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Abstract 
 

 

 

Models of Bus Queueing at Isolated Bus Stops 

 

by 

 

Weihua Gu 

 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

 

University of California, Berkeley 

 

Professor Michael J. Cassidy, Co-chair 

Dr. Yuwei Li, Co-chair 

 

 

 

Long bus queues can form at a busy bus stop where multiple routes converge.  These 

queues and the delays that they impart to buses can often be mitigated by altering the 

stop’s design or the manner in which it is operated.  Queueing models are formulated to 

this end.  The models estimate the maximum rates that buses can discharge from a stop 

that is isolated from other stops and from nearby traffic signals, while maintaining targets 

for service quality.  Model inputs include the stop’s number of serial berths, and the 

processes by which buses arrive and dwell at the stop.  The models can be used for a 

variety of purposes that include: choosing a stop’s suitable number of berths or 

determining when it is useful to alter the rules governing how buses are to dwell in those 

stops.  Application of these models indicates that much of the previous literature on the 

subject of bus queueing at stops is flawed.  And because the analytical solutions derived 

for the present models describe the special operating features of serial bus berths, the 

models can be applied to other serial queueing systems common in transport.  These 

include taxi queues, Personal Rapid Transit systems and toll plazas with tandem service 

booths. 
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Chapter 1 

Introduction 

 
1.1 Motivation 
 

Promoting the use of public transit can be an effective way to reduce urban traffic 

congestion, fossil fuel depletion, and greenhouse gas emissions.  In many cities of the 

world, however, the service quality of transit, especially bus systems, is very poor, which 

discourages travelers from choosing this more sustainable mode.  A major cause of this 

poor service quality is that buses often experience severe congestion at busy bus stops 

(see Fig. 1.1 for an example). 

 

 
 

Fig. 1.1 Bus congestion at a busy stop 

 

While serving passengers at a busy stop, buses can interact in ways that limit bus 

discharge flow from the stop and create large bus delays.  This can significantly degrade 

the bus system’s overall service quality (Fernandez, 2010; Fernandez and Planzer, 2002; 

Gibson et al., 1989; TRB, 2003).  Moreover, the disruptive bus maneuvers at these stops 

will often impede adjacent car traffic, and thus create more congestion.  Hence, an 

important question in bus system planning is: how should one design a busy bus stop and 

manage bus operations in and around the stop to increase the rate that buses can 

discharge from the stop, and to mitigate the induced bus and car congestion? 

 



2 
 

 To this end, models are needed to unveil the cause-and-effect relationships 

between the inputs for a busy stop (e.g., bus inflow, number of berths, etc.) and the 

outputs (e.g., the resulting bus delays).  These models will help practitioners in selecting 

stop designs and operating strategies. 

 

 The research problem is explained in the next section.  A review and critique of 

the relevant literature is furnished in Section 1.3.  Contributions of this research are 

summarized in Section 1.4.  The structure of the remaining chapters of this dissertation is 

presented in Section 1.5. 

 

 

1.2 Research Problem 
 

This dissertation is focused primarily on isolated bus stops where bus operations are not 

affected by neighboring stops and traffic signals.  We further assume that buses enjoy an 

exclusive lane at least at the proximity of a stop (thus bus operations are not influenced 

by car traffic); and that sufficient space exists for storing the bus queues that can form 

immediately upstream of a stop. 

 

The research problem includes two parts: (i) to formulate models to predict the 

service level (e.g., in terms of bus delay) of a bus stop as a function of a given bus inflow, 

 , and key operating features, which will be explained below; and (ii) to apply these 

models to identify the most advantageous bus-stop designs and operating strategies.  Part 

(i) serves as a step toward part (ii), and is the larger focus of this dissertation. 

 

Metrics of service level for bus stops include the widely used failure rate,   , 

defined as the probability that an arriving bus is temporarily blocked from using the stop 

by another bus (TRB, 2000; St. Jacques and Levinson, 1997); and average bus delay,   , 

defined as the average time a bus spends at the stop and the queue upstream minus the 

time for loading and unloading passengers.  We call the period of loading and unloading 

the bus’s “service time.” 

 

To identify the operating features that have key influence on a bus stop’s level of 

service, note that a stop operates like most queueing systems; see Fig. 1.2 for an example 

of a curbside stop.  It exhibits a random pattern of bus (i.e., customer) arrivals and a 

distribution of bus service times.  For simplicity, we assume in this dissertation that bus 

service times and arrival headways (i.e., inter-arrival times) are both independent, 

identically distributed (i.i.d.) random variables.  Other key operating features include the 

number of berths (i.e., servers) in the stop,  , and the queue discipline, which pertains to 

whether a bus can overtake other buses downstream in and around the bus stop. 

 

In this dissertation we examine two queue disciplines that are common in the real 

world, which we term “no-overtaking” and “limited-overtaking.”  At curbside stops, bus 

overtaking maneuvers are often prohibited both when a bus in the queueing area attempts 

to enter an empty berth, and when a bus that has finished serving passengers attempts to 

exit the stop.  Cities often enact this “no-overtaking” regulation since an overtaking bus 
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can disrupt car traffic in the adjacent lane(s).  In other instances, overtaking maneuvers 

are allowed for buses when they attempt to exit the stop.  This happens when buses can 

use the adjacent lane around curbside stops, and when buses dwell at off-line bus bays to 

serve passengers.  These stops are termed “limited-overtaking” stops.
1
 

 

Hence, the queueing systems can be denoted as GI/GI/ , as per Kendall’s notation 

(1953), but with an idling discipline (i.e., customers may be in queue while servers idle, 

because of the mutual blocking between the customers).  In this sense,    is the 

probability of delay in queue, and    is the expected wait time. 

 

 
 

Fig. 1.2 A (curbside) bus stop as a queueing system 

 

In light of all the above, the output of part (i) of the research problem can be 

expressed as follows: 

 

                 ,        (1.1) 

 

where   denotes the service level metric (   or   );   denotes a function of the bus flow, 

 , the number of berths,  , and other parameters defined next; the symbols    and    

denote the probability distributions of bus arrival headways and service times, 

respectively; and   denotes the queue discipline. 

 

 In some cases we are more interested in the inverse problem of the above, 

expressed as: 

 

                   ;        (1.2) 

 

i.e., to predict the maximum allowable bus flow,  , as a function of the service level 

targeted by the transit agency,  , and other operating features.  This inverse problem is 

                                                           
1
 Since it is rather difficult to maneuver a bus’s tail into the berth, we assume that a queued bus 

can never enter an empty berth by overtaking other buses that are dwelling at the stop. 

berths

queued buses passenger platform

bus stop as a 

queueing system

bus arrival 

process

bus service time 

distribution

queue 

discipline

departed busarriving bus
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especially useful when determining the maximum bus flow that can be served by a stop 

given some target  , and when identifying the capacity bottleneck in a congested bus 

system. 

 

 The models developed in this work are applied to (i) determine the suitable queue 

discipline and the minimum number of berths needed to serve a target bus flow given key 

inputs (       ) of a bus stop; and (ii) evaluate the effects of select bus operating 

strategies.  An example of these operating strategies is “stop splitting,” in which a stop 

with multiple berths is partitioned into multiple neighboring stops. 

 

 

1.3 Literature Review 
 

This section summarizes the literature relevant to bus queueing at stops, including: the 

analytical recipes in professional handbooks (Section 1.3.1); findings in archival journals 

(Section 1.3.2); and relevant literature on methodologies for solving queueing systems 

that are similar to bus stops (Section 1.3.3). 

 

 

1.3.1 Handbooks on Isolated Bus Stops 
 

In the Highway Capacity Manual, or HCM (TRB 1985, 2000), the maximum allowable 

bus flow (termed “capacity” in the HCM) of an isolated single-berth stop is the inverse of 

the average bus service time adjusted by a reduction factor.  The latter accounts for 

variations in bus arrival and service times, as well as the target service level.  The 

reduction factor either has tabulated values based on the stop’s designated failure rate 

(see Equation 12-10 and Table 12-17 of the 1985 HCM), or involves the standard Z-score 

corresponding to the failure rate and the coefficient of variation of bus service times (see 

Equation 27-5 of the 2000 HCM)2.  With this reduction factor, the allowable flow of an 

isolated single-berth stop increases as failure rate increases, but only to a point.  

Curiously, the HCM formulas estimate the allowable bus flow to be maximal when the 

failure rate reaches 0.5.  Intuition, on the other hand, tells us that this flow is maximum 

only when the failure rate is 1, such that a bus queue always exists.  This intuition is 

confirmed in the dissertation; see Chapter 3.  Additionally, the present work has unveiled 

a determinant of the allowable flow that has previously gone unreported: variation in bus 

headways to the stop.
3
 

 

For multi-berth stops, the HCM calculates the allowable flow as the allowable rate 

of a single berth multiplied by a so-called “effective number of berths.”  The latter relies 

                                                           
2
 The standard Z-score is the score representing the area under one tail of the standard normal 

curve beyond the failure rate (see http://en.wikipedia.org/wiki/Standard_score for further 

discussion).  The coefficient of variation is the ratio of the standard deviation to the mean. 
3
 Although an earlier edition of the HCM includes a multiplicative adjustment factor that 

reportedly accounts for variations in bus arrival headway, the factor seems instead to account for 

   (see Equation 12-7 and Table 12-17 of TRB, 1985).  

http://en.wikipedia.org/wiki/Standard_score
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again on tabulated values (see Table 12-19 of the 1985 HCM or Table 27-12 of the 2000 

HCM).  For each new berth added at a stop, the tables offer a corresponding effective 

number, depending on the queue discipline (i.e., whether overtaking permitted or not).  

Accordingly, each additional berth is presumed to yield a steadily diminishing gain in 

allowable flow, starting with the inclusion of a second berth at the stop.  This consistent 

reduction in the marginal return appears to be an effort to account for the disruptive 

interactions that arise between buses at multi-berth stops.
4
  Yet we find this is not true.  

Note that as an extreme case, when buses at berths never interfere with each other (the 

discipline is nonidling, i.e., a standard GI/GI/c queue), doubling the number of berths 

more than doubles the allowable flow (Whitt, 1993).
5
  Also, the HCM tables furnish only 

one set of effective numbers for each queue discipline; i.e., the efficiencies lost in the 

presence of multiple berths are assumed to be independent of any other operating 

consideration, including the target service level, and the distributions of bus arrival and 

service times.  This is at odds with our findings.  Moreover, the tabulated values in the 

HCM show that limited-overtaking stops (i.e. the so-called “off-line” stops in the HCM) 

with a given number of berths always furnish higher allowable bus flows than do no-

overtaking stops (i.e. the “on-line” stops in the HCM; see again Table 27-12 of the 2000 

HCM).  We also found that this is not correct (see Chapter 2). 

 

Though the model forms and values of the tabulated factors changed slightly from 

one edition of the HCM to the next, both editions share the same fundamental ideas 

described above.  These ideas are now part of the Transit Capacity & Quality of Service 

Manual (TRB 2003, Part IV, Chapter 1), which itself has been published with the intent 

of supplanting any discussion of transit systems in future editions of the HCM.  

Transportation Planning Handbook (ITE 1992, 1999) also adopts the same ideas. 

 

 

1.3.2 Academic Literature on Isolated Bus Stops 
 

Earlier critiques of the HCM formulas cited above appear in the literature.  Gibson et al. 

(1989) pointed out that bus behavior at a congested stop follows a “complex stochastic 

process,” and therefore criticized the method in the 1985 HCM to be of little use for most 

applications.  Fernandez and Planzer (2002) tested the 2000 HCM formulas against field 

measurements and found that the formulas underestimated the stop’s allowable flow.  

Both of the above references resorted to microscopic simulation because of the system’s 

inherent complexity, and did not pursue analytical work. 

 

Regarding queue disciplines, it is widely believed that all else equal, a limited-

overtaking stop always provides higher allowable bus flow than a no-overtaking stop 

(e.g., Papacostas, 1982; Gardner et al., 1991).  The works cited above used simulation 

and empirically-based models to support this belief.  Due to the limitations of their 

methods, those works failed to analyze a wide range of operating conditions.  Thus their 

conclusion turns out to be incomplete. 

                                                           
4
 This seems to be a consensus among researchers, including Gibson et al. (1989). 

5
 This is because of the pooling effect.  Details on this are furnished in Section 3.4.1. 
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There are also studies on how operating strategies can reduce bus queueing and 

improve allowable flows at stops.  For example, stop splitting (i.e., splitting a stop with 

multiple berths into multiple neighboring stops) has been much studied via simulation 

(Gibson et al. 1989; St. Jacques and Levinson 1997; etc.).  Most findings show that a stop 

with greater than 3 berths is generally unfavorable; though until now there have been no 

analytical methods for exploring this. 

