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Effects of Veliparib on Microglial Activation and Functional
Outcomes after Traumatic Brain Injury in the Rat and Pig

Karen-Amanda Irvine,1 Robin K. Bishop,1 Seok Joon Won,1 Jianguo Xu,1,2 Katherine A. Hamel,3

Valerie Coppes,3 Pardeep Singh,1 Andrew Sondag,1 Eric Rome,1 Jayinee Basu,1

Giordano Fabricio Cittolin-Santos,1,4 S. Scott Panter,3 and Raymond A. Swanson1

Abstract

The inflammation response induced by brain trauma can impair recovery. This response requires several hours to develop fully

and thus provides a clinically relevant therapeutic window of opportunity. Poly(ADP-ribose) polymerase inhibitors suppress

inflammatory responses, including brain microglial activation. We evaluated delayed treatment with veliparib, a poly(ADP-

ribose) polymerase inhibitor, currently in clinical trials as a cancer therapeutic, in rats and pigs subjected to controlled cortical

impact (CCI). In rats, CCI induced a robust inflammatory response at the lesion margins, scattered cell death in the dentate

gyrus, and a delayed, progressive loss of corpus callosum axons. Pre-determined measures of cognitive and motor function

showed evidence of attentional deficits that resolved after three weeks and motor deficits that recovered only partially over

eight weeks. Veliparib was administered beginning 2 or 24 h after CCI and continued for up to 12 days. Veliparib suppressed

CCI-induced microglial activation at doses of 3 mg/kg or higher and reduced reactive astrocytosis and cell death in the dentate

gyrus, but had no significant effect on delayed axonal loss or functional recovery. In pigs, CCI similarly induced a perilesional

microglial activation that was attenuated by veliparib. CCI in the pig did not, however, induce detectable persisting cognitive

or motor impairment. Our results showed veliparib suppression of CCI-induced microglial activation with a delay-to-treatment

interval of at least 24 h in both rats and pigs, but with no associated functional improvement. The lack of improvement in long-

term recovery underscores the complexities in translating anti-inflammatory effects to clinically relevant outcomes.

Keywords: axonal injury; IL1-ß; MMP9; TNFa

Introduction

The mechanical tissue injury caused by brain trauma in-

duces a local inflammatory response consisting of an initial

microglial activation followed by infiltration of blood-born leuko-

cytes and reactive astrocytosis. This innate immune response likely

evolved as a first line of defense against the microbial infections that

commonly accompany tissue injury and may also play a role in

wound healing1; however, it can also have cytotoxic effects and

suppress the neurite outgrowth and neurogenesis thought to underlie

long-term functional recovery.2–6 Given that the post-injury in-

flammatory response takes several hours to develop fully, anti-

inflammatory intervention has been identified as a promising thera-

peutic approach to improving outcome from traumatic brain injury.7

Drugs that inhibit poly(adenosine diphosphate [ADP])-ribose

polymerases (PARPs) have potent systemic and central nervous sys-

tem (CNS) anti-inflammatory effects.8,9 When activated by deoxyr-

ibonucleic acid (DNA) damage, cytokine signaling, or other factors,

PARPs consume NAD+ to form branched ADP-ribose chains on

target proteins.10,11 The poly(ADP-ribose) polymers affect interac-

tions between the modified protein and DNA, ribonucleic acid (RNA),

and other proteins, including chromatin and pro-inflammatory tran-

scription factors.10,12–14 Mammalian cells contain several PARP

family members, of which PARP-1 is the major species.15,16 Mac-

rophages and microglia that are genetically deficient in PARP-1 ex-

hibit minimal nuclear factor-kappaB (NF-jB) activation, tumor

necrosis factor alpha (TNFa) release, or induction of inducible nitric

oxide synthase (iNOS) in response to pro-inflammatory stimuli.2,17

Pharmacological inhibition of PARP activity similarly suppresses

cytokine and nitric oxide release by microglia and macrophages.2

Independent of these anti-inflammatory actions, PARP inhibi-

tors also have an acute neuroprotective effect stemming from their
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ability to slow the consumption of NAD+ in cells with DNA dam-

age.18 Several studies have evaluated acute administration of PARP

inhibitors in animal models of brain trauma and found generally

positive results.19–23 This neuroprotective effect, however, requires

drug administration within very short time intervals after injury,19

which limits clinical applicability. By contrast, inflammatory re-

sponses require several hours to become fully manifest and then

continue for days. Given the efficacy of PARP inhibitors in sup-

pressing brain inflammation, we aimed to determine whether a PARP

inhibitor could improve long-term recovery when administered at

clinically relevant time points after brain trauma.

The present study was designed as a pre-clinical efficacy study,

using an orally absorbed PARP inhibitor (veliparib), long (eight-

week) evaluation intervals, and pre-determined measures of cog-

nitive and motor function. Rats were used to assess veliparib effects

on histological and behavioral outcomes over eight weeks post-

injury, and both rats and pigs were used to evaluate a range of

veliparib doses on post-injury microglial activation. Veliparib

(ABT-888; 2-((R)-2-Methylpyrrolidin-2-yl)-1H-benzimidazole-4-

carboxamidename) inhibits PARP-1 and PARP-2 with Kis of 5.2

and 2.9 nmol/L, respectively, displays good CNS penetration, and

is currently in phase II and III clinical trials for treatment of those

with various forms of cancer.24,25

Methods

The studies were approved by the San Francisco Veterans Af-
fairs Medical Center Animal Care and Use Committee. Male Long
Evans rats (250–300 g; Simonsen Laboratories, CA) were housed
on a reverse 12-h light/dark cycle with a restricted food diet (9 g/
day) but free access to water. Castrated male Yorkshire swine,
weight 23–28 kg, were obtained from Pork Power Farms (Turlock,
CA) and maintained on a diet of Teklad Miniswine Diet 7037, with
twice-daily feeding. Veliparib was obtained from Abbvie, Lake
Bluff, IL. Other drugs and reagents were obtained from Sigma-
Aldrich (St. Louis, MO) except where noted.

