
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title

Topics in Lossless Source and Channel Coding

Permalink

https://escholarship.org/uc/item/7933q81d

Author

Congero, Spencer

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7933q81d
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Topics in Lossless Source and Channel Coding

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Electrical Engineering

(Communication Theory & Systems)

by

Spencer William Congero

Committee in charge:

Professor Kenneth Zeger, Chair

Professor Alon Orlitsky

Professor Daniel Rogalski

Professor Paul Siegel

Professor Lance Small

2023

Copyright

Spencer William Congero, 2023

All rights reserved.

The Dissertation of Spencer William Congero is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2023

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . ix

Acknowledgements . x

Vita . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1

1.1 Constrained channel coding . 3

1.2 Lossless source coding . 4

1.2.1 Fix-free codes . 4

1.2.2 Minimal expected length codes . 5

1.2.3 Competitive advantage . 6

References . 8

Chapter 2 Hexagonal Run-Length Zero Capacity Region,

Part I: Analytical Proofs . 9

2.1 Introduction . 10

2.2 Preliminaries . 15

2.3 Description of proof technique . 18

2.3.1 Overview . 18

2.3.2 A search tree for invalidating hypothetical labelings . 18

2.3.3 Constructing the search tree . 20

2.4 Chex(d, d+ 2) = 0 whenever d ≥ 1 . 25

2.4.1 Chex(d, d+ 2) = 0 whenever d ≥ 3 . 25

2.4.2 Chex(d, d+ 2) = 0 when d ∈ {1, 2} . 29

2.5 Main result: Chex(d, d+ 3) = 0 whenever d ≥ 3 . 32

2.A Disagreement Subsets . 38

2.B Lemmas . 40

2.B.1 Conflicts in leaf nodes . 40

2.B.2 Lemmas for Main Result in Section 2.5 . 44

References . 53

Chapter 3 Hexagonal Run-Length Zero Capacity Region,

Part II: Automated Proofs . 55

3.1 Introduction . 56

3.2 Constant Position Algorithm for proving zero hexagonal

(d, k) capacity . 62

3.2.1 Definitions . 63

3.2.2 Preview of Step 5 of the algorithm . 67

3.2.3 Preview of Lemma 3.2.8 . 68

3.2.4 Algorithm description . 69

3.2.5 Lemmas for zero capacity proof . 71

3.2.6 Zero capacity theorem . 77

iv

3.2.7 Algorithm implementation details . 79

3.2.8 Computational complexity of the algorithm . 82

3.3 Forbidden String Algorithm for proving zero hexagonal

(d, k) capacity . 86

3.3.1 Non-forbidden strings . 87

3.3.2 Algorithm description . 89

3.3.3 Algorithm details . 90

3.3.4 Example for d = 1 and k = 3 . 92

3.3.5 Algorithmic zero capacity results . 94

3.4 Rectangle Tiling Algorithm for proving positive hexagonal (d, k) capacity . 96

3.4.1 Algorithm description . 96

3.4.2 Algorithm details . 97

3.4.3 Enforcing the d and k constraints . 98

3.4.4 Example for d = 1 and k = 5 . 100

3.4.5 Algorithmic positive capacity results . 102

3.A Recursive implementation of the Forbidden String Algorithm . 105

3.B Recursive implementation of the Rectangle Tiling Algorithm . 106

References . 108

Chapter 4 The 3/4 Conjecture for Fix-Free Codes with At Most Three Distinct Codeword Lengths 110

4.1 Background on fix-free codes . 111

4.2 Summary of the main result . 115

4.3 The 3/4 Conjecture with two distinct lengths . 117

4.4 Overview of the proof of the 3/4 Conjecture with three distinct lengths . 119

4.5 Lemmas about Kraft sums . 123

4.6 Main result, part 1: µ12
−λ1 ≤ 1

2
and µ22

−λ2 ≤ 1

4
. 128

4.7 Main result, part 2: µ12
−λ1 ≤ 1

2
and 1

4
≤µ22

−λ2 ≤ 1

2

(

1−µ12
−λ1

)

. 134

4.8 Main result, part 3: µ12
−λ1 ≤ 1

2
and 1

2

(

1− µ12
−λ1

)

≤ µ22
−λ2 . 139

4.8.1 Proof of Theorem 4.8.1(a) . 140

4.8.2 Proof of Theorem 4.8.1(b) . 148

4.8.3 Proof of Theorem 4.8.1(c) . 152

4.8.4 Proof of Theorem 4.8.1(d) . 157

4.A Proofs of lemmas . 162

References . 184

Chapter 5 Characterizations of Minimal Expected Length Codes . 189

5.1 Introduction . 190

5.2 Characterization of expected length minimizing prefix codes . 198

5.3 Swapping code tree nodes . 203

References . 209

Chapter 6 Competitive Advantage of Huffman and Shannon-Fano Codes . 211

6.1 Introduction . 212

6.2 Existence of competitively optimal codes . 217

6.3 Asymptotic converse to Cover’s theorem on competitive optimality of Huffman codes 219

6.4 Lemmas for future sections . 225

6.5 Huffman codes competitively dominate Shannon-Fano codes . 229

6.6 Bound on competitive advantage over Huffman codes . 232

6.7 Bound on competitive advantage over Shannon-Fano codes . 241

6.8 Small codes . 242

6.9 Experimental evidence . 245

References . 248

v

LIST OF FIGURES

Figure 1.1. Claude Shannon’s “Figure 1”. 1

Figure 1.2. Labeling that satisfies the hexagonal (1, 4) constraint. 3

Figure 1.3. Examples of uniquely decodable codes. 4

Figure 1.4. Three code trees for a source of size 4. 6

Figure 2.1. Converting a hexagonal lattice into a square lattice using northeast diagonals. 12

Figure 2.2. Frame of width δ in an N ×N square. 16

Figure 2.3. Illustration of file indexing in disagreement diagrams. 17

Figure 2.4. Search Tree T0. 21

Figure 2.5. Search Tree T1. 21

Figure 2.6. Search Tree T2. 22

Figure 2.7. Search Tree T3. 23

Figure 2.8. Examples of files that either are, or are not, D-minimal. 24

Figure 2.9. Illustration explaining aspects of the search tree diagrams given in Figures 2.4–2.7. 25

Figure 2.10. Search tree for the proof of Theorem 2.4.1 with the hexagonal (d, d+ 2) constraint. 26

Figure 2.11. The figures show disagreement subsets corresponding to nodes of the search tree in Figure

2.10 for Theorem 2.4.1. 26

Figure 2.12. Diagrams 1.1, 1.2, and 1.3 from Figure 2.11 with labeled ∆ locations. 27

Figure 2.13. Special Conflicts. 36

Figure 2.14. Examples of Conflicts 1 and 2 for the hexagonal (d, d + 3) constraint. 42

vi

Figure 2.15. Diagrams (a)–(f) show Conflict 2 arrangements. 43

Figure 2.16. Images depicting the cases in Lemma 2.B.10. 48

Figure 3.1. Tiling configuration for demonstrating positive capacities with the Rectangle Tiling Algo-

rithm. 58

Figure 3.2. Illustration of an edge in Gh. 63

Figure 3.3. Graph used in Example 3.2.1. 65

Figure 3.4. The graph Gh for the hexagonal (3, 4) constraint. 66

Figure 3.5. A labeling of a 15× 20 rectangle satisfying the hexagonal (3, 4) constraint. 66

Figure 3.6. Illustration of the constant position property. 70

Figure 3.7. Plot showing the number of valid labelings of a (k + 1) × (k + 1) square versus d, and the

number of pruned valid labelings of a (k + 1)× (k + 1) square versus d, where k = d+ 4. . 82

Figure 3.8. Runtime, in seconds, on a supercomputer of the Constant Position Algorithm for hexagonal

(d, k) constraints, as a function of d, where k = d+ 4. 83

Figure 3.9. Plot showing the number of putative valid labelings of a (k + 1)×m rectangle versus m for

the case (d, k) = (9, 13) based on three different methods: a direct method, a complexity

reduced method, and our adaptive pruning method. 84

Figure 3.10. A tileable valid labeling of a 15× 15 square for the hexagonal (5, 8) constraint. 89

Figure 3.11. A tileable valid labeling of a 24× 24 square for the hexagonal (7, 11) constraint. 90

Figure 3.12. The upper labeling satisfies the hexagonal (5, 8) constraint, and the lower labeling satisfies

the hexagonal (7, 11) constraint. 91

Figure 3.13. Proof automatically generated by the Forbidden String Algorithm. 93

Figure 3.14. Snapshots of the stack during the Rectangle Tiling Algorithm. 101

vii

Figure 3.15. Two distinct labelings of a 2× 2 square for the hexagonal (0, 1) constraint where x ∈ {0, 1}. 102

Figure 3.16. Two distinct labelings of an 8×8 square for the hexagonal (1, 4) constraint where x ∈ {0, 1}. 103

Figure 3.17. Two distinct labelings of a 6× 6 square for the hexagonal (2, 5) constraint where x ∈ {0, 1}. 103

Figure 3.18. Two distinct labelings of an 8×8 square for the hexagonal (3, 7) constraint where x ∈ {0, 1}. 104

Figure 3.19. Two distinct labelings of a 10 × 10 squares for the hexagonal (4, 9) constraint where x ∈

{0, 1}. 104

Figure 4.1. Three cases of code word overlap. 118

Figure 5.1. One Huffman tree is a same-parent node swap of another and has a shorter self-synchronizing

string. 191

Figure 5.2. Huffman tree H2 is a same-parent node swap of H1, but has no self-synchronizing string

whereas H1 does. 192

Figure 5.3. A Huffman tree and code tree illustrating monotonicity without strong monotonicity. 193

Figure 5.4. Two Huffman trees and an optimal third code tree for a single source. 195

Figure 5.5. Logical implications of prefix code properties for a given source. 197

Figure 5.6. Two Huffman trees for the same source with source symbol c appearing on rows differing in

level by two. 205

Figure 6.1. Code trees of four prefix codes for a source of size 6. 219

Figure 6.2. Lower bound on the fraction of 106 randomly chosen sources whose Huffman code is not

competitively optimal, as a function of the source size n. 247

viii

LIST OF TABLES

Table 2.1. Summary of the known hexagonal (d, k) zero capacity region for small d and k. 15

Table 2.2. The critical files used to demonstrate conflicts at leaf nodes in the search tree T 34

Table 3.1. Summary of the known zero hexagonal (d, k) capacity region for small d and k. 59

Table 3.2. Computational complexity parameters for all hexagonal (d, k) constraints with d ≤ 9 where

Chex(d, k) = 0. 85

Table 3.3. Complexity statistics for the Forbidden String Algorithm. 95

Table 4.1. The sets F2 and D for all overlap cases and subcases used in the proof of Theorem 4.3.1 122

Table 4.2. The set F3 and corresponding pattern for all overlap cases used in the proof of Theorem 4.3.1 122

ix

ACKNOWLEDGEMENTS

I would like to thank my advisor Ken Zeger for his generosity, guidance, and support. He is always

introducing me to new ideas, fueling my curiosity, and urging me to pursue all of my interests. I could not have

asked for a better advisor.

I would also like to thank Alon Orlitsky, Dan Rogalski, Paul Siegel, Lance Small, and Alex Vardy for

serving on my various committees.

Anything I have done has been possible only with the constant encouragement of my parents, whose

rallying belief in me has always spurred me on.

My life is filled everyday with joy and adventure by Sarah Ekaireb, and I am so lucky to have had her

support while writing this dissertation.

Finally, I would like to thank Joe Connelly for all of the helpful advice he has given me throughout my

time in graduate school.

Chapters 2 through 6 of this dissertation consist of published and submitted journal articles. The disserta-

tion author was the primary investigator and author of each of these papers.

• Chapter 2 is a reprint of the material as it appears in: S. Congero and K. Zeger, “Hexagonal run-length zero

capacity region—Part I: Analytical proofs”, IEEE Transactions on Information Theory, vol. 68, no. 1, pp.

130-152, January 2022.

• Chapter 3 is a reprint of the material as it appears in: S. Congero and K. Zeger, “Hexagonal run-length zero

capacity region—Part II: Automated proofs”, IEEE Transactions on Information Theory, vol. 68, no. 1, pp.

153-177, January 2022.

• Chapter 4 is a reprint of the material as it appears in: S. Congero and K. Zeger, “The 3/4 Conjecture for

fix-free codes with at most three distinct codeword lengths”, IEEE Transactions on Information Theory, vol.

69, no. 3, pp. 1452-1485, March 2023.

• Chapter 5 is a reprint of the material as it appears in: S. Congero and K. Zeger, “Characterizations of minimal

expected length codes”, submitted to IEEE Transactions on Information Theory, November 13, 2023.

• Chapter 6 is a reprint of the material as it appears in: S. Congero and K. Zeger, “Competitive advantage of

Huffman and Shannon-Fano codes”, submitted to IEEE Transactions on Information Theory, November 13,

2023.

x

VITA

2016 Bachelor of Science in Electrical Engineering, Minor in Music Recording,

University of Southern California

2017–2023 Teaching Assistant, University of California San Diego

2022 Associate Instructor, University of California San Diego

2023 Master of Science in Electrical Engineering (Communication Theory & Systems),

University of California San Diego

2023 Doctor of Philosophy in Electrical Engineering (Communication Theory & Systems),

University of California San Diego

PUBLICATIONS

S. Congero and K. Zeger, “Hexagonal run-length zero capacity region—Part I: Analytical proofs”, IEEE Transac-

tions on Information Theory, vol. 68, no. 1, pp. 130-152, January 2022.

S. Congero and K. Zeger, “Hexagonal run-length zero capacity region—Part II: Automated proofs”, IEEE Trans-

actions on Information Theory, vol. 68, no. 1, pp. 153-177, January 2022.

S. Congero and K. Zeger, “The 3/4 Conjecture for fix-free codes with at most three distinct codeword lengths”,

IEEE Transactions on Information Theory, vol. 69, no. 3, pp. 1452-1485, March 2023.

S. Congero and K. Zeger, “Characterizations of minimal expected length codes”, submitted to IEEE Transactions

on Information Theory, November 13, 2023.

S. Congero and K. Zeger, “Competitive advantage of Huffman and Shannon-Fano codes”, submitted to IEEE

Transactions on Information Theory, November 13, 2023.

xi

ABSTRACT OF THE DISSERTATION

Topics in Lossless Source and Channel Coding

by

Spencer William Congero

Doctor of Philosophy in Electrical Engineering

(Communication Theory & Systems)

University of California San Diego, 2023

Professor Kenneth Zeger, Chair

This dissertation studies several topics in lossless source and channel coding, including: hexagonal run-

length-limited constraints; fix-free codes; characterizations of minimal expected length codes; and the competitive

advantage of prefix codes.

xii

Chapter 1

Introduction

In 1948, Claude Shannon presented a theoretical foundation for modern communication and information

theory in his landmark paper “A Mathematical Theory of Communication” [5]. To set the stage for his results,

Shannon included the now well-known “Figure 1” (reproduced here as Figure 1.1), which depicts a block diagram

of a general communication system. Over the past 75 years, researchers have drawn on the various fields of

mathematics, electrical engineering, computer science, and more, in an effort to better understand each aspect of

this diagram.

Figure 1.1. Claude Shannon’s “Figure 1”.

The main idea of Figure 1.1 is that a message (e.g., text or audio) enters on the left from an “Information

Source”, moves through the diagram, and exits on the right at the “Destination”. On its journey, the information

is encoded and transmitted across a channel by the “Transmitter”, and then decoded by the “Receiver”. The

transmitted signal could be an electromagnetic wave, a voltage wave, a light wave, a sound wave, or even a hand

wave seen across a crowded room. In these and other cases the source and destination points for the message’s

journey are separated by distance, but in other cases these points may be separated by time, such as when a user

writes information to a storage device and then accesses that information sometime later. However, in either case,

1

a “Noise Source” may introduce errors in the signal, causing the received signal to differ from what was sent by

the transmitter. Shannon’s work was aimed at better understanding the extent to which reliable (i.e., error-free)

communication of a message could be possible across such a noisy channel.

Two of Shannon’s most fundamental results are known as the “source coding theorem” and the “channel

coding theorem”. In the source coding theorem, Shannon expresses the limit of compression during the encoding

of an information source quantitatively as the entropy, which is an asymptotically attainable lower bound on the

average length of any (unambiguous) code for the source. Then, in the channel coding theorem, Shannon expresses

the limit of communication of such an encoded source over a noisy channel quantitatively as the channel capacity,

which is an asymptotically attainable upper bound on the rate of reliable communication achievable over the chan-

nel. Prior to Shannon’s work, it was not known, perhaps not even believed, that efficient reliable communication

was possible over a channel in the presence of noise, since at first glance it would seem that any effort to correct for

errors in communication would itself be subject to errors, and so on. After Shannon’s work, however, a roadmap

had been laid identifying the various aspects of communication whose understanding would help establish the

successful global communication system we enjoy today.

When communicating a message through a system, in many cases it is crucial that the source coding

operation is invertible, i.e., the original data can be recovered exactly from the encoded data, such as in banking,

email, or other textual data applications. Such a situation is an example of lossless source coding, since there is no

loss of data incurred by the source coding process. Examples of lossless source coding in data compression include

the ZIP file format or lossless audio codecs, such as FLAC. However, in other cases, such as in image, video, or

speech applications, some loss of data can be tolerated, and in exchange superior compression can be achieved. A

common example is the JPEG file format for images, which is typically not invertible (i.e., it loses some original

image data), but allows for greater compression than other lossless formats while maintaining a high image quality,

at least according to a human observer. Such situations are referred to as lossy.

Similarly, communications channels can be described as either lossy or lossless. In the lossy case, there is

a noise source in the channel, such as interference from buildings and other transmitters in wireless communication

or corruption from physical components in wired communication, which induces errors in the transmitted signal.

To combat these errors, the signal is transformed into a longer signal using an error-correcting code, which can

help the receiver detect if errors have occurred and correct them, at the cost of lowering the communication rate.

In contrast, there are also lossless channels that have no noise source, but instead impose constraints on what

messages can be transmitted. An example is a theoretical model of flash memory storage, where restrictions are

imposed on the arrays of quantized voltage levels that can be stored, since these restrictions can help prevent

errors in real-world devices. The problems in coding for such “constrained channels” are in determining how to

2

transform an encoded data source into a signal that is accepted by the channel, and in quantifying the efficiency of

this transformation.

This dissertation focus exclusively on the lossless cases of both source coding and channel coding. The

following two sections briefly describe the specific areas studied in constrained (lossless) channel coding (Chapters

2 and 3), and in lossless source coding (Chapters 4, 5, and 6).

1.1 Constrained channel coding

Chapters 2 and 3 focus on a constrained channel that satisfies the hexagonal (d,k) run-length-limited

constraint. In particular, the codewords of the channel are binary labelings of a two-dimensional hexagonal lattice,

and in each of the three diagonal directions of the lattice the following constraint must be satisfied: any two cells

labeled 1 must be separated by at least d zeros, and a consecutive run of more than k zeros can never appear. As an

example, Figure 1.2 shows a labeling of a portion of a hexagonal lattice that satisfies the (1, 4) constraint, where

every cell labeled 1 is colored red.

Figure 1.2. Labeling that satisfies the hexagonal (1, 4) constraint.

A fundamental problem is to characterize for which (d, k) pairs the channel has a positive capacity, which

in this setting means that the number of labelings of a portion of the hexagonal lattice with n cells that satisfy the

constraint increases exponentially in n. Thus the problem is combinatorial in nature, and various special cases

have been studied across a wide variety of math, physics, and engineering disciplines. For example, the (1,∞)

constraint has connections to the study of Ising models in statistical mechanics, and even to the problem of placing

non-attacking semiqueens (i.e., queens that cannot move along northwest-southeast diagonals) on a chessboard.

In Chapter 2, we show that the channels corresponding to a certain infinite class of (d, k) constraints

have zero capacity, which essentially means that these constraints are too restrictive to allow for efficient coding

of information in the long term. Chapter 2 is a reprint of the material as it appears in: S. Congero and K. Zeger,

“Hexagonal run-length zero capacity region—Part I: Analytical proofs”, IEEE Transactions on Information Theory,

vol. 68, no. 1, pp. 130-152, January 2022.

3

In Chapter 3, we show via computer-assisted proofs that channels satisfying certain other (d, k) con-

straints have either zero or positive capacity. The proofs have an analytical component that reduces their verifica-

tion to a well-defined but massive computational task, which we then employ a supercomputer to perform. Chapter

3 is a reprint of the material as it appears in: S. Congero and K. Zeger, “Hexagonal run-length zero capacity

region—Part II: Automated Proofs”, IEEE Transactions on Information Theory, vol. 68, no. 1, pp. 153-177,

January 2022.

1.2 Lossless source coding

1.2.1 Fix-free codes

A binary code is uniquely decodable if any binary string can be factored in at most one way by the words

of the code. Code C1 in Figure 1.3 is uniquely decodable, since any binary string of length at most three can be

written in at most one way by codewords in C1, and the first four bits of any other binary string suffice to determine

uniquely the codeword of C1 that begins all factorizations of the string. Unique decodability is desirable because

there is no ambiguity when decoding a given binary string; if the string is able to be decoded, then it was decoded

correctly. However, a disadvantage of uniquely decodable codes is that a decoder may need to see an arbitrarily

long portion of the binary string to be able to determine even the first codeword that was transmitted.

In contrast, a binary string encoded via a prefix code, which is a uniquely decodable code in which no

codeword is a prefix of any other codeword, can be processed by simply reading left-to-right, and decoding each

codeword immediately as soon as it has been read. For this reason, prefix codes, such as code C2 in Figure 1.3,

are sometimes called instantaneous codes. The English language is not a prefix code, since, for example, “in” and

“inform” are proper prefixes of “information”.

Similarly, a code is a suffix code if no codeword is a suffix of any other codeword. A code that is both a

prefix code and a suffix code is called fix-free, and the code C3 in Figure 1.3 is an example. Fix-free codes have

the benefit that they can be decoded instantaneously by reading either left-to-right or right-to-left. This property

has both efficiency and error-correcting advantages, which has led fix-free codes to be included in the H.263+ and

MPEG-4 video coding standards.

Code C1 Code C2 Code C3

0 0 0
01 10 11
110 110 101

Figure 1.3. Examples of uniquely decodable codes. Code C1 is neither prefix nor suffix, code C2 is prefix but not

suffix, and code C3 is both prefix and suffix, i.e., fix-free.

4

Chapter 4 studies fix-free codes, specifically in the context of the well-known 3/4 Conjecture, which was

originally proposed in 1996 by Ahlswede, Balkenhol, and Khachatrian [1]. The 3/4 Conjecture states that for any

sequence of positive integers satisfying a certain condition, there exists a fix-free code whose codeword lengths are

given by that sequence. We prove a special case of this conjecture that contains an infinite class of length sequences,

and the proof technique, reminiscent of Shannon’s proof of the channel coding theorem, involves selecting fix-free

codes at random and showing that on average certain beneficial properties hold. Consequently, we conclude that

there must exist at least one specific code with these properties, and we then augment this code to show the

existence of the fix-free code we desired. Chapter 4 is a reprint of the material as it appears in: S. Congero and K.

Zeger, “The 3/4 Conjecture for fix-free codes with at most three distinct codeword lengths”, IEEE Transactions on

Information Theory, vol. 69, no. 3, pp. 1452-1485, March 2023.

1.2.2 Minimal expected length codes

In Chapter 5 we address the topic of prefix codes that achieve the minimum expected codeword length

among all prefix codes for a given probabilistic source. In 1952, Huffman [4] published an algorithm in which a

binary tree is constructed by an iterative process, where initially all source symbols are assigned to leaves, and at

each step of the algorithm two nodes of smallest probability are combined into a supernode whose probability is

their sum. At the conclusion of the algorithm, a binary tree is produced, and after labeling all left branches with ‘0’

and all right branches with ‘1’, a prefix code is defined by associating to each leaf symbol the binary word created

by reading the branch labels along the path from the root to the leaf. The code C1 with codewords 0, 10, 110,

and 111, whose code tree is shown in Figure 1.4 in the next subsection, is an example of a code obtained by this

procedure applied to a source with symbol probabilities 0.4, 0.3, 0.2, and 0.1.

A remarkable fact is that any prefix code obtained by the Huffman algorithm, referred to as a “Huffman

code”, achieves the minimum expected length. However, due to the iterative nature of the Huffman algorithm, and

the non-linear minimizing operation performed at each step, it can be difficult to analyze the codes that result. In

1978, Gallager [3] provided an interesting necessary and sufficient condition for a prefix code to be a Huffman

code, which he called the “sibling property”. This property is very useful for proving results about Huffman codes,

and we exploit it in multiple places in Chapter 5.

It turns out that the class of expected length minimal prefix codes is strictly larger than the class of

Huffman codes for most probabilistic sources, but no analogous necessary and sufficient condition for a prefix

code to achieve the minimum expected length has appeared in the literature. In Chapter 5, we provide such a

condition by introducing a property called strong monotonicity, and proving that a prefix code is optimal if and

only if it is “complete” and strongly monotone. We also study various operations on binary code trees that involve

5

“swapping” two nodes (and their subtrees) in the tree, and characterize relationships between minimal expected

length prefix codes and Huffman codes in terms of these node swaps. Chapter 5 is a reprint of the material as it

appears in: S. Congero and K. Zeger, “Characterizations of minimal expected length codes”, submitted to IEEE

Transactions on Information Theory, November 13, 2023.

1.2.3 Competitive advantage

In 1991, Cover [2] introduced the notion of “competitive optimality” for a prefix code, which contrasts

the more standard concept of expected length minimality. If a prefix code is expected length minimal, then it will

eventually produce the shortest encodings of longer and longer sequences of source symbols. In this way, expected

length optimality is a measure of performance of a prefix code in the long term. In contrast, if a prefix code

is competitively optimal, then, when compared to another prefix code, the first prefix code more often produces

a shorter codeword for a randomly chosen source symbol. In this way, competitive optimality is a measure of

performance of a prefix code in the short term.

Chapter 6 presents results related to the “competitive advantage” of one prefix code over another, which

refines the notion of competitive optimality. Specifically, we define the competitive advantage of a prefix code C

over another prefix code C′ as the probability that C produces a shorter codeword than C′, minus the probability

that C′ produces a shorter codeword than C. A prefix code is competitively optimal if it has a non-negative

competitive advantage over every other prefix code for the source.

Code tree for C1 Code tree for C2 Code tree for C3

1

0.4 0.6

0.3 0.3

0.2 0.1

0 1

0 1

0 1

a

b

c d

1

0.3 0.7

0.2 0.5

0.4 0.1

0 1

0 1

0 1

b

c

a d

1

0.7

0.4 0.3

0.3

0.2 0.1

0

0 1

1

0 1

a b c d

Figure 1.4. Three code trees for a source of size 4. Codes C1, C2, and C3 form a cycle where each code has a

positive competitive advantage over the previous code.

6

Figure 1.4 depicts the code trees of three prefix codes for a source with symbols a, b, c, and d, and

probabilities 0.4, 0.3, 0.2, and 0.1, respectively. Comparing codes C1 and C2, we see that C1 produces a shorter

codeword for the symbol a (0 vs. 110), but C2 produces a shorter codeword for the symbols b and c (0 vs. 10,

and 10 vs. 110, respectively). Therefore, the competitive advantage of C2 over C1 is P (b) + P (c) − P (a) =

0.3+0.2− 0.4 = 0.1. Since this competitive advantage is positive, we say C2 strictly competitively dominates C1.

Similarly, one can verify that C3 strictly competitively dominates C2, and that C1 strictly competitively dominates

C3. Thus these three codes form a cycle, where each code “beats” the previous code in the cycle in the competitive

advantage sense, similar to how sports competitors can enter into a three-way standoff where each beats another

cyclically in a series of competitions. This situation contrasts that of expected length minimality, in which Huffman

codes (such as the code C1) are never “beaten” by any other prefix code for the same source.

In Chapter 6 we provide several results related to the competitive advantage of prefix codes, including

Huffman codes and other notable prefix codes called “Shannon-Fano” codes. Our results include characterizing for

which sources competitively optimal codes exist as the source size grows to infinity, and quantifying the maximum

possible competitive advantage of a prefix code over a Huffman code for the same source. Chapter 6 is a reprint

of the material as it appears in: S. Congero and K. Zeger, “Competitive advantage of Huffman and Shannon-Fano

codes”, submitted to IEEE Transactions on Information Theory, November 13, 2023.

7

References

[1] R. Ahlswede, B. Balkenhol and L. Khachatrian, “Some properties of fix-free codes”, 1st Intas Seminar on

Coding Theory and Combinatorics, Thahkadzor, Armenia, pp. 20 – 33, 1996.

[2] T. M. Cover, “On the competitive optimality of Huffman codes”, IEEE Transactions on Information Theory,

vol. 37, no. , pp. 172 – 174, January 1991.

[3] R. G. Gallager, “Variations on a theme by Huffman”, IEEE Transactions on Information Theory, vol. 24, no.

6, pp. 668 – 8674, November 1978.

[4] D. A. Huffman, “A method for the construction of minimum-redundancy codes”, Proceedings of the IRE, vol.

40, no. 9, pp. 1098 – 1101, September 1952.

[5] C. E. Shannon, “A mathematical theory of communication”, Bell System Technical Journal, vol. 27, no. 4, pp.

623 – 666, October 1948.

8

Chapter 2

Hexagonal Run-Length Zero Capacity Region,

Part I: Analytical Proofs

Abstract

The zero capacity region for hexagonal (d, k) run-length constraints is known for many, but not all, d and

k. The pairs (d, k) for which it has been unproven whether the capacity is zero or positive consist of: (i) k = d+2

when d ≥ 2; (ii) k = d+3 when d ≥ 1; (iii) k = d+4 when either d = 4 or d is odd and d ≥ 3; and (iv) k = d+5

when d = 4. Here, we prove that the capacity is zero for all of case (i), and for case (ii) whenever d ≥ 7. The

method used in this paper is to reduce an infinite search space of valid labelings to a finite set of configurations

that we exhaustively examine using backtracking. In Part II of this two-part series, we use automated procedures

to prove that the capacity is zero in case (i) when 2 ≤ d ≤ 9, in case (ii) when 3 ≤ d ≤ 11, and in case (iii) when

d ∈ {4, 5, 7, 9}, and that the capacity is positive in case (ii) when d ∈ {1, 2}, in case (iii) when d = 3, and in case

(iv). Thus, the only remaining unknown cases are now when k = d+ 4, for any odd d ≥ 11.

9

2.1 Introduction

A one-dimensional run-length constraint imposes both lower and upper bounds on the number of zeros

that occur between consecutive ones in a binary string. Specifically, if d and k are nonnegative integers, or ∞, then

a binary string is said to satisfy a (d, k) constraint if every consecutive pair of ones in the string has at least d zeros

between them and the string never has more than k zeros in a row. It is known that if k > d, then the number of

(one-dimensional) N -bit binary strings that satisfy the (d, k) constraint grows exponentially in N (e.g., [14]) and

that the logarithm (base two) of that number, divided by N , approaches a positive limit as N grows to infinity. This

limit is known as the “capacity” of the constraint.

The concepts of (d, k) constraints and capacities have been generalized to two dimensions, where the

one-dimensional (d, k) constraint is imposed both vertically and horizontally. Sometimes these two-dimensional

constraints are referred to as “rectangular constraints”. To determine the capacity of a rectangular constraint, one

counts the number of binary labelings of an N × N square that satisfy the constraint, takes its logarithm, and

then divides by the area N2 of the square. It is known that this quantity approaches a limit Crect(d, k) (called the

“capacity” again) as N grows to infinity (e.g., [18]).1

The zero capacity region for a particular type of constraint is the set of all pairs (d, k) for which the (d, k)

capacity equals zero. If a particular constraint has zero capacity, then the number of valid labelings of a region

does not grow exponentially fast in terms of the volume (e.g., length for 1 dimension, area for 2 dimensions, etc.)

of the region.

During 1998-2013, various studies of the two-dimensional rectangular capacity were performed for the

particular case Crect(1,∞) ≈ 0.587891162 by Calkin and Wilf [5], Weeks and Blahut [34], Baxter [3], Marcus

and Pavlov [23,24,28], and in [26]. This rectangular (1,∞) constraint is sometimes referred to as the “hard square

model” by physicists [2], and its capacity is known to equal the rectangular capacity Crect(0, 1).

For two-dimensional rectangular (d, k) constraints, the zero capacity region was completely characterized

in 1999 in [18], where it was shown that the capacity satisfies Crect(d, k) > 0 if and only if k ≥ d + 2, when

d ≥ 1 (i.e., Crect(d, k) = 0 when k = d + 1). It is also known that Crect(0, k) > 0 and Crect(k,∞) > 0 for

all k ≥ 1. Bounds on the two-dimensional rectangular (d, k) capacity were given in [18], by Sharov and Roth

in [31], and were later improved and generalized to higher dimensions by Schwartz and Vardy in [30]. Schwartz

and Bruck [29] introduced an interesting rigorous method for obtaining the capacity of general two-dimensional

constrained systems, although it is not presently known how to effectively apply it to the hexagonal (d, k) case.

In 2016, Elishco, Meyerovitch, and Schwartz [10] introduced the notion of “semiconstrained systems”, in

1Or, equivalently, one may count the number of N ×M rectangles satisfying the constraint, take its logarithm, divide by the area NM , and

then let both N and M tend to infinity in any manner.

10

which certain prescribed patterns are forbidden to appear more often than particular designated frequencies. These

systems generalize (d, k) constrained systems, since (d, k) constraints require that the forbidden patterns (i.e.,

patterns violating the d or k constraints) must never occur.2 Bounds and asymptotics for the capacity of semicon-

strained systems were obtained in [10], and also, in 2018, by the same authors in [11], and for the multidimensional

case in [12].

Other two-dimensional constraints have been studied in the literature as well. In 1961, Kasteleyn [17]

counted the asymptotic number of arrangements of 1 × 2 tiles that cover a square lattice. In 2006, Forchhammer

and Laursen [13] estimated the capacity of a two-dimensional binary code forbidding “isolated bits”, i.e., a code

where each 0 and 1 cannot be surrounded entirely by bits of the opposite parity. In 2010, Louidor and Marcus [21]

determined the capacity of two different two-dimensional constrained systems, namely “charge constrained” and

“odd constrained” systems.

Also, in 1961, Wang [32] considered finite sets of certain equal-sized squares, each of whose sides are

labeled by one of a given set of colors. These squares later became known as “Wang tiles”. Such Wang tiles are

used to tile the plane under the constraint that adjacent tiles (horizontally and vertically) share a common color

where they meet. Durand, Gamard, and Grandjean [9] in 2014, and Chen, Chen, Hu, and Lin [7] in 2016, counted

the number of such Wang tilings and computed a quantity they called the “entropy”, or alternatively the “spatial

entropy”, which is analogous to the capacity calculation described above. The authors in [7] used the phrase

“spatial chaos” to describe when the spatial entropy is positive, and gave conditions on when the spatial entropy

is zero. In [9], a specific aperiodic tile set (i.e., a tile set such that every tiling of the plane by tiles from this set

is aperiodic) was shown to have positive spatial entropy. However, there is no known direct connection between

two-dimensional (d, k) constraints and Wang tilings.

We now focus on the family of two-dimensional constraints studied in this paper. A “hexagonal” (d, k)

constraint is a different type of two-dimensional run-length constraint, that imposes one-dimensional (d, k) con-

straints on a hexagonal lattice. Each hexagon in such a lattice has six neighbors, and thus three axes run through

it. The one-dimensional constraint must be satisfied along each of the three axes for each hexagon in the lattice.

An equivalent way to view the hexagonal constraint on a rectangular lattice is to impose the (d, k) constraint both

horizontally and vertically, and also along one of the two diagonal directions (we will use the northeast-southwest

direction, but refer to it as the “northeast diagonal”) [2, p. 409] (see Figure 2.1). The same diagonal constraint

direction is chosen for all squares in the lattice.

The hexagonal (d, k) capacity Chex(d, k) is known to be positive for certain pairs (d, k). In fact, if

Chex(d, k) > 0, then it immediately follows that Chex(d
′, k′) > 0 whenever either d′ < d or k′ > k (or both),

2The (d, k) constrained systems were called “fully constrained” systems in [10].

11

−−−−−−−−→

Figure 2.1. Converting a hexagonal lattice into a square lattice using northeast diagonals.

since the constraints weaken in either instance. Positive lower bounds on the hexagonal (d, k) capacity were pre-

viously proven for d = 0, and for all values of d ≥ 5 for sufficiently large k (for example, k = d + 5 suffices),

and now also for 1 ≤ d ≤ 4 with our results in Part II. In what follows, we will summarize, for each d > 0, the

smallest known k such that Chex(d, k) > 0.

The only exactly known non-zero capacity of a hexagonal (d, k) constraint is for the case (1,∞), which

is known in the physics literature as the “hard hexagon model”. As with the rectangular constraint, it is easy to

show that the hexagonal (0, 1) and (1,∞) capacities are the same, by reversing the roles of 0s and 1s. The problem

of counting the number of patterns in a bounded area that satisfy the hexagonal (1,∞) constraint was considered

in the context of Ising models in physics, as early as in 1944 by Onsager [27], and in 1950 by Wannier [33]. An

equivalent problem is to find the number of configurations of non-attacking kings on a chessboard with regular

hexagonal cells.

In 1978, Metcalf and Yang [25] conjectured that the capacity of the hexagonal (1,∞) constraint was

log2 e
1/3 ≈ 0.48090, but this was disproven in 1980 by Baxter and Tsang [4], who obtained a slightly more

accurate estimate.

Baxter [1, 2], later in 1980, and then Joyce [15, 16] in 1988, performed numerous intricate calculations,

which when combined determine the exact capacity3 of the hexagonal (1,∞) constraint (the approximate value is

3The exact value is remarkably given by Baxter and Joyce as the logarithm, base two, of the product

4−135/411−5/12c−2

·

(

1−
√
1− c+

√

2 + c+ 2
√

1 + c+ c2

)2

·

(

−1−
√
1− c+

√

2 + c+ 2
√

1 + c+ c2

)2

·

(

√
1− a+

√

2 + a + 2
√

1 + a+ a2

)

−1/2

where a = − 124

363
· 111/3 , b = 2501

11979
· 331/2, and c =

(

1

4
+ 3

8
a
(

(b + 1)1/3 − (b − 1)1/3
))1/3

.

12

Chex(1,∞) = Chex(0, 1) ≈ 0.4807676, which is fairly close to the incorrect conjecture of Metcalf and Yang). As

a result, one deduces that Chex(0, k) > 0 for all k ≥ 1.

In 2001, using the technique of finding two distinct tileable squares, Censor and Etzion [6] proved that

Chex(d, d + 4) > 0 for all even d ≥ 6. An immediate consequence is that Chex(d, d + 5) > 0 for all odd d ≥ 5,

since the hexagonal (d, d + 5) constraint is weaker than the (d+ 1, d+ 5) constraint. In Part II of our papers, we

present a tiling algorithm that automatically generates distinct tileable square labelings that demonstrate positive

hexagonal (d, k) capacities for certain pairs (d, k). In particular, we prove that the capacities Chex(1, 4), Chex(2, 5),

Chex(3, 7), and Chex(4, 9) are all positive.

Also, we note that the positive hexagonal (d, k) capacities obtained in [6] were for the case of k = d+ 4

when d is even and d ≥ 6, but the proof technique does not apply to odd d ≥ 5. In Part II, in contrast to even

d ≥ 6, we show that some of the open cases with k = d+ 4 when d is odd have zero capacity.

We next summarize the pairs (d, k) for which it was previously known that Chex(d, k) = 0. It suffices,

for each d, to give the largest k that makes Chex(d, k) = 0. Since each rectangular (d, k) constraint is weaker than

the corresponding hexagonal (d, k) constraint, it immediately follows that Chex(d, k) ≤ Crect(d, k) for all d and k.

Thus, in particular, Chex(d, k) = 0 at least whenever Crect(d, k) = 0, namely when k = d + 1 ≥ 2. A stronger

result was stated in [19], namely that Chex(d, d+ 2) = 0 for all d ≥ 1, but no proof has been published. We prove

this result in Section 2.4 in Theorem 2.4.1 for d ≥ 3, and in Theorem 2.4.3 for d ∈ {1, 2}. In our Part II, it is also

implied by the Forbidden String Algorithm for the cases d = 3 and d = 5, and by the Constant Position Algorithm

when 1 ≤ d ≤ 9. Even though for d ≥ 7 the k = d + 2 case is implied by the stronger result we prove for the

k = d + 3 case, the proof of Theorem 2.4.1 provides a relatively less complex introduction to the technique used

in the stronger case. We note that the proofs we provide here of Chex(d, d + 2) = 0 when 2 ≤ d ≤ 6 were neither

in the previous literature, nor implied by our k = d+ 3 results in this paper.

In [20], it was stated that Chex(d, d + 3) = 0 when d ∈ {3, 4, 5, 7, 9, 11}. In [6], Censor and Etzion con-

sidered an octagonal (d, k) constraint, which assumes the hexagonal (d, k) constraint plus an additional constraint

along the northwest diagonal, and proved that the octagonal (d, k) capacity is zero whenever k = d+3 and d > 0.

However, they did not give any results about whether the hexagonal (d, k) capacity is zero when k = d+3, but did

pose it as an open question, which partially motivated our present paper. In summary, there have been an infinite

number of cases for k = d+ 3, prior to our present paper, where it was unknown if the hexagonal capacity is zero.

We answer this open question in completion here.

Specifically, whether Chex(d, k) is positive or zero has been unproven4 for the following cases:

(i) k = d+ 2 when d ≥ 2

4Some of these cases were stated in [19] and [20] and are included in Part II for archival purposes.

13

(ii) k = d+ 3 when d ≥ 1

(iii) k = d+ 4 when either d = 4 or d is odd and d ≥ 3

(iv) k = d+ 5 when d = 4.

Among these cases, we prove here (in Theorem 2.4.1 and Theorem 2.4.3) that the hexagonal capacity equals zero

in all of case (i), and (in Theorem 2.2.1) in case (ii) for all d ≥ 7. In Part II, we prove that the capacity is zero in

case (i) when 2 ≤ d ≤ 9, in case (ii) when 3 ≤ d ≤ 11, and in case (iii) when d ∈ {4, 5, 7, 9}, and that the capacity

is positive in case (ii) when d ∈ {1, 2}, in case (iii) when d = 3, and in case (iv).

Table 2.1 summarizes the present knowledge of the zero capacity region when d is less than 19 and k is

less than 25, including the results we present in Parts I and II of these papers. The results from Part I are shown

surrounded by squares and the results from Part II are shown surrounded by circles. We note that four of the results

turn out to be produced by both the methods in Part I and Part II, and we denote them in the table being surrounded

by both a circle and a square. Proofs of the results in Part I or Part II have not previously appeared in the literature.

We note that although we provide here the first published proofs of the cases where k = d + 2, those satisfying

d ≥ 7 are not listed as new results in the table, since they directly follow from our stronger (but more complex)

k = d+ 3 proof,

The four cases shown in our Part II are denoted by “+” signs inside circles. For any fixed d, the leftmost

“+” in row d of Table 2.1 represents the smallest k for which it is known that the hexagonal (d, k) capacity is

positive. Every “+” in the table represents a positive lower bound, rather than an exact capacity, except for the

(0, 1) case. Exact values appear difficult to obtain.

In contrast to proving that a capacity is positive, demonstrating that a capacity is zero requires new tech-

niques, which can be very complex. One technique was used in [18] to prove that the rectangular (d, d+1) capacity

is zero for all d ≥ 1. The technique showed that, asymptotically, the values of the bits stored in a linear amount of

space of an N ×N square determine the values of the bits in the remaining quadratic amount space in the square.

In other words, the number of different valid labelings of such squares is 2O(N), which implies the constraint has

zero capacity. In contrast, for a constraint to have positive capacity, there would need to be 2Ω(N2) different valid

labelings of an N × N square. The same general goal, although with a significantly different approach, will be

used in the present paper to show that certain hexagonal constraints have zero capacity.

Specifically, our approach in Part I to proving a particular hexagonal (d, k) capacity is zero is to show that

for large enough squares of side length N , with a fixed labeling of a thin outer “frame” of width k+1, at most one

valid labeling of the square’s interior is possible. This is accomplished by means of assuming, to the contrary, that

there exist at least two valid square labelings for a given frame labeling, and then drawing (rather laborious) logical

inferences which lead to a contradiction. A series of assumptions is made using a manual backtracking method,

14

Table 2.1. Summary of the known hexagonal (d, k) zero capacity region for small d and k. Zero and positive

capacities are denoted by “0” and “+”, respectively. The zeros in squares denote our contributions in the present

paper (Part I), while the circled symbols are from our Part II [8], and those with both squares and circles occurred

in both Parts I and II. The question marks denote remaining unsolved cases.

d\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 0 +

1 0 0 0 +

2 0 0 00 +

3 0 0 00 0 + + + + + + + + + + + + + + + + + +

4 0 0 00 0 0 + + + + + + + + + + + + + + + +

5 0 0 00 0 0 + + + + + + + + + + + + + + +

6 0 0 00 0 + + + + + + + + + + + + + + +

7 0 0 0 00 0 + + + + + + + + + + + + +

8 0 0 0 00 + + + + + + + + + + + + +

9 0 0 0 00 0 + + + + + + + + + + +

10 0 0 0 00 + + + + + + + + + + +

11 0 0 0 00 ? + + + + + + + + +

12 0 0 0 0 + + + + + + + + +

13 0 0 0 0 ? + + + + + + +

14 0 0 0 0 + + + + + + +

15 0 0 0 0 ? + + + + +

16 0 0 0 0 + + + + +

17 0 0 0 0 ? + + +

18 0 0 0 0 + + +

which ultimately leads to the desired contradiction. This approach becomes very complex, depending on the level

of pushing and popping on the stack of assumptions. Then, since an N × N square’s frame contains O(N) bit

locations, the total number of distinct labelings of the square is 2O(N), instead of the required 2Ω(N2) for positive

capacity, which proves the capacity is zero.

2.2 Preliminaries

A square is an N × N two-dimensional array, for some positive integer N . A labeling of a subset of a

square assigns a 0 or 1 to each element of the subset. We will refer to horizontal, vertical, and northeast diagonal

lines in a square as rows, columns, and diagonals, respectively, or more generally as files. In an N ×N square, all

rows and columns have length N , whereas diagonals can have lengths ranging from 1 (at two of the corners) to N .

For any positive integer δ, the frame of width δ of a square S is the union of the first δ and last δ rows and the first

δ and last δ columns of S (see Figure 2.2).

15

Figure 2.2. Frame of width δ in an N ×N square.

A labeling l on a square S is said to satisfy the hexagonal (d, k) constraint (or is valid) if in every file

there are at least d zeros between any two ones, and any run of 0s has length at most k.

The capacity of the hexagonal (d, k) constraint is defined as

Chex(d, k) = lim
N→∞

log2 |L|

N2
,

where L is the set of all labelings of an N ×N square that satisfy the hexagonal (d, k) constraint. The capacity is

known to exist for all d, k (e.g., [18]). If Chex(d, k) > 0, then the number of valid labelings is lower bounded as

|L| = 2Ω(N2).

The main result (proven in Section 2.5) of this paper is that Chex(d, d+ 3) = 0 whenever d ≥ 3, as stated

in the following theorem.

Theorem 2.2.1. The capacity of the hexagonal (d, k) constraint is zero whenever d ≥ 3 and k = d+ 3.

It has been known [20] that Chex(3, 6) = Chex(4, 7) = Chex(5, 8) = 0, and it is shown in our Part II that

Chex(6, 9) = 0. We therefore restrict attention to d ≥ 7 in the proof of Theorem 2.2.1.

An overview of the proof of this result is given in Section 2.3.1, and the actual proof is given in Section 2.5.

In Section 2.4, as a preview to Section 2.5, an illustration of the proof technique is given for the simpler case of

the (d, d+ 2) constraint.

Lemma 2.2.2. For any nonnegative integers d, k, and δ, if the capacity of the hexagonal (d, k) constraint is positive,

then there exists a sufficiently large square on which some pair of distinct labelings satisfying the hexagonal (d, k)

constraint agree on the square’s frame of width δ.

16

Proof. Let L be the set of valid labelings of an N × N square and suppose the capacity is positive; then |L| =

2Ω(N2). Since the frame’s area is 4δ(N − δ), the number of valid labelings of the frame is at most 24δ(N−δ), which

grows more slowly than the number of valid labelings of the entire N ×N square. Thus for large enough N , there

must exist two distinct labelings of an N ×N square that agree on the frame. �

Let r and b be labelings of a square S. The disagreement set of r and b is

D0 = {(i, j) ∈ S : r(i, j) 6= b(i, j)}.

For each point (i, j) in the disagreement set of labelings r and b, we say that (i, j) is colored red if r(i, j) = 1 and

is colored black if b(i, j) = 1.

For any subset D of a square and any file f , if X ∈ f ∩D, then we say X is a point of f in D. If X and

Y are points of a file f , then X is said to be before Y if X is to the left (respectively, below, or southwest) of Y , if

f is a row (respectively, a column, or diagonal). If D is a subset of the disagreement set, then the first element of

f in D is the minimum element for this ordering among points in f ∩D.

For any subset of the disagreement set, we define a coordinate system whose origin (0, 0) is the first

element in the bottommost row, and assume, without loss of generality, that the origin is colored black. A disagree-

ment diagram is an illustration showing the color of each point in a subset of the disagreement set. The files in a

disagreement diagram are numbered as shown in Figure 2.3. The leftmost point in the bottommost nonempty row

of a disagreement subset will be referred to as the lowest-left point of the subset.

Column

Row 1

Row 0

0 1Diagonal

0 1

Figure 2.3. Illustration of file indexing in disagreement diagrams. The first disagreement point in the bottommost

row is colored black and defined to be located at the origin (0, 0), and each file is indexed relative to this origin

point. In particular, rows and columns increase in the north and east directions, respectively, and diagonals increase

in the southeast direction (i.e., the diagonal containing a point (i, j) is indexed as i−j). For example, the red square

in the figure is in row 0, column 3, and diagonal 3.

17

2.3 Description of proof technique

2.3.1 Overview

For the remainder of the paper, we set k = d + 3. Our goal is to prove that the hexagonal (d, k) capacity

equals zero. We will assume, to the contrary, that Chex(d, k) > 0, and attempt to derive a contradiction.

Let N be a positive integer and let r and b be any two distinct valid labelings of an N×N square, such that

the labelings agree on the square’s frame of width (k + 1). Such labelings are guaranteed to exist for sufficiently

large N by Lemma 2.2.2. The value of N could conceivably be arbitrarily large, and we know of no analytical

upper bound on the size of the square being labeled.

Our goal will be to show that, in fact, r and b cannot be distinct valid labelings, due to conflicts that

would arise if they were. Once established, this fact implies that a valid labeling of an N ×N square is completely

determined by the values of the labeling on the square’s frame of width (k+1). Thus, the number of possible valid

labelings of an N ×N square is limited to the number of possible valid labelings of the square’s frame, which is

of order 2O(N). This quantity is too small to induce a positive capacity, since 2Ω(N2) is needed.

In order to achieve our goal, we analyze the disagreement set of the two hypothetically different valid

labelings of the square, and deduce that no such disagreement set can actually exist. As a first step toward this

result, we examine the leftmost point in the bottommost row of the disagreement set, arbitrarily color it black, place

it at the origin in a coordinate system, and proceed to make a series of additional assumptions about the location of

a different point in the disagreement set colored red. We establish (Lemmas 2.B.2 and 2.B.3) that such a red point

indeed exists, and, furthermore, that any such red point must lie within at most three neighboring positions of the

origin in either direction along some row, column, or diagonal. We choose one of these three files and consider

each of the six possible positions for the red point in that file, and determine whether the (d, d + 3) constraint can

be preserved when this point is added to the disagreement set. In other words, six “assumptions” are made for the

chosen file.

2.3.2 A search tree for invalidating hypothetical labelings

We construct a search tree to enable us to prove that any two distinct labelings that agree on a frame of a

square cannot both be valid under the hexagonal constraint. The search tree is constructed as follows.

Each node in the tree is a collection of points in a grid, which represents a potential disagreement subset

of some disagreement set D0 (depending on the particular hypothetical labelings r and b). If this potential diagree-

ment subset equals an actual disagreement subset of a particular D0 when the lowest-left points of the two sets are

aligned, then the potential disgrement subset will be identified with the actual disagreement subset.

18

The root of T is constrained to contain exactly one point. For the disagreement set D0 of r and b on the

N ×N square, the root is, by default, the origin of D0, i.e., the root represents the first point of row 0 in D0. On

the other hand, we may choose the root’s single point to be a point in D0 other than the origin of D0. In either

case, the lowest-left point of every node in the search tree T is aligned with and identified as this non-origin point.

(It will turn out that any such non-origin point at the root will always be chosen as a “pseduo-origin”.) When the

root’s single point it not the origin, it will be explicitly noted for clarity.

Each node in the tree is a potential disagreement subset, which represents a possible sequence of assump-

tions. For a given disagreement subset, each of the six assumptions described in Section 2.3.1 will be an edge in

the search tree. Such an edge is given by a starting disagreement subset, together with another disagreement subset

that is obtained from the starting one by making the described assumption.

The tree provides a mechanism for invalidating any possible pair of hypothetical labelings r and b, by

traversing a particular path for each such r and b. Such a path originates at the tree’s root, and the root node itself

is calibrated to a specific location within the disagreement set D0 of the given r and b.

For any given D0 and choice of the root of T , some of the nodes of T are disagreement subsets, and other

are not. We will refer to the nodes of T as disagreement subsets, even though only some of them may be actual

disagreement subsets, depending on which particular D0 is used to search the tree. Note that the topology of the

tree T is fixed, and does not vary with the choice of D0. However, any particular choice of D0 and the root of T

induces a specific path through the tree T .

Each node in the tree T represents the assumptions made on the edges in the unique path from the root

of the tree to that node. In particular, each non-root node of the tree corresponds to the set of assumptions of its

parent node, together with the one added assumption corresponding to the edge from its parent node to itself.

In some cases, a particular assumption leads to a contradiction, and so that assumption can be eliminated.

This elimination corresponds to a node in the tree having no out-edges, i.e., it is a leaf node. On the other hand,

if no contradiction to the (d, k) constraint is observed, then the process is repeated at that node by choosing a

particular file and then examining the six possible assumptions that can be made as out-edges of that node. This

process is repeated at all non-leaf nodes until hopefully all paths terminate, which would result in a finite rooted

tree, thus establishing the overall contradiction desired. Fortunately, this occurred and we present the discovered

tree in this paper as our main result.

In this way, we build a search tree to represent the various sequences of assumptions made about the

contents of the disagreement set, and use this tree to establish that the original positive capacity assumption was

false. In other words, for any particular hypothetical pair of distinct labelings that agree on the frame of a square,

we can show that at least one of the labelings is not valid under the hexagonal constraint by following a unique

19

path (determined by the disagreement set induced by the pair of labelings) through the search tree and ariving at a

contradiction at a leaf node.

Specifically, the discovered tree contains 50 internal nodes and 151 leaf nodes. Of the 151 leaf nodes, 110

of them can be eliminated quickly by immediate conflicts, i.e., the set of assumptions associated with each node

contradicts the hexagonal (d, k) constraint, under the original positive capacity assumption. This leaves only 41

for more careful analysis. All but 9 of these 41 can be readily classified according to three types of relatively easy

disagreement patterns. The remaining 9 are particular non-standard, more complicated, “special conflicts” that

must be handled separately, but do indeed cause contradictions as well. We note that this method was implemented

by hand, not with a computer.

In order to speed up the general tree building technique described above, we observed that at eight leaf

nodes and one internal node, it was possible to reduce the complexity of the tree growing process using a concept

of “pseudo-origins”, which is described in Section 2.5.

We also note that the detailed construction of the tree used in the proof does not depend on any particular

choice of the square size N , but does depend in many places on the fact that k = d+ 3.

2.3.3 Constructing the search tree

The search tree is denoted by T , and its nodes are disagreement subsets. The set of disagreement points

corresponding to any node in the tree is a proper subset of the set of disagreement points corresponding to each of

its children in the tree. We depict the disagreement subsets using red and black squares, where a red square in a

certain position means that position is labeled 1 by r, and a black square in a certain position means that position is

labeled 1 by b. Note that no position in a node of T can contain both a red and black square, since these positions

are in the disagreement set of r and b by assumption.

By Lemma 2.B.3, there are at most six possible locations for the first red disagreement point of row 0, but

by symmetry we need only consider the three locations to the right of (0, 0). Therefore, the root node has branches

leading to these three possible positions of the first red disagreement point of row 0 (see Figure 2.4). We use these

three disagreement subsets as root nodes for three subtrees, labeled T1, T2, and T3 (see Figures 2.5–2.7).

20

Figure 2.4. Search Tree T0.

Figure 2.5. Search Tree T1. Internal nodes are labeled as either R (rows), C (columns), or D (diagonals) to

indicate the disagreement subset files used to make further assumptions regarding the possible (d, k) validity of

the labelings r and b.

21

Figure 2.6. Search Tree T2. Internal nodes are labeled as either R (rows), C (columns), or D (diagonals) to

indicate the disagreement subset files used to make further assumptions regarding the possible (d, k) validity of

the labelings r and b.

22

Figure 2.7. Search Tree T3. Internal nodes are labeled as either R (rows), C (columns), or D (diagonals) to

indicate the disagreement subset files used to make further assumptions regarding the possible (d, k) validity of

the labelings r and b.

23

Let D be a subset of the disagreement set D0 of the two distinct labelings r and b, and let f be a file. We

say f is D-minimal if f intersects D and the first point x of f in D is also the first point of f in the disagreement

set D0 with the same color as x (see Figure 2.8).

(a) For the disagreement subset D1 consisting of the three bottommost disagreement points, column

0 is D1-minimal. On the other hand, for the disagreement subset D2 consisting of the three topmost

disagreement points, column 2 is not D2-minimal.

(b) For the disagreement subset D1 consisting of the two leftmost disagreement points, row 0 is

D1-minimal. On the other hand, for the disagreement subset D2 consisting of the four rightmost

disagreement points, row 2 is not D2-minimal.

Figure 2.8. Examples of files that either are, or are not, D-minimal. In both figures, the labelings agree at any

points below or to the left of the solid black border.

If a conflict cannot immediately be found in a node, then children are added by an exhaustive procedure.

First, we find a file (if it exists) that is minimal with respect to the current disagreement subset, and that contains

only one point of the disagreement subset. Then, we add children corresponding to each possible location in

that file for the first disagreement point of the other color, which is guaranteed to exist by Lemma 2.B.2. We

denote these different positions by their distance offset ∆ from the first disagreement point in the given file. By

Lemma 2.B.3, we have −3 ≤ ∆ ≤ 3. If such a file does not exist (which happens just once in the search tree),

then the node is treated as a special conflict (see Special Conflict 1 in Lemma 2.B.6).

If a conflict can indeed be found in a node (either by commonly occurring configurations or by a special

argument), then this node is made a leaf node of the search tree.

