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ANOTHER LOOK AT THE GAUGED 

WESS-ZUMINO EFFECTIVE ACTION 

• Randalllngermanson 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, California 94720, U.S.A. 

ABSTRACT 

LBL-17817 

A compact form for the gauged Wess-Zumino effective action 

is found. The brevity of the result is due to the use of vector:and axial 

fields, rather than left- and right-handed fields. The method used is 

in the spirit of Zumino's differential geometric approach. 

·This work was supported by the Director, Office of Energy Research, Office of 
High Energy Physics and Nuclear Physics, Division of High Energy Physics of the 
U.S. Department of Energy under Contract DE·AC03·76SF00098. 
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I. Introduction 

Some years ago, Wess and Zumino [I] derived a low energy 

effective action for pions in the presence of an enernal gauge field. 

The result was given in terms of a certain Iflve-dimensional integral 

involving the Bardeen anomaly [2]. It was observed that the integral 

is non-vanishing, even when the gauge fields vanish. 

Witten [3] has given a simple intuitive reason for the impor

tance of the Wess-Zumino action, namely, that it removes a certain 

symmetry from the non-linear sigma model. This symmetry, ni .... 

- ni , where IIi represents the pion fields, is not a symmetry of QeD, 
and is therefore undesirable. The term which breaks this symmetry 

(with the fewest number of derivatives) is the Wess~Zumino action ;with . ", 

gauge fields set equal to zero. This term is a:five-dimensional integral 

involving pion fields alone. 

~ 

Witten showed that this term can be written more symmetri-

cally as an integral over a five-disk. Written in this way, it is 'seen 

that the action depends on the particular five-disk :of integration. This 

leads to an ambiguity in the action proportional to the winding number 

for the pion configuration, which implies that the overall coefficient is 

quantised. 

Witten also showed that, when gauge fields are taken into ac

count, the effective action becomes the sum of this five-space integral 

and a four-space integral involving both gauge fields and pions. This 

four-space integral, formula (24) of ref. [3] , is extremely messy, con

taining 24 terms. Indeed, it contained a few minor errors, which has 

triggered several papers [4], all of which are in agreement. (See also 

[5].) However, the basic problem remains-the formula still covers half 

a page and is very tedious to check. 
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The purpose of this paper is to find a reasonabJy simple 

expression for the gauged Wess-Zumino action, using :a minimum of 

mathematical machinery. A glance at the final result, formula (3.37), 

will verify that the first of these two goals has been achieved. The 

machinery needed to arrive at this result is 1) the language of ditl'erential 

forms, 2) Stokes' theorem and 3) the "homotopy operator". 

This paper is organized as follows. Section 2 summarises our 

conventions. Section 3 outlines some rather pedestrian manipulations 

of Wess and Zumino's formula to obtain the final result. Section 4 

contains a brief conclusion. 

n. Conventions 

We will work in Euclidean space, rwith g,,11 = 6·,,11. It is 

customary to define 

e = nixi 
F'/f 

(2.1) 

where F'/f ~ 93 MeV, ni are the pion fields, and Xi are·the generators 

. of U(N). N is the number of light quark fiavors, Nc is :the number of 

colors. The generators Xi satisfy 

tr(XiXi) = i6ii. 

Many other authors [3,4,51 define 

U(e) = e2i~ 

which transforms under U(N)L X U(N)R by 

(A, B): U t-+ AUB-1 • 

(2.2) 

(2.3) 

(2.4) 

Instead of this representation, we will use the Callan, Coleman, Wess 

and Zumino formalism [6], which will be defined below. 
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We are interested in the interaction lof pions with v.ector and 

axial fields V" and Ap' Under vector transformations, V" transforms 

like a gauge field and A" transforms in the adjoint representation. The 

reverse is true for axial transformations. The.fields are anti-hermitian: 

V" = _iV~Xi (2.5a) 

A" = -iA~Xi. (2.5b) 

For simplicity in the calculations, ditl'erential forms are essen

tial. Define 

V = V"dx" 

.If = Apdx". 