Rat studies

Rat controlled cortical impact (CCI). A CCI device (Pin-
point Precision Cortical Impactor, Hatteras Instruments, NC) was
used to produce a unilateral CCI injury. Animals were anesthetized
with isoflurane (5% for induction and 2.5% for the duration of the
procedure; Abbott Laboratories, IL) and maintained at
37�C – 0.5�C with a thermal mat throughout the surgical procedure.
The anesthetized rats were placed in a stereotaxic frame with heads
positioned to target the impact 3.0 mm left of bregma. A midline
scalp incision and a circular craniotomy were made, and the dura
was carefully opened with a scalpel. All studies used a 4 mm di-
ameter impactor programmed to 1.5 m/sec velocity, 3.0 mm pene-
tration depth, and 120 msec dwell time. After CCI, the operative
site was closed with sutures, a subcutaneous injection of 6 mg/kg
bupivacaine was administered, and the animals were maintained at
37�C for 30 min until they had recovered from anesthesia. Sham-
operated controls were subjected to the same surgical procedures
except the craniotomy and cortical impact. The perioperative
mortality rate was 0 of 131 total.

Animal cohorts. A first cohort of 25 rats was used to establish
the effective dose of veliparib as an anti-inflammatory agent in the
brain. A second cohort of 57 rats was used to establish the effect of
this dose on proinflammatory gene expression, axonal transport,
and cell death in the dentate gyrus after CCI. A third cohort of 12
rats was used for long-term functional outcome studies, using 24 h
between CCI and first drug dose. A fourth and fifth cohort of 12 rats
each was used for long-term functional outcome studies, using 2 h

between CCI and first drug dose. Of these, two rats necessitated
euthanasia during the eight-week post-injury evaluation period.
The fifth cohort received drug twice daily; all other cohorts re-
ceived drug once daily. Results of the 4th and 5th cohorts were
combined, because no difference was observed between once-daily
and twice-daily dosing. Separately, 15 rats underwent CCI to es-
tablish the time course of axonal loss in the corpus callosum over
180 days after CCI.

Drug administration. Veliparib was prepared as a 20 mg/mL
stock solution in physiologic saline and sterile-filtered. This stock
solution was diluted subsequently for each dose employed such that
the intraperitoneal injection volume was approximately 1 mL per
rat (adjusted to account for small variations in rat weights). Sham
CCI-treated rats and CCI-treated rats given 0 mg/kg veliparib in the
dose-response studies received 1 mL injections of the sterile saline
vehicle on the same dosing schedule as the rats receiving veliparib.

Gene expression studies. Rats were euthanized by anes-
thesia and decapitation at designated time points after CCI. The
quadrant of brain containing the CCI was removed, and the necrotic
area was discarded. A tissue sample immediately adjacent and in-
ferior to the necrotic area was taken from each brain for analysis.
Total RNA was extracted using the High Pure RNA Isolation kit
(Roche) and immediately reverse transcribed to cDNA with a
cDNA Synthesis Kit (Thermo Fisher). Samples were analyzed in
triplicate. The primers were designed according to Pubmed Gen-
Bank and synthesized by Eurofins Genomics.

The primer sequences were as follows: Iba-1, f: TTAGAGA
GGTGTCCAGTGGC r: CTCTGGCTCACAACTGCTTC; IL-1ß
f: CGACAAAATACCTGTGGCCT r: TTCTTTGGGTATTGCTT
GGG; TNF-a f: TCGTAGCAAACCACCAAGTG r: TTGTCTTT
GAGATCCATGCC; MMP9, f: CCCTCTGCATGAAGACGACA
r: CAGAAGGACCAGCAGTAGGG; MRC2, f: TGCGTCTTACT
TCTCGGGG r: CCCAGGTTGAAGAGTCGGTT; SOCS3, f: GTC
ACCCACAGCAAGTTTCC r: GCTGTCGCGGATAAGAAAGG.

Quantitative real-time polymerase chain reaction (PCR) analysis
was performed with an Mx3000P system (San Diego, CA), using
SYBR Green to measure double strand DNA content. A dissocia-
tion step was added at the end of the PCR to confirm the amplifi-
cation of a single product. The transcript level of each gene was
normalized to the GAPDH mRNA in the same sample using the 2-

DDCT method.26

Immunohistochemistry. Rats were anesthetized deeply with
isoflurane, given a bilateral thoracotomy, and transcardially per-
fused with ice cold saline followed by 4% formaldehyde. Brains
were post-fixed in 4% formaldehyde overnight at 4�C, cryopro-
tected in 20% sucrose for two days at 4�C, and frozen rapidly in dry
ice. Serial 40 lm coronal sections were obtained using a cryostat.
Four sets of 24 evenly spaced sections spanning the injured cortex
and the hippocampus were collected from each brain. Degenerating
cells were identified by Fluoro-Jade B (FJB) staining performed as
described previously.27,28

Immunostaining was performed using goat polyclonal antibody
to Iba-1 for microglia and macrophages (1:1000, Abcam, Cam-
bridge, UK), rabbit polyclonal antibody to glial fibrillary acidic
protein for astrocytes (GFAP; 1:1000, EMD Millipore, MA),
mouse monoclonal antibody to NeuN for mature neurons (1:1000,
EMD Millipore), mouse monoclonal antibody to nonpho-
sphorylated neurofilaments (clone SMI-31R, 1:1000, Biolegend,
NJ), and rabbit polyclonal antibody to amyloid precursor protein
for axonal spheroids (APP; 1:500, Invitrogen, CA).