This process is continued until each branch terminates in a leaf node. If all leaves of a search tree violate

the constraint, then the disagreement subset shown in the root node of the tree cannot occur, where the lowest-left

point of the disagreement subset is the lowest-left point (or, possibly, another type of disagreement point we will

call a “pseudo-origin”) of the full disagreement set of the two valid labelings.

Frequently, certain ∆ values can be immediately eliminated due to a conflict with other points in the

24

disagreement subset, such as when two positions labeled 1 are positioned closer than distance d apart. Such invalid

disagreement subsets are not shown as explicit nodes in the search tree, but are instead displayed as a collection of

eliminated delta values grouped in a box branching from a node.

An illustration of how internal tree nodes are handled is given in Section 2.4. We also provide a guide to

reading the tree diagrams in Figure 2.9.

Figure 2.9. Illustration explaining aspects of the search tree diagrams given in Figures 2.4–2.7.

In Subsection 2.B.1 of Appendix 2.B, conflicts in the leaf nodes are discussed in detail, along with various

useful lemmas.

2.4 Chex(d, d+ 2) = 0 whenever d ≥ 1

We illustrate our general proof technique with a relatively simple and already-known (but unpublished)

case of zero hexagonal (d, k) capacity (e.g., see [19]), namely when k = d + 2. Traversing the steps of this

simplified proof facilitates comprehension of the more complex general result, since they share many common

ideas.

The following theorem covers all d ≥ 3. The remaining cases of d = 1 and d = 2 are proven later in this

section in Theorem 2.4.3. We note that Theorem 2.4.1 also follows from the stronger, but more complex, result

that we prove in Theorem 2.2.1, for the cases when d ≥ 7.

2.4.1 Chex(d, d+ 2) = 0 whenever d ≥ 3

Theorem 2.4.1. The capacity of the hexagonal (d, k) constraint is zero whenever d ≥ 3 and k = d+ 2.

Proof. Suppose, to the contrary, that Chex(d, d + 2) > 0. Then, by Lemma 2.2.2, for sufficiently large N , there

exist two distinct labelings, r and b, of an N ×N square that agree on the square’s frame of width k + 1. Let D0

be the disagreement set of r and b. The points of the square are assigned integer coordinates with the lowest-left

point of D0 denoted by p and located at the origin (0, 0). Without loss of generality, suppose the disagreement

point p is colored black, i.e., b(0, 0) = 1 and r(0, 0) = 0.

25

We make finite sequences of assumptions about the contents of D0 that exhaust all possible scenarios,

using a depth first search on a tree (see Figure 2.10) that we build for this purpose. We show that every path

through this tree leads to a contradiction, implying that the original assumption of two different valid labelings was

false. Thus, there cannot exist any nonempty disagreement set D0, so, in fact, any two labelings that agree on the

frame also agree on the rest of the square. This fact limits the number of possible valid labelings of squares to a

growth rate which is too small to sustain a positive hexagonal (d, d+ 2) capacity.

Figure 2.10. Search tree for the proof of Theorem 2.4.1 with the hexagonal (d, d + 2) constraint. Each tree node

corresponds to one of the diagrams, 1.1 – 1.4 or 2.1 – 2.5, in Figure 2.11, and the colored squares in those diagrams

represent assumed values of the labelings r and b, under the assumption that the labelings r and b disagree. The

rectangles above and to the right of internal nodes list the ∆ values corresponding to disagreement subsets that

immediately result in a contradiction (i.e., these subsets are leaves of the tree). Every path from the root to a leaf

results in a contradiction, thus disproving the assumption that Chex(d, d+ 2) > 0.

1.1 1.2 1.3 1.4

2.1 2.2 2.3 2.4 2.5

Figure 2.11. The figures show disagreement subsets corresponding to nodes of the search tree in Figure 2.10 for

Theorem 2.4.1. The leftmost black point in the lowest row of each diagram has coordinates (0, 0).

The same proof used in Lemma 2.B.3 also shows that for the (d, d+2) constraint, since p is the first point

of the lowest row of D0, there must be a red point q ∈ D0 within ±2 positions of p in row 0 (instead of ±3 as in

the (d, d+ 3) constraint). However, since p is the lowest-left disagreement point, q cannot be to the left of p, so q

must be located either at (1, 0) or (2, 0). These two possible arrangements of the black point p and the red point q

26

are displayed in disagreement diagrams 1.1 and 2.1, respectively5.

We next show that both arrangements of p and q shown in disagreement diagrams 1.1 and 2.1 lead to

at least one of the labelings r or b violating the hexagonal (d, d + 2) constraint. To this end, we consider every

possible arrangement of the points of D0 that can arise from the assumptions made in the cases shown in diagrams

1.1 and 2.1. A point of the disagreement subset is selected that is the first point of a D-minimal file, and for which

there is not yet a point of the other color within ±2 positions. Analogous to the (d, d+ 3) case, such a point of the

other color is guaranteed to exist in one of these locations by Lemma 2.B.3.

We then assume each of these four possibilities, one at a time, and show that each leads to a contradiction.

For some of these assumptions a contradiction to r and b being different valid labelings appears immediately, while

other assumptions are more complicated. In such cases, we add the assumption to the disagreement subset and

repeat the process for this new, augmented disagreement subset. This corresponds to adding a new node to the tree

with an edge from the previous disagreement subset node.

Each disagreement subset in the tree (in Figure 2.10) is listed in what follows, with the first few being

described in detail. Specifically, the coordinates of the first disagreement point of its file are given, as well as the

name of the file (i.e., the row, column, or diagonal), and the coordinates of all points within ±2 positions of the first

point within that file. These points are labeled −2, −1, 1, and 2 in Figure 2.12 for cases 1.1, 1.2, and 1.3. For each

of these points, an explanation is given of the contradiction that arises from it being included in the disagreement

set, or else a new arrangement is considered for further exploration.

2

diagonal 0

−1

−2

1

−2

−1

2

1

column 0 column 1

2

1

−1

−2

Figure 2.12. Diagrams 1.1, 1.2, and 1.3 from Figure 2.11 with labeled ∆ locations.

• 1.1: point (0, 0); diagonal 0; ∆ locations (−2,−2), (−1,−1), (1, 1), (2, 2).

This case corresponds to disagreement diagram 1.1, and we consider the four listed neighbors of (0, 0)

along the diagonal stemming from (0, 0) within ±2 of (0, 0) (see Figure 2.12). Since (0, 0) is colored

black, any disagreement point at one of the listed ∆ locations must be red. However, there cannot be a

disagreement point at (−2,−2) or (−1,−1), since that would contradict the point at (0, 0) being the lowest-

5All disagreement diagrams for Theorem 2.4.1 are found in Figure 2.11.

27

left disagreement point. Also, there cannot be a red disagreement point at (1, 1), for then the red point at

(1, 0) would vertically violate the d constraint in r (since d ≥ 3). There is no immediate contradiction to

coloring a disagreement point at (2, 2) red, so we address this possibility in case 1.2.

• 1.2: point (0, 0); column 0; ∆ locations (0,−2), (0,−1), (0, 1), (0, 2).

Since (0, 0) is colored black, any disagreement point at one of the listed ∆ locations is colored red. However,

there cannot be a disagreement point at (0,−2) or (0,−1), since (0, 0) is the lowest-left disagreement point.

Also, there cannot be a red disagreement point at (0, 2), for then the red point at (2, 2) would horizontally

violate the d constraint in r (since d ≥ 3). There is no immediate contradiction to coloring a disagreement

point at (0, 1) red, so we address this possibility in case 1.3.

• 1.3: point (1, 0); column 1; ∆ locations (1,−2), (1,−1), (1, 1), (1, 2).

The chosen file is the column immediately to the right of the point (0, 0). Since (1, 0) is colored red, any

disagreement point at one of the listed ∆ locations is colored black. However, there cannot be a disagreement

point at (1,−2) or (1,−1), since (0, 0) is the lowest-left disagreement point. Also, there cannot be a black

disagreement point at (1, 1), for then the black point at (0, 0) would diagonally violate the d constraint in b

(since d ≥ 3). There is no immediate contradiction to coloring a disagreement point at (1, 2) black, so we

address this possibility in case 1.4.

• 1.4: Conflict 2.

The four hollow circles indicate the squares ofD0 that are used to obtain a contradiction in this case. Whereas

these squares of D0 are under the hexagonal (d, d + 2) constraint, their arrangement is analogous to an

example of a Conflict 2 arrangement shown in Figure 2.15(d) for the hexagonal (d, d+ 3) constraint.

A slight modification of Lemma 2.B.5 yields a conflict in this case with the hexagonal (d, d+ 2) constraint,

i.e., at least one of the labelings r and b must not be valid. Since the arrangement of disagreement points

in 1.4 does not allow both r and b to be valid labelings, the arrangement of disagreement points in 1.1 also

does not allow both r and b to be valid labelings.

• 2.1: point (0, 0); diagonal 0; ∆ locations (−2,−2), (−1,−1), (1, 1), (2, 2).

• 2.2: point (0, 0); column 0; ∆ locations (0,−2), (0,−1), (0, 1), (0, 2).

• 2.3: point (2, 0); column 2; ∆ locations (2,−2), (2,−1), (2, 1), (2, 2).

28

• 2.4: point (0, 2); diagonal −2; ∆ locations (−2, 0), (−1, 1), (1, 3), (2, 4).

• 2.5: Conflict 1 (see Figure 2.14(a) for the analogous version of this conflict for the k = d+ 3 case).

Since the two arrangements of disagreement points shown in 1.1 and 2.1 do not allow r and b to be valid

labelings, the proof is complete.

�

2.4.2 Chex(d, d+ 2) = 0 when d ∈ {1, 2}

If m and b are real numbers and l is a labeling of Z2, then the set {(x, y) ∈ Z2 : y = mx+ b} is called a

line of 1s of slope m and intercept b if l(x, y) = 1 for all (x, y) in the set.

In the proof of the following lemma, we say that a line of 1s intersects a string 10z1 on the left (respec-

tively, right) if the string is horizontal and its leftmost (respectively, rightmost) 1 is on the line of 1s.

We thank Zsolt Kukorelly for some of the ideas in the following lemma.

Lemma 2.4.2. If a labeling satisfies the hexagonal (2, 4) constraint and has a line of 1s with slope −1, 1/2, or 2

that intersects the string 1031 or 1041, then the labeling consists entirely of parallel lines of 1s.

Proof. We consider each of the three slopes m separately. In each case where a line of 1s is assumed to intersect

a string on the left or right, the 1 in the string that lies on the line of 1s will be assumed, without loss of generality,

to lie at the origin. Let l denote the binary labeling of points in Z2.

• Suppose m = −1.

A line of 1s cannot intersect 1031 on the left or right, for otherwise 101 would occur diagonally.

If the line of 1s intersects 1041 on the left (respectively, right), then a line of 1s is forced, with slope −1 and

intercept b = 5 (respectively, b = −5).

To see this, note that l(0, 0) = l(5, 0) = l(1,−1) = 1 and l(2,−1) = l(3,−1) = l(4,−1) = l(5,−1) = 0,

which implies l(6,−1) = 1 to prevent 05 horizontally, so by induction half of the line of 1s, {(x, y) ∈ Z2 :

x+ y = 5}, is forced downward (i.e. when y ≤ 0). Also, l(4, 0) = l(4,−1) = l(4,−2) = l(4,−3) = 0, so

l(4, 1) = 1 to prevent 04 vertically. This implies that the half line of 1s extends upward to give an entire line

of 1s. A symmetric argument gives the result when the line of 1s intersects 1041 on the right.

• Suppose m = 1/2.

A line of 1s cannot intersect 1031 on the left or right, for otherwise 101 would occur vertically. To see this,

29

note that l(0, 0) = l(4, 0) = l(2,−2) = 1 implies that 101 occurs diagonally from (2,−2) to (4, 0). And

similarly on the other side of the line of 1s.

If the line of 1s intersects 1041 on the left (respectively, right), then a line of 1s is forced, with slope 1/2 and

intercept b = −(5/2) (respectively, b = (5/2)).

To see this, note that l(3, 1) = l(4, 1) = l(5, 1) = l(6, 1) = 0 implies that l(7, 1) = 0 to prevent 05

horizontally, so by induction half of the line of 1s, {(x, y) ∈ Z2 : y = (x/2) − (5/2)}, is forced upward

(i.e. when y ≥ 0). Also, since l(3, 2) = l(3, 1) = l(3, 0) = l(3,−2) = 0, we must have l(3,−1) = 1 to

prevent 05 vertically. This implies that the half line of 1s extends downward to give an entire line of 1s. A

symmetric argument gives the result when the line of 1s intersects 1041 on the right.

• Suppose m = 2.

If the line of 1s intersects 1031 on the left (respectively, right), then two lines of 1s are forced, whose slopes

are 2. One of them has intercept b = −8 (respectively, b = 8), and the other has intercept either b = −3 or

b = −5 (respectively, b = 3 or b = 5).

To see this, note that l(2, 2) = l(3, 2) = l(4, 2) = l(6, 2) = 0 implies l(5, 2) = 1, and l(0,−2) =

l(1,−2) = l(2,−2) = l(4,−2) = 0 implies l(3,−2) = 1, in both cases to prevent 05 horizontally. This

forces a line of 1s, namely, {(x, y) ∈ Z2 : y = 2x − 8}. If additionally l(2, 1) = 1, then it is easy to see

that the line of 1s, {(x, y) ∈ Z2 : y = 2x− 3}, is forced, but alternatively if l(2, 1) = 0, then the line of 1s,

{(x, y) ∈ Z2 : y = 2x− 5}, is forced. A symmetric argument gives the result when the line of 1s intersects

1041 on the right.

If the line of 1s intersects 1041 on the left (respectively, right), then two lines of 1s are forced, with slopes 2,

and intercepts b = −5 and b = −10 (respectively, b = 5 and b = 10).

To see this, note that l(5, 3) = 0 to avoid 05 diagonally from (1, 1) to (5, 5), so that l(6, 4) = 0 to avoid

05 horizontally from (2, 2) to (6, 2), and then l(4, 1) = 0 to avoid 05 diagonally from (2, 0) to (6, 4). But

l(1,−2) = l(3, 0) = l(4, 1) = l(5, 2) = 0 implies l(2,−1) = 1 to prevent 05 diagonally. It then follows

that l(1, 2) = l(6, 2) = l(3, 1) = l(−1,−2) = l(4,−2) = 1, and by induction we get the following two

lines of 1s: {(x, y) ∈ Z2 : y = 2x− 5} and {(x, y) ∈ Z2 : y = 2x− 10}.

Each of these three cases shows that starting with a line of 1s forces new lines of 1s of the same slope to

its left and to its right, provided the original line of 1s intersected either 1031 or 1041. If, instead, the line of 1s

intersected 1021 on the left (respectively, right), then it would force a line of 1s through the rightmost (respectively,

leftmost) 1 in 1021. This is because if any other 1 in the line of 1s was the leftmost bit in 1031 or 1041, then as

30

previously shown it would force a line of 1s through the rightmost 1 in that string, contradicting the assumed string

1021 that intersects the line of 1s.

All of the locations between the original line of 1s and each of these new lines is labeled by 0. By

induction, if this process is continued, one concludes that the labeling of the entire plane consists only of parallel

lines of 1s.

�

Theorem 2.4.3. The capacity of the hexagonal (d, k) constraint is zero when d ∈ {1, 2} and k = d+ 2.

Proof. When d = 1 and k = 3, the string 101 is forbidden horizontally, for otherwise the string 04 would occur

horizontally above it. Thus Chex(1, 3) = Chex(2, 3) ≤ Crect(2, 3) = 0.

Under the (2, 4) constraint, the only possible zero runs are 02, 03, and 04.

If a valid labeling does not have any runs 03 or 04, then all zero runs are 02, and there are only three

possibilities for the labeling of each row, and each such labeling determines the labeling everywhere else.

Next suppose there is at least one run 03 or 04 in any hexagonal (2, 4) labeling. We will next show that

every valid (2, 4) labeling has at least one line of 1s with slope either −1, 1/2, or 2.

We will first consider the case when 1031 appears somewhere and then the case when 1041 appears

somewhere. Without loss of generality, we will assume such strings are horizontal and start at the origin.

• Assume l(0, 0) = l(4, 0) = 1.

Then l(3, 2) = 0 to prevent 06 horizontally from (0, 1) to (5, 1). Since l(0, 2) = l(2, 2) = l(3, 2) =

l(4, 2) = l(6, 2) = 0, we must have l(1, 2) = l(5, 2) = 1, to prevent 05 horizontally. The original two

assumptions are thus still true if shifted by (1, 2), and, by symmetry about row 0, if shifted by (−1,−2) as

well. Then, by induction, we deduce that the following line of 1s is forced: {(x, y) ∈ Z2 : y = 2x}.

• Assume l(0, 0) = l(5, 0) = l(4, 2) = 1.

Then l(3, 1) = l(4, 1) = l(5, 1) = l(6, 1) = 0, so l(2, 1) = l(7, 1) = 1, to prevent 05 horizontally. Also,

l(2,−1) = l(3, 0) = l(4, 1) = l(5, 2) = 0, so l(6, 3) = l(1,−2) = 1 to prevent 05 diagonally. The original

three assumptions are thus still true if shifted by (2, 1), i.e., l(2, 1) = l(7, 1) = l(6, 3) = 1. Futhermore,

since l(0, 0) = l(5, 0) = l(1,−2) = 1, the original assumptions are true if rotated about row 0. Then, by

this symmetry and induction, we deduce that the following line of 1s is forced: {(x, y) ∈ Z2 : y = x/2}.

• Assume l(0, 0) = l(5, 0) = l(3, 2) = 1.

This implies l(0, 1) = l(1, 1) = l(2, 1) = l(3, 1) = 0 so l(−1, 1) = l(4, 1) = 1. Since l(2, 2) = l(2, 1) =

l(2, 0) = l(2,−1) = 0 we must have l(2, 3) = l(2,−2) = 1. The original three assumptions are thus still

31

true if shifted by (−1, 1), i.e., l(−1, 1) = l(4, 1) = l(2, 3) = 1. Furthermore, since l(0, 0) = l(5, 0) =

l(2,−2) = 1, the original assumptions are true if rotated about row 0. Thus, by this symmetry and induction,

we deduce that the following line of 1s is forced: {(x, y) ∈ Z2 : y = −x}.

• Assume l(0, 0) = l(5, 0) = 1 and l(4, 2) = l(3, 2) = 0.

Then l(2, 2) = l(3, 2) = l(4, 2) = l(5, 2) = 0, which implies l(1, 2) = l(6, 2) = 1. Also l(2, 1) = 0 to

prevent 05 vertically from (4,−1) to (4, 3), and l(4, 1) = 0 to prevent 05 vertically from (2,−1) to (2, 3).

Thus, l(3, 1) = 1 to prevent 05 horizontally from (0, 1) to (4, 1). This forces l(4, 3) = 1 to prevent 05

vertically from (4,−1) to (4, 3), so l(5, 4) = l(4, 4) = 0. The original four assumptions are thus still true

if shifted by (1, 2). Also, since l(2, 0) = l(2, 1) = l(2, 2) = l(2, 3) = 0, we get l(2,−1) = 1, which

implies l(1,−2) = l(2,−2) = 0. Therefore, since l(0, 0) = l(5, 0) = 1, the original assumptions are true if

rotated about row 0. Thus, by this symmetry and induction, we deduce that the following line of 1s is forced:

{(x, y) ∈ Z2 : y = 2x}.

We have now shown that all possible strings 1031 and 1041 force a line of 1s with slope −1, 1/2, or 2.

So, by Lemma 2.4.2 the entire labeling consists of parallel lines of 1s. This means that the labeling of any row of a

rectangle induces one of at most three possible labelings of the entire rectangle, corresponding to the three possible

slopes of the parallel lines of 1s. Then, since there are at most 3 · 2N valid N × N square labelings that contain

at least one of 1031 or 1041, and there are only three valid N ×N square labelings containing only 1021, we have

Chex(2, 4) ≤ lim
N→∞

1

N2
log2(3 · 2

N + 3) = 0. �

2.5 Main result: Chex(d, d+ 3) = 0 whenever d ≥ 3

In this section we establish that Chex(d, d + 3) = 0 whenever d ≥ 3 (Theorem 2.2.1). Of these infinite

cases, as noted in Section 2.1, it has been previously shown [20] that Chex(d, d+3) = 0 when d ∈ {3, 4, 5, 7, 9, 11}

and also when d = 6 in our Part II. In what follows we prove the result for all d ≥ 7, which suffices to complete

the proof.

The proof of Theorem 2.2.1 relies directly on Lemmas 2.2.2, 2.B.8, and 2.B.11, the latter two of which

are derived in this section from Lemmas 2.B.6, 2.B.9, and 2.B.10.

Since the lowest-left point of the disagreement set D0 of the two distinct labelings r and b is defined to

lie at the origin (0, 0), the labelings r and b agree at certain positions, such as:

(i) at any point in row 0 to the left of (0, 0).

(ii) at any point (x, y) satisfying x ≤ 4 and y ≤ −1.

32

Similarly, we call a point p = (x, y) ∈ D0 a pseudo-origin if the labelings r and b agree in the following

positions:

(i) at any point in row y to the left of p.

(ii) at any point (x′, y′) satisfying x′ ≤ x+ 4 and y′ ≤ y − 1.

In the construction of the search tree T , certain files of disagreement subsets are particularly useful in the

analysis. For example, each edge of T corresponds to a specific file used for expansion, and this file is marked

above the node in the tree diagrams illustrated in Figures 2.4–2.7. Such files in this category are used to examine

six possible assumptions for the position of a particular disagreement point, corresponding to the six locations

described in Lemma 2.B.3. Another important category of files used in the construction of T consists of those

used to achieve conflicts at the leaf nodes. These are enumerated in Table 2.2. We call these two categories of files

critical, as described in the following definition.

Definition 2.5.1. A file f is critical for a disagreement subset D if f corresponds to an edge from the node D in

the tree T or is used to demonstrate a conflict in the leaf D of the tree T .

It is noted that if a file is critical for disagreement subset D, then D contains at least one point in that file.

In the exhaustive search of disagreement subsets using the search tree T , we often find conflicts with

the constraint relatively close to the lowest-left point of a disagreement subset. Specifically, the indices of rows,

columns, and diagonals that are critical for some disagreement subset in the constructed search tree T are fortu-

nately at most 2, 4, and 4, respectively. This upper bound for the critical columns and diagonals motivates our

definition of pseudo-origin, and leads to the following lemma.

Lemma 2.5.2. Let r and b be distinct labelings of a square that satisfy the hexagonal (d, d + 3) constraint with

d ≥ 7 and agree on the square’s frame of width k + 1. If x is a pseudo-origin and D is a potential disagreement

set in the search tree T with root x, then row 0 and any critical columns and diagonals for D are D-minimal.

Proof. First note that if the two distinct labelings r and b agree in all positions of a file up to a point p, then any

disagreement point within the first 8 positions after p in the file is the first disagreement point of its color in the file.

This is because two points of the same color must be separated by at least d ≥ 7 positions, and so two such points

cannot be contained within 8 consecutive positions.

Since x is a pseudo-origin, the two labelings agree in the region containing all points to the left of x, and

all points below the row containing x in columns or diagonals with index at most 4. Then by inspecting every

potential disagreement subset D in the search tree T , it can be verified that for row 0 or any column or diagonal

with index at most 4 that intersects D, the first disagreement points of both colors of such a file f in D occur within

33

Table 2.2. The critical files used to demonstrate conflicts at leaf nodes in the search tree T .

Leaf node critical files

1.5 Columns 0,1,2; Diagonals -1,0,1

1.7 Columns 0,1,4; Diagonals -1,0,1

1.10 Columns 0,1,2; Diagonals -1,0,1

1.14 Columns 0,1,2; Diagonals -1,0,1

1.15 Diagonals -1,0

1.16 Diagonals 0,1

1.17 Diagonals 0,1

1.21 Column 2

1.22 Diagonals 0,1

1.23 Columns 0,1

1.29 Columns 0,1,2; Diagonals -3,-1

1.30 Diagonals -3,-1,0,1

1.31 Column 0; Diagonal 1

1.32 Columns 0,1

2.6 Diagonals 0,2

2.7 Diagonals -1,0

2.8 Diagonals -1,0

2.12 Diagonal -2

2.13 Row 2

2.16 Diagonals 1,2

2.17 Diagonals 1,2

2.20 Columns 2,3

2.22 Row 2

2.23 Columns 0,2; Diagonals 0,2

2.24 Diagonals 0,2

2.30 Diagonal -3

2.32 Diagonal 2

2.33 Columns 0,1

2.34 Columns 0,1

3.4 Rows 0,1

3.6 Row 1

3.7 Diagonal -1

3.10 Rows 0,1

3.11 Rows 0,2

3.14 Rows 0,1

3.16 Columns 0,1

3.17 Columns 0,1

3.21 Rows 0,2

3.22 Diagonals 2,3

3.24 Column 4

3.25 Column 0; Diagonal 3

34

the first 7 positions after the last agreement point of f . Therefore, by the first paragraph, these first disagreement

points of each such file in D are the first disagreement points of each such file in D0. Thus any such file (including,

in particular, row 0) is D-minimal, and since any critical column or diagonal has index at most 4, the lemma is

proved. �

In the proof of Lemma 2.B.6, use is made of various diagrams in Figure 2.13. Before stating the lemma,

we explain in detail how these diagrams are used.

In each special conflict diagram in Figure 2.13, the red and black squares indicate disagreement points as

previously discussed. In contrast, the circles represent certain important agreement points of the labelings r and

b. The circles in each diagram are contained in some critical column or diagonal of the disagreement subset in

the same diagram, and these critical files are listed in each diagram’s caption. Specifically, the circles in a given

column or diagonal denote the possible locations of the last agreement point labeled 1 in that file before any point

in the disagreement subset. Additionally, among the circles corresponding to critical columns, the values of r and

b do not change within a given color of circle, and the same holds true for the circles corresponding to critical

diagonals.

Each critical file contains exactly two disagreement points, one red and one black. The lowest-left black

square is always a pseudo-origin, so the two labelings r and b agree at all points below its row (i.e., row 0) when

the column index is 4 or less. The colored circles in the diagrams lie in these agreement regions and are associated

with critical files.

In any critical file, to satisfy the k constraint, a point labeled 1 must occur within the (k + 1) positions

before the second of the two shown disagreement points in that file. But since d ≥ 7 (by assumption) and the

largest row index of any disagreement point in a critical file is 6, the d constraint implies this point labeled 1 must

occur in the agreement region of the two labelings. Then by the d constraint applied to the first of the two shown

disagreement points in the critical file, this agreement point labeled 1 must occur at least d positions away from

this first disagreement point. Since k = d + 3, this leaves a window of at most 3 positions for such an agreement

point labeled 1, and since d ≥ 7 by assumption, exactly one of the positions in this window must be labeled 1.

The circles in each critical file occupy the positions in this window. However, the various configurations of circles

do not allow the unique circle labeled 1 in each critical file to be arbitrarily chosen while satisfying the hexagonal

(d, k) constraint.

By logical deduction in each Special Conflict diagram, one can verify that, of the possible labelings of all

of the circles in the critical columns, either 0, 1, or 2 labelings satisfy the d constraint. If zero such labelings satisfy

the d constraint, we depict the circles as hollow with no coloring. If exactly one labeling satisfies the d constraint,

35

(a) Special Conflict 1 (for 1.5). critical

files:

(columns: 0, 1, 2)

(diagonals: -1, 0, 1)

(b) Special Conflict 2 (for 1.7). criti-

cal files:

(columns: 0, 1, 4)

(diagonals: 1)

(c) Special Conflict 3 (for 1.10). criti-

cal files:

(columns: 0, 1, 2)

(diagonals: -1, 0, 1)

(d) Special Conflict 4 (for 1.14). criti-

cal files:

(columns: 0, 1, 2)

(diagonals: -1, 0, 1)

(e) Special Conflict 5 (for 1.29). criti-

cal files:

(columns: 0, 1, 2)

(diagonals: -3, -1)

(f) Special Conflict 6 (for 1.30). criti-

cal files:

(diagonals: -3, -1, 0, 1)

(g) Special Conflict 7 (for 1.31). criti-

cal files:

(columns: 0)

(diagonals: 1)

(h) Special Conflict 8 (for 2.23). criti-

cal files:

(columns: 0, 2)

(diagonals: 0, 2)

(i) Special Conflict 9 (for 3.25). criti-

cal files:

(columns: 0)

(diagonals: 3)

Figure 2.13. Special Conflicts. The lowest-left point of disagreement subset D is at position (0, 0) and colored

black. By the assumption that all critical files for D are D-minimal, both assumed-to-be-valid labelings agree in

all colored circles. A square of side length d = 7 helps visualize the conflicts, but any larger value of d results in

the same conflicts for the same reasons given.

36

we color circles orange to represent a label of 1, and green to represent a label of 0. If two labelings satisfy the d

constraint, which happens only in Special Conflict 1, it suffices to color the circles labeled 1 orange in one labeling

and blue in the other labeling. In both cases, we color circles green when the point is labeled 0 in every labeling.

We then repeat this colorization process for the circles in critical diagonals.

As a result, Special Conflict 1 contains two possible labelings for both critical columns and diagonals,

and Special Conflict 6 contains zero possible labelings of critical diagonals. The other 7 Special Conflicts contain

a unique labeling for the circles in critical columns, and a unique labeling for the circles in critical diagonals.

Following this coloration, violations of the d constraint or k constraint could occur due to the possible

labelings of the circles in the critical columns and diagonals. We describe such a violation in each Special Conflict,

and deduce a contradiction.

To illustrate the coloration process, consider the diagram corresponding to Special Conflict 2. The dia-

gram’s caption indicates that the four critical files are columns 0,1, and 4, together with diagonal 1. Considering

the columns first, the single circle in column 4 must be labeled 1, which then implies the bottom circle in column

1 must be labeled 1 to avoid violating the d constraint along a diagonal, and this in turn implies the top circle in

column 0 must also be labeled 1. In the only critical diagonal, the single circle must be labeled 1. This fixes the

coloring of the circles based on the labelings. Then, a conflict can be seen in the row immediately below the black

d× d square outline, since the two orange circles in that row have only (d− 1) positions labeled 0 between them.

The figures assume d = 7 for these special conflicts, as seen in the 7 × 7 square outline, but, in fact,

any value of d ≥ 7 causes a conflict for the same reasons (to be given in Subsection 2.B.2 of Appendix 2.B) by

considering a larger square outline with side length d. Specifically, the d × d square outline shown in each image

can be used to apply the arguments for any d ≥ 7 by examining the positions of the circles relative to each other.

Some technical lemmas used in the proof of the main result are given in Subsection 2.B.2 of Appendix 2.B.

The main result then readily follows from Lemmas 2.2.2, 2.B.8, and 2.B.11.

Proof of Theorem 2.2.1. In Part II of this two-part series [8], we prove that Chex(d, d + 3) = 0 when 3 ≤ d ≤ 11,

which overlaps with the cases 7 ≤ d ≤ 11 shown here.

Let d ≥ 7 and k = d + 3 and suppose to the contrary that Chex(d, k) > 0. Then by Lemma 2.2.2, there

exist two distinct valid labelings r and b of a sufficiently large N × N square that agree on the square’s frame of

width k + 1.

By Lemma 2.B.11, there exists a pseudo-origin x in the disagreement set of r and b with the row minimal-

ity property (see Definition 2.B.7 in Appendix 2.B). Then by Lemma 2.B.8, there is a conflict with the constraint

in either labeling r or b, so it cannot be true that both labelings are valid, a contradiction. Thus, Chex(d, d+3) = 0

for all d ≥ 7. �

37

2.A Disagreement Subsets

The figures below (labeled 1.1-1.32, 2.1-2.34, 3.1-3.25) show disagreement subsets corresponding to

nodes of the search tree for the main result in Section 2.5.

1.1 1.2 1.3 1.4 1.5 1.6

1.7 1.8 1.9 1.10 1.11 1.12

1.13 1.14 1.15 1.16 1.17 1.18

1.19 1.20 1.21 1.22 1.23 1.24

1.25 1.26 1.27 1.28 1.29 1.30

1.31 1.32

2.1 2.2 2.3 2.4 2.5 2.6

38

2.7 2.8 2.9 2.10 2.11 2.12

2.13 2.14 2.15 2.16 2.17 2.18

2.19 2.20 2.21 2.22 2.23 2.24

2.25 2.26 2.27 2.28 2.29 2.30

2.31 2.32 2.33 2.34

3.1 3.2 3.3 3.4 3.5 3.6

3.7 3.8 3.9 3.10 3.11 3.12

3.13 3.14 3.15 3.16 3.17 3.18

39

3.19 3.20 3.21 3.22 3.23 3.24

3.25

2.B Lemmas

2.B.1 Conflicts in leaf nodes

In this subsection we include lemmas that are used in the proof of the main theorem. In particular, we

focus on establishing conflicts at leaf nodes that help complete our proof by contradiction.

Lemma 2.B.1. Let r and b be distinct labelings of a square that satisfy the hexagonal (d, k) constraint and agree

on the square’s frame of width δ ≥ k + 1. Then every file of length at least 2(k + 1) has at least two positions

where both r and b are labeled 1. In particular, at least one of these positions comes before every disagreement

point in the file, and another of these positions comes after every disagreement point in the file.

Proof. Let f be a file of length at least 2(k + 1). In both r and b, one of the first (k + 1) positions of f must

be labeled 1 or else the labelings would violate the k constraint. But since r and b agree on the frame, which has

width (k + 1), r and b must agree at such a position labeled 1 within the first (k + 1) positions of f . Similarly for

the last (k + 1) positions. �

The following lemma shows that if a file contains a disagreement point labeled 1 by one labeling, then

the file also contains a disagreement point labeled 1 by the other labeling.

Lemma 2.B.2. Let r and b be distinct labelings of a square that satisfy the hexagonal (d, d + 3) constraint with

d ≥ 3 and agree on the square’s frame of width k + 1. For each file f of the square, if f contains a disagreement

point of a particular color, then f also contains a disagreement point of the other color.

Proof. Suppose f is a file that intersects the disagreement set such that x is the first disagreement point of f .

Without loss of generality, suppose x is black. Suppose there does not exist a red disagreement point in f . Then

for any point z ∈ f , b(z) = 0 implies r(z) = 0.

Since b(x) = 1, the d constraint implies there are at least d positions on both sides of x in f labeled 0 by

b. Therefore, there are also at least d positions on either side of x in f labeled 0 by r. Then since r(x) = 0, r must

40

have a run of at least 2d+ 1 consecutive 0s in f . But d ≥ 3 implies 2d+ 1 > d+ 3 = k, and so the run of 2d+ 1

consecutive 0s in r violates the k constraint, a contradiction. �

As previously mentioned, the quantity ∆ denotes the distance offset from the first disagreement point in

a given file to the point of the other color (guaranteed to exist by Lemma 2.B.2) in the same file. The following

lemma establishes that if the file is D-minimal, then −3 ≤ ∆ ≤ 3.

Lemma 2.B.3. Let r and b be distinct labelings of a square that satisfy the hexagonal (d, d + 3) constraint with

d ≥ 5 and agree on the square’s frame of width k + 1. Let D be a subset of the disagreement set D0, and let f be

a file that is D-minimal. Let x ∈ D be the first point of f in D. Then the first point of f in D0 of opposite color to

x is located in one of six possible locations, namely within ±3 positions from x in f .

Proof. Without loss of generality, let x be colored black. Since f is D-minimal, x is the first black disagreement

point of f in D0. By Lemma 2.B.2, there exists a red disagreement point in f ; let y be the first such point. Without

loss of generality, we can assume y is after x in f (if not, we can switch the roles of red and black).

Consider the last position z before x where r(z) = 1 and b(z) = 1. There must exist at least one such z

by Lemma 2.B.1. By the d constraint in labeling b, there must be d positions labeled 0 between z and x, and by

the k constraint in labeling r, there cannot be more than d + 3 zeros between z and y. Therefore, x and y cannot

be separated by more than 3 positions. �

Given a disagreement subset D ⊆ D0, the following lemma shows that for a file f that is not D-minimal,

there exist at least two points (of different colors) of f in D0 before the first point of f in D.

Lemma 2.B.4. Let r and b be distinct labelings of a square that satisfy the hexagonal (d, d + 3) constraint with

d ≥ 7 and agree on the square’s frame of width k+1. Let D0 be the disagreement set of r and b, and let D ⊆ D0.

Suppose there exists a file f intersecting D that is not D-minimal, and let z be the first point of f in D. Then there

exist at least two points (of different colors) of f in D0 before z.

Proof. Without loss of generality, suppose z is colored black. Since f is not D-minimal, z is not the first black

point of f in D0. Therefore, there exists another point x before z that is the first black disagreement point of f .

Furthermore, since d ≥ 7, x is at least 7 positions before z.

By Lemmas 2.B.2 and 2.B.3, there exists a red disagreement point y that is at most 3 positions away from

x, which guarantees y occurs before z. Thus, x and y are two points of different colors of f in D0 before z. �

The proof of Lemma 2.B.4 in fact applies to the stronger case where d ≥ 3, but we need only d ≥ 7 for

our analysis.

41

A disagreement subset D may contain an arrangement of points that causes at least one of r or b to violate

the hexagonal (d, k) constraint, provided that certain files containing these points are D-minimal. We call such

arrangements conflicts. In particular, the following three types of conflicts arise often in our proofs, and we will

refer to them as Conflict 1, Conflict 2, and Conflict 3. Examples of these conflicts are shown in Figure 2.14.

• Conflict 1.

In this arrangement, the first disagreement points of two parallel files in a disagreement subset D are arranged

as shown, for example, in Figure 2.14a. In addition, these files must be D-minimal and separated by fewer

than d files.

• Conflict 2.

In this arrangement, the first disagreement points of two adjacent D-minimal files in a disagreement subset

D are arranged as shown, for example, in Figure 2.14b. Figure 2.15 provides a full catalog of possible

Conflict 2 arrangements, as well as arrangements of disagreement points that may resemble Conflict 2, but

are not.

• Conflict 3.

In this arrangement, the first disagreement points of opposite color of a D-minimal file in a disagreement

subset D are separated by 3 positions.

(a) Conflict 1.

(b) Conflict 2.

Figure 2.14. Examples of Conflicts 1 and 2 for the hexagonal (d, d+ 3) constraint.

The following lemma shows that the arrangements of points in Conflict 1, Conflict 2, and Conflict 3 all

do indeed cause at least one of the labelings r and b to violate the hexagonal (d, k) constraint.

Lemma 2.B.5. Let D be a subset of the disagreement set of two distinct valid labelings r and b of an N × N

42

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2.15. Diagrams (a)–(f) show Conflict 2 arrangements. The same arrangements with the colors red and

black switched also cause conflicts Diagrams (g)–(l) show arrangements that do not immediately cause conflicts.

All arrangements apply to the hexagonal (d, d+ 3) constraint.

square that agree on the square’s frame of width k + 1. Then the arrangements of points in Conflict 1, Conflict 2,

and Conflict 3 each cause at least one of r and b to violate the hexagonal (d, k) constraint.

Proof.

Each of the three types of conflicts previously defined are examined to establish the lemma.

– Conflict 1.

In Figure 2.14a, let the bottom two points be in row 0 and the upper two points be in row i, and suppose

i ≤ d. By Lemma 2.B.1, in each of rows 0 and i there exists a point before the displayed points where both

labelings equal 1. Let the last positions where both labelings equal 1 before the displayed points in rows 0

and i be denoted p0 and pi, respectively.

Since rows 0 and i are D-minimal and the displayed points are the first disagreements points of their rows

in D (as required by Conflict 1), the displayed points are the first disagreement points of their rows in the

disagreement set of the two labelings. Therefore, the only possible column that can contain p0 and pi is the

column that is separated by exactly d columns from the column containing the leftmost disagreement point

in each row. However, since row 0 and row i are separated by i − 1 < d rows, p0 and pi are separated by

fewer than d rows. Therefore this arrangement causes a conflict with the d constraint.

Similar arguments show the lemma in cases where the disagreement points are in columns or diagonals

instead of rows.

– Conflict 2.

43

In Figure 2.14b, let the bottom two points be in row 0 and the upper two points be in row 1. By Lemma 2.B.1,

in each of rows 0 and 1 there exists a point before the displayed points where both labelings equal 1. Let the

last positions where both labelings equal 1 before the displayed points in rows 0 and 1 be denoted p0 and p1,

respectively.

Since rows 0 and i are D-minimal and the displayed points are the first disagreements points of their rows

in D (as required by Conflict 2), the displayed points are the first disagreement points of their rows in the

disagreement set of the two labelings. Therefore, the only possible column that can contain p0 is the column

that is separated by exactly d columns from the column containing the leftmost disagreement point in row

0. Also, the only possible columns that can contain p1 are the columns that are separated by exactly d or

exactly (d + 1) columns from the column containing the leftmost disagreement point in row 1. However,

both of these positions for p1 cause a conflict with the d constraint, since p0 would be either vertically or

diagonally adjacent to p1. Therefore this arrangement causes a conflict with the d constraint.

Similar arguments show the lemma in cases displayed in diagramss (a)–(f) in Figure 2.15.

– Conflict 3.

This arrangement of points causes a conflict since the first disagreement points of opposite color of a D-

minimal file in a disagreement subset D can be separated by at most 2 positions, by Lemma 2.B.3.

�

Example 1. Configuration 3.10 in Appendix 2.A.

The four points of r and b that are involved in the conflict are labeled with white dots. They are arranged according

to Conflict 2 described in Lemma 2.B.5, so the arrangement shown in this configuration causes at least one of r

and b to violate the hexagonal (d, k) constraint.

Example 2. Configuration 3.25 in Appendix 2.A.

This configuration does not contain a commonly occurring conflict, and so we treat it as a special conflict in

Lemma 2.B.6.

2.B.2 Lemmas for Main Result in Section 2.5

Lemma 2.B.6. Let r and b be distinct labelings of a square that satisfy the hexagonal (d, d + 3) constraint with

d ≥ 7 and agree on the square’s frame of width k + 1. Then all disagreement subsets shown as Special Conflicts

in Figure 2.13 cause at least one of r or b to violate the hexagonal (d, d+ 3) constraint.

44

Proof. In each Special Conflict diagram in Figure 2.13, let the row directly below the square outline be row i (rows

decrease moving downward).

Special Conflict 1. Under the given assumptions, there are two possible valid labelings of the circles in

the critical columns, and also two possible valid labelings of the circles in the critical diagonals. The green circles

denote positions labeled 0 in all possible labelings,

For the circles in critical columns, either orange circles are labeled 0 and blue circles are labeled 1, or

vice versa. The same property holds for critical diagonals. However, the labeling associated with orange column

circles does not have to agree with the labeling associated with orange diagonal circles (similarly for blue).

To demonstrate that there is a conflict caused by this disagreement subset, we show that all four pairings

of these orange and blue arrangements of positions labeled by 1s generate a conflict.

• (Diagonal Orange = 1, Column Orange = 1) The 1 in row (i+1) has a run of (d+5) positions labeled 0 to

the right. This violates the k = d+ 3 constraint.

• (Diagonal Orange = 1, Column Blue = 1) The two 1s in row i are separated by (d − 1) positions. This

causes a conflict with the d constraint.

• (Diagonal Blue = 1, Column Orange = 1) The two 1s in row (i − 1) are separated by (d + 4) positions

labeled 0. This causes a conflict with the k = d+ 3 constraint.

• (Diagonal Blue = 1, Column Blue = 1) The 1 in row (i + 1) has a run of (d + 5) positions labeled 0 to the

left. This violates the k = d+ 3 constraint.

Special Conflict 2. The two 1s in row i (i.e., the two orange circles immediately below the square outline)

are separated by a distance of (d− 1). This causes a conflict with the d constraint.

Special Conflict 3. The 1 in row (i+1) has a run of (d+5) positions labeled 0 to the right. This violates

the k = d+ 3 constraint.

Special Conflict 4. The 1 in row (i− 2) has a run of (d+4) positions labeled 0 to the right. This violates

the k = d+ 3 constraint.

Special Conflict 5. The 1 in row (i+2) has a run of (d+4) positions labeled 0 to the right. This violates

the k = d+ 3 constraint.

Special Conflict 6. Diagonals −1 and −3 each contain a single position that must be labeled 1, denoted

by hollow circles. If one were to try labeling these positions with 1s, then three of the hollow circles below (in

diagonals 0 and 1) would be labeled with 0s, by the d constraint. But then diagonals 0 and 1 would each contain a

45

single remaining position that must be labeled 1, and these positions are vertically adjacent. Labeling both of these

positions by a 1 would therefore cause a conflict with the d constraint.

Special Conflict 7. The two 1s in row i are separated by a distance of (d− 1). This causes a conflict with

the d constraint.

Special Conflict 8. The two 1s in row (i− 1) are separated by a distance of (d− 1). This causes a conflict

with the d constraint.

Special Conflict 9. The two 1s in row i are separated by a distance of (d− 3). This causes a conflict with

the d constraint.

�

Definition 2.B.7. We say that a pseudo-origin x ∈ D0 has the row minimality property if for any D ⊆ D0 in the

search tree T with root x, every critical file for D is D-minimal.

Lemma 2.B.8. Let r and b be distinct labelings of a square that satisfy the hexagonal (d, d + 3) constraint with

d ≥ 7 and agree on the square’s frame of width k+1. Suppose there exists a pseudo-origin x in the disagreement

set of r and b with the row minimality property. Then at least one of r and b conflicts with the constraint.

Proof. We traverse the unique path (determined by the disagreement set) of the search tree T with root x. Since x

has the row minimality property, every critical file for each disagreement subset in the search tree T with root x is

minimal for that disagreement subset.

At each non-leaf node, we choose one particular file and consider the six possible cases (i.e., ∆ =

±1,±2,±3) required by Lemma 2.B.3. Note that the file chosen for each node is displayed above the node in

the tree diagrams in Figures 2.4–2.7, and the disagreement subsets corresponding to the nodes are shown in Ap-

pendix 2.A. Certain values of ∆ corresponding to relatively easy conflicts are shown in boxes above the nodes, but

for the remaining values of ∆, out-edges are shown leading to other nodes in the tree.

At six particular leaf nodes (namely, 1.21, 2.12, 2.30, 2.32, 3.7, 3.24), we choose a file and show that

all six possible values of ∆ lead to conflicts. At the remaining leaf nodes, we establish a conflict in the given

disagreement subset by using the disagreement points in more than one file. Thus, in any case, all leaf nodes in

the tree T lead to contradictions with the hexagonal (d, d+ 3) constraint, and therefore the original assumption of

positive capacity cannot be true.

The conflicts established at the leaf nodes rely on the fact that all files in Table 2.2 for a disagreement

subset D are D-minimal, since the pseudo-origin x has the row minimality property. The examination of the six

possible ∆ values in a given file at tree nodes also relies on pseudo-origin x having the row minimality property,

since D-minimality of the file is required in Lemma 2.B.3.

46

Section 2.3.3 describes the steps used to exhaustively build these search trees in more detail, and Subsec-

tion 2.B.1 describes the verification of contradictions at the tree leaves, as proven in Lemma 2.B.5 and

Lemma 2.B.6. In particular, Lemma 2.B.6 verifies the contradictions to the hexagonal (d, k) constraint for the 7

special conflicts of tree T1, the one special conflict of T2, and the one special conflict of T3. �

The hypothesis of Lemma 2.B.8 assumes the existence of a pseudo-originx ∈ D0 with the row minimality

property. The following lemmas establish that such a point x indeed exists. They rely on the previously stated fact

that the values of the indices of the rows, columns, and diagonals that are critical for some disagreement subset in

the search tree T are upper bounded by 2, 4, and 4, respectively.

Lemma 2.B.9. Let r and b be distinct labelings of an N × N square with disagreement set D0 that satisfy the

hexagonal (d, d + 3) constraint, with d ≥ 7, and which agree on the square’s frame of width k + 1. Let cm

be the column index of the leftmost point of D0 in row m. Let D ⊆ D0 be a disagreement subset in the search

tree T whose root is a pseudo-origin. Suppose row j is critical for D, but is not D-minimal, and let (i, j) be the

leftmost point of row j in D. Then the leftmost point of row j in D0 is a pseudo-origin if i − 4 < cm whenever

0 ≤ m ≤ j − 1.

Proof. By Lemma 2.B.4 there exist both red and black points in row j in D0 to the left of the point (i, j). Let y be

the leftmost point of row j in D0, and let z be the leftmost point of the other color between y and (i, j). If y and

(i, j) are colored the same, then the column index of y satisfies cj ≤ i − d − 1 by the d constraint. If y and (i, j)

are colored differently, then the column index of z is less than or equal to i− d− 1 by the d constraint. Therefore,

in either case, since cj is less than the column index of z, we have cj ≤ i− d− 1 ≤ i− 8.

Since y is the leftmost disagreement point of row j in D0, the two labelings agree at all points to the left of

y in row j. Whenever 0 ≤ m ≤ j−1, the integer cm is the column index of the leftmost point of row m in D0, and

so the two labelings agree at all points in each row m to the left of column cm. Therefore, since cj+4 ≤ i−4 < cm

whenever 0 ≤ m ≤ j−1, the two labelings agree at points with row index m, for 0 ≤ m ≤ j−1, and with column

or diagonal index less than or equal to cj +4. The two labelings agree in these columns and diagonals at all points

below row 0 as well, since the lowest-left point of D is a pseudo-origin. Therefore, y is a pseudo-origin. �

The following lemma shows that for any x ∈ D0 that is a pseudo-origin without the row minimality

property, there exists another pseudo-origin that is above and to the left of x in D0. This property will be exploited

in an inductive argument in Lemma 2.B.11.

Lemma 2.B.10. Let r and b be distinct labelings of an N × N square with disagreement set D0 that satisfy the

hexagonal (d, d + 3) constraint, with d ≥ 7, and which agree on the square’s frame of width k + 1. Let x ∈ D0

47

(a) 2.13, Case 1 (b) 2.13, Case 2

(c) 2.22, Case 1 (d) 2.22, Case 2

(e) 2.28, Case 1 (f) 2.28, Case 2

(g) 3.4 (h) 3.6

(i) 3.10 (j) 3.11, Case 1

(k) 3.11, Case 2 (l) 3.14

(m) 3.21, Case 1 (n) 3.21, Case 2

Figure 2.16. Images depicting the cases in Lemma 2.B.10. The point labeled Y is the rightmost point of its row

that could be a pseudo-origin. The green area indicates the region where the labelings agree, which shows that the

point labeled Y satisfies the requirements of being a pseudo-origin (as long as the labelings agree at any point to

the left of the point labeled Y). The value of d used in the figures is 7, but any larger value of d would push the

point labeled Y even farther to the left.

48

be a pseudo-origin without the row minimality property. Then there exists a pseudo-origin in D0 that is above and

to the left of x.

Proof. For any row m, let cm be the column index of the leftmost point of row m in D0. By Lemma 2.5.2, since

x is a pseudo-origin, row 0 and any critical columns and diagonals in any D ⊆ D0 in the search tree T with root x

are D-minimal. Therefore, since x does not have the row minimality property, there exists D ⊆ D0 in the search

tree T with root x but for which there exists a critical row that is not D-minimal. The nodes in the search tree

where rows are critical (as opposed to columns or diagonals) are cases 2.13, 2.22, 3.4, 3.6, 3.10, 3.11, 3.14, 3.21,

and in the expansion from 2.28 (in Appendix 2.A).

In each of the subsets D ⊆ D0 in the following itemized cases, row 0 is D-minimal because the lowest-left

point of D is a pseudo-origin, and so the labelings r and b agree to the left of that point. Therefore, by Lemma 2.B.9,

to show a row j > 0 has a pseudo-origin, it suffices to check that i − 4 < cm, whenever 0 ≤ m ≤ j − 1, where i

is the column index of the leftmost point of row j in D.

Figure 2.16 can be used for visualization in the following cases.

• Configurations 2.13 and 2.22

Let D be the disagreement subset in one of configurations 2.13 or 2.22. The critical row for D is row 2,

so suppose row 2 is not D-minimal. There are two cases to consider: row 1 is D-minimal, or row 1 is not

D-minimal.

– Case 1

If row 1 is D-minimal, then the point in row 1 (i.e., at position (1,1)) in D is one of the leftmost two

points of row 1 in D0. So either this point is the leftmost disagreement point of row 1, or the leftmost

disagreement point of row 1 is at most 3 positions to the left of this point. In either situation (and in

either choice of configuration), c1 ≥ −2. The column index i of the leftmost point of row 2 in D is 0,

and c0 = 0. So i − 4 = −4 < −2 ≤ c1 and i − 4 < c0, and so the leftmost point of row 2 in D0 is a

pseudo-origin by Lemma 2.B.9.

– Case 2

Alternatively, suppose row 1 is not D-minimal. The column index i of the leftmost point of row 1 in

D (in either choice of configuration) is at most 2, and c0 = 0. So i − 4 ≤ −2 < 0 = c0, and so the

leftmost point of row 1 in D0 is a pseudo-origin by Lemma 2.B.9.

• Expansion from configuration 2.28

When we add children to the search tree from 2.28 by expanding on row 2, we are assuming that row 2 is

49

D-minimal. So suppose row 2 is not D-minimal. There are two cases to consider: row 1 is D-minimal, or

row 1 is not D-minimal.

– Case 1

If row 1 is D-minimal, then the shown points in row 1 constitute the leftmost two points of row 1 in

D0. Therefore, c1 = 1. The column index i of the leftmost point of row 2 in D is 1, and c0 = 0. So

i− 4 = −3 < 1 = c1 and thus i− 4 < c0, and so the leftmost point of row 2 in D0 is a pseudo-origin

by Lemma 2.B.9.

– Case 2

Alternatively, suppose row 1 is not D-minimal. The column index i of the leftmost point of row 1 in D

is 1, and c0 = 0. So i− 4 = −3 < 0 = c0, and so the leftmost point of row 1 in D0 is a pseudo-origin

by Lemma 2.B.9.

• Configurations 3.4, 3.10, and 3.14

Let D be the disagreement subset in one of configurations 3.4, 3.10, or 3.14. The critical rows for D are row

0 and row 1. Row 0 is D-minimal, so suppose row 1 is not D-minimal. The column index i of the leftmost

point of row 1 in D is at most 1 in any of the three configurations, and c0 = 0. So i − 4 ≤ −3 < 0 = c0,

and so the leftmost point of row 1 in D0 is a pseudo-origin by Lemma 2.B.9.

• Configuration 3.6

Let D be the disagreement subset in configuration 3.6. The only critical row for D is row 1, so suppose

row 1 is not D-minimal. The column index i of the leftmost point of row 1 in D is 0, and c0 = 0. So

i− 4 = −4 < 0 = c0, and so the leftmost point of row 1 in D0 is a pseudo-origin by Lemma 2.B.9.

• Configuration 3.11

Let D be the disagreement subset in configuration 3.11. The critical rows for D are rows 0 and 2. Row 0 is

D-minimal, so suppose row 2 is not D-minimal. There are two cases to consider: row 1 is D-minimal, or

row 1 is not D-minimal.

– Case 1.

If row 1 is D-minimal, then the point in row 1 in D is one of the leftmost two points in row 1 in D0.

So either this point is the leftmost disagreement point of row 1, or the leftmost disagreement point of

row 1 is at most 3 positions to the left of this point in row 1. In either situation, c1 ≥ −2. The column

index i of the leftmost point of row 2 in D is 0, and c0 = 0. So i− 4 = −4 < −2 ≤ c1 and i− 4 < c0,

and so the leftmost point of row 2 in D0 is a pseudo-origin by Lemma 2.B.9.

50

– Case 2.

Alternatively, suppose row 1 is not D-minimal. The column index i of the leftmost point of row 1 in D

is 1, and c0 = 0. So i− 4 = −3 < 0 = c0, and so the leftmost point of row 1 in D0 is a pseudo-origin

by Lemma 2.B.9.

• Configuration 3.21

Let D be the disagreement subset in configuration 3.21. The critical rows for D are rows 0 and 2. Row 0 is

D-minimal, so suppose row 2 is not D-minimal. There are two cases to consider: row 1 is D-minimal, or

row 1 is not D-minimal.

– Case 1.

If row 1 is D-minimal, then the point in row 1 in D is one of the leftmost two points in row 1 in D0.

So either this point is the leftmost disagreement point of row 1, or the leftmost disagreement point of

row 1 is at most 3 positions to the left of this point. In either situation, c1 ≥ 0. The column index i of

the leftmost point of row 2 in D is 2, and c0 = 0. So i− 4 = −2 < c0 ≤ c1, and so the leftmost point

of row 2 in D0 is a pseudo-origin by Lemma 2.B.9.

– Case 2.

Alternatively, suppose row 1 is not D-minimal. The column index i of the leftmost point of row 1 in D

is 3, and c0 = 0. So i− 4 = −1 < 0 = c0, and so the leftmost point of row 1 in D0 is a pseudo-origin

by Lemma 2.B.9.

�

Lemma 2.B.11. Let r and b be distinct labelings of an N × N square with disagreement set D0 that satisfy the

hexagonal (d, d + 3) constraint, with d ≥ 7, and which agree on the square’s frame of width k + 1. Then there

exists a pseudo-origin in D0 with the row minimality property.

Proof. Let x be the lowest-left point of D0, and without loss of generality suppose its color is black and that it is

located at position (0, 0). Clearly x is a pseudo-origin since x is the lowest-left point of D0.

Suppose x does not have the row minimality property. Then by Lemma 2.B.10, there exists another

pseudo-origin that is above and to the left of x in D0. If this process is repeated, then either a pseudo-origin with

the row minimality property will be found in a finite number of steps (since D0 has height less than N), or else

the highest row containing a pseudo-origin of D0 will be reached. The pseudo-origin with greatest row index must

have the row minimality property, or else Lemma 2.B.10 would show the existence of another pseudo-origin in a

higher row, a contradiction. �

51

Chapter 2 is a reprint of the material as it appears in: S. Congero and K. Zeger, “Hexagonal run-length

zero capacity region—Part I: Analytical proofs”, IEEE Transactions on Information Theory, vol. 68, no. 1, pp.

130-152, January 2022.

52

References

[1] R. J. Baxter, “Hard hexagons: exact solution” Journal of Physics A vol. 13, pp. 1023 – 1030, 1980.

[2] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, 1982.

[3] R. J. Baxter, “Planar lattice gases with nearest-neighbour exclusion,” Annals Combinatorics 3, vol. 191, pp.

191 – 203, 1999.

[4] R.J. Baxter and S.K. Tsang, “Entropy of hard hexagons,” J. Phys. A (Math. Gen) vol. 13, pp. 1023 – 1030,

1980.

[5] N. J. Calkin and H. S. Wilf, “The number of independent sets in a grid graph,” SIAM Journal of Discrete

Math, vol. 11, pp. 54 – 60, February 1998.

[6] K. Censor and T. Etzion, “The positive capacity region of two-dimensional run-length-constrained channels,”

IEEE Transactions on Information Theory, vol. 52, no. 11, pp. 5128 – 5140, November 2006.

[7] J.-Y. Chen, Y.-J. Chen, W.-G. Hu, and S.-S. Lin, “Spatial chaos of Wang tiles with two symbols.” Journal of

Mathematical Physics, vol. 57, no. 2, February 2016.

[8] S. Congero and K. Zeger, “Hexagonal run-length zero capacity region—Part II: Automated proofs,” IEEE

Transactions on Information Theory, vol. 68, no. 1, pp. 153-177, January 2022.