 

Finally, there is empirical evidence showing that bus arrivals at a multi-route bus 

stop often follow Poisson processes (Danas 1980; Kohler 1991; and Ge 2006), though 

Newell (1982) and Fernandez (2001) showed that this is not always the case.  For bus 

service times, the Erlang distribution is found to fit well (Ge 2006).  St. Jacques and 

Levinson (1997) suggests that a value of 0.4-0.8 be used as the coefficient of variation of 

these service times.  Though oftentimes incomplete, these works provide useful 

guidelines on selecting suitable inputs to be used in our models. 

  

 

1.3.3 Methodologies for Solving Queueing Systems 
 

The dissertation relies to a large degree on means used to solve queueing systems similar 

to bus stops.  These means include simulation and analytical methods (including 

approximations). 

 

As described in the previous section, most studies of bus queueing at busy stops 

rely on computer simulation.  To their credit, these simulation-based studies averted 

difficult analytical derivations, and still revealed useful insights.  The insights, however, 

are limited because simulation models function as “black boxes,” as compared against 

analytical formulas that can directly unveil how inputs (e.g., the number of berths) 

influence outputs, such as bus delays.  And to achieve a suitable degree of accuracy, 

simulation needs to be repeated numerous times to reduce the systematic and random 

errors generated in the simulation process.  This will often mean high computational costs.  

Thus, most simulation-based efforts by necessity have focused on a relatively small 

number of select cases.  This limitation might lead to incorrect or incomplete findings 

(e.g., Papacostas, 1982). 

 

Nevertheless, simulation is useful, and is used in this research to verify the 

analytical results, and to solve certain queueing systems that are too complex to solve 

analytically.  We develop analytical models (including approximations) whenever 

possible.  Methods in queueing theory are used to this end. 

 

Explicit closed-form solutions have been developed early in the 20th century for 

well-known queueing systems with Poisson customer arrivals (Erlang, 1909; Pollaczek, 

1930; Khintchine, 1932).  More sophisticated approximation models for queueing 

systems with general arrival/service patterns were developed later; see Whitt (1993) for a 

review of these models.  However, none of the above-cited models can be used for bus 

stops.  This is because the above works studied queueing systems where the servers are 
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laid-out in parallel, such that a customer (e.g. a bus) can use any empty server (i.e. a bus 

berth) without being blocked by customers that are occupying other servers.  As 

explained in Section 1.2, bus berths are laid-out in serial fashion along the stop, such that 

buses in the stop and the queue upstream can potentially block each other.  This mutual 

blockage will inevitably increase the average bus delay, compared to a queueing system 

with the same number of servers, but laid-out in parallel.  Thus, the analytical works cited 

above can only furnish lower bounds of the average bus delays for bus stops. 

 

Regrettably, analytical models in the literature for queueing systems with serial 

servers are only applicable to simple cases of two servers where overtaking is prohibited 

and a customer queue is always present (Estrada et al., 2011; Gu et al., 2012; Hall and 

Daganzo, 1983).  General analytical solutions to this queueing system do not exist in the 

present literature, to the best of our knowledge. 

 

Still, mathematical methods and properties from the queueing theory literature 

can be used to solve the bus queueing problem at bus stops.  These methods and 

properties may include the Poisson Arrivals See Time Averages (PASTA) property 

(Wolff, 1982), the method of embedded Markov chains (e.g. Neuts, 1978), the generating 

function method (Crommelin, 1932), the method of supplementary variables (Cox, 1955), 

etc.  Some of these methods and properties are used in this dissertation. 

 

 

1.4 Summary of Research Contributions 
 

The previous section points to the need to develop a comprehensive set of analytical and 

simulation models that describe the unique operating features of serial bus berths in an 

isolated stop.  To this end, we start by examining a simple, extreme case when a bus 

queue is always present upstream of the stop, i.e., when      and     .  We 

develop analytical models in this case for a range of berth numbers, and for both “no-

overtaking” and “limited-overtaking” stops.  The models produce the maximum rates that 

buses can discharge from stops.  These rates are compared to determine whether allowing 

bus overtaking is favorable under different operating conditions.  The rates are also upper 

bounds for the flows of the general case, i.e., when      and     . 

  

We then develop analytical and simulation models for the general case.  These 

models can be used to predict bus delays (or allowable flows) for various operating 

conditions, and to select the suitable number of berths to serve a given bus flow.  The 

models also shed light on how to choose the appropriate operating strategies for 

improving the bus service level at congested stops.  These strategies include means to 

coordinate passenger boarding processes. 

  

As a contribution to the queueing theory literature, the analytical methods developed for 

bus stops can be applied to other serial queueing systems, e.g., taxi queues, toll stations 

with tandem booths, and Personal Rapid Transit systems. 
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1.5 Organization of the Dissertation 
 

The dissertation is organized as follows. 

 

Chapter 2 presents the analytical solutions for the extreme case when      and 

    , for both “no-overtaking” and “limited-overtaking” stops.  These two types of 

stop operations are then compared to identify which is more productive (in terms of 

allowable bus flow) for different operating conditions.  A general control strategy that 

can potentially maximize the utilization of berths is also discussed. 

  

Chapter 3 studies the general case when      and      for a select type of 

stop operation: no-overtaking.  We first develop analytical models for both single-berth 

and multi-berth stops of this type; for the latter we feature a Markov chain embedded in 

the stochastic bus operations at a stop.  Parametric analysis is then presented using these 

models.  The analysis furnishes insights into the cause-and-effect relationship between 

bus queueing and the operating features such as berth number. 

 

 Finally, Chapter 4 concludes the dissertation by summarizing its contributions, 

and discussing potential research opportunities that build upon the present work. 
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Chapter 2 

The Extreme Case when      and 

     

 
In this chapter we examine the bus stops operating in an extreme case where a bus queue 

is always present upstream of the stop.  In this extreme case, the bus discharge flow from 

the bus stop will reach its maximum.  The service level, however, is the worst:      

and     .  Nonetheless, this extreme case is worth exploring, not only because it 

provides an upper bound of the allowable bus flow for the general case (i.e., when 

     and     ), but also for its simplicity.  To see why, note that in this extreme 

case the bus arrival process will have no influence on the bus discharge flow since buses 

all arrive at the rear of the queue.  Thus Equation (1.2) reduces to: 

 

        
           ,        (2.1) 

 

where       denotes the allowable bus flow in this extreme case; i.e., this flow only 

depends on the number of berths,  , bus service time distribution, and the queue 

discipline.  The derivation of this simplified equation offers a simpler way to investigate 

problems such as comparing no-overtaking and limited-overtaking stops.  The analysis of 

this extreme case furnishes other insights as well.  These insights, to greater or lesser 

degrees, still hold in the general case, which is confirmed by the general-case models 

developed in Chapter 3. 

  

This extreme case is especially simple when    : both no-overtaking and 

limited-overtaking stops have the same allowable flow,     , where    is the average bus 

service time.  Thus, in this chapter we will explore the cases where    . 

 

We first develop the analytical models for no-overtaking and for limited-

overtaking stops in Sections 2.1 and 2.2, respectively.  A comparison between these two 

queue disciplines is furnished at the end of Section 2.2.  Section 2.3 presents a general 

form of control strategy that can potentially maximize the use of serial berths.  Section 

2.4 summarizes the findings. 
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2.1 No-Overtaking Bus Stops 
 

When buses are not allowed to make any overtaking maneuvers, queued buses will enter 

the stop in platoons of size  , and the time required to serve a platoon is the maximal bus 

service time across the platoon.  The rate that buses discharge from the no-overtaking 

stop,          , is therefore: 

 

          
 

               
 

   

 ,       (2.2) 

 

where       is the cumulative distribution function (CDF) of the individual bus service 

time.  The derivation of (2.2) is furnished in Appendix B.1. 

 

From (2.2), we plot in Fig. 2.1(a) the allowable flows (the solid curves) for 

   -  and     - , where    denotes the coefficient of variation in bus service time.  

We assume that bus service times follow gamma distributions with a fixed    (normalized 

as 1), since the gamma distribution is a generalization of the Erlang distribution, and the 

latter has been observed by Ge (2006) to be suitable for modeling bus service times. 

 

Fig. 2.1(a) shows that the allowable flows decrease as    increases, save for the 

case of    .
6
  For comparison, the flows when the berths are assumed to be parallel 

(i.e., when buses can freely enter any empty berth or exit from any berth) are shown as 

the dashed lines.  Comparisons between solid curves and dashed lines indicate that a 

large    significantly decreases the stop’s capacity to serve buses.  For example, when 

    , the allowable flows produced by a 2-berth stop and a 3-berth stop are only 1.33 

and 1.63 times that of a single-berth stop.  This is also consistent with intuition, because a 

larger variation in bus service time means that buses are more likely to block each other 

in and around the stop. 

 

 To further understand the effect of adding berths to a stop, we plot the 

average allowable flows per berth versus    in Fig. 2.1(b).  It shows that the average 

allowable flow produced by each berth decreases as   increases.  This is consistent with 

intuition because a larger   increases the possibility that buses block each other at the 

stop.  This can also be seen from (2.2), by noting that the average allowable flow per 

berth,              
    

 

   
, decreases with added berths, since the denominator 

increases with  . 

 

 

 

 

                                                           
6
 This is an analytical fact: Suppose    and    are two sequences of gamma-distributed random 

variables (bus service time) with the same mean value, but    has a larger    than   , then    is 

larger than    in the convex sense.  This in turn implies that 

                               ; i.e., the expected service time of a platoon of   buses 

with individual service times         is larger than that with individual service times        . 
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(a) Allowable bus flows versus    

 

 
 

(b) Average allowable flows versus    

Fig. 2.1 Allowable flows and average allowable flows per berth of no-overtaking stops 

 

 

2.2 Limited-Overtaking Bus Stops 
 

At limited-overtaking stops, buses are allowed to overtake other buses dwelling at a 

downstream berth to exit the stop, but a queued bus cannot overtake any downstream bus 

to enter an empty berth.  Analysis of stops of this type is more complicated than for no-

overtaking stops.  We will start by developing the analytical model for a 2-berth limited-

overtaking stop (Section 2.2.1), and then discuss how to extend the analytical method to 

stops with more berths in a recursive fashion (Section 2.2.2). 

 

 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

0 0.2 0.4 0.6 0.8 1 

Allowable bus flow 

CS 

c = 5 

c = 4 

c = 3 

c = 2 

c = 1 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

0 0.2 0.4 0.6 0.8 1 

CS 

c = 1 

Average allowable bus flow per berth 

c = 2 

c = 3 

c = 4 

c = 5 



12 
 

 

2.2.1 Two-Berth Limited-Overtaking Stops 
 

The analytical solution for no-overtaking stops presented in Section 2.1 exploits the 

property that buses are served in platoons.  These bus platoons are separated by time 

instants when all the berths in the stop are empty.  A similar property exists for limited-

overtaking stops, as described next. 

 

Imagine that at a certain point in time, both berths of a 2-berth limited-overtaking 

stop are empty.  Two buses will then enter the stop in platoon.  If the bus dwelling at the 

upstream berth finishes serving passengers first and leaves (by overtaking the 

downstream bus), a new bus from the upstream queue will fill the empty berth.  But if the 

bus dwelling at the downstream berth exits when the upstream berth is occupied, no 

queued bus can fill the empty berth immediately, and that berth will remain empty until 

the upstream berth is also vacated.  After that, another platoon of two queued buses will 

immediately enter the stop.  Thus, we see that the time horizon is also divided into 

periods by time instants when the berths are both empty.  We define these periods as 

cycles.  Cycles of limited-overtaking stops differ from no-overtaking ones in that in the 

former case, buses in each cycle are not served in platoon, and the number of these buses 

is not fixed (recall that the number is   for no-overtaking stops).  These differences 

greatly complicate the problem. 

  

From the renewal theory, we have: 

 

                
number of       served in  

 
  

  
                                    

             
  

  
  

  
 ,          (2.3) 

 

where    is the average number of buses served in a cycle, and    is the average duration 

of a cycle. 

  

We denote                as the service time of the  -th bus that enters the 

stop in a cycle, where   is the number of buses served in the cycle.  Note from the above 

analysis that the cycle length,  , is equal to the time duration that the upstream berth is 

occupied, i.e., 

 

     
 
    . 

 

Recall that only one bus dwells at the downstream berth per cycle.  Thus, 

 

        
 
                             

           . 
 