For antibodies visualized by the DAB method (Vector Labora-
tories, CA), sections were pre-treated with 0.3% hydrogen peroxide
in phosphate-buffered saline (PBS) for 30 min. For APP, sections
subsequently underwent antigen retrieval using pre-warmed (80�C)
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sodium citrate buffer (pH 6.0) for 30 min. Sections remained in this
buffer while cooling to room temperature. Incubations with all
antibodies were made in blocking buffer containing 1% albumin,
2% normal serum. and 0.3% Triton X-100. Iba-1, SMI-31R, and
NeuN antibody binding was imaged using fluorescent second an-
tibodies and confocal microscopy (Zeiss LSM 510) with appro-
priate filter sets. GFAP and APP antibody binding was visualized
by the DAB method, using biotin-conjugated second antibodies and
the Vectastain Elite ABC reagent (Vector Laboratories).

Controls omitting primary antibody showed no detectable fluo-
rescence and minimal background DAB staining under the condi-
tions employed. Staining was performed concurrently for each
group of sections compared with one another and photographed
under identical conditions by an individual blinded to the experi-
mental conditions.

Image analysis. In all data assessments, both the photogra-
phy and image analysis were performed by observers who were
blinded to the experimental conditions. Lesion cavity size was de-
fined as the sum of the areas of absent hematoxylin and eosin staining
on each section, multiplied by the distance between sections.29 Iba-1
expression was evaluated in the lesioned cortex on three coronal
sections per brain spaced 40 lm apart, in two regions each located
200lm from the edge of the lesion (as defined by complete lack of
NeuN staining; Fig. 1) for a total of six images per brain. Iba-1
expression level in each photographed area was calculated by mul-

tiplying the net area of Iba-1 staining by the mean intensity of Iba-1
staining within this area, using the NIH ImageJ program.

GFAP expression was evaluated in the ipsilateral dentate gyrus
on two coronal sections per brain spaced 400 lm apart, three im-
ages per section. The percentage of the total image area covered by
GFAP in each section was calculated using the ‘‘area fraction’’
feature in the National Institutes of Health (NIH) ImageJ program.
APP accumulation in axonal spheroids was evaluated in the ipsi-
lateral corpus callosal radiations in three coronal sections per brain
spaced 400 lm apart, three images per section. Sections from
control (uninjured) rats that had been fixed, stained, and photo-
graphed in parallel were used to establish a threshold for excluding
nonspecific staining.

APP positive spheroids 1 lm in diameter or larger were quan-
tified using the ‘‘analyze particles’’ feature of the NIH ImageJ
program. Axonal loss was quantified in one image from each of
three coronal sections per brain, spaced 400 lm apart, and taken at a
magnification spanning the corpus callosum. The sections were
immunostained for neurofilament and the relative number of axons
in the corpus callosum was estimated using a Microcomputer
Imaging Device (Imaging Research Inc.), with a point grid overlaid
on · 40 magnification images of the stained sections. The axon
density was calculated by counting the number of grid points that
fell on an axon, subtracting this value from the total number of grid
points, and multiplying by 100 to express this as a percentage. This
percentage was then multiplied by the dorsal-medial thickness of
the corpus callosum to derive the relative number of axons.30 The

FIG. 1. Veliparib suppresses microglial activation in the rat brain. (a) Experimental design. (b) Representative coronal brain section
through the area of maximum injury. Red boxes denote perilesional areas in which microglial activation was assessed. (c–g) Re-
presentative confocal images of microglia/macrophages in the perilesional area from rats treated with veliparib at the designated daily
doses. Rat treated with sham controlled cortical impact (CCI) or 0 mg/kg veliparib received vehicle (saline) in place of veliparib. Iba-1
(green) identifies microglia/macrophages. DAPI (blue) identifies cell nuclei, with neuronal nuclei also labeled with NeuN (red). Scale
bar = 50 lm. Inserts show microglial morphology at higher magnification. (h) Graph shows quantified Iba-1 expression in each treatment
group (n = 5; *p < 0.05 vs. CCI, 0 mg/kg veliparib).
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number of FJB-positive cells was counted in the dentate gyrus
ipsilateral to the lesion in three coronal sections spaced 320 lm
apart. The mean number of FJB-positive neurons per section ipsi-
lateral to CCI was used for statistical analyses.