[9] B. Durand, G. Gamard, and A. Grandjean, “Aperiodic tilings and entropy,” International Conference on

Developments in Language Theory, pp. 166 – 177, Springer, 2014.

[10] O. Elishco, T. Meyerovitch, and M. Schwartz, “Semiconstrained systems,” IEEE Transactions on Information

Theory, vol. 62, no. 4, pp. 1688 – 1702, April 2016.

[11] O. Elishco, T. Meyerovitch, and M. Schwartz, “On encoding semiconstrained systems,” IEEE Transactions

on Information Theory, vol. 64, no. 4, pp. 2474 – 2484, April 2018.

[12] O. Elishco, T. Meyerovitch, and M. Schwartz, “On independence and capacity of multidimensional semi-

constrained systems,” IEEE Transactions on Information Theory, vol. 64, no. 10, pp. 6461 – 6483, October

2018.

[13] S. Forchhammer and T. V. Laursen, “A model for the two-dimensional no isolated bit constraint,” Proceedings

of the IEEE International Symposium on Information Theory, Seattle, WA, pp. 1189 – 1193, July 2006.

[14] K. S. Immink, Codes for Mass Data Storage Systems, second edition, Shannon Foundation Publishers, Eind-

hoven, The Netherlands, 2004.

[15] G. S. Joyce, “On the hard hexagon model and the theory of modular functions,” Philosophical Transactions

of the Royal Society of London A, vol. 325, pp. 643 – 702, 1988.

[16] G. S. Joyce, “Exact results for the activity and isothermal compressibility of the hard-hexagon model,” Jour-

nal of Physics A: Mathematical and General, vol. 21, pp. L983 – L988, 1988.

[17] P. W. Kasteleyn, “The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic

lattice,” Physica, vol. 27, pp. 1209 – 1225, 1961.

[18] A. Kato and K. Zeger, “On the capacity of two-dimensional run length constrained channels,” IEEE Transac-

tions on Information Theory, vol. 45, no. 4, pp. 1527 – 1540, July 1999.

[19] Zs. Kukorelly and K. Zeger, “The capacity of some hexagonal (d, k) constraints”, IEEE International Sym-

posium on Information Theory (ISIT), Washington, D.C., p. 64, June 2001

53

[20] Zs. Kukorelly and K. Zeger, “Automated theorem proving for hexagonal run length constrained capacity

computation”, IEEE International Symposium on Information Theory (ISIT), Seattle, Washington, pp. 1199 –

1203, July 2006.

[21] E. Louidor and B. H. Marcus, “Improved lower bounds on capacities of symmetric 2D constraints using

Rayleigh quotients,” IEEE Transactions on Information Theory, vol. 56, no. 4, pp. 1624 – 1639, April 2010.

[22] B. Marcus, “Capacity of higher dimensional constrained systems”, In Coding Theory and Applications vol.

3, pp 3 – 21, edited by R. Pinto, P. R. Malonek, and P. Vettori, Springer, 2015.

[23] B. Marcus and R. Pavlov, “Approximating entropy for a class of Z2 Markov random fields and pressure for a

class of functions on Z
2 shifts of finite type,” Ergodic Theory and Dynamical Systems, vol. 33, no. 1, pp. 186

– 220, 2013.

[24] B. Marcus and R. Pavlov, “Computing bounds for entropy of stationary Z
d Markov random fields,” SIAM

Journal on Discrete Mathematics, vol. 27, no. 3, pp. 1544 – 1558, 2013.

[25] B.D. Metcalf and C.P. Yang, “Degeneracy of anti-ferromagnetic Ising lattices at critical magnetic field and

zero temperature,” Physical Review B vol. 18, pp. 2304 – 2307, 1978.

[26] Zs. Nagy and K. Zeger, “Capacity bounds for the three-dimensional run length limited channel,” IEEE Trans-

actions on Information Theory, vol. 46, pp. 1030 – 1033, May 2000.

[27] L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder transition,” Physical Re-

view, vol. 65, nos. 3 and 4, pp. 117 – 149, 1944.

[28] R. Pavlov, “Approximating the hard square entropy constant with probabilistic methods,” Annals of Probabil-

ity, vol. 40, no. 6, pp. 2362 – 2399, 2012.

[29] M. Schwartz and J. Bruck, “On the capacity of the precision-resolution system,” IEEE Transactions on Infor-

mation Theory, vol. 56, no. 3, pp. 1028 – 1037, March 2010.

[30] M. Schwartz and A. Vardy, “New bounds on the capacity of multidimensional run-length constraints,” IEEE

Transactions on Information Theory, vol. 57, no. 7, pp. 4373 – 4382, July 2011.

[31] A. Sharov and R. M. Roth, “Two-dimensional constrained coding based on tiling,” IEEE Transactions on

Information Theory, vol. 56, no. 4, pp. 1800 – 1807, April 2010.

[32] H. Wang, “Proving theorems by pattern recognition – II”, The Bell System Technical Journal, vol. 40, no. 1,

pp. 1 – 41, January 1961.

[33] G.H. Wannier, “Antiferromagnetism. The triangular Ising net,” Physical Review, vol. 79, no. 2, pp. 357 – 364,

1950.

[34] W. Weeks and R. E. Blahut, “The capacity and coding gain of certain checkerboard codes”, IEEE Transac-

tions on Information Theory, vol. 44, pp. 1193 – 1203, May 1998.

54

Chapter 3

Hexagonal Run-Length Zero Capacity Region,

Part II: Automated Proofs

Abstract

The zero capacity region for hexagonal (d, k) run-length constraints is known for many, but not all, d and

k. The pairs (d, k) for which it has been unproven whether the capacity is zero or positive consist of: (i) k = d+2

when d ≥ 2; (ii) k = d+3 when d ≥ 1; (iii) k = d+4 when either d = 4 or d is odd and d ≥ 3; and (iv) k = d+5

when d = 4. Here, we prove the capacity is zero in case (i) when 2 ≤ d ≤ 9, in case (ii) when 3 ≤ d ≤ 11,

and in case (iii) when d ∈ {4, 5, 7, 9}. We also prove the capacity is positive in case (ii) when d ∈ {1, 2}, in

case (iii) when d = 3, and in case (iv). The zero capacities for k = d + 4 are the first and only known cases

equal to zero when k − d > 3. All of our results are obtained by developing three algorithms that automatically

and rigorously assist in proving either the zero or positive capacity results by efficiently searching large numbers

of configurations. The proofs involve either upper bounding the number of paths through certain large directed

graphs, finding forbidden strings, or building distinct tileable square labelings. Some of the proofs examine over

20 billion cases using a supercomputer. In Part I of this two-part series, it is proven that the capacity is zero for all

of case (i), and for case (ii) whenever d ≥ 7. Thus, the only remaining unknown cases are now when k = d + 4,

for any odd d ≥ 11.

55

3.1 Introduction

This paper is Part II of a two-part series. Some of the background, motivation, and basic definitions will

be repeated here so that the presentation can be followed in a self-contained manner. The reader is referred to Part

I [7] for other details.

A one-dimensional run-length constraint imposes both lower and upper bounds on the number of zeros

that occur between consecutive ones in a binary string. Specifically, if d and k are nonnegative integers, or ∞, then

a binary string is said to satisfy a (d, k) constraint if every consecutive pair of ones in the string has at least d zeros

between them and the string never has more than k zeros in a row. We will assume throughout that k < ∞. It is

known that if k > d, then the number of (one-dimensional) N -bit binary strings that satisfy the (d, k) constraint

grows exponentially in N (e.g., [9]) and that the logarithm (base two) of that number, divided by N , approaches a

positive limit as N grows to infinity. This limit is known as the “capacity” of the constraint.

The concepts of (d, k) constraints and capacities have been generalized to two dimensions, where the

one-dimensional (d, k) constraint is imposed both vertically and horizontally. Sometimes these two-dimensional

constraints are referred to as “rectangular constraints”. To determine the capacity of a rectangular constraint, one

counts the number of binary labelings of an N × N square that satisfy the constraint, takes its logarithm, and

then divides by the area N2 of the square. It is known that this quantity approaches a limit Crect(d, k) (called the

“capacity” again) as N grows to infinity (e.g., [12]).

The zero capacity region for a particular type of constraint is the set of all pairs (d, k) for which the (d, k)

capacity equals zero. If a particular constraint has zero capacity, then the number of valid labelings of a region

does not grow exponentially fast in terms of the volume (e.g., length for 1 dimension, area for 2 dimensions, etc.)

of the region.

Various estimates of the two-dimensional rectangular capacity were obtained for the particular case

Crect(1,∞) ≈ 0.587891162 by Calkin and Wilf [5], Weeks and Blahut [23], Baxter [3], Pavlov [18], and in [16].

This rectangular (1,∞) constraint is sometimes referred to as the “hard square model” by physicists [2], and its

capacity is known to equal the rectangular capacity Crect(0, 1).

For two-dimensional rectangular (d, k) constraints, the zero capacity region was completely characterized

in [12], where it was shown that the capacity satisfies Crect(d, k) > 0 if and only if k ≥ d + 2, when d ≥ 1 (i.e.,

Crect(d, k) = 0 when k = d+ 1). It is also known that Crect(0, k) > 0 and Crect(k,∞) > 0 for all k ≥ 1. Bounds

on the two-dimensional rectangular (d, k) capacity were given in [12], by Sharov and Roth in [20], and were later

improved and generalized to higher dimensions by Schwartz and Vardy in [19].

A two-dimensional “hexagonal” constraint imposes one-dimensional (d, k) constraints along the 3 pri-

56

mary directions on a hexagonal lattice. An equivalent way to view the hexagonal constraint on a rectangular lattice

is to impose the (d, k) constraint both horizontally and vertically, and also along one of the two diagonal directions

(we will use the northeast-southwest direction, but refer to it as the “northeast diagonal”) [2, p. 409].

The hexagonal (d, k) capacity, denoted by Chex(d, k), is the limit as N → ∞ of the logarithm base two

of the number of N ×N squares satisfying the hexagonal (d, k) constraint, divided by the area N2 of the square.

The hexagonal (d, k) capacity Chex(d, k) is known to be positive for certain pairs (d, k). In fact, if

Chex(d, k) > 0, then it immediately follows that Chex(d
′, k′) > 0 whenever either d′ < d or k′ > k (or both),

since the constraints weaken in either instance. Positive lower bounds on the hexagonal (d, k) capacity were previ-

ously proven for d = 0, and for all values of d ≥ 5 for sufficiently large k (for example, k = d + 5 suffices), and

now also for 1 ≤ d ≤ 4 with our results in this paper. In what follows, we will summarize, for each d > 0, the

smallest known k such that Chex(d, k) > 0.

The only exactly known non-zero capacity of a hexagonal (d, k) constraint is for the case (1,∞), which

is known in the physics literature as the “hard hexagon model”. As with the rectangular constraint, it is easy to

show that the hexagonal (0, 1) and (1,∞) capacities are the same, by reversing the roles of 0s and 1s. The problem

of counting the number of patterns in a bounded area that satisfy the hexagonal (1,∞) constraint was considered

in the context of Ising models in physics, by Onsager [17], and Wannier [22]. An equivalent problem is to find the

number of configurations of non-attacking kings on a chessboard with regular hexagonal cells.

Metcalf and Yang [15] conjectured that the capacity of the hexagonal (1,∞) constraint was log2 e
1/3 ≈

0.48090, but this was disproven by Baxter and Tsang [4], who obtained a slightly more accurate estimate. Bax-

ter [1,2], and Joyce [10,11] performed numerous intricate calculations, which when combined determine the exact

hexagonal (1,∞) capacity.

Using the technique of finding two distinct tileable squares, Censor and Etzion [6] proved that Chex(d, d+

4) > 0 for all even d ≥ 6. An immediate consequence is that Chex(d, d + 5) > 0 for all odd d ≥ 5, since the

hexagonal (d, d + 5) constraint is weaker than the (d + 1, d + 5) constraint. In this paper, we present a tiling

algorithm that automatically generates distinct tileable square labelings that demonstrate positive hexagonal (d, k)

capacities for certain pairs (d, k). In particular, we prove that the capacities Chex(1, 4), Chex(2, 5), Chex(3, 7), and

Chex(4, 9) are all positive.

Also, we note that the positive hexagonal (d, k) capacities obtained in [6] were for the case of k = d+ 4

when d is even and d ≥ 6, but the proof technique does not apply to odd d ≥ 5. In this paper, in contrast to even

d ≥ 6, we show that some of the open cases with k = d+ 4 when d is odd have zero capacity.

Whether or not Chex(d, k) is positive or zero has been unproven1 for the following cases:

1Some of these cases were stated in [13] and [14] and are included here for archival purposes.

57

(i) k = d+ 2 when d ≥ 2

(ii) k = d+ 3 when d ≥ 1

(iii) k = d+ 4 when either d = 4, or d is odd and d ≥ 3

(iv) k = d+ 5 when d = 4.

Among these open cases, we prove in Part I that the hexagonal (d, k) capacity equals zero in all of case (i), and

in case (ii) whenever d ≥ 7. Here, in Part II, we prove that the capacity is zero in case (i) when 2 ≤ d ≤ 9 and

case (ii) when 3 ≤ d ≤ 11 (in Corollary 3.2.11 and Corollary 3.3.4), and in case (iii) when d ∈ {4, 5, 7, 9} (in

Corollary 3.2.11), and that the capacity is positive in case (ii) when d ∈ {1, 2}, in case (iii) when d = 3, and in

case (iv) (in Theorem 3.4.1).

Table 3.1 summarizes the present knowledge of the zero capacity region when d is less than 19 and k is

less than 25, including the results we present in Parts I and II of these papers. The results from Part I are shown

surrounded by squares and the results from Part II are shown surrounded by circles. We note that four of the results

turn out to be produced by both the methods in Part I and Part II, and we denote them in the table being surrounded

by both a circle and a square. Proofs of the results in Part I and Part II have not previously appeared in the literature.

We note that although we provide here and in Part I the first published proofs of the cases where k = d+ 2, those

satisfying d ≥ 7 are not listed as new results in the table, since they directly follow from our stronger (but more

complex) k = d+ 3 proof in Part I.

We also note that no positive capacities in the table were previously proven on any of the four rows

corresponding to d = 1, 2, 3, 4, but our results in Theorem 3.4.1 imply that the entire row to the right of each of

our newly added “+” entries is filled with positive capacities.

One way to demonstrate that a particular hexagonal (d, k) capacity is positive is to exhibit at least two

rectangular labelings of the same dimensions that can validly tile the plane in any configuration. For example, for

some fixed d and k, supposeA andB are two differentM ×N rectangles filled with 0s and 1s that each satisfy the

hexagonal (d, k) constraint, and such that d < k < M ≤ N . If each of the 16 possible assignments of rectangles

1 2

3 4

Figure 3.1. Tiling configuration for demonstrating positive capacities with the Rectangle Tiling Algorithm. If each

of two different binary labelings A and B of an M ×N rectangle can arbitrarily occupy each of the four positions

shown without violating the hexagonal (d, k) constraint, then the constraint has positive capacity.

A and B to the four possible positions shown in Figure 3.1 causes the resulting 2N × 2M rectangle to satisfy

the (d, k) hexagonal constraint, then arbitrary tilings of the plane by rectangles A and B also satisfy the same

58

Table 3.1. Summary of the known zero hexagonal (d, k) capacity region for small d and k. Zero and positive

capacities are denoted by “0” and “+”, respectively. The circled symbols denote our contributions in the present

paper (Part II) and the zeros in squares are from our Part I paper [7], and those with both squares and circles

occurred in both Parts I and II. The question marks are remaining unsolved cases.

d\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 0 +

1 0 0 0 +

2 0 0 00 +

3 0 0 00 0 + + + + + + + + + + + + + + + + + +

4 0 0 00 0 0 + + + + + + + + + + + + + + + +

5 0 0 00 0 0 + + + + + + + + + + + + + + +

6 0 0 00 0 + + + + + + + + + + + + + + +

7 0 0 0 00 0 + + + + + + + + + + + + +

8 0 0 0 00 + + + + + + + + + + + + +

9 0 0 0 00 0 + + + + + + + + + + +

10 0 0 0 00 + + + + + + + + + + +

11 0 0 0 00 ? + + + + + + + + +

12 0 0 0 0 + + + + + + + + +

13 0 0 0 0 ? + + + + + + +

14 0 0 0 0 + + + + + + +

15 0 0 0 0 ? + + + + +

16 0 0 0 0 + + + + +

17 0 0 0 0 ? + + +

18 0 0 0 0 + + +

59

constraint. In such a case, since the rectangles A and B each have area MN and the four positions can be chosen

freely as either A or B, the capacity is at least 1/(MN), which is positive.

We create a Rectangle Tiling Algorithm (discussed in Section 3.4) using this technique, and show in

Theorem 3.4.1 that Chex(1, 4), Chex(2, 5), Chex(3, 7), and Chex(4, 9) are all positive. For each of these cases, a

square is determined that can take on two distinct labelings which can arbitrarily tile the plane without violating

the constraint. These squares are depicted in Figures 3.16–3.19, in which a variable x can be set as either 0 or 1 to

obtain two distinct tileable squares (note that x = 1 − x). Similarly, for d = 0, while the fact that Chex(0, 1) > 0

follows from elaborate derivations of Baxter [1] and Joyce [10,11], a much simpler proof is given in Theorem 3.4.1

using two distinct tileable squares.

Prior to this present paper, for the case of k = d+ 4, some hexagonal (d, k) capacities were known to be

positive but none were known to equal zero. Specifically, it was previously known [?, 10, 11] that Chex(0, 1) > 0,

and it is shown here (Theorem 3.4.1) that Chex(1, 4) > 0, Chex(2, 5) > 0, and Chex(3, 7) > 0, from which it

follows that Chex(d, d + 4) > 0 whenever 0 ≤ d ≤ 3. Additionally, it was proven by Censor and Etzion [6] that

Chex(d, d+ 4) > 0 for all even d ≥ 6. This knowledge left as open problems whether Chex(d, d+ 4) is positive or

zero in the d = 4 or odd d ≥ 5 cases.

In our present paper, we demonstrate the first known cases for k = d+4 where the hexagonal capacity is

zero, specifically whenever d ∈ {4, 5, 7, 9}. The fact that the k = d+ 4 cases alternate between zero and positive

hexagonal capacities from d = 5 to d = 10 contrasts the case of k = d + 3 where we showed (in Part I) that

Chex(d, d+3) = 0 for all d ≥ 3. Also, in the rectangular constraint case, there is no such alternation between zero

and positive capacities [12].

Here, in Part II, one of our approaches to proving particular hexagonal (d, k) capacities are zero is to

show that the number of valid labelings of an N × N square grows like 2O(N) as N → ∞, whereas one would

need 2Ω(N2) to assure a positive capacity. To accomplish this, we create the Constant Position Algorithm (defined

formally in Section 3.2.4), which assists in the proof by showing that a valid hexagonal (d, k) labeling of any

(k + 1) consecutive rows in an N ×N square allows only a small number of choices for validly labeling the row

immediately above the (k + 1) consecutive rows. The exact number of such valid labelings of that new row is

shown to be bounded, as N → ∞. This in turn implies that there are only 2O(N) valid labelings of the square as

N → ∞, which yields zero capacity. These facts are established by constructing two directed graphs representing

allowable sequences of labelings of a (k + 1) × (k + 1) square that slides horizontally or vertically, one row or

column at a time, respectively.

In order to upper bound the number of paths through these two directed graphs, we show that it suffices

to determine which pairs of paths through the horizontal graph have vertically compatible vertices. To aid this au-

60

tomated search, we show the useful fact that there is no loss of generality in restricting paths to strongly connected

components of the graphs (Lemma 3.2.8). The computation yields an upper bound on the number of ways that a

valid labeling of a (k + 1)×N horizontal strip can be extended upwards by one row, and, consequently, gives an

upper bound on the number of valid labelings of an N ×N square.

It is shown that if a certain constant position property, defined in Section 3.2.4, exists for a particular

hexagonal (d, k) constraint, then the upper bound is tight enough to make a positive capacity impossible for that

constraint (Theorem 3.2.9).

We use our Constant Position Algorithm to efficiently verify if the constant position property holds for

the (d, k) cases of concern. The algorithm reduces the complexity of such a search from what we assess to be

“virtually impossible” with today’s technology, down to “manageable”, using a multi-node supercomputer with

extensive memory capabilities. When the algorithm was implemented and executed, over 20 billion separate cases

were examined, and as a result we directly observed that the constant position property indeed holds for 11 new

cases. Namely, assisted by the Constant Position Algorithm, we prove in Corollary 3.2.11 that Chex(d, k) = 0

whenever

(d, k) ∈ {(3, 6), (4, 7), (4, 8), (5, 8), (5, 9), (6, 9), (7, 10), (7, 11), (8, 11), (9, 12), (9, 13)}.

In fact, we also observed that the constant position property holds more generally for all cases of zero hexagonal

(d, k) capacity when d ≤ 9.

In addition to the Constant Position Algorithm and the Rectangle Tiling Algorithm, we also introduce a

third automated proof technique, which we call the Forbidden String Algorithm. The Forbidden String Algorithm,

discussed in Section 3.3, proves some hexagonal (d, k) capacities are zero by showing that certain binary strings

can never occur in large validly labeled rectangles. It uses the fact that Chex(d, k) = Chex(d + 1, k) if 10d1 is

forbidden, and Chex(d, k) = Chex(d, k − 1) if 10k1 is forbidden.

The emphasis in this paper will be on the Constant Position Algorithm, as this algorithm takes the most

effort to describe, and gives the best results. After that, we will discuss the Forbidden String Algorithm and the

Rectangle Tiling Algorithm.

Some preliminary definitions are now provided. A rectangle is an M ×N two-dimensional array, where

M is the number of rows and N is the number of columns. If M < N (respectively, M > N), then the rectangle

is called a horizontal strip (respectively, a vertical strip). A labeling of a set is an assignment l(x) ∈ {0, 1} to

each element x of the set. A labeling l of a rectangle is said to satisfy the hexagonal (d, k) constraint (or is valid)

if along every row, column, and northeast diagonal, the number of 0s between any two 1s is at least d, and no run

61

of 0s is longer than k. A position in an M × N rectangle is a relative location (x, y), indexed by integer-valued

Cartesian coordinates. The ith row (respectively, column) of such a rectangle consists of positions with second

(respectively, first) coordinate i. For example, the bottom-left element of any rectangle is at position (1, 1) and the

top-right (i.e., in row M and column N) element is at position (N,M).

If l is a labeling, then l(x, y) will denote the value of the labeling l at position (x, y).

Let L(M,N) denote the set of valid labelings of an M × N rectangle. The capacity of the hexagonal

(d, k) constraint is defined as

Chex(d, k) = lim
M,N→∞

log2 |L(M,N)|
MN

and is known to exist for all d and k by subadditivity (e.g., [12]). Note that if Chex(d, k) > 0, then the number of

valid labelings is lower bounded as |L(M,N)| = 2Ω(MN). For the remainder of the paper, it is assumed that d and

k are fixed and all logarithms are base 2.

3.2 Constant Position Algorithm for proving zero hexagonal

(d, k) capacity

The Constant Position Algorithm is an automated computer search that examines as many as billions of

cases in order to assist the rigorous proof of certain zero hexagonal (d, k) capacity cases. Our proof relies on a

peculiar property, which we call the constant position property and describe in Section 3.2.4, that turns out to be a

sufficient condition for the hexagonal (d, k) capacity to be zero (see Theorem 3.2.9).

The algorithm tries to determine if a given hexagonal (d, k) constraint has zero capacity. The main idea

is to check how many valid labelings there are of a horizontal (k + 1) ×N strip, given the (valid) labeling of the

horizontal (k + 1)×N strip immediately below it (i.e., shifted one row down). If the number of such labelings of

the upper horizontal strip is small enough, no matter which labeling is used for the lower horizontal strip, then the

number of valid labelings of an N ×N square can be upper bounded tightly enough to avoid 2Ω(N2) growth, thus

proving the (d, k) constraint has zero capacity.

In order to efficiently determine if the labelings of such shifted horizontal strips are severely constrained,

it is convenient to create a directed graph, whose nodes are valid labelings of a (k+1)× (k+1) square, and whose

directed edges convey whether one square labeling can overlay the other, but shifted one column to the right. We

also create an analogous graph for vertical sliding compatibility. We examine labelings corresponding to walks

through the constructed (horizontal) graph that do not change from one graph component to another. We prove that

this is, in fact, possible to do without sacrificing generality (see Lemma 3.2.8). As a result, the Constant Position

Algorithm below focuses on horizontal (k + 1)×N labelings that each correspond to a walk in a single arbitrary

62

component of the (horizontal) graph.

We note that as k grows, the number of valid labelings of (k + 1) × (k + 1) squares grows rapidly,

which makes storage and processing computationally difficult. Thus, the computational complexity of performing

the Constant Position Algorithm increases, and at some point becomes infeasible, even with massive computing

power (typically when k ≥ 11). However, for every computationally feasible case, our results establish that

Chex(d, k) = 0 if and only if the constant position property holds, We suspect the “only if” direction of this

assertion may be true for even more complex cases, but we leave it as an open question in Conjecture 3.2.12.

3.2.1 Definitions

Let Λ be the set of valid labelings of a (k + 1)× (k + 1) square. Define two directed graphs

Gh = (Λ, Eh)

Gv = (Λ, Ev)

such that (x, y) ∈ Eh if and only if the x-labeling of the rightmost k columns of the (k + 1) × (k + 1) square

is identical to the y-labeling of the leftmost k columns of the square, and such that (x, y) ∈ Ev if and only if the

x-labeling of the topmost k rows of the square is identical to the y-labeling of the bottommost k rows of the square.

Any such graphs will be called label graphs.

Figure 3.2 illustrates labelings of two 3 × 3 squares and how they can form the vertices of a single edge

in Gh. Thus if there is an edge from x to y in Gh, then the valid labeling x can be extended rightward by one

L

D

H

B C

J KI

A

D

H

LJ

C

K

A B

E

I

B

F G

GFE

K

C

F G

J

Figure 3.2. Illustration of an edge in Gh. Two 3 × 3 labeled squares (the vertices) are overlaid to form a 3 × 4
horizontal strip. The letters represent binary values according to some valid labeling.

column to a valid labeling of a (k + 1) × (k + 2) rectangle, using the y-labeling of the rightmost column of the

(k + 1) × (k + 1) rectangle. Similarly, if there is an edge from x to y in Gv, then the valid x-labeling can be

extended upward one row using the y-labeling of the topmost row of the (k+1)× (k+1) rectangle. In particular,

63

if (λ1, λ2) is an edge in Gv , then labeling λ2 ∈ Λ is said to be vertically compatible above labeling λ1 ∈ Λ.

The label graph Gh is defined so that a labeling of a (k + 1) × N horizontal strip is valid if and only if

the sequence of labelings of (k + 1)× (k + 1) squares, obtained by sliding one column at a time from left to right

in the strip, is a (directed) walk in the graph Gh. Similarly, the label graph Gv is defined so that a labeling of a

M × (k + 1) vertical strip is valid if and only if the sequence of labelings of squares, obtained by sliding one row

at a time from bottom to top in the strip, is a (directed) walk in the graphGv. In these cases, the walk in Gh is said

to correspond to the labeling of the horizontal strip, and the walk in Gv is said to correspond to the labeling of the

vertical strip.

Define LG1,G2(M,N) to be the set of labelings l of an M ×N rectangle such that the restriction of l to

any (k+1)×N horizontal strip corresponds to a walk throughG1 and the restriction of l to anyM×(k+1) vertical

strip corresponds to a walk throughG2. The two label graphs G1 and G2 are said to generate LG1,G2(M,N).

One basic fact that we will repeatedly rely on is that any labeling of an M ×N square is valid if and only

if the labeling is valid on every (k + 1) × (k + 1) subsquare of the M × N square. This is due to the fact that

any violation of the k constraint (i.e., the existence of a string 0k+1) along a horizontal, vertical, or diagonal would

have to occur in a (k+ 1)× (k+ 1) subsquare (as would any violation of the d contraint). A consequence (shown

in Lemma 3.2.5) is that LGh,Gv
(M,N) = L(M,N).

A directed graph is called strongly connected if there exist directed paths from every vertex to every other

vertex in the graph. A strongly connected subgraphK of G is maximal if no other strongly connected subgraph of

G contains K . Maximal strongly connected subgraphs of G will be referred to as components. The components

of G partition the vertices of G, but not necessarily the edges. A key property that we will make use of is that any

walk through a directed graph that leaves a particular component can never return to that component.

A component is called cyclic if it contains a directed cycle. In Gh, any component K is cyclic if and

only if a bi-infinite walk through K corresponds to a labeling of a (k + 1)×∞ horizontal strip. In fact, the only

non-cyclic components are single vertices without self-loops, and thus the lone vertex in a non-cyclic component

can appear in the labeling of a (k + 1) × N horizontal strip at most once. Analogous statements apply to cyclic

and non-cyclic components in Gv .

If d > 0 and k < ∞, then the graphs Gh and Gv cannot contain any self-loops, since the vertex in any

self-loop would necessarily contain either an all-0 or all-1 labeling of a row or column of a (k+1)×(k+1) square.

More generally, all cycles in Gh and Gv must have at least d+ 1 edges, and thus all cyclic components of Gh and

Gv must contain at least d+ 1 vertices.

The following example illustrates the types of components that can occur in Gh or Gv.

Example 3.2.1. The directed graph in Figure 3.3 has components whose vertex sets are {1, 2, 3}, {4}, {5, 6},

64

and {7, 8, 9}, and whose edge sets consist of all edges that connect vertices within each vertex set. Of these

components, all are cyclic except the component whose vertex set is {4}.

1

2

3 4 5 6 7

8

9

Figure 3.3. Graph used in Example 3.2.1.

In the following example, we use the hexagonal (3, 4) constraint to illustrate the correspondence between

walks through the graph Gh and sequences of labelings of (k + 1) × (k + 1) squares in (k + 1)×M horizontal

strips for an actual valid example labeling. The capacity of the hexagonal (3, 4) constraint is known to be zero (it

is implied by the known zero capacity of the rectangular (3, 4) constraint), and it results in a relatively small label

graph Gh.

Example 3.2.2. Figure 3.4 illustrates the directed graph Gh for the hexagonal (3, 4) constraint. The graph Gh

consists of 7 components: three disjoint 5-cycles, and four isolated vertices. Each vertex is a labeling of a 5 × 5

square. Figure 3.5 shows an example of a valid labeling of a 15× 20 rectangle. It can be seen that the labeling of

any horizontal strip of width 5 corresponds to a walk through one of the 3 cycles in the graph.

Let R be the set of all (k + 1)× (k + 1) squares in an M ×N rectangle. Each square in R lies entirely

in one particular (k + 1) × N horizontal strip within the M × N rectangle. Each such horizontal strip contains

(N − k) squares of size (k+ 1)× (k+ 1), and for any labeling of the M ×N rectangle, the labeling of each such

(k + 1)× (k + 1) square within the strip belongs to exactly one component of Gh. In fact, when scanning a strip

from left to right, if the labeling of a (k + 1) × (k + 1) square lies in a particular component, but the labeling of

the next square to its right (i.e., sliding one column rightward) in the strip does not lie in the same component, then

the former component can never be revisited within that strip.

Given a fixed valid labeling l of an M × N rectangle, we identify, for each horizontal strip and for each

component of Gh, the first (i.e., leftmost) occurrence in the strip of a (k + 1) × (k + 1) square labeling from the

component. We use the notation Th(l) to denote the set of all such leftmost squares in all strips of the M × N

rectangle. Specifically, for any l ∈ LGh,Gv
(M,N), define

Th(l) = {r ∈ R : the labeling of each (k + 1)× (k + 1) square to the left of r in the same strip belongs to a

different component of Gh as the labeling of r}.

65

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

v1

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

v2

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

v3

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

v4

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

v5

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

v6

0 1 0 0 0

0 0 0 0 1

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

v7

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

0 0 1 0 0

v8

0 0 0 0 1

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

v9

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

0 0 1 0 0

1 0 0 0 0

v10

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

v11

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

v12

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 1 0 0

v13

0 0 0 1 0

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

v14

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

v15

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

v16

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

v17

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

v18

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

v19

Figure 3.4. The graph Gh for the hexagonal (3, 4) constraint. The graph Gh consists of 3 disjoint 5-cycles and 4
isolated vertices, where each vertex is a valid labeling of a 5× 5 square.

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Figure 3.5. A labeling of a 15×20 rectangle satisfying the hexagonal (3, 4) constraint. The labeling of each 5×20
horizontal strip in the rectangle corresponds to a walk through the second component of Gh listed in Figure 3.4.

For example, the labeling of the horizontal strip consisting of the top 5 rows of the rectangle corresponds to the

sequence of 16 vertices that starts at v6 and continues through the cycle in the second component of Gh, i.e.,

v6, v7, v8, v9, v10, v6,

66

Note that every (k + 1) × (k + 1) square whose labeling under l is in a non-cyclic component of Gh

necessarily lies in Th(l).

For any fixed labeling l ∈ LGh,Gv
(M,N), each (k + 1) × N horizontal strip in the M × N rectangle

corresponds to a walk through the graphGh. Each node in such a walk belongs to exactly one component ofGh. If

(a, b) is a directed edge in such a walk and a and b belong to different components of Gh, then the rectangle being

labeled by b is in Th(l). Thus, Th(l) is the set of all locations of component transitions in Gh for the horizontal

strips of the M ×N rectangle.

We define the equivalence relation ∼ between labelings l1, l2 ∈ LGh,Gv
(M,N) so that l1 ∼ l2 iff

Th(l1) = Th(l2), and denote the associated equivalence class of any l ∈ LGh,Gv
(M,N) by [l].

The Constant Position Algorithm is described in Section 3.2.4 in terms of 6 Steps, and in this section we

offer a preview in order to convey the gist of how it works. The following definition will be used throughout the

remainder of the paper.

Definition 3.2.3. For a given hexagonal (d, k) constraint, let H1, . . . , Hα and V1, . . . , Vβ , respectively, denote the

components of the directed graphs Gh and Gv . Also, define the disjoint graph unions

H =
α
⋃

i=1

Hi and V =

β
⋃

i=1

Vi.

The graphs H and V are obtained from the graphs Gh and Gv, respectively, by removing all edges be-

tween different components. For some pairs (d, k), it may happen that none of the components ofGh (respectively,

Gv) are connected by edges to any other components (e.g., see Example 3.2.2), in which case H = Gh (respec-

tively, V = Gv).

3.2.2 Preview of Step 5 of the algorithm

An explicit description of the Constant Position Algorithm is given in Section 3.2.4. Here, we motivate

Step 5, a key part of the algorithm.

Consider a valid labeling of a (k + 2)× (k + 1) vertical rectangle within an N ×N square. Denote the

labelings of the lower and upper (k + 1)× (k + 1) squares within this vertical rectangle by λ and λ′, respectively,

and let λ and λ′ be nodes common to bothH and V . Note that λ′ is vertically compatible above λ, i.e., the ordered

pair (λ, λ′) is a directed edge in V . Since the lower and upper squares overlap in k rows, the number of possibilities

for the pair (λ, λ′) is limited.

Denote by ρ the top row of the (k+2)×(k+1) rectangle. For any given labelingλ, all possible labelings λ′

that are vertically compatible above λ may agree with each other in certain locations of ρ. By observing numerous

67

such labelings for the (d, k) pairs of interest, we discovered that for every fixed pair of components that λ and λ′

could belong to in H , there always appears to be at least one position in ρ that gets labeled the same by every λ′

that is vertically compatible above a given λ.

In other words, whereas the noted position in ρ depends only on the fixed pair of components of λ and

λ′, the value of the labeling at that position depends additionally on the specific choice of λ within its component.

However, the value is constant for each λ′ in its component that is vertically compatible above λ. The existence of

such a position seems to arise due to the smallness of the difference (k − d) in our cases of interest, and provides

a crucial step in our proof that certain hexagonal capacities are zero.

3.2.3 Preview of Lemma 3.2.8

Lemma 3.2.8 provides an important reduction in the amount of computational complexity needed to de-

termine whether the constant position property holds for the particular hexagonal (d, k) constraint being examined.

Specifically, it allows one to restrict attention to searching the connected components of two directed graphs rather

than the entire graphs. We now provide a preview and summary of the proof of this lemma.

Let l ∈ LGh,Gv
(N,N). Then the labeling of each (k+1)×N horizontal strip induced by l corresponds to

a walk throughGh containing exactly (N −k) nodes, and there are at most α vertices whose previous vertex in the

walk is from a different component (since there are α components inGh). These at most α vertices in a component

are the first occurrences in the walk of a vertex from the component they lie in, and are called “transition vertices”.

Similarly, there are exactly (N −k) horizontal strips of size (k+1)×N in the N ×N square, so there are at most

α(N − k) ≤ αN transition vertices among all of the (N − k) horizontal strips. We call the squares labeled by the

transition vertices “transition squares”.

In Lemma 3.2.7, we show that there are not too many possible arrangements of these transition squares in

the N ×N square. More specifically, in each (k + 1)×N horizontal strip, any of the at most α transition squares

can be appear in at most (N−k) locations or not at all. Thus there are at most (N−k+1)α possible arrangements

of the transition squares in such a strip. Since there are (N − k) horizontal strips, it follows that there are at most

(N − k + 1)α(N−k) ≤ 2αN logN = 2o(N
2)

possible arrangements of the transition squares in the entire N ×N square.

Now suppose the number of valid labelings of an N ×N square is large enough (asymptotically) to yield

a positive capacity, i.e., |LGh,Gv
(N,N)| = 2Ω(N2). Then, by the previous argument, there exists a particular

arrangement of these transition squares for which there are many labelings in LGh,Gv
(N,N) (specifically 2Ω(N2))

68

that induce this exact arrangement of transition squares in the N × N square. We show in Lemma 3.2.8 that for

such a fixed particular arrangement, there exists a smaller subsquare of the N ×N square that:

(i) is disjoint from the transition squares, and

(ii) has many valid labelings.

Specifically, this subsquare has side length of order
√
N , and has 2Ω(N) valid labelings.

To find such a subsquare, we partition the N × N square into a grid of about N/σ2 subsquares with

side lengths approximately σ
√
N , and we can (and do) choose σ so that the percentage of these subsquares that

intersect transition squares stays arbitrarily small as N grows.

The subsquares that intersect transition squares have a total area equal to the number of subsquares (ap-

proximately (k + 1)2αN) times the subsquare area (approximately σ2N). Thus, the number of valid labelings

of all the subsquares that intersect transition squares is at most 2(k+1)2ασ2N2

, whose growth rate as N → ∞ can

be made arbitrarily less than that of the capacity growth rate, 2Chex(d,k)N
2

, by choosing σ small enough. This fact

implies that the growth rate of the number of valid labelings of all the subsquares that do not intersect transition

squares can be made asymptotically arbitrarily close to 2Chex(d,k)N
2

. Since there are onlyN/σ2 subsquares in total,

we can show that at least one subsquare that does not intersect any transition square must have about 2Chex(d,k)N

valid labelings.

Such a subsquare satisfying (i) and (ii) above can be found for any side length
√
N by considering larger

and larger N × N squares, and so |LH,Gv
(
√
N,

√
N)| is asymptotically 2Chex(d,k)N , and thus |LH,Gv

(N,N)| is

asymptotically 2Chex(d,k)N
2

. Applying the same argument to transitions between components of Gv that occur

in labelings of LH,Gv
(N,N) shows that |LH,V (N,N)| is also asymptotically 2Chex(d,k)N

2

. In other words, in

Lemma 3.2.8 we show the capacity of the hexagonal (d, k) constraint is unchanged even if we constrain all walks

throughGh and Gv , corresponding to labelings of (k + 1)×N horizontal and N × (k + 1) vertical strips, to stay

within a single component each. This theorem justifies restricting attention to the components of Gh and Gv in

Steps 3, 4, and 5 of the Constant Position Algorithm.

3.2.4 Algorithm description

We say that an ordered pair of components (Ha, Hb) of Gh is vertically semi-compatible if at least one

vertex in Hb is vertically compatible above at least one vertex in Ha.

Definition 3.2.4. A hexagonal (d, k) constraint has the constant position property if for every pair (Ha, Hb) of

vertically semi-compatible components from Gh, there exists j ∈ {1, . . . , k + 1}, such that for each labeling λa

in Ha, the value at position (j, k + 1) of every labeling λb in Hb vertically compatible above λa is constant (note:

the value can vary with λa).

69

The constant position property is the key observation that allows us to successfully find new hexagonal

(d, k) capacities that equal zero. This property is illustrated in Figure 3.6.

It is assumed that the bottom-most (k+1)×N horizontal strip of theM×N rectangle contains (k+1)×

(k + 1) square labelings from the componentHa in Gh, and that the overlapping (k +1)×N horizontal strip one

row higher contains (k+1)× (k+1) square labelings from the componentHb in Gh. The four (k+1)× (k+1)

squares shown in the bottom strip of Figure 3.6 are assumed to have labelings λa and λ′a, as indicated. Any location

denoted by x or y is at position (j, k + 1) of the (k + 1) × (k + 1) squares that are shifted one row up from the

squares labeled by λa or λ′a. If the constraint has the constant position property, then the values at each such x are

the same no matter which (k + 1)× (k + 1) labeling from Hb is chosen, and similarly for the values of each such

y, although the value of y may differ from the value of x.

λaλa λ′aλ′a
k
+
1

k+1k+1k+1k+1

k
+
2

N

M

xx yy

col jcol j col j col j

Figure 3.6. Illustration of the constant position property.

The Constant Position Algorithm is not guaranteed to find all such zero capacity constraints, but has

proven effective for all cases within its computational complexity capabilities (see Theorem 3.2.13).

Constant Position Algorithm

Step 1: Create the set Λ of valid labelings of a (k + 1)× (k + 1) square.

Step 2: Create label graphs Gh = (Λ, Eh) and Gv = (Λ, Ev).

Step 3: Determine the components of Gh and Gv, i.e., H1, . . . , Hα and V1, . . . , Vβ .

Step 4: Identify all pairs (Ha, Hb) of vertically semi-compatible components.

70

Step 5: Determine if the hexagonal (d, k) constraint has the constant position property.

Step 6: If the determination in Step 5 is true, then output “success”; otherwise, output “failure”.

3.2.5 Lemmas for zero capacity proof

In this section, four lemmas are given that lead to the main technical result, Theorem 3.2.9 in Section 3.2.6,

which asserts that the hexagonal (d, k) capacity is zero whenever the constant position property occurs.

Lemma 3.2.5. LGh,Gv
(M,N) = L(M,N).

Proof. Suppose l ∈ L(M,N), i.e., l is a valid labeling of an M × N rectangle. For any (k + 1) × N horizontal

strip, the sequence of labelings of (k + 1) × (k + 1) squares, sliding left to right one column at a time within

the strip, forms a walk through Gh, since these (k + 1) × (k + 1) square labelings are necessarily valid and each

successive pair of labelings corresponds to an edge inGh by the construction ofGh. Similarly, labelings of vertical

strips correspond to walks in Gv.

Conversely, if l 6∈ L(M,N), then either the d constraint or the k constraint is violated somewhere in the

M × N rectangle, which implies that the labeling of some (k + 1) × (k + 1) subsquare is not valid. Therefore

the labelings of the horizontal and vertical strips containing this subsquare do not correspond to walks throughGh

and Gv, respectively. Thus l 6∈ LGh,Gv
(M,N). �

The label graphs Gh and Gv contain components, some of which may be reachable from other com-

ponents. Any edge that connects a vertex from one component to another component cannot itself lie in any

component. Thus, a label graph consists of a disjoint union of components together with connecting edges not

belonging to any component. If we remove all such connecting edges of the label graphs Gh and Gv , then we are

left with the disjoint unions of components of Gh and Gv . For any fixed M ×N rectangle, those disjoint unions

of components generate a subset of the labelings of the rectangle that are valid under the hexagonal (d, k) con-

straint (i.e., LH,V (M,N) ⊆ L(M,N)). Thus, using the number of such valid labelings generated by the reduced

label graphs to estimate the hexagonal (d, k) capacity will yield a number less than or equal to Chex(d, k) (i.e.,

|LH,V (M,N)| ≤ |L(M,N)|). Lemma 3.2.8 below however, shows that, in fact, the capacity Chex(d, k) is still

obtained with equality by only counting the number of valid labelings in this reduced case (i.e., |LH,V (M,N)| and

|L(M,N)| have the same growth rate as M,N → ∞).

First we provide two technical lemmas to aid in the proof of Lemma 3.2.8. In particular, the following

lemma gives: (i) a linear (in the number of rows of anM ×N rectangle) upper bound on the number of component

transition locations in Th(l); and (ii) an upper bound on the number of different transition sets Th(l) that can occur

across all l ∈ LGh,Gv
(M,N).

71

Lemma 3.2.6. Suppose label graphsGh andGv generate a set of labelingsLGh,Gv
(M,N) of anM×N rectangle.

Then the following hold:

(i) |Th(l)| ≤ αM for any l ∈ LGh,Gv
(M,N),

(ii) |LGh,Gv
(M,N)/ ∼ | ≤ 2α log(N+1)M .

Proof. Let l ∈ LGh,Gv
(M,N) be a labeling of an M ×N rectangle generated by Gh and Gv. Then, in particular,

the labeling of each (k + 1) × N horizontal strip of l corresponds to a walk through Gh. From the definition of

Th(l), a (k + 1)× (k + 1) square r can be included in Th(l) only if the labeling of each (k + 1)× (k + 1) square

to the left of r in the same strip belongs to a component of Gh other than the component containing the labeling of

r. Thus there can be at most α (i.e., the number of components in Gh) (k+1)× (k+1) squares of any horizontal

strip included in Th(l), and therefore |Th(l)| ≤ αM .

Now for the second part. In a given (k + 1) × N strip there are at most N + 1 options for the position

of a (k + 1) × (k + 1) square r ∈ Th(l), where the one extra option corresponds to labelings from a component

not appearing in the horizontal strip at all. Thus there are at most (N +1)α ways to arrange the at most α possible

such squares from Th(l) that can appear in a given horizontal strip. Since the number of (k + 1) ×N horizontal

strips is at most M , there are no more than (N + 1)αM ways to position all of the squares in Th(l). Therefore,

|LGh,Gv
(M,N)/ ∼ | ≤ 2α log(N+1)M . �

Recall that two labelings of an M × N rectangle are equivalent under the relation ∼ if the labelings

transition within horizontal strips from one component of Gh to another at the same locations. The following

lemma helps us prove Lemma 3.2.8 by allowing us to to restrict attention to one equivalence class of such labelings.

Lemma 3.2.7. If Chex(d, k) > 0, then for any ǫ > 0, there exist constants M1 and N1 such that for all M > M1

and N > N1, there exists an equivalence class [l] ∈ LGh,Gv
(M,N)/ ∼ whose size is at least 2(Chex(d,k)−ǫ)MN .

Proof. Let ǫ > 0. Since

Chex(d, k) = lim
M,N→∞

log |LGh,Gv
(M,N)|

MN
> 0

we can find constants M0 and N0 such that |LGh,Gv
(M,N)| ≥ 2(Chex(d,k)−

ǫ
2)MN for all M > M0 and N > N0.

By Lemma 3.2.6, |LGh,Gv
(M,N)/ ∼ | ≤ 2α log(N+1)M , where α is the number of components in Gh, and thus

72

for any M >M0 and N > N0,

2(Chex(d,k)−
ǫ
2)MN ≤ |LGh,Gv

(M,N)|

=
∑

[l]∈LGh,Gv (M,N)/∼

|[l]|

≤ 2α log(N+1)M max
[l]∈LGh,Gv (M,N)/∼

|[l]|.

Therefore,

max
[l]∈LGh,Gv (M,N)/∼

|[l]| ≥ 2(Chex(d,k)−
ǫ
2)MN−α log(N+1)M

= 2(Chex(d,k)−
ǫ
2−α

log(N+1)
N

)MN .

Taking N large enough gives α · log(N+1)
N ≤ ǫ

2 , proving the lemma. �

The following lemma shows that, when enumerating the valid labelings of an M ×N rectangle in order

to calculate the hexagonal (d, k) capacity, it suffices to count only those labelings for which the labeling of each

(k+1)×N horizontal strip corresponds to a path in a single component ofGh, and the labeling of eachM×(k+1)

vertical strip corresponds to a path in a single component of Gv .

Lemma 3.2.8.

Chex(d, k) = lim
M,N→∞

log |LH,V (M,N)|
MN

.

Proof. First suppose Chex(d, k) = 0. Then since H and V are subgraphs of Gh and Gv , respectively, for all M

and N we have LH,V (M,N) ⊆ LGh,Gv
(M,N), and thus |LH,V (M,N)| ≤ |LGh,Gv

(M,N)|. In this case,

0 ≤ lim
M,N→∞

log |LH,V (M,N)|
MN

≤ lim
M,N→∞

log |LGh,Gv
(M,N)|

MN
= 0.

Thus we will assume Chex(d, k) > 0. Note that the limits on the right and left sides in the statement of the theorem

exist by [12]. Let ǫ ∈ (0, 2). Then by Lemma 3.2.7, there exist M1, N1 such that for all M > M1 and all N > N1,

there exists an equivalence class [l] ∈ LGh,Gv
(M,N)/ ∼ such that |[l]| ≥ 2(Chex(d,k)−

ǫ
3)MN .

In what follows, we may assume M = N > max{M1, N1}. We will use floor functions to ensure the

73

dimensions of the required subsets of an N ×N square are integers. Let σ be a positive real number such that

σ ≤
√

ǫ

2(k + 1)2α
(3.1)

(where α is the number of components in Gh) and consider an f(N)× f(N) square ψ, where f(N) =
⌊

σ
√
N
⌋

(assume N is large enough so that f(N) ≥ 1). Thus,

f(N)2 ≤ σ2N. (3.2)

Define s(N) = f(N)
⌊

1
σ

√
N
⌋

to be the side length of a large square subset, which occupies nearly all

of the N × N square. Such an s(N) × s(N) square can be tiled in the obvious way by using
⌊

1
σ

√
N
⌋2

disjoint

copies of ψ. Let Ψ denote the set of these disjoint subsquares of the s(N)× s(N) square. Thus,

|Ψ| =
⌊

1

σ

√
N

⌋2

≤ N/σ2. (3.3)

Note that the number of positions of the N ×N square that are not covered by any ψ ∈ Ψ is N2 − s(N)2.

The number of component transitions that occur among all the horizontal strips in the N × N square is

the size of the transition set Th(l), whereas the number of f(N) × f(N) subsquares is the size of Ψ. We will

demonstrate that there are more of these subsquares than there are component transitions, and in fact, there is

always at least one subsquare which does not overlap any (k + 1)× (k + 1) square associated with a component

transition in Gh. Any such subsquare in Ψ will be called safe, and otherwise, unsafe.

Since α is the number of components of Gh, by Lemma 3.2.6, we have |Th(l)| ≤ αN , for all l ∈

LGh,Gv
(M,N). That means there are at most (k + 1)2αN of the N2 positions in the N × N square that are

contained in some (k + 1) × (k + 1) square of Th(l). Each such position can be located in at most one of the

(disjoint) squares in Ψ. Thus, the number of safe squares in Ψ is at least

|Ψ| − (k + 1)2αN =

⌊

1

σ

√
N

⌋2

− (k + 1)2αN

>

(

1

σ

√
N − 1

)2

− (k + 1)2αN

≥
(

√

2(k + 1)2αN/ǫ− 1
)2

− (k + 1)2αN [from (3.1)]

> 0 (3.4)

for sufficiently large N (since ǫ < 2). Therefore, there exists at least one safe square in Ψ.

74

In the remainder of the proof, we will show that at least one safe square has many valid labelings. Note

that there are at most

2((k+1)2αN)f(N)2 ≤ 2(k+1)2ασ2N2

[from (3.2)] (3.5)

ways to label the unsafe squares in Ψ.

For any subsquare ψ ∈ Ψ, let [l](ψ) denote the set of labelings of the subsquare ψ induced by the N ×N

square labelings from the equivalence class [l]. The quantity |[l]| is the number of valid labelings (of the N × N

square) which are equivalent under ∼ to l. This number of valid labelings can be upper bounded by multiplying:

(i) the number of labelings of the slightly smaller s(N) × s(N) square induced by the labelings in equivalence

class [l]; and (ii) the number of (possibly non-valid) labelings of the set of N2 − s(N)2 positions in the N × N

square that lie outside of the s(N)× s(N) square. Furthermore, for these two quantities in the product, (i) can be

upper bounded by multiplying the numbers of labelings of each ψ in Ψ, induced by the labelings in [l]; and (ii) can

be upper bounded by raising 2 to the number of positions in the N × N square that lie outside the s(N) × s(N)

square. Thus,

2(Chex(d,k)−
ǫ
3)N

2 ≤ |[l]| [from Lemma 3.2.7]

≤





∏

ψ∈Ψ

|[l](ψ)|



 · 2N2−s(N)2

=





∏

unsafe ψ∈Ψ

|[l](ψ)|









∏

safe ψ∈Ψ

|[l](ψ)|



 · 2N2−s(N)2

≤ 2(k+1)2ασ2N2 ·





∏

safe ψ∈Ψ

|[l](ψ)|



 · 2N2−s(N)2 [from (3.5)]

≤ 2(k+1)2ασ2N2 ·





∏

safe ψ∈Ψ

max
safe ψ∈Ψ

|[l](ψ)|



 · 2N2−s(N)2

≤ 2(k+1)2ασ2N2 ·
(

max
safe ψ∈Ψ

|[l](ψ)|
)|Ψ|

· 2N2−s(N)2

≤ 2(k+1)2ασ2N2 ·
(

max
safe ψ∈Ψ

|[l](ψ)|
)N/σ2

· 2N2−s(N)2 [from (3.3)] .

75

(Note that each “max” in the lines above is over a nonempty set by (3.4).) Solving for the max gives

max
safe ψ∈Ψ

|[l](ψ)| ≥
(

2(Chex(d,k)−
ǫ
3)N

2−(k+1)2ασ2N2−N2+s(N)2
)σ2/N

= 2(Chex(d,k)−
ǫ
3−(k+1)2ασ2−1+(s(N)2/N2))σ2N .

In other words, since any safe ψ is an f(N)× f(N) square in which each strip of height (k+1) contains

labelings from a particular component of Gh, one gets

|LH,Gv
(f(N), f(N))| ≥ 2(Chex(d,k)−

ǫ
3−(k+1)2ασ2−1+(s(N)2/N2))σ2N

≥ 2(Chex(d,k)−
ǫ
2
−(k+1)2ασ2)σ2N (3.6)

for N large enough, since s(N)2/N2 approaches one from below as N → ∞. Therefore,

lim
N→∞

log |LH,Gv
(N,N)|

N2
= lim
N→∞

log |LH,Gv
(f(N), f(N))|
f(N)2

≥ lim
N→∞

log(2(Chex(d,k)−
ǫ
2−(k+1)2ασ2)σ2N)

σ2N
[from (3.6)]

= Chex(d, k)−
ǫ

2
− (k + 1)2ασ2

≥ Chex(d, k)− ǫ [from (3.1)] .

Note that the first two limits above exist by subadditivity (e.g. [12]). Thus, we have

Chex(d, k) ≤ lim
N→∞

log |LH,Gv
(N,N)|

N2
(since ǫ was arbitrary)

≤ Chex(d, k) (since LH,Gv
(N,N) ⊆ LGh,Gv

(N,N)).

If we now start with H and Gv (instead of Gh and Gv) and repeat the argument in the vertical direction,

then we will obtain

lim
N→∞

log |LH,V (N,N)|
N2

= lim
N→∞

log |LH,Gv
(N,N)|

N2
= Chex(d, k),

which completes the proof of the lemma. �

76

3.2.6 Zero capacity theorem

The following theorem establishes that Chex(d, k) = 0 whenever the Constant Position Algorithm outputs

“success”.

Theorem 3.2.9. If the hexagonal (d, k) constraint has the constant position property, then the hexagonal (d, k)

capacity is zero.

Proof. Lemma 3.2.5 showed that there is a bijection between valid labelings of strips and certain walks through

Gh and Gv, and so instead of counting valid labelings, it suffices to count corresponding walks.

Let si denote the (k+1)×N horizontal strip (in an M ×N rectangle), whose bottom row is the ith row,

counting from the bottom, of the M ×N rectangle, i.e., 1 ≤ i ≤M − k.

Let Wa be a valid labeling of the bottommost (k+1)×N horizontal strip, s1. Let Wb be a valid labeling

of s2, such that Wa and Wb agree on s1 ∩ s2.

Suppose the walk throughGh corresponding to Wa lies in a componentHa, and the walk corresponding

toWb lies in a componentHb (these components must be cyclic sinceN > k+1). SinceWa andWb agree on their

common k×N horizontal strip (i.e., on rows 2 through k+1 from the bottom of theM×N rectangle), the labeling

λa of any (k+1)×(k+1) square labeled byWa, and the labeling λb of the (k+1)×(k+1) square shifted one row

upward labeled by Wb, satisfy (λa, λb) ∈ Ev . Thus (Ha, Hb) is a pair of vertically semi-compatible components

identified in Step 4.

Now, since the hexagonal (d, k) constraint has the constant position property by assumption, let j ∈

{1, . . . , k + 1} be an index corresponding to (Ha, Hb) specified in the constant position property.

By the constant position property, for each particular labeling Wa of s1, the labeling by Wb of column j

of the top row of the leftmost (k + 1)× (k + 1) square in s2 is completely determined by the labeling by Wa of

the leftmost (k + 1)× (k + 1) square in s1. (Recall that the walks corresponding to Wa and Wb do not transition

between different components of Gh.) The same fact remains true if the two (k + 1) × (k + 1) squares slide

together one column at a time from left to right. Thus, the sequence of values of the labeling by Wb in the top row

of s2, from horizontal positions j to N − (k+1− j) in theM ×N rectangle, are all completely determined by the

labeling of s1. These positions consist of at least the middle N − 2k positions in the top row of s2, for any j. In

sum, the labeling of s1 immediately determines the labeling of k out of k + 1 rows of s2, and now we have shown

that it also determines all but at most 2k of the positions in the top row of s2. As a result, the number of different

possible valid labelings of s2, corresponding to walks from a given cyclic component of Gh, for a given labeling

of s1 corresponding to walks from a (possibly different) given cyclic component of Gh, is at most 22k. Varying

the labelings Wb of s2 over the α cyclic components of Gh increases this upper bound to at most α22k.

77

Continuing the argument from the previous paragraph inductively, moving one row upward in theM ×N

rectangle each time, shows that, for a given labeling of s1, there are at most (α22k)M−k ways to label the M ×N

rectangle excluding s1.

Then, using the loose upper bound that there are at most 2(k+1)N possible valid labelings of s1 corre-

sponding to a walks through any particular cyclic component of Gh, there are at most

2(k+1)N (α22k)M−k ≤ 2(k+1)N+(2k+logα)M (3.7)

labelings in LH,V (M,N). Therefore,

0 ≤ Chex(d, k)

= lim
M,N→∞

log |LH,V (M,N)|
MN

[from Lemma 3.2.8]

≤ lim
M,N→∞

log
(

2(k+1)N+(2k+logα)M
)

MN
[from (3.7)]

= lim
M,N→∞

(k + 1)N + (2k + logα)M

MN

= 0.