Since we normalize    as 1, we have 
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 .         (2.4) 

 

 The next step is to calculate   .  Note that     for all cycles; if      , then 

   ; if         , then    ; ….  In light of this, we have 

 

               
   
     

    .       (2.5) 

 

 Given the distribution of bus service time, the second term on the right-hand-side 

of (2.5) can be calculated using Monte Carlo simulation.  Alternatively, if the   ’s follow 

an Erlang-  distribution, then 

 

         
   
                         

 
 

        
     ,    (2.6) 

 

where   
 

  
  

        
; a proof of (2.6) is furnished in Appendix B.2.  Combining (2.4-

2.6), we obtain: 

 

                                           
 

 
        
    

 
     .  (2.7) 

 

This can be further simplified to (see Appendix B.3): 

 

                       
         

      
  

     
       

    
 

      

   

 
     .  (2.8) 

 

The right-hand-side of (2.8) can be computed numerically, using differences to 

approximate the differentiations, i.e.,  
  

  
 
    

 
               

  
, where   is a small 

number. 

 

Using the above equations, we plot in Fig. 2.2 the average allowable flow per 

berth of a 2-berth limited-overtaking stop for          (see the dash-dot curve).  We 

assume Erlang-distributed bus service times, but for other distributions we obtain similar 

results.  The figure shows that the average allowable bus flow still decreases as    

increases. 

 

 The average allowable flow for a 2-berth no-overtaking stop is also plotted for 

comparison (see the solid curve).  Surprisingly, the comparison shows that allowing 

buses to perform overtaking maneuvers can increase the bus discharge flow only when 

               .  For example, the allowable flow is increased by 12.5% when 

    .  However, when    is low, permitting overtaking actually diminishes the bus 



14 
 

discharge flow, e.g., by 17% when    is close (but not exactly equal) to 0.
7
  This is at 

odds with conventional wisdom (e.g., Papacostas, 1982; Gardner et al., 1991).  The 

present finding can be explained by the damaging behavior of “greedy bus drivers” as 

follows. 

 

 
 

Fig. 2.2 Comparison of limited- and no-overtaking stops with 2 berths 

 

 Consider the cycle described in the beginning of this section that starts with two 

buses entering the stop in platoon style.  If the bus dwelling at the upstream berth leaves 

first, the vacated berth will be immediately occupied by a “greedy” bus from the 

upstream queue.  Now if the bus dwelling downstream departs the stop soon after, the 

downstream berth will be left empty for a relatively long while until the “greedy” bus in 

the upstream berth finishes its service.  This effect will cause a reduction in bus discharge 

flow.  Further note that this negative effect of “greedy drivers” becomes dominant when 

   is low, i.e., when the service times of the first two buses are similar, because in this 

case it is more likely that the third bus will enter the upstream berth only moments before 

the downstream-most dwelling bus pulls out of the stop.  On the other side, the negative 

effect diminishes as    increases, and then the limited-overtaking stops become superior 

to no-overtaking stops. 

 

 Hence, the choice of queue discipline depends on the variation in bus service time, 

as Fig. 2.2 shows.  Bus overtaking maneuvers should be prohibited when    is low, but 

might be allowed otherwise.  The next section confirms this finding for bus stops with 

more than 2 berths. 

 

 

 

 

                                                           
7
 If      (i.e., when the bus service time is constant), bus operations at limited- and no-

overtaking stops are identical.  Thus, the dash-dot curve in Fig. 2.2 has a jump at     . 
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2.2.2 Limited-Overtaking Stops with More than Two Berths 
 

The analytical models for limited-overtaking stops when     can be developed in a 

recursive fashion; i.e., the model of  -berth stops can be built upon the results of      -

berth stops.  For simplicity, in this section we only present the model for 3-berth stops. 

 

 As before, we define a cycle as the period between two consecutive time instants 

when all the berths in the stop are empty.  Recall that (2.3) still holds: 

 

               
       

       
 . 

 
 We further define a subcycle as the period between two consecutive time instants 

when the two upstream berths of the stop are both empty.  Note that a cycle may include 

one or more subcycles.  Moreover, the number of buses served in a subcycle and the 

subcycle length are both statistically equivalent to those of a cycle for a 2-berth limited-

overtaking stop.  Thus, we have 

 

                        
 

and 

 

                     , 

 

where      denotes the average number of subcycles in a cycle.  Hence, we have 

 

               
              

                
 .       (2.9) 

 

      can be calculated in a way similar to         (see (2.5)): 

 

                    
 
     

    ,      (2.10) 

 

where       denotes the duration of the  -th subcycle in a cycle.  The probabilities on the 

right-hand-side of (2.10) can be computed either by Monte Carlo simulation, or by 

integrating over the distribution functions of    and      .  The distribution function of 

      is given in Appendix B.4. 

 

 In theory, the above method can be applied recursively to calculate the allowable 

flows for limited-overtaking stops with any number of berths.  But the computational 

complexity increases rapidly as   increases.  In this dissertation we only show the results 

for the allowable flows of 3-berth and 4-berth stops.  These results are shown as dash-dot 

curves in Figs. 2.3(a) and (b) for         .  We still assume Erlang-distributed bus 

service times.  Average allowable flows for no-overtaking stops are also shown for 

comparison (the solid curves). 
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(a)     

 

 
 

(b)     

Fig. 2.3 Comparison of limited- and no-overtaking stops with 3 and 4 berths 

  

 The patterns in Figs. 2.3(a) and (b) are similar to Fig. 2.2: the allowable flows are 

decreasing in   ; limited-overtaking stops produce higher allowable flows for higher    

(i.e.,                 for    , and                 for    ), and no-

overtaking stops are better otherwise.  Compared to Fig. 2.2, Figs. 2.3 (a) and (b) also 

show that having more berths means a larger detrimental effect of “greedy drivers,” and a 

greater threshold of    for allowing overtaking. 

 

The negative effect of “greedy drivers” can possibly be reduced by controlling the 

damaging behavior of those drivers.  This possibility is explored next. 
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2.3 A General Strategy that Controls the Use of Berths 
 

We first note that a simple control is to prohibit overtaking for           , and allow 

overtaking otherwise.  This simple strategy will produce the upper envelope of the two 

curves shown in Fig. 2.2 for 2-berth stops, or in Figs. 2.3(a) or (b) for 3- or 4-berth stops. 

 

A more general form of control can be used to further improve the allowable bus 

flow.  Taking a 2-berth stop as an example, this general control will be applied at the time 

instant when the upstream berth is vacated (and thus a queued bus can enter the berth), 

but the downstream berth is still occupied.  We call this instant a control point.  The idea 

is to allow the next queued bus to enter the emptied upstream berth at a control point (and 

thereby potentially block other buses from entering the downstream berth later in the 

cycle) only when the remaining service time estimated at the downstream berth is 

sufficiently long.  This remaining service time could be readily estimated using: i) the 

elapsed service time at the downstream berth at the control point; and ii) the bus service 

time distribution.  To see how this general control strategy can improve the allowable bus 

flow, we develop a near-optimal form of this control strategy that can approximately 

maximize the utilization of berths.  The work will be presented for 2-berth (limited-

overtaking) stops.  Brief discussion about stops with more than 2 berths will come at the 

end of this section. 

 

 We will first develop the condition under which it is advantageous to block any 

queued bus from entering the upstream berth at a control point.  To this end, we denote    

and    as the elapsed and the remaining service times of the downstream-most dwelling 

bus at the control point; and    as the number of buses that have been served or that are 

being served in the present cycle.  Further denote         as the expected number of 

buses served in the cycle and the cycle duration when a decision is made to block the 

next queued bus from entering the (empty) upstream berth; and         if the opposite 

decision is made.  The         and         are functions of    and   .  Finally we 

assume that a cycle with measurements    and    occurs with probability  ; and that the 

average bus discharge flow for the rest of the cycles is        , where    and    are the 

average number of buses served per cycle and the average cycle length for the rest of the 

cycles, respectively. 

 

 With the variables defined above, we find that it is opportune to block the next 

bus from entering the stop if 

 
           

           
 

           

           
 . 

 

 This is equivalent to: 

 

                                              . 

 

 For continuously distributed bus service times,   is generally close to 0.  Thus we 

ignore the second terms on both sides of the above inequality, and have: 
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                    . 

 

 Dividing both sides above by    and moving the right hand side to the left, we have 

the condition for blocking the next bus: 

 

                       .       (2.11) 

 

Note that          and          are the extra numbers of buses that would be 

served in the cycle (compared to the average level) when the two control decisions are 

made.  Thus,    represents the additional number of buses served if the next bus is 

blocked, as compared to the other decision. 

 

From (2.11) we see that the value of   is needed to make the control decision.  

When    ,   is approximately the allowable bus flow of the stop after applying control, 

and is therefore unknown.  However, the simple form of control described in the 

beginning of this section provides a lower bound of  .  For simplicity, we will use this 

lower bound as an approximation of  .  This approximation may compromise the effect 

of control.
8
  Yet when the approximation is close to the real value of  , the results will be 

a good approximation. 

 

 We now develop   ,   ,   , and    as functions of    and   .  For the case when 

the next queued bus is blocked, 

 

      ,          (2.12) 

                        .       (2.13) 

 

The other case is more complicated, because the calculation should include not 

only the bus that is allowed to enter at the present control point, but also the buses that 

may be allowed to enter the stop at any possible control points later in the cycle.  Thus    

and    shall be determined in a recursive way.  To avoid this complexity, we ignore any 

further buses that might be served later in the present cycle, except for the current bus in 

question.  In real cases, the possibility of having two or more control points in a cycle is 

small, thus the approximation should be fairly accurate.  Thus, we have: 

 

        ,          (2.14) 

                                           ;   (2.15) 

 

where    denotes the service time of the bus that is allowed to enter at the control point. 

 

 Combining (2.11-15), we obtain the following condition: 

 

                                                           
8
 Using (2.11), we can infer that if   is underestimated, the control strategy will tend to choose 

the decision with a larger cycle length, i.e., to allow a few moderately damaging buses to enter 

the stop. 
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   .      (2.16) 

 

Note that this condition is independent of   .  The derivation of (2.16) is shown in 

Appendix B.5. 

 

 For a given bus service time distribution, (2.16) can be used to numerically 

calculate the range of    suitable for blocking the next queued bus.  Note that when the 

bus service time is exponentially distributed, (2.16) reduces to    , which is a false 

condition.  It means that queued buses should be allowed to enter the stop whenever the 

upstream berth is vacated.  This is consistent with intuition because when the service time 

is memoryless, any remaining service time will be statistically equivalent to a new 

service time. 

 

 We find that if bus service times follow the Erlang-  distribution, the range of    

suitable for blocking the next bus can be expressed as            , where         denotes 

the critical elapsed service time.  This is also aligned with intuition.  We plot         as a 

function of    in Fig. 2.4.  This figure shows that         increases as    increases; i.e., the 

strategy tends to allow more buses to enter the upstream berth at control points when the 

bus service time is more unpredictable.  It also shows that when    is very large,         

approaches infinity; i.e., one should always choose to allow the bus’s entry.  On the other 

side,              when     , and thus the probability of            is very low 

since in this case bus service times are almost always near 1; i.e., one would choose to 

block the bus’s entry to the upstream berth at almost all control points. 

 

 
 

Fig. 2.4         versus    

 

 We develop a simulation model to estimate the allowable bus flow for a 2-berth 

limited-overtaking stop when the control strategy is applied.  The algorithm used in the 

simulation model is furnished in Appendix C.1.  The estimated average allowable flows 

are then plotted in Fig. 2.5 against    (the double-line solid curve). 

 

 The allowable flows for no-overtaking (the solid curve) and limited-overtaking 

stops (the dash-dot curve) are also shown in Fig. 2.5 for comparison.  The comparison 
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unveils that the allowable flow curve produced by applying the general control almost 

overlaps the upper envelope of no- and limited-overtaking curves.  Although the general 

control can further improve the allowable flow when       , the improvements are less 

than 2%.  This can be explained in part by the facts that: (i) when    is low, the general 

control is not beneficial since in this case one should almost always choose to block the 

bus; and (ii) when    is moderate or high, the general control is not accurate because    

can hardly provide accurate estimates of    and    (see again (2.13) and (2.15)).  Thus, 

the simple form of control described in the beginning of this section is arguably sufficient 

and is easy to implement. 

 

 The effects of the general control strategy can be analyzed in a similar way for 

stops with more than 2 berths.  However, due to the same reasons as explained above, we 

believe that the improvements provided by the general control would still be modest. 

 

 
 

Fig. 2.5 Allowable flows with and without general control versus    

 

 

2.4 Summary of Findings 
 

This chapter explored the allowable bus flows of the two types of bus stops – no-

overtaking and limited-overtaking stops – in the extreme case where a bus queue is 

always present.  Analytical models were developed and from these we obtained upper 

bounds of the allowable bus flows for the general case when the bus queue is finite.  The 

models unveil many insights, including: 

 

i) The allowable bus flow decreases when the variation in bus service time increases. 