Rat behavioral assessments

5-Choice Serial Reaction-Time Task (5-CSRTT). This is
an operant conditioning paradigm to measure aspects of attentional
and inhibitory control in rodents.31 The animals were trained over
30–40 days before CCI to respond to brief flashes of light presented
pseudo-randomly in one of five apertures with a nose-poke re-
sponse in the correct spatial location. The rats were motivated by a
food reward (45 mg; TestDiet, IN). The training and assessments
were performed using a Bussey-Saksida Touch Screen Chamber for
rodents (Campden Instruments) and ABET II touch software (La-
fayette Instrument Company). Nose pokes in the wrong location
were scored as errors; nose pokes before stimulus presentation were
scored as premature responses; and failures to respond within 5 sec
were scored as omissions. Each session terminated after 100 trials
or 30 min, whichever came first. Rats were considered fully trained
when they could correctly respond to a 0.7 sec light stimuli and
when their accuracy was greater than 75% and omissions were
fewer than 15% on two consecutive days. Training frequency was
then reduced, and the rats were subjected to CCI or sham operation
within the next 10 days.

Forelimb Use Asymmetry Test. Animals were placed in a
clear plastic cylinder (diameter = 20 cm; height = 46 cm) and
spontaneous exploratory behavior was recorded for 5 min. Slow
motion video playback was used to determine the number of times
the animal placed its left, right, or both forepaws against the side of
the cylinder.32 Results are reported as a percentage of the total paw
placements made with the paw contralateral to injury.

Forelimb Dexterity Test. (Irvine, Beatties, and Bresnahan
scale [IBB]): Rats were videoed while eating two differently
shaped cereals (spherical and doughnut) of a consistent size. The
videos were replayed in slow motion to assess features of forelimb
use including joint position, object support, digit movement, and
grasping technique.33,34

Elevated Plus Maze Anxiety Test. Each rat was placed in
the center of a plus maze composed of two open arm and two closed
arms. Rat location in the maze was tracked using the SMART
video-tracking system (Panlab S.L.U, Spain) for 5 min and scored
subsequently as described.35

Pig studies

Pig CCI. Pigs were acclimated for at least 5 days before op-
eration and fasted for 12 h before the procedure. On the morning of
the surgical procedure, they were sedated with ketamine/xylazine/
glycopyrrolate and then anesthetized with 1.5–3.5% isoflurane in
air as detailed previously.36 A right femoral arterial line was in-
serted. Blood pressure, heart rate, echocardiography, oxygen sat-
uration, end tidal carbon dioxide, and rectal temperature were
monitored continuously using a Datex Engstrom AS/3 monitoring
system. Arterial oxygen saturation was maintained at >98% and
end tidal carbon dioxide at approximately 40 mm Hg.

A craniotomy was made targeting motor cortex, centered 14 mm
anterior to bregma and 10 mm lateral to the sagittal suture. A Cortical
Impactor (Hatteras Instruments) was used to create a CCI at these
coordinates with speed 3.5 m/sec, depth 10 mm, and dwell time
400 msec. The long dwell time was used to increase the injury size
that can be produced with the impactor on the relatively large pig
brain. After closure of the craniotomy, wound margins were infil-

trated with bupivacaine, and the anesthesia was discontinued. Sham-
injury pigs underwent anesthesia and craniotomy, but not CCI.

Drug administration. Veliparib was mixed into corn syrup to
prepare a stock concentration of 90 mg/mL. This stock was diluted
as needed with corn syrup to provide doses of 1, 3, or 9 mg/kg and
administered twice daily with meals in 3 mL corn syrup. Sham
CCI-treated pigs and CCI-treated pigs given 0 mg/kg veliparib re-
ceived 3 mL of the corn syrup vehicle only, twice daily with meals.

Pig immunohistochemistry. Pigs were sedated, deeply an-
esthetized with isoflurane, and euthanized by bilateral thoracotomy
and perfusion with heparinized saline. Brains were removed, di-
vided into three blocks, post-fixed in 4% buffered formaldehyde for
7 days, and cryoprotected with 20% sucrose. The brains were frozen
and cut into 40 lm coronal sections spanning the lesion area. Im-
munostaining for microglia/macrophages was performed using goat
polyclonal antibody to Iba-1 (1:1000, Abcam, Cambridge, UK) and
visualized by the DAB method, using biotin-conjugated second an-
tibodies and the Vectastain Elite ABC reagent (Vector Laboratories).

Because of the complex topology of the lesions and perilesional
inflammation in the gyriform brains, a nonbiased method was used
to quantify the area of increased Iba-1 immunoreactivity. Analysis
was performed on three sections spaced 1 mm apart through the
lesion epicenter. The NIH ImageJ program was used to quantify the
area and intensity of Iba-1 immunoreactivity. The area of the lesion
(AL) was defined as the total area/section in which signal intensity
was at least 30% greater than the mean intensity of signal from a
region remote from injury. The increase in Iba-1 expression was
calculated as (IL - IB) X AL, with IL = mean Iba-1 intensity of lesion
area, and IB = mean intensity of the nonlesioned area (i.e., back-
ground). All sections used were stained concurrently and photo-
graphed under identical conditions by an observer who was blinded
to the treatment groups.

Pig behavioral assessments

Bucket Memory Task. The tasks were modified from that of
Alam and colleagues.37 Before CCI, pigs were trained to discrim-
inate between three white buckets, each painted with a different
black pattern. All three buckets contained a food reward, but only
one could be opened. Trials were performed twice per day, with five
tests per trial. The pig was given one attempt to identify the correct
bucket in each test, with the buckets rearranged between each test.
When the pig attained an 80% success rate, trial frequency was
reduced to once per day until CCI or sham operation to prevent
over-training. Twice-daily trials were resumed on day two after
CCI (or sham) surgical procedure, with the percent successful at-
tempts recorded for each pig in each trial.