�

By successful execution of the Constant Position Algorithm presented in Section 3.2.4, we have obtained

the following result.

Result 3.2.10. The Constant Position Algorithm verified that the following hexagonal (d, k) constraints satisfy the

constant position property:

• k = d+ 2 and 2 ≤ d ≤ 9

• k = d+ 3 and 3 ≤ d ≤ 9

• k = d+ 4 and d ∈ {4, 5, 7, 9}.

The following corollary follows from Result 3.2.10 and Theorem 3.2.9. We note that, while the proof of

this corollary is rigorous, verification of the constant position property aspect of it appears to be virtually impossible

to do by hand, and relies on computer-assisted verification of an enormous number of cases.

Corollary 3.2.11. The hexagonal (d, k) capacity is zero whenever

• k = d+ 2 and 2 ≤ d ≤ 9

78

• k = d+ 3 and 3 ≤ d ≤ 9

• k = d+ 4 and d ∈ {4, 5, 7, 9}.

We note that some of the zero capacities in Corollary 3.2.11 immediately imply others,2 since Chex(d +

1, k) ≤ Chex(d, k) and Chex(d, k− 1) ≤ Chex(d, k),but we include them since they were previously unproven. The

following conjecture states a converse to Theorem 3.2.9.

Conjecture 3.2.12. If the hexagonal (d, k) capacity is zero, then the hexagonal (d, k) constraint has the constant

position property.

While we presently do not know if this conjecture is true in general, we have verified it computationally

for a substantial number of cases for small d and k, namely for all d ≤ 9.

Theorem 3.2.13. Conjecture 3.2.12 is true for all d ≤ 9.

3.2.7 Algorithm implementation details

We describe below specific implementation details of each step of the Constant Position Algorithm, and

indicate the greatest computational burdens and ways to reduce complexity.

Step 1: Creating the valid labelings of a (k + 1)× (k + 1) square

An iterative method is used that recursively creates the valid labelings of a (k+1)× (k+1) square from

valid labelings of smaller rectangles. Pointers are used to represent adjacent subsquares in labelings, which leads

to a massive saving in computational complexity in Step 2.

Let Bm be the collection of valid labelings of a (k + 1)×m rectangle. We first create B1, B2, . . . , Bd+1

(in that order) and then use Bd+1 to create Bk+1, thus avoiding explicit generation of Bd+2, . . . , Bk. Generating

these sets wastes memory, since the d constraint has no effect on the validity of labelings oncem > d+1, and the

k constraint does not start having an effect until m = k + 1. In fact, the sizes of Bd+2, . . . , Bk can be quite large,

but Bk+1 is generally much smaller, since the k constraint plays a role. Thus, directly generatingBk+1 fromBd+1

saves memory at the expense of extra computation.

In order to create B1, all valid labelings of a (k + 1)× 1 rectangle (i.e., a column) are generated directly,

and each is given a unique ID. To create B2, it is determined which labelings of B1 may be placed horizontally

next to each other to create valid labelings of a (k + 1)× 2 rectangle.

In order to create B3, B4, . . . , a particular data structure built from pointers (which will be called IDs) is

used to represent a labeling. Suppose 2 ≤ m ≤ d + 1, and let λ be a labeling in Bm. Also, let λa, λb ∈ Bm−1 be

2Specifically, Chex(4, 8) = 0 implies Chex(4, 7) = 0 and Chex(5, 8) = 0, Chex(5, 9) = 0 implies Chex(5, 8) = 0 and Chex(6, 9) = 0,

Chex(7, 11) = 0 implies Chex(7, 10) = 0 and Chex(8, 11) = 0, and Chex(9, 13) = 0 implies Chex(9, 12) = 0.

79

the labelings of the left-most and right-most (k + 1) × (m − 1) subrectangles, respectively, of the (k + 1) ×m

rectangle labeled by λ. The labeling λ is represented using a data structure that contains: (1) an ID (unique among

labelings in Bm); (2) an array containing the IDs of the labelings of each column; (3) an array containing the IDs

of λa and λb.

Creation of Bm, with 3 ≤ m ≤ d+ 1, is now described. For every two labelings λ, λ′ ∈ Bm−1 such that

λb = λ′a, a labeling λ∗ of a (k+1)×m rectangle is induced, where the labeling of the left-most (k+1)× (m− 1)

rectangle is λ, and the labeling of the right-most column is the labeling of the right-most column of λ′. The new

labeling λ∗ is valid if and only if the restriction of λ∗ to each row and diagonal does not violate the d constraint,

since the restriction of λ∗ to any column is valid by construction, and the rows and diagonals are not long enough

for the labeling to violate the k constraint. If λ∗ passes these validity checks, it is added to Bm.

Finally, generating Bk+1 from Bd+1 follows essentially the same procedure, except now consideration

is made of all (k − d + 1)-tuples of labelings in Bd+1 that can be overlaid on each other successively (as in the

previous paragraph) to create a labeling of a (k + 1) × (k + 1) rectangle. This labeling is valid if and only if

the restriction to any row and diagonal does not violate the k constraint, since the restriction to any column is

valid by construction, and the restriction to any row or diagonal already satisfies the d constraint, since any d + 1

consecutive positions are labeled by some labeling in Bd+1. If the labeling passes these checks of validity, it is

added to Bk+1.

Figure 3.9 shows the complexity reduction using this method compared to two other less efficient meth-

ods.

Step 2: Creating the label graphs Gh and Gv

A method is given to create the edge sets Eh and Ev . Each construction is described separately, as they

are slightly different.

To determine the out-edges in Eh from a labeling (i.e., a vertex of Gh) λ of a (k + 1) × (k + 1) square,

the data structure from Step 1 that represents λ is useful. Recall that Step 1 assigns an ID to each labeling of a

(k + 1) × (d + 1) rectangle that appears in λ, and let λI denote the (k − d + 1)-length array of the IDs of these

sub-rectangles. Then to check if there is an edge in Gh from λ to a labeling λ′ of a (k + 1) × (k + 1) square,

it suffices to check if λI(j) = λ′I(j − 1) for j = 2, . . . , k − d + 1. This reduces the problem of determining if

(λ, λ′) ∈ Eh to comparing (k−d) pairs of integers (instead of the more complex comparison of all k(k+1) values

of the bit positions in the overlapping rectangles).

The runtime of this step can be reduced by decreasing the number of pairs of valid square labelings that

are examined. In practice, for the constraints of interest, each valid square labeling has relatively few out-edges in

80

Eh (typically, almost all have out-degree equal to one, and the rest generally have out-degree less than 5). As a pre-

processing step, each labeling λ′ is sorted by the element λ′I(1), which is the ID of the leftmost (k + 1)× (d+ 1)

sub-rectangle of λ′. Then for each square labeling λ, only square labelings λ′ satisfying λ′I(1) = λI(2) are

examined to find the out-edges from λ in Eh.

However, the same method cannot be used in determining the edges of Gv, since no record of any (d +

1) × (k + 1) sub-rectangles was made in Step 1. Nevertheless, a similar pre-processing step is performed by

assigning an integer ID to each valid (k + 1) × 1 column, and then sorting the square labelings based on the ID

of each square’s leftmost column. Then a search is made for out-edges in Ev only between square labelings λ and

λ′ for which the labeling of the top k positions of the leftmost column of λ agree with the labeling of the bottom

k positions of the leftmost column of λ′. This method indeed helps in practice, even though it does not prune the

potential set of edges in Ev as much as the previous method pruned the potential set of edges in Eh.

Step 3: Finding the components of the label graphs Gh and Gv

We prune the label graphsGh andGv by iteratively removing the square labelings from Λ that are sources

or sinks in either Gh or Gv . When such a labeling is removed, the corresponding vertices in both Gh and Gv are

eliminated, since if a square labeling is a source or sink in either graph, then it cannot appear in a labeling of the

infinite plane, and so it can be removed from both graphs (see Lemma 3.2.8).

Since removing sources or sinks from one graph may create more sources or sinks in the other graph, the

implementation of the Constant Position Algorithm ping-pongs between removing sources and sinks from both

Gh and Gv until the process halts.

We note that Tarjan’s algorithm for finding the components of Gh (as described next) would also identify

the sources and sinks in Gh, but our tests indicate that pruning sources and sinks drastically reduces the number

of valid labelings of (k + 1) × (k + 1) squares (see Figure 3.7), and so it was performed here to reduce memory

consumption.

The components of the prunedGh are determined using Tarjan’s algorithm [21]. The runtime of Tarjan’s

algorithm is linear in the number of vertices and edges, i.e., O(|Λ|+ |Eh|). The pruning step described previously

is in part to prevent stack overflow, as the implementation of Tarjan’s algorithm is recursive, and some (d, k)

constraints allow on the order of billions of valid labelings of a (k + 1)× (k + 1) square, which could potentially

result in as many levels of recursion.

Note that no explicit determination is made of the components ofGv, since such information is not needed

in the rest of the algorithm.

81

0 1 2 3 4 5 6 7 8 9
210

215

220

225

230

d

N
u

m
b

er
o

f
v
al

id
la

b
el

in
g

s

o
f

a
(k

+
1
)
×
(k

+
1
)

sq
u

ar
e

Unpruned

Pruned

Figure 3.7. Plot showing the number of valid labelings of a (k + 1)× (k + 1) square versus d, and the number of

pruned valid labelings of a (k + 1)× (k + 1) square versus d, where k = d+ 4.

Step 4: Finding the pairs (Ha, Hb) of vertically semi-compatible components of Gh

To find pairs (Ha, Hb) that are vertically semi-compatible, we examine each componentHa of the pruned

Gh, and every labeling λa in Ha, and check if λa has an out-edge in the pruned Gv to a labeling in Hb. Note that

this condition does not guarantee that a walk through Ha and a walk through Hb could correspond to labelings of

(vertically) successive (k + 1) × N horizontal strips in an M × N rectangle. However, this weaker condition is

much simpler to verify, and performs well despite creating more cases to check, since in practice the out-degree of

most vertices is small.

Step 5: Showing the hexagonal (d, k) constraint has the constant position property

For the particular hexagonal (d, k) constraints considered in this paper, we observed that each component

of the pruned Gh is vertically semi-compatible with a very small number of other components, often just one or

two (see Table 3.2). This fact, combined with the small out-degrees of vertices in the prunedGv , allows relatively

quick verification of the constant position property.

3.2.8 Computational complexity of the algorithm

The Constant Position Algorithm was run for a number of previously open cases, and succeeded in show-

ing that Chex(d, k) = 0 in the following five new (d, k) constraints: (6, 9), (4, 8), (5, 9), (7, 11), and (9, 13). These

cases are listed in order of increasing computational complexity. Even though the (6, 9) case follows immedi-

ately from the (5, 9) case, since Chex(6, 9) ≤ Chex(5, 9) = 0, we include it and other already-known cases in the

information below as these cases provide interesting data about complexity.

82

0 1 2 3 4 5 6 7 8 9
2−2

22

26

210

214

dR
u

n
ti

m
e

o
f

C
o

n
st

an
t

P
o

si
ti

o
n

A
lg

o
ri

th
m

(s
ec

o
n

d
s)

Figure 3.8. Runtime, in seconds, on a supercomputer of the Constant Position Algorithm for hexagonal (d, k)
constraints, as a function of d, where k = d+ 4. Note that one day is about 216.4 seconds.

The run time of the algorithm is shown in Figure 3.8 for constraints of the form (d, d+ 4), for 0 ≤ d ≤ 9

(the case (6, 9) is not shown, but runs about as fast as the (4, 8) case). Even though our results were limited in this

plot to the cases d = 4, 5, 7, 9, the algorithm was run for all d ≤ 9 in order to better understand the complexity.

There is roughly exponential growth for 1 ≤ d ≤ 9, but there is a sharp decline from d = 0 to d = 1,

with the runtime of the d = 0 case on the order of the runtime for the d = 9 case. There are two reasons for this

phenomenon. First, as seen in Figure 3.7, the number of valid (k + 1)× (k + 1) squares in the d = 0 case, even

after pruning, is many orders of magnitude larger than the number of valid (k + 1)× (k + 1) squares in the d = 1

case. Second, since there is essentially no d constraint in the d = 0 case, the graphs Gh and Gv in the d = 0

case are highly connected, which slows the Constant Position Algorithm in multiple places. The high connectivity

of the graphs Gh and Gv in the d = 0 case is evidenced by the fact that even the (0, 1) constraint has positive

capacity [?, 10, 11].

The highest complexity case that could be run in reasonable time was when (d, k) = (9, 13), in which

case the runtime was about 216 seconds, or about one full day. The next open case of interest would be when

(d, k) = (11, 15), which is projected to take at least about 8 days of runtime to complete. Since our supercomputer

time allocation was limited to two full days at a time, the d = 11 case was not attempted. Furthermore, the amount

of memory usage grew exponentially in d, which posed further difficulties.

Table 3.2 shows, for each hexagonal (d, k) constraint having zero capacity and with d ≤ 9, the specific

sizes of vertex and edge sets in Gh, the size of Gh after pruning, the number of (both total and non-cyclic) compo-

83

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
21

229

257

285

m

P
u

ta
ti

v
e

n
u

m
b

er
o

f
v
al

id
la

b
el

in
g

s

o
f

a
(k

+
1
)
×
m

re
ct

an
g

le

Direct approach

Complexity reduced

Constant Position Algorithm

Figure 3.9. Plot showing the number of putative valid labelings of a (k + 1)×m rectangle versus m for the case

(d, k) = (9, 13) based on three different methods: a direct method, a complexity reduced method, and our adaptive

pruning method.

nents of Gh, the average number of vertices per component, and the number of pairs of vertically semi-compatible

components.

One contribution of the Constant Position Algorithm is its dramatic reduction in computational complex-

ity compared to more straightforward approaches. This complexity improvement enables the algorithm to discover

zero hexagonal capacity constraints that would otherwise be computationally prohibitive. In particular, the algo-

rithm adaptively prunes the set of putative valid labelings for each width m rectangle, and recursively builds the

set of valid labelings of width m+ 1 from those obtained for width m. This reduction in the number of labelings

to inspect makes the overall task more manageable.

A plot of the number of putative valid (k + 1) × m labelings, as a function of the rectangle width m,

is illustrated in Figure 3.9 for the case (d, k) = (9, 13). The green curve corresponds to our complexity reduced

version of the Constant Position Algorithm. The “direct approach” (shown in red) corresponds to a naive imple-

mentation without complexity reduction, i.e., checking all 2(k+1)m possible labelings of a (k + 1)×m rectangle

for validity, one-by-one. The “complexity reduced” method (shown in blue) corresponds to first creating the valid

labelings of a column of height (k + 1), and then checking which possible arrangements of these columns create

valid labelings of a (k + 1) ×m rectangle. It can be seen that at the highest level of complexity when m = 14,

the number of labelings that we must check for validity in our algorithm is about 234, which is considerably lower

than the roughly 264 required for the complexity-reduced blue curve.

A plot of the number of valid (k+1)× (k+1) squares versus d, where k = d+4, is shown in Figure 3.7.

The blue curve shows the number of valid labelings of a (k + 1) × (k + 1) square that are found in Step 1 of the

84

Table 3.2. Computational complexity parameters for all hexagonal (d, k) constraints with d ≤ 9 where

Chex(d, k) = 0. The quantities refer to the size of various parameters of the directed graph Gh, either before

or after pruning. Our newly discovered cases for k = d+ 3 and k = d+ 4 are indicated by the asterisks on the far

left. Every row in this table corresponds to a hexagonal (d, k) constraint that was confirmed via computer search

to satisfy the constant position property.

(d, k)

N
u

m
b

er
o

f
v
er

ti
ce

s
|Λ
|b

ef
o

re

p
ru

n
in

g

N
u

m
b

er
o

f
ed

g
es

|E
h
|b

ef
o

re

p
ru

n
in

g

N
u

m
b

er
o

f
v
er

ti
ce

s

af
te

r
p

ru
n

in
g

N
u

m
b

er
o

f
co

m
p

o
n

en
ts
α

A
v
er

ag
e

n
u

m
b

er
o

f
v
er

ti
ce

s

p
er

co
m

p
o

n
en

t
af

te
r

p
ru

n
in

g

N
o

n
-c

y
cl

ic
co

m
p

o
n

en
ts

N
u

m
b

er
o

f
v
er

ti
ca

ll
y

se
m

i-
co

m
p

at
ib

le
p

ai
rs

(H
a
,H

b
)

(1, 2) 3 3 3 1 3.0 0 1
(1, 3) 20 20 3 1 3.0 0 1
(2, 3) 12 11 3 1 3.0 0 1
(2, 4) 135 170 65 1 65.0 0 1
(3, 4) 19 15 15 3 5.0 0 3
(3, 5) 186 150 15 3 5.0 0 3

* (3, 6) 3, 539 4, 082 202 19 10.6 0 19
(4, 5) 82 51 15 3 5.0 0 3
(4, 6) 817 678 202 19 10.6 0 19

* (4, 7) 13, 400 15, 020 234 19 12.3 0 19
* (4, 8) 388, 397 572, 552 4, 391 252 17.4 0 264
(5, 6) 329 174 133 19 7.0 0 19
(5, 7) 3, 158 2, 040 133 19 7.0 0 19

* (5, 8) 53, 701 49, 201 2, 384 245 9.7 0 249
* (5, 9) 1, 449, 120 1, 883, 744 2, 846 235 12.1 0 237
(6, 7) 1, 756 783 133 19 7.0 0 19
(6, 8) 17, 281 10, 480 2, 220 241 9.2 0 241

* (6, 9) 283, 200 243, 603 2, 248 241 9.3 0 241
(7, 8) 10, 133 4, 534 2, 025 225 9.0 0 225
(7, 9) 102, 614 56, 923 2, 025 225 9.0 0 225

* (7, 10) 1, 696, 233 1, 324, 066 39, 946 3, 663 10.9 0 3, 663
* (7, 11) 43, 511, 098 47, 066, 939 41, 478 4, 431 9.4 736 4, 478

(8, 9) 65, 676 26, 159 2, 025 225 9.0 0 225
(8, 10) 689, 199 354, 239 39, 946 3, 663 10.9 0 3, 663

* (8, 11) 11, 667, 348 8, 594, 525 39, 974 3, 663 10.9 0 3, 663
(9, 10) 462, 531 181, 758 37, 851 3, 441 11 0 3, 441
(9, 11) 5, 142, 892 2, 548, 549 37, 851 3, 441 11 0 3, 441

* (9, 12) 88, 149, 741 60, 893, 380 1, 068, 296 82, 697 13.0 0 82, 697
* (9, 13) 2, 244, 615, 058 2, 132, 131, 265 1, 069, 432 83, 601 12.8 892 83, 652

85

algorithm, while the red curve shows the number of these squares retained after pruning all sources and sinks in the

label graphs Gh and Gv in Step 2. As the plot indicates, for larger values of d, the vast majority of valid labelings

of a (k + 1) × (k + 1) square do not appear in a component of Gh and a component of Gv , Eliminating these

squares from consideration during Step 2 of the algorithm drastically improves the efficiency of the subsequent

steps.

Computing resources

Due to the large amount of memory required to run the Constant Position Algorithm for larger values of d

and (k−d), the algorithm was implemented on a large-memory node of the Comet supercomputer at the San Diego

Supercomputer Center. These nodes have a clock speed of 2.2 GHz. The OpenMP API was used for implementing

the parallelism, primarily in Steps 1-3 of the algorithm. We used 64 CPUs in parallel and a total of 800 gigabytes

of shared memory. The computationally most complex case we ran was (d, k) = (9, 13), which took about one

full day to run and had about 2 billion valid 14× 14 square labelings.

The next unsolved case for which the hexagonal capacity is not known to be zero or positive is (11, 15),

which could not be performed with our current resources. Using statistical sampling, we estimate it would have

about 80 billion valid 16×16 square labelings, which suggests that the time and space complexities would increase

by about 40-fold compared to the (9, 13) case. Such resources are presently not easily available.

3.3 Forbidden String Algorithm for proving zero hexagonal

(d, k) capacity

In this section we present a second algorithm for automatically and rigorously proving that certain hexag-

onal (d, k) capacities are zero. In this entire section, we will frequently use the notation A(i, j) to denote the

labeling of a position in an array by a binary value, or else an “Unused” indicator. The position (i, j) uses ordinary

Cartesian integer coordinates.3

A binary string is forbidden for a hexagonal (d, k) constraint if there exists a positive integer N such that

for any rectangle with side lengths at leastN , no valid labelings of the rectangle contain the string in any horizontal,

vertical, or northeast diagonal. For some pairs (d, k) there exist one or more forbidden strings of the form 10z1,

where d ≤ z ≤ k, whereas for other pairs no such strings are forbidden.

If it is known that Chex(d, k − 1) = 0 and 10k1 is a forbidden string for the hexagonal (d, k) constraint,

then we deduceChex(d, k) = Chex(d, k−1) = 0. Similarly, if Chex(d+1, k) = 0 and 10d1 is a forbidden string for

the hexagonal (d, k) constraint, then Chex(d, k) = Chex(d+1, k) = 0. The basic idea behind our Forbidden String

3In contrast, in Section 3.4, we use matrix (row,column) coordinates for our arrays.

86

Algorithm is to establish, by a computer-generated proof, that either 10d1 or 10k1 is forbidden for the hexagonal

(d, k) constraint, and then rely on a previously known fact that either Chex(d, k − 1) = 0 or Chex(d+ 1, k) = 0.

3.3.1 Non-forbidden strings

Sometimes, however, it is provably impossible for certain strings 10z1 to be forbidden. Here, we demon-

strate a number of such cases, and thereby concentrate the use of the Forbidden String Algorithm on other cases.

In what follows, we will assume only integer valued coordinates of points in the plane. Suppose all of the

points on the northwest line y = −x+ a and the northeast line y = x+ c are labeled 1 and all other points on the

integer lattice are labeled 0. These two lines intersect if and only if a and c are either both even or both odd. As

a result, any point on the line y = −x + a lies on the same northeast line as one point on the line y = −x + b if

and only iff a and b have the same parity, or equivalently, if and only if b− a is even. The horizontal (and vertical)

number of points between the two northwest lines y = −x+ a and y = −x+ b is b− a− 1.

Suppose (u, v) lies on the line y = −x+ a and (s, t) lies on the line y = −x+ b, and both points lie on

the same northeast line y = x + c. Then u = (a − c)/2, v = (a + c)/2, s = (b − c)/2, and t = (b + c)/2, so

(s, t) = (u, v) + (1, 1)(b− a)/2. Thus, the diagonal number of points between these two lines is b−a
2 − 1 = z−1

2 ,

where z = b− a− 1. In other words, if two northwest lines, separated horizontally by an odd number z of points,

are labeled by 1s and every other point is labeled 0, then the string 10z1 appears horizontally and vertically, and

the string 10(z−1)/21 appears diagonally.

For any sequence of nonnegative integers a1, . . . , an, define sj = j + a1 + · · ·+ aj for all j ≥ 1 and let

s0 = 0. Define a labeling by

La1,...,an(x, y) =















1 if x+ y = sj mod sn where 0 ≤ j ≤ n− 1

0 else.

Then La1,...,an consists of periodically repeating infinite northwest diagonals of 1s. Each infinite horizontal row is

labeled by infinitely repeating the pattern 10a110a21 . . . 10an to the left and right. The 1 on the far left side of this

pattern is at the origin, and the entire pattern shifts one position to the left each time one moves upward by one row.

This lattice contains runs of a1, a2, ... ,an zeros horizontally and vertically between consecutive 1s.

If ai is odd, then the string 0ai appears horizontally and vertically and the string 0(ai−1)/2 appears di-

agonally, between the consecutive northwest diagonal lines passing through the points (si−1, 0) and (si, 0) in the

labeling La1,...,an .

On the other hand, if ai and ai+1 are both even, then the number of points horizontally between the north-

87

west diagonal lines passing through (si−1, 0) and (si+1, 0) is odd, so the string 0(ai+ai+1)/2 appears diagonally

between these two diagonal lines (i.e., it skips the diagonal line passing through the point (si, 0)). The string 0ai

appears horizontally and vertically between the diagonal lines passing through (si−1, 0) and (si, 0), and the string

0ai+1 appears horizontally and vertically between the diagonal lines passing through (si, 0) and (si+1, 0).

The following theorem eliminates certain possible strings as being forbidden.

Theorem 3.3.1. For a given hexagonal (d, k) constraint, the string 10z1 is not forbidden whenever d̂ ≤ z ≤ k̂,

where

d̂ =















d if d even

d+ 1 if d odd

k̂ =















k if d even

k − 1 if d odd.

Proof. Take a1 = d̂, a2 = d̂+ 2, a3 = d̂+ 4, ... an = k̂ in La1,...,an , and note that each ai is even.

When 1 ≤ i ≤ n − 1, we have ai+1 = ai + 2, so the string 0(ai+ai+1)/2 = 0ai+1 appears diagonally

and the strings 0ai and 0ai+1 appear horizontally and vertically. And when i = n, the string 0(a1+an)/2 appears

diagonally and the strings 0a1 and 0an appear horizontally and vertically.

In summary, the pattern 10z1 appears along every horizontal row and vertical column whenever z is even

and d̂ ≤ z ≤ k̂. Also, since (ai + ai+1)/2 = ((d̂ + 2(i − 1)) + (d̂ + 2(i − 1) + 1)/2 = d̂ + 2i − 1, the pattern

10z1 appears along every northeast diagonal whenever z is odd and d̂ ≤ z ≤ k̂.

Thus, the labeling satisfies the hexagonal (d, k) constraint and 10z1 is not forbidden, since it appears in

the valid labeling Ld̂,d̂+2,...,k̂. �

The Forbidden String Algorithm relies on deducing that Chex(d, k) = Chex(d+ 1, k) by showing 10d1 is

forbidden, or Chex(d, k) = Chex(d, k − 1) by showing 10k1 is forbidden. Theorem 3.3.1 shows that, in particular,

if both d and k are even, then this approach will not work, since 10d1 and 10k1 are not forbidden strings of the

hexagonal (d, k) constraint.

In some cases, certain strings of the form 10z1 cannot be forbidden for a given hexagonal (d, k) constraint,

but they do not fall within the scope of Theorem 3.3.1. In the theorem below, for each hexagonal (d, k) constraint

given, we exhibit a single square labeling that can validly tile the plane, and we deduce therefore that any strings

within it are not forbidden.

Theorem 3.3.2. The string 10z1 is not forbidden for the hexagonal (d, k) constraint in the following cases: (i)

d = 5, k = 8, z = d; (ii) d = 7, k = 11, z ∈ {d, k}.

88

Proof. The following square labelings in Figure 3.10 and Figure 3.11 satisfy the mentioned constraint, can tile the

plane, and contain the strings asserted to not be forbidden. Figure 3.12 shows portions of the hexagonal lattice

tiled by these labelings.

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

Figure 3.10. A tileable valid labeling of a 15 × 15 square for the hexagonal (5, 8) constraint. The string 1051
appears in the top row (in red) and thus is not forbidden.

�

3.3.2 Algorithm description

Forbidden String Algorithm

Step 1: Set A(i, j) = Unused, for all i, j.

Step 2: Assume A(0, 0) = 1 and A(z + 1, 0) = 1.

Step 3: Force 0s for the d constraint.

Step 4: If there does not exist 0k+1 horizontally, vertically, or diagonally, then go to Step 5.

Else repeatedly pop the stack until the top of the stack is an assumed 1.

If the top of the stack is the original assumption A(0, 0) = 1, then a proof is found, so exit.

Else convert the top of the stack to a forced 0 and repeat Step 4.

Step 5: Select an unused position (x, y) and assume A(x, y) = 1.

Step 6: Go to Step 3.

89

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

Figure 3.11. A tileable valid labeling of a 24 × 24 square for the hexagonal (7, 11) constraint. The strings 1071
and 10111 appear (in red) in rows 1 and 2, respectively, and thus are not forbidden.

3.3.3 Algorithm details

The nonnegative integer z is an input parameter chosen to determine the initial assumed string 10z1 in

Step 2. In every case tested, we chose z = d or z = k.

Each point in the array A has integer coordinates and is marked as either “Unused”, or else labeled “0”

or “1”. The goal is to try to show that the original two assumptions in Step 2 lead to a violation of the hexagonal

(d, k) constraint, thus implying that 10z1 is a forbidden string.

A stack is used to keep track of the current state of the algorithm, namely which array positions (i, j) are

labeled 0 or 1 and whether they achieved those values by being assumed or by being forced. Each “assume” or

“force” instruction in the algorithm is also pushed onto the top of the stack.

In Step 3, the algorithm forces unused points to be 0 if they lie within d positions of a point labeled 1

horizontally, vertically, or diagonally. In other words,

• If A(x+ i, y) = Unused and 1 ≤ |i| ≤ d, then force A(x+ i, y) = 0.

• If A(x, y + i) = Unused and 1 ≤ |i| ≤ d, then force A(x, y + i) = 0.

• If A(x+ i, y + i) = Unused and 1 ≤ |i| ≤ d, then force A(x+ i, y + i) = 0.

90

Figure 3.12. The upper labeling satisfies the hexagonal (5, 8) constraint, and the lower labeling satisfies the

hexagonal (7, 11) constraint. Red hexagons indicate 1s, and white hexagons indicate 0s. The upper labeling shows

1051 is not a forbidden string under the hexagonal (5, 8) constraint, and the lower labeling shows 1071 and 10111
are not forbidden strings under the hexagonal (7, 11) constraint.

91

Since the algorithm always forces 0s after a 1 is added, the arrayA is guaranteed to obey the d constraint. If k < 2d,

then additional 0s can be forced when a 1 is inserted, in order to prevent a violation of the k constraint. Specifically,

in addition to points at distances 1, . . . , d in all 3 directions, 0s can be forced at distances k + 2, . . . , 2d+ 1 in all

3 directions, since otherwise, if any of these points were labeled 1, a string of 0k+1 would result.

Step 4 checks for violations of the k constraint, and, if found, then removes previously forced bits until

the top of the stack is an assumed 1, at which point the assumed 1 is converted to a forced 0. We then repeat Step

4 until the k constraint is enforced. To reduce search complexity, each stack push records the smallest bounding

rectangle containing all 0s and 1s in the array up to that point. Only that bounding rectangle, rather than the entire

array A, needs to be searched for strings 0k+1.

In Step 5, the algorithm finds some unused position and labels it as an assumed 1. This can be a determin-

istic process or randomized. We chose to search the array loosely in an order defined by a spiral space filling curve

starting at the origin and eventually covering the entire array, but with an additional randomized component.

In practice an N × N char array is used, with the coordinates indexed from 0 to N − 1, and N chosen

sufficiently large (e.g., N = 100 generally suffices). The location (N/2, N/2) is chosen as the origin. If the

algorithm ever attempts to assume or force a labeling of a position (x, y) that lies outside the range of the array

A, then the algorithm halts and declares a failure to find a proof of a forbidden string. This can occur when there

exists a valid labeling of all locations in the array, under the original assumptions.

A recursive implementation of the Forbidden String Algorithm is given in Appendix 3.A, which may be

useful for alternate implementations or a formal correctness proof.

3.3.4 Example for d = 1 and k = 3

We illustrate in Figure 3.13 the Forbidden String Algorithm with the hexagonal (1, 3) constraint, by

showing that 1031 is a forbidden string, and thus Chex(1, 3) = Chex(1, 2) = 0. The automated proof is shown on

the left-hand side and the labeled bits at various stages on the right-hand side. Each time an “unused” (i.e., not

labled) bit is labeled either 0 or 1, that bit labeling is pushed onto a stack and is represented by an extra indentation

of the proof line in the figure. Conversely, when a bit is popped off the stack it is marked as “unused” and a

reduction of indentation occurs.

For example, the original two assumed 1s are pushed on the stack at lines 1 and 8 of the proof, at locations

(0, 0) and (4, 0), respectively. The forced 0s that resulted from these initial 1s are pushed after each assumption,

namely in lines 2–7 and lines 9–14 of the proof. The square diagram between lines 11-14 shows the labeled bits

based on the original two assumed 1s.

An additional 1 is assumed in line 15 position (3, 2) and its forced 0s follow it in the proof. This assumed

92

1: A(0, 0) = 1 Assumed

2: A(0, 1) = 0 Forced

3: A(0, -1) = 0 Forced

4: A(-1, 0) = 0 Forced

5: A(-1, -1) = 0 Forced

6: A(1, 1) = 0 Forced

7: A(1, 0) = 0 Forced

8: A(4, 0) = 1 Assumed

9: A(4, -1) = 0 Forced

10: A(4, 1) = 0 Forced

11: A(3, 0) = 0 Forced

12: A(3, -1) = 0 Forced

13: A(5, 0) = 0 Forced

14: A(5, 1) = 0 Forced

0 0 0 0

0 1 0 0 0 1 0

0 0 0 0

15: A(3, 2) = 1 Assumed

16: A(3, 1) = 0 Forced

17: A(2, 1) = 0 Forced

18: A(2, 2) = 0 Forced

19: A(3, 3) = 0 Forced

20: A(4, 2) = 0 Forced

21: A(4, 3) = 0 Forced

22: k-violation in row 1

0 0

0 1 0

0 0 0 0 0

0 1 0 0 0 1 0

0 0 0 0

23: A(4, 3) = Unused

24: A(4, 2) = Unused

25: A(3, 3) = Unused

26: A(2, 2) = Unused

27: A(2, 1) = Unused

28: A(3, 1) = Unused

29: A(3, 2) = 0 Flipped bit

0

0 0 0 0

0 1 0 0 0 1 0

0 0 0 0

30: A(2, 2) = 1 Assumed

31: A(2, 1) = 0 Forced

32: A(1, 1) = 0 Forced

33: A(1, 2) = 0 Forced

34: A(2, 3) = 0 Forced

35: A(3, 3) = 0 Forced

36: k-violation in diagonal 1

0 0

0 1 0

0 0 0 0 0

0 1 0 0 0 1 0

0 0 0 0

37: A(3, 3) = Unused

38: A(2, 3) = Unused

39: A(1, 2) = Unused

40: A(1, 1) = Unused

41: A(2, 1) = Unused

42: A(2, 2) = 0 Flipped bit

0 0

0 0 0 0

0 1 0 0 0 1 0

0 0 0 0

43: A(3, 1) = 1 Forced

44: A(2, 1) = 0 Forced

45: A(4, 2) = 0 Forced

46: k-violation in diagonal 1

0 0 0

0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 0 0

47: A(4, 2) = Unused

48: A(2, 1) = Unused

49: A(3, 1) = Unused

50: A(2, 2) = Unused

51: A(3, 2) = Unused

52: A(5, 1) = Unused

53: A(5, 0) = Unused

54: A(3, -1) = Unused

55: A(3, 0) = Unused

56: A(4, 1) = Unused

57: A(4, -1) = Unused

58: A(4, 0) = 0 Flipped bit

59: Contradiction

QED

0 0 0 0

0 1 0 0 0 0 0

0 0 0 0

Figure 3.13. Proof automatically generated by the Forbidden String Algorithm. The proof shows that 1031 is a

forbidden string for the hexagonal (1, 3) constraint, and thus Chex(1, 3) = Chex(1, 2) = 0. The level of indentation

indicates the number of assigned binary labels in the plane. Snapshots of the assumed and forced bit values are

shown at various points in the proof.

93

1, however, leads to a horizontal string 05 in row 1, as shown in line 22 of the proof. This string violates the fact

that k = 3, and the violation is illustrated in the square diagram ending at line 22 with the string 05 shown in red.

Forced bits are then continually popped off the top of the stack from line 23 through line 28 in the proof,

until an assumed 1 is reached. Since this assumed 1 (at location (3, 2)) had just led to a contradiction, it is flipped

to a forced 0 in line 29, and the resulting bit labelings are shown in the square diagram ending at line 29.

A new 1 is assumed in line 30 at location (2, 2), and its forced 0s follow it in lines 31–35. As a result, a

violation of the k constraint occurs due to the string 04 occuring diagonally, and this violation is illustrated in the

square diagram ending at line 36. Thus the stack pops off forced bits in lines 37–41 until the assumed 1 at (2, 2) is

reached. That assumed 1 is converted to a forced 0 in line 42, as illustrated in the diagram ending at line 42.

At this point a 1 is forced at (3, 1) to avoid 04 from occuring vertically in column 3. But this 1 forces 0s at

(2, 1) and (4, 2), as shown in lines 43–45, thus causing the string 04 to occur diagonally, violating the k constraint.

This violation is listed in line 46 and shown in the diagram ending at line 46.

Finally, the stack is popped again until the original assumed 1 at (4, 0) is reached, in lines 47–57, and this

assumed 1 is converted to a 0 in line 58, as shown in the diagram ending at line 58. This line, however, finishes the

proof, since one concludes that the original two assumed 1s lead to a contradiction.

3.3.5 Algorithmic zero capacity results

In searching for forbidden strings of the form 10d1 or 10k1, we need not consider cases when d is even

or when k is even (by Theorem 3.3.1). The following theorem is thus limited to strings 10d1 with odd d, or strings

10k1 with odd k. Each of the strings in the theorem was automatically proven to be forbidden by the Forbidden

String Algorithm.

Theorem 3.3.3. The following are forbidden strings for the indicated hexagonal (d, k) constraints:

d k forbidden string

3 6 10d1

4 7 10k1

6 9 10k1

7 10 10d1

8 11 10k1

9 12 10d1

10 13 10k1

11 14 10d1

94

Corollary 3.3.4. The hexagonal (d, k) capacity is zero when k = d+ 3 and d ∈ {3, 4, 6, 7, 8, 9, 10, 11}.

Proof. It was stated in [13] and proven in our Part I that Chex(d, d + 2) = 0 for all d > 0. Thus, Theorem 3.3.3

implies thatChex(d, d+3) = Chex(d+1, d+3) = 0 when d ∈ {3, 7, 9, 11} andChex(d, d+3) = Chex(d, d+2) = 0

when d ∈ {4, 6, 8, 10}. �

We note that in Corollary 3.3.4, the proofs of Chex(3, 6) = 0 and Chex(4, 7) = 0 each relied on the fact

that Chex(4, 6) = 0 (which was proven in our Part I), since 1031 and 1071 were forbidden strings, respectively.

This gives an alternate derivation of Chex(3, 5) = Chex(5, 7) = 0, from that given in Part I.

The Constant Position Algorithm found each of the first six cases of zero capacity that were found by the

Forbidden String Algorithm in Corollary 3.3.4, but it also found more cases that failed for the Forbidden String

Algorithm. Thus, the Constant Position Algorithm gives an improvement over the Forbidden String Algorithm in

many cases. On the other hand, the Forbidden String Algorithm is simpler to describe, tends to run much faster,

and verifies the interesting property of forbidden strings. Also, the Constant Position Algorithm was unable to

prove Chex(11, 14) = 0 with the available supercomputer resources, due to an overflow of memory, whereas the

Forbidden String Algorithm was able to prove it.

The Forbidden String Algorithm was implemented in C++ on an Apple MacBook Air laptop computer

and took at most a couple of seconds to run, up to the third largest case (i.e., d = 9, k = 12), and took about 30

minutes for the case (d, k) = (10, 13). The largest case (i.e., d = 11, k = 14) required more memory and took

42 minutes to run on a supercomputer, pushing assumptions on its stack almost ten billion times before finding the

proof. Table 3.3 shows some statistics for the Forbidden String Algorithm.

Table 3.3. Complexity statistics for the Forbidden String Algorithm.

d k stack pushes assumed 1s maximum stack depth

3 6 1, 039 111 8
4 7 33, 329 1, 943 22
6 9 739, 886 28, 509 16
7 10 1, 258, 418 39, 333 14
8 11 45, 060, 612 1, 194, 333 19
9 12 97, 422, 226 2, 229, 709 16

10 13 3, 856, 454, 149 78, 232, 745 22
11 14 9, 868, 475, 943 177, 564, 097 18

The “stack pushes” column shows the total number of times a push was made on the stack. This quantity

reflects the number of times a particular position in the array A was set to either 0 or 1. The “assumed 1s” column

shows the total number of times a position in the array A was set to 1 by assumption (i.e., the 1 was not forced).

95

The “maximum stack depth” column shows the largest number of assumed 1s that were ever on the stack at a single

time.

3.4 Rectangle Tiling Algorithm for proving positive hexagonal (d, k)
capacity

The following algorithm attempts to automatically discover distinct labelings ofM×N rectangular arrays

A and B which are valid no matter how they (jointly) tile the plane, if such rectangle labelings exist. For any i and

j, let A(i, j) andB(i, j) denote the value of the binary labeling of position (i, j) in these two arrays, respectively.4

The main idea is to randomly label some of the unlabled positions in the rectangles with a 1s, and then

fill in all the resulting forced 0s, always checking that the d and k constraints are met. If a constraint is violated,

then such assumed labeled positions can be reversed with backtracking.

3.4.1 Algorithm description

Rectangle Tiling Algorithm

Step 1: Set A(i, j) = B(i, j) = Unused, for all i, j.

Step 2: Choose A(1, 1) = 1 and B(1, 1) = 0.

Step 3: Force 0s for the d constraint in A and B for all tiling configurations.

Step 4: If there does not exist 0k+1 horizontally, vertically, or diagonally, for any tiling configurations, then go to

Step 5.

Else repeatedly pop the stack until the top of the stack is a chosen 1.

If the top of the stack is the original choice A(1, 1) = 1, then failure, so exit.

Else convert the top of the stack to a forced 0 and repeat Step 4.

Step 5: If there are no unused positions in A and B, then the algorithm succeeded, so exit.

Step 6: Select an unused position (x, y) in A or B and set it to 1.

Step 7: Go to Step 3.

4Matrix notation is used here, where i is the row (increasing downward from 1 to M) and j is the column (increasing rightward from 1 to

N).

96

3.4.2 Algorithm details

The two arrays A and B are implemented as two-dimensional char arrays in C++, each of size M × N ,

whereM andN are fixed positive integers. Step 1 initializes allMN positions in each ofA andB. Step 2 chooses

one position where A and B are forced to differ, in order to ensure the two rectangles are different. The upper-left

corner of the arrays is one possible choice, but other locations are also feasible, and possibly advantageous. Step 3

enforces the d constraint by forcing nearby 0s. Step 4 enforces the k constraint. If it is violated, then chosen 1s are

continually removed from the stack (and converted to forced 0s), until there is no longer a violation. Step 6 tries to

find a new position to label 1. Various strategies can be used for this choice, or just a simple random selection.

While the Rectangle Tiling Algorithm shares some features with the Forbidden String Algorithm, they

have fundamentally different objectives. The former tries to find two different valid rectangles, whereas the latter

tries to find a contradiction to the assumption of a string of the form 10z1 existing in some valid labeling.

There are nuances to how the two algorithms enforce constraints as well. In the Forbidden String Algo-

rithm, enforcing the d constraint is rather straightforward, but in the Rectangle Tiling Algorithm, many different

possible configurations of the rectangles A and B must be considered, since any chosen 1 in one of the two arrays

can cause forced 0s in itself or the other array in multiple ways, depending on how they tile the plane. Similarly,

checking for violations of the k constraint in the Forbidden String Algorithm is straightforward, although somewhat

laborious, whereas in the Rectangle Tiling Algorithm, many different tiling configurations must be examined.

The Rectangle Tiling Algorithm is not guaranteed to terminate. This can happen if there do not exist two

rectangular labelings that tile the plane according to the desired constraint, or possibly due to failure to find such

rectangular labelings even if they exist.

If the Rectangle Tiling Algorithm does terminate, one can check the two rectangles produced to verify

that they do not violate the constraints for arbitrary tilings of the plane. For example, if M = N > k, then it

suffices to check the following configurations for violations of constraints:

X X
X

X

X X

X X

where the first configuration is checked for horizontal violations, the second configuration for vertical violations,

and the third configuration for diagonal violations.

In each configuration, all possible assignments of the squaresA andB to the locations denoted by “X” are

constructed (i.e., 4 arrangements for each of the first two configurations and 24 = 16 for the third configuration).

97

The two algorithms also present different space complexity concerns. While both algorithms use a stack

to perform backtracking so that bad choices of labelings can be corrected, the stack can grow without bound in

the Forbidden String Algorithm (or at least up to the area of the bounding array used, which can be very large),

whereas in the Rectangle Tiling Algorithm, the stack can never be larger than 2MN , and if it fills to that value,

then the algorithm has successfully completed its task.

A recursive implementation of the Rectangle Tiling Algorithm is given in Appendix 3.B, which may be

useful for alternate implementations or a formal correctness proof.

3.4.3 Enforcing the d and k constraints

In Step 3 of the Rectangle Tiling Algorithm, the d constraint is enforced by labeling positions in the arrays

A and B zero if they are within distance d of a chosen 1, for any configuration of A and B in a tiling. In Step 4

of the Rectangle Tiling Algorithm, the k constraint is enforced by hunting for violating strings of the form 0k+1 in

arbitrary configurations of A and B in a tiling. Enforcing the k constraint is considerably more time-consuming

that the d constraint, but both processes share the common feature of examining arbitrary tilings by labelings of A

and B.

In order to efficiently be able to enforce these two constraints, we use the graphical representation of

arbitrary tilings described above. Each of the three graphs Ghori, Gvert, Gdiag is used to check all directed paths of

length d from the position of the chosen 1, in the horizontal, vertical, and diagonal directions. For any nodes on

such paths that are marked as “Unused”, a 0 is forced for the corresponding position and array. Then the whole

process is repeated for the reverse-direction-edge versions of the three graphs.

For example, if A and B are 5 × 5 squares and (d, k) = (1, 5), Figure 3.14 shows in the far left all the

forced 0s in both A and B due to the assumptions that A(1, 1) = 1 and B(1, 1) = 0.

Let us denote certain data structures by Ai,j and Bi,j , corresponding to each position (i, j) of M × N

arrays A and B, respectively. These data structures contain the binary value labeling the position, or else an

indication that it is “unused”. We define the following three directed graphs to enable a reduced complexity search

for potential violations of the k constraint when the arrays A and B are partially labeled:

Ghori = (V,Ehori)

Gvert = (V,Evert)

Gdiag = (V,Ediag).

98

The vertex set V and directed edge sets Ehori, Evert, Ediag are given by:

V =

M
⋃

i=1

N
⋃

j=1

{Ai,j , Bi,j}

Ehori =

M
⋃

i=1





N−1
⋃

j=1

{(Ai,j , Ai,j+1), (Bi,j , Bi,j+1)}

∪ {(Ai,N , Ai,1), (Ai,N , Bi,1), (Bi,N , Bi,1), (Bi,N , Ai,1)}





Evert =
N
⋃

j=1

(

M−1
⋃

i=1

{(Ai,j , Ai+1,j), (Bi,j , Bi+1,j)}

∪ {(AM,j , A1,j), (AM,j , B1,j), (BM,j , B1,j), (BM,j , A1,j)}





Ediag =

M
⋃

i=2

N−1
⋃

j=1

{(Ai,j , Ai−1,j+1), (Bi,j , Bi−1,j+1)}

∪
M
⋃

i=2

{(Ai,N , Ai−1,1), (Ai,N , Bi−1,1), (Bi,N , Bi−1,1), (Bi,N , Ai−1,1)}

∪
N−1
⋃

j=1

{(A1,j , AM,j+1), (A1,j , BM,j+1), (B1,j , BM,j+1), (B1,j , AM,j+1)}

∪ {(A1,N , AM,1), (A1,N , BM,1), (B1,N , AM,1), (B1,N , BM,1)}.

For the horizontal graphGhori, all of the nodes corresponding to positions ofA andB, except for positions

in the far right column, have exactly one out-edge, namely to the next position to the right in the same array. Each

of the positions in the far right column has two out-edges, pointing to the positions in A and B of the same row,

but in the far left column.

For the vertical graph Gvert, all of the nodes corresponding to positions of A and B, except for positions

in the bottom row, have exactly one out-edge, namely to the next position down in the same array. Each of the

positions in the bottom row has two out-edges, pointing to the positions in A and B of the same column, but in the

top row.

For the diagonal graphGdiag, all of the nodes corresponding to positions of A and B, except for positions

in the top row and right column, have exactly one out-edge, namely to the next position to the right and up in the

same array. The top row and right column positions have two out-edges each, directed to the similarly diagonally-

adjacent positions in A and B.

These three graphs facilitate searching for the string 0k+1 horizontally, vertically, or northeast diagonally.

99

Any horizontal (respectively, vertical or diagonal) run of 0s of length z corresponds to a path5 of length z through

the graph Ghori (respectively,Gvert or Gdiag).

One way to search for any possible occurrence of 0k+1 is to assume such a run starts at a particular

location (x, y) in either A or B, and then search for a path of length k + 1, labeled by 0s, in either Ghori, Gvert, or

Gdiag. This, however, repeats work unnecessarily, since adjacent starting positions may share substantial portions

of runs.

A more efficient technique, which we use, is to first find, starting at each position (x, y) of A, the longest

path in Ghori labeled entirely by 0s and the longest path in the reversed-edge-direction version of Ghori labeled

entirely by 0s. This will yield the longest horizontal run of 0s in A that passes through the position (x, y). This

process is then repeated for each position of B. With such a technique, duplicated work is avoided and the longest

runs of 0s passing through each position of A and B are determined. If any of these runs have length greater than

k, then the process can be terminated immediately and a horizontal violation of the k constraint can be declared. If

no such violation is discovered, this process is repeated for the graphGvert, and then again for Gdiag. If no run of k

zeros is found in any of the three graphs, then the current labeling is declared to not (yet) violate the k constraint.

3.4.4 Example for d = 1 and k = 5

We illustrate in Figure 3.14 the Rectangle Tiling Algorithm with the hexagonal (1, 5) constraint, by

constructing two 5 × 5 distinct labelings that satisfy the constraint no matter how they tile the plane. Thus

Chex(1, 5) > 1/25. The stack is shown at 6 different stages, after choosing 1s and after popping due to viola-

tions of the k constraint. Below each stack is the current labeling of two squares A and B, with unlabeled portions

left blank.

In the first stack snapshot shown in Figure 3.14, the original two chosen values are shown (a 1 and a 0),

and the resulting forced 0s from the chosen 1. The stack grows upward, and each line stores the coordinates of the

labeled point, the value of the label, which of the two arrays (A or B) it lies in, and whether the value was chosen

or forced. It can be seen that in the fifth snapshot of the stack, a violation of the k constraint is discovered (in red)

as the string 05 on the main diagonal of array B. The reason this is a violation is that no row, column, or main

northeast diagonal can be all 0s, for otherwise, a tiling in the plane of two such squares in a diagonal configuration

will result in a diagonal string 010. Also, note that in the fourth stack snapshot, it is possible to discover that

B(2, 4) = 1 is forced, in order to prevent the k-violation described in the fifth stack snapshot. However, not all

such forced values are found in practice, and implementing such procedures leads to a tradeoff between the time

spent hunting for such forced values and the benefit of finding them sooner, rather than later.

5We assume the vertices in any path are distinct.

100

x y v t
B 1 1 0 C

B 2 5 0 F

B 5 2 0 F

B 1 5 0 F

B 5 1 0 F

A 2 5 0 F

A 5 2 0 F

A 1 5 0 F

A 5 1 0 F

A 2 1 0 F

A 1 2 0 F

A 1 1 1 C

x y v t
A 4 4 0 F

A 3 4 0 F

A 3 5 1 F

A 5 5 0 F

A 4 5 0 F

B 4 1 1 F

B 2 1 0 F

B 3 1 0 F

B 3 4 0 F

B 4 4 0 F

B 3 5 1 F

A 1 3 0 F

A 2 3 0 F

A 2 2 1 F

B 4 5 0 F

B 5 5 0 F

A 4 2 0 F

A 3 2 0 F

A 3 1 0 F

A 4 1 1 C

B 1 1 0 C

B 2 5 0 F

B 5 2 0 F

B 1 5 0 F

B 5 1 0 F

A 2 5 0 F

A 5 2 0 F

A 1 5 0 F

A 5 1 0 F

A 2 1 0 F

A 1 2 0 F

A 1 1 1 C

x y v t
A 5 4 1 F

A 5 3 0 F

B 2 2 0 F

B 1 2 1 F

A 1 4 0 F

B 1 3 0 F

B 1 4 0 F

B 5 4 1 F

B 5 3 0 F

B 3 3 0 F

B 4 3 1 C

A 4 4 0 F

A 3 4 0 F

A 3 5 1 F

A 5 5 0 F

A 4 5 0 F

B 4 1 1 F

B 2 1 0 F

B 3 1 0 F

B 3 4 0 F

B 4 4 0 F

B 3 5 1 F

A 1 3 0 F

A 2 3 0 F

A 2 2 1 F

B 4 5 0 F

B 5 5 0 F

A 4 2 0 F

A 3 2 0 F

A 3 1 0 F

A 4 1 1 C

B 1 1 0 C

B 2 5 0 F

B 5 2 0 F

B 1 5 0 F

B 5 1 0 F

A 2 5 0 F

A 5 2 0 F

A 1 5 0 F

A 5 1 0 F

A 2 1 0 F

A 1 2 0 F

A 1 1 1 C

x y v t
A 2 4 0 F

A 4 3 0 F

A 3 3 1 C

A 5 4 1 F

A 5 3 0 F

B 2 2 0 F

B 1 2 1 F

A 1 4 0 F

B 1 3 0 F

B 1 4 0 F

B 5 4 1 F

B 5 3 0 F

B 3 3 0 F

B 4 3 1 C

A 4 4 0 F

A 3 4 0 F

A 3 5 1 F

A 5 5 0 F

A 4 5 0 F

B 4 1 1 F

B 2 1 0 F

B 3 1 0 F

B 3 4 0 F

B 4 4 0 F

B 3 5 1 F

A 1 3 0 F

A 2 3 0 F

A 2 2 1 F

B 4 5 0 F

B 5 5 0 F

A 4 2 0 F

A 3 2 0 F

A 3 1 0 F

A 4 1 1 C

B 1 1 0 C

B 2 5 0 F

B 5 2 0 F

B 1 5 0 F

B 5 1 0 F

A 2 5 0 F

A 5 2 0 F

A 1 5 0 F

A 5 1 0 F

A 2 1 0 F

A 1 2 0 F

A 1 1 1 C

x y v t
B 2 4 0 F

B 2 3 1 C

A 2 4 0 F

A 4 3 0 F

A 3 3 1 C

A 5 4 1 F

A 5 3 0 F

B 2 2 0 F

B 1 2 1 F

A 1 4 0 F

B 1 3 0 F

B 1 4 0 F

B 5 4 1 F

B 5 3 0 F

B 3 3 0 F

B 4 3 1 C

A 4 4 0 F

A 3 4 0 F

A 3 5 1 F

A 5 5 0 F

A 4 5 0 F

B 4 1 1 F

B 2 1 0 F

B 3 1 0 F

B 3 4 0 F

B 4 4 0 F

B 3 5 1 F

A 1 3 0 F

A 2 3 0 F

A 2 2 1 F

B 4 5 0 F

B 5 5 0 F

A 4 2 0 F

A 3 2 0 F

A 3 1 0 F

A 4 1 1 C

B 1 1 0 C

B 2 5 0 F

B 5 2 0 F

B 1 5 0 F

B 5 1 0 F

A 2 5 0 F

A 5 2 0 F

A 1 5 0 F

A 5 1 0 F

A 2 1 0 F

A 1 2 0 F

A 1 1 1 C

x y v t
A 2 4 1 F

A 3 3 0 F

A 4 3 1 C

B 2 4 0 F

B 2 3 0 F

A 2 4 0 F

A 4 3 0 F

A 3 3 1 C

A 5 4 1 F

A 5 3 0 F

B 2 2 0 F

B 1 2 1 F

A 1 4 0 F

B 1 3 0 F

B 1 4 0 F

B 5 4 1 F

B 5 3 0 F

B 3 3 0 F

B 4 3 1 C

A 4 4 0 F

A 3 4 0 F

A 3 5 1 F

A 5 5 0 F

A 4 5 0 F

B 4 1 1 F

B 2 1 0 F

B 3 1 0 F

B 3 4 0 F

B 4 4 0 F

B 3 5 1 F

A 1 3 0 F

A 2 3 0 F

A 2 2 1 F

B 4 5 0 F

B 5 5 0 F

A 4 2 0 F

A 3 2 0 F

A 3 1 0 F

A 4 1 1 C

B 1 1 0 C

B 2 5 0 F

B 5 2 0 F

B 1 5 0 F

B 5 1 0 F

A 2 5 0 F

A 5 2 0 F

A 1 5 0 F

A 5 1 0 F

A 2 1 0 F

A 1 2 0 F

A 1 1 1 C

A B A B A B A B A B A B

1 0 0

0 0

0 0

0 0

0

0 0

1 0 0 0

0 1 0 0

0 0 0 1

1 0 0 0

0 0 0

0 0

0 0

0 0 0 1

1 0 0 0

0 0 0

1 0 0 0 0

0 1 0 0

0 0 0 1

1 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0

0 0 0 0 1

1 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0

0 0 0 0 1

1 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

1 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 1 0

0 0 0 0 1

1 0 1 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

1 0 1 0 0

0 0 0 1 0

Figure 3.14. Snapshots of the stack during the Rectangle Tiling Algorithm. The stack grows upward, and each

line in the stack shows which square (A or B) is modified, the location (x, y) of modification, the binary value v,

and the type of change t (“C” for Chosen, or “F” for Forced). The coordinates are given in matrix notation, namely

(row, column), where the upper-left corner is position (1, 1).

101

3.4.5 Algorithmic positive capacity results

We include here a proof of five positive hexagonal (d, k) capacities. The first one, Chex(0, 1) > 0, is

rather trivial but is included for completeness since the only other known proof, due to Baxter and Joyce in more

general form as discussed earlier, is extremely complicated. The other four cases have been stated previously but

never proven in the literature.

In each case we demonstrate positive capacity by exhibiting a pair of distinct square labelings which can

arbitrarily tile the plane without violating the corresponding constraint. Thus each square labeling carries with it

one bit of information content.

To find these tileable square labelings, we wrote a backtracking algorithm that starts with two blank

squares and attempts to fill in 1s in randomly chosen unoccupied positions, along with any 0s that are then forced

due to the d constraint. If a contradiction results from trying to place a 0 where a 1 already exists, or vice versa,

then the previous action is popped off of a stack, and new moves are attempted. Successive pushing and popping

of the stack eventually led to the results shown. Computer run times were typically on the order of several minutes.

We note that it is an open question whether pairs of labelings exist that tile the plane validly whenever a

capacity is positive. Alternatively, it is conceivable that only aperiodic tilings of the plane can demonstrate positive

capacity. In fact, Durand, Gamard, Grandjean [8] demonstrated the existence of a certain Wang tile set that can

only tile the plane aperiodically, and yet achieves a positive capacity, although their results do not apply directly to

the hexagonal (d, k) constraint situation.

Theorem 3.4.1. If (d, k) ∈ {(0, 1), (1, 4), (2, 5), (3, 7), (4, 9)}, then the hexagonal (d, k) capacity is positive.