The usual field strength tensors 

V"II = 0" VII - Oil V" + [V"' Vv] + [A",.lf v] 

A"v = O"Av - OvA" + [V"' All] + [A", VII] 

will be denoted by the forms 

~ 1 v 
V = 2 V"vdx"dx 

~ 1 "V A = 2A"vdx dx 

where we do not explicitly show the wedge product symbol. 

(2.6a) 

(2.6b) 

(2.7a) 

(2.7b) 

(2.8a) 

(2.8b) 

In translating the Wess-Zumino formula into our notation, it 

is expedient to define 

Vt + .lf t1s = e-ite"l~(d + V + A1s)eite"lS 
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Vt + Aos = e-ite'YII(V + A'Ys)eithll . (2.9b) 

Vt and At are axial gauge transforms of V and A, with gauge 

parameter -teo Note that Va = V, Ao = A, VA = V and Ao = A. 

For any value of t, 

A 2 2 
Vt = dVt + vt + At 

At = dAt + {lit, At}. 

We will find it convenient to define 

Bt = Vt + At'Ys 

Bt = Vt + At'Ys, 

(2.10a) 

(2.10b) 

(2.11a) 

(2.llb) 

Finally, we define a covariant deriVlitive !bt whose .action on 

p-forms wp is 

!btWp=, dwp + [Vt, wpl± (2.12) 

where + should be taken for p odd and - for p even. Note that!b t is 

an anti-derivation, i.e.,it satisfies the same Leibnitz rule as the exterior 

derivative d. 

ID. Calculations 

The Wess-Zumino action in Euclidean space is given by 

'N. 11 1 r = - t8 C2 dt tr[EStl 
4 11" 0 R4 

(3.1) 

where Nc is the number of colors and 

A2 A2 4 2 A A A 2 
St = 12Vt + 4At + 32A t - 16(At Vt + At lItA t + VtA t )· (3.2) 
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The fields approach constants at infinity, so from now on, we shall 

compactify R4 to 8 4 • We define the normalisation constant 

J( = _ iNc 
4811"2' 

(3.3) 

Let DS be a five-dimensional disk whose boundary aDs = 
8 4 • Then we can rewrite (3.1) via Stokes' theorem: 

r = J( t dt { tr[EStl Jo JS4 
= J( t dt ( d(tr[EStl) 

Jo JDII 

= J( {1 dt ( !bt(tr[EStl]). Jo JDII 
(3.4) 

The last step follows from the fact that the trace of anything is a 

singlet. 

From the definitions in Section 2, it is easy to·check that 

0.. A 2 2 
..vtVt = lit + lit - At 

!btAt = At 

!b~ Vt = [At, Ad 
!btAt = [Vt, Ad· 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

Using these formulas, a straightforward calculation will verify that 

!bttr[EStl = 

tr[(!btE )St + 12At{Vt, [At, En + 4At{At,,[Vt, En - 16ANAt, El] 

(3.6) 
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From the detlnitions (2.9), it is easy-to check that 

d 
dt Vt = i[At, €] 
d 
dtAt = (2)t{) 
d A 

_ dt Vt = i[Ah €] 
d A 

dtAt = i[Vt,€]. 

Using these rules, it quickly follows that 

where 

d 
!])ttr(€Bt)= dtOt 

• [ A 2 A 2 32 5 3 A ] Ot = -Itr 12AtVt + 4AtA t + sAt - 16At Vt . 

Combining (3.8) and (3.4), we find 

r = K { (01 - 00). JDB 

(3.7a) 

(3.7b) 

(3.7e) 

(3.7d) 

(3.8) 

(3.9) 

(3.10) 

We would now like to convert this to an integral over 8· by using 

Stokes' theorem again. The appropriate technology to apply is the 

homotopy operator formalism. Zumino [6) has given a very clear 

presentation of this method, so we simply quote the procedure (suitably 

modified to our more complicated situation). 