 

ii) The average allowable bus flow produced by each berth decreases as more berths 

are added to the stop. 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

0.0 0.2 0.4 0.6 0.8 1.0 

CS 

Average allowable bus flow 

limited-overtaking 

no-overtaking 

limited-overtaking 

with general control 



21 
 

 

iii) For a given number of berths, limited-overtaking stops are not always better than 

no-overtaking ones.  Limited-overtaking stops produce higher bus flow when the 

variation in bus service time is large, but less flow when the variation is small.  

This finding can be explained by the damaging behavior of “greedy drivers.”  

 

iv) A simple control strategy can be applied based on the value of   .  Taking a 2-

berth stop as an example, the strategy prohibits bus overtaking maneuvers when 

      , and allows these maneuvers otherwise.  This simple control is shown to 

be sufficient when compared to a more complicated, general control strategy. 

 

These insights have practical implications.  For example, the transportation 

authority probably would choose to prohibit bus overtaking maneuvers that are disruptive 

to adjacent car traffic, and under certain operating conditions this overtaking prohibition 

would benefit both cars and buses.  The authority can also improve the bus discharge 

flow from an extremely busy stop by means of reducing   .  One possible means to do 

this is to organize the passenger boarding process at the stop. 

 

 Most insights presented above are obtained by assuming Erlang- or Gamma-

distributed bus service times.  Yet the methodologies developed in this chapter can be 

applied to any service time distribution.  And we have found that most results are similar 

for other distinct distributions.  We understand that some results might be different if 

“special” distributions are used.  For example, if bus service times follow a Bernoulli 

distribution, then the remaining service time of the bus dwelling at the downstream berth 

(of a 2-berth stop) can sometimes be accurately predicted.  Thus, the general control 

strategy might bring considerable benefits in this case.  However, service time 

distributions like this are very rare in the real world. 

 

Most of the above insights hold in the general case when the bus queue is finite.  

This is confirmed in the next chapter. 
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Chapter 3 

The General Case when      and 

     

 
In this chapter we explore the bus operations at stops for the general case, i.e., when 

     and     .  In this case the bus inflow never exceeds the allowable bus flow 

for the extreme case obtained in Chapter 2.  The analysis of this general case is important 

because it is the case that concerns practitioners.  For example, a transit agency is often 

interested in the maximum bus discharge flow from a stop for a target value of    or   , 

or in means to reduce bus delays at a congested stop.  To this end, one needs to 

understand the relations between the bus flow and the stop’s service level.  Moreover, the 

bus arrival process at the stop also has a significant effect on the stop’s service level (as 

we shall see in the present chapter), which was ignored by the extreme-case models 

developed in the previous chapter. 

 

 In light of this, we develop analytical and simulation models for bus stops of the 

general case, and use these models to examine i) the returns in allowable bus flow by 

adding berths to the stop; and ii) the effects of bus arrival process and service time 

distribution on the stop’s allowable bus flow,  .  For simplicity, the discussion is focused 

on no-overtaking stops.  Simulation has confirmed that most findings from stops of this 

kind hold for limited-overtaking stops as well. 

 

 We start by developing analytical models for the simplest case, i.e., when     

(Section 3.1).  More general analytical models for multi-berth stops are presented in 

Section 3.2.  Using these models, we compare the two service level metrics,    and   , 

and show that the former is more suitable for use (Section 3.3).  The select service-level 

metric,   , is then used for the analyses of the returns in allowable bus flow (Section 3.4) 

and to explore the effects of bus arrival process and service time distribution (Section 

3.5).  Section 3.6 summarizes the findings of this chapter. 

 

 

3.1 Single-Berth Stops 
 

It will be assumed that bus stops operate in steady state, such that the bus arrival process 

and the service time distribution are both time invariant.  In steady state, the average bus 

inflow to the stop always equals the average outflow, so the overall inflow rate must be 

less than the maximal service rate. 



23 
 

 

To simplify our analysis and highlight the findings, we start by assuming two 

special cases in regard to the bus arrival process: Poisson arrivals (in Section 3.1.1), as 

can occur when the stop serves multiple bus routes;
9
 and uniform bus arrivals

10
 (in 

Section 3.1.2), as may occur, at least in theory, when the stop serves a single route with 

buses that are rigidly controlled.  These two queueing systems are denoted as M/G/1 and 

D/G/1, respectively, as per the notation of Kendall (1953).  Finally, Section 3.1.3 

examines the case of a more general bus arrival pattern (GI/G/1).  Recall that the bus 

arrival headways are assumed to be independent of the bus service times. 

 

 

3.1.1 Poisson Bus Arrivals – M/G/1 
 

In steady state, Poisson bus arrivals to a stop satisfy the PASTA (Poisson Arrivals See 

Time Averages) property; see Wolff (1982).  This implies that    is equal to the fraction 

of time that the stop’s single berth is utilized.  Note that this utilization fraction is equal to 

the bus flow,  , since the mean service time is normalized to 1: 

 

    .          (3.1) 

 

As per intuition, (3.1) shows that the single-berth’s allowable bus flow is maximal 

when      (recall that this is at odds with the HCM formulas).  It further shows that 

for Poisson bus arrivals and    as the service level metric, the allowable bus flow is 

independent of the variation in bus service time.  This independence turns out not to hold, 

however, if    is used as the service level metric. 

 

 The formula for    can be obtained by applying the well-known Pollaczek-

Khinchine formula (Pollaczek, 1930; Khinchine, 1932): 

 

   
      

  

      
 .         (3.2) 

 

 Equation (3.2) shows that    approaches infinity as   approaches 1.  This can be 

seen from the solid curves in Fig. 3.1 for     0, 0.5, and 1.  Fig. 3.1 also shows that for 

a given target   ,   decreases as    increases.  This is consistent with the finding from 

the extreme case.  Recall that the finding is not true when using    in the general case. 

 

 

 

 

                                                           
9
 For simplicity, in this dissertation we make the assumption of Poisson bus arrivals for both 

single-berth (Section 3.1.1) and multi-berth (Section 3.2) stops.  However, we note that this 

assumption might be valid only when the bus flow is low, as per Newell (1982). 
10

 Here “uniform bus arrivals” mean deterministic, evenly-spaced bus arrivals.  This is different 

from bus arrivals that are uniformly distributed.  We will use uniform distribution to model bus 

service times in Section 3.2.5. 
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3.1.2 Uniform Bus Arrivals – D/Ek/1 
 

Assume now that the bus arrival headways are deterministic and equal, denoted as D in 

Kendall’s notation; and that bus service time follows an Erlang-  distribution, denoted as 

Ek.  For this present case, our model does not have a closed-form solution.  An analytical 

model that can be solved numerically is derived in Appendix B.6. 

 

 The resulting allowable bus flows are shown against    and    with solid curves 

in Figs. 3.2(a) and (b), respectively, for     0, 0.1, 0.5, and 1.  These curves collectively 

reveal that, for uniform bus arrivals,   increases as the coefficient of variation in bus 

service time diminishes, no matter which service level metric is chosen.  The upper limit 

of  , however, is independent of   .  The case of      corresponds to the perfect 

coordination of bus arrivals and bus service time, such that        .  The curves in 

this idealized case therefore reduce to a point, also as shown in Figs. 3.2(a) and (b). 

 

 
 

Fig. 3.1   versus    for single-berth stops with Poisson bus arrivals 

 

The relations for Poisson bus arrivals revealed in (3.1) and (3.2) are shown in Figs. 

3.2(a) and (b) as well; see the dashed curves.  Comparing the dashed curves against the 

solid ones reveals that   also increases with diminishing variation in bus headways.  (We 

can see this because the coefficient of variation is 0 and 1 for uniform and Poisson bus 

arrivals, respectively). 

 

 

3.1.3 General Bus Arrivals – Ej/Ek/1 
 

We continue to model bus service time as above, and now use the Erlang-  distribution to 

describe a more general distribution for bus headways.  A numerical solution was derived 

in similar fashion to the uniform bus-arrival case. 

 

The results confirm that   decreases as    or    increases, where    is the 

coefficient of variation of bus arrival headways.  The effects of    can be seen from Fig 
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3.3, where the allowable bus flows are plotted against    for        and     0 

(uniform arrivals), 0.5, and 1 (Poisson arrivals). 

 

 
 

(a)   versus    

 

 
(b)   versus    

Fig. 3.2   versus    and    for single-berth stops with uniform bus arrivals 

 

 

3.2 Multi-Berth Stops – Analytical Solutions 
 

In this section we develop analytical solutions for no-overtaking stops with an arbitrary 

number of berths.  We assume that buses arrive at the stop as a Poisson process
11

, and 

that the distribution of an individual bus’s service time is independent of the stop’s 

number of berths.  With these assumptions, we identify a Markov chain embedded in the 

stochastic bus operations at the stop.  This Markov chain is then used to develop exact 

                                                           
11

 As mentioned above, this assumption is realistic for low traffic scenario; see Footnote 9. 
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solutions for two special cases: a stop with deterministic bus service time and   berths, 

where   can be any positive integer; and a stop with a general service time distribution 

but only two berths.  These are denoted as M/D/c/SRL and M/G/2/SRL systems, 

respectively, as per the notation of Kendall (1953); and we use SRL, an abbreviation of 

“serial”, to denote the queue discipline at a no-overtaking stop.  The generating function 

(i.e., z-transform) method is utilized to obtain these exact solutions.  Finally, the exact 

solutions are used to formulate a closed-form approximation of   as a function of the 

select service-level metric for the general case.  The methodology can be applied with 

virtually any reasonable metric for service level.  For simplicity, in this section we choose 

   as our metric, which considers both the bus delay suffered in the entry queue, and any 

extra dwell time encountered by the bus at the stop itself after having served passengers 

there. 

 

 
 

Fig. 3.3   versus    for single-berth stops with general bus arrivals and        

 

 The Markov chain is described in Section 3.2.1.  The transition probabilities of 

the Markov chains for the two special cases are furnished in Section 3.2.2.  The balance 

equations are then formulated and solved for the Markov chains’ limiting probabilities 

(Section 3.2.3).  These results are used to calculate the service level metrics for the two 

special cases (Section 3.2.4).  The closed-form approximation is presented in Section 

3.2.5.  The discussion will emphasize the logic used for these matters.  Details of the 

derivations are relegated to appendices. 

 

 

3.2.1 The Embedded Markov Chain 
 

Similar to the extreme case studied in Chapter 2, the general case is characterized by 

recurrent time instants when the buses in all berths have discharged from the stop.  We 

define these time instants as regenerative points.  Analogously, a cycle is defined as the 

time interval between two successive regenerative points.  Note that a cycle of the 
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general case differs from that of the extreme case in that in the former case, buses in each 

cycle are not served in platoon, and the number of these buses is not constant. 

 

Let     be the number of buses queued at the stop’s entrance at the beginning of 

the  -th cycle (i.e., the  -th regenerative point); and recall that   is the rate of (Poisson) 

bus arrivals, and   the stop’s number of berths.  We have the following result: 

 

Claim: given  ,  , and the distribution of bus service times at the stop, the 

stochastic process       is a Markov chain. 

 

To see that the claim is true, note first that from the  -th regenerative point and 

thereafter, the bus arrival process, by virtue of being Poisson, is independent of any 

historical information.  The service process is also independent of historical information, 

except for    , because at the regenerative point all berths are empty, and only     and   

determine the number of buses that enter the stop and the length of any residual bus 

queue immediately thereafter. 

 

The bus-stop’s service level (and other of its steady-state properties) can be 

obtained using the Markov chain once its transition probabilities are determined. 

 

 

3.2.2 Transition Probabilities 
 

Note that   has a supremum (i.e. a minimum upper bound)
12

 above which the system 

operates in an unstable state with infinite bus queues.  So that the steady-state distribution 

of the embedded Markov chain is well defined, we assume   is less than its supremum.  

We further define the Markov chain’s transition probabilities: 

 

                       . 
 

For the special case of the M/D/c/SRL system, the      are formulated as functions 

of   and  , and details of this formulation are given in Appendix D.1.  The      for the 

M/G/2/SRL case are formulated as functions of   and the CDF of bus service time,      , 

as described in Appendix D.4. 

 

 

3.2.3 Balance Equations of Limiting Probabilities and their Solutions 
 

Let                  be the matrix of transition probabilities;          the 

limiting probability that the Markov chain is in state  , i.e.                   ; and 

            the limiting distribution of the Markov chain.  Thus,   is the solution to 

the balance equation: 

 

                                                           
12

 This supremum is the allowable bus flow in the extreme case, as developed in Chapter 2. 
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    . 

 

Our solution method uses the z-transform of  , 

          
  

   , 

 

to consolidate the infinite-size balance equation into a single functional equation 

(Crommelin, 1932).  Its solution can be converted (e.g. using the inverse z-transform) 

back to  , the original distribution.  Details on the solutions for the two special cases are 

given in Appendix D.2 and D.5. 