Proof. For each constraint, a square is given that can take on two distinct labelings by choosing the value of the

indicated x to be either 0 or 1, where x = 1 − x (see Figures 3.15 – 3.19). One can verify by inspection that

the resulting two labelings for each constraint can be arbitrarily assigned to squares in a tiling of the plane by the

squares, without violating the relevant hexagonal (d, k) constraint. Thus the area occupied by one such square can

have any one of at least two possible labelings, so the capacity is lower bounded by the reciprocal of the area of

the square, which in particular is positive. �

1 x
1 1

Figure 3.15. Two distinct labelings of a 2 × 2 square for the hexagonal (0, 1) constraint where x ∈ {0, 1}. Thus,

Chex(0, 1) ≥ 1/4.

102

0 1 0 0 1 0 0 x
0 0 1 0 0 1 0 x
1 0 0 1 0 0 x 0

0 1 0 0 1 0 x 0

0 0 1 0 0 x 0 1

1 0 0 1 0 0 0 0

0 1 0 0 0 1 0 0

0 0 0 1 0 0 1 0

Figure 3.16. Two distinct labelings of an 8× 8 square

for the hexagonal (1, 4) constraint where x ∈ {0, 1}.

Thus, Chex(1, 4) ≥ 1/64.

0 0 1 0 0 x
1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 1 0 0

0 1 0 0 1 0

Figure 3.17. Two distinct labelings of a 6 × 6 square

for the hexagonal (2, 5) constraint where x ∈ {0, 1}.

Thus, Chex(2, 5) ≥ 1/36.

103

0 0 0 1 0 0 0 x
0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

Figure 3.18. Two distinct labelings of an 8× 8 square

for the hexagonal (3, 7) constraint where x ∈ {0, 1}.

Thus, Chex(3, 7) ≥ 1/64.

0 0 0 0 1 0 0 0 0 x
0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0

Figure 3.19. Two distinct labelings of a 10 × 10
squares for the hexagonal (4, 9) constraint where x ∈
{0, 1}. Thus, Chex(4, 9) ≥ 1/100.

104

3.A Recursive implementation of the Forbidden String Algorithm

int A[N][N];

int Origin = N/2;

for(i,j=1 to N) A[i][j] = Unused;

Stack<Cell> TheStack;

struct Cell {

int X, Y, value;

string type;

}

bool Assign(X, Y) {

A[X][Y] = 1;

Cell c;

c.X = X; c.Y = Y;

c.type = "assumed";

c.value = 1;

TheStack.push(c);

ForceZeros();

if(No_k_Violation())

if(NoUnusedLocations()) return false; // Ran out of memory.

else {

do{ A[TheStack.top.X][TheStack.top.Y] = Unused;

TheStack.pop() }

while(!(TheStack.top.type = "assumed" && TheStack.top.value == 1));

if(TheStack.top.X == Origin && TheStack.top.Y == Origin)

return true; // Found proof that the string 1 0ˆz 1 is forbidden.

else {

A[TheStack.top.X][TheStack.top.Y] = 0;

TheStack.top.value = 0;

TheStack.top.type = "forced";

}

}

(X,Y) = NewUnusedLocation();

return Assign(X, Y); // Try assuming another unused location is 1.

}

A(Origin + z + 1, Origin) = 1;

if(Assign(Origin, Origin)) then print "Success";

else print "Failure";

105

3.B Recursive implementation of the Rectangle Tiling Algorithm

int A[N][M], B[N][M];

for(i=1 to N, j=1 to M) A[i][j] = B[i][j] = Unused;

Stack<Cell> TheStack;

struct Cell {

int X, Y, value;

string type;

int** Rect;

}

bool Tile(WhichRectangle, X, Y) {

WhichRectangle[X][Y] = 1;

Cell c;

c.X = X; c.Y = Y;

c.Rect = WhichRectangle;

c.type = "chosen";

c.value = 1;

TheStack.push(c);

ForceZeros();

if(No_k_Violation())

if(RectanglesFull()) return true; // Found good rectangles.

else {

do{ TheStack.top.Rect[TheStack.top.X][TheStack.top.Y] = Unused;

TheStack.pop() }

while(!(TheStack.top.type = "chosen" && TheStack.top.value == 1));

if(TheStack.top.X == 1 && TheStack.top.Y == 1 && TheStack.top.Rect == A)

return false; // Original assumptions led to contradiction.

else {

TheStack.top.Rect[TheStack.top.X][TheStack.top.Y] = 0;

TheStack.top.value = 0;

TheStack.top.type = "forced";

}

}

Rect = NewUnfilledRectangle;

(X,Y) = NewUnusedLocation(Rect);

return Tile(Rect, X, Y); // Try filling in another 1 in one rectangle.

}

B(1,1) = 0;

if(Tile(A, 1, 1)) then print "Success";

else print "Failure";

106

Chapter 3 is a reprint of the material as it appears in: S. Congero and K. Zeger, “Hexagonal run-length

zero capacity region—Part II: Automated proofs”, IEEE Transactions on Information Theory, vol. 68, no. 1, pp.

153-177, January 2022.

107

References

[1] R. J. Baxter, “Hard hexagons: exact solution” Journal of Physics A vol. 13, pp. 1023 – 1030, 1980.

[2] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, 1982.

[3] R. J. Baxter, “Planar lattice gases with nearest-neighbour exclusion,” Annals Combinatorics 3, vol. 191, pp.

191 – 203, 1999.

[4] R.J. Baxter and S.K. Tsang, “Entropy of hard hexagons,” J. Phys. A (Math. Gen) vol. 13, pp. 1023 – 1030,

1980.

[5] N. J. Calkin and H. S. Wilf, “The number of independent sets in a grid graph,” SIAM Journal of Discrete

Math, vol. 11, pp. 54 – 60, February 1998.

[6] K. Censor and T. Etzion, “The positive capacity region of two-dimensional run-length-constrained channels,”

IEEE Transactions on Information Theory, vol. 52, no. 11, pp. 5128 – 5140, November 2006.

[7] S. Congero and K. Zeger, “Hexagonal run-length zero capacity region—Part I: Analytical proofs,” IEEE

Transactions on Information Theory (submitted September 21, 2020, revised August 22, 2021).

[8] B. Durand, G. Gamard, and A. Grandjean, “Aperiodic tilings and entropy,” International Conference on

Developments in Language Theory, pp. 166 – 177, Springer, 2014.

[9] K. S. Immink, Codes for Mass Data Storage Systems, second edition, Shannon Foundation Publishers, Eind-

hoven, The Netherlands, 2004.

[10] G. S. Joyce, “Exact results for the activity and isothermal compressibility of the hard-hexagon model,” Jour-

nal of Physics A: Mathematical and General, vol. 21 (20): pp. L983 – L988, 1988.

[11] G. S. Joyce, “On the hard hexagon model and the theory of modular functions,” Philosophical Transactions

of the Royal Society of London A, vol. 325, pp. 643 – 702, 1988.

[12] A. Kato and K. Zeger, “On the capacity of two-dimensional run length constrained channels,” IEEE Transac-

tions on Information Theory, vol. 45, no. 4, pp. 1527 – 1540, July 1999.

[13] Zs. Kukorelly and K. Zeger, “The capacity of some hexagonal (d, k) constraints”, IEEE International Sym-

posium on Information Theory (ISIT), Washington, D.C., p. 64, June 2001.

[14] Zs. Kukorelly and K. Zeger, “Automated theorem proving for hexagonal run length constrained capacity

computation”, IEEE International Symposium on Information Theory (ISIT), Seattle, Washington, July 2006.

[15] B.D. Metcalf and C.P. Yang, “Degeneracy of anti-ferromagnetic Ising lattices at critical magnetic field and

zero temperature,” Physical Review B vol. 18, pp. 2304 – 2307, 1978.

[16] Zs. Nagy and K. Zeger, “Capacity bounds for the three-dimensional run length limited channel,” IEEE Trans-

actions on Information Theory, vol. 46, pp. 1030 – 1033, May 2000.

[17] L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder transition,” Physical Re-

view, vol. 65, nos. 3 and 4, pp. 117 – 149, 1944.

[18] R. Pavlov, “Approximating the hard square entropy constant with probabilistic methods,” Annals of Probabil-

ity, vol. 40, no. 6, pp. 2362 – 2399, 2012.

[19] M. Schwartz and A. Vardy, “New bounds on the capacity of multidimensional run-length constraints,” IEEE

Transactions on Information Theory, vol. 57, no. 7, pp. 4373 – 4382, July 2011.

[20] A. Sharov and R. M. Roth, “Two-dimensional constrained coding based on tiling,” IEEE Transactions on

Information Theory, vol. 56, no. 4, pp. 1800 – 1807, April 2010.

108

[21] R.E. Tarjan, “Depth first search and linear graph algorithms,” SIAM Journal on Computing, vol. 1, no. 2, pp.

146 – 160, 1972.

[22] G.H. Wannier, “Antiferromagnetism. The triangular Ising net,” Physical Review, vol. 79, no. 2, pp. 357 – 364,

1950.

[23] W. Weeks and R. E. Blahut, “The capacity and coding gain of certain checkerboard codes”, IEEE Transac-

tions on Information Theory, vol. 44, pp. 1193 – 1203, May 1998.

109

Chapter 4

The 3/4 Conjecture for Fix-Free Codes with At

Most Three Distinct Codeword Lengths

Abstract

The 3/4 Conjecture was posed 25 years ago by Ahlswede, Balkenhol, and Khachatrian, and states that if

a multiset of positive integers has Kraft sum at most 3/4, then there exists a code that is both a prefix code and a

suffix code with these integers as codeword lengths. We prove that the 3/4 Conjecture is true whenever the given

multiset of positive integers contains at most three distinct values.

110

4.1 Background on fix-free codes

One of the most intriguing unsolved questions in information theory is the so-called “3/4 Conjecture” for

fix-free codes. The conjecture was posed 25 years ago by Ahlswede, Balkenhol, and Khachatrian, and states that

if a multiset of positive integers has Kraft sum at most 3/4, then there exists a code that is both a prefix code and a

suffix code with these integers as codeword lengths. This conjecture is analogous to the well-known fact that if a

multiset of positive integers has Kraft sum at most 1, then there exists a prefix code with these integers as codeword

lengths.

In this paper, we prove that the 3/4 Conjecture is true whenever the given multiset of positive integers

contains at most three distinct values.

Our proof technique is partially constructive and partially existential, the latter approach relying on a

random coding argument, similar in spirit to that used in the classical channel coding theorem of Shannon [60].

For any two binary words u and v, let uv denote their concatenation. Let ǫ denote the empty word, such

that ǫu = uǫ = u for any binary word u. Denote the binary alphabet by A = {0, 1}. Let A0 = {ǫ}, and for

each n ≥ 1 let An denote the set of all n-bit binary words. Also, let A∗ = ∪∞
n=0A

n be the set of all finite-length

binary words. For any sets S, T ⊆ A∗, denote their direct product by ST = {uv : u ∈ S, v ∈ T }. Note that

∅T = T∅ = ∅ vacuously. For any binary word u ∈ A∗, let |u| denote its length.

A code is a finite subset of A∗, and a code’s elements are called codewords. A word u ∈ A∗ is a prefix

(respectively, suffix) of a word v ∈ A∗ if there exists x ∈ A∗ such that v = ux (respectively, v = xu).

A prefix code (respectively, suffix code) is a code for which no codeword is a prefix (respectively, suffix)

of any other codeword. A fix-free code1 is a code that is both a prefix code and a suffix code.

If C is a code, then CA∗ (respectively, A∗C) is the set of all words having a prefix (respectively, suffix)

in C.

A pattern is a code described by a string in {0, 1, A}∗. The code consists of all possible words obtained

by assigning either 0 or 1 to each occurrence of A in the pattern’s string. For example, 110A1A20 is a pattern that

contains |11A0A20| = 23 = 8 strings, each of length 7, namely

{1100000, 1100010, 1100100, 1100110, 1110000, 1110010, 1110100, 1110110}.

Also note that the length-one patterns 0 and 1 are the sets {0} and {1}, respectively.

The multiplicity of an integer in a multiset is the number of occurrences of that integer in the multiset. If

1Fix-free codes have also been called “biprefix codes” (e.g., [7, 49–52, 54]), “bifix codes” (e.g., [6, 8–12]), “affix codes” (e.g., [21, 53]),

“reversible variable length codes” (e.g., [5, 27, 30, 34, 45, 61, 63–73, 82]), and “never-self-synchronizing codes” (e.g., [23]).

111

a multiset of positive integers has distinct integers λ1, λ2, . . . with corresponding multiplicities µ1, µ2, . . . , then

the Kraft sum of the multiset is the quantity
∑

n≥1

µn2
−λn

and the Kraft sum of a code C is the quantity

K (C) =
∑

u∈C

2−|u|.

Note that the Kraft sum of any pattern U ∈ {0, 1, A}p is K (U) = |U |/2p, where |U | equals 2 raised to the number

of As in U .

As an example, the multiset {2, 3, 3, 4, 4, 4, 4} has distinct lengths 2, 3, and 4, with corresponding multi-

plicities µ1 = 1, µ2 = 2, µ3 = 4, and its Kraft sum is 1 · 2−2 + 2 · 2−3 + 4 · 2−4 = 1.

Variable length codes have been successfully used for transmission and storage of information for at least

75 years. In particular, binary prefix codes have been the most commonly used variable length codes, and are

widely embedded in many practical communication systems, such as speech, image, and video coding standards.

Prefix codes have been extensively studied and are well understood both in theory and practice. The

existence of prefix codes with a given set of codeword lengths was characterized by Kraft [43] in 1949, and an

optimal construction algorithm was given by Huffman [29] in 1952 that finds prefix codes with minimum average

length with respect to a source distribution.

A fix-free code is a special type of prefix code, namely one that is also a suffix code. Fix-free codes have

been studied for primarily four reasons: (1) theoretical and algebraic properties; (2) data compression; (3) error

correction; (4) sufficient conditions for existence using Kraft-type inequalities.

Theoretical analyses of fix-free codes were originated in 1956 by Schützenberger [57] and in 1959 by

Gilbert and Moore [23]. Various other algebraic properties were given from the 1960s to 1980s by Berstel and

Perrin [7], Césari [16, 17], Leonard [47], Perrin [49–52], Reutenauer [54], and Schützenberger [58, 59], and more

recently by Berstel, Berthe, DeFelice, Dolce, Leroy, Perrin, Reutenauer, and Rindone [8–12] and Gillman and

Rivest [24].

A special case of a fix-free code is a palindromic (or “symmetric”) code which is defined as a prefix code,

all of whose codewords are palindromes. Constructions of such codes were considered in [1,3,26,55,61,63,64,74].

In 1995, Takishima, Wada, and Murakami [61] studied fix-free codes for providing error correction capa-

bility by decoding both in the forward and reverse directions. Numerous other studies applying such codes to error

correction appeared later (e.g., [5, 15, 22, 25, 27, 30, 34, 35, 45, 46, 48, 62–73, 82]). In fact, the practical application

112

of fix-free codes was adopted into international standards for video compression, including ISO MPEG-4 [31] in

1998 and ITU-T H.263+ [32] in 2000.

In terms of data compression, prefix codes achieving a minimum possible average length with respect to

a given source distribution are well known from Huffman’s algorithm [29]. For fix-free codes, the situation is a bit

more complicated. Some studies of this include [1, 33, 36, 37, 39, 41,42, 55,74, 77, 80,81].

In addition to the practical use of fix-free codes for error correction of variable length lossless codes, the

foundational theory of fix-free codes has been a topic of great interest.

In order for any variable length code to be useful, it is generally required that it be uniquely decodable

(UD), which means that there is only one way to correctly parse a concatenation of variable length codewords.

Prefix codes are always UD, and it is known that for every UD code, there exists a prefix code with the same

codeword lengths [18]. So there is no loss of generality in restricting one’s attention from general UD variable

length codes to prefix codes.

On the other hand, for the purpose of lossless data compression, one would like the average codeword

length to be as short as possible, in order to reduce transmission and storage costs. This assumes each codeword is

assigned to represent a particular outcome of a discrete source random variable. The desire to have codes be UD

and short on average are opposing needs. That is, if a code is too short, it cannot also be UD.

The Kraft inequality makes this idea quantitatively precise. Specifically, the Kraft inequality gives an

upper bound of 1 on the Kraft sum of a multiset of positive integers corresponding to the codeword lengths of a

prefix code. In other words, as long as this upper bound is not violated, a prefix code exists having those positive

integers as its codeword lengths. In fact, the converse to the Kraft theorem is also true, namely that the Kraft sum

of the codeword lengths of any prefix code can be at most 1.

For fix-free codes, a similar trade-off exists between having short codeword lengths and being both a

prefix and a suffix code. An analogous question to the prefix code case asks for the lowest possible upper bound

on the Kraft sum of a multiset of positive integers that would ensure the existence of a fix-free code having those

positive integers as its codeword lengths. No improved converse can exist however, since fix-free codes can indeed

have Kraft sum equal to 1, such as a code consisting of all codewords of a given length.

In 1996, Ahlswede, Balkenhol, and Khachatrian [4] showed the weaker result that if the Kraft sum is at

most 1/2, then a fix-free code is guaranteed to exist with the corresponding codeword lengths. They also showed

the existence of a fix-free code if the Kraft sum of the multiset of codeword lengths is at most 3/4 and each integer

in the multiset is at least twice any smaller integer in the multiset. More generally, they showed that any upper

bound on the Kraft sum that ensures the existence of a fix-free code cannot be larger than 3/4. Perhaps most

interestingly, the authors of [4] conjectured that 3/4 itself is in fact such an upper bound on the Kraft sum. This is

113

now commonly referred to as the “3/4 Conjecture”, and is stated next.

Conjecture 4.1.1 (Ahlswede, Balkenhol and Khachatrian [4]). If a multiset of positive integers has Kraft sum at

most 3/4, then there exists a fix-free code whose codeword lengths are the elements of the multiset.

Since the 3/4Conjecture was made, numerous attempts to prove it have failed. However, many interesting

special cases of the conjecture have been proven, which we review next.

In 1999, Harada and Kobayashi [28] proved that Conjecture 4.1.1 holds if the multiset contains at most two

distinct positive integers. Initially, they attempted to use a randomized algorithm in their proof, but demonstrated

that it is not guaranteed to find the desired fix-free code. To achieve their result, they used a deterministic algorithm.

They were unable to extend their methods beyond multisets containing at most two distinct positive integers and,

in fact, stated the following:

“However, finding a fix-free code for l1, . . . , ln which consists of three or more different lengths

seems not to be always easy.”

In 2012, Savari, Yazdi, Abedini, and Khatri [55, p. 5121] proved, among other things, one special case of

Conjecture 4.1.1 where the given multiset has three distinct values. In particular, their result is limited to the case

where the smallest such value is 2 and appears exactly once, and the remaining two values have further specific

restrictions. The authors also stated the following that acknowledges the Harada-Kobayashi result for multisets

with two distinct values and confirms the difficulty of proving Conjecture 4.1.1 for multisets containing three

distinct values:

“The progress on the 3/4 conjecture has been slow even over binary code alphabets. One of

the early results [by Harada-Kobayashi] is that the 3/4 conjecture holds for length sequences

(l1, . . . , ln) for which li ∈ {λ1, λ2} for all i . The case where li ∈ {λ1, λ2, λ3} is only partly

understood.”

It is precisely the proof of Conjecture 4.1.1 for at most three distinct integers that we achieve in the present

paper (in our Theorem 4.2.1).

In 2001, Ye and Yeung [75] proved that Conjecture 4.1.1 holds when the multiset values do not exceed 7.

They also proved the weaker result that a fix-free code exists when the multiset contains the integer 1 and the Kraft

sum is at most 5/8.

Also in 2001, Yekhanin [76] gave a proof sketch that Conjecture 4.1.1 holds in two different cases: (1)

when the multiset values do not exceed 8; or (2) when the Kraft sum of the submultiset of is and (i+1)s is at least

1/2, where i is the smallest integer in the multiset. A special case of this second result is stated as the following

theorem, which we use as one component of our main result, Theorem 4.2.1. Theorem 4.1.2 is proved in more

detail in Yekhanin’s unpublished notes in [78].

114

Theorem 4.1.2. Conjecture 4.1.1 holds when the Kraft sum of the multiset of smallest length words is at least 1/2.

In 2004, Yekhanin [77], also proved Conjecture 4.1.1 holds when the Kraft sum is at most 5/8.

In 2005, Kukorelly and Zeger [44] proved that Conjecture 4.1.1 holds in two different cases: (1) when

the minimum integer i in the multiset is at least 2, and no integer in the multiset, except possibly the largest one,

occurs more than 2i−2 times; or (2) when every integer in the multiset, except possibly the largest one, occurs at

most twice.

In 2007, Schnettler [56] (see also [19, 20, 40]) gave a survey of sufficient conditions for the existence of

fix-free codes and generalized to nonbinary alphabets the result described above in [44]. He also expanded the

proof sketch given in [76] to a more general version of Theorem 4.1.2, and proved several specialized cases of

Conjecture 4.1.1.

In 2008, Khosravifard and Gulliver [38] further studied and improved the algorithm used by Harada and

Kobayashi [28] to establish Conjecture 4.1.1 for two-level integer multisets. They experimentally showed that their

algorithm tends to almost always find fix-free codes, when they exist, for multisets containing at most 30 integers,

with two or more distinct values.

In 2013, Aghajan and Khosravifard [2] calculated the fraction of cases covered by Yekhanin’s result (2)

in [76].

In 2015, Bodewig [13, 14] proved several special cases of Conjecture 4.1.1 for infinite multisets.

Today, there still remains an infinite number of unsolved cases of Conjecture 4.1.1.

4.2 Summary of the main result

Our main result covers an infinite number of new cases not previously known in the literature, and is

summarized in Theorem 4.2.1.

Theorem 4.2.1. Conjecture 4.1.1 is true whenever the multiset contains at most three distinct integers.

Proof. By Lemma 4.5.1, it suffices to prove the result when the Kraft sum is exactly 3/4. If the multiset contains

only one distinct integer λ1, then any subset of Aλ1 of size µ1 = 3 · 2λ1−2 will give the desired fix-free code. If

the multiset contains exactly two distinct integers, then the result is known by [28] (see also our Theorem 4.3.1).

Suppose the multiset contains exactly three distinct integers, which, in increasing order, are λ1, λ2, λ3,

with nonzero multiplicities µ1, µ2, µ3, respectively, and such that µ12
−λ1 + µ22

−λ2 + µ32
−λ3 = 3/4. Theo-

rem 4.1.2 implies that Conjecture 4.1.1 holds when µ12
−λ1 ≥ 1/2, so it suffices to assume µ12

−λ1 ≤ 1/2, in

which case the proof follows from our following three results:

115

• Theorem 4.6.2, i.e., when µ12
−λ1 ≤ 1

2 and µ22
−λ2 ≤ 1

4

• Theorem 4.7.2, i.e., when µ12
−λ1 ≤ 1

2 and 1
4 ≤ µ22

−λ2 ≤ 1
2

(
1− µ12

−λ1

)

• Theorem 4.8.1, i.e., when µ12
−λ1 ≤ 1

2 and 1
2

(
1− µ12

−λ1

)
≤ µ22

−λ2

These theorems are stated and proven in Sections 4.6, 4.7, 4.8, respectively. If λ1 = 1, then µ1 = 1, so Theo-

rem 4.1.2 applies. Thus, for each of Theorems 4.6.2, 4.7.2, and 4.8.1, it suffices to assume λ1 ≥ 2. Throughout

the proofs of these three theorems, we will use the following transformed quantities:

n = λ1 − 1

l = λ2 − λ1 + 1

k = λ3 − λ1 + 1. (4.1)

�

The main idea used in proving Theorems 4.6.2, 4.7.2, and 4.8.1 is to build sets of codewords of the three

desired lengths so that none of the shorter words is a prefix or suffix of any longer word.

The codewords of the shortest length λ1 will be elements of the set U1A
n, where U1 = 0. The set of

codewords of the middle length λ2 will be a union of at most three sets of the form U2A
l−2U3A

n, where U2 and U3

are two fixed bits. Since λ1 = n + 1, the conditions U1 6= U2 and U2 = U3 ensure any word from U2A
l−2U3A

n

will not have a length-λ1 prefix or suffix from U1A
n. Additionally, even if U1 = U2 or U1 = U3, we will still

be able to choose codewords of length λ2 as long as these words avoid having prefixes or suffixes among the

codewords from U1A
n.

Once the codewords of lengths λ1 and λ2 are constructed with the correct multiplicities µ1 and µ2, and

with no offending prefixes or suffixes, we then carefully construct enough codewords of length λ3 to make the total

Kraft sum equal 3/4, while avoiding prefixes and suffixes from codewords of lengths λ1 and λ2.

During this construction, the locations in words of length λ3 of the fixed bits U1, U2, and U3 (which are

fixed in words of lengths λ1 and λ2) play an important role in our ability to avoid prefixes and suffixes of words

of lengths λ1 and λ2. There are three possible “overlap cases” that are separately considered, depending on how

much overlap there is between the prefix and suffix of length λ2 in a codeword of length λ3. The three cases are

illustrated in Figure 4.1, and correspond to whether the value λ2−λ1 is less than, equal to, or greater than, λ3−λ2,

An equivalent condition, using the terminology from (4.1), is whether the value 2l − k is less than, equal to, or

greater than 1.

116

In Overlap Case 1, the fixed bits U2 and U3 of the length-λ2 prefixes and suffixes do not coincide, and

also the length-λ2 prefixes do not overlap the length-λ2 suffixes in their first l positions. In this case, length-λ3

codewords are drawn from sets of the form Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n, for some subset of the 16 possible

assignments of (Z1, Z2, Z3, Z4). In Overlap Case 2, the fixed bit U3 in length-λ2 prefixes of length-λ3 codewords

coincides with the fixed bit U2 in length-λ2 suffixes of such length-λ3 codewords. In this case, length-λ3 code-

words are drawn from sets of the form Z1A
l−2Z2A

l−2Z3A
n, for some subset of the 8 possible assignments of

(Z1, Z2, Z3). In Overlap Case 1, the fixed bits U2 and U3 of the length-λ2 prefixes and suffixes do not coincide,

but the length-λ2 prefixes do overlap the length-λ2 suffixes in their first l positions. It turns out that this latter

property is a source of complication throughout the construction. In this case, length-λ3 codewords are drawn

from sets of the form Z1A
k−l−1Z3A

2l−k−2Z2A
k−l−1Z4A

n, for some subset of the 16 possible assignments of

(Z1, Z2, Z3, Z4).

In all three cases, the codewords of length λ3 are randomly selected from carefully designed patterns to

avoid words of lengths λ1 and λ2 as prefixes and suffixes. The proof of our main result demonstrates that, on

average, the random choices of codewords of lengths λ1 and λ2 leave enough remaining potential codewords of

length λ3 to satisfy the Kraft sum being 3/4 without violating the prefix or suffix conditions. This bound on the

average Kraft sum implies that there exists at least one particular choice of words of the desired lengths that forms

a fix-free code and satisfies the requirements.

4.3 The 3/4 Conjecture with two distinct lengths

In order to illustrate aspects of our random coding technique in a relatively simple example, we next prove

Conjecture 4.1.1 when the multiset of positive integers is restricted to having only two distinct values. This result

was originally given by Harada and Kobayashi [28] using a different, and considerably longer, proof.

Theorem 4.3.1. Suppose a multiset of positive integers consists of µ1 copies of λ1 and µ2 copies of λ2, such that

λ1 < λ2 and µ12
−λ1 + µ22

−λ2 ≤ 3/4. Then there exists a fix-free code with µ1 codewords of length λ1 and µ2

codewords of length λ2.

Proof. Let F be a randomly chosen set of µ1 distinct words of length λ1. Each word of length λ2−λ1 is the prefix

of a unique word of length λ2 whose length-λ1 prefix equals its length-λ1 suffix. So the number of such words

is 2λ2−λ1 , and their Kraft sum is 2λ2−λ1 · 2−λ2 = 2−λ1 . The probability that any such word does not have its

common length-λ1 prefix/suffix in F is 2λ1−µ1

2λ1
. On the other hand, any word of length λ2 whose length-λ1 prefix

and suffix differ does not have a prefix or suffix in F with probability 2λ1−µ1

2λ1
· 2λ1−µ1−1

2λ1−1
(using Lemma 4.5.6),

and the Kraft sum of the set of such words is (2λ2 − 2λ2−λ1) · 2−λ2 = 1 − 2−λ1 . Therefore, the expected Kraft

117

Overlap Case 1: λ2 − λ1 < λ3 − λ2

U1 An

U2 U3Al−2 An

Z1 Z2 Z3 Z4Al−2 Ak−2l Al−2 An

U2 U3Al−2 An

U1 An

Overlap Case 2: λ2 − λ1 = λ3 − λ2

U1 An

U2 U3Al−2 An

Z1 Z2 Z3Al−2 Al−2 An

U2 U3Al−2 An

U1 An

Overlap Case 3: λ2 − λ1 > λ3 − λ2

U1 An

U2 U3Al−2 An

Z1 Z2Z3 Z4Ak−l−1 A2l−k−2 Ak−l−1 An

U2 U3Al−2 An

U1 An

Figure 4.1. Three cases of code word overlap. The three word lengths illustrated are λ1, λ2, and λ3. The bit

positions U1, U2, U3 correspond to certain fixed bits in patterns of length λ1 and λ2, and the bit positions Z1, Z2,

Z3, Z4 represent fixed bits in patterns of length λ3. These fixed bit positions are used to avoid prefixes and suffixes

in order to create a fix-free code.

sum of the set of length-λ2 words that have neither a prefix nor suffix in F is

2−λ1 ·
2λ1 − µ1

2λ1
+ (1 − 2−λ1) ·

(2λ1 − µ1)(2
λ1 − µ1 − 1)

2λ1(2λ1 − 1)

=
3

4
− µ12

−λ1 +

(
1

2
− µ12

−λ1

)2

≥
3

4
− µ12

−λ1 ≥ µ22
−λ2 .

Thus, there exists at least one particular choice of F such that there are at least µ2 words of length λ2 that have

neither a prefix nor suffix in F , i.e., there are then enough available words of length λ2 to create the claimed fix-free

code. �

118

4.4 Overview of the proof of the 3/4 Conjecture with three distinct

lengths

We give here a preview and high-level description of the proof of the 3/4 Conjecture with three distinct

lengths (i.e., the proof of Theorem 4.2.1). In Sections 4.6–4.8, detailed proofs are given, and some useful lemmas

are given in Section 4.5 and proven in the appendix.

The random coding method illustrated in the proof of Theorem 4.3.1 for two distinct lengths plays an

important role in the case of three distinct lengths, but significant complications arise when trying to avoid prefixes

and suffixes in the words of longest length. To avoid such prefixes and suffixes in our constructions, we assign fixed

values to certain bit locations in the chosen words of all three lengths, which in turn does make the analysis based

on random coding more difficult. Also, the method in the proof of Theorem 4.3.1 of counting each length-λ2 word

whose length-λ1 prefix is also a suffix does not work when there are bits with fixed values, as in the proofs with

three distinct lengths, so we instead develop a more widely applicable result that is proven in our Lemma 4.5.3.

As a result, the proofs provided in subsequent sections are substantially longer and more complex than that of

Theorem 4.3.1.

Explicitly constructing the needed numbers of strings of lengths λ1, λ2, and λ3 appears to be a difficult

task, so we chose an alternative approach that randomly chooses such strings according to certain rules that main-

tain the prefix/suffix conditions. The construction process chooses the correct number of strings of lengths λ1 and

λ2 and then we show that on average there remains enough strings of length λ3 to complete the process.

The proof of Theorem 4.2.1 is broken into three main cases, depending on the values of the Kraft sum

components µ12
−λ1 and µ22

−λ2 . The three cases are:

(1) µ12
−λ1 ≤ 1

2 and µ22
−λ2 ≤ 1

4

(2) µ12
−λ1 ≤ 1

2 and 1
4 ≤ µ22

−λ2 ≤ 1
2

(
1− µ12

−λ1

)

(3) µ12
−λ1 ≤ 1

2 and 1
2

(
1− µ12

−λ1

)
≤ µ22

−λ2 .

The third main case is broken into the following four subcases:

(a) λ2 ≥ 2λ1 (i.e., n ≤ l − 2)

(b) λ2 < 2λ1 (i.e., n > l − 2) and 1
4 ≤ µ12

−λ1 ≤ 1
2

(c) λ2 < 2λ1 (i.e., n > l − 2) and µ12
−λ1 < 1

4 and 1
4 ≤ µ22

−λ2 ≤ 1
2

(d) λ2 < 2λ1 (i.e., n > l− 2) and µ12
−λ1 < 1

4 and 1
2 < µ22

−λ2 .

119

Each of the main cases (1) and (2) and the subcases (3a)–(3d) are further divided into the three overlap cases

illustrated in Figure 4.1, namely:

• λ2 − λ1 < λ3 − λ2 (i.e., 2l− k < 1)

• λ2 − λ1 = λ3 − λ2 (i.e., 2l− k = 1)

• λ2 − λ1 > λ3 − λ2 (i.e., 2l− k > 1).

Within each overlap case of each main case or subcase, specific definitions are given of the three sets F1,

F2, and F3. These are the sets containing codewords of lengths λ1, λ2, and λ3, respectively. Our construction

chooses these three sets using various randomizations, and we show that in each case, on average, there are enough

codewords to correctly populate the sets without violating the prefix or suffix conditions. Once this step is accom-

plished, we then conclude that there must be at least one (non-random) code with the correct sizes of F1, F2, and

F3, and without violating the prefix or suffix conditions.

• Constructing F1:

In all cases and subcases we define F1 = 0An −C, where C is a set of size 2n − µ1 chosen randomly from

certain subsets of 0An. In other words, we construct F1 by starting with all binary strings of length n + 1

that start with 0, and then we delete in a random way enough of those strings to leave exactly µ1 remaining.

The motivation behind this definition of F1 is that when we construct larger codewords of lengths λ2 and λ3,

they can avoid having length-λ1 codewords as prefixes by having a 1 in their leftmost position or having a

word in C as a prefix, and they can avoid having length-λ1 codewords as suffixes by having a 1 in position

n+ 1 from the right or having a word in C as a suffix.

In the main cases (1) and (2) and the subcase (3a), we choose C uniformly at random from among the

2n−1 length-λ1 strings of 0An. For these cases, the construction of F1 is equivalent to simply choosing µ1

elements at random without replacement from 0An.

In subcase (3b), we choose C uniformly at random from among the 2n−1 length-λ1 strings of

0Al−21An−l+1. In other words, in this case F1 is constructed by randomly deleting enough strings from

0An containing a 1 in the lth position to leave exactly µ1 strings remaining.

In subcases (3c) and (3d), since µ12
−λ1 < 1

4 the value of µ1 is smaller than in case (3b), so the random set

C must be made larger than in (3b). So we choose C to have all 2n−1 strings in 0Al−21An−l+1 together

with 2n−1 − µ1 strings chosen uniformly at random from 0Al−20An−l+1. In other words, in these cases F1

is constructed by deleting all strings from 0An that contain a 1 in the lth position and also randomly deleting

enough strings from 0An that contain a 0 in the lth position to leave exactly µ1 strings remaining.

120

• Constructing F2:

The construction of F2 requires that F2 has µ2 strings, each of length λ2, and that none of these strings

contains a prefix or suffix in F1.

Notice that each word in 1Al−21An avoids both prefixes and suffixes from F1. There are 2n+l−2 = 1
42

λ2

such words available for F2, and each is of length n+ l = λ2. For main case (1), this number of codewords

is sufficient since µ2 ≤ 1
42

λ2 , but for main cases (2) and (3) more codewords are needed of length λ2 since

µ2 > 1
42

λ2 in those cases. In these two cases, one way to increase the number of codewords of length λ2 is

to include in F2 some words from 0Al−21An or 1Al−20An, and then require such words to have a prefix or

suffix, respectively, from C, in order to avoid prefixes or suffixes from F1.

When constructing F2, we make use of a new set D which is chosen uniformly at random from one of the

four sets: 1Al−21An, 0Al−21An, 1Al−2C, or CAl−1. In all cases except (3d), the words in set D are

avoided when constructing F2, which allows words of length λ3 to have prefixes or suffixes from D in the

construction of F3. In contrast, in case (3d) we add words from D when constructing F2, and then avoid

such words in constructing F3.

Table 4.1 shows for each main case, subcase, and overlap case which of the four sets D is chosen from, how

many words D contains, and the exact definition of F2. The precise usage of these quantities will become

apparent in the detailed proofs given in Sections 4.6–4.8. The involvement of D for constructing F2 in each

case allows sufficient codewords of length λ2 while avoiding prefixes and suffixes from F1.

• Constructing F3:

Our general strategy for constructing the set F3 is to form a union of subsets of Ak+n, where each subset

obeys certain constraints (according to which overlap case is being considered) that prevent prefixes or

suffixes from F1 or F2. Each subset in such a union is an intersection of two specially constructed sets Yp,q

and Wr,s over various binary values of p, q, r, s, specified by an index set I. The intersection of Yp,q and

Wr,s produces a pattern that falls into one of three specific forms, as seen in the third column of Table 4.2.

The patterns are designed based on the locations of the bits Z1, Z2, Z3, Z4 in Figure 4.1. By controlling the

values of these four bits we prevent the strings in F3 from having prefixes and suffixes in F1 and F2. The

sets Yp,q regulate prefixes and the sets Wr,s regulate suffixes.

Table 4.2 summarizes the construction of F3 and the pattern used for each overlap case:

These constructions of the random set F3 are used for all cases, except for main case (3d), where a slightly

different construction is used.

121

Table 4.1. The sets F2 and D for all overlap cases and subcases used in the proof of Theorem 4.3.1

Case : F2 |D| D is from

Overlap

(1) 1Al−21An −D 2n+l−2 − µ2 1Al−21An

(2): 1,3 (1Al−21An −D) ∪ 1Al−2C 1
2 (1− µ12

−λ1)2λ2 − µ2 1Al−21An

(2): 2 1Al−21An ∪ (1Al−2C −D) 1
2 (1− µ12

−λ1)2λ2 − µ2 1Al−2C

(3a): 1 (1Al−21An −D) ∪ 1Al−2C ∪ CAl−2−n1An (34 − µ12
−λ1)2λ2 − µ2 1Al−21An

(3a): 2,3 1Al−21An ∪ (1Al−2C −D) ∪ CAl−2−n1An (34 − µ12
−λ1)2λ2 − µ2 1Al−2C

(3b): 1,3 (1Al−21An −D) ∪ CAl−1 (34 − µ12
−λ1)2λ2 − µ2 1Al−21An

(3b): 2 1Al−21An ∪ (CAl−1 −D) (34 − µ12
−λ1)2λ2 − µ2 CAl−1

(3c): 1,3 (1Al−21An −D) ∪ 0Al−21An 2λ2−1 − µ2 1Al−21An

(3c): 2 1Al−21An ∪ (0Al−21An −D) 2λ2−1 − µ2 0Al−21An

(3d) 1Al−21An ∪ 0Al−21An ∪D µ2 − 2λ2−1 1Al−2C

Table 4.2. The set F3 and corresponding pattern for all overlap cases used in the proof of Theorem 4.3.1

Overlap Case F3 Pattern

(1)
⋃

(Z1,Z2,Z3,Z4)∈I

(YZ1,Z2
∩WZ3,Z4

) Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n

(2)
⋃

(Z1,Z2,Z3)∈I

(YZ1,Z2
∩WZ2,Z3

) Z1A
l−2Z2A

l−2Z3A
n

(3)
⋃

(Z1,Z2,Z3,Z4)∈I

(YZ1,Z3
∩WZ2,Z4

) Z1A
k−l−1Z2A

2l−k−2Z3A
k−l−1Z4A

n

122

The proofs in Sections 4.6–4.8 calculate the average size of F3 and show that it is at least µ3. This ensures

that there is at least one (deterministic) instance of the random sets C and D that guarantees a (deteministic)

instance of the set F3 with at least µ3 elements, and this instance of F3 can be pruned back to have exactly µ3

elements.

4.5 Lemmas about Kraft sums

This section gives many technical lemmas used to prove the main theorems in the sections to follow. Most

of the proofs of the lemmas in this section can be found in the appendix.

For any set S ⊆ A∗, the indicator function 1S : A∗ → {0, 1} is defined by

1S (x) =





1 if x ∈ S

0 else.

Lemma 4.5.1. If a multiset of positive integers has Kraft sum less than 3/4, then the multiplicity of its largest

value can be increased to make the Kraft sum equal to 3/4.

Some basic facts about Kraft sums will be used throughout this paper. As some examples: (i) if S and

T are disjoint codes, then K (S ∪ T) = K (S) + K (T); (ii) if S and T are codes and at least one of them is

fixed length, then K (ST) = K (S)K (T); (iii) K (An) = 1 for all n ≥ 1; and (iv) K (0) = K (1) = 1/2. Two

consequences of these facts are given in the following lemma.

Lemma 4.5.2.

(i) If p1, . . . , pn are nonnegative integers and u1, . . . , un ∈ A∗, then

K (u1A
p1u2A

p2 . . . unA
pn) = 2−(|u1|+···+|un|).

(ii) If S is a code and T is a fixed-length random code, then E[K (ST)] = K (S)E[K (T)].

Let m ≥ l ≥ 1 be integers, and let U ∈ {0, 1, A}m. Define Rl(U) ⊆ Am to be the set of words w ∈ U

such that the l-bit prefix of w equals the l-bit suffix of w.

The following lemma is used in many of the proofs of our other lemmas.

123

Lemma 4.5.3. Let U = U1U2 · · ·Um ∈ {0, 1, A}m and let l ≤ m be a positive integer. Then the number of words

in U whose length-l prefix and suffix are the same is

|Rl(U)| =

m−l∏

p=1

∣∣∣∣∣∣∣∣

⋂

1≤i≤m
i≡p mod (m−l)

Ui

∣∣∣∣∣∣∣∣
.

Three examples illustrating the usage of Lemma 4.5.3 are given next.

• LetU = 0A20A31 and l = 5. So m−l = 3. ThenU1∩U4∩U7 = 0∩0∩A = 0, U2∩U5∩U8 = A∩A∩1 = 1,

and U3 ∩ U6 = A ∩ A = A. So |Rl(U)| = |0| · |1| · |A| = 1 · 1 · 2 = 2. The two words in Rl(U) are

01001001 and 01101101.

• Let U = 0A20A21A and l = 5. So m − l = 3. Then U1 ∩ U4 ∩ U7 = 0 ∩ 0 ∩ 1 = ∅, U2 ∩ U5 ∩ U8 =

A ∩ A ∩ A = A, and U3 ∩ U6 = A ∩ A = A. So |Rl(U)| = |∅| · |A| · |A| = 0 · 2 · 2 = 0.

• Let U = 1A21A1A21 and l = 6. So m − l = 3. Then U1 ∩ U4 ∩ U7 = 1 ∩ 1 ∩ A = 1, U2 ∩ U5 ∩ U8 =

A ∩ A ∩ A = A, and U3 ∩ U6 ∩ U9 = A ∩ 1 ∩ 1 = 1. So |Rl(U)| = |1| · |A| · |1| = 1 · 2 · 1 = 2. The two

words in Rl(U) are 101101101 and 111111111.

A fixed point in a pattern X ∈ {0, 1, A}∗ is a position in the pattern’s string whose value is not equal to

A.

We will say that a randomly generated set of words of a given length is of a fixed size if the set is chosen

according to some probability distribution on all sets of the same cardinality that contain words of the given length.

Lemma 4.5.4. Let m be a positive integer. For each i = 1, 2 let Xi ∈ {0, 1, A}mi, with mi ≤ m, and let Yi be

a set of a fixed size drawn uniformly at random and without replacement from Xi, where the words of Y1 and Y2

are drawn independentally of each other. Let W1 = AaY1A
b ∩ U1 and W2 = AcY2A

d ∩ U2 for some patterns

U1 ⊆ AaX1A
b and U2 ⊆ AcX2A

d, where a + b = m −m1 and c + d = m −m2. Let p denote the number of

positions where U1 and U2 both have a fixed point, and assume that the values of U1 and U2 agree at each such

position. Then

E[K (W1 ∩W2)] = 2p ·

2∏

i=1

K (Ui)
K (Yi)

K (Xi)
.

Note that in the above lemma, the cardinality of each random set Yi is fixed and its elements are all of

length mi, so the Kraft sum of Yi is deterministic.

124

Corollary 4.5.5. Let Y be a set of a fixed size chosen uniformly at random and without replacement from a pattern

X ∈ {0, 1, A}n+1. Let U ∈ {0, 1, A}n+k. If U ⊆ AaXAb, then

K
(
AaY Ab ∩ U

)
= K (U) ·

K (Y)

K (X)
.

Lemma 4.5.6. Let X be a set of size at least 2 and let C be a set of a fixed size chosen uniformly at random from

X . For any particular element of X , the probability that the element lies in C is |C|/|X |. For any two particular

distinct elements of X , the probability that both lie in C is
|C|(|C|−1)
|X|(|X|−1) .

Lemma 4.5.7. Let n ≥ 1 and p ≥ 0 be integers, let b ∈ A, and let C be a set of a fixed size chosen uniformly at

random from bAn. Then for any U ∈ {0, 1, A}p,

E[K
(
CAp+1 ∩ bUbAn ∩ Ap+1C

)
] = K (U)K (C)

2
.

The next lemma calculates the expected Kraft sum of the set all (k + n)-bit words that have both a prefix

and suffix in a randomly chosen set of words of the form 1Al−21An, where 2 ≤ l < k.

Lemma 4.5.8. Let n, l, k ≥ 0 be integers, with 2 ≤ l < k, and let D be a subset of a fixed size chosen uniformly

at random from 1Al−21An. Then

E[K
(
DAk−l ∩ Ak−lD

)
] =





K (D)
2

if 2l− k < 1

2K (D)
2

if 2l− k = 1

K (D)2 if 2l− k > 1 and (k − l) ∤ (2l− k − 1)

K (D)
2
+

K(D)(1
4
−K(D))

2n+l−2−1 if 2l− k > 1 and (k − l) | (2l− k − 1).

Corollary 4.5.9. Let n, l, k ≥ 1 be integers, with 2 ≤ l < k and n > l − 2. Let C0 be a subset of a fixed size

125

chosen uniformly at random from 0Al−20An−(l−1). Then

E[K
(
C0A

k−l ∩Ak−lC0

)
]

=





K (C0)
2

if 2l− k < 1

2K (C0)
2

if 2l− k = 1

K (C0)
2

if 2l− k > 1 and (k − l) ∤ (2l − k − 1)

K (C0)
2
+

K(C0)(
1
4
−K(C0))

2n−1−1 if 2l− k > 1 and (k − l) | (2l − k − 1).

Proof. This corollary follows from Lemma 4.5.8 by changing 1s to 0s. �

Lemma 4.5.10. Let C ⊆ An+1 be a random set of a fixed size. Let g(C) ⊆ An+k be a set that is some function of

C. If D is a set of a fixed size chosen uniformly at random from 1Al−2C, then

E[K
(
DAk−l ∩ g(C)

)
] =

K (D)

K (C) /2
·E[K

(
1Al−2CAk−l ∩ g(C)

)
]

E[K
(
g(C) ∩ Ak−lD

)
] =

K (D)

K (C) /2
·E[K

(
g(C) ∩ Ak−l1Al−2C

)
],

and if D is a set of a fixed size chosen uniformly at random from CAl−1, then

E[K
(
DAk−l ∩ g(C)

)
] =

K (D)

K (C)
· E[K

(
CAk−1 ∩ g(C)

)
],

where K(D)/K(C) = 0 whenever K(C) = K(D) = 0.

In Theorem 4.8.1(c) and Theorem 4.8.1(d) in Section 4.8, the set C is not chosen uniformly at random

from a fixed pattern, but instead C = C1 ∪ C0, where C1 = 0Al−21An−(l−1) and C0 is chosen uniformly at

random from 0Al−20An−(l−1). The following lemma calculates E[K
(
DAk−l ∩ Ak−1C

)
] in this situation.

Lemma 4.5.11. Let n, l, k ≥ 1 be integers, with 2 ≤ l < k and n > l − 2. Let C = C1 ∪ C0 be a set of a fixed

size where C1 = 0Al−21An−(l−1) and C0 is chosen uniformly at random from 0Al−20An−(l−1). Let D be a set

126

of a fixed size chosen uniformly at random from 1Al−2C. Then

E[K
(
DAk−l ∩ Ak−1C

)
]

=





K (C)K (D) if 2l− k < 1

2(K (C)− 1
4)K (D) if 2l− k = 1

K (C)K (D) if 2l− k > 1 and (k − l) ∤ (2l − k − 1)

K (C)K (D) +
K(D)(K(C)− 1

4
)(1

2
−K(C))

K(C)(2n−1−1) if 2l− k > 1 and (k − l) | (2l − k − 1).

Lemma 4.5.12. Let n ≥ 1 and a, b ≥ 0 be integers and let C be a subset of a fixed size chosen uniformly at

random from 0An. Then

E[K
(
1AaCAa+b+2 ∩ 1Aa0Ab0Aa1An ∩ Aa+b+2CAa+1

)
]

=





K(C)2

4 −
K(C)(1

2
−K(C))

4(2n−1) if n > a and (b+ 1) | (a+ 1)

K(C)2

4 else.

Lemma 4.5.13. Let n ≥ 1 and a, b ≥ 0 be integers and let C be a subset of a fixed size chosen uniformly at

random from 0An. Then

E[K
(
CA2a+b+3 ∩ 0Aa0Ab0Aa1An ∩ 0AaCAa+b+2

)
]

=





K(C)2

4 if n ≤ b

K(C)2

4 if b < n ≤ a+ b+ 1 and (a+ 1) ∤ (b+ 1)

K(C)2

4 +
K(C)(1

2
−K(C))

4(2n−1) if b < n ≤ a+ b+ 1 and (a+ 1) | (b+ 1)

K(C)2

4 −
K(C)(1

2
−K(C))

4(2n−1) if n > a+ b+ 1.

Lemma 4.5.14. Let n ≥ 1 and a, b ≥ 0 be integers and let l = a+ b + 3. Let C be a subset of a fixed size of at

least 1 chosen uniformly at random from 0An, and let D be a set of a fixed size chosen uniformly at random from

127

1Al−2C. Then

E[K
(
DAa+1 ∩ 1Aa1Ab0Aa0An ∩ Aa+1D

)
]

=





K (D)
2

if (a+ 1) ∤ (b+ 1)

K (D)2 − K(D)
|C|2l−2−1

· (K(C)
2 −K (D)) if (a+ 1) | (b+ 1).

Lemma 4.5.15. Let n ≥ 1 and l ≥ 3 and

f(x, y) =

(
1

4
− y

)2

−
1
2 − x

2(2n − 1)

(x
2
− y
)
−

y

x2n+l−1 − 1

(x
2
− y
)
−

1

4(2n − 1)
x

(
1

2
− x

)
.

Then f(x, y) ≥ 0 for all x ∈ [1
2n+1 ,

1
2 − 1

2n+1] ∪ { 1
2} and y ∈ [0, x2 − 1

2n+l] ∪ {x
2 }.

4.6 Main result, part 1: µ12
−λ1 ≤ 1

2 and µ22
−λ2 ≤ 1

4

We are given three positive integers in increasing order, λ1, λ2, λ3, and corresponding nonzero multi-

plicities µ1, µ2, µ3, such that the Kraft sum µ12
−λ1 + µ22

−λ2 + µ32
−λ3 equals 3/4. We are also given that the

Kraft sums of the words of lengths λ1 and λ2 are upper bounded by 1/2 and 1/4, respectively. Our objective is to

demonstrate that a fix-free code exists with the corresponding multiset of integers as codeword lengths.

We first construct length-λ1 codewords by randomly removing a subset C of 0An, whose size is chosen to

leave exactly µ1 codewords remaining. Then, length-λ2 codewords are chosen from the words in 1Al−21An, since

none of them can have a prefix or suffix from the length-λ1 words already chosen. Specifically, these words are

chosen by randomly removing a subset D of 1Al−21An, whose size is picked to leave exactly µ2 words remaining

after removal. The largest possible Kraft sum of the length-λ2 words that can be achieved in this manner occurs

when no words are removed, i.e., when |D| = 0. In this case, the expected Kraft sum of the length-λ2 words is

K
(
1Al−21An

)
= 1/4, by Lemma 4.5.2, which explains the upper bound on µ22

−λ2 used in Theorem 4.6.2.

Finally, length-λ3 words are constructed to avoid prefixes and suffixes in the randomly constructed sets

of words of lengths λ1 and λ2.

It appears to be a somewhat difficult task to describe which codewords of lengths λ1 and λ2 to use in

order to ensure the availability of the needed length-λ3 codewords, while preserving the fix-free condition and the

3/4 Kraft sum upper bound.

We use a probabilistic approach and remove the correct number of codewords of lengths λ1 and λ2 by

random selection. In other words, we remove 2λ1−1−µ1 of the original length-λ1 codewords, uniformly at random

128

from among the 2λ1−1 original length-λ1 codewords, and then we remove 2λ2−2 − µ2 of the original length-λ2

codewords uniformly at random from among the 2λ2−2 original length-λ2 codewords. We prove that, on average,

there are at least µ3 codewords of length λ3 that do not have any prefix or suffix from the resulting µ1 codewords

of length λ1 and µ2 codewords of length λ2. So, there must exist at least one actual collection of µ1 codewords of

length λ1 and µ2 codewords of length λ2 that result in at least µ3 codewords of length λ3 that have neither prefix

nor suffix in the collection. This existential technique is somewhat analogous to that used in Shannon’s proof of

the channel coding theorem [60].

Throughout the proof of the main results, we shall use certain repeated terminology. The quantities λ1,

λ2, and λ3 will represent, in increasing order, the three distinct codeword lengths for the desired fix-free code.

Throughout, we will use the quantities n, l, and k as defined in (4.1).

The proof of Theorem 4.6.2 is broken into three “overlap cases”, namely when: (1) 2l − k < 1; (2)

2l − k = 1; and (3) 2l − k > 1. These cases correspond, respectively, to when a length-λ2 prefix and a length-λ2

suffix of a length-λ3 word: (1) overlap in at most n positions; (2) overlap in exactly n+1 positions; and (3) overlap

in at least n+2 positions. The same three cases are also used to prove Theorems 4.7.2 and 4.8.1. These three cases

are illustrated in Figure 4.1.

The proof of Theorem 4.6.2 uses the following lemma, whose proof can be found in the appendix.

Lemma 4.6.1. Let n, l, k ≥ 1 be integers such that 2 ≤ l < k. Let C be a set of a fixed size chosen uniformly at

random from 0An. Let D be a set of a fixed size chosen uniformly at random from 1Al−21An. For any b1, b2 ∈ A,

if 2l− k 6= 1, then

(i) K
(
1Al−20An+k−l ∩ Ak−l0Al−21An

)
= 1/16

(ii) E[K
(
CAk−1 ∩ 0Al−2b1A

n+k−l ∩Ak−l0Al−21An
)
] = K (C) /8

(iii) E[K
(
1Al−20An+k−l ∩Ak−lb1A

l−2C
)
] = K (C) /8

(iv) E[K
(
CAk−1 ∩ 0Al−2b1A

n+k−l ∩Ak−lb2A
l−2C

)
] = K (C)2 /4

(v) E[K
(
DAk−l ∩ Ak−l0Al−21An

)
] = K (D) /4

(vi) E[K
(
1Al−20An+k−l ∩Ak−lD

)
] = K (D) /4

(vii) E[K
(
CAk−1 ∩ 0Al−2b1A

n+k−l ∩Ak−lD
)
] = K (C)K (D) /2

(viii) E[K
(
DAk−l ∩ Ak−lb1A

l−2C
)
] = K (C)K (D) /2

(ix) E[K
(
DAk−l ∩ Ak−lD

)
] =





K (D)2 if 2l−k < 1

K (D)
2

if 2l−k > 1 and (k−l) ∤ (2l−k−1)

K (D)
2
+

K(D)(1
4
−K(D))

2n+l−2−1
if 2l−k > 1 and (k−l) | (2l−k−1)

129

and if 2l − k = 1, then

(x) K
(
1Al−20An+k−l ∩ Ak−l0Al−21An

)
= 1/8

(xi) E[K
(
CAk−1 ∩ 0Al−20An+k−l ∩ Ak−l0Al−21An

)
] = K (C) /4

(xii) E[K
(
1Al−20An+k−l ∩Ak−l0Al−2C

)
] = K (C) /4

(xiii) E[K
(
CAk−1 ∩ 0Al−2b1A

n+k−l ∩Ak−lb1A
l−2C

)
] = K (C)

2
/2

(xiv) E[K
(
CAk−1 ∩ 0Al−21An+k−l ∩ Ak−lD

)
] = K (C)K (D)

(xv) E[K
(
DAk−l ∩ Ak−l1Al−2C

)
] = K (C)K (D)

(xvi) E[K
(
DAk−l ∩ Ak−lD

)
] = 2K (D)

2
.

Theorem 4.6.2. Suppose a multiset of positive integers consists of µ1 copies of λ1, µ2 copies of λ2, and µ3 copies

of λ3, such that 2 ≤ λ1 < λ2 < λ3. Then there exists a fix-free code with µ1 codewords of length λ1, µ2 codewords

of length λ2, and µ3 codewords of length λ3, whenever the following conditions hold:

µ12
−λ1 ≤

1

2

µ22
−λ2 ≤

1

4

µ12
−λ1 + µ22

−λ2 + µ32
−λ3 =

3

4
.

Proof. Let C be a set of size 2n − µ1 chosen uniformly at random from the 2n length-λ1 elements of 0An, and

let D be a set of size 2n+l−2 −µ2 chosen uniformly at random from the 2n+l−2 length-λ2 elements of 1Al−21An.

Define the following (random) sets:

F1 = 0An − C

F2 = 1Al−21An −D.

Then F1 contains µ1 words, each of length λ1, and F2 contains µ2 words, each of length λ2. By Lemma 4.5.2, we

have K (F1) = K (0An)−K (C) = 1
2 −K (C) ≤ 1

2 and K (F2) = K
(
1Al−21An

)
−K (D) = 1

4 −K (D) ≤ 1
4 .

In each of three cases, we will construct a third random set of words, F3. The random set

F = F1 ∪ F2 ∪ F3

130

on average forms the desired fix-free code. The union of non-random instances of F1, F2, and F3 will then yield

the asserted fix-free code. Let

Yi,j =





CAk−1 ∩ 0Al−2jAn+k−l if i=0

1Al−20An+k−l if i=1, j=0

DAk−l if i=j=1

Wi,j =





Ak−liAl−2C if j=0

Ak−l0Al−21An if i=0, j=1

Ak−lD if i=j=1.

• Overlap Case 1: 2l− k < 1.

In this case, the set F3 is built as a union of 16 disjoint subsets of Ak+n. The basic building block of each

such subset is a pattern of the form Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n, where Z1, Z2, Z3, Z4 are fixed bits that

ensure the 16 subsets are disjoint and are chosen to avoid prefixes or suffixes from F1 or F2. When these

four bits do not prevent such prefixes or suffixes, the sets Yi,j and Wi,j are constructed to remove offending

prefixes or suffixes. These constructions can require certain subsets to have prefixes or suffixes in C and/or

D. The terms in each intersection below satisfy YZ1,Z2
∩WZ3,Z4

⊆ Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n.

