the
same energy because almost all bits are allocated to the sensors
right next to the fusion center.

Fig. 5. Total amount of normalized transmission energy consumed by the net-
work versus MSE . The network used is Fig. 2.

IV. CONCLUSION

In this letter, we have presented a multihop progressive de-
centralized estimation scheme for 1-D, 2-D, or 3-D sensor net-
works. We have shown that this new scheme is much more
energy efficient than the nonprogressive decentralized estima-
tion scheme available in the literature. The proposed progres-
sive scheme decentralizes the computational and communica-
tion burden to a larger degree than the nonprogressive scheme.
Future research should consider more complex estimation prob-
lems than (1).

The work shown here is for both spectrum-limited and en-
ergy-limited applications. Although limited, the available spec-
trum has been assumed to be sufficient to avoid cochannel in-
terference so that the energy model (7) is valid. If the available
spectrum becomes tighter and the network is heavily loaded, one
has to consider concurrent cochannel transmissions within the
network [5]. Such scenarios may include the case where each
sensor in the network needs to perform fusion of information
from all other sensors. More research in this direction is needed.

A minimum distance routing tree is known as a Steiner tree.
Techniques for finding a Steiner tree are available in [6]. How-
ever, the minimum distance tree may not be optimal for the pur-
pose of estimation. Like the work in [7], the impact of the pro-
gressive scheme on the best choice of the routing tree should be
another topic of interest.
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