Novel object recognition test. Beginning on day two after
CCI or sham operation, each pig was released into a testing area in
which two T-shaped plastic pipes were hung, colored either white
or black. There were four 3-min trials, two per day on two con-
secutive days. In the first three trials, the objects were the same
color, and for the last trial, the color of one of the objects was
different. The time spent in contact with each object was recorded,
and the difference in time spent between the original object and the
new object was calculated for each pig in this trial.

Gait assessment. Before CCI, pigs were trained to walk over
a six-inch tall hurdle to a food reward while being filmed from the
side to capture each hoof as it went over the hurdle. The pig was led
across the hurdle 10 times in each trial. Pigs were considered fully
trained when they avoided hoof contact with the hurdle greater than
90% of the time. Beginning on day two after CCI or sham opera-
tion, pigs were again led across the hurdle and assigned one point

EFFECTS OF VELIPARIB IN TBI 921
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for each hoof that touched the hurdle. Scores for each pig were
summed over three trials performed on consecutive days.

Data analysis. Outcome measures were in each case evalu-
ated by observers blinded to experimental conditions. Results are
presented as mean – standard error. Histology results were per-
formed by one-way analysis of variance (ANOVA) followed by the
Dunnett test for multiple comparisons against a common group, or
by the Student-Newman-Keuls method for multiple pairwise
comparisons. Behavioral data were analyzed using repeated mea-
sures ANOVA with Greenhouse-Geisser correction followed by the
Tukey multiple comparison test.

Results

Veliparib dose-response studies

The rat CCI targeted the forelimb area of the sensorimotor

cortex, and at the lesion epicenter the resulting cavity extended

through the underlying corpus callosum into the caudate nucleus

(Fig. 1). Immunostaining for the microglia/macrophage marker

Iba-1 demonstrated a roughly four-fold increase in density of la-

beled cells in the perilesional area and showed them to have en-

larged cell soma characteristic of the activated morphology.

We first evaluated veliparib over a range of doses to establish a

dose that could suppress inflammation effectively after CCI. Ve-

liparib (or saline vehicle) was administered intraperitoneally once

per day beginning 24 h after CCI, and brains were harvested on day

seven after injury (Fig. 1). Veliparib significantly reduced the mi-

croglial/macrophage activation at all doses tested, with no signifi-

cant difference between the doses (Fig. 1c–h).

We also assessed effects of veliparib on neuronal death in the

hippocampal dentate gyrus, a region that is anatomically remote

from the CCI and susceptible to delayed death after brain trauma.

Consistent with previous reports,38,39 we observed scattered de-

generating cells in this region seven days post-CCI, as identified

with FJB (Fig. 2b,c). Rats treated with veliparib showed signifi-

cantly reduced cell death, again with no significant difference

between the different doses employed. The dentate gyrus also

showed a marked increase in astrocyte GFAP expression (reactive

astrocytosis) after CCI. The increase in GFAP expression was also

attenuated by veliparib, with statistically significant effects ob-

served in the 3 and 9 mg/kg treatment groups (Fig. 2d–g). Based

on these results, we chose the 3 mg/kg dose for the subsequent

studies.

Gene expression changes

To confirm veliparib efficacy on inflammatory responses, we

evaluated drug effects on several inflammation-related gene prod-

ucts: IL-1ß, TNF-a, Iba-1, MRC2, MMP9, and SOCS3. Each of

these mRNA species were increased in the perilesional tissue

during the first few days after CCI (Fig. 3a). Rats treated with

veliparib beginning 24 h after CCI showed attenuated increases in

some, although not all of these gene products (Fig. 3b).

Effects on axonal injury and survival

We also evaluated the effect of veliparib on axonal injury and

loss in the ipsilateral callosal radiations at seven days and eight

weeks after CCI, given that inflammation may contribute to de-

layed axonal injury after traumatic brain injury.40 At the seven-

day time point, we assessed APP-positive axonal spheroids, which

are a marker of impaired axonal transport. These were evident

throughout the white matter tract and, surprisingly, were in-

creased in rats treated with veliparib (Fig. 4). At the eight-week

time point, we assessed the long-term survival of corpus callosum

axons by quantitative analysis of neurofilament number. This

assessment showed that axonal density was strikingly reduced in

the CCI rats, to values less than 10% of sham-CCI–treated rats

(Fig. 5). The number of axons surviving at this time point was

neither increased nor decreased in the rats that had been treated

with veliparib. In a separate study, groups of rats evaluated at time

points between seven and 180 days post-injury confirmed that the

axonal loss was a delayed response to injury (Fig. 5e).

Long-term functional outcome studies

Rats were divided arbitrarily into sham operation, CCI, or CCI

plus veliparib treatment groups. All groups received 1 mL intra-

peritoneal injections of either veliparib (3 mg/kg) or vehicle only

(saline) once per day for 12 days beginning 24 h after operation.