Let I = A4 and define the set F3, containing words of length λ3, by:

F3 =
⋃

(Z1,Z2,Z3,Z4)∈I

(YZ1,Z2
∩WZ3,Z4

)

Each of the 16 sets in the union comprising F3 consists of words of length λ3, and these sets, except when

(Z1, Z2, Z3, Z4) = (1, 0, 0, 1), are random, since they involve the random sets C or D. Thus, the Kraft sums

of all but one term in the union are random variables.

When Z1 = 0 (respectively, Z4 = 0), the words in the sets of the union are designed to contain prefixes

(respectively, suffixes) in C in order to avoid prefixes (respectively, suffixes) in F1, and when Z1 = Z2 = 1

(respectively, Z3 = Z4 = 1), the words in the sets of the union are designed to contain prefixes (respectively,

suffixes) in D in order to avoid prefixes (respectively, suffixes) in F2.

It is easy to verify that none of the words of F2 have prefixes or suffixes in F1, none of the words of F3 have

prefixes or suffixes in F1 or F2, and that every two of the sets in the union forming F3 are disjoint.

131

Next, we lower bound the expected Kraft sum of F3:

E[K (F3)] =
∑

(Z1,Z2,Z3,Z4)∈A4

E[K (YZ1,Z2
∩WZ3,Z4

)]

=
K (C)

2

4
+

K (C)

8
+

K (C)
2

4
+

K (C)K (D)

2
+

K (C)
2

4
+

K (C)

8

+
K (C)2

4
+

K (C)K (D)

2
+

K (C)

8
+

1

16
+

K (C)

8
+

K (D)

4

+
K (C)K (D)

2
+

K (D)

4
+

K (C)K (D)

2
+ K (D)

2
(4.2)

=

(
K (C) +K (D)−

1

4

)2

+K (C) +K (D)

≥ K (C) +K (D)

=
1

2
− µ12

−λ1 +
1

4
− µ22

−λ2 (4.3)

=
3

4
− µ12

−λ1 − µ22
−λ2 (4.4)

where (4.2) follows from Lemma 4.6.1.

From (4.4), we can lower bound the expected size of the random set F3 by

E[|F3|] ≥ 2λ3

(
3

4
− µ12

−λ1 − µ22
−λ2

)
= µ3.

There must exist at least one instance of the randomly constructed set F3 that satisfies the same lower bound

satisfied by the average size of F3. Such an instance of the random set F3 corresponds to some particular

choices of the random sets C and D. Let F̂1 and F̂2 denote the resulting (non-random) instances of the

random sets F1 and F2, respectively. Let F̂3 denote the resulting (non-random) instance of F3, but only after

throwing away enough codewords to make the size of F̂3 exactly equal to the lower bound on E[|F3|]. That

is,

|F̂3| = µ3.

The code F̂1 ∪ F̂2 ∪ F̂3 is fix-free, has Kraft sum equal to 3/4, and has µ1, µ2, µ3 codewords of sizes λ1, λ2,

λ3, respectively.

132

• Overlap Case 2: 2l− k = 1.

In this case, the set F3 is built in a similar manner as in Overlap Case 1, although here it will be a union

of only 8 disjoint subsets of Ak+n, using patterns of the form Z1A
l−2Z2A

l−2Z3A
n. The terms in each

intersection below satisfy YZ1,Z2
∩WZ2,Z3

⊆ Z1A
l−2Z2A

l−2Z3A
n.

Let I = A3 and define the set F3 containing words of length λ3, and lower bound its expected Kraft sum as

follows:

F3 =
⋃

(Z1,Z2,Z3)∈I

(YZ1,Z2
∩WZ2,Z3

)

E[K (F3)] =
∑

(Z1,Z2,Z3)∈I

E[K (YZ1,Z2
∩WZ2,Z3

)]

=
K (C)

2

2
+

K (C)

4
+

K (C)
2

2
+K (C)K (D)

+
K (C)

4
+

1

8
+K (C)K (D) + 2K (D)

2
(4.5)

=

(
K (C) +K (D)−

1

4

)2

+

(
K (D)−

1

4

)2

+K (C) +K (D)

≥ K (C) +K (D)

where (4.5) follows from Lemma 4.6.1. Overlap Case 2 is then finished by applying the same reasoning as

used from (4.3) to the end of Overlap Case 1.

• Overlap Case 3: 2l− k > 1.

This case is nearly identical to Overlap Case 1, but uses the following definition of F3:

F3 =
⋃

(Z1,Z2,Z3,Z4)∈I

(YZ1,Z3
∩WZ2,Z4

)

where YZ1,Z3
∩WZ2,Z4

⊆ Z1A
k−l−1Z2A

2l−k−2Z3A
k−l−1Z4A

n. The only other difference is that the equal

sign in (4.2) changes to ≥, since in Lemma 4.6.1(ix) when 2l− k > 1 we have E[K
(
DAk−l ∩ Ak−lD

)
] ≥

K (D)
2
.

�

133

4.7 Main result, part 2: µ12
−λ1 ≤ 1

2 and 1
4 ≤µ22

−λ2 ≤ 1
2

(
1−µ12

−λ1
)

In Theorem 4.6.2, sets of words of lengths λ1 and λ2 were initially constructed, and then some words were

independently and uniformly removed from each set in order to bring their sizes down to µ1 and µ2, respectively.

Then a set of of length-λ3 words was constructed that avoided prefixes and suffixes from the random sets of lengths

λ1 and λ2. The constraint in Theorem 4.6.2 that µ22
−λ2 ≤ 1

4 allowed us to construct the set F2 of length-λ2 words

entirely based on words from 1Al−21An (whose Kraft sum is 1/4).

The construction for Theorem 4.7.2 is slightly different however, since this theorem requires µ22
−λ2 ≥ 1

4 ,

but there are not enough words in 1Al−21An to get a Kraft sum larger than 1/4 for the length-λ2 words.

To solve this issue, in Theorem 4.7.2 we start with a larger set of length-λ2 words, namely 1Al−21An ∪

1Al−2C, where C is a random set of words removed from 0An to leave exactly µ1 of such words of length

n+1 = λ1 remaining (just like in Theorem 4.6.2). Then, to construct a set of µ2 length-λ2 codewords, we remove

a randomly selected subset D from 1Al−21An in Overlap Cases 1 and 3, and from 1Al−2C in Overlap Case 2,

where the cardinality of D ensures that there will be a total of µ2 codewords of length λ2 left after removal. In this

manner, no length-λ1 codewords can be prefixes or suffixes of any length-λ2 codewords, since any word in the set

1Al−21An has a fixed bit of 1 where a length-λ1 prefix or suffix from 0An would have a 0, and any word in the

set 1Al−2C has a fixed bit of 1 where a length-λ1 prefix would have a 0, and has a length-λ1 suffix from C, which,

by construction, cannot be one of the µ1 words of length λ1 chosen for the fix-free code.

The largest Kraft sum of the length-λ2 words that we can get with this technique is when we do not

remove any codewords of length λ2, i.e., when |D| = 0, in which case the expected Kraft sum of the length-λ2

words, in all three overlap cases, is

K
(
1Al−21An ∪ 1Al−2C

)
= K

(
1Al−21An

)
+K

(
1Al−2C

)

= K
(
1Al−21An

)
+K

(
1Al−2

)
K (C) (4.6)

=
1

4
+

1

2
(2n − µ1)2

−(n+1) (4.7)

=
1

2

(
1− µ12

−λ1
)

(4.8)

where (4.6) follows from Lemma 4.5.2 and Corollary 4.5.5; (4.7) follows from Lemma 4.5.2 and the fact that K (C)

equals the constant (2n − µ1)2
−(n+1); and (4.8) explains the upper bound on µ22

−λ2 imposed in Theorem 4.7.2.

The proof of Theorem 4.7.2 uses the following lemma, whose proof can be found in the appendix.

Lemma 4.7.1. Let n, l, k ≥ 1 be integers such that 2 ≤ l < k. Let C be a set of a fixed size chosen uniformly at

random from 0An. Let D1 be a set of a fixed size chosen uniformly at random from 1Al−21An, and let D2 be a set

134

of a fixed size chosen uniformly at random from 1Al−2C. For any b1, b2 ∈ A, if 2l− k 6= 1, then

(i) E[K
(
1Al−2(0An−C)Ak−l ∩ Ak−l0Al−21An

)
] =

(
1
2 −K (C)

)
/8

(ii) E[K
(
1Al−2(0An−C)Ak−l ∩ Ak−l0Al−2C

)
] = K (C)

(
1
2 −K (C)

)
/4

(iii) E[K
(
1Al−2(0An−C)Ak−l ∩ Ak−lD1

)
] = K (D1)

(
1
2 −K (C)

)
/2

and if 2l − k = 1, then

(iv) E[K
(
1Al−2(0An−C)Ak−l ∩ Ak−l0Al−21An

)
] =

(
1
2 −K (C)

)
/4

(v) E[K
(
CAk−1 ∩ 0Al−21An+k−l ∩ Ak−lD2

)
] = K (C)K (D2)

(vi) E[K
(
1Al−2(0An−C)Ak−l ∩ Ak−l0Al−2C

)
] = K (C)

(
1
2 −K (C)

)
/2

(vii) E[K
(
D2A

k−l ∩ Ak−l0Al−21An
)
] = K (D2) /2

(viii) E[K
(
D2A

k−l ∩ Ak−l0Al−2C
)
] = K (C)K (D2)

Theorem 4.7.2. Suppose a multiset of positive integers consists of µ1 copies of λ1, µ2 copies of λ2, and µ3 copies

of λ3, such that 2 ≤ λ1 < λ2 < λ3, Then there exists a fix-free code with µ1 codewords of length λ1, µ2 codewords

of length λ2, and µ3 codewords of length λ3, whenever the following conditions hold:

µ12
−λ1 ≤

1

2
1

4
≤ µ22

−λ2 ≤
1

2

(
1− µ12

−λ1
)

µ12
−λ1 + µ22

−λ2 + µ32
−λ3 =

3

4
.

Proof. As in Part 1, let C be a set of size 2n − µ1 chosen uniformly at random from among the 2n length-λ1

elements of 0An and define the following (random) set:

F1 = 0An−C.

• For Overlap Cases 1 and 3 below:

Let D be a set of size 1
2

(
1− µ12

−λ1

)
2λ2 −µ2 chosen uniformly at random from among the 2n+l−2 length-

λ2 elements of 1Al−21An, and let

F2 = (1Al−21An −D) ∪ (1Al−2C).

135

• For Overlap Case 2 below:

Let D be a set of size 1
2

(
1− µ12

−λ1

)
2λ2 − µ2 chosen uniformly at random from among the 2l−2 · |C|

length-λ2 elements of 1Al−2C, and let

F2 = 1Al−21An ∪ (1Al−2C −D).

Then K (D) = 1
2

(
1− µ12

−λ1

)
− µ22

−λ2 , so 0 ≤ K (D) ≤ 1
2

(
1− µ12

−λ1

)
− 1

4 = 1
4 − µ12

−λ1−1 ≤ 1
4 . This

means there are enough words from which to chooseD, since K
(
1Al−21An

)
= 1

4 , and K
(
1Al−2C

)
= 1

2K (C) =

1
2 (

1
2 − µ12

−λ1) = 1
4 − µ12

−λ1−1, by Lemma 4.5.2.

Note that the words in F2 all start with 1, and have a 0 in position l only if they have a suffix in C. These

conditions guarantee that no word in F1 is a prefix or suffix of a word in F2. In all 3 cases,

|F1| = |0An| − |C| = 2n − (2n − µ1) = µ1

|F2| = |1Al−21An|+ |1Al−2C| − |D|

= 2n+l−2 + 2l−2(2n − µ1)−
1

2

(
1− µ12

−λ1
)
2λ2 + µ2

= µ2

so the set F1 contains µ1 words, each of length λ1, and F2 contains µ2 words, each of length λ2. The set F1 can

be viewed as being chosen uniformly at random among all subsets of 0An of size µ1.

In each case, we will also construct a third random set F3, consisting of µ3 words of length λ3. The

random set

F = F1 ∪ F2 ∪ F3

on average forms the desired fix-free code. The union of non-random instances of F1, F2, and F3 will then yield

the asserted fix-free code.

136

• Overlap Case 1: 2l− k < 1.

Let

Yi,j =





CAk−1 ∩ 0Al−2jAn+k−l if i=0

1Al−2(0An−C)Ak−l if i=1, j=0

DAk−l if i=j=1

Wi,j =





Ak−l0Al−2C if i=j=0

Ak−l0Al−21An if i=0, j=1

Ak−lD if i=j=1.

(4.9)

Let I = A4 −A210 and define the set F3 by:

F3 =
⋃

(Z1,Z2,Z3,Z4)∈I

(YZ1,Z2
∩WZ3,Z4

)

where YZ1,Z2
∩WZ3,Z4

⊆ Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n.

In contrast to Overlap Cases 1 and 3 of Part 1, here F3 is comprised of only 12 of the 16 possible sets

obtained from the pattern Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n, namely by excluding (Z3, Z4) = (1, 0) from the

union. One can verify that no words in F1 or F2 can be either prefixes or suffixes of any words in F3.

The expected Kraft sum of F3 is then lower bounded as follows:

E[K (F3)] =
∑

(Z1,Z2,Z3,Z4)∈I

E[K (YZ1,Z2
∩WZ3,Z4

)]

=
K (C)2

4
+

K (C)

8
+

K (C)K (D)

2
+

K (C)2

4

+
K (C)

8
+

K (C)K (D)

2
+

K (C) (12 −K (C))

4
+

1
2 −K (C)

8

+
K (D) (12 −K (C))

2
+

K (C)K (D)

2
+

K (D)

4
+K (D)

2
(4.10)

=

(
K (C)

2
+ K (D)−

1

4

)2

+
K (C)

2
+K (D)

≥
K (C)

2
+K (D) (4.11)

=
1

4
−

1

2
µ12

−λ1 +
1

2
−

1

2
µ12

−λ1 − µ22
−λ2 (4.12)

=
3

4
− µ12

−λ1 − µ22
−λ2

where (4.10) follows from Lemma 4.7.1 when (Z1, Z2) = (1, 0) and otherwise follows from Lemma 4.6.1;

and (4.12) follows from the quantities |C| and |D| defined at the beginning of the proof of this theorem.

137

The current case is then finished by applying the same reasoning used following (4.4) to the end of Part 1,

Overlap Case 1.

• Overlap Case 2: 2l− k = 1.

Let

Yi,j =





CAk−1 ∩ 0Al−2jAn+k−l if i=0

(D ∪ 1Al−2(0An−C))Ak−l if i=1, j=0

Wi,j =





Ak−l0Al−2C if i=j=0

Ak−l0Al−21An if i=0, j=1

Ak−lD if i=1, j=0.

Let I = A3 − (11A ∪ A11) and define the set F3 by:

F3 =
⋃

(Z1,Z2,Z3)∈I

(YZ1,Z2
∩WZ2,Z3

)

where YZ1,Z2
∩WZ2,Z3

⊆ Z1A
l−2Z2A

l−2Z3A
n. In this case, F3 is comprised of only 5 of the 8 possible

sets obtained from the pattern Z1A
l−2Z2A

l−2Z3A
n, namely by excluding (Z1, Z2, Z3) from being (1, 1, 0),

(0, 1, 1), or (1, 1, 1) in the union.

The expected Kraft sum of F3 can be lower bounded as follows:

E[K (F3)] =
∑

(Z1,Z2,Z3)∈I

E[K (YZ1,Z2
∩WZ2,Z3

)]

=
K (C)

2

2
+

K (C)

4
+K (C)K (D)

+

(
K (C) (12 −K (C))

2
+K (C)K (D)

)

+

(1
2 −K (C)

4
+

K (D)

2

)
(4.13)

=
(1− 2K (C))(1− 4K (D))

8
+K (C)K (D) +

K (C)

2
+K (D)

≥
K (C)

2
+K (D) (4.14)

where (4.13) follows from Lemma 4.6.1 when Z1 = Z2 = 0 and otherwise follows from Lemma 4.7.1; and

(4.14) follows since K (D) ≤ 1/4 and K (C) ≤ 1/2.

Overlap Case 2 is then finished by applying the same reasoning as used from (4.11) to the end of Overlap

138

Case 1.

• Overlap Case 3: 2l− k > 1.

We use the same sets Yi,j and Wi,j as defined in (4.9) for Overlap Case 1. Let I = A4 − A1A0 and define

the set F3 by:

F3 =
⋃

(Z1,Z2,Z3,Z4)∈I

(YZ1,Z3
∩WZ2,Z4

)

where YZ1,Z3
∩ WZ2,Z4

⊆ Z1A
k−l−1Z2A

2l−k−2Z3A
k−l−1Z4A

n. Here F3 is comprised of 12 of the 16

possible sets obtained by excluding (Z2, Z4) = (1, 0).

The expected Kraft sum of F3 is then lower bounded as follows:

E[K (F3)] =
∑

(Z1,Z2,Z3,Z4)∈I

E[K (YZ1,Z3
∩WZ2,Z4

)]

≥

(
K (C)

2
+K (D)−

1

4

)2

+
K (C)

2
+K (D) (4.15)

where the ≥ in (4.15) follows from Lemma 4.6.1(ix), and the remainder of the proof is the same as for

Overlap Case 1 starting at (4.11).

�

4.8 Main result, part 3: µ12
−λ1 ≤ 1

2 and 1
2

(
1− µ12

−λ1
)
≤ µ22

−λ2

The methods for constructing codes in this section are similar in spirit to the methods from the past two

sections, but contain some significant changes as well. As before, sets of words of lengths λ1 and λ2 are initially

constructed, but in this section sometimes we will then remove words at random from these sets, and sometimes

we will add words at random to these sets. Specifically, in the proofs of Theorem 4.8.1, parts (a), (b), and (c), some

words are removed, and in part (d) some words are added, but in all cases the resulting words of lengths λ1 and λ2

have cardinalities µ1 and µ2, respectively. Then, just as in previous sections, we will show that there are enough

words of length λ3 available to produce the desired fix-free code.

There are additional complications in this section that result in more cases to consider than in the previous

sections. Before, we removed words of length λ2 from 1Al−21An or 1Al−2C only, but in this section we will need

to remove words of length λ2 from CAl−1 ∩ 0Al−21An as well. However, if n > l − 2 and C happens to be

139

a subset of 0Al−20An−l+1, then CAl−1 ∩ 0Al−21An = ∅, leaving us no length-λ2 words to remove from this

set. To remedy this, we split the proof into separate lemmas, where we first consider the case when n ≤ l − 2 (in

which we proceed in a similar fashion as the previous sections), and then consider when n > l− 2. This latter case

requires us to take more care in choosing C, and so we break this case into three separate lemmas.

Additionally, it turns out that as n grows, other complications can arise depending on the values of the

lengths λ2 and λ3. As can be seen in Lemma 4.8.2, particularly in cases (ix)–(xii), the expected Kraft sums of

certain sets may depend on specific divisibility conditions involving the codeword lengths. These conditions are

a result of the ways in which randomly chosen codewords may overlap each other as factors in codewords of a

larger length. Fortunately, these complications are present in Overlap Case 3 of Theorem 4.8.1(a) only, and we use

Lemma 4.5.15 to prove our desired result even in this case.

Theorem 4.8.1. Suppose a multiset of positive integers consists of µ1 copies of λ1, µ2 copies of λ2, and µ3 copies

of λ3, such that 2 ≤ λ1 < λ2 < λ3. Then there exists a fix-free code with µ1 codewords of length λ1, µ2 codewords

of length λ2, and µ3 codewords of length λ3, whenever the following conditions hold:

µ12
−λ1 ≤

1

2
1

2

(
1− µ12

−λ1
)
≤ µ22

−λ2

µ12
−λ1 + µ22

−λ2 + µ32
−λ3 =

3

4
.

Theorem 4.8.1 follows immediately from the following four cases, which depend on the values of λ1, λ2,

µ1, and µ2:

(a) λ2 ≥ 2λ1

(b) λ2 < 2λ1 and 1
4 ≤ µ12

−λ1 ≤ 1
2

(c) λ2 < 2λ1 and µ12
−λ1 < 1

4 and 1
4 ≤ µ22

−λ2 ≤ 1
2

(d) λ2 < 2λ1 and µ12
−λ1 < 1

4 and 1
2 < µ22

−λ2 .

4.8.1 Proof of Theorem 4.8.1(a)

The proof of Theorem 4.8.1(a) uses the following lemma, whose proof can be found in the appendix.

Lemma 4.8.2. Let n, l, k ≥ 1 be integers such that 2 ≤ l < k and n ≤ l − 2. Let C be a set of a fixed size chosen

uniformly at random from 0An. Let D1 be a set of a fixed size chosen uniformly at random from 1Al−21An, and

let D2 be a set of a fixed size chosen uniformly at random from 1Al−2C. For any b ∈ A, if 2l− k < 1, then

140

(i) E[K
(
CAl−2−n0An+k−l ∩ Ak−l(0An−C)Al−2−n1An

)
] = K (C) (12 −K (C))/4

(ii) E[K
(
1Al−2(0An−C)Ak−l ∩ Ak−l(0An−C)Al−2−n1An

)
] = (12 −K (C))2/4

(iii) E[K
(
D1A

k−l ∩ Ak−l(0An−C)Al−2−n1An
)
] = K (D1) (

1
2 −K (C))/2.

If 2l− k = 1, then

(iv) E[K
(
CAl−2−n0An+k−l ∩ Ak−l(0An−C)Al−2−n1An

)
] = K (C) (12 −K (C))/2

(v) E[K
(
1Al−2(0An−C)Ak−l ∩ Ak−l(0An−C)Al−2−n1An

)
] = (12 −K (C))/4.

If 2l− k > 1, then

(vi) E[K
(
CAl−2−n0An+k−l ∩ Ak−lD2

)
] = K (C)K (D2) /2

(vii) E[K
(
1Al−2(0An−C)Ak−l ∩ Ak−lD2

)
] = (12 −K (C))K (D2) /2

(viii) E[K
(
D2A

k−l ∩ Ak−l0Al−2C
)
] = K (C)K (D2) /2

(ix)

E[K
(
CAl−2−n0An+k−l ∩ Ak−l(0An−C)Al−2−n1An

)
]

=
K (C) (12 −K (C))

4
−





K(C)(1
2
−K(C))

4(2n−1) if n > 2l− k − 2 and (k − l) | (2l − k − 1)

0 otherwise

(x)

E[K
(
1Al−2(0An−C)Ak−l ∩Ak−l(0An−C)Al−2−n1An

)
]

=
(12 −K (C))2

4
−





K(C)(1
2
−K(C))

4(2n−1) if n > k − l − 1 and (2l− k − 1) | (k − l)

0 otherwise

(xi)

E[K
(
D2A

k−l ∩Ak−l(0An−C)Al−2−n1An
)
]

=
(12 −K (C))K (D2)

2
+





K(D2)(
1
2
−K(C))

2(2n−1) if n > k − l− 1 and (2l − k − 1) | (k − l)

0 otherwise

141

(xii)

E[K
(
D2A

k−l ∩ Ak−lD2

)
]

= K (D2)
2
−





K(D2)
|C|·2l−2−1

(
K(C)

2 −K (D2)
)

if (k − l) | (2l − k − 1)

0 otherwise.

.

Proof of Theorem 4.8.1(a). Here we assume λ2 ≥ 2λ1 (or equivalently n ≤ l − 2 by (4.1)).

Let C be a set of size 2n − µ1 chosen uniformly at random from among the 2n length-λ1 elements of

0An. Note that 0 ≤ µ1 ≤ 2n since 0 ≤ µ12
−λ1 ≤ 1

2 . Also, K (C) = (2n − µ1) 2
−λ1 = 1

2 − µ12
−λ1 .

Define the following (random) set:

F1 = 0An − C.

• For Overlap Case 1 below:

Let D be a set of size (34 −µ12
−λ1)2λ2 −µ2 chosen uniformly at random from among the 2n+l−2 length-λ2

elements of 1Al−21An, and let

F2 = (1Al−21An −D) ∪ 1Al−2C ∪ CAl−2−n1An.

• For Overlap Cases 2 and 3 below:

Let D be a set of size (34−µ12
−λ1)2λ2−µ2 chosen uniformly at random from among the 2l−2 ·|C| length-λ2

elements of 1Al−2C, and let

F2 = 1Al−21An ∪ (1Al−2C −D) ∪ CAl−2−n1An.

142

Then

K (D) = |D| · 2−λ2

=
3

4
− µ12

−λ1 − µ22
−λ2 (4.16)

≤
3

4
− µ12

−λ1 −
1

2
+

µ12
−λ1

2

=
1

4
−

µ12
−λ1

2
.

This means there are enough words from which to choose D, since 1
4 − µ12

−λ1

2 ≤ 1
4 = K

(
1Al−21An

)
and

1
4 − µ12

−λ1

2 = K(C)
2 = K

(
1Al−2C

)
.

Note that the (n+ 1)-bit prefixes and suffixes of words in F2 either start with 1 or else lie in C, whereas

all words in F1 start with 0 and cannot lie in C. So no word in F1 can be a prefix or a suffix of a word in F2.

Also in all 3 cases,

|F1| = |0An| − |C| = 2n − (2n − µ1) = µ1

|F2| = |1Al−21An|+ |1Al−2C|+ |CAl−2−n1An| − |D|

= 2n+l−2 + 2l−2(2n − µ1) + 2l−2(2n − µ1)−

(
3

4
− µ12

−λ1

)
2λ2 + µ2

= µ2

so the set F1 contains µ1 words, each of length λ1, and F2 contains µ2 words, each of length λ2.

In each case, we construct a third random set F3 consisting of µ3 words, each of length λ3. The random

set

F = F1 ∪ F2 ∪ F3

on average forms the desired fix-free code. The union of non-random instances of F1, F2, and F3 will then yield

the asserted fix-free code.

143

• Overlap Case 1: 2l− k < 1.

Let

Yi,j =





CAl−2−n0An+k−l if i=j=0

1Al−2(0An−C)Ak−l if i=1, j=0

DAk−l if i=j=1

Wi,j =





Ak−l0Al−2C if i=j=0

Ak−l(0An−C)Al−2−n1An if i=0, j=1

Ak−lD if i=j=1.

Let I = A4 − (01A2 ∪ A210) and define the set F3 by:

F3 =
⋃

(Z1,Z2,Z3,Z4)∈I

(YZ1,Z2
∩WZ3,Z4

)

where YZ1,Z2
∩ WZ3,Z4

⊆ Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n. Here F3 is comprised of only 9 of the 16

possible sets obtained from the pattern Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n, namely by excluding patterns with

(Z1, Z2) = (0, 1) or (Z3, Z4) = (1, 0). One can verify that no words in F1 or F2 are either prefixes or

suffixes of any words in F3.

The expected Kraft sum of F3 is then lower bounded as follows:

E[K (F3)] =
∑

(Z1,Z2,Z3,Z4)∈I

E[K (YZ1,Z2
∩WZ3,Z4

)]

=
K (C)

2

4
+

K (C) (12 −K (C))

4
+

K (C)K (D)

2
+

K (C) (12 −K (C))

4

+
(12 −K (C))2

4
+

K (D) (12 −K (C))

2
+

K (C)K (D)

2

+
K (D) (12 −K (C))

2
+K (D)

2
(4.17)

=

(
K (D)−

1

4

)2

+K (D)

≥ K (D)

=
3

4
− µ12

−λ1 − µ22
−λ2 (4.18)

where (4.17) follows from Lemma 4.6.1 when both Z1 = Z2 and Z3 = Z4, from Lemma 4.7.1 when both

(Z1, Z2) = (1, 0) and Z3 = Z4, from Lemma 4.8.2 when (Z3, Z4) = (0, 1); and (4.18) follows from (4.16).

The current case is then finished by applying the same reasoning used following (4.4) to the end of Part 1,

Overlap Case 1.

144

• Overlap Case 2: 2l− k = 1.

Let

Yi,j =





CAl−2−n0An+k−l if i=j=0

(D ∪ 1Al−2(0An−C))Ak−l if i=1, j=0

Wi,j =





Ak−l0Al−2C if i=j=0

Ak−l(0An−C)Al−2−n1An if i=0, j=1.

Let I = A3 −A1A and define the set F3 by:

F3 =
⋃

(Z1,Z2,Z3)∈I

(YZ1,Z2
∩WZ2,Z3

)

where the terms in the union satisfy YZ1,0 ∩ W0,Z3
⊆ Z1A

l−20Al−2Z3A
n. In this case, F3 is comprised

of 4 of the 8 possible sets obtained from the pattern Z1A
l−2Z2A

l−2Z3A
n, namely excluding (Z1, Z2, Z3)

being (0, 1, 0), (1, 1, 0), (0, 1, 1), or (1, 1, 1). Therefore, these conditions are equivalent to Z2 6= 1.

The expected Kraft sum of F3 can be lower bounded as follows:

E[K (F3)] =
∑

(Z1,Z2,Z3,Z4)∈I

E[K (YZ1,Z2
∩WZ2,Z3

)]

=
K (C)

2

2
+

K (C) (12 −K (C))

2
+

(
K (C)K (D) +

K (C) (12 −K (C))

2

)

+

(
0 +

1
2 −K (C)

4

)
(4.19)

=
K (C)

2

(
1

2
−K (C)

)
+K (C)K (D) +

1

8

≥

(
K (C)

2
−K (D)

)(
1

2
−K (C)

)
+K (D) (4.20)

≥ K (D) (4.21)

=
3

4
− µ12

−λ1 − µ22
−λ2 (4.22)

where (4.19) follows from Lemma 4.6.1 whenZ1 = Z2 = Z3 = 0, from Lemma 4.7.1 when (Z1, Z2, Z3) =

(1, 0, 0), and otherwise from Lemma 4.8.2 and the fact that D ∩ Ak−l(0An−C) = ∅; (4.20) follows since

1
8 ≥ K(D)

2 ; (4.21) follows since K (C) ≤ 1
2 and K (D) ≤ K(C)

2 ; and (4.22) follows from (4.16).

145

The current case is then finished by applying the same reasoning used following (4.4) to the end of Part 1,

Overlap Case 1.

• Overlap Case 3: 2l− k > 1.

Let

Yi,j =





CAl−2−n0An+k−l if i=j=0

(D ∪ 1Al−2(0An−C))Ak−l if i=1, j=0

Wi,j =





Ak−l0Al−2C if i=j=0

Ak−l(0An−C)Al−2−n1An if i=0, j=1

Ak−lD if i=1, j=0.

Let I = A4 − (A21A ∪ A1A1) and define the set F3 by:

F3 =
⋃

(Z1,Z2,Z3,Z4)∈I

(YZ1,Z3
∩WZ2,Z4

).

where YZ1,Z3
∩WZ2,Z4

⊆ Z1A
k−l−1Z2A

2l−k−2Z3A
k−l−1Z4A

n. Here F3 is comprised of only 6 of the 16

possible sets, namely by excluding patterns with (Z1, Z3) ∈ {(0, 1), (1, 1)} or (Z2, Z4) = (1, 1) from the

union.

Let 1a be the indicator function for the condition (k − l) | (2l − k − 1), let 1b be the indicator function for

the condition (2l− k − 1) | (k − l), let 1c be the indicator function for the condition n > k − l− 1, and let

1d be the indicator function for the condition n > 2l− k − 2.

Regarding 1a and 1b, note that k − l is the length of any word in Z1A
k−l−1, and 2l− k − 1 is the length of

any word in Z2A
2l−k−2. If 1c = 1, then any word from 0An that is a prefix of a term in the union above

must extend at least to the bit Z2, which would cause, for example, overlap in prefixes of Y0,0 that lie in C

and subwords of W0,1 that lie in 0An−C. Also, if 1d = 1, then any word from 0An that is a subword in a

term in the union above that starts at the Z2 position must extend at least to the bit Z3, which would cause

overlap in subwords of Y1,0 that lie in 0An−C and subwords of W0,1 that lie in 0An−C. It turns out that

there are four such complications that arise in this overlap case, which are considered in cases (ix)–(xii) of

Lemma 4.8.2.

146

If 1a = 1b = 1c = 1d = 0, then the expected Kraft sum of F3 is

E[K (F3)] =
∑

(Z1,Z2,Z3,Z4)∈I

E[K (YZ1,Z3
∩WZ2,Z4

)] (4.23)

=
K (C)

2

4
+

K (C) (12 −K (C))

4
+

K (C)K (D)

2
+

K (C)K (D)

2

+
K (C) (12 −K (C))

4
+

K (D) (12 −K (C))

2
+

(12 −K (C))2

4

+K (D)
2
+

K (D) (12 −K (C))

2
(4.24)

=

(
1

4
+K (D)

)2

where (4.24) follows from Lemma 4.6.1 when Z1 = Z2 = Z3 = Z4 = 0, from Lemma 4.7.1 for part of the

case when (Z1, Z2, Z3, Z4) = (1, 0, 0, 0), and otherwise from Lemma 4.8.2 using the fact that 1a = 1b =

1c = 1d = 0.

Of the 6 terms in the summation of (4.23), the 3 terms corresponding to (Z1, Z2, Z3, Z4) equaling (0, 0, 0, 0),

(0, 1, 0, 0), and (1, 0, 0, 0), remain the same even when it’s not the case that 1a = 1b = 1c = 1d = 0. The

values of the remaining 3 terms of the summation, i.e., when (Z1, Z2, Z3, Z4) is (0, 0, 0, 1), (1, 0, 0, 1), or

(1, 1, 0, 1), are obtained from Lemma 4.8.2 using

E[K
(
CAl−2−n0An+k−l ∩Ak−l(0An−C)Al−2−n1An

)
]

=
K (C)K (0An−C)

4
− 1a1d ·

K (C) (12 −K (C))

4(2n − 1)
(4.25)

E[K
(
1Al−2(0An−C)Ak−l ∩ Ak−l(0An−C)Al−2−n1An

)
]

=
K (0An−C)2

4
− 1b1c ·

1
2 −K (C)

4(2n − 1)
K (C) (4.26)

E[K
(
DAk−l ∩ Ak−l(0An−C)Al−2−n1An

)
]

=
K (D)K (0An−C)

2
+ 1b1c ·

1
2 −K (C)

2(2n − 1)
· K (D) (4.27)

E[K
(
DAk−l ∩ Ak−lD

)
] = K (D)

2
− 1a ·

K (D)

|C| · 2l−2 − 1

(
K (C)

2
−K (D)

)
. (4.28)

The first expressions on the right hand sides of (4.25)–(4.28) correspond to those in the calculations used to

obtain (4.24), i.e., when 1a = 1b = 1c = 1d = 0. Therefore, in general, the expected Kraft sum of F3 is

147

given by

E[K (F3)] =

(
1

4
+K (D)

)2

− 1b1c ·
(12 −K (C))(K(C)

2 −K (D))

2(2n − 1)

− 1a1d ·
K (C)

(
1
2 −K (C)

)

4(2n − 1)
− 1a ·

K (D)
(

K(C)
2 −K (D)

)

|C| · 2l−2 − 1
. (4.29)

We will show that for any binary values of 1a, 1b, 1c, and 1d, we have E[K (F3)] ≥ K (D). Since K (C) ≤

1/2 and K (D) ≤ K (C) /2, the quantities multiplying 1b1c, 1a1d, and 1a are all non-positive. Thus, it

suffices to show that with 1a = 1b = 1c = 1d = 1, the quantity in (4.29) minus K (D) is non-negative for

any K (C) ∈ {0} ∪ [1
2n+1 ,

1
2 − 1

2n+1] ∪ { 1
2} and K (D) ∈ [0, K(C)

2 − 1
2n+l] ∪ {K(C)

2 }. These ranges for

K (C) and K (D) are sufficient to finish the proof, since |C| and |D| are integers, and so it is not possible

that K (C) ∈ (0, 1
2n+1) ∪ (12 − 1

2n+1 ,
1
2) or K (D) ∈ (K(C)

2 − 1
2n+l ,

K(C)
2).

Since 2l − k > 1 and k ≥ 3, we have l ≥ 3. If K (C) = 0, then the original multiset of lengths contains

only two distinct values, and this case is covered by Theorem 4.3.1. So suppose K (C) ≥ 1/2n+1. Then

E[K (F3)]−K (D) =

(
1

4
−K (D)

)2

− 1b1c ·
(12 −K (C))

(
K(C)

2 −K (D)
)

2(2n − 1)

− 1a ·
K (D)

(
K(C)

2 −K (D)
)

|C| · 2l−2 − 1
− 1a1d ·

K (C)
(
1
2 −K (C)

)

4(2n − 1)
(4.30)

≥ 0 (4.31)

where (4.31) follows by first setting 1a = 1b = 1c = 1d = 1 to minimize (4.30), and then applying

Lemma 4.5.15 by setting x = K (C) and y = K (D). The current case is then finished by applying the same

reasoning used following (4.4) to the end of Part 1, Overlap Case 1.

�

4.8.2 Proof of Theorem 4.8.1(b)

The proof of Theorem 4.8.1(b) uses the following lemma, whose proof can be found in the appendix.

Lemma 4.8.3. Let n, l, k ≥ 1 be integers such that 2 ≤ l < k and n ≥ l − 1. Let C be a set of a fixed size chosen

uniformly at random from 0Al−21An−(l−1). Let G = 0Al−21An−(l−1)−C. Let D1 be a set of a fixed size chosen

uniformly at random from 1Al−21An, and let D2 be a set of a fixed size chosen uniformly at random from CAl−1.

For any b ∈ A, if 2l− k 6= 1, then

148

(i) E[K
(
1Al−20An+k−l ∩Ak−lbAl−2C

)
] = K (C) /8

(ii) E[K
(
1Al−20An+k−l ∩Ak−lGAl−1

)
] = (14 −K (C))/4

(iii) E[K
(
D1A

k−l ∩ Ak−lbAl−2C
)
] = K (C)K (D1) /2

(iv) E[K
(
D1A

k−l ∩ Ak−lGAl−1
)
] = K (D1) (

1
4 −K (C)).

If 2l− k = 1, then

(v) E[K
(
1Al−20An+k−l ∩Ak−l0Al−2C

)
] = K (C) /4

(vi) E[K
(
1Al−20An+k−l ∩Ak−lGAl−1

)
] = (14 −K (C))/2

(vii) E[K
(
1Al−20An+k−l ∩Ak−lD2

)
] = K (D2) /2

(viii) E[K
(
D2A

k−l ∩ Ak−l1Al−2C
)
] = K (C)K (D2).

Proof of Theorem 4.8.1(b). Here we assume λ2 < 2λ1 (or equivalently n > l − 2 by (4.1)) and 1
4 ≤ µ12

−λ1 ≤ 1
2 .

Let C be a set of size 2n − µ1 chosen uniformly at random from among the 2n−1 length-λ1 elements of

0Al−21An−l+1. Since 1
4 ≤ µ12

−λ1 ≤ 1
2 , we have 2n−1 ≤ µ1 ≤ 2n, which implies 0 ≤ |C| ≤ 2n−1, so there are

enough words from which to choose C.

Define the following (random) set:

F1 = 0An−C.

• For Overlap Cases 1 and 3 below:

Let D be a set of size (34 −µ12
−λ1)2λ2 −µ2 chosen uniformly at random from among the 2n+l−2 length-λ2

elements of 1Al−21An, and let

F2 = (1Al−21An −D) ∪ CAl−1.

• For Overlap Case 2 below:

Let D be a set of size (34−µ12
−λ1)2λ2−µ2 chosen uniformly at random from among the 2l−1 ·|C| length-λ2

elements of CAl−1, and let

F2 = 1Al−21An ∪ (CAl−1 −D).

149

Then

K (D) =

(
3

4
− µ12

−λ1

)
− µ22

−λ2 , (4.32)

so 0 ≤ K (D) ≤ 3
4 − µ12

−λ1 − 1
2 + µ12

−λ1

2 = 1
4 − µ12

−λ1

2 . This means there are enough words from which

to choose D, since 1
4 − µ12

−λ1

2 ≤ 1
4 − 1

8 = 1
8 < 1

4 = K
(
1Al−21An

)
and 1

4 − µ12
−λ1

2 = 1
2

(
1
2 − µ12

−λ1

)
≤

1
2 − µ12

−λ1 = K (C) = K
(
CAl−1

)
.

Note that the words in F2 all have first bit equal to 1 or prefix in C, and a 1 in the (n+1)th position from

the right. These conditions guarantee that no word in F1 is a prefix or suffix of a word in F2.

Also, in all 3 cases,

|F1| = |0An| − |C| = 2n − (2n − µ1) = µ1

|F2| = |1Al−21An|+ |CAl−1| − |D|

= 2n+l−2 + 2l−1(2n − µ1)−

(
3

4
− µ12

−λ1

)
2λ2 + µ2

= µ2

so the set F1 contains µ1 words, each of length λ1, and F2 contains µ2 words, each of length λ2.

In each case, we will also construct a third random set F3, consisting of µ3 words, each of length λ3. The

random set

F = F1 ∪ F2 ∪ F3

on average meets the requirements of the desired fix-free code. The union of at least one non-random instance for

each of F1, F2, and F3 will then yield the asserted fix-free code.

• Overlap Case 1: 2l− k < 1.

Let G = 0Al−21An−l+1 − C, and so E[K (G)] = 1
4 −K (C). Let

Yi,j =





1Al−20An+k−l if i=1, j=0

DAk−l if i=j=1

Wi,j =





Ak−liAl−2C if j=0

Ak−lGAl−1 if i=0, j=1

Ak−lD if i=j=1.

150

Let I = A4 − 0A3 and define the set F3 by:

F3 =
⋃

(Z1,Z2,Z3,Z4)∈I

(Y1,Z2
∩WZ3,Z4

)

where Y1,Z2
∩WZ3,Z4

⊆ 1Al−2Z2A
k−2lZ3A

l−2Z4A
n.

Here F3 is comprised of only 8 of the 16 possible sets obtained from the pattern

Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n, namely by excluding patterns with Z1 = 0 from the union. One can verify

that no words in F1 or F2 can be either prefixes or suffixes of any words in F3.

The expected Kraft sum of F3 is then lower bounded as follows:

E[K (F3)] =
∑

(Z1,Z2,Z3,Z4)∈I

E[K (YZ1,Z2
∩WZ3,Z4

)]

=
K (C)

8
+

1
4 −K (C)

4
+

K (C)

8
+

K (D)

4
+

K (C)K (D)

2

+K (D)

(
1

4
−K (C)

)
+

K (C)K (D)

2
+K (D)

2
(4.33)

= K (D) +

(
K (D)−

1

4

)2

≥ K (D)

=
3

4
− µ12

−λ1 − µ22
−λ2 (4.34)

where (4.33) follows from Lemma 4.6.1 when Z1 = Z3 = Z4 = 1, and otherwise from Lemma 4.8.3; and

(4.34) follows from (4.32).

The current case is then finished by applying the same reasoning used following (4.4) to the end of Part 1,

Overlap Case 1.

• Overlap Case 2: 2l− k = 1.

Let G = 0Al−21An−l+1 − C, and so E[K (G)] = 1
4 −K (C). Let

Yi,j =





DAk−l if i=0, j=1

1Al−20An+k−l if i=1, j=0

Wi,j =





Ak−liAl−2C if j=0

Ak−l(D ∪GAl−1) if i=0, j=1.

151

Let I = {(0, 1, 0), (1, 0, 0), (1, 0, 1)} and define the set F3 by:

F3 =
⋃

(Z1,Z2,Z3)∈I

(YZ1,Z2
∩WZ2,Z3

)

where YZ1,Z2
∩WZ2,Z3

⊆ Z1A
l−2Z2A

l−2Z3A
n. In this case, F3 is comprised of 3 of the 8 possible sets

obtained from the pattern Z1A
l−2Z2A

l−2Z3A
n.

The expected Kraft sum of F3 can be lower bounded as follows:

E[K (F3)] =
∑

(Z1,Z2,Z3)∈I

E[K (YZ1,Z2
∩WZ2,Z3

)]

= K (C)K (D) +
K (C)

4
+

K (D)

2
+

1
4 −K (C)

2
(4.35)

=
(1− 2K (C))(1 − 4K (D))

8
+K (D)

≥ K (D) (4.36)

=
3

4
− µ12

−λ1 − µ22
−λ2 (4.37)

where (4.35) follows from Lemma 4.8.3; (4.36) follows since K (C) ≤ 1
2 and K (D) ≤ 1

4 ; and (4.37)

follows from (4.32).

The current case is then finished by applying the same reasoning used following (4.4) to the end of Part 1,

Overlap Case 1.

• Overlap Case 3: 2l− k > 1.

This case follows from the same reasoning as in Overlap Case 1, except using ≥ in (4.33), since in this case

(i.e., when 2l− k > 1) Lemma 4.6.1 shows

E[K (Y1,1 ∩W1,1)] = E[K
(
DAk−l ∩ Ak−lD

)
] ≥ K (D)

2
.

�

4.8.3 Proof of Theorem 4.8.1(c)

The proof of Theorem 4.8.1(c) uses the following lemma, whose proof can be found in the appendix.

Lemma 4.8.4. Let n, l, k ≥ 1 be integers such that 2 ≤ l < k and n ≥ l− 1. Let C0 be a set of a fixed size chosen

uniformly at random from 0Al−20An−l+1, and let C = 0Al−21An−l+1 ∪ C0. For i ∈ {0, 1}, let Di be a set of a

fixed size chosen uniformly at random from iAl−21An. For any b ∈ A, if 2l − k 6= 1, then

152

(i) E[K
(
1Al−20An+k−l ∩Ak−lbAl−2C

)
] = K (C) /8

(ii) E[K
(
C0A

k−1 ∩ Ak−lbAl−2C
)
] = K (C) (K (C)− 1

4)/2

(iii) E[K
(
C0A

k−1 ∩ Ak−lD1

)
] = (K (C)− 1

4)K (D1)

(iv) E[K
(
D1A

k−l ∩ Ak−lbAl−2C
)
] = K (C)K (D1) /2.

If 2l− k = 1, then

(v) E[K
(
1Al−20An+k−l ∩Ak−l0Al−2C

)
] = K (C) /4

(vi) E[K
(
C0A

k−1 ∩ Ak−l0Al−2C
)
] = K (C) (K (C)− 1

4)

(vii) E[K
(
1Al−20An+k−l ∩Ak−lD0

)
] = K (D0) /2

(viii) E[K
(
C0A

k−1 ∩ Ak−lD0

)
] = 2(K (C)− 1

4)K (D0)

(ix) E[K
(
D0A

k−1 ∩Ak−l1Al−2C
)
] = K (C)K (D0).

Proof of Theorem 4.8.1(c). Here we assume λ2 < 2λ1 (or equivalently n > l − 2 by (4.1)) and µ12
−λ1 < 1

4 and

1
4 ≤ µ22

−λ2 ≤ 1
2 .

Let C = C1 ∪ C0 be a set of size 2n − µ1, where C1 = 0Al−21An−l+1 and C0 is chosen uniformly at

random from among the 2n−1 length-λ1 elements of 0Al−20An−l+1. Note that |C0| = 2n−µ1−2n−1 = 2n−1−µ1

and

K (C0) = K (C)−K (C1) = K (C)−
1

4
.

Since 0 ≤ µ12
−λ1 < 1

4 , we have 0 ≤ µ1 ≤ 2n−1, which shows 0 ≤ |C0| ≤ 2n−1 = |0Al−20An−l+1|, and so

there are enough words from which to choose C0. Define the following (random) set:

F1 = 0An−C.

• For Overlap Cases 1 and 3 below:

Let D be a set of size 2λ2−1 − µ2 chosen uniformly at random from among the 2n+l−2 length-λ2 elements

of 1Al−21An, and let

F2 = (1Al−21An −D) ∪ 0Al−21An.

153

• For Overlap Case 2 below:

Let D be a set of size 2λ2−1 − µ2 chosen uniformly at random from among the 2n+l−2 length-λ2 elements

of 0Al−21An, and let

F2 = 1Al−21An ∪ (0Al−21An −D).

Then K (D) = 1
2 − µ22

−λ2 , so 0 ≤ K (D) ≤ 1
2 − 1

4 = 1
4 . This means there are enough words from

which to choose D, since 1
4 = K

(
1Al−21An

)
= K

(
0Al−21An

)
. Note that none of the words in F2 start with a

word from 0Al−20An−l+1 or end with a word from 0An, and so no word in F1 ⊆ 0Al−20An−l+1 is a prefix or

suffix of any word in F2.

Also, in all 3 cases,

|F1| = |0An| − |C| = 2n − (2n − µ1) = µ1

|F2| = |1Al−21An|+ |0Al−21An| − |D|

= 2n+l−2 + 2n+l−2 − 2λ2−1 + µ2

= µ2

so the set F1 contains µ1 words, each of length λ1, and F2 contains µ2 words, each of length λ2.

In each case, we will also construct a third random set F3, consisting of µ3 words, each of length λ3. The

random set

F = F1 ∪ F2 ∪ F3

on average forms the desired fix-free code. The union of non-random instances of F1, F2, and F3 will then yield

the asserted fix-free code.

• Overlap Case 1: 2l− k < 1.

Let

Yi,j =





C0A
k−1 if i=j=0

1Al−20An+k−l if i=1, j=0

DAk−l if i=j=1

Wi,j =





Ak−liAl−2C if j=0

Ak−lD if i=j=1.

154

Let I = A4 − (01A2 ∪ A201) and define the set F3 by:

F3 =
⋃

(Z1,Z2,Z3,Z4)∈I

(YZ1,Z2
∩WZ3,Z4

)

where YZ1,Z2
∩WZ3,Z4

⊆ Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n.

Here F3 is comprised of only 9 of the 16 possible sets obtained from the pattern

Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n, namely by excluding patterns with (Z1, Z2) = (0, 1) or (Z3, Z4) = (0, 1)

from the union. One can verify that no words in F1 or F2 can be either prefixes or suffixes of any words in

F3.

The expected Kraft sum of F3 is then lower bounded as follows:

E[K (F3)] =
∑

(Z1,Z2,Z3,Z4)∈I

E[K (YZ1,Z2
∩WZ3,Z4

)]

=
K (C) (K (C)− 1

4)

2
+

K (C) (K (C)− 1
4)

2
+K (D)

(
K (C)−

1

4

)
+

K (C)

8

+
K (C)

8
+

K (D)

4
+

K (C)K (D)

2
+

K (C)K (D)

2
+K (D)

2
(4.38)

= K (C) +K (D)−
1

4
+

(
K (C) +K (D)−

1

2

)2

≥ K (C) +K (D)−
1

4

=
3

4
− µ12

−λ1 − µ22
−λ2 (4.39)

where (4.38) follows from Lemma 4.6.1 when Z1 = Z3 = Z4 = 1, and otherwise from Lemma 4.8.4; and

(4.39) follows from the quantities |C| and |D| stated earlier in the proof.

The current case is then finished by applying the same reasoning used following (4.4) to the end of Part 1,

Overlap Case 1.

• Overlap Case 2: 2l− k = 1.

Let

Yi,j =





C0A
k−1 if i=j=0

1Al−20An+k−l if i=1, j=0

DAk−l if i=0, j=1

Wi,j =





Ak−liAl−2C if j=0

Ak−lD if i=0, j=1.

155

Let I = A3 − (11A ∪ A11) and define the set F3 by:

F3 =
⋃

(Z1,Z2,Z3)∈I

(YZ1,Z2
∩WZ2,Z3

)

where YZ1,Z2
∩WZ2,Z3

⊆ Z1A
l−2Z2A

l−2Z3A
n. In this case, F3 is comprised of only 5 of the 8 possible

sets obtained from the patternZ1A
l−2Z2A

l−2Z3A
n, namely excluding (Z1, Z2, Z3) being (1, 1, 0), (0, 1, 1),

or (1, 1, 1).

The expected Kraft sum of F3 can be lower bounded as follows:

E[K (F3)] =
∑

(Z1,Z2,Z3)∈I

E[K (YZ1,Z2
∩WZ2,Z3

)]

= K (C)

(
K (C)−

1

4

)
+ 2K (D)

(
K (C)−

1

4

)
+K (C)K (D)

+
K (C)

4
+

K (D)

2
(4.40)

= K (C) +K (D)−
1

4
+

(
K (C) +K (D)−

1

2

)2

+K (D) (K (C)−K (D))

≥ K (C) +K (D)−
1

4
(4.41)

=
3

4
− µ12

−λ1 − µ22
−λ2 (4.42)

where (4.40) follows from Lemma 4.8.4; (4.41) follows since K (D) ≤ 1
4 ≤ K (C); and (4.42) follows from

the quantities |C| and |D| stated earlier in the proof.

The current case is then finished by applying the same reasoning used following (4.4) to the end of Part 1,

Overlap Case 1.

• Overlap Case 3: 2l− k > 1.

This case follows from the same reasoning as in Overlap Case 1, except using ≥ in (4.38), since in this case

(i.e., when 2l− k > 1) Lemma 4.6.1 shows

E[K (Y1,1 ∩W1,1)] = E[K
(
DAk−l ∩ Ak−lD

)
] ≥ K (D)

2
.

�

156

4.8.4 Proof of Theorem 4.8.1(d)

The proof of Theorem 4.8.1(d) uses the following lemma, whose proof can be found in the appendix.

Lemma 4.8.5. Let n, l, k ≥ 1 be integers such that 2 ≤ l < k and n ≥ l− 1. Let C0 be a set of a fixed size chosen

uniformly at random from 0Al−20An−l+1, and let C = 0Al−21An−l+1 ∪C0. Let D be a set of a fixed size chosen

uniformly at random from 1Al−2C. Then

(i) E[K
(
1Al−20An+k−l ∩Ak−1C

)
] = K (C) /4

(ii) E[K
(
C0A

k−1 ∩ Ak−1C
)
] = K (C) (K (C)− 1

4)

(iii) E[K
(
DAk−l ∩ Ak−1C

)
]

=





K (C)K (D) if 2l − k < 1

2(K (C)− 1
4)K (D) if 2l − k = 1

K (C)K (D) if 2l − k > 1 and (k − l) ∤ (2l − k − 1)

K (C)K (D) +
K(D)(K(C)− 1

4
)(1

2
−K(C))

K(C)(2n−1−1) if 2l − k > 1 and (k − l) | (2l − k − 1).

If 2l− k < 1, then

(iv) E[K
(
1Al−20An+k−l ∩Ak−lD

)
] = K (D) /4

(v) E[K
(
C0A

k−1 ∩ Ak−lD
)
] = (K (C)− 1

4)K (D) .

Proof of Theorem 4.8.1(d). Here we assume λ2 < 2λ1 (or equivalently n > l − 2 by (4.1)) and µ12
−λ1 < 1

4 and

µ22
−λ2 > 1

2 .

Let C = 0Al−21An−l+1 ∪ C0 be a set of size 2n − µ1, where C0 is chosen uniformly at random from

among the 2n−1 length-λ1 elements of 0Al−20An−l+1. Note that |C0| = 2n − µ1 − 2n−1 = 2n−1 − µ1, and

thus |C0| ≤ 2n−1, so there are enough words from which to choose C0. Let D be a set of size µ2 − 2λ2−1 chosen

uniformly at random from among the 2l−2 · |C| length-λ2 elements of 1Al−2C. Define the following (random)

sets:

F1 = 0An−C

F2 = 1Al−21An ∪ 0Al−21An ∪D.

Then K (D) = µ22
−λ2 − 1

2 , so 0 ≤ K (D) ≤ (34 −µ12
−λ1)− 1

2 = 1
4 −µ12

−λ1 ≤ 1
2 (

1
2 −µ12

−λ1) = K
(
1Al−2C

)
,

which means there are enough words from which to choose D. None of the words in F2 start with a word from

157

0Al−20An−l+1 or end with a word from F1, and so no word in F1 ⊆ 0Al−20An−l+1 is a prefix or suffix of any

word in F2. Also in all 3 cases,

|F1| = |0An| − |C| = 2n − (2n − µ1) = µ1

|F2| = |1Al−21An|+ |0Al−21An|+ |D|

= 2n+l−2 + 2n+l−2 + µ2 − 2λ2−1

= µ2

so the set F1 contains µ1 words, each of length λ1, and F2 contains µ2 words, each of length λ2.

In each case, we will also construct a third random set F3, consisting of µ3 words, each of length λ3. The

random set

F = F1 ∪ F2 ∪ F3

on average forms the desired fix-free code. The union of non-random instances of F1, F2, and F3 will then yield

the asserted fix-free code.

• Overlap Case 1: 2l− k < 1.

Define the following sets:

F3,1 = 1Al−20An+k−l ∩Ak−1C

F3,2 = C0A
k−1 ∩ Ak−1C

F3,3 = DAk−l ∩Ak−1C

F3,4 = 1Al−20An+k−l ∩Ak−lD

F3,5 = C0A
k−1 ∩ Ak−lD

F3 = (F3,1 ∪ F3,2)− (F3,3 ∪ F3,4 ∪ F3,5).

Each set F3,p consists of words of length λ3, and these sets are random, since they involve the random sets

C or D. It is easy to verify that none of the words of F1 (respectively, F2) are prefixes or suffixes of any

words in F2 or F3 (respectively, F3), and that F3,1 and F3,2 are disjoint. Note that F3,3 ∪ F3,4 ∪ F3,5 is the

158

set of all words of F3,1 ∪ F3,2 that have some word of D as a prefix or suffix. We have

E[K (F3,1 ∪ F3,2)] = E[K
(
1Al−20An+k−l ∩Ak−1C

)
] + E[K

(
C0A

k−1 ∩ Ak−1C
)
] (4.43)

=
K (C)

4
+K (C0)K (C) (4.44)

= K (C)2

E[K (F3,3 ∪ F3,4 ∪ F3,5)] ≤ E[K
(
DAk−l ∩ Ak−1C

)
] + E[K

(
1Al−20An+k−l ∩Ak−lD

)
]

+ E[K
(
C0A

k−1 ∩ Ak−lD
)
]

= K (C)K (D) +
K (D)

4
+K (C0)K (D) (4.45)

= 2K (C)K (D)

E[K (F3)] = E[K (F3,1 ∪ F3,2)]− E[K (F3,3 ∪ F3,4 ∪ F3,5)] (4.46)

≥ K (C)
2
− 2K (C)K (D) .

E[K (F1 ∪ F2 ∪ F3)]

= E[K (F1)] + E[K (F2)] + E[K (F3)]

= E[K (0An−C)] + E[K
(
1Al−21An

)
] + E[K

(
0Al−21An

)
] + E[K (D)] + E[K (F3)]

≥
1

2
−K (C) +

1

4
+

1

4
+K (D) +K (C)

2
− 2K (C)K (D) (4.47)

=
3

4
+

(
1

2
−K (C)

)(
1

2
−K (C) + 2K (D)

)

≥
3

4
(4.48)

where (4.43) follows since F3,1 and F3,2 are disjoint; (4.44) and (4.45) follow from Lemma 4.8.5; (4.46)

follows from F3,3 ∪ F3,4 ∪ F3,5 ⊆ F3,1 ∪ F3,2; (4.47) follows from Lemma 4.5.2; and (4.48) follows since

K (C) ≤ 1
2 and K (D) ≥ 0.

The current case is then finished by applying the same reasoning used following (4.4) to the end of Part 1,

Overlap Case 1.

159

• Overlap Case 2: 2l− k = 1.

Define the following sets:

F3,1 = 1Al−20An+l−1 ∩ Ak−1C

F3,2 = C0A
k−1 ∩ Ak−1C

F3 = (F3,1 ∪ F3,2)− (DAk−l ∩ Ak−1C).