 

 

3.2.4 Average Bus Delay 
 

The above results are now used to estimate the average bus delay,   .  (Other service-

level metrics could be obtained as well.)     is taken to be the sum of two normalized 

average delays: in the entry queue,    , and in the berth after the bus has served its 

passengers,    . 

 

Determining     requires the calculation of the average number of buses in queue 

over time,    , which is equal to the average of the queue length seen by each Poisson bus 

arrival, thanks to the PASTA property (Wolff, 1982).  We obtain the     by taking the 

ratio of two averages: (i) the average of the sum of the queue lengths seen by each bus 

arrival in cycle  ,     (this average is denoted as       ); and (ii) the average of the number 

of bus arrivals in that cycle,    (this average is denoted as   ).  This is because: 

 

          
                                                  

                           
  

        
                                                                            

                                                     
  

  
   
   

                                                  

                         

   
   

                           

                         

  

  
      

  
 . 

 

To obtain        and   , we consider the following four scenarios.  These describe the 

possible states of the system at the start and end of each  -th cycle. 

 

Scenario 1: No bus queues are present at either the start or the end of the  -th 

cycle (i.e.            ).  In this scenario, no bus arriving during cycle   encounters a 

queue (i.e.      ); and the number of buses that arrive during cycle  ,   , is the 

number served during that cycle,    (i.e.      ). 

 

Scenario 2: A bus queue is present at the start of cycle   (       ), but no bus 

is present at the end of that cycle (       ).  To satisfy        , the   can be no 

greater than  ; and      .  Further note that        . 
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Scenario 3: A queue of size     is present at the start of cycle   (       ), 

and a queue persists at the end of that cycle (         ).  In this scenario, the stop is 

filled during the cycle; i.e.      and         .  The first     arrivals fill 

unused berths, such that the first         arrivals see no entry queue.  The     

arrivals to follow will see successively longer queues that range from 1 to    .  Thus,  

 

    
 

 
       . 

 

Scenario 4: A queue size greater than   is present at the start of cycle   (      
   ), and a queue thus persists at the end of that cycle (             ).  In this 

scenario, as in the previous one,      and         .  And since the earliest 

moments of cycle   are characterized by     buses that remain in the entry queue, 

arrivals thereafter will see queue lengths in the sequence    ,            .  Thus,  

 

    
 

 
                 . 

 

Note from the above that, for known  , the     and    depend only on    ,      , 

and   .  Thus,        and    can be obtained by taking weighted averages: 

 

                                        , and 

                                   , 

 

where                        is the long-run probability of a cycle where      , 
       , and     .  This probability is equal to                          ; 
and the derivations of                        for the two special cases are 

furnished in Appendix D.1 and D.4, respectively. 

 

Therefore, we have: 

 

    
                                

                               

 .        (3.3) 

 

The average bus delay in the queue is then obtained from Little’s formula (Little, 

1961): 

 

         . 

 

The above recipe for     is applied to M/D/c/SRL systems in Appendix D.3.  

Given that the service time is deterministic, the average bus delay in berths,    , is 0 in 

this case. 

 

For M/G/2/SRL systems,     can be obtained similarly to the above, as shown in 

Appendix D.6.  This latter appendix also describes the determination of     for 

M/G/2/SRL systems. 
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3.2.5 An Approximation for General Service Time Distribution and 

Arbitrary   
 

The exact solutions for the M/D/c/SRL and M/G/2/SRL systems account for the effects 

on    from   and from   , respectively.  Hence we can formulate an approximation for 

M/G/c/SRL systems by applying an idea similar to those previously used in the queueing 

literature (e.g. Maaløe, 1973; Nozaki and Ross, 1975): 

 

                    
                

                
                  ,    (3.4) 

 

where the    denote the average bus delays for the queueing systems described by the 

subscripts; and the service ratio,  , is the ratio of bus inflow to the supremum of the bus 

discharge flow from the stop (i.e. the allowable bus flow of the extreme case).  Thus,   

takes a value between 0 and 1. 

 

To find a closed-form approximation using (3.4), we first obtain approximations 

for             and             by fitting least squares models to the exact solutions.  

Both of these   ’s increase as   increases; they are 0 when    , and they approach 

infinity as    .  In light of this, we tried combinations of algebraic fractions and 

exponential functions, monomials, trigonometric functions, etc., as candidate forms of 

least squares models.  From the many candidates tried, we found that the square errors of 

the following forms (with the corresponding parameters) are modest: 

 

                 
           

      
    

 

 
  

              

     (3.5) 

 

and 

 

                                   
 

 
  

              

 ,   (3.6) 

 

where for M/G/2/SRL systems, we assume that bus service time is uniformly distributed. 

 

Inserting (3.5) and (3.6) into (3.4), we obtain an approximation for average bus 

delay: 

 

                    
          

      
                 

 

 
  

                      

. (3.7) 

 

A formula is then derived from (3.7) to estimate the stop’s allowable bus flow for 

a specified target average delay.  To this end, we exploit a relationship between the 

allowable bus flow,  , and  .  For uniformly distributed bus service time, this 

relationship is 

 

  
 

      
   

   

 ,           (3.8) 
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as derived in Appendix B.7. 

 

Combining (3.7) and (3.8): 

 

  
  

        
   

   
 
       

      

                         
   

 

                    
  .   (3.9) 

 

If     , a bus-stop’s allowable flow for a specified    can be estimated by     , 
where   is determined by (3.9).  If the target average bus delay is not normalized but 

instead has units (e.g. minutes), then         , where    is the un-normalized target 

average bus delay. 

 

It turns out that (3.9) is not only a good approximation for uniformly-distributed 

service times, but also works well for certain other service time distributions.  As an 

illustration, the fitness of (3.9) is shown in Figs. 3.4(a) and (b) for     and  , 

respectively.  In each figure, the approximations (the dark solid curves) are compared 

with: (i) exact results obtained from the M/D/c/SRL model shown with the smaller, dark 

dashed curve for     ; (ii) simulated results for uniformly distributed service time (the 

longer, dark dashed curve) for       ;
13

 and (iii) simulated results for gamma-

distributed service time (the dark dotted curves) for        and    .  The thin, light 

solid curves will be explained momentarily.  Visual inspection of Figs. 3.4(a) and (b) 

shows that the approximation fits the exact values very well except when    is large and 

service times are gamma distributed.  Even in this latter case, the errors are still modest. 

 

One might be interested in knowing how much of the reduction in the allowable 

bus flow is caused by buses blocking each other at the stop.  To explore this matter, 

curves of allowable bus flow are plotted for some “ideal” stops where buses can freely 

enter any empty berths or exit the stop whenever they have finished serving passengers 

there; see the thin, light solid curves in Figs. 3.4(a) and (b).  These curves were also 

produced by simulation.  From both figures, we can see that the influence of mutual bus 

blocking is minimum when     , and increases significantly as    increases. 

 

 

3.3 Comparison of Service Level Metrics:    versus    
 

Average bus delay is the service level metric that both bus users and operators care about 

most, because it is readily observable, and obviously relevant to their concerns regarding 

travel times and operating costs.  Failure rate, however, is the service-level metric most 

commonly used in the literature on bus stops (e.g. TRB, 2000).  We presume that this is 

because    is thought to be a good proxy of   .  We will now show that this assumption 

regarding the suitability of    is not the case. 

 

                                                           
13

 Note that for uniformly distributed service time, the maximum    is     , hence we do not 

show a longer, dark dashed curve for       . 
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(a)                  

 

 
 

(b)                  

Fig. 3.4 Fitness of the M/G/c/SRL approximation 

 

 

 Our exact solutions are used to predict both    and normalized (unitless)    for a 

range of operating environments.  The two metrics are compared for M/D/c/SRL systems 

over a realistic range of   in Fig. 3.5(a).  Comparisons for M/G/2/SRL systems are made 

assuming gamma-distributed service time and for a range of    in Fig. 3.5(b). 
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The relations shown in both figures are non-linear.  The figures further reveal that, 

for small values of   , modest changes in that metric coincide with disproportionally 

large changes in   .  Yet,    is relatively insensitive to changes in    when    is large. 

 

Further note that for different numbers of berths, the same    corresponds to 

different values of   ; e.g., see the dashed vertical line in Fig. 3.5(a).  This means that 

when adding berths to a stop, the average delay can increase significantly if the same    

is used as the service-level measure. 

 

 
 

(a) M/D/c/SRL 

 

 
 

(b) M/G/2/SRL 

Fig. 3.5 Average bus delay versus failure rate 

 

Finally, note that    does not account for the average bus delay in berths,    .  

(The importance of     will be discussed in the next section.)  In light of the above, we 

will chose    as the service-level metric for the remaining analysis of the dissertation. 
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3.4 Returns in Allowable Bus Flow 

 

In this section we examine how the bus stop’s allowable bus flow changes by adding 

berths to the stop.  Previous studies claimed that the allowable bus flow always 

diminishes when   increases (e.g., TRB, 2000; Gibson et al., 1989).  However, as we will 

show in this section, the relation is in fact more complicated.  To understand why, we 

start by introducing two competing effects that influence the allowable bus flow of multi-

berth stops (Section 3.4.1).  These effects are termed the “blocking” and the “berth 

pooling” effects.  The returns in allowable bus flow from added berths are then studied 

for special cases that isolate the above effects in Sections 3.4.2 and 3.4.3, respectively.  

The general case is analyzed in Section 3.4.4. 

 

 

3.4.1 Two Competing Effects 
 

Discussion begins with the blocking effect.  A bus can enter a stop only when its 

upstream-most berth is open.  (At this time, the entering bus proceeds as far as possible 

until encountering the end of the stop or a dwelling bus; and the entering bus will then 

dwell at the downstream-most available berth for its entire time in the stop.)  Similarly, a 

bus can discharge from a stop only after all buses that were previously dwelling at that 

stop’s downstream berths have departed.  Apparently, this blocking effect for entering 

and exiting a stop tends to diminish the stop’s returns in   brought by added berths.  The 

effect diminishes, however, when the bus flow decreases. 

 

We illustrate the second effect, berth pooling, with the following example.  

Consider two independent, single-berth stops, each with an equal bus arrival rate,  , as 

shown on the left side of Fig. 3.6.  (Dashed boxes in this figure denote berths, and shaded 

rectangles denote buses).  If we ignore the blocking effect, the fluctuations in bus arrivals 

would be better served by pooling the two berths into a single, double-berth stop, as 

shown on the right side of Fig. 3.6.  Thus for the same total bus arrival rate (   for both 

the left and right sides in the figure), this berth pooling effect means that the double-berth 

stop would enjoy a lower bus queueing delay than would the two single-berth stops; i.e., 

the double-berth stop would have a higher allowable bus flow for a given   .  Thus, berth 

pooling tends to improve the stop’s returns in   brought by added berths.  The effect 

diminishes, however, when the bus flow increases and buses form long queues upstream 

of the stop (such that the fluctuations in bus arrivals become insignificant). 

 

Thus, we see that the above effects act in opposing directions: for large  ’s, the 

pooling effect diminishes while the blocking effect dominates;
14

 while for small  ’s, the 

opposite holds.  Surprisingly, however, the blocking effect also dominates when    , 

as will be explained later.  We will therefore isolate the two effects by examining multi-

berth stops under these special cases where one effect clearly dominates. 

                                                           
14

 An exception can occur under perfect coordination; i.e., when platoons of   buses arrive at 

uniform intervals and the service time is constant.  In this case, neither blocking nor berth pooling 

take effect. 
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Fig. 3.6 Berth pooling effect 

 

 

3.4.2 Returns in   when Blocking Effect Dominates 
 

As shown above, the blocking effect dominates when   approaches its maximum, i.e., 

when a bus queue is always present upstream of the stop.  This extreme case has been 

examined in Chapter 2; and as shown in Fig. 2.1(b), the returns in   diminish due to the 

blocking effect. 

 

 We find as an exception that the blocking effect also dominates when    .  To 

understand why, recall that the service level metric,   , consists of two components: the 

average bus delays in the entry queue,    , and in the berth after the bus has served its 

passengers,    .  When    ,     dominates   , and thus leads to decreasing returns in 

 .  This was to be expected: fewer berths can reduce the time that a bus spends at its 

berth awaiting other buses to depart from their own berths downstream. 

 

As an illustration, Fig. 3.7 was constructed using the exact solution for 

M/G/2/SRL systems, and for a range of small    (i.e.       ).  Note from this figure 

how     accounts for increasing proportions of    as the latter decreases.  Note too how 

this dominance increases with increasing   . 

 

To illustrate how dominant     call for diminishing returns in   from added 

berths, consider Fig. 3.8.  It was constructed using the approximation for M/G/c/SRL 

systems by assuming        and    - .  The curves are shown with different line-

types to make the comparison clear.  Note from this figure how added berths bring 

decreasing returns in allowable bus flow, even for the low   .  Further note that this 

phenomenon will be ignored when    is used as the service-level metric, since    does 

not account for    . 