For each value of t, there exists an operator kt such that 

ktd+dkt = 1 (3.11) 

when acting on homogeneous polynomials of the fields Vt • At. Vt and 

At. kt is an anti-derivation and k~ = O. Its action on an arbitrary 
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polynomial p(Vt, At, Vt , At) is defined in termslof a one-parameter family 

of anti-derivations I'f by the formula 

A ASS AS AS 1
1 

kt;(Vt,At,Vt,At)= 0 t:;(Vt,At,V"A t ). 

Here'" acts on the "interpolating fields" 

by the formula 

v: = sVt 

A: = sAt 
AS A (2 2) Vt = sVt - s(l- s) Vt + A., 
A S A 

At = sAt - s(l- s){Vt, At} 

t:v: = 0 

I'fA:=O 
hAS 
cfVt = Vtds 
hAS 
CtAt = Atds. 

Applying (3.11) to (3.10), we have 

r = K { [(k1d + dktl01 - (kod + dko)Oo] JDIS 
= K { (kl 0 1 - koOo) + K { (kldOl - kodno) JS4 JDIS 

where Stokes' theorem has been used. 

More progress can be made by defining 

T= [kldOl - kodOo)Ao =:Vo = O· 

-8-
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(3.12) 

(3.13a) 

(3.13b) 

(3.13c) 

(3.13d) 

(3.14a) 

(3.14b) 

(3.14e) 

(3.14d) 

(3.15) 

(3.16) 
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Then the polynomial 

Q = kld01 - kodOo - T (3.17) 

is necessarily homogeneous in the fields 'Vo, :/fo, Vo and Ao, so (3.11) 

can be applied: (kod + dko)Q = Q. This leaas to the messy formula 

kldOI- kodOo = T+(kod+dko)(kld0 1 - kodOo-7). (3.18) 

Our goal now is to simplify this. In fact, only two terms in 

the expansion of the RHS are non-zero. Using formulas (3.5) on (3.9), 

it is routine to show that 

dOt = ,2)tOt 

[
A A 2 A 3] = -itr 12At Vt + 4At 

= -iTr['Y50:] (3.19) 

where Tr denotes trace over both Dirac and fla.vor indices. (Ot is 

analogous to Wg,,_1 in Zumino's lectures. The notation here is in

tended to suggest this parallel, while keeping in mind the differences.) 

Noting that 

Ot = e-ite"l500eite"l5 

it is obvious from (3.19) that 

dOl = dOo. 

But using (3.11), 

d(k1dOI - kodOo) = d(l- dkdOl - (l-·dko)Oo) 

= dOl - dOo 

=0. 
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From the definition of T and It, it is clear that 

koT=O (3.23a) 

and that (3.22) implies 

dT=O. (3.23b) 

Finally, noting k~ = 0, (3.18) becomes 

kidOI - kodOo = T+ dkok1dO. (3.24) 

Substituting this into (3.15) and using Stokes' theorem again, 

r = J( 1 (kiOI - koOo + kokldOd + J( f T. (3.25) 154 1D5 

Some explicit calculations are now in order. 

I . 

. f 8t:[ B(AB)2 s(AS)2 32 B 5 ( 1I)3 AB] ktOt = -ttr 10 it 12At Vt + 4A t At + S(At) - 16 A:t Vt 

= itr i 1 

dS[12AHVt, V:} + 4AHAt,A:} -16{:An3Vt] (3.26) 

and inserting (3.13), the integration over s is -trivial, 

ktOt = itr[4Ad'Vt, Vt } + 2~At +6'VtA~l (3.27) . 

An entirely similar calculation leads to 

• • [ ( A 2 1 3 A 1 5)] ktdOt = -iTr 'Y5 . BtBt - '2Bt Bt + 10Bt . (3.28) 

- 10 -



• 

where 

Using the definition (3.16), this implies 

i 
T= --Tr{150S) 

10 

0== g-ldg 

g = e'hll. 

(3.29) 

(3;30a) 

(3.30b) 

Note that Tlooks very similar to the pion term given by Witten. It will 

be seen later that T differs by an exact form from Witten's expression. 