Rats were evaluated for motor and cognitive deficits at multiple

FIG. 2. Veliparib reduces astrocyte activation and cell death in
hippocampal dentate gyrus after controlled cortical impact (CCI).
(a) Box in schematic shows location in which these were assessed.
Note the coronal plane of analysis is posterior to the injury site.
(b) Degenerating cells identified by Fluoro-Jade B (FJB) staining
seven days after CCI; scale bar = 50 lm. (c) Average number of
FJB-positive cells per section in each treatment group (n = 5;
*p < 0.05 vs. sham CCI. (d–f) Expression of glial fibrillary acidic
protein (GFAP, black) in representative sections from rats treated
as indicated. Scale bar = 100 lm. (g) Graph quantifies area of
GFAP staining in each treatment group (n = 5; *p < 0.05 vs. CCI,
0 mg/kg veliparib).
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time points until eight weeks after CCI, at which time brains were

harvested for histological assessments (Fig. 6a). The CCI -induced

cavity size was not affected by veliparib (Fig. 6b), as expected with

the delayed dosing protocol.

Motor function, as evaluated by the forelimb use asymmetry test

and the IBB forelimb dexterity tests, showed significant deficits

after CCI. These deficits improved over the initial three weeks after

injury and then plateaued. Veliparib-treated rats did no better than

vehicle-treated rats on the forelimb asymmetry test and did statis-

tically worse than vehicle-treated rats on the IBB test (Fig. 6c,d).

Attention and executive function, as evaluated by the 5-CSRTT

test, showed deficits that gradually resolved over 4–6 weeks after

CCI. The rate of resolution was not influenced by veliparib treat-

ment (Fig. 6e,f).

Long-term outcome studies with 2 h delay to treatment

Given that no behavioral benefit was observed with the 24 h

delay to treatment, we considered the possibility that processes

initiated before this time point may be crucial to the long-term

functional outcomes. We therefore evaluated rats treated with only

a 2 h delay between CCI and first dose of veliparib (Fig. 7a). Lesion

cavity size was again unaffected by veliparib (Fig. 7b). The number

of corpus callosum axons surviving at the eight-week time point

FIG. 3. Gene expression in perilesional brain tissue. (a) Relative increase in mRNA levels of designated gene products over two
weeks after controlled cortical impact (CCI). (b) Effect of 3 mg/kg veliparib on expression levels of these genes at three days after CCI.
Veliparib was administered daily beginning 24 h after CCI. Rat treated with sham CCI or 0 mg/kg veliparib received vehicle (saline) in
place of veliparib. n = 4 for each determination; *p < 0.05 vs. sham CCI (ANOVA and Dunnett test); #p < 0.05 vs. CCI (Student t test).
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was also unaffected by veliparib (Fig. 7c). Motor function, as

evaluated by the forelimb asymmetry test and the IBB forelimb

dexterity tests, again showed significant deficits after CCI that re-

solved partially over the initial three weeks after injury. The rates

and extent of motor recovery were unaffected by veliparib treat-

ment (Fig. 7d,e). Attention and executive function, as evaluated by

the 5-CSRTT test, showed deficits that resolved gradually after CCI

and were not significantly affected by veliparib treatment

(Fig. 7f,g).

In addition, we evaluated rats with the elevated plus maze to

assess anxiety-like behavior, on day 14 and day 56 after injury. At

the 14 day time point, the studies showed a trend toward increased

latency in movement into open arms of the maze and increased time

spent in the closed arms of the maze that were both attenuated by

veliparib, but these effects were not significant after accounting for

multiple comparisons (Fig. 7h,i). A separate analysis of the func-

tional outcome measures using aggregated data from studies using

both the 2 h and 24 h delay-to-treatment intervals (combined

n = 10–12 per group) showed no statistically significant effect on

veliparib on any of the functional outcome measures (Supple-

mentary Fig. 1).

Pig studies

The CCI produced a lesion of relatively modest size relative to

the overall pig brain (Fig. 8a,b). Immunostaining for Iba-1 to label

microglia/macrophages in the perilesional cortex revealed a large

increase in labeled cells and showed them to have enlarged cell

FIG. 4. Veliparib increased accumulation of amyloid precursor
protein (APP) in axonal spheroids in callosal radiations. (a–c)
APP accumulation (black) in representative sections from rats
treated as indicated. Scale bar = 50 lm. (d) Graph quantifies APP
spheroids in each treatment group. n = 5; *p < 0.05 vs. sham,
#p < 0.05 vs. controlled cortical impact (CCI), 0 mg/kg veliparib.

FIG. 5. Veliparib did not reduce axonal loss in corpus callosum assessed eight weeks later. (a) Location of region sampled for axonal
density. Axons identified by neurofilament immunostaining (SMI-31, green) in the corpus callosum from (b) sham and (c) controlled
cortical impact (CCI)-treated rats eight weeks after operation. Scale bar = 10 lm. (d) Quantified axonal survival (n = 5; *p < 0.01 vs.
sham). (e) Extended time course of callosal axon loss, seven to 180 days post-injury (DPI); n = 3; *p < 0.01 vs. sham; #p < 0.01 vs. seven
days post-injury.
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soma characteristic of the activated morphology (Fig. 8). The ef-

ficacy of veliparib in suppressing microglial/macrophage activa-

tion was assessed in pigs given doses of 0–9 mg/kg orally, twice per

day, beginning 24 h after CCI or sham operation and continued for

seven days (n = 5 per group). Veliparib significantly reduced mi-

croglial/macrophage activation at all doses evaluated, with no

significant difference between the doses (Fig. 8).

Pigs evaluated with the bucket memory test showed a modest but

nonsignificant impairment on day two after CCI (n = 5 CCI, n = 5

sham; p = 0.08), but all pigs were back to pre-injury performance

levels by day three. The pigs likewise showed no impairments by

the novel object recognition or gait tests by day three after surgery.