 

 Fig. 3.8 also shows that as    increases, the average allowable bus flows for 

    and     become greater than that for    .  This change will be explained next. 
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Fig. 3.7     dominates    for low    (   ) 

 

 
Fig. 3.8 Decreasing returns in allowable flow at very low    values (      ) 

 

 

3.4.3 Returns in   when Berth Pooling Effect Dominates 
 

The     dominates    only when   (and equivalently   ) is very low.  As    increases, 

    becomes negligible as compared to     (see again Fig. 3.7).  The berth pooling effect 

will therefore dominate.  As an illustration, Fig. 3.9 shows the average allowable bus 

flow per berth for       ,    -  and       -   .  It was again constructed using 

the approximation (3.9).  Note from this figure how added berths bring increasing returns 

in allowable bus flow. 

 

 The increasing returns in   are also found when using    as the service-level 

metric.  Note that this finding calls into question what handbooks (and the academic 

literature) have to say on the subject; i.e., the implication that added berths bring 

decreasing returns in allowable bus flow does not hold in general.  More interesting 

evidence in this regard comes next. 
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Fig. 3.9 Increasing returns in allowable flow at modest    values (      ) 

 

 

3.4.4 Returns in   in the General Case 
 

We now show using Fig. 3.10 how the returns in   vary when the    change from small 

to large values.  We still use (3.9) for calculation and assume       ,    - .  The 

curves reveal how the countervailing effects of blocking and berth pooling produce 

mixed results in terms of the allowable bus flow returned by adding berths to a stop. 

 

 When    is low (but not approaching 0), additional berths can produce increasing 

returns in  , thanks to the berth pooling effect.  Toward the other extreme, the curves 

reveal that added berths produce diminishing returns in  .  This is because the blocking 

effect tends to dominate.  For intermediate    values, the results are found to be mixed in 

that the return in   for an extra berth: increase for small  ; and decrease for larger  .  For 

example, at the vertical dashed line in Fig. 3.10, the curve for     lies above the curve 

for    , meaning that adding a second berth brings increasing returns in  .  However, 

this favorable trend does not continue: note that the curve for     lies below the curve 

for    . 

 

These findings are logical in light of what was unveiled for the two competing 

effects in Sections 3.4.1-3.  Yet, our finding that returns in   vary with    runs counter to 

the HCM’s suggestion in this regard; i.e. using a single set of numbers for “effective 

berths” evidently does not suffice for all operating environments.  (Note that similar 

findings can be obtained by using   , the HCM’s choice for service level metric.) 

 

Moreover, parametric analysis performed with our models indicates that returns in 

allowable flow are influenced by   , such that the case shown by Fig. 3.10 does not hold 

in general.  For example, Fig. 3.11(a) presents our predictions for     .  Note that for 

the large range of    shown, returns in allowable flow increase, whatever the  .  Fig. 
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3.11(b) shows that the opposite occurs when     .  More details regarding the effects 

of    will be presented in the next section. 

 

 
 

Fig. 3.10 Average allowable bus flow per berth versus    (      ) 

 

 Graphs like Figs. 3.10 or 3.11 can be used in a number of practical pursuits.  For 

example, the curves in these figures can be used to determine the number of berths 

needed to achieve targets for    and  .  Or, they can be used to estimate   given bus 

arrival rate and a specified number of berths.  The figures can also help determine when it 

can be advantageous to split a single stop with many berths into multiple adjacent stops.  

For example, we can see from Fig. 3.11(b) that, when     , splitting a 2-berth stop into 

two single-berth stops could increase the total allowable bus flow by 30%.  Admittedly, 

this prediction assumes certain idealizations; e.g., that both the bus arrival processes and 

the service time distributions are comparable across the stops; and that buses bound for 

one of these stops do not impede buses bound for the other. 

 

 

3.5 Effects of Variations in Bus Service Times and Headways 

 

Having explored the influences of   , we now examine how the returns in   are 

influenced by the coefficients of variation in bus service time,   , and in bus headway, 

  . 
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(a)      

 

 
 

(b)      

Fig. 3.11 Average allowable bus flow per berth versus    (     and 1) 

 

 

3.5.1 Effects of    
 

We continue to assume that bus arrivals are Poisson and use (3.9) to explore the 

allowable bus flows for the range of           
 

Fig. 3.12(a) displays effects of    on the average allowable bus flow for    -  

when       .  Note from the figure the downward sloping curves (shown with different 

line-types for distinction).  These curves reveal how    exerts an inverse influence on  .  

Further note that the slopes of the curves increase from     to    .  This reveals an 
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inverse influence of    on the returns in  .  As a result, the stops exhibit increasing 

returns in   for low    values (thanks to the berth pooling effect) and decreasing returns 

in   for high    (thanks to the blocking effect).  These inverse influences of    become 

more dramatic as    increases.  To illustrate, the above analysis is repeated, but for 

    .  Results are displayed in Fig. 3.12(b). 

 

 
 

(a)        

 

 
 

(b)      

Fig. 3.12 Average allowable bus flow per berth versus    (       and 2) 
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3.5.2 Effects of    
 

Equation (3.9) cannot be used to calculate allowable bus flows for non-Poisson bus 

arrivals.  Hence we use simulation to explore how variations in bus arrival headway 

affect things.  We will assume that bus service time and headway are both gamma-

distributed with        and    ranging from 0 to 1.  The simulation algorithm is 

furnished in Appendix C.2. 

 

Fig. 3.13(a) shows effects of    on the average allowable bus flow for    -  

when       .  Once again, the downward slopes of the curves in Fig. 3.13(a) mean that 

the allowable flow diminishes as    increases.  Further note that the slope decreases as   

increases.  This means that a larger    mitigates the trend of decreasing returns in  ; i.e., 

   has a positive effect on the returns in  .  This too is to be expected, because a larger 

   means more fluctuations in bus arrivals, and thus a more significant pooling effect.  

However, these effects of   , diminish as    increases; see Fig. 3.12(b) for the case of 

    . 

 

 

3.6 Summary of Findings 

 

This chapter explored how key operating factors influence the allowable bus flows of no-

overtaking stops.  These key factors include: the target service level specified by the 

transit agency, the number of berths, the bus service time distribution and the bus arrival 

process.  Analytical and simulation models were developed to this end.  The models 

account for the influences of these factors in ways that are more complete than what has 

been offered by formulas in well-known handbooks and other academic literature.  

Through this more complete accounting come insights.  The insights have practical 

implications. 

 

The contributions of the work presented in this chapter are summarized below: 

 

i) Analytical solutions are developed for a queueing model that describes the unique 

operating features of serial bus berths in a no-overtaking stop.  Note that the 

solution methodology can be applied to other serial queueing systems, e.g., taxi 

queues, toll stations with tandem booths, and Personal Rapid Transit systems.  

Further note that no literature on queueing theory has been found to address a 

model of this kind.  From the analytical solutions, a closed-form and 

parsimonious approximation is derived for predicting the maximum bus flows that 

can depart a class of bus stops while maintaining target service levels. 

 

ii) Results from the models are largely at odds with those in the literature, including 

the well-known HCM.  For example, the models of multi-berth stops predict that 

adding berths to a stop can sometimes return disproportionally high gains in 

allowable bus flow.  Moreover, the results show that the widely-used service level 

metric for bus stops, failure rate, is not a good proxy for the delays that buses 

experience at the stops. 
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iii) The models can be used to guide transit agencies to determine the suitable number 

of berths when designing a new stop, and when expanding or splitting an existing, 

congested bus-stop.  The models also unveil possibilities for improving the bus 

operations at stops by using appropriate operating strategies.  These strategies 

may include means to reduce the variations in bus service time and in bus 

headway (e.g., technologies for facilitating passenger loading processes at the 

stop). 

 

 
 

(a)        

 

 
 

(b)      

Fig. 3.13 Average allowable bus flow per berth versus    (       and 2) 
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The insights in this chapter obtained for the general case confirm the findings 

from the extreme case, as previously presented in Chapter 2.  For example, the allowable 

bus flow is found to diminish as    increases.  Further note that the solution methodology 

can also be applied to limited-overtaking stops with some modifications.  (Admittedly, 

however, the solution of limited-overtaking stops would be more complicated.)  And the 

insights obtained from no-overtaking stops also hold to a greater or lesser degree for 

limited-overtaking stops.  The reader can use the simulation algorithm furnished in 

Appendix C.3 to verify this. 
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Chapter 4 

Conclusions 

 
Congested bus stops are often the bottlenecks in a bus system.  To identify means to 

mitigate or eliminate the bus queueing at these stops, one needs first to understand how 

bus queueing is affected by key operating factors, including the stop’s number of berths, 

the bus arrival process and dwell time distribution, and queue disciplines that describe 

how buses enter/exit a berth.  This dissertation has unveiled cause-and-effect relations 

between these operating features and metrics, such as the average bus delay at the stop.  

This was done by developing analytical and simulation models that describe the unique 

operating features of serial bus berths in an isolated stop.  Unlike previous works on the 

subject which are either case-specific or furnish incorrect or incomplete analysis, the 

models developed in this work provide exact or approximate solutions for a wide range of 

operating conditions, and thus can be applied to virtually any isolated bus stop. 

 

 The contributions of the dissertation are summarized in Section 4.1.  Directions 

for future work are discussed in Section 4.2. 

 

 

4.1 Contributions 
 

Primary contributions of this dissertation are summarized as follows: 

 

i) Analytical models are developed both, for bus stops operating in the extreme case 

when bus queues are always present, and in the more general case.  These models 

furnish exact solutions of the average bus delays and the allowable bus flows 

from the stops.  These analytical works also contribute to queueing theory, since 

no analytical model has previously been found for the unique queueing system 

that is a bus stop. 

 

ii) Many new insights are obtained from these models.  These insights either correct 

or complete previous findings and conventional wisdom on the bus queueing 

problem at stops.  Important insights include: a) failure rate, the service level 

metric that is widely used in literature, is not a good proxy for average bus delay, 

the metric that is more aligned with the concerns of transit users and agencies; b) 

the allowable bus flow decreases as the variations in bus headway and in bus 

dwell time increase; c) the returns in allowable bus flow increase with berth 

number when the target average bus delay is small, and decrease otherwise, and 
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are affected negatively by the variation in bus dwell time, and positively by the 

variation in bus headway; and d) allowing bus overtaking maneuvers can improve 

the allowable bus flow when the variation in dwell time is high, but will diminish 

this flow otherwise. 

 

iii) The models and insights can be put to practical use.  They can help practitioners 

to determine the bus delays at a congested stop, or inversely, to determine the 

allowable bus flow under a target service level, or the number of berths required 

to serve a given bus flow.  Practitioners can also use the models to choose suitable 

strategies to improve the bus operations at busy stops.  These strategies include: 

permitting or prohibiting bus overtaking, and means to reduce variations in bus 

dwell time and in bus headway. 

 

We understand that this dissertation focuses on service level measures for buses 

only (  ,   ), while people care more about the service level of bus users.  For example, 

passengers waiting at a stop might prefer more buses arriving at the stop, disregarding 

their queueing delays.  Yet our chosen service level metric, the average bus delay, is 

aligned with the average delay per onboard passenger; and the number of passengers 

onboard is usually much larger than that waiting at a stop.  Nevertheless, passengers 

waiting at the stop can still benefit from a higher allowable bus flow given a target   . 

 

To be sure, all of our present models are idealized, particularly since they apply to 

isolated stops operating in steady state.  Yet these models represent a step toward better 

understanding bus-stop operation.  With small modifications, the present models could 

account for the lost times due to bus deceleration and acceleration into and out of a stop, 

and the extra times required for boarding passengers as they walk to appropriate berths at 

a multi-berth stop.  The models can also be used to predict other outputs of interest, such 

as the distribution of bus queue lengths at a stop.  Predictions of this latter kind could be 

especially useful at stops with limited space for storing queued buses.  Moreover, these 

models can be applied to other serial queueing systems, e.g., taxi queues, Personal Rapid 

Transit stations, and highway toll stations with tandem service berths.  Other directions 

that can build upon the present work are explored next. 

 

 

4.2 Future Work 
 

A long list of research opportunities can build upon the present work.  Some of these 

opportunities are summarized below: 

 

i) Assumptions can be relaxed for developing better, more realistic analytical 

models for bus stops.  In addition to those discussed at the end of the previous 

section, we can also relax the assumptions regarding a) the bus arrival process, 

which was assumed to be Poisson in the present work; and b) the independence 

between bus headways and dwell times.  Our recent work indicates that, at least 

under certain operating conditions, embedded Markov chains exist when either of 

these two assumptions is relaxed.  Analytical models can therefore be developed.  