The sets F3,1, F3,2, and (DAk−l ∩ Ak−1C) consist of words of length λ3, and these sets are random since

they involve the random sets C or D. It is easy to verify that none of the words of F1 (respectively, F2) are

prefixes or suffixes of any words in F2 or F3 (respectively, F3), and that F3,1 and F3,2 are disjoint. Also note

that DAk−l ∩Ak−1C is the set of all words of F3,1 ∪ F3,2 that have some word of D as a prefix or suffix.

Then we have

E[K (F3,1 ∪ F3,2)] = E[1Al−20An+l−1 ∩ Ak−1C] + E[C0A
k−1 ∩ Ak−1C] (4.49)

=
K (C)

4
+K (C0)K (C) = K (C)2 (4.50)

E[K
(
DAk−l ∩Ak−1C

)
] = 2

(
K (C)−

1

4

)
K (D) (4.51)

E[K (F3)] = K (C)2 − 2

(
K (C)−

1

4

)
K (D) (4.52)

E[K (F1 ∪ F2 ∪ F3)] = E[K (F1)] + E[K (F2)] + E[K (F3)]

= E[K (0An−C)] + E[K
(
1Al−21An

)
]

+ E[K
(
0Al−21An

)
] + E[K (D)] + E[K (F3)]

=

(
1

2
−K (C)

)
+

1

4
+

1

4
+K (D) +K (C)

2
− 2

(
K (C)−

1

4

)
K (D) (4.53)

=
3

4
+

(
1

2
−K (C)

)2

+ 2K (D)

(
3

4
−K (C)

)

≥
3

4
(4.54)

where (4.49) follows since F3,1 and F3,2 are disjoint; (4.51) follows from Lemma 4.5.11; (4.52) follows from

DAk−l∩Ak−1C ⊆ F3,1∪F3,2; (4.53) follows from Lemma 4.5.2; and (4.54) follows since K (C) ≤ 1
2 < 3

4 .

The current case is then finished by applying the same reasoning used following (4.4) to the end of Part 1,

Overlap Case 1.

160

• Overlap Case 3: 2l− k > 1.

If n = 1 then µ12
−λ1 < 1

4 implies µ12
−λ1 = 0, in which case the proof is covered by Theorem 4.3.1 since

then there are codewords of only two distinct lengths λ2 and λ3. So assume n ≥ 2.

Of the calculated expected values of the Kraft sums of F3,1, F3,2, F3,3, F3,4, and F3,5 in Overlap Case 1, the

only quantity that changes under the condition of Overlap Case 3 is E[K (F3,3)], as seen in Lemma 4.5.11.

In particular, since 2l − k > 1 in this case, we have

E[K (F3,3)] = E[K
(
DAk−l ∩ Ak−1C

)
] ≤ K (C)K (D) +

K (D) (K (C)− 1
4)(

1
2 −K (C))

K (C) (2n−1 − 1)
.

Therefore, in the calculation of E[K (F1 ∪ F2 ∪ F3)], we get the lower bound

E[K (F1 ∪ F2 ∪ F3)]

≥
3

4
+

(
1

2
−K (C)

)(
1

2
−K (C) + 2K (D)

)
−

K (D) (K (C) − 1
4)(

1
2 −K (C))

K (C) (2n−1 − 1)

=
3

4
+

(
1

2
−K (C)

)(
1

2
−K (C) + 2K (D) ·

K (C) (2n − 3) + 1
4

K (C) (2n − 2)

)

≥
3

4
(4.55)

where (4.55) follows from K (C) ≤ 1
2 and 2n ≥ 4. The current case is then finished by applying the same

reasoning used following (4.4) to the end of Part 1, Overlap Case 1.

�

161

4.A Proofs of lemmas

Proof of Lemma 4.5.1. Suppose a sequence of positive integers consists of µn > 0 occurrences of integer ln, for

1 ≤ n ≤ M . Suppose its Kraft sum is less than 3/4 and define

µ′
n =





µn if 1 ≤ n ≤ M − 1

3 · 2lM−2 −

M−1∑

k=1

µk2
lM−k if n = M.

Note that

µ′
M =

(
3

4
−

M∑

k=1

µk2
−k

)
2lM + µM > µM

and the new Kraft sum is

M∑

n=1

µ′
n2

−ln =
M−1∑

n=1

µn2
−ln +

3

4
−

M∑

k=1

µk2
−k + µM2−lM =

3

4
.

If the sequence with multiplicities {µ′
n} has a fix-free code, then discarding any µ′

M − µM codewords of length

M yields a fix-free code for the sequence with multiplicities {µn}. �

Proof of Lemma 4.5.3. Suppose w ∈ Rl(U). Then the ith bit of the length-l prefix of w must be the same as the

ith bit of the length-l suffix of w (which lies at position i + m − l). In other words, w ∈ Rl(U) if and only if

w ∈ U and wi = wi+m−l for all 1 ≤ i ≤ l. The condition on wi is equivalent to wi being constant whenever i is

congruent to p mod (m− l), and 1 ≤ i ≤ m, and p ∈ {1, . . . ,m− l}.

For any word w ∈ Rl(U), the constant bit value wi associated with each congruence class can be assigned

independently of any other congruence class. Thus, the cardinality of Rl(U) is equal to the product of the number

Np of allowable constant bit values for each congruence class. That is, |Rl(U)| =
∏m−l

p=1 Np.

Let Ip = {i ∈ {1, . . . ,m} | i ≡ p mod (m− l)} be the set of positions in w that are in the pth congruence

class. If Ui = A for each i ∈ Ip, then Np = 2, since any word w ∈ Rl(U) could have either a 0 or 1 in the positions

of Ip. If there exist i, j ∈ Ip such that Ui = 0 and Uj = 1, then Np = 0, since there is no way to label the positions

in Ip with a constant bit value. Otherwise, Np = 1, since then there exists at least one i ∈ Ip such that Ui ∈ {0, 1},

and Uj ∈ {Ui, A} for every other j ∈ Ip. Hence, Np equals the cardinality of the intersection of the sets Ui taken

over all i ∈ Ip. �

Proof of Lemma 4.5.4. For each i ∈ {1, 2}, let gi = |{j : (Xi)j = A}| be the number of positions in Xi that are

162

not fixed points. Then for all u ∈ U1 ∩ U2, by independence, we have

E [K (W1 ∩W2)] = E

[
∑

u∈U1∩U2

1W1∩W2
(u)2−m

]

= 2−m
∑

u∈U1∩U2

P (u ∈ (W1 ∩W2))

= 2−m
∑

u∈U1∩U2

P (u ∈ W1)P (u ∈ W2)

= 2−m
∑

u∈U1∩U2

P (u ∈ AaY1A
b)P (u ∈ AcY2A

d)

= 2−m
∑

u∈U1∩U2

2∏

i=1

|Yi| · 2
m−mi

2gi+m−mi

=
|U1 ∩ U2|

2m
·

2∏

i=1

|Yi|/2
m

2gi/2m

= K (U1 ∩ U2)
2∏

i=1

K (Yi)

K (Xi)
. (4.56)

Let fV denote the set of positions where V has a fixed point. Then fU1∩U2
= fU1

∪ fU2
, so using Lemma 4.5.2,

K (U1 ∩ U2) = 2−|fU1∩U2
| = 2−|fU1

∪fU2
|

= 2p · 2−|fU1
|2−|fU2

|

= 2p · K (U1)K (U2) .

Combining this with (4.56) proves the lemma. �

Proof of Corollary 4.5.5. By Lemma 4.5.4,

E[K
(
AaY Ab ∩ U

)
] = E[K

(
(AaY Ab ∩ U) ∩ (An+k ∩ An+k)

)
]

= K (U) ·
K (Y)

K (X)
· K
(
An+k

)
·
K
(
An+k

)

K (An+k)

= K (U) ·
K (Y)

K (X)
.

�

Proof of Lemma 4.5.6. If |C| = 0, then clearly the lemma holds. Suppose |C| ≥ 1. If u ∈ X , then the probability

that u ∈ C is (|X|−1
|C|−1

)
(|X|
|C|

) =
|C|

|X |
.

163

Now suppose |C| ≥ 2. If u, v ∈ X are distinct, then the probability that u, v ∈ C is

(|X|−2
|C|−2

)
(
|X|
|C|

) =
|C|(|C| − 1)

|X |(|X | − 1)
.

Finally, note that this last equation also fits the |C| = 1 case, since then the probability that such particular distinct

u and v lie in C is zero, as |C| contains only one element. �

Proof of Lemma 4.5.7. Let X = CAp+1 ∩ bUbAn ∩Ap+1C. By Lemma 4.5.3, |Rn+1(bUbAn)| = |U |, and so

|bUbAn−Rn+1(bUbAn)| = |U |·2n−|U | = |U |·(2n−1). A word of Rn+1(bUbAn) is in X if its (n+1)-bit prefix

(which is also its (n+1)-bit suffix) is selected during the construction of C, and a word of bUbAn−Rn+1(bUbAn)

is in X if the distinct (n+1)-bit prefix and suffix are both selected during the construction of C. Thus the expected

number of words of bUbAn with a prefix and a suffix in C is

E[|CAp+1 ∩ bUbAn ∩ Ap+1C|] = E

[
∑

v∈bUbAn

1CAp+1∩Ap+1C (v)

]

=
∑

v∈bUbAn

P{v ∈ CAp+1 ∩ Ap+1C}

=
∑

v∈bUbAn

P{∃w ∈ C : v ∈ wAp+1 ∩ Ap+1w}

+
∑

v∈bUbAn

P{v ∈ CAp+1 ∩ Ap+1C, ∄w ∈ C : v ∈ wAp+1 ∩ Ap+1w}

= |U | ·
|C|

2n
+ |U | · (2n − 1)

|C| · (|C| − 1)

2n(2n − 1)
(4.57)

= |U | ·
|C|2

2n
,

where (4.57) follows using Lemma 4.5.6. These words all have length p+ 2 + n, so their expected Kraft sum is

E[K
(
CAp+1 ∩ bUbAn ∩ Ap+1C

)
] =

E[|CAp+1 ∩ bUbAn ∩ Ap+1C|]

2p+n+2

=
1

2p+2+n
· |U | ·

|C|2

2n

=
|U |

2p
·

(
|C|

2n+1

)2

= K (U)K (C)
2
.

�

Proof of Lemma 4.5.8. First suppose n = 0 = l − 2. Then either D = ∅ or D = {11}. Since k ≥ 3, we have

164

2l − k ≤ 1. If D = ∅, then clearly E[K
(
DAk−l ∩ Ak−lD

)
] = 0, and so the lemma holds. If D = {11} and

2l− k = 1, then

E[K
(
DAk−l ∩Ak−lD

)
] = E[K (111)] =

1

8
= 2 ·

1

16
= 2K (D)

2
,

and if 2l− k < 1, then

E[K
(
DAk−l ∩ Ak−lD

)
] = E[K

(
11Ak−2l11

)
] =

1

16
= K (D)

2
,

by Lemma 4.5.2. Thus the lemma holds when n = 0 = l − 2.

Now suppose n > 0 or l > 2, so that the set 1Al−21An from which we choose D has at least 2 elements.

We consider three cases, depending on the value of 2l− k. In each of the cases, we will define a particular pattern

X ⊆ {0, 1, A}k+n such that the randomly created set DAk−l ∩ Ak−lD is a subset of the deterministic set X . For

each such case, let G1 = Rn+l(X) and G2 = X −G1. Then |G2| = |X |− |G1|, since G1 ⊆ X . Note that a word

of G1 is in DAk−l ∩ Ak−lD if and only if the common (n+ l)-bit prefix and suffix is in D, and a word of G2 is

in DAk−l ∩ Ak−lD if and only if the distinct (n+ l)-bit prefix and suffix are in D. Therefore,

E[K
(
DAk−l ∩Ak−lD

)
]

= E[K
(
DAk−l ∩X ∩ Ak−lD

)
]

= E

[
∑

u∈X

1DAk−l∩Ak−lD (u) · 2−(n+k)

]

=
1

2n+k

(
∑

u∈G1

P{u ∈ DAk−l ∩ Ak−lD}+
∑

u∈G2

P{u ∈ DAk−l ∩ Ak−lD}

)

=
1

2n+k

(
|G1| ·

|D|

2n+l−2
+ |G2| ·

|D|(|D| − 1)

2n+l−2(2n+l−2 − 1)

)
(4.58)

=
|D|

22n+k+l−2

(
|G1|+ (|XAn| − |G1|) ·

|D| − 1

2n+l−2 − 1

)
, (4.59)

where (4.58) follows from Lemma 4.5.6.

• Case 1: 2l− k < 1.

Let X = 1Al−21Ak−2l1Al−21An. By Lemma 4.5.3, |G1| = 2k−l−2. Therefore, from (4.59),

E[K
(
DAk−l ∩ Ak−lD

)
] =

|D|

22n+k+l−2

(
2k−l−2 +

(|D| − 1)
(
2k+n−4 − 2k−l−2

)

2n+l−2 − 1

)

=

(
|D|

2n+l

)2

= K (D)
2
.

165

• Case 2: 2l− k = 1.

Let X = 1Al−21Al−21An. By Lemma 4.5.3, |G1| = 2l−2. Therefore, from (4.59),

E[K
(
DAk−l ∩Ak−lD

)
] =

|D|

22n+k+l−2

(
2l−2 +

(|D| − 1)
(
22l−4+n − 2l−2

)

2n+l−2 − 1

)

= 2

(
|D|

2n+l

)2

= 2K (D)
2
.

• Case 3: 2l− k > 1.

Let a = k − l − 1, b = 2l− k − 2, and X = 1Aa1Ab1Aa1An. By Lemma 4.5.3, |G1| = β2a, where

β =





1 if (a+ 1) | (b + 1)

1/2 if (a+ 1) ∤ (b + 1).

Therefore, from (4.59),

E[K
(
DAk−l ∩ Ak−lD

)
]

=
|D|

22n+k+l−2

(
|G1|+ (2k+n−4 − |G1|) ·

|D| − 1

2n+l−2 − 1

)

=

(
|D|

2n+l

)2

+

(
|D|

2n+l

)
(2β − 1)(14 − |D|2−l−n)

2n+l−2 − 1

= K (D)
2
+

K (D) (14 −K (D))(2β − 1)

2n+l−2 − 1
.

�

Proof of Lemma 4.5.10. First suppose D is a set of a fixed size chosen uniformly at random from 1Al−2C. Then

given a word is in 1Al−2CAk−l∩g(C), the probability that that word is in DAk−l is the probability that the (n+l)-

bit prefix is in D, which is |D|/|1Al−2C| = K (D) /(K (C) /2). Therefore, letting X = 1Al−2CAk−l ∩ g(C)

166

(and noting that DAk−l ∩ g(C) = DAk−l ∩X),

E[K
(
DAk−l ∩ g(C)

)
] =

1

2n+k
E


 ∑

u∈An+k

1DAk−l∩X(u)




=
1

2n+k

∑

u∈An+k

E [1DAk−l∩X(u)]

=
1

2n+k

∑

u∈An+k

P (u ∈ DAk−l ∩X)

=
1

2n+k

∑

u∈An+k

P (u ∈ DAk−l | u ∈ X)P (u ∈ X)

=
K (D)

K (C) /2
·

1

2n+k

∑

u∈An+k

P (u ∈ X)

=
K (D)

K (C) /2
E[K

(
1Al−2CAk−l ∩ g(C)

)
].

The other cases follow similarly. �

Proof of Lemma 4.5.11. For any C as in the Lemma statement, we have

K
(
CAk−l ∩Ak−lC

)
= K

(
C1A

k−l ∩ Ak−lC1

)
+K

(
C1A

k−l ∩ Ak−lC0

)

− K
(
C0A

k−l ∩ Ak−lC1

)
+K

(
C0A

k−l ∩ Ak−lC0

)
.

Using Lemma 4.5.4,

K
(
C1A

k−l ∩ Ak−lC1

)
=





0 if k = 2l − 1

1
16 otherwise

E[K
(
C0A

k−l ∩ Ak−lC1

)
] =





K(C0)
2 if k = 2l− 1

K(C0)
4 otherwise

E[K
(
C1A

k−l ∩ Ak−lC0

)
] =





0 if k = 2l− 1

K(C0)
4 otherwise,

167

and by Corollary 4.5.9,

E[K
(
C0A

k−l ∩Ak−lC0

)
]

=





K (C0)
2

if 2l− k < 1

2K (C0)
2

if 2l− k = 1

K (C0)
2

if 2l− k > 1 and (k − l) ∤ (2l − k − 1)

K (C0)
2
+

K(C0)(
1
4
−K(C0))

2n−1−1 if 2l− k > 1 and (k − l) | (2l − k − 1).

Thus

E[K
(
CAk−l ∩ Ak−lC

)
] =





(K (C0) +
1
4)

2 if 2l − k < 1

K (C0) (2K (C0) +
1
2) if 2l − k = 1

(K (C0) +
1
4)

2 if 2l − k > 1 and (k − l) ∤ (2l− k − 1)

(K (C0) +
1
4)

2 +
K(C0)(

1
4
−K(C0))

2n−1−1 if 2l − k > 1 and (k − l) | (2l− k − 1)

=





K (C)
2

if 2l − k < 1

2K (C) (K (C)− 1
4) if 2l − k = 1

K (C)
2

if 2l − k > 1 and (k − l) ∤ (2l − k − 1)

K (C)2 +
(K(C)− 1

4
)(1

2
−K(C))

2n−1−1 if 2l − k > 1 and (k − l) | (2l − k − 1).

The lemma now follows using Lemma 4.5.10 since

E[K
(
DAk−l ∩Ak−1C

)
] = E[K

(
DAk−l ∩ 1Al−2CAk−l ∩ Ak−1C

)
]

=
K (D)

K (C) /2
· E[K

(
1Al−2CAk−l ∩ Ak−1C

)
]

=
K (D)

K (C)
·E[K

(
CAk−l ∩ Ak−lC

)
] (4.60)

where (4.60) follows by Lemma 4.5.2. �

168

Proof of Lemma 4.5.12. First suppose n ≤ a. Then

E[K
(
1AaCAa+b+2 ∩ 1Aa0Ab0Aa1An ∩ Aa+b+2CAa+1

)
]

= E[K
(
1Aa(CAb+1 ∩ 0Ab0An ∩Ab+1C)Aa−n1An

)
]

= K (1Aa)E[K
(
CAb+1 ∩ 0Ab0An ∩ Ab+1C

)
]K
(
Aa−n1An

)
(4.61)

=
1

2
· K (C)2 K

(
Ab
)
·
1

2
· (4.62)

=
K (C)

2

4
(4.63)

where (4.61) follows from Lemma 4.5.2; (4.62) follows from Lemma 4.5.2 and Lemma 4.5.7; and (4.63) follows

from Lemma 4.5.2.

Now suppose n > a. By Lemma 4.5.3,

|Rn+1(0A
b0Aa1An−(a+1))| =





2b−1 if (b+ 1) ∤ (a+ 1)

0 otherwise

. (4.64)

Let X = Rn+1(0A
b0Aa1An−(a+1)). Then if (b+ 1) ∤ (a+ 1), the expected Kraft sum is

E
[
K
(
1AaCAa+b+2 ∩ 1Aa0Ab0Aa1An ∩ Aa+b+2CAa+1

)]

= E
[
K
(
1Aa(CAb+1 ∩ 0Ab0Aa1An−(a+1) ∩Ab+1C)Aa+1

)]
(4.65)

= K (1Aa)E
[
K
(
CAb+1 ∩ 0Ab0Aa1An−(a+1) ∩ Ab+1C

)]
K
(
Aa+1

)

=
1

2
E
[
K
(
CAb+1 ∩ 0Ab0Aa1An−(a+1) ∩ Ab+1C

)]
(4.66)

=
1

2

(
|X |

2n+b+2
·
|C|

2n
+

(
1

8
−

|X |

2n+b+2

)
|C|(|C| − 1)

2n(2n − 1)

)
(4.67)

=
1

2n+4

(
|C|

2n
+

2n − 1

2n
·
|C|(|C| − 1)

2n − 1

)
(4.68)

=
|C|2

2n+4

=
K (C)

2

4
(4.69)

where (4.66) follows from Lemma 4.5.2; (4.67) follows from the fact that K
(
0Ab0Aa1An−(a+1)

)
= 1/8 (by

Lemma 4.5.2) and from Lemma 4.5.6; (4.68) follows from (4.64).

On the other hand, if (b+ 1) | (a+ 1), then following the same Kraft sum calculation as in (4.65)-(4.67)

169

gives

E[K
(
1AaCAa+b+2 ∩ 1Aa0Ab0Aa1An ∩ Aa+b+2CAa+1

)
]

=
1

2

(
0

2n+b+2
·
|C|

2n
+

(
1

8
−

0

2n+b+2

)
|C|(|C| − 1)

2n(2n − 1)

)
(4.70)

=
K (C)

2

4
−

1

2n+4
·
|C|

2n
+

1

2n+4
·
|C|(|C| − 1)

2n(2n − 1)
(4.71)

=
K (C)2

4
−

|C|

22n+4

(
1−

|C| − 1

2n − 1

)

=
K (C)

2

4
−

K (C)

2n+3
·
2n − |C|

2n − 1

=
K (C)2

4
−

K (C) (12 −K (C))

4(2n − 1)

where (4.70) follows from (4.64); and (4.71) follows from (4.68) and (4.69). �

Proof of Lemma 4.5.13. Let X = 0Aa0Ab0Aa1An. If n ≤ b, then using Lemma 4.5.3,

|Rn+1(X)| = |Rn+1(0A
a0An)Ab−n0Aa1An|

= |Rn+1(0A
a0An)| · |Ab−n0Aa1An|

= 2a · 2a+b = 22a+b.

If b < n ≤ a+ b+ 1, then using Lemma 4.5.3,

|Rn+1(X)| = |Rn+1(0A
a0Ab0An−(a+b+1))Aa+b+1−n1An|

= |Rn+1(0A
a0Ab0An−(a+b+1))| · |Aa+b+1−n1An|

=





22a+b+1 if (a+ 1) | (b+ 1)

22a+b otherwise.

If n > a+ b+ 1, then

|Rn+1(X)| = |Rn+1(0A
a0Ab0Aa1An−(a+b+2))Aa+b+2|

= |Rn+1(0A
a0Ab0Aa1An−(a+b+2))| · |Aa+b+2|

= 0,

using Lemma 4.5.3, since Xa+b+3 = 0, X2a+b+4 = 1, and a+ b+ 3 ≡ (2a+ b+ 4) mod (a+ 1).

170

Then using a similar probability calculation as in the proof of Lemma 4.5.7, when |Rn+1(X)| = 22a+b

we have

E[K (X)] = E[K (Rn+1(X))] ·
|C|

2n
+ E[K

(
A2a+b+n −Rn+1(X)

)
] ·

|C|(|C| − 1)

2n(2n − 1)

=
22a+b

22a+b+n+4
·
|C|

2n
+

(
22a+b+n

22a+b+n+4
−

22a+b

22a+b+n+4

)
·
|C|(|C| − 1)

2n(2n − 1)

=
1

4
·

|C|2

22(n+1)
=

K (C)2

4
.

Otherwise, when |Rn+1(X)| = 22a+b+β22a+b for β ∈ {−1, 1}, we have, using the previous calculation,

E[K (X)] =
K (C)2

4
+ β

22a+b

22a+b+n+4

(
|C|

2n
−

|C|(|C| − 1)

2n(2n − 1)

)

=
K (C)

2

4
+ β

1

4(2n − 1)
K (C)

(
1

2
−K (C)

)
.

�

Proof of Lemma 4.5.14. Let

G1 = 1Aa1AbRn+1(0A
a0An)

G2 = 1Aa1Ab0Aa0An −G1

H1 = Rn+a+b+3(1A
a1Ab0Aa0An)

H2 = 1Aa1Ab0Aa0An −H1.

Then H1 ⊆ G1 and G2 ⊆ H2. Then Lemma 4.5.3 implies

|G1 ∩H1| = |H1| =





2a−1 if (a+ 1) ∤ (b + 1)

0 otherwise

|G1 ∩H2| = |G1 −H1| =





22a+b − 2a−1 if (a+ 1) ∤ (b+ 1)

0 otherwise

|G2 ∩H2| = |G2| = 22a+b+n − |G1|

= 22a+b+n − 2a+b2a

= 22a+b(2n − 1).

171

Let S = DAa+1 ∩ 1Aa1Ab0Aa0An ∩ Aa+1D. If C is chosen uniformly at random from 0An, and D

is chosen uniformly at random from 1Aa+b+1C ⊆ 1Aa+b+10An, then for any word of length n+ l + a + 1, the

probability it lies in S ∩G1 ∩H1 is

|C|

2n
·

|D|

|C| · 2a+b+1
,

the probability it lies in S ∩G1 ∩H2 is

|C|

2n
·

|D| · (|D| − 1)

|C| · 2a+b+1 · (|C| · 2a+b+1 − 1)
,

and the probability it lies in S ∩G2 ∩H2 is

|C| · (|C| − 1)

2n(2n − 1)
·

|D| · (|D| − 1)

|C| · 2a+b+1 · (|C| · 2a+b+1 − 1)
.

Therefore, if (a+ 1) ∤ (b + 1), then

E[K (S)] = E[K (S ∩G1 ∩H1)] + E[K (S ∩G1 ∩H2)] + E[K (S ∩G2 ∩H2)]

=
2a−1

2n+2a+b+4
·
|C|

2n
·

|D|

|C| · 2a+b+1

+
22a+b − 2a−1

2n+2a+b+4
·
|C|

2n
·

|D| · (|D| − 1)

|C| · 2a+b+1(|C| · 2a+b+1 − 1)

+
22a+b(2n − 1)

2n+2a+b+4
·
|C| · (|C| − 1)

2n(2n − 1)
·

|D| · (|D| − 1)

|C| · 2a+b+1(|C| · 2a+b+1 − 1)

= K (D)
2

(4.72)

where (4.72) follows from K (D) = |D|
2n+a+b+3 .

On the other hand, if (a+ 1) | (b+ 1), then

E[K (S)]

= K (D)
2
−

2a−1

2n+2a+b+4
·
|C|

2n
·

|D|

|C| · 2a+b+1
+

2a−1

2n+2a+b+4
·
|C|

2n
·

|D| · (|D| − 1)

|C| · 2a+b+1(|C| · 2a+b+1 − 1)

= K (D)
2
−

K (D)

|C| · 2a+b+1 − 1

(
K (C)

2
−K (D)

)
.

�

172

Proof of Lemma 4.5.15. Let r = 2n and s = 2l. Then

f(x, y) = y2
(

xrs

xrs − 2

)
− y

(
1

2
−

1
2 − x

2(r − 1)
+

x

xrs− 2

)
+

1

16
+

x(12 − x)

2(r − 1)
.

Since

f
(
x,

x

2

)
=

r

4(r − 1)

(
x−

1

2

)(
x−

1

2
+

1

2r

)
≥ 0 ∀x ≤

1

2
−

1

2r

f

(
1

2
, y

)
=

(
rs

rs− 4

)(
y −

1

4

)(
y −

1

4
+

1

rs

)
≥ 0 ∀y ≤

1

4
−

1

rs

and f(1/2, 1/4) = 0, the lemma holds when y = x/2 and also when x = 1/2. Note that

f

(
x,

x

2
−

1

rs

)
=

1

4

(
1

2
− x

)(
1

2
− x−

x

r − 1

)
+

1
2 − x

rs

(
1−

1

2(r − 1)

)

which is 0 when x = 1/2, and when x ≤ 1
2 − 1

2r , satisfies

f

(
x,

x

2
−

1

rs

)
≥

1

4
·
1

2r

(
1

2r
−

1

2r

)
+

1

2r2s

(
1−

1

2

)
> 0.

Thus f(x, y) ≥ 0 when y = x
2 − 1

rs and x ∈ [0, 12 − 1
2r] ∪ { 1

2}, i.e., the lemma holds when y = x
2 − 1

rs .

For all x ∈ [1
2r ,

1
2 − 1

2r], since xrs ≥ (1/2r)rs ≥ 4, we have

∂f

∂y

∣∣∣
y=x

2
− 1

rs

= −

(
1

2
− x

)(
2r − 3

r − 1

)
−

2x

xrs− 2
< 0.

Thus, for any fixed x ∈ [0, 12 − 1
2n+1], the function f is a convex parabola in y, which at y = x

2 − 1
rs is

both non-negative and has a negative slope, and is therefore non-negative for all y ≤ x
2 − 1

rs . �

Proof of Lemma 4.6.1. For cases (i)–(ix), we will assume 2l− k 6= 1. For these cases, the set

Z1A
l−2Z2A

n+k−l ∩Ak−lZ3A
l−2Z4A

n

has bits Z2 and Z3 in different positions, so it is either the patternZ1A
l−2Z2A

k−2lZ3A
l−2Z4A

n (when 2l−k < 1)

or the pattern Z1A
k−l−1Z3A

2l−k−2Z2A
k−l−1Z4A

n (when 2l−k > 1), which in both cases has exactly four fixed

bits.

(i) The set 1Al−20An+k−l∩Ak−l0Al−21An is a pattern with exactly four fixed bits, and thus, by Lemma 4.5.2,

its Kraft sum is 1/16.

173

(ii),(iii) The set CAk−1 ∩ 0Al−2b1A
n+k−l ∩ Ak−l0Al−21An equals CAk−1 ∩ 0U (where U ∈ {0, 1, A}n+k−1 is

a pattern with exactly three fixed bits), and thus, by Corollary 4.5.5, its expected Kraft sum is K (C) /8.

Similar reasoning proves case (iii).

(iv) The set CAk−1 ∩ 0Al−2b1A
n+k−l ∩ Ak−lb2A

l−2C equals CAk−1 ∩ 0U0An ∩ Ak−1C (where U ∈

{0, 1, A}k−2 is a pattern with exactly two fixed bits) and thus, by Lemma 4.5.7, its expected Kraft sum

is K (C)
2
/4.

(v),(vi) The set DAk−l ∩Ak−l0Al−21An equals DAk−l ∩ U , where U ∈ {0, 1, A}n+k is either the pattern

1Al−21Ak−2l0Al−21An (when 2l− k < 1) or the pattern 1Ak−l−10A2l−k−21Ak−l−11An (when 2l− k >

1), both of which have exactly four fixed bits. Thus, by Corollary 4.5.5, the set’s expected Kraft sum is

K (D) /4. Similar reasoning proves case (vi).

(vii),(viii) The set CAk−1 ∩ 0Al−2b1A
n+k−l ∩ Ak−lD, by Lemma 4.5.4, has expected Kraft sum is K (C)K (D) /2.

Similar reasoning proves case (viii).

(ix) This case follows immediately from Lemma 4.5.8.

For cases (x)–(xvi), we will assume 2l− k = 1. For these cases, the set

Z1A
l−2Z2A

n+k−l ∩Ak−lZ3A
l−2Z4A

n

is empty if Z2 6= Z3, and otherwise is a pattern with exactly three fixed bits.

(x) The set 1Al−20An+k−l∩Ak−l0Al−21An is a pattern with exactly three fixed bits, and thus, by Lemma 4.5.2.

its Kraft sum is 1/8.

(xi),(xii) The set CAk−1 ∩ 0Al−20An+k−l ∩Ak−l0Al−21An equals CAk−1 ∩ 0U , (where U ∈ {0, 1, A}n+k−1 is a

pattern with exactly two fixed bits), and thus, by Corollary 4.5.5, its expected Kraft sum is K (C) /4. Similar

reasoning proves case (xii).

(xiii) The set CAk−1 ∩ 0Al−2b1A
n+k−l ∩ Ak−lb1A

l−2C equals CAk−1 ∩ 0U0An ∩ Ak−1C (where U ∈

{0, 1, A}k−2 is a pattern with exactly one fixed bit), and thus, by Lemma 4.5.7, its expected Kraft sum

is K (C)
2
/2.

(xiv),(xv) The set CAk−1∩0Al−21An+k−l∩Ak−lD equals CAk−1∩Ak−lD, and thus, by Lemma 4.5.4, its expected

Kraft sum is K (C)K (D). Similar reasoning proves case (xv).

(xvi) This case follows directly from Lemma 4.5.8.

174

�

Proof of Lemma 4.7.1. The proof is similar to that of Lemma 4.6.1. For cases (i)–(iii), we will assume 2l− k 6= 1.

(i) The set 1Al−2(0An−C)Ak−l ∩ Ak−l0Al−21An equals the set Al−1(0An−C)Ak−l ∩ U (where U ∈

{0, 1, A}n+k is a pattern with exactly four fixed bits), and thus, by Corollary 4.5.5, its expected Kraft

sum is K (0An−C) /8 = (12 − K (C))/8, since 0An − C is chosen uniformly at random from 0An (by

Lemma 4.5.2).

(ii) The expected Kraft sum of the set

1Al−2(0An−C)Ak−l ∩ Ak−l0Al−2C

= (1Al−20An+k−l ∩Ak−l0Al−2C)− (1Al−2CAk−l ∩Ak−l0Al−2C)

is 1
8K (C) − 1

4K (C)2 = 1
4K (C) (12 − K (C)), since the expected Kraft sums of its two parts are 1

8K (C)

(by Lemma 4.6.1) and 1
4K (C)2 (by Lemma 4.5.7).

(iii) The sets C and D1 are chosen independently of each other, and the locations of the fixed bits of the sets

from which they are drawn do not overlap (since 2l − 1 6= k). Therefore, the expected Kraft sum of

1Al−2(0An−C)Ak−l ∩ Ak−lD1, by Lemma 4.5.4, is (1/2)(12 − K (C))K (D1), since the probability that

it contains any particular word of length n + k is the product of the probabilities that the word lies in each

of the two intersected sets.

For cases (iv)–(ix), we will assume 2l− k = 1.

(iv) The set 1Al−2(0An−C)Ak−l ∩ Ak−l0Al−21An equals the set Al−1(0An−C)Ak−l ∩ U (where U ∈

{0, 1, A}n+k is a pattern with exactly three fixed bits), and thus, by Corollary 4.5.5, its expected Kraft

sum is 1
4K (0An−C) = 1

4 (
1
2 −K (C)), since 0An−C is chosen uniformly at random from 0An.

(v) By Lemma 4.6.1,

E[K
(
CAk−1 ∩ 0Al−21An+k−l ∩Ak−l1Al−2C

)
] =

K (C)2

2
,

and so by Lemma 4.5.10, using g(C) = CAk−1 ∩ 0Al−21An+k−l and Ak−lD2 ⊆ Ak−l1Al−2C, we get

E[K
(
CAk−1 ∩ 0Al−21An+k−l ∩ Ak−lD2

)
] =

K (C)2

2
·
K (D2)

K (C) /2
= K (C)K (D2) .

175

(vi) The expected Kraft sum of the set

1Al−2(0An−C)Ak−l ∩ Ak−l0Al−2C

= 1Al−20An+k−l ∩Ak−l0Al−2C − 1Al−2CAk−l ∩ Ak−l0Al−2C.

is 1
4K (C) − 1

2K (C)
2
= 1

2K (C) (12 − K (C)), since the expected Kraft sums of its two parts are K (C) /4

(by Lemma 4.6.1) and K (C)
2
/2 (by Lemma 4.5.2 and Lemma 4.5.7).

(vii) Since 1Al−2CAk−l ∩ Ak−l0Al−21An equals Al−1CAk−l ∩ U (where U ∈ {0, 1, A}n+k is a pattern with

exactly three fixed bits), by Corollary 4.5.5 its expected Kraft sum is K (C) /4. Then by Lemma 4.5.10,

E[K
(
D2A

k−l ∩ Ak−l0Al−21An
)
] = (K(C)/4)K(D2)

K(C)/2 = K (D2) /2.

(viii) By Lemma 4.5.2 and Lemma 4.5.7, we have

E[K
(
1Al−2CAk−l ∩ Ak−l0Al−2C

)
] = K

(
1Al−2

)
E[K

(
CAk−l ∩ Al−1C

)
] = K (C)

2
/2

so by Lemma 4.5.10, the claimed expected Kraft sum is
(K(C)2/2)K(D2)

K(C)/2 = K (C)K (D2).

�

Proof of Lemma 4.8.2. The proof is similar to that of Lemma 4.6.1. For cases (i)–(iii), we will assume 2l− k < 1.

(i) The set

CAl−2−n0An+k−l ∩ Ak−l(0An−C)Al−2−n1An

= CAl−2−n0Ak−2l0Al−21An − CAl−2−n0Ak−2lCAl−2−n1An

has expected Kraft sum 1
8K (C)− 1

4K (C)
2
= K (C) (12 −K (C))/4, since its first term has expected Kraft

sum K (C) /8 (by Corollary 4.5.5) and its second term has expected Kraft sum K (C)
2
/4 (by Lemma 4.5.2

and Lemma 4.5.7).

(ii) This case follows from Lemma 4.5.12, since 0An−C is chosen uniformly at random from 0An, and since

n ≤ l − 2.

(iii) Since 0An−C and D1 are chosen independently and the fixed bits of 1Al−21An+k−l and Ak−l0Al−21An

176

do not overlap, Lemma 4.5.4 implies the claimed expected Kraft sum is

K
(
1Al−21An+k−l

)
·

K (D1)

K (1Al−21An)
· K
(
Ak−l0Al−21An

)
·
K (0An−C)

K (0An)
=

K (D1) (
1
2 −K (C))

2
.

For cases (iv)–(v), we will assume 2l− k = 1.

(iv) The set

CAl−2−n0An+k−l ∩ Ak−l(0An−C)Al−2−n1An

= CAl−2−n0Al−21An − CAl−2−nCAl−2−n1An

has expected Kraft sum 1
4K (C)− 1

2K (C)
2
= K (C) (12 −K (C))/2, where its first term has expected Kraft

sum K (C) /4 (by Lemma 4.6.1) and its second term has expected Kraft sum K (C)2 /2 (by Lemma 4.5.2

and Lemma 4.5.7).

(v) The expected Kraft sum of

1Al−2(0An−C)Ak−l ∩ Ak−l(0An−C)Al−2−n1An = 1Al−2(0An−C)Al−2−n1An

is (12 −K (C))/4 by Lemma 4.5.2.

For cases (vi)–(xii), we will assume 2l − k > 1.

(vi) Since K
(
CAl−2−n0An+k−l ∩ Ak−l1Al−2C

)
= K (C)

2
/4 by Lemma 4.6.1, the desired expected Kraft

sum is
(K(C)2/4)K(D2)

K(C)/2 = K (C)K (D2) /2.

(vii) By Lemma 4.5.10, the expected Kraft sum of the set

1Al−2(0An−C)Ak−l ∩ Ak−l1Al−2C

= 1Ak−l−11A2l−k−20Ak−l−1C − 1Ak−l−11A2l−k−2(CAk−l ∩ 0Ak−l−10An ∩ Ak − lC)

is

K (D2)

K (C) /2

(
K (C)

8
−

K (C)2

4

)
=

(12 −K (C))K (D2)

2

since the expected Kraft sum of the first term is K (C) /8 (by Lemma 4.5.2) and the expected Kraft sum of

the second term is K (C)
2
/4 (by Lemma 4.5.2 and Lemma 4.5.7).

177

(viii) Lemma 4.5.2 and Lemma 4.5.7 imply

K
(
1Al−2−nCAk−l ∩ Ak−l0Al−2C

)
= K

(
1Ak−l−10A2l−k−2(CAk−l ∩ 0Ak−l−10An ∩Ak−lC)

)

= K (C)2 /4

so the claimed expected Kraft sum is 1
4K (C)

2 K(D2)
K(C)/2 = K (C)K (D2) /2.

(ix) We have

K
(
CAl−2−n0An+k−l ∩ Ak−l(0An−C)Al−2−n1An

)

= K
(
CAl−2−n0An+k−l ∩ Ak−l0Al−21An

)

−K
(
CAk−l ∩ 0Ak−l−10A2l−k−20Ak−l−11An ∩ Ak−lC

)

=
K (C)

8
−

K (C)
2

4

−





K(C)(1
2
−K(C))

4(2n−1) if n ≥ 2l− k − 1 and (k − l) | (2l − k − 1)

0 otherwise

by Lemma 4.5.2 and Lemma 4.5.13 (with a = k − l − 1 and b = 2l− k − 2).

(x) This case follows immediately by Lemma 4.5.12 (since 0An−C is drawn uniformly at random from 0An),

with a = k − l − 1 and b = 2l− k − 2.

(xi) We have

K
(
1Al−2CAk−l ∩ Ak−l(0An−C)Al−2−n1An

)

= K
(
1Al−2CAk−l ∩ Ak−l0Al−21An

)

−K
(
1Al−2CAk−l ∩ Ak−lCAl−2−n1An

)

=
K (C)

8
−

K (C)
2

4

+





K(C)(1
2
−K(C))

4(2n−1) if n ≥ k − l and (2l− k − 1) | (k − l)

0 otherwise

,

178

so by Lemma 4.5.10,

E[K
(
D2A

k−l ∩Ak−l(0An−C)Al−2−n1An
)
]

=
K (D2)

K (C) /2
· K
(
1Al−2CAk−l ∩ Ak−l(0An−C)Al−2−n1An

)

=
(12 −K (C))K (D2)

2

+





K(D2)(
1
2
−K(C))

2(2n−1) if n ≥ k − l and (2l − k − 1) | (k − l)

0 otherwise

.

(xii) This case follows directly from Lemma 4.5.14.

�

Proof of Lemma 4.8.3. The proof is similar to that of Lemma 4.6.1. For cases (i)–(iv), we will assume 2l− k 6= 1.

(i) The set 1Al−20An+k−l∩Ak−lbAl−2C equals the set U0An∩Ak−1C (where U ∈ {0, 1, A}k−1 is a pattern

with exactly three fixed bits), so by Lemma 4.5.2, its expected Kraft sum is K (C) /8.

(ii) The claimed expected Kraft sum is (1/4)K (G) = (14 −K (C))/4, by Lemma 4.5.4.

(iii) The claimed expected Kraft sum is K (D1) · (1/4)K (C) /(1/2) = K (C)K (D1) /2, by Lemma 4.5.4.

(iv) The claimed expected Kraft sum is K (D1)K (G) = K (D1) (
1
4 −K (C)), by Lemma 4.5.4.

For cases (v)–(viii), we will assume 2l − k = 1.

(v) The set 1Al−20An+k−l ∩ Ak−l0Al−2C equals the set 1Al−20Al−2C, which has expected Kraft sum

K (C) /4 by Lemma 4.5.2.

(vi) The set 1Al−20An+k−l ∩ Ak−lGAl−2 equals the set 1Al−2GAl−2, which has expected Kraft sum

K (G) /2 = (14 −K (C))/2 by Lemma 4.5.2.

(vii) We have

E[K
(
1Al−20An+k−l ∩Ak−lCAl−1

)
] = E[K

(
1Al−2CAl−1

)
] = K (C) /2

by Lemma 4.5.2, so the claimed expected Kraft sum is (K (D2) /K (C))(K (C) /2) = K (D2) /2, by

Lemma 4.5.10.

179

(viii) We have

Rn+1(0A
l−21Al−20Al−21An−(l−1)) = 22(l−2) = 22l−4 = 2k−3

by Lemma 4.5.3. Therefore, using Lemma 4.5.6, the expected Kraft sum of

CAk−1 ∩Ak−l1Al−2C ⊆ 0Al−21Al−20Al−21An−(l−1)

is

2k−3

2n+k
·
|C|

2n−1
+

(
1

16
−

2k−3

2n+k

)
·

|C|(|C| − 1)

2n−1(2n−1 − 1)
=

|C|

22(n+1)
+

1

8

(
2n−1 − 1

2n

)
|C|(|C| − 1)

2n−1(2n−1 − 1)

=
|C|2

22(n+1)
= K (C)2 .

Thus the claimed expected Kraft sum is (K (D2) /K (C))K (C)
2
= K (C)K (D2), by Lemma 4.5.10.

�

Proof of Lemma 4.8.4. The proof is similar to that of Lemma 4.6.1. For cases (i)–(iv), we will assume 2l− k < 1.

(i) The set 1Al−20An+k−l∩Ak−lbAl−2C equals the set U0An∩Ak−1C (where U ∈ {0, 1, A}k−1 is a pattern

with exactly three fixed bits), so, by Lemma 4.5.2, its expected Kraft sum is K (C) /8.

(ii) We have

Rn+1(0A
l−20Ak−1 ∩ Ak−lbAl−20Al−20An−(l−1)) = 2k−4

by Lemma 4.5.3, since exactly 3 of the first k − 1 positions in the set above are fixed bits. Therefore, using

Lemma 4.5.6,

E[K
(
C0A

k−l ∩Ak−1bAl−2C0

)
] =

2k−4

2n+k

|C0|

2n−1
+

(
1

25
−

2k−4

2n+k

)
|C0|(|C0| − 1)

2n−1(2n−1 − 1)

=
|C0|

22n+3
+

1

16

(
2n−1 − 1

2n

)
|C0|(|C0| − 1)

2n−1(2n−1 − 1)

=
1

2
·

|C0|
2

22(n+1)

=
K (C0)

2

2
.

180

Corollary 4.5.5 then implies

E[K
(
C0A

k−1 ∩ Ak−lbAl−2C
)
] = E[K

(
C0A

k−1 ∩ Ak−lbAl−20Al−21An−(l−1)
)
]

+ E[K
(
C0A

k−1 ∩ Ak−lbAl−2C0

)
]

=
K (C0)

8
+

K (C0)
2

2

=
K (C0) (

1
4 +K (C0))

2

=
K (C) (14 −K (C))

2
.

(iii) By Lemma 4.5.4, the claimed expected Kraft sum is K (C0)K (D1) = (K (C)− 1
4)K (D1).

(iv) By Lemma 4.5.4, the claimed expected Kraft sum is K (D1) · (1/4)K (C) /(1/2) = K (C)K (D1) /2.

For cases (v)–(ix), we will assume 2l− k = 1.

(v) The set 1Al−20An+k−l ∩Ak−l0Al−2C equals the set 1Al−20Al−2C, so the claimed expected Kraft sum is

K (C) /4 by Lemma 4.5.2.

(vi) We have

E[K
(
C0A

k−1 ∩ Ak−l0Al−2C
)
] = E[K

(
C0A

k−1 ∩ Ak−l0Al−20Al−11An−(l−1)
)
]

+ E
[
K
(
C0A

k−1 ∩ Ak−l0Al−2C0

)]
.

The first expected Kraft sum on the right equals K (C0) /4 by Corollary 4.5.5, and the second expected Kraft

sum on the right equals K (C0)
2

by Corollary 4.5.9. Thus the claimed expected Kraft sum is K (C0) /4 +

K (C0)
2 = K (C0) (

1
4 +K (C0)) = (K (C)− 1

4)K (C).

(vii) The set 1Al−20An+k−l ∩ Ak−lD0 equals the set 1Al−2D0, and so the claimed expected Kraft sum is

K (D0) /2 by Lemma 4.5.2.

(viii) By Lemma 4.5.4, the claimed expected Kraft sum is 2K (C0)K (D0) = 2(K (C)− 1
4)K (D0).

(ix) We have

E[K
(
D0A

k−l ∩Ak−l1Al−2C
)
] = E[K

(
D0A

k−l ∩ Ak−l1Al−2C0

)
]

+ E[K
(
D0A

k−l ∩ Ak−l1Al−20Al−21An−(l−1)
)
].

181

The first expected Kraft sum on the right equals 2K (D0) · (1/8)K (C0) /(1/4) = K (C0)K (D0) by

Lemma 4.5.4, and the second expected Kraft sum on the right equals 2K (D0) (1/8) = K (D0) /4 by

Lemma 4.5.4. Thus the claimed expected Kraft sum is

K (C0)K (D0) +
K (D0)

4
= (K (C)− 1/4)K (D0) +

K (D0)

4
= K (C)K (D0) .

�

Proof of Lemma 4.8.5. The proof is similar to that of Lemma 4.6.1.

(i) We have 1Al−20An+k−l ∩ Ak−1C = 1Al−20Ak−l−1C, so its expected Kraft sum is K (C) /4 by

Lemma 4.5.2.

(ii) If 2l− k 6= 1, then

E[K
(
C0A

k−1 ∩ Ak−1C
)
] = E[K

(
C0A

k−1 ∩ Ak−l0Al−2C
)
] + E[K

(
C0A

k−1 ∩ Ak−l1Al−2C
)
]

= K (C)

(
K (C)−

1

4

)

by Lemma 4.8.4. If 2l − k = 1, then

E[K
(
C0A

k−1 ∩ Ak−1C
)
] = E[K

(
C0A

k−1 ∩Ak−l0Al−2C
)
] = K (C)

(
K (C)−

1

4

)

by Lemma 4.8.4.

(iii) This case follows directly from Lemma 4.5.11.

For cases (iv) and (v), we will assume 2l− k < 1.

(iv) We have

E[K
(
1Al−20An+k−l ∩Ak−l1Al−2C

)
] = E[K

(
1Al−20Ak−2l1Al−2C

)
] = K (C) /8

by Lemma 4.5.2. Then by Lemma 4.5.10, the claimed expected Kraft sum is

(K (D) /(K (C) /2))(K (C) /8) = K (D) /4.

182

(v) We have

E[K
(
C0A

k−1 ∩ Ak−l1Al−2C
)
] = E[K

(
C0A

k−2l1Al−20Al−21An−(l−1)
)
]

+ E[K
(
C0A

k−2l1Al−2C0

)
]

=
K (C0)

8
+

K (C0)
2

2

=
(K (C)− 1

4)K (C)

2

by Lemma 4.5.2 and Corollary 4.5.9, and using the fact that C0A
k−2l1Al−2C0 contains exactly half of the

words of C0A
k−l−1C0. Then by Lemma 4.5.10, the claimed expected Kraft sum is

(K (D) /(K (C) /2))((K (C)− 1
4)K (C) /2) = (K (C)− 1

4)K (D).

�

Chapter 4 is a reprint of the material as it appears in: S. Congero and K. Zeger, “The 3/4 Conjecture for

fix-free codes with at most three distinct codeword lengths”, IEEE Transactions on Information Theory, vol. 69,

no. 3, pp. 1452-1485, March 2023.

183

References

[1] N. Abedini, S. P. Khatri, and S. A. Savari, “A SAT-based scheme to determine optimal fix-free codes”, Data

Compression Conference, March 2010, pp. 169 -– 178.

[2] A. Aghajan and M. Khosravifard, “93% of the 3/4-conjecture is already verified”, IEEE Transactions on

Information Theory, vol. 59, no. 12, pp. 8182 – 8194, December 2013.

[3] A. Aghajan and M. Khosravifard, “Weakly symmetric fix-free codes”, IEEE Transactions on Information

Theory, vol. 60, no. 9, pp. 5500 – 5515, September 2014.

[4] R. Ahlswede, B. Balkenhol and L. Khachatrian, “Some properties of fix-free codes”, 1st Intas Seminar on

Coding Theory and Combinatorics, Thahkadzor, Armenia, pp. 20 – 33, 1996.

[5] R. Bauer and J. Hagenauer, “Iterative source/channel-decoding using reversible variable length codes”, Data

Compression Conference (DCC), Snowbird, Utah, pp. 93 – 102, March 2000.

[6] M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer, and P. Siegel, “Variable-length codes and finite

automata”, Selected Topics in Information and Coding Theory, Series on Coding Theory and Cryptology,

World Scientific, pp. 505 – 584, 2010.

[7] J. Berstel and D. Perrin, Theory of Codes, Academic Press, 1985.

[8] J. Berstel, C. De Felice, D. Perrin, Ch. Reutenauer, and G. Rindone, “Bifix codes and Sturmian words”,

Journal of Algebra, vol. 369, pp. 146 – 202, 2012.

[9] V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, and G. Rindone, “Acyclic, connected

and tree sets”, Monatshefte für Mathematik, vol. 176, pp. 521 – 550, 2015.

[10] V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, and G. Rindone, “The finite index basis

property”, Journal of Pure and Applied Algebra, vol. 219, pp. 2521 – 2537, 2015.

[11] V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, and G. Rindone, “Bifix codes and

interval exchanges”, Journal of Pure and Applied Algebra, vol. 219, pp. 2781 – 2798, 2015.

[12] V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, and G. Rindone, “Maximal bifix

decoding”, Discrete Mathematics, vol. 338, no. 5, pp. 725 – 742, 2015.

[13] M. Bodewig, “Multiplied complete fix-free codes and shiftings regarding the 3/4-conjecture”, Information

Theory, Combinatorics, and Search Theory: In Memory of Rudolf Ahlswede, Lecture Notes in Computer

Science, vol. 7777, pp. 694 – 710, Springer, Berlin, 2013.

[14] M. Bodewig, “An Introduction of greedy extension sets for the application on fix-free codes”, Ph.D thesis,

Aachen University, Germany, 2015.

[15] M. Bystrom, S. Kaiser, and A. Kopansky, “Soft source decoding with applications”, IEEE Transactions on

Circuits and Systems for Video Technology, vol. 11, no. 10, pp. 1108 – 1120, October 2001.

[16] Y. Césari, “Propriétés combinatoires des codes biprefixes”, In Théorie des codes, (D. Perrin, ed.), pp. 20 – 46.

Paris: LITP, 1979.

[17] Y. Césari, “Sur un algorithme donnant les codes bipréfixes finis”, Math. Systems Theory, vol. 6, pp. 221 –

225, 1982.

[18] T. Cover and J. Thomas, Elements of Information Theory, Wiley & Sons, 1991.

[19] C. Deppe and H. Schnettler, “On the 3/4-conjecture for fix-free codes”, European Conference on Combina-

torics, Graph Theory and Applications (EuroComb), Berlin, Germany. pp. 111 – 116. 2005.

184

[20] C. Deppe and H. Schnettler, “On q-ary fix-free codes and directed de Brujin graphs”, IEEE International

Symposium on Information Theory, 2006.

[21] A. S. Fraenkel and S. T. Klein, “Bidirectional Huffman coding”, Computer Journal, vol. 33, no. 4, pp. 296 –

307, 1990.

[22] S.-S. Gao and G.-F. Tu, “Robust H.263+ video transmission using partial backward decodable bit stream

(PBDBS)”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 2, pp. 182 – 187,

February 2003.

[23] E. N. Gilbert and E. F. Moore, “Variable-length binary encodings”, Bell System Technical Journal, vol. 38,

pp. 933 – 967, July 1959.

[24] D. Gillman and R. L. Rivest, “Complete variable-length fix-free codes”, Designs, Codes and Cryptography,

vol. 5, no. 2, pp. 109 – 114, March 1995.

[25] B. Girod, “Bidirectionally decodable streams of prefix code-words”, IEEE Communications Letters, vol. 3,

no. 8, pp. 245 – 247, August 1999.

[26] X.Guang, F.-W. Fu, L.-S. Chen, “The existence and synchronization properties of symmetric fix-free codes”,

Science China Information Sciences, pp. 1 – 9, September 2013.

[27] R. Gupta and R. Goel, “A necessary and sufficient condition for the existence of asymmetrical reversible

VLCs”, International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 8, no. 4,

pp. 314 – 317, February 2019.

[28] K. Harada and K. Kobayashi, “A note on the fix-free property”, IEICE Transactions on Fundamentals, vol.

E82-A, no. 10, pp. 2121 – 2128, October 1999.

[29] D. Huffman, “A method for the construction of minimum-redundancy codes”, Proceedings of IRE, vol. 40,

no. 9, pp. 1098 – 1101, September 1952.

[30] J.-Y. Huo, Y.-L. Chang, L.-H. Ma, and Z. Luo, “On constructing symmetrical reversible variable-length codes

independent of the Huffman code”, Journal of Zhehiang University - Science A, vol. 7, pp. 59 – 62, 2006.

[31] ISO/IEC 14496-2, “Information technology - coding of audio/visual objects”, Final Draft International Stan-

dard, Part 2, Visual, October 1998.

[32] ITU-T Recommendation H.263, “Video coding for low bit rate communications,” Annex V, 2000.

[33] M. Javad-Kalbasi and M. Khosravifard, “Some tight lower bounds on the redundancy of optimal binary

prefix-free and fix-free codes”, IEEE Transactions on Information Theory, vol. 66, no. 7, pp. 4419 – 4430,

July 2020.

[34] W.-H. Jeong, Y.-S. Yoon, and Y.-S. Ho, “Design of reversible variable-length codes using properties of the

Huffman code and average length function”, International Conference on Image Processing (ICIP), Singa-

pore, vol. 2, pp. 817 – 820, November 2004.

[35] S. Kaiser and M. Bystrom, “Soft decoding of variable-length codes”, IEEE International Conference on

Communications (ICC), New Orleans, Louisiana, vol. 3, pp. 1203 – 1207, June 2000.

[36] A. Kakhbod and M. Zadimoghaddam, “Some notes on fix-free codes”, 42nd Annual Conference on Informa-

tion Sciences and Systems (CISS), Princeton, NJ, pp. 1015 – 1018, March 2008.

[37] A. Kakhbod and M. Zadimoghaddam, “On the construction of prefix-free and fix-free codes with specified

codeword compositions”, Discrete Applied Mathematics, vol. 159, no. 18, pp. 2269 – 2275, December 2011.

[38] M. Khosravifard and T. Gulliver, “On the capability of the Harada-Kobayashi algorithm in finding fix-free

codewords”, International Symposium on Information Theory and Its Applications (ISITA), Auckland, New

Zealand, pp. 1 – 4, December 2008.

185

[39] M. Khosravifard and T. Gulliver, “The redundancy of an optimal binary fix-free code is not greater than 1

bit”, IEEE Transactions on Information Theory, vol. 61, no. 6, pp. 3549 – 3558, June 2015.

[40] M. Khosravifard, H. Halabian, and T. Gulliver, “A Kraft-type sufficient condition for the existence of D-ary

fix-free codes”, IEEE Transactions on Information Theory, vol. 56, no. 6, pp. 2920 – 2927, June 2010.

[41] M. Khosravifard and S. Kheradmand, “Some upper bounds on the redundancy of optimal binary fix-free

codes”, IEEE Transactions on Information Theory, vol. 58, no. 6 , pp. 4049 – 4057, June 2012.

[42] J. Kliewer and R. Thobaben, “Iterative joint source-channel decoding of variable-length codes using residual

source redundancy”, IEEE Transactions on Wireless Communications, vol. 4, no. 3, pp. 919 – 929, May 2005.

[43] L. G. Kraft, “A device for quantizing, grouping, and coding amplitude modulated pulses”, Master’s Thesis,

Department of Electrical Engineering, MIT Cambridge, MA, 1949.

[44] Zs. Kukorelly and K. Zeger, “Sufficient conditions for existence of binary fix-free codes”, IEEE Transactions

on Information Theory, vol. 51, no. 10, pp. 3433 – 3444, November 2005.

[45] K. Laković and J. Villasenor, “On design of error-correcting reversible variable length codes”, IEEE Commu-

nications Letters, vol. 6, no. 8, pp. 337 – 339, August 2002.

[46] K. Laković and J. Villasenor, “An algorithm for construction of efficient fix-free codes”, IEEE Communica-

tions Letters, vol. 7, no. 8, pp. 391 – 393, August 2003.

[47] M. Leonard, “A property of biprefix codes”, Informatique théorique et Applications/Theoretical Informaties

and Applications, vol. 22, no. 3, pp. 311 – 318, 1988.