Discussion

These studies showed that the PARP inhibitor veliparib can ef-

fectively reduce the accumulation of activated microglia/macrophages

and attenuate pro-inflammatory gene expression in the perilesional

cortex after CCI. These anti-inflammatory effects were observed

with a delay-to-treatment time of up to 24 h, over a range of doses,

and in both rats and pigs. Despite these effects, however, long-term

behavioral outcomes were not significantly improved in the

veliparib-treated animals.

The anti-inflammatory effects observed with veliparib are con-

cordant with previous studies using PARP inhibitors.2,14,41–43,47–49

We evaluated expression of a pre-selected group of inflammation-

associated genes to confirm that effects were mediated at the tran-

scriptional level and found significant reductions in IL-1ß, TNF-a,

and MMP9 gene expression. This pattern is consistent with the es-

tablished effects of PARP inhibitors on NF-kB transcription factor

activity.13,41 The perilesional tissue samples taken for these as-

sessments included mRNA from both microglia and nonmicroglial

cell types, and consequently gene expression changes in the non-

microglial cell types may contribute to (or dilute) the effects

0 1 2 4

VELIPARIB TREATMENT
3mg/kg/day

83 5 76

8 WEEK STUDY - 24HR TREATMENT ONSET

WEEKS POST-INJURY

Beg
in:

 2
4h

 

End
: 1

2d

Behavioral Analysis

In
jur

y Tissue
harvest

a b
60

40

20

0

CCI

Le
si

on
 s

iz
e 

(m
m

3 )

Veliparib
+          - 

0

5

10

15

20

25

%
O

M
IS

SI
O

N
S

0

10

20

30

40

50

60

70

80

90

%
A

C
C

U
R

A
C

Y

e  5-CSRTT: Accuracy  f  5-CSRTT: Omissions 

0

1

2

3

4

5

6

7

8

9

IB
B

S
C

O
R

E

d  IBB forelimb score

BASELI
NE

1 
DPI

7 
DPI

14
 D

PI

21
 D

PI

28
 D

PI

35
 D

PI

42
 D

PI

49
 D

PI

56
 D

PI

*

0

10

20

30

40

50

60

70

80

90

100

%
IP

S
IL

A
TE

R
A

L
V

S
.T

O
TA

L
P

L
A

C
E

M
E

N
TS

c Forelimb asymmetry test

BASELI
NE

1 
DPI

7 
DPI

14
 D

PI

21
 D

PI

28
 D

PI

35
 D

PI

42
 D

PI

49
 D

PI

56
 D

PI

*
*

* #

*
*

BASELI
NE

1 
DPI

7 
DPI

14
 D

PI

21
 D

PI

28
 D

PI

35
 D

PI

42
 D

PI

49
 D

PI

56
 D

PI

BASELI
NE

1 
DPI

7 
DPI

14
 D

PI

21
 D

PI

28
 D

PI

35
 D

PI

42
 D

PI

49
 D

PI

56
 D

PI

CCI + 3 mg/kg veliparib CCISham

FIG. 6. Effects of veliparib initiated 24 h post-injury on motor function and attentional control 0–56 days post-injury (DPI). (a)
Experimental design. (b) Lesion volumes measured eight weeks after controlled cortical impact (CCI) showed no effect on cavity
volume (n = 4). (c) Forelimb asymmetry test (*p < 0.01 vs. sham). (d) Irvine, Beatties, Bresnahan (IBB) forelimb score (*p < 0.01 vs.
sham, #p < 0.01 vs. CCI, no veliparib. (e, f) 5-Choice serial reaction time task (5-CSRTT) accuracy and omissions (*p < 0.01 vs. sham).
n = 4 for each treatment group.

EFFECTS OF VELIPARIB IN TBI 925

D
ow

nl
oa

de
d 

by
 U

cs
f 

L
ib

ra
ry

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

n 
Fr

an
ci

sc
o 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 1

0/
18

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



observed. Veliparib did not significantly reduce Iba-1 mRNA levels,

despite its robust effect on Iba-1 protein expression. Discordances

between changes in mRNA and protein levels of Iba-1 and other

inflammatory or cell-surface markers are recognized (e.g. 47,48) and

may reflect changes in post-transcriptional mRNA processing.49

In addition to reduced microglial activation, veliparib-treated

rats showed reduced astrocytosis and a reduced number of degen-

erating cells in the hippocampal dentate gyrus. The degenerating

cells, identified by FJB staining, are likely neurons, given that

neurons in this structure are susceptible to remote effects of trau-

ma39 and FJB has specificity for degenerating neurons in most

settings.27,28 Cell-type specific markers, however, are degraded in

degenerating cells by day seven after injury, thus precluding de-

finitive identification of cell type. Assessment at the seven-day time

point may also have missed neurons that died very soon after CCI.

Nevertheless, the observation that veliparib administered 24 h after

CCI reduced the number of degenerating cells and the accompa-

nying astrocyte activation supports the idea that these may be de-

layed effects of inflammation.

Veliparib treatment did not affect lesion cavity size. This was an

expected result, because the cavity induced by CCI results pri-

marily from the mechanical disruption of cells and vasculature that

occurs immediately with impact. By contrast, the axonal loss in-

duced by CCI can be very delayed, as illustrated by the present

findings (Fig. 5e). Although inflammation has been proposed as

a mechanism driving delayed axonal degeneration,40,48,50–53 the
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12-day treatment with veliparib did not attenuate the axonal loss

observed here.