46 
 

Work of this kind could yield more realistic bus stop models, since bus arrivals in 

the real world are not exactly Poisson, and bus dwell times are often correlated 

with bus headway (Daganzo, 2009). 

 

ii) Strategies can be examined that can improve bus operations at busy stops.  These 

strategies include bus platooning (Szász et al., 1978; Gardner et al., 1991), in 

which buses arrive and depart stops in batched fashion, and stop splitting, in 

which a stop with multiple berths is partitioned into multiple neighboring stops.  

Our recent work shows that bus platooning has the effect of reducing the variation 

in bus headway, and thus can increase the allowable bus flow at a stop.  Stop 

splitting has been briefly discussed in Chapter 3, but a more complete analysis on 

this strategy should also consider the changes in bus arrival process and dwell 

time distribution after splitting the stop.  Work of this kind could unveil 

guidelines on how to optimally apply these strategies under various circumstances. 

 

iii) The work can be extended to stops that are affected by nearby traffic signals.  

This would also yield more realistic bus stop models because bus stops are often 

placed short distances from signalized intersections to improve accessibility; e.g., 

by enabling bus-users to readily transfer between different bus lines (TRB, 1996).  

The literature on stops of this type either focus on deterministic models (Furth and 

SanClemente, 2006), or rely on simulation (Gibson, 1996; Kim and Rilett, 2005; 

Zhou and Gan, 2005).  However, analytical models that describe stochastic bus 

operations at these stops can be developed, at least for the extreme case when a 

bus queue is always present.  We are particularly interested in the results that 

would be obtained from these proposed models, e.g., how the distance between 

the stop and the traffic signal affects the stop’s allowable bus flow. 
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Appendix A 

Glossary of Symbols 

 

   – average of    

   – number of bus arrivals in cycle   in the general case 

   – coefficient of variation in bus service time 

        – critical coefficient of variation in bus service time, where the allowable flows for 

limited-overtaking and no-overtaking stops are the same 

   – coefficient of variation in bus headway 

  – number of berths in a stop 

  – queue discipline at a stop 

   – failure rate 

      – cumulative distribution function of bus service time 

  – service level metric (e.g., failure rate or average bus delay) for a stop 

    – number of buses queued at the stop’s entrance at the  -th regenerative point in the 

general case 

    – average number of buses in queue over time 

   – number served during cycle   in the general case 

   – average number of buses served in a cycle defined in Section 2.2.1 

     – average number of subcycles in a cycle; subcycle and cycle are defined in Section 

2.2.2 

   – average number of buses served per cycle, save for those cycles with specified    and 
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   – number of buses that have been served or are under service in the present cycle at a 

control point 

   – expected number of buses that would be served in the cycle if one decides to block 

any queued buses from entering empty upstream berth(s) at a control point 

   – expected number of buses that would be served in the cycle if one decides to allow 

queued buses to enter empty upstream berth(s) at a control point 

   – distribution of bus headway 

   – distribution of bus service time 

  – transition matrix of the Markov chain for the general case 

     - transition probability of the Markov chain for the general case 

  – probability that a cycle with specified    and    occurs 

  – bus flow, allowable bus flow 

      – allowable bus flow in the extreme case when      and      

          – allowable bus flow for a limited-overtaking stop in the extreme case 

          – allowable bus flow for a no-overtaking stop in the extreme case 

  - average bus discharge flow of all the cycles except for those with specified    and    

  - bus service time 

   – mean of bus service time 

   – service time of the bus that is allowed to be served at the upstream berth of a 2-berth 

stop at a control point 

   – average duration of a cycle defined in Section 2.2.1 

    – duration of a subcycle defined in Section 2.2.2 

       – average of     

    – sum of the queue lengths seen by each bus arrival in cycle   in the general case 

   – average cycle length, save for those cycles with specified    and    

   – elapsed service time of the bus dwelling at the downstream-most berth at a control 

point 
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        – critical elapsed service time of the bus dwelling at the downstream-most berth at 

a control point; the decision is to block the bus if            

   – remaining service time of the bus dwelling at the downstream-most berth at a control 

point 

   – expected cycle length if one decides to block any queued buses from entering empty 

upstream berth(s) at a control point 

   – expected cycle length if one decides to allow queued buses to enter empty upstream 

berth(s) at a control point 

   – average bus delay 

    – average bus delay in the berth after the bus has served its passengers 

    – average bus delay in the entry queue 

   – un-normalized target average bus delay 

   – difference between the extra bus numbers served in a cycle between the two control 

decisions made at a control point (blocking the bus and letting the bus in) 

  – bus arrival rate 

  – ratio of bus inflow to the supremum of the bus discharge flow from the stop 

  – limiting probability distribution of the Markov chain for the general case 

   – limiting probability of the Markov chain for the general case 

      – z-transform of   
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Appendix B 

Mathematical Proofs and Derivations 

 

B.1 Proof of Equation (2.2) 

For a no-overtaking stop with   berths, let                           be the 

service time of a bus platoon (recall that a bus queue is always present upstream of the 

stop), where    is the service time of the  -th bus in the platoon.  All   ’s are i.i.d. random 

variables subject to the CDF      .  Let          be the CDF of     , we have: 

                                       

                        
     

          
 
           

  . 

From the identity                        
 

   
, we have: 

                   
    

 

   
.  Thus, 

          
 

       
 

 

               
 

   

 .      ■ 

 

B.2 Proof of Equation (2.6) for Erlang-Distributed Bus Service 

Times 

We instead prove a general result: if random variables   and   follow Erlang 

distributions with parameters       and      , respectively, then  

                      
 

      
    . 

From the definition of Erlang distribution, we can let      
 
   ,      

 
   , 

where   ’s and   ’s are independent, exponentially distributed random variables with 

parameter  . 
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Consider a boxing game between two teams; team A has   players and team B 

has  .  Each team dispatches its players one by one to the arena.  At the end of a round, 

only the winner stays in the arena for the next round.  The one who is knocked out will 

not be allowed to enter the game again (thus his team has to dispatch a new player, if any 

left).  A team wins the game when the other team is wiped out. 

Now consider that    and    represent the initial strengths of the  -th players of 

the two teams.  If team A’s  -th (fresh) player fights against team B’s  -th (fresh) player, 

the former wins if and only if      , and the remaining strength of the winner at the 

end of the round will be      .  So team A wins if and only if    . 

Next we calculate the probability that team A wins the game in a different way.  

First note that due to the memoryless property of the exponential distribution, a player 

who wins a round will remain like new in the next round.  Thus in any round, a player 

wins with a probability of 0.5.  Further note that “team A wins” means that they can lose 

at most     players before they wipe out the   players of team B.  Since the number 

of team A’s losses before it achieves   wins follows the negative binomial distribution, 

we have 

                               
 

      
          . 

Now if    is an Erlang-  random variable,    
   
    will be an Erlang-   random 

variable with the same parameter  .  Hence, 

         
   
                         

 
 

        
     .    ■ 

 

B.3 Proof of Equation (2.8) 

We only need show: 

                     
 

 
        
    

 
     

         

      
  

     
       

    
 

     
 

   

 
    .  (B.3.1) 

By interchanging the two summation operators on the left hand side, we have: 

                     
 

 
        
    

 
                         

      
  

   
 
     

              
           

                

 
   

 
     

         
    ,         (B.3.2) 
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where                  
           

                

 
    . 

We define  

                
    

       

    
 . 

The last equality holds when      .  We have 

         

                                                       
    . 

Thus, 

      
        

      
 

         

     
 .        (B.3.3) 

Combining (B.3.2) and (B.3.3), we have (B.3.1).    ■ 

 

B.4 Probability Distribution of     (Section 2.2.2) 

We first develop the general formula for the CDF,       , and the probability density 

function (PDF),       , of    ; then we obtain a simplified form for the case of Erlang-

distributed bus service times. 

                   

                    
    

(where   denotes the number of buses served in the subcycle) 

          
 
          

   
       

    

(where              denotes the service time of the  -th bus that enters the subcycle) 
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(where                denotes the joint CDF of           ) 

             
 
                               

   
 
        

         
 

    
 
   

                 

(where        denotes the CDF of       
   
   ) 

                                                   
 

      
  

    

                         
 

    
  

    

(where            denotes the CDF of         
 
   ; and note that    

 
      when 

   ) 

                                            
       

 

   
 (B.4.1) 

(where       denotes the PDF of      
 
   .) 

By applying Leibniz integral rule, we have: 

                                                               
 

   

        
        ,         (B.4.2) 

where       is the PDF of bus service time. 

  

Now suppose that    follows Erlang-  distribution (   ), then       is the PDF of the 

Erlang-   distribution: 

      
            

       
 ; 

note that the mean service time is 1.  Thus, 

       
           

        

       
  

   .       (B.4.3) 

 We will now use the following equality without proof (the reader can prove it 

using Taylor’s expansion): 

 

 
    

 
   
   

      
  

  
 

   

     
    (for    ),     (B.4.4) 
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where   is the imaginary unit. 

 We differentiate both sides of (B.4.4) with respect to  : 

 

 
   

   

 
   

 
   
 

  
    

    

      
 

     

       
   .      (B.4.5) 

 Comparing the right hand side of (B.4.3) and (B.4.5), we have: 

       
           

 

 
   

   

 
    

 
   
 

  
      

     
   

 
     

 
   
      

   .       (B.4.6) 

Equation (B.4.6) can be plugged in (B.4.1) and (B.4.2) to determine the 

distribution functions numerically.       ■ 

 

B.5 Proof of Equation (2.16) 

From (2.11-15), we have: 

                , 

where  

               , and 

                          . 

 Thus, 

                                             

                                

    
                         

 
      

 
    

        
   , 

where       is the PDF of bus service time. 

Now consider 
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 . 

Thus, 

     
                     

 
      

 
    

        
    

    
                     

    
    

 
   

        
    (interchanging the integrals) 

    
                             

 
   

        
    

    
                      

 
          

        
    (using             

 

   
     ) 

Hence we have proved (2.16).      ■ 

 

B.6 Analytical Solution to a Single-Berth Stop with Uniform Bus 

Arrivals and Erlang-  Service Time (Section 3.1) 

Here we furnish a solution by applying a more general result given by Gross, et al. (2008) 

for a queueing system with generalized-Erlang distributed headways and service time 

(GEj/GEk/1, where GEj and GEk are the distributions of bus headway and bus service 

time, respectively).
15

  This general result is: 

       
    

  
  

         
   

         
   

 ,        (B.6.1) 

where        is the Laplace-Stieltjes transform of the cumulative distribution function 

(CDF) of bus waiting time;              is the rate of the  -th exponential 

component of the GEk distribution; and              is the  -th complex root with 

negative real parts of the following equation with argument  : 

   
 
      

 
           

 
           

      .    (B.6.2) 

                                                           
15

 A generalized Erlang distribution is the convolution of independent but not necessarily 

identical exponential random variables.  Here a bus headway can be expressed as the sum of   
exponential components that are independent but may not be identical; and a bus service time can 

be expressed as the sum of   such components. 
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Equation (B.6.2) is also given in Gross, et al. (2008).  The              is the 

rate of the  -th exponential components of the GEj distribution. 

Since the means of the headway and the service time are  
 

  

 
    and  

 

  

 
   , 

respectively, we set               ,                so that the bus 

headway and the service time are Erlang-  and Erlang-  distributed, respectively; and so 

that the bus arrival rate and the service rate are   and  , respectively (note that the 

service rate is the reciprocal of the mean bus service time).  Given that when   
approaches infinity, the limit of the Erlang-  distribution is a deterministic value.  We let 

   , so that the headway becomes constant.  Then (B.6.2) becomes: 

 
 

   
 

 

  
 

 

  . 

The solution of the above equation is: 

       LambertW   
 

 
 

 
 

 
 

       

 
 
              ,    (B.6.3) 

where function LambertW    is the inverse function of         , which is multi-

valued in the field of complex numbers, and has no closed-form expression; and   is the 

imaginary unit. 

By picking up the roots of   ’s with negative real parts, plugging them into 

(B.6.1), and then taking a partial-fraction expansion, we obtain: 

       
        

 

 
     

   

         
   

 
 

 
  

  

    

 
    ,      (B.6.4) 

where    are constant coefficients to be determined by: 

     
   

     
  

        
  

 
     .       (B.6.5) 

By applying the inverse Laplace transform on (B.6.4), we obtain the CDF of the 

bus waiting time: 

                
   . 

Therefore the failure rate becomes 

              
 
    ;       (B.6.6) 

and the average bus delay is 

             
 

   
     

  

  

 
    .      (B.6.7) 
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For any given     
  

, the right-hand-sides of (B.6.6) and (B.6.7) are functions 

of  .  Thus we find the relation between the service level metrics and  .  The results can 

be obtained numerically. 