The computation of kok1dO I is only slightly mOlil compli

cated. The reason is because ko is ~efined in terms of 4, which has a 

simple action on Vo, Ao, etc., but not on VI, :ilt, etc. The best way to 

proceed is to define 

G= g-190g (3;31a) 

A A -1 A 

G = 91 = g 90g· (3.31b) 

A short calculation based on (3.13) and (3.14) gives the formulas 

9! =sG+o 
A 8 A 2 
91 = sG - s(1 - s)G 

~9! =0 
", A 8 

1091 = Gds. 

Combining these with (3.28), we finn that 

(3;32a) 

(3.32b) 

(3.32c) 

(3.32d) 

• 8 A82 183 A8 18s 11 [ ] kok1d0 1 = -,Tr,),s 0 ~ 91(91) - 2'(91) 91 + 10(91) 

.~ .-~ '., 
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= iTr'YSll dS[(SG + O){G, 8(; - s(l- S)G2
} - ~(8G + O)3G] 

(3.33) 

which, after integration, becomes 

. [1 A 1 8 1 ( )2 1 8~ ( ) kokldO I = .Tr'Ys "20{G,G} - "20G + 4" Go + "2Go j. 3.34 

In view of (3.31), this can be rewritten as 

[
1 A 1 3 1 ( )2 1 08] 

kokldOl = iTr'Ys 2.8{90,90} - 2.890 + 4" 90.8 + 290p 

(3.35) 

where 

.8 == dgg-1
• (3.36) 

Combining (3.25), (3.26), (3.29) andl(3.3S), the final result is 

r = iK { tr[4AdVt, Vt} + 2~ At + 6VtA~]t=1 
l84 t=o 

. { [1 A 1 8 1 ( )2 1 8] + lK lS4 Tr'Ys 2.8{90,90} - 2.890 + 4" 90.8 + 290.8 

_ iK ( Trhsos). (3.37) 
10 lDIi 

Equation (3.37) is the main result of this :paper (in Euclidean 

space). To obtain the Minkowski space (+-- - ) result, one adds a 

factor of i. We now check to see that (3.37) agrees with known results 

for some special cases. 

If one sets Vo = Ao = 0, then r reduces to a purely pionic 

action given by 

r(lI') = iK tr(2v3 a + 6va3 ) - ~ TrhsoS ) 1 'Kl 
8" 10 ·DII 

- 12 -
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where 'V and a are defined by 

'V + "(sa = Q. (3.39) 

An application of Stokes' theorem to the first term in (3.38), 

combined with an expansion of the second term, leads to 

) 32iK i s) r(lI' = --- tr(a. 
5 D8 

One can show from (3.30a) and (2.3) that 

so we find that 

1 
a = -U-i(dU)U-i 

2 

r(lI') = _ Nc ( 
24011'"2 J D8 tr(U-

1
dU)5 

which, of course, is Witten's expression (in Euclidean space). 

(3.40) 

(3.41) 

(3.42) 

Another check we could perform on (3.37) is to expand it as 

a power series in e. After a long calculation, one finds 

r = K 14 tr(eSo) + O(e) (3.43) 

which is obviously correct, in view of (3.1}-{3.3). 

IV. Conclusion 

Our result (3.37) is more compact than any other published 

formula that we know of. In spite of the mere complicated form for 

the anomaly when using vector and axial fields, the effective action is 

apparently simpler than the corresponding formula expressed in terms 

of left-handed and right-handed fields. This is gratifying, in view of 

- 18 -
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recent work [7] that indicates that the effective action derived from 

Bardeen's form of the anomaly correctly repr:oduces the vector meson 

decay amplitudes. While our formula is not much more convenient for 

doing perturbative calculations, (because it must be elKpanded using 

(2.9) and (2.11) ), we expect that Skyrme modellers [8) will find our 

formula less cumbersome than others that have been published. This, 

in fact, provided a motivation for this work. 
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