[48] C. Lin, J. Wu, and Y. Chuang, “Two Algorithms for Constructing Efficient Huffman-Code-Based Reversible

Variable Length Codes”, IEEE Transactions on Communications, vol. 56, no. 1, pp. 81 – 89, January 2008.

[49] D. Perrin, “Codes bipréfixes et groupes de permutations,” Thèse, Université Paris 7, 1975.

[50] D. Perrin, “La transitivité du groupe d’un code bipréfixe fini”, Mathematische Zeitschrift, vol. 153, pp. 283 –

287, 1977.

[51] D. Perrin, “Le degré minimal du groupe d’un code bipréfixe fini”, Journal of Combinatorial Theory, Series

A, vol. 25, pp. 163 – 173, 1978.

[52] D. Perrin, “Completing biprefix codes”, In Automata, Languages and Programming, Lecture Notes in Com-

puter Science, vol. 140, pp. 397 – 406, 1982.

[53] J. L. Peterson, “Computer programs for detecting and correcting spelling errors”, Communications of the

ACM, vol. 23, pp. 676 – 687, 1980.

[54] C. Reutenauer “Semisimplicity of the algebra associated to a biprefix code”, Semigroup Forum, vol. 23, pp.

327 – 342, 1981.

[55] S. Savari, S. Yazdi, N. Abedini, and S. Khatri, “On optimal and achievable fix-free codes”, IEEE Transactions

on Information Theory, vol. 58, no. 8 , pp. 5112 – 5129, August 2012.

[56] H. Schnettler, “On the 3/4-conjecture for fix-free codes: a survey”, arXiv:0709.2598v1, September 2007.

[57] M. P. Schützenberger “On an application of semigroup methods to some problems in coding”, IRE Transac-

tions on Information Theory, vol. 2, pp. 47 – 60, September 1956.

[58] M. P. Schützenberger, “On a special class of recurrent events”, Annals of Mathematical Statistics, vol. 32, pp.

1201 – 1213, 1961.

[59] M. P. Schützenberger, “On a family of submonoids”, Publication of the Mathematical Institute of the Hungar-

ian Academy of Sciences, (Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei),

vol. 6, pp. 381 – 391, 1961.

186

[60] C. E. Shannon, “A mathematical theory of communication”, Bell System Technical Journal, vol. 27, no. 4, pp.

623 – 666, October 1948.

[61] Y. Takishima, M. Wada, and H. Murakami, “Reversible variable length codes”, IEEE Transactions on Com-

munications, vol. 43, pp. 158 – 162, February – April 1995.

[62] C.-W. Tsai, T.-J. Huang, K.-L. Fang, and J.-L. Wu, “A hybrid and flexible H.263-based error resilient and

testing system”, IEEE Region 10 International Conference on Electrical and Electronic Technology, vol. 1,

pp. 122 – 128, August 2001.

[63] C.-W. Tsai and J.-L. Wu “On constructing the Huffman-code-based reversible variable-length codes”, IEEE

Transactions on Communications, vol. 49, no. 9, pp. 1506 – 1509, September 2001.

[64] C.-W. Tsai and J.-L. Wu, “Modified symmetrical reversible variable-length code and its theoretical bounds”,

IEEE Transactions on Information Theory, vol. 47, no. 6, pp. 2543 – 2548, September 2001.

[65] C.-W. Tsai J.-L. Wu, and S.-W. Liu, “Modified symmetrical reversible variable length code and its theoretical

bounds”, Proceedings of the SPIE, vol. 3974, pp. 606 – 616, April 2000.

[66] H.-W. Tseng and C.-C. Chang, “Construction of symmetrical reversible variable length codes using back-

tracking”, The Computer Journal vol. 46, no. 1, pp. 100–105, January 2003.

[67] H. Wang, S.N. Koh, and W.-W. Chang, “Application of reversible variable-length codes in robust speech

coding”, IEE Proceedings - Communications, vol. 152, no. 3, pp. 272 – 276, July 2005.

[68] J. Wang, L.-L. Yang, and L. Hanzo, “Iterative construction of reversible variable-length codes and variable-

length error-correcting codes”, IEEE Communications Letters, vol. 8, no. 11, pp. 671 – 673, November 2004.

[69] J.L.H. Webb, “Efficient table access for reversible variable-length decoding”, IEEE Transactions on Circuits

and Systems for Video Technology, vol. 11, no. 8, pp. 981 – 985, August 2001.

[70] J. Wen and J. D. Villasenor, “A class of reversible variable length codes for robust image and video coding”,

IEEE International Conference on Image Processing (ICIP), Santa Barbara, CA, vol. 2, pp. 65 – 68, October

1997.

[71] J. Wen and J. D. Villasenor, “Reversible variable length codes for efficient and robust image and video

coding”, Data Compression Conference (DCC), Snowbird, UT, pp. 471 – 480, March – April 1998.

[72] N. Yadav, K. C. Roy, and Y. Krishan, “Construction of reversible variable length code for digital image

processing”, International Journal of Engineering Science and Technology, vol. 2, no. 10, pp. 5332 – 5336,

October 2010.

[73] Z. Yan, S. Kumar, J. Li and C. C. J. Kuo, “Reversible variable length codes (RVLC) for robust coding of 3D

topological mesh data”, Data Compression Conference (DCC), Snowbird, UT, pp. 560, March 1999.

[74] S. M. H. T. Yazdi and S. A. Savari, “On the relationships among optimal symmetric fix-free codes,” IEEE

Transactions on Information Theory, vol. 60, no. 8, pp. 4567 – 4583, August 2014.

[75] C. Ye and R. W. Yeung, “Some basic properties of fix-free codes”, IEEE Transactions on Information Theory,

vol. 47, no. 1, pp. 72 – 87, January 2001.

[76] S. Yekhanin, “Sufficient conditions of existence of fix-free codes”, IEEE International Symposium on Infor-

mation Theory (ISIT), Washington, D.C., p. 284, June 2001.

[77] S. Yekhanin, “Improved upper bound for the redundancy of fix-free codes”, IEEE Transactions on Informa-

tion Theory, vol. 50, no. 11, pp. 2815 – 2818, November 2004.

[78] S. Yekhanin, “Sufficient conditions of existence of fix-free codes”, preprint.

187

[79] A. Zaghian, A. Aghajan, and T.A. Gulliver, “The optimal fix-free code for anti-uniform sources”, Entropy,

vol. 17, no. 3, pp. 1379 – 1386, March 2015.

[80] S. J. Zahabi, A. Aghajan, and M. Khosravifard, “Sequentially-constructible reversible variable length codes”,

IEEE Transactions on Communications. vol. 62 , no. 8, pp. 2605 – 2614, August 2014.

[81] S. J. Zahabi and M. Khosravifard, “On the penalty of optimal fix-free codes”, IEEE Transactions on Informa-

tion Theory, vol. 61 , no. 5, pp. 2776 – 2787, May 2015.

[82] A. Zammit, “Reversible variable-length codes”, Master’s Dissertation, University of Malta, 2007.

188

Chapter 5

Characterizations of Minimal Expected Length

Codes

Abstract

A property of prefix codes called strong monotonicity is introduced. Then it is proven that for a prefix

code C for a given probability distribution, the following are equivalent: (i) C is expected length minimal; (ii) C

is length equivalent to a Huffman code; and (iii) C is complete and strongly monotone. Also, three relations are

introduced between prefix code trees called same-parent, same-row, and same-probability swap equivalence, and

it is shown that for a given source, all Huffman codes are same-parent, same-probability swap equivalent, and all

expected length minimal prefix codes are same-row, same-probability swap equivalent.

189

5.1 Introduction

Huffman codes [13] were invented in 1952 and today are widely used in many practical data compression

applications, such as for text, audio, image, and video coding. They are known to be optimal in the sense that they

achieve the minimal possible expected codeword length among all prefix codes for a given finite discrete random

source [5].

The main idea in the Huffman algorithm is to construct a code tree from a source by recursively merging

two smallest-probability nodes until only one node with probability 1 remains. The initial source probabilities

correspond to leaf nodes in the tree, and the binary paths from the tree’s root to the leaves are the codewords.

However, for a given source, Huffman codes are not unique, due to choices that arise during the tree

construction that can be decided arbitrarily. Specifically, there are three types of choices that can be taken during

the tree building: (1) When two nodes are merged, the choice of which node becomes a left child and which

becomes a right child is arbitrary; (2) If there are three or more smallest-probability nodes, then which two of

them to merge is arbitrary; and (3) If there is a unique smallest-probability node and two or more second-smallest-

probability nodes, then which of these to merge with the smallest-probability node is arbitrary. After the tree is

constructed all edges from parents to left children are labeled 0 and all edges from parents to right children are

labeled 1, or vice versa. Without loss of generality, we will not interpret this binary edge labeling as a choice

for generating multiple Huffman codes, since the same-parent node swaps that we address later in the paper can

account for such constructions, too. Such arbitrary choices as in (1)–(3) made during the Huffman construction

process can affect not only the codeword assignments, but also the Huffman tree structure, and can even change

the distribution of codeword lengths.

On one hand, if a source is chosen randomly from a continuous distribution (i.e., the source probabilities

are randomly chosen to lie in [0, 1] and to sum to 1), then with probability one there will be no ties among source

probabilities and no ties among tree node probabilities in the Huffman construction process. In this case, the only

variation of Huffman codes for a given randomly chosen source is due to left-versus-right child assignments when

node merges occur during Huffman tree construction.

On the other hand, often source distributions are empirically determined through a frequency counting

process, and probability estimates consist of a set of integers, normalized by their sum. In these cases, especially

with small data sets, ties in probabilities can occur, and multiple Huffman trees can result. The differences in these

Huffman trees can be due to some or all of the arbitrary choices mentioned above that are encountered during

Huffman tree construction.

For many applications, the average length of a prefix code is the primary concern, in which case the

190

choice of which Huffman or other optimal non-Huffman code to use may not matter, although an understanding of

such code variations may be of theoretical interest. In some applications, however, the specific binary codewords

included in an optimal code may be critical. A survey of lossless coding techniques can be found in [1].

One well-studied example where the codeword assignments matter is the design of lossless codes that are

easily synchronizable. Since Huffman codes are variable-length codes, they are subject to loss of synchronization

during decoding due to even a single bit error or erasure during transmission or storage. However, Huffman

codes are known to often have a self-synchronizing string, which is a binary string (not necessarily a codeword)

that, after being decoded starting at any internal tree node, always returns the decoding process to the root of the

Huffman tree, thus restoring synchronization. It turns out that for a given source with multiple Huffman codes,

some Huffman codes may have shorter self-synchronizing strings than others, and some Huffman codes may not

have any self-synchronizing strings at all even if other Huffman codes do. These possibilities are illustrated in the

following two examples.

Example 5.1.1 (Same-parent node swap produces shorter self-synchronizing string).

Let H1 and H2 be Huffman codes for a source with symbols a,b,c,d, and probabilities 1
2 ,

1
4 ,

1
8 ,

1
8 , respectively. The

Huffman trees for H1 and H2 are shown in Figure 5.1. Huffman tree H2 is obtained from H1 by exchanging node

b and its sibling (i.e., a same-parent node swap). The shortest self-synchronizing strings for Huffman trees H1 and

H2 are 0 and 00, respectively.

1

1
2

1
2

1
4

1
4

1
8

1
8

0 1

0 1

0 1

a

b

c d

1

1
2

1
2

1
4

1
8

1
8

1
4

0 1

0

0 1

1

a

c d

b

Huffman code H1 Huffman code H2

Figure 5.1. One Huffman tree is a same-parent node swap of another and has a shorter self-synchronizing string.

Example 5.1.2 (Same-parent node swap eliminates self-synchronizing string).

Let H1 and H2 be Huffman codes for a source with symbols a,b,c,d,e,f ,g,h,i, and probabilities 1
4 , 1

8 , 1
8 , 1

8 , 1
8 ,

191

1
16 , 1

16 , 1
16 , 1

16 , respectively. The Huffman trees for H1 and H2 are shown in Figure 5.2. Huffman tree H2 is

obtained from H1 by exchanging the leaf b and its sibling (i.e., a same-parent node swap). Huffman tree H1 has

a self-synchronizing string of 0011, which brings each internal node back to the root. Huffman tree H2 does not

have any self-synchronizing string, since any string which brings the root back to itself also brings the parents of

a, b, and c back to one of themselves, and thus not to the root.

1

1
2

1
4

1
8

1
8

1
16

1
16

1
4

1
8

1
16

1
16

1
8

1
2

1
4

1
8

1
8

1
4

0

0

0 1

0 1

1

0

0 1

1

1

0

0 1

1

b

f g h i

c d e

a

1

1
2

1
4

1
8

1
16

1
16

1
8

1
4

1
8

1
16

1
16

1
8

1
2

1
4

1
8

1
8

1
4

0

0

0

0 1

1

1

0

0 1

1

1

0

0 1

1

f g

b

h i

c d e

a

Huffman code H1 Huffman code H2

Figure 5.2. Huffman tree H2 is a same-parent node swap of H1, but has no self-synchronizing string whereas H1

does.

Numerous theoretical and algorithmic studies of synchronizable Huffman and non-Huffman optimal pre-

fix codes have made use of the non-uniqueness of Huffman codes to search for short synchronizing binary strings.

Some of these investigations include Longo and Galasso [16] in 1982, Ferguson and Rabinowitz [8] in 1984, Escott

and Perkins [7] in 1998, Huang and Wu [12] in 2003, and Higgs, Perkins, and Smith [11] (see also [10]) in 2009.

Other related work considers correcting bit errors in Huffman encoded data streams, in which case the choice of

Huffman code can affect performance. Some of these include: Lee, Chang, Ho, and Lee [14] in 2000, Zhou and

Zhang [20] in 2002, Cao [2] in 2006, Cao, Yao, and Chen [3] in 2007, Zhou and Au [19] in 2010, and Wang, Zhao,

and Sun [17] in 2018.

The non-uniqueness of Huffman codes leads to the question of how to effectively describe the similarities

among them, as well as their differences from non-Huffman codes. In 1978, Gallager [9] gave a characterization

of Huffman codes as precisely those prefix codes possessing a “sibling property”, which stipulates that a code is

192

complete and the nodes of its code tree can be listed in order of non-increasing probability with each node being

adjacent in the list to its sibling.

For a given source, the broader class of optimal prefix codes is somewhat larger then its subset of Huffman

codes. No characterization analogous to the sibling property has been previously given for optimal prefix codes.

Only the sufficient condition given by the sibling property has been known.

One known necessary condition for a prefix code to be optimal is “monotonicity”, which states that any

code tree node with a larger probability than another node must not appear on a lower row than the smaller-

probability node. The following example illustrates that monotonicity is not sufficient for a complete prefix code

to be optimal.

Example 5.1.3 (A monotone prefix code that is not optimal).

Let H be a Huffman code for a source with symbols a,b,c,d, and probabilities 3
8 ,

3
8 ,

1
8 ,

1
8 , respectively, and let C

be another prefix code for the same source. The code trees for H and C are shown in Figure 5.3. The code C is

monotone because any node probability on a given row is at least as large as any node probability on a lower row.

However, C is not optimal since its expected length is 2, whereas the Huffman code H has a smaller expected

length of 15
8 .

1

5
8

3
8

1
4

1
8

1
8

3
8

0

0 1

0 1

1

b

c d

a

1

1
2

3
8

1
8

1
2

3
8

1
8

0

0 1

1

0 1

a c b d

Huffman code H Prefix code C

Figure 5.3. A Huffman tree and code tree illustrating monotonicity without strong monotonicity.

In this paper we first provide a necessary and sufficient characterization of optimal prefix codes by intro-

ducing a new criterion called “strong monotonicity”. In particular we show that for a prefix code C for a given

source, the following are equivalent: (i) C is optimal; (ii) C is length equivalent to a Huffman code; and (iii) C is

complete and strongly monotone.

193

Secondly, we investigate the transformation of code trees to other code trees using the graph theoretic idea

of swapping tree nodes. Swapping two nodes with a similar trait can transform one code tree into another code

tree that maintains certain properties, and can serve as a method for creating new Huffman codes or new optimal

prefix codes from existing ones.

Specifically, we consider swaps of two code tree nodes when they: (i) have the same parent; (ii) lie in the

same row; or (iii) have the same probability. For any given source, these three types of node swaps always preserve

the expected length of a prefix code. For example, any optimal prefix code will be transformed by any of these

operations into another optimal prefix code.

Some prior work related to node swapping has motivated some of our results.

In 1982, Longo and Galasso [16] used same-probability node swaps in the context of determining prob-

ability density attraction regions for Huffman codes. They showed that, using only same-probability node swaps,

Huffman codes could be transformed into other Huffman codes. However, they ignored the distinguishing effects

of same-row node swaps that could transform Huffman codes to optimal non-Huffman codes. Our results more

finely characterize the relationship between these codes by using either same-parent or same-row node swaps. Also

we use a different proof technique and try to clarify some unaddressed points in [16].

Ferguson and Rabinowitz [8] studied synchronous codes and considered codes that were same-parent

swap equivalent (calling them “strongly-equivalent”) and length equivalent (calling them “weakly equivalent”),

but did not provide results characterizing the class of Huffman or optimal prefix codes.

We characterize both the class of all Huffman codes for a given source and also the broader class of all

optimal prefix codes for a given source in terms of same-probability and either same-row or same-parent node

swap transformations.

Example 5.1.4 (Two Huffman codes and a third optimal code tree).

Let H1 and H2 be two different Huffman codes and let C be a non-Huffman tree for a source with symbols a,b,c,d,

and probabilities 1
3 ,

1
3 ,

1
6 ,

1
6 , respectively. The three trees are shown in Figure 5.4. After nodes c and d were

combined during the Huffman construction algorithm for building H1 and H2, 3 different nodes had probability

1
3 , leading to different trees resulting from different node merges. All 3 codes achieve the minimum possible

average length of 2, but the codes for H1 and H2 are not same-row swap equivalent, since the codes are not length

equivalent.

However, H1 and H2 are same-parent, same-probability swap equivalent. To see this, first transform tree

H1 by exchanging node a with the parent of nodes c and d (i.e., a same-probability node swap). Then perform a

same-parent node swap on nodes a and b, and then another same-parent node swap on the two children of the root.

The result of these three operations is the Huffman tree H2.

194

The code C is not same-parent, same-probability swap equivalent to either H1 or H2, but it is same-row,

same-probability swap equivalent to both Huffman codes. To see this, transform H2 to C by exchanging nodes b

and c (i.e., a same-row node swap).

1

1
3

2
3

1
3

1
3

1
6

1
6

0 1

0 1

0 1

a

b

c d

1

2
3

1
3

1
3

1
3

1
6

1
6

0

0 1

1

0 1

a b c d

1

1
2

1
3

1
6

1
2

1
3

1
6

0

0 1

1

0 1

a c b d

Huffman code H1 Huffman code H2 optimal code C

Figure 5.4. Two Huffman trees and an optimal third code tree for a single source.

We show that in fact for a given source, any Huffman code can be transformed into any other Huffman

code by a sequence of same-parent and same-probability node swaps. Then we show that for a given source, any

optimal code can be transformed into any other optimal code by a sequence of same-row and same-probability

node swaps. These characterizations of Huffman codes and optimal codes refine a result in [16] and supplement

the foundational understanding of optimal lossless source coding.

In what follows we will define terminology and then present our main results. One of these results

(Theorems 5.2.4) is exploited in another recent work [4] to prove results about competitive optimality of Huffman

codes.

An alphabet is a finite set S, and a source of size n with alphabet S is a random variable X such that

|S| = n and P (X = y) = P (y) for all y ∈ S. We denote the probability of any subset B ⊆ S by P (B) =
∑

y∈B

P (y).

A code for source X is a mapping C : S −→ {0, 1}∗ and the binary strings C(1), . . . , C(n) are called

codewords of C. A prefix code is a code where no codeword is a prefix of any other codeword.

A code tree for a prefix code C is a rooted binary tree whose leaves correspond to the codewords of C;

specifically, the codeword associated with each leaf is the binary word denoting the path from the root to the leaf.

The length of a code tree node is its path length from the root. The rth row of a code tree is the set of nodes whose

195

length is r, and we will view a code tree’s root as being on the top of the tree with the tree growing downward.

That is, row r of a code tree is “higher” in the tree than row r + 1. If x and y are nodes in a code tree, then x is

a descendant of y if there is a downward path of length zero or more from y to x. Two nodes in a tree are called

siblings if they have the same parent. For any collection A of nodes in a code tree, let P (A) denote the probability

of the set of all leaf descendants of A in the tree.

A (binary) Huffman tree is a code tree constructed from a source by recursively merging two smallest-

probability nodes1 until only one node with probability 1 remains. The initial source probabilities correspond to

leaf nodes in the tree. A Huffman code for a given source is a mapping of source symbols to binary words by

assigning the source symbol corresponding to each leaf in the Huffman tree to the binary word describing the path

from the root to that leaf.

Given a source with alphabet S and a prefix code C, for each y ∈ S the length of the binary codeword

C(y) is denoted lC(y). Two codes C1 and C2 are length equivalent if lC1
(y) = lC2

(y) for every source symbol

y ∈ S. The average length of a code C for a source with alphabet S is
∑

y∈S

lC(y)P (y). A prefix code is optimal

for a given source if no other prefix code achieves a smaller average codeword length for the source. In particular,

Huffman codes are known to be optimal (e.g., see [5]).

A code is complete if every non-root node in its code tree has a sibling, or, equivalently, if every node has

either zero or two children.2 A code C for a given source is monotone if for any two nodes in the code tree of C,

we have P (u) ≥ P (v) whenever lC(u) < lC(v). Optimal prefix codes are always monotone (Lemma 5.1.6) and

are also well-known to be complete.

The Kraft sum of a sequence of nonnegative integers l1, . . . , lk is 2−l1 + · · · + 2−lk . We extend the

definition of “Kraft sum” to also apply to sets of source symbols with respect to a code or sets of code tree nodes.

In each case, we use the notation KC to denote the Kraft sum. If C is a prefix code for a source with alphabet S,

and U ⊂ S, then the Kraft sum of U is

KC(U) =
∑

x∈U

2−lC(x)

or equivalently, the Kraft sum of the corresponding sequence of codeword lengths of the set of all leaf descendants

of U in the code tree of C. The same summation is used to compute the Kraft sum of a set of code tree nodes.

The following lemma is a standard result in most information theory textbooks and will be used in the

proofs of Lemma 5.2.2 and Theorem 5.2.4.

1For more details about Huffman codes, the reader is referred to the textbook [5, Section 5.6].
2Our usage of the word “complete” has also been referred to in the literature as “full”, “extended”, “saturated”, “exhaustive”, and “maximal”.

196

Lemma 5.1.5 (Kraft Inequality converse [5, Theorem 5.2.1]). If a sequence l1, . . . , ln of positive integers satisfies

2−l1 + · · ·+ 2−ln ≤ 1, then there exists a binary prefix code whose codeword lengths are l1, . . . , ln.

The following lemma is used in the proof of Lemma 5.3.4.

Lemma 5.1.6 (Gallager [9, p. 670]). For any source, if a prefix code is optimal, then it is monotone.

As noted earlier, Gallager characterized Huffman codes (Lemma 5.1.8) using the following property.

Definition 5.1.7 (Gallager [9, p. 669]). A binary code tree has the sibling property if each node (except the root)

has a sibling and if the nodes can be listed in order of non-increasing probability with each node being adjacent in

the list to its sibling.

The next lemma is very useful in proving results about Huffman codes, and will be exploited in the proofs

of Theorem 5.2.4, Lemma 5.3.4, and Theorem 5.3.8.

Lemma 5.1.8 (Gallager [9, Theorem 1]). For any source, a prefix code is a Huffman code if and only if its code

tree has the sibling property.

For the remainder of this section, we describe our main results. Theorem 5.2.4 shows that for a prefix

code C for a given probability distribution, the following are equivalent: (i) C is optimal; (ii) C is length equivalent

to a Huffman code; and (iii) C is complete and strongly monotone. In this theorem, the Huffman code in case (ii)

may vary for different choices of C. Figure 5.5 depicts these results along with some known prior art.

complete &

monotone
Huffman code sibling property

complete &

strongly monotone
optimal

length equivalent

to some

Huffman code

Figure 5.5. Logical implications of prefix code properties for a given source. The red arrows indicate new results

presented in this paper.

Next, we describe our remaining results in this paper.

Huffman codes for the same source can differ from each other in multiple ways. For example, “twisting”

a Huffman tree about any fixed node in the tree (i.e., swapping two same-parent nodes) creates a new Huffman

code for the source (Lemma 5.3.3).

197

Another transformation of a Huffman tree is to cut branches of the tree at two nodes whose probabilities

equal each other and then exchange those subtrees (i.e., perform a same-probability node swap). Two such nodes

need not lie on the same row in the tree. This transformation also results in a new Huffman code for the same

source (Lemma 5.3.4).

Any combination of these same-parent and same-probability node swaps transforms Huffman trees into

Huffman trees. In fact, we show in Theorem 5.3.8 that the converse is also true, namely that all Huffman codes for

a given source are related by these transformations.

More general questions exist about the broader class of optimal prefix codes. In this case, we know that

any combination of same-parent and same-probability node swaps transforms optimal codes to other optimal codes

(Lemma 5.3.2), neither of which is necessarily a Huffman code. It turns out not to be true that any optimal prefix

code can be obtained from any other optimal prefix code by a sequence of same-parent and same-probability node

swaps (see H2 and C in Example 5.1.4). We describe another node swap involving cutting branches of a Huffman

tree at two different nodes on the same row and then exchanging the hanging subtrees (i.e., swapping same-row

nodes). This operation preserves the average length of any prefix code, so it maps optimal prefix codes to optimal

prefix codes, but the operation need not transform Huffman codes into other Huffman codes. (see H1 and H2 in

Example 5.1.4).

We show that for a given source, two complete prefix codes are length equivalent if and only if they are

same-row swap equivalent (Theorem 5.3.6). This then implies that any prefix code for a given source is length

equivalent to a particular Huffman code (and thus is optimal) if and only if its code tree can be obtained from the

Huffman tree by a sequence of same-row node swaps (Corollary 5.3.7).

If we replace same-parent node swaps by the more general same-row node swaps, then we can characterize

optimal prefix codes in another way by using node swapping. Specifically, we show that all optimal prefix codes

are same-row, same-probability swap equivalent to each other (Theorem 5.3.9).

5.2 Characterization of expected length minimizing prefix codes

In this section we give a new characterization of optimal prefix codes for a given source. While all

Huffman codes are optimal and were characterized by Gallager in terms of the sibling property, not all optimal

codes are Huffman codes. However, it turns out that any optimal code is length equivalent to some Huffman code

for the source as shown in Theorem 5.2.4.

In Theorem 5.2.4 we also prove a second characterization of optimal prefix codes. Specifically, we show

that a prefix code is optimal if and only if it is complete and strongly monotone. The combination of completeness

and strong monotonicity is weaker than the sibling property, and thus a broader class of prefix codes (namely, the

198

optimal ones) satisfies this combination.

Definition 5.2.1. Given a source with alphabet S, a prefix code C is strongly monotone if P (A) ≥ P (B) whenever

A,B ⊆ S and KC(A) = 2−i > 2−j = KC(B) for some integers i and , j.

The strongly monotone property reduces to Gallager’s monotone property when each of A and B consists

of all leaf descendants of a single tree node. Example 5.1.3 illustrates that these two properties are not equivalent.

Specifically, the example shows that prefix code C is not strongly monotone because KC({c, d}) = 2−1 > 2−2 =

KC({a}) but P ({c, d}) = 1
4 < 3

8 = P ({a}). The code H is strongly monotone since it is a Huffman code.

The following lemma easily follows from the proof of Lemma 5.1.5. This lemma relies on our definition of

sources (and thus codes) to be finite. Prefix codes for infinite sources need not satisfy the lemma below (e.g. [15, p.

2027]).

Lemma 5.2.2. A prefix code is complete if and only if its Kraft sum equals 1.

Lemma 5.2.3. If two prefix codes are length equivalent, then each of the following properties holds for one code

if and only if it holds for the other code:

(1) completeness

(2) strong monotonicity

(3) optimality.

Proof. Let S be the source alphabet. Let C and C′ be length equivalent prefix codes, i.e., lC(y) = lC′(y) for all

y ∈ S. Then for all y ∈ S,

KC(y) = 2−lC(y) = 2−l
C′ (y) = KC′(y).

Since

∑

y∈S

KC(y) =
∑

y∈S

KC′(y),

Lemma 5.2.2 shows C is complete if and only if C′ is complete.

Suppose C is strongly monotone. Let A,B ⊆ S with KC′(A) = 2−i and KC′(B) = 2−j for some

integers 0 ≤ i < j. Since KC(A) = KC′(A) = 2−i and KC(B) = KC′(B) = 2−j , we have P (A) ≥ P (B)

since C is strongly monotone. Thus C′ is also strongly monotone.

199

Let X be a source random variable. The average length of code C is

E[lC(X)] =
∑

y∈S

P (y)lC(y) =
∑

y∈S

P (y)lC′(y) = E[lC′(X)],

so C is optimal if and only if C′ is. �

The following theorem is our first main result.

Theorem 5.2.4. For a given source, if C is a prefix code, then the following are equivalent:

(1) C is complete and strongly monotone;

(2) C is length equivalent to a Huffman code; and

(3) C is optimal.

Proof. Let S be the source alphabet, and let X be the source random variable on S. Define P (u) = P (X = u)

for all u ∈ S.

(1) =⇒ (2)

Suppose C is complete and strongly monotone. Consider the following operation on the code tree for C. Suppose

row k ≥ 1 of the code tree has the property that all non-leaves are listed in order of non-increasing probability

moving left-to-right in the row. Permute all nodes in row k such that they are listed in order of non-increasing

probability moving left-to-right in the row. Note that the non-leaves remain in the same order among themselves as

they were prior to performing the operation, and therefore all nodes in each row m > k remain in the same order

in their row as they were prior to performing the operation. Let C′ be the new code corresponding to the code

tree obtained after this operation. This operation may change the codewords assigned to symbols in S, but it does

not change the lengths of any codewords, and so C and C′ are length equivalent. Moreover, once this operation

has been performed, the probabilities of the parents of the nodes in row k are listed in order of non-increasing

probability moving left-to-right in row (k − 1).

Therefore, we can apply this node permutation operation iteratively on successively higher rows, begin-

ning on the bottom row of the code tree for C where there are only leaves, and then moving upward, row-by-row.

Once the leaves in the bottom row have been ordered, the probabilities of their parents have been ordered, and we

can then proceed by induction to conclude that after this operation has been performed on each row, the nodes in

each row of the resulting code tree are listed in order of non-increasing probability moving left-to-right in the row.

Let C′ be the code corresponding to the resulting code tree. Inductively, based on the argument in the previous

200

paragraph, C′ is length equivalent to C, and so C′ is complete and strongly monotone by Lemma 5.2.3. Con-

sider the sequence of probabilities of nodes in the code tree for C′ listed in raster-scan order, beginning with the

root node and proceeding downward, row-by-row, moving left-to-right in each row. Then the probability of each

node is adjacent in the sequence to the probability of its sibling. Also, as concluded previously, all probabilities

of nodes in the same row are listed in non-increasing order in the sequence. Furthermore, since C′ is strongly

monotone, the rightmost node u in a given row k ≥ 0 and the leftmost node v in row (k+1) satisfy P (u) ≥ P (v),

since KC′(u) = 2−k > 2−(k+1) = KC′(v). Therefore, the sequence of probabilities is listed in order of non-

increasing probability, and so the code tree for C′ satisfies the sibling property since C′ is also complete. Thus, by

Lemma 5.1.8, C′ is a Huffman code. Since C is length equivalent to C′, we are done.

(2) =⇒ (3)

Suppose C is length equivalent to a Huffman code H . Then by Lemma 5.2.3, C is optimal because H is.

(3) =⇒ (1)

Suppose C is optimal. If C is not complete, then there exists a non-root node u without a sibling in the code tree

for C. Replacing the parent of u by u itself results in a code tree where the lengths of all leaf descendants of u

have been decreased by 1, and the lengths of all other leaves have remained unchanged. Therefore, the expected

length of the new code is P (u) less than the expected length of C. Since P (u) > 0, this shows C is not optimal,

which is a contradiction. Thus C is complete.

Suppose C is not strongly monotone. Then there exist A,B ⊆ S and integers i and j, such that 0 ≤ i < j,

KC(A) = 2−i, KC(B) = 2−j , and P (A) < P (B). Denote the symmetric difference of A and B by A∆B =

(A−B) ∪ (B −A). Then

KC(A−B) = KC(A)−KC(A ∩B) = 2−i −KC(A ∩B)

KC(B −A) = KC(B)−KC(A ∩B) = 2−j −KC(A ∩B)

KC(S − (A∆B)) = 1−KC(A−B)−KC(B −A)

= 1− 2−i − 2−j + 2KC(A ∩B)

and

P (A−B) = P (A) − P (A ∩B) < P (B)− P (A ∩B) = P (B −A). (5.1)

201

Let C′ be a prefix code such that:

lC′(y) = lC(y) +































j − i if y ∈ A−B

i− j if y ∈ B −A

0 if y ∈ S − (A∆B).

(5.2)

Note that such a prefix code exists by Lemma 5.1.5, since

∑

y∈S

2−lC′(y)

= 2−(j−i)
∑

y∈A−B

2−lC(y) + 2j−i
∑

y∈B−A

2−lC(y) +
∑

y∈S−(A∆B)

2−lC(y) (5.3)

= 2−(j−i)KC(A−B) + 2j−iKC(B −A) +KC(S − (A∆B))

= 2−j − 2−(j−i)KC(A ∩B) + 2−i − 2j−iKC(A ∩B) + 1− 2−i − 2−j + 2KC(A ∩B) (5.4)

= 1 + (2− 2j−i − 2−(j−i))KC(A ∩B)

≤ 1 (5.5)

where (5.3) follows from (5.2); (5.4) follows from KC(A) = 2−i and KC(B) = 2−j; and (5.5) follows from

j > i. Equality holds in (5.5) if and only if KC(A ∩B) = 0, since 2j−i ≥ 2. Finally,

E[lC′(X)] =
∑

y∈A−B

P (y)lC′(y) +
∑

y∈B−A

P (y)lC′(y) +
∑

y∈S−(A∆B)

P (y)lC′(y)

=
∑

y∈A−B

P (y)(lC(y) + (j − i)) +
∑

y∈B−A

P (y)(lC(y)− (j − i)) +
∑

y∈S−(A∆B)

P (y)lC(y)

= (j − i)(P (A−B)− P (B −A)) + E[lC(X)]

< E[lC(X)], (5.6)

where (5.6) follows from j − i ≥ 1 and P (A − B) < P (B − A) by (5.1). But then C is not optimal, which is a

contradiction. Therefore, C is strongly monotone. �

We note that a proof of (3) =⇒ (2) in Theorem 5.2.4 does not seem to have previously appeared explicitly

in the literature, although it may be hinted at in the proof of [5, Lemma 5.8.1, p. 123] and also in 1995 by Yamamoto

and Itoh [18].

The following corollary immediately follows from Theorem 5.2.4 and describes which codes perform as

202

well as Huffman codes in terms of average length.

Corollary 5.2.5. For a given source, a complete prefix code C is optimal if and only if C is strongly monotone.

5.3 Swapping code tree nodes

Definition 5.3.1. A node swap in a code tree is an exchange of the subtrees rooted at two distinct nodes neither of

which is a descendant of the other. Such a node swap is called a same-row (respectively, same-probability) node

swap if the two nodes are in the same row (respectively, have the same probability). A same-parent node swap is a

same-row node swap of two siblings. Prefix codes C1 and C2 are same-parent swap equivalent (respectively, same-

row swap equivalent, same-probability swap equivalent) if the code tree of C1 can be transformed into the code tree

of C2 by a sequence of same-parent (respectively, same-row, same-probability) node swaps. Additionally, prefix

codes C1 and C2 are same-parent, same-probability swap equivalent (respectively, same-row, same-probability

swap equivalent) if the code tree of C1 can be transformed into the code tree of C2 by a sequence of same-parent

(respectively, same-row) and/or same-probability node swaps.

The relations of same-parent, same-row, and same-probability swap equivalence are all reflexive, symmet-

ric, and transitive, and thus are equivalence relations. Therefore, they each naturally induce equivalence classes of

prefix codes.

For a given source, any same-parent node swap transforms a Huffman tree to another Huffman tree, since

in the Huffman construction process when two nodes are merged the choice of their order in a sibling pair is

arbitrary.

The following two lemmas are straightforward, so we omit their proofs.

Lemma 5.3.2. For a given source, same-parent, same-row, and same-probability node swaps preserve the expected

length of any complete prefix code.

Lemma 5.3.3. For a given source, any same-parent node swap of a Huffman code produces another Huffman code.

Since each merging in a Huffman tree construction has two possible orderings, and there are n−1 internal

nodes in a binary tree with n leaves, there are 2n−1 different Huffman codes in each same-parent swap equivalence

class that contains at least one Huffman code. As shown in Lemma 5.3.3, any Huffman code in such an equivalence

class can be obtained from another Huffman code in the class by performing a sequence of same-parent node swaps.

However, two Huffman codes for a given source need not be related by a sequence of same-parent node swaps (i.e.,

they can be in different same-parent swap equivalence classes).

203

The next lemma shows that same-probability node swaps convert Huffman trees to other Huffman trees

for the same source.

Lemma 5.3.4. For a given source, any same-probability node swap of a Huffman code produces another Huffman

code.

Proof. By Lemma 5.1.8, the Huffman tree H satisfies the sibling property. That is, there exists a sequence σH =

u1, u2, . . . , ui, . . . , uj, . . . of the nodes of H in non-increasing order of their probabilities where siblings appear

adjacent in the list.

Suppose nodes ui and uj are swapped in Huffman tree H to give code tree C, where P (ui) = P (uj).

Swapping nodes modifies the tree H by altering two edges, and retaining all the same nodes and the other edges.

The nodes of the new code tree C are the same as the nodes of H . Modify the sequence of nodes of H by

exchanging ui with uj to obtain the sequence σC = u1, u2, . . . , uj, . . . , ui, . . . , which is a sequence of the nodes

of C.

All of the probabilities of the nodes in C remain the same as they were in H (since the parent nodes of

ui and uj in C have children with the same probabilities as they had in H), so the probabilities of the nodes in the

modified sequence σC are in non-increasing order. Also, ui and uj appear adjacent in σC to their siblings, since

uj and ui, respectively, do so in σH . Thus, the second tree satisfies the sibling property, and so is a Huffman tree

by Lemma 5.1.8. �

Note that if a Huffman tree node x lies at least two rows above node y, then Lemma 5.1.6 implies the

probability of x is at least as great as the probability of the parent of y, which is strictly greater than the probability

of y, so x and y cannot have the same probability. Therefore, in a Huffman tree, any two nodes with the same

probability must either lie in the same row or in adjacent rows. This means that any same-probability node swap

in a Huffman tree consists of swapping two nodes in the same row or adjacent rows. However, sequences of same-

probability node swaps can transform one Huffman tree into another where a node can move farther than one row

away, as the following example illustrates.

Example 5.3.5 (Two Huffman trees with a source symbol two rows apart).

Let H1 and H2 be two different Huffman codes for a source with symbols a,b,c,d,e and probabilities 1
3 , 1

3 , 1
9 , 1

9 , 1
9 ,

respectively. The two trees are shown in Figure 5.6. The tree H1 can be transformed into H2 by performing a same-

probability node swap between leaf a and the parent of leaf c, and subsequently performing a same-probability node

swap between leaf c and leaf e. Note that the source symbol c appears in row 2 of H1 and row 4 of H2. In fact, one

can construct examples where the same source symbol appears in two different Huffman trees in arbitrarily distant

rows.

204

1

2
3

1
3

1
3

1
3

2
9

1
9

1
9

1
9

0

0 1

1

0

0 1

1

a b

d e

c

1

2
3

1
3

2
9

1
9

1
9

1
9

1
3

1
3

0

0

0

0 1

1

1

1

d c

e

b

a

Huffman code H1 Huffman code H2

Figure 5.6. Two Huffman trees for the same source with source symbol c appearing on rows differing in level by

two.

By Lemma 5.3.3 and Lemma 5.3.4 any sequence of same-parent node swaps and same-probability node

swaps converts Huffman codes to Huffman codes for the same source. Thus, the set of all codes obtained by such

transformations on a given Huffman code is an equivalence class containing Huffman codes only. In fact, this

equivalence class contains all Huffman codes for a given source (Theorem 5.3.8).

Same-row node swaps preserve codeword lengths assigned to source symbols. If a same-row node swap

is not a same-parent node swap, then it may convert a Huffman code into a non-Huffman code (e.g., the prefix code

C in Figure 5.3). However, these non-Huffman codes are still optimal (Corollary 5.3.7).

The following lemma shows that length equivalence between two complete prefix codes is the same as

being able to transform one into the other using only same-row node swaps.

Theorem 5.3.6. For a given source, two complete prefix codes are length equivalent if and only if they are same-

row swap equivalent.

Proof. Same-row node swaps preserve the lengths of all codewords, so length equivalence follows immediately.

Conversely, suppose C1 and C2 are code trees for two length equivalent prefix codes. For any complete

code tree for the source, assign labels to its nodes as follows. Label each leaf node by the source symbol of its

associated codeword, and label each parent node as the ordered pair (a, b), where a is the label of its left child and

b is the label of its right child.

205

Let d be the common depth (i.e., longest codeword length) of C1 and C2. All nodes in row d in both C1

and C2 are leaves, and since C1 and C2 are length equivalent, the set of leaf labels in row d is identical for C1 and

C2.

We will show that if the set of node labels in some row m ∈ {1, . . . , d} is identical for C1 and C2, then

there exists a sequence of same-row node swaps that transforms C1 into a code tree C′

1 such that the set of node

labels in row m−1 is identical for C′

1 and C2. Then, since we have already shown the set of node labels in the

lowest row d is identical for C1 and C2, we conclude by induction that there exists a sequence of same-row node

swaps that transforms C1 into a code tree C∗

1 whose root has the same label as the root of C2. The label of the root

node of a code tree specifies the code tree exactly (it’s a parenthetically nested list of node pairs used to form the

tree), so C∗

1 and C2 are the same code tree, and we conclude C1 and C2 are same-row swap equivalent.

Suppose the set of node labels in some row m ∈ {1, . . . , d} is identical for C1 and C2. In other words,

the same node labels appear in row m of each code tree, but the node labels are possibly arranged in a different

order. Then there exists a permutation that maps the arrangement of node labels in row m of C1 to the arrangement

of node labels in row m of C2. By a standard group theory result that any finite permutation can be obtained from

any other permutation by a sequence of transpositions (e.g., see [6, p. 107]), there exists a sequence of same-row

node swaps that achieves this permutation and transforms C1 into a code tree C′

1 whose sequence of node labels

in row m is identical to that of C2. Since sibling nodes are adjacent in this sequence, the set of labels of the parent

nodes in row m−1 is identical in C′

1 and C2.

Since C1 and C2 are length equivalent, the set of leaf node labels in row m−1 is identical in C1 and C2,

and the same is true for C′

1 and C2 since the leaf nodes in row m−1 of C1 were unaffected by the same-row node

swaps performed on the nodes in row m. Therefore, the set of node labels in row m−1 is identical for C′

1 and C2,

and the induction argument is complete. �

The following theorem shows that prefix code optimality is equivalent to being able to transform the code

into some Huffman code using only same-row node swaps.

Corollary 5.3.7. For a given source, a prefix code is optimal if and only if it is same-row swap equivalent to a

Huffman code.

Proof. It follows immediately from Theorem 5.3.6 and Theorem 5.2.4. �

Corollary 5.3.7 guarantees for any optimal prefix code the existence of some Huffman code that is same-

row swap equivalent. However, different optimal prefix codes need not all be same-row swap equivalent to the

same Huffman code. The next theorem indicates, however, that all Huffman codes can be transformed to each

206

other using only same-parent, same-probability node swap operations. Then, by combining Corollary 5.3.7 and

Theorem 5.3.8, we obtain Theorem 5.3.9, which states that all optimal prefix codes are same-row, same-probability

swap equivalent.

Theorem 5.3.8. For a given source, all Huffman codes are same-parent, same-probability swap equivalent to each

other.

Proof. For any complete code tree for the source, assign labels to its nodes as follows. Label each leaf node by

the source symbol of its associated codeword, and label each parent node as the ordered pair (a, b), where a is the

label of its left child and b is the label of its right child. Given a node label u, let P (u) be the probability of the

node labeled u.

Let H1 and H2 be two Huffman code trees for a source. Then in particular, H1 and H2 are complete by

Lemma 5.1.8. Since H1 and H2 are code trees for the same source, the set of leaf node labels is identical in H1

and H2.

Let (a1, b1), (a2, b2), . . . and (a′1, b
′

1), (a
′

2, b
′

2), . . . be the sequences of the parent node labels (i.e., pairs

of merged child labels) in H1 and H2, respectively, listed in the order of each step of the Huffman construction

that produced each code tree.

Let i be the smallest index such that (ai, bi) 6= (a′i, b
′

i). The set of node labels available for merging

during step i is identical in the Huffman construction of H1 and H2, since such a node label is either a leaf node

label common to both H1 and H2, or is a parent node label constructed in a step prior to i. Then in particular,

all the node labels in {ai, bi, a
′

i, b
′

i} are available for merging at step i in the Huffman construction of both H1

and H2. Also, since the Huffman algorithm combines at each step two nodes of smallest probability, we have

{P (ai), P (bi)} = {P (a′i), P (b′i)}.

If a′i 6∈ {ai, bi}, then there exists ui ∈ {ai, bi} such that P (ui) = P (a′i). Since both ui and a′i appear in

H1, we can remove the edges connecting ui and a′i to their parent nodes in H1, and add edges connecting ui and

a′i to the parent nodes of a′i and ui, respectively. Since P (ui) = P (a′i), this operation is a same-probability node

swap, and by Lemma 5.3.4 the resulting code tree is a Huffman code tree.

After performing this same-probability node swap if necessary, we arrive at a Huffman code tree that

combines a′i and vi ∈ {ai, bi} in step i, where P (vi) = P (b′i). If vi 6= b′i, then an analogous argument as above

shows a same-probability node swap can be performed on vi and b′i to produce a new Huffman code tree.

After performing this same-probability node swap if necessary, we arrive at a Huffman code tree that

combines a′i and b′i in step i. If necessary, perform a same-parent node swap on the sibling pair {a′i, b
′

i} such that

their parent label is (a′i, b
′

i), and name this code tree H ′

1, which is a Huffman code tree by Lemma 5.3.3. This

207

same-parent node swap and the same-probability node swaps described previously leave the labels of parent nodes

in H1 obtained in any steps prior to i unaffected, and as a consequence, the Huffman constructions of H ′

1 and H2

produce identical parent node labels at each step up to and including step i.

By induction on i, there exists a sequence of same-parent node swaps and same-probability node swaps

that transforms H1 into a Huffman code tree H∗

1 , such that H∗

1 and H2 produce identical parent node labels at

every step of the Huffman construction. In particular, the root of H∗

1 has the same label as the root of H2. The

label of the root node of a code tree specifies the code tree exactly, so H∗

1 and H2 are the same code tree, and the

lemma is proved. �

Theorem 5.3.9. For a given source, all optimal prefix codes are same-row, same-probability swap equivalent to

each other.

Proof. Let C1 and C2 be optimal prefix codes. By Corollary 5.3.7, C1 is same-row swap equivalent to some

Huffman code H1, and C2 is same-row swap equivalent to some Huffman code H2. Then by Theorem 5.3.8, H1 is

same-parent, same-probability swap equivalent to H2. Therefore, C1 and C2 are same-row, same-probability swap

equivalent to each other. �

Chapter 5 is a reprint of the material as it appears in: S. Congero and K. Zeger, “Characterizations of

minimal expected length codes”, submitted to IEEE Transactions on Information Theory, November 13, 2023.

208

References

[1] J. Abrahams, “Code and parse trees for lossless source encoding”, Proceedings of the Compression and

Complexity of Sequences, Salerno, Italy, pp. 145 – 171, June 1997.

[2] L. Cao, “Self-synchronization strings in Huffman equivalent codes”, IEEE Information Theory Workshop,

Chengdu, China, pp. 347 – 350, October 2006.

[3] L. Cao, L. Yao, C. W. Chen, “MAP decoding of variable length codes with self-synchronization strings”,

IEEE Transactions on Signal Processing, vol. 55, no. 8, pp. 4325 – 4330, September 2007.

[4] S. Congero and K. Zeger, “Competitive advantage of Huffman and Shannon-Fano codes”, IEEE Transactions

on Information Theory (submitted November 13, 2023). Also available on: arXiv:2311.07009 [cs.IT].

[5] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd edition, New Jersey, Wiley-Interscience,

2006.

[6] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd edition, John Wiley & Sons, Inc., 2004.

[7] A. E. Escott and S. Perkins, “Binary Huffman equivalent codes with a short synchronizing codeword”, IEEE

Transactions on Information Theory, vol. 44, no. 1, pp. 346 – 351, January 1998.

[8] T. Ferguson and J. Rabinowitz, “Self-synchronizing Huffman codes”, IEEE Transactions on Information

Theory, vol. 30, no. 4, pp. 687 –6 93, July 1984.

[9] R. G. Gallager, “Variations on a theme by Huffman”, IEEE Transactions on Information Theory, vol. 24, no.

6, pp. 668 – 8674, November 1978.

[10] M. Higgs, “The construction of variable length codes with good synchronisation properties”, Doctoral thesis,

University of South Wales Prifysgol De Cymru, February 26, 2007.

[11] M. B. J. Higgs, S. Perkins, and D. H. Smith, “The construction of variable length codes with good syn-

chronization properties”, IEEE Transactions on Information Theory, vol. 55, no. 4, pp. 1696 – 1700, April

2009.

[12] Y.-M. Huang and S.-C. Wu, “Shortest synchronizing codewords of a binary Huffman equivalent code”, In-

ternational Conference on Information Technology: Coding and Computing, Las Vegas, NV, pp. 226 – 231,

April 2003.

[13] D. A. Huffman, “A method for the construction of minimum-redundancy codes”, Proceedings of the IRE, vol.

40, no. 9, pp. 1098 – 1101, September 1952.

[14] Y.-S. Lee, W.-S. Chang, H.-H. Ho, C.-Y. Lee, “Construction of error resilient synchronization codeword for

variable-length code in image transmission”, International Conference on Image Processing, vol. 3, pp. 360

– 363, September 2000.

[15] T. Linder, V. Tarokh, and K. Zeger, “Existence of optimal codes for infinite source alphabets”, IEEE Transac-

tions on Information Theory, vol. 43, no. 6, pp. 2026 – 2028, November 1997.

[16] G. Longo and G. Galasso, “An application of informational divergence to Huffman codes”, IEEE Transac-

tions on Information Theory, vol. 28, no. 1, pp. 36 – 43, January 1982,

[17] D. Wang, X. Zhao, Q. Sun, “Novel fault-tolerant decompression method of corrupted Huffman files”, Wireless

Personal Communications, vol. 102, no. 4, pp. 2555 – 2574, October 2018.

[18] H. Yamamoto and T. Itoh, “Competitive optimality of source codes”, IEEE Transactions on Information

Theory, vol. 41, no. 6, pp. 2015 – 2019, November 1995.

209

[19] J. Zhou, O. C. Au, “Error recovery of variable length code over BSC with arbitrary crossover probability”,

IEEE Transactions on Communications, vol. 58, no. 6, pp. 1654 – 1666, June 2010.

[20] G. Zhou and Z. Zhang, “synchronization recovery of variable-length codes”, IEEE Transactions on Informa-

tion Theory, vol. 48, no. 1, pp. 219 – 227, February 2002.

210

Chapter 6

Competitive Advantage of Huffman and Shannon-

Fano Codes

Abstract

For any finite discrete source, the competitive advantage of prefix code C1 over prefix code C2 is the

probability C1 produces a shorter codeword than C2, minus the probability C2 produces a shorter codeword than

C1. For any source, a prefix code is competitively optimal if it has a nonnegative competitive advantage over all

other prefix codes. In 1991, Cover proved that Huffman codes are competitively optimal for all dyadic sources.

We prove the following asymptotic converse: As the source size grows, the probability a Huffman code for a

randomly chosen non-dyadic source is competitively optimal converges to zero. We also prove: (i) For any source,

competitively optimal codes cannot exist unless a Huffman code is competitively optimal; (ii) For any non-dyadic

source, a Huffman code has a positive competitive advantage over a Shannon-Fano code; (iii) For any source,

the competitive advantage of any prefix code over a Huffman code is strictly less than 1
3 ; (iv) For each integer

n > 3, there exists a source of size n and some prefix code whose competitive advantage over a Huffman code

is arbitrarily close to 1
3 ; and (v) For each positive integer n, there exists a source of size n and some prefix code

whose competitive advantage over a Shannon-Fano code becomes arbitrarily close to 1 as n −→∞.

211

6.1 Introduction

In a probabilistic game where multiple players are each rated by a numerical score, one way to designate

a particular player A as being superior among their fellow competitors is by “expected score optimality”, where

no other player B can obtain a better score on average than the score of A. A second way, called “competitive

optimality”, occurs if for every other player B, the probability of A scoring better than B is at least the probability

of B scoring better than A. That is, A has a nonnegative “competitive advantage”

P (A scores better than B)− P (B scores better than A)

over all other players B (where tie scores are ignored). In this paper we obtain results about competitive advantage

and optimality when lossless source coding is viewed as a game, source codes are the players, the numerical score

is the length of the codeword of a randomly chosen source symbol, and a codeword length is deemed to be better

than another if its length is shorter. We first formalize some terminology and definitions and then explain the

history of the problem and our results.

An alphabet is a finite set S, and a source of size n with alphabet S is a random variable X such that

|S| = n and P (X = y) = P (y) for all y ∈ S. We denote the probability of any subset B ⊆ S by P (B) =
∑

y∈B

P (y). A source is said to be dyadic if P (y) is a nonnegative integer power of 1/2 for all y ∈ S.

A code for a given source X is a mapping C : S −→ {0, 1}∗ and the binary strings C(1), . . . , C(n) are

called codewords of C. A prefix code is a code where no codeword is a prefix of any other codeword.

A code tree for a prefix code C is a rooted binary tree whose leaves correspond to the codewords of C;

specifically, the codeword associated with each leaf is the binary word denoting the path from the root to the leaf.

The length of a code tree node is its path length from the root. The rth row of a code tree is the set of nodes whose

length is r, and we will view a code tree’s root as being on the top of the tree with the tree growing downward.

For example, row r of a code tree is “higher” in the tree than row r + 1. If x and y are nodes in a code tree, then

x is a descendent of y if there is a downward path of length zero or more from y to x. Two nodes in a tree are

called siblings if they have the same parent. In a code tree, for any collection A of nodes having no common leaf

descendents, define P (A) to be the probability of the set of all leaf descendents of A in the tree.

A (binary) Huffman tree is a code tree constructed from a source by recursively combining two smallest-

probability nodes until only one node with probability 1 remains. The initial source probabilities correspond to leaf

nodes in the tree. A Huffman code for a given source is a mapping of source symbols to binary words by assigning

the source symbol corresponding to each leaf in the Huffman tree to the binary word describing the path from the

212

root to that leaf. A Shannon-Fano code is a prefix code, such that for each y ∈ S the codeword associated with the

source symbol y has length ⌈log2
1

P (y)⌉.

Given a source with alphabet S and a prefix code C, for each y ∈ S the length of the binary codeword

C(y) is denoted lC(y). Two codes C1 and C2 are length equivalent if lC1
(y) = lC2

(y) for every source symbol

y ∈ S. The average length of a code C for a source with alphabet S is
∑

y∈S

lC(y)P (y). A prefix code is expected

length optimal for a given source if no other prefix code achieves a smaller average codeword length for the source.

A code is complete if every non-root node in its code tree has a sibling, or, equivalently, if every node

has either zero or two children. A code C for a given source is monotone if for any two nodes in the code tree of

C, we have P (u) ≥ P (v) whenever lC(u) < lC(v). Expected length optimal codes are always monotone (see

Lemma 6.2.3).

Huffman codes are known to be expected length optimal, monotone, and complete for every source (e.g.,

see [7]), whereas Shannon-Fano codes are monotone, but need not be expected length optimal nor complete.

Shannon-Fano codes are known to achieve the same average lengths as Huffman codes whenever the source is

dyadic. For non-dyadic sources, Shannon-Fano codes always have larger average lengths than Huffman codes, but

nevertheless the average length of the Shannon-Fano code (and thereby also the Huffman code) is less than one bit

larger than the source entropy [7].

The Kraft sum of a sequence of nonnegative integers l1, . . . , lk is 2−l1 + · · · + 2−lk . We extend the

definition of “Kraft sum” to also apply to sets of source symbols or sets of nodes in a code tree as follows. The

Kraft sum K(A) of any collection A of leaves is the Kraft sum of the corresponding sequence of codeword lengths.

The Kraft sum K(A) of any collection A of nodes having no common leaf descendents is the Kraft sum of the set

of all leaf descendents of A in the tree. The Kraft sum of a collection of source symbols is the Kraft sum of the

corresponding leaves in a code tree. The well-known Kraft inequality and its converse are stated next.

Lemma 6.1.1 (Kraft, e.g., [7, Theorem 5.2.1]). The codeword lengths l1, . . . , ln of any prefix code satisfy 2−l1 +

· · ·+2−ln ≤ 1. Conversely, if a sequence l1, . . . , ln of positive integers satisfies 2−l1 + · · ·+2−ln ≤ 1, then there

exists a binary prefix code whose codeword lengths are l1, . . . , ln.

The following lemma1 expresses an equality condition for Lemma 6.1.1.

Lemma 6.1.2. A prefix code is complete if and only if its Kraft sum equals 1.

We have defined sources and prefix codes to be finite throughout this paper, but we note that a complete

infinite prefix code need not have Kraft sum 1 (e.g., see [12]).

1The proof follows easily from the proof of Theorem 5.1.1 in the Cover-Thomas textbook [7]. A more general result can be found in

Theorem 2.5.19 of the Berstel-Perrin-Reutenauer textbook [2].

213

For a subset A of a source’s alphabet and for a Huffman code H for the source, we say the Huffman-Kraft

sum of A is

K(A) =
∑

x∈A

2−lH(x),

where we reuse the “K” notation. Note that the Huffman-Kraft sum of A is the (usual) Kraft sum of the Huffman

codeword lengths of the symbols in A.

As previously mentioned, one measure of the success of a source code that generally differs from ex-

pected length optimality is called “competitive optimality” and has been considered in the form of one-on-one

competitions between pairs of prefix codes to determine in each competition which code has the higher probability

of producing a shorter codeword for a given source.

For a given source with alphabet S, and for any codes C1 and C2, define

W = {i ∈ S : lC1
(i) < lC2

(i)}

L = {i ∈ S : lC1
(i) > lC2

(i)}

T = {i ∈ S : lC1
(i) = lC2

(i)}. (6.1)

The sets W , L, and T contain the source values of the wins, losses, and ties, respectively, for code C1 in a one-on-

one competition against code C2 to see which produces shorter length codewords for the given source. Even though

the notation for W , L, and T does not explicitly reference