Note that this solution procedure can be easily adapted to solve an Ej/Ek/1 system, 

as examined in Section 3.1.3.        ■ 

 

B.7 Derivation of (3.8) for Uniformly Distributed Service Time 

Suppose that the bus service time follows a uniform distribution in           and 

recall that the mean service time is normalized to 1.  Then    
 

  
 .  The CDF of the 

service time is 

       

                    
       

  
                 

                    

  . 

From Equation (2.2), we calculate the supremum of bus discharge rate from the 

stop: 

     
 

               
 

   

  

  
 

   
   
         

       

  
     

   
     

  

  
 

   
   

   

 
 

      
   

   

 .  

Therefore,  

                   
   

   
  .       ■ 
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Appendix C 

Simulation Algorithms 

 

C.1 Allowable Bus Flow for a 2-Berth Limited-Overtaking Stop 

when the General Control Strategy is Applied 

The variables used in this simulation are listed as follows: 

    – Service time of the  -th bus (         ), not including the time that the bus 

waits to depart the stop after it has finished serving passengers; 

    – Position (number) of the berth where the  -th bus dwells to serve passengers; 

the downstream and the upstream berths are numbered 1 and 2, respectively; 

    – Time when the  -th bus departs from the stop; 

      – Time when the  -th berth (     ) becomes available; 

        – Start time of the current bus dwelling at the downstream berth; 

   – Maximum number of buses; 

   – Intermediate variable. 

 

The algorithm of the simulation model is as follows: 

Step 1: For a given bus service time distribution, generate a random variable 

sequence     .  Set      (     ) and        to 0.  Set    . 

Step 2:    
       if          

                   otherwise
  . 

Step 3: If    , or if                    , go to Step 4; otherwise go to Step 

5. 

Step 4:     ; 
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                ; 

            ; 

Go to Step 6. 

Step 5:     ; 

            ; 

                    . 

Step 6:         
. 

Step 7: If    , go to Step 8; otherwise, set      , and go to Step 2. 

Step 8: The allowable flow is given by     .    ■ 

 

C.2 Allowable Bus Flow for a No-Overtaking Stop in the General 

Case 

New variables used in this simulation are listed as follows (the rest of the notation is the 

same as in C.1): 

    – Headway between the arrivals of the      -th bus and the  -th bus;    is 

the system idle time before the first bus arrives; 

      – Waiting time in the queue of the  -th bus before it enters the stop; 

      – Waiting time in the berth of the  -th bus after its service is finished; 

    – Total waiting time of the  -th bus; 

   – Indicator that takes 1 if the  -th bus fails to enter the berth immediately upon 

its arrival to the stop, and 0 otherwise. 

 

The algorithm of the simulation model is as follows: 

Step 1: For given distributions of bus service time and bus headway, generate 

random variable sequences      and     . 

Step 2: Set    ,     ,                  .  Set      . 
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Step 3:       
                               if       

                                                    otherwise
  . 

Step 4:     
    if                             

                                                        otherwise
  . 

Step 5:                                           . 

Step 6:              . 

Step 7:     
   if       

   if       
  . 

Step 8: If    , go to Step 9; otherwise, set      , and go to Step 3. 

Step 9: The average bus delay and failure rate are calculated by averaging      
and     , respectively.  The allowable bus flow is given by the inverse of the mean of bus 

headway.          ■ 

 

C.3 Allowable Bus Flow for a Limited-Overtaking Stop in the 

General Case 

New variables used in this simulation are listed as follows (the rest of the notation is the 

same as in C.1-2): 

       – arrival time to the stop of the  -th bus. 

 

The algorithm of the simulation model is as follows: 

Step 1: For given distributions of bus service time and bus headway, generate 

random variable sequences      and     . 

Step 2: Set    ,        ,     ,        . 

Step 3: Set           ;        for        .  Set      . 

Step 4:               . 

Step 5:     
                                   if       

                                             otherwise
  . 

Step 6:                                . 
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Step 7:      
            . 

Step 8: Set                    
  for             . 

Step 9:     
   if     
   if     

  . 

Step 10: If    , go to Step 11; otherwise, set      , and go to Step 4. 

Step 11: The average bus delay and failure rate are calculated by averaging      
and     , respectively.  The allowable bus flow is given by the inverse of the mean of bus 

headway.          ■ 
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Appendix D 

Analytical Solution for M/D/c/SRL and 

M/G/2/SRL Systems 

 

D.1 M/D/c/SRL – Transition Probabilities 

We obtain the transition probabilities,     , by conditioning on the number of buses that 

get served in the  -th cycle,   , and then by finding all the                     
   for      .  These                        are also useful when calculating 

the average bus delay (see Section 3.2.4).  Note that service times are normalized to 1 for 

this system. 

First, we obtain the following equations by conditioning: 

                             
   ; 

                           , for    ; 

                             
   , for    ; 

                           , for        . 

Then we calculate                        as follows: 

                       

                                  

              
              

               ,      , 

where                is the exponential headway following the  -th bus arrival in the 

cycle; Similarly, 

                                  
     

  
, for    ; 
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                                    , for                

                                  
     

  
, for            ; 

                       
         

        
, for          ; 

for all other combinations of  ,  , and  ,                         . 

If we let    
     

  
, for          , then      can be written as follows: 

           , for    , and      ; 

      , for    , and      ; 

             
     , for        ; 

           
     , for        , and    ; 

         , for    .         ■ 

 

D.2 M/D/c/SRL – Solution to the Balance Equation 

From the transition probabilities given in the end of Appendix D.1, the balance equations 

can be written as: 

    
           

               
         

                                  

        
               

     
   
             

   
                   

  . 

We first define: 

           
 
            

  

 
     

           
         

  

 
           , 

then multiply    to both sides of the balance equations, and add them together.  Thus we 

have: 

                 
                          

                
     

             
   
   

 
   .  

For the last term of the above equation, swap the summation subscripts, so that: 
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          Let           

          
  

         
  

      

                
    

         .  

Hence, 

                 
                          

                
     

               
    

         . 

So,  

      
                                                                                

   

            . 

           (D.2.1) 

We need   equations to solve for   unknowns:                 in (D.2.1).  

By applying Rouché’s theorem (Crommelin, 1932), we show that the denominator 

             has exactly   zeros in       (see Section D.2.1 for a proof).  Note that 

by definition,       converges for any   such that      , so these   zeros must be the 

zeros of the numerator as well.  One of them is     , which is obviously a zero in the 

numerator; the other     zeros are: 

    
 

 
           

 

 
  

 

 
  

   

                   , 

where the function LambertW    is the inverse function of         .  We solve for 

the     zeros numerically and insert them into the numerator, and obtain     

equations: 

           
                  

             

             
                  

               
                        .  

The last equation comes from taking the derivative of (D.2.1) with respect to  , 

and letting     (note that        ): 

          
                    

             
       . 

With these   linear equations, it is easy to solve                 using 

numerical tools.  With the first   limiting probability values known, there are two ways to 
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obtain the entire limiting probability distribution: (i) since       is determined by (D.2.1), 

the remaining limiting probabilities can be computed as 

   
 

  
  

      

   
 
   

               ; 

or (ii) we can solve for           in turn by iteratively applying the balance equations 

given at the beginning of this section.      ■ 

 

D.2.1 Proof that              has Exactly   Zeros Inside of, or on the 

Unit Circle of the Complex Plane 

It suffices to show that 

              

has exactly   zeros inside of, or on the unit circle. 

Let        ,             , we want to show that for any     and close 

enough to 1,               for all   such that      . 

We first show that for any     and close enough to 1,  

                    . 

This is because            , and                , where     is a 

necessary condition for a queueing system to operate in steady state. 

Now let                ,  

                              

=                               . 

Since      and      are both holomorphic, Rouché’s theorem (Crommelin, 1932) 

tells us that   and     have the same number of zeros inside the circle      , 

counting multiplicities.  Given that   can be arbitrarily close to 1, we conclude that   and 

    have the same number of zeros on and inside of the unit circle      .  Obviously 

     has exactly   zeros on and inside of the unit circle (    with multiplicity  ), so 

                     has   zeros as well.     ■ 
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D.3 M/D/c/SRL – Average Bus Delay 

When bus service time is deterministic,      , thus we only need to calculate    . 

From Appendix D.1, we have: 

                                                    ; 

                                                      ,      ; 

                                      . 

By inserting the above into Equation (3.3) in Section 3.2.4, we obtain: 

    
 

 
           

   
 

 

 
    

        
      

    
 

 
     

           
   

                         
   

                       
   

    
   

.  

Hence, 

       
   

 
  

  
 

 
          

   
 

 

 
           

      
    

 

 
          

        
 
   

                         
   

                       
   

    
   

  

  

 

 
          

   
 

 

 
           

      
    

 

 
            

   
             

  
 
   

     
   
    

                         
   

                       
   

    
   

 . 

In the last equation, we eliminate          to avoid computing the numerous 

limiting probabilities.         ■ 

 

D.4 M/G/2/SRL – Transition Probabilities 

As in Section D.1, we have: 

                                                         

                                               ; 

                                                       , for    ; 

                            , for    , and      ; 

      , otherwise. 
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Further, we have: 

                                             
 

   
,  

where    is the headway following the first (and the only) bus arrival in the cycle; and    

is that bus’s service time. 

Given that      , there would be at least 2 arrivals in the cycle.  Let   be the 

time between the 2
nd

 arrival and its departure in this cycle: 

                      ,  

where    is the service time of the 2
nd

 bus to arrive in the cycle. 

We can derive the CDF of   as: 

                                          

=
              

         
           

=
                       

 
   

         
      ,  

where the third equality holds because   ,   , and    are mutually independent. 

Thus for    , 

                                   
         

  
      

 

   
  

   
         

  
                               

 

   
 

 

   
. 

Finally, the CDF of the platoon service time of 2 buses entering the stop 

simultaneously would be   
    .  Then for    , and      : 

                        
             

        
   

    
 

   
.  

In summary, we have: 

                                                 
 

   
  

 

   
; 

         = 
         

  
                               

 

   
 

 

   
 , for    ; 

      
             

        
   

    
 

   
 , for    , and      ; 
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      , otherwise.         ■ 

 

D.5 M/G/2/SRL – Solution to the Balance Equation 

Similarly, from the transition probabilities given at the end of Appendix D.4, we can 

write the balance equation in the  -domain as: 

                   
  

              
  

     
 
   .  

Let 

                                  
 

   
,  

we have: 

      
  

               
  

     

                                         

                           
     

             
 

   
     

         

  
     

 

   
 
     

             
 

   
        

     

  
   

         
 

   
  

             
 

   
               

 

   
.  

And, 

          
  

     
 
     

          
             

        
   

    
 

   
 
     

 
     

              
         

  
   

    
 

   
 
   

 
       (let        ) 

          
   

              
   

     

  
    

    
 

   
  

                                
    

 

   
.  

So, 
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.  (D.5.1) 

For any given      , we can follow the steps introduced in Appendix D.2, i.e., we 

(i) numerically compute a root of the denominator in the region      ; (ii) insert the 

root into the numerator and let it be zero to obtain an equation for the unknowns    and 

  ; (iii) take derivative of (D.5.1) and let     to get a second equation; and (iv) solve 

these equations for    and    to obtain the limiting distribution      .  ■ 

 

D.6 M/G/2/SRL – Average Bus Delay 

We first calculate    . 

From Appendix D.4, we know that: 

                                       
 

   
; 

                               
         

  
     

 

   
; 

                              
             

        
   

    
 

   
. 

So, 

                                         

           
         

  
     

 

   

      

 

 
     

      
             

        
   

    
 

   

              

 

 
     

 
     

                
     

  
 

      

 

 
    

 

   
       

           
     

  
  

      

 
         

       
    

 

   
 
        (let        ) 

                
     

  
 

      

 

 
    

 

   
       

           
     

  
  

      

 
         

       
    

 

   
 
     

          
     

 
     

 

   
      

     

 
            

    
 

   
 
   ;  
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   .  

According to Equation (3.3) in Section 3.2.4,  

    
   

 
 

      

   
,  

where        and    are given above. 

We then calculate     in a similar way.  Let     be the total wait time in berths 

for all buses served in a cycle. 

                   

                                      

                                     

                                                  
            

                                        

                                     

                                     

  
                

 
          

 
    

 
          

             
                

                  
 

   
       

 

   
 

 

   
       ,  

where   ,   , and    are defined in Appendix D.4. 

             
 

 
                     (by symmetry) 

  
 

 
                



74 
 

  
 

 

            
 
   

       
 
   

          
  

              
 

   
       

 

   
.  

So, 

    
        

     
 

        

  
  

  
                                              

  
,  

where                  ,             , and    are given above.  The second 

equality holds because the total number of buses served over a long period equals the 

total number of arrivals over that same period. 

Therefore,  

           
                                                       

  
 .  ■ 

 

 

 

 

 