Inflammation has also been suggested as a cause of axonal

transport impairment after brain trauma. Accordingly, we evalu-

ated a marker of impaired axonal transport, APP-containing

spheroids, at seven days after CCI to determine whether this was

reduced by veliparib treatment. Surprisingly, veliparib caused a

significant increase in spheroid formation. This increase was not

associated with a long-term increase (or decrease) in axonal sur-

vival, and so this significance of the increase in APP-containing

spheroids at the early time point is uncertain. It is possible that

spheroid formation does not correlate with later axonal demise, or

that its time course is simply accelerated or slowed by veliparib

with no net change in extent. Previous studies on the role of PARP

in axonal survival and regeneration have yielded conflicting re-

sults54–56 and did not evaluate axonal transport or employ delayed

treatment with PARP inhibitor.

The motor outcome measures employed here have been vali-

dated previously in the rat CCI model. Our present observations

with the IBB forelimb dexterity test showed gradual but incomplete

resolution of impairment, a pattern that should permit detection of

increased or accelerated recovery. Cognitive performance was as-

sessed with the 5-CSRTT, which is designed to measure visuos-

patial attention and impulse control.31 This test has not been

reported previously in studies of traumatic brain injury, but it

provides a useful assessment of impulsivity and disrupted atten-

tional control, both of which are salient sequelae of human brain

trauma. We found that accuracy and omissions measured by this

test were both increased after CCI, and both gradually improved to

baseline over six weeks of testing. The eventual complete recovery

obviated the possibility of detecting a drug effect on ultimate

outcome, but the absence of any accelerated recovery argues

against a drug effect. A previous study using the PARP inhibitor

INH2BP reported impaired learning in rats being treated at high

doses21; however, in the present study, veliparib was administered

for only the initial 12 days of the eight-week observational period.

It is unlikely that our study was insufficiently powered to detect a

biologically relevant effect of veliparib because the aggregate n for

the functional outcome studies was 10-12 for both the drug-treated

and control groups (Supplementary Fig. 1). Several authors have

commented on the need for long-term follow-up intervals and pre-

determined end-points to increase the rigor of pre-clinical studies.57

The study was designed with these considerations in mind, and this

may have prevented false positive observations. It is also possible

that effects of veliparib or other anti-inflammatory agents could be

more evident after trauma with greater severity or vascular damage

(and greater inflammatory response), or with a longer drug treat-

ment course.

We used a 12-day treatment interval based on results of a previous

PARP inhibitor study that showed no rebound inflammation after this

interval, and positive results on short-term behavioral measures.24

Nevertheless, even short-term local or systemic anti-inflammatory

effects carry increasing risk of interfering with tissue remodeling and

other factors required for recovery after brain injury.58

By one measure, the IBB forelimb dexterity test, rats treated with

veliparib beginning 24 h after injury recovered less completely than

rats treated with vehicle only. This negative effect, however, was

not observed in the rats treated at 2 h after injury, with data ag-

gregated across the treatment conditions, or with any other func-

tional outcome measure. This observation may be a statistical

outlier (Type 1 statistical error), the occurrence of which would not

be unexpected given that the study as a whole included more than

60 outcome comparisons.

An over-reliance on rodent models may be a factor limiting the

extent to which experimental advances in brain trauma have

translated to clinical successes.59 Our study design intended par-

allel studies in rats and pigs, but the absence of significant func-

tional impairment in the pig CCI precluded assessment of drug

FIG. 8. Veliparib reduces controlled cortical impact (CCI)-
induced microglial activation in pig brain. (a) Photograph of pig
brain surface showing size and location of CCI. (b) NeuN-stained
coronal section through epicenter of CCI cavity (56 days post-
injury). (c) Section through injured hemisphere harvested seven days
after CCI showing increased Iba-1 immunostaining (black) around
the lesion margins. (d–h) representative photomicrographs from
each of the treatment conditions. Veliparib (or vehicle) was admin-
istered orally, twice daily at the designated dose, beginning 24 h after
CCI. Scale bar = 20 lm. (i) Quantified Iba-1 expression. n = 5 at each
veliparib concentration; *p < 0.05 vs. CCI, 0 mg/kg veliparib.
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effect in that species. The lack of functional impairment in the pig

may reflect either the lesser injury severity (CCI cavity relative to

total brain size), or less sensitive functional assessments. There is a

paucity of established approaches and normative data for pig

functional assessment, particularly for measures of motor function,

and the present descriptions may help address this gap. Importantly,

the studies using pigs did demonstrate a robust suppression of

perilesional microglial activation by veliparib. This is significant

because of concerns that immune responses may have species-

specific aspects (particularly in rodents) that limit extrapolation of

experimental findings to human disease.60

Inflammation remains an attractive therapeutic target for brain

trauma given the known cytotoxic effects of inflammation and the

relatively long ‘‘window of opportunity’’ conferred by the many

hours required for this response to develop fully. Results of the

present study show that veliparib can potently and effectively

suppress microglial activation after brain trauma, with a delay-to-

treatment interval of at least 24 h. The absence of a robust func-

tional improvement in the treated cohorts, however, underscores

the complexities in translating an anti-inflammatory effect to

clinically relevant outcomes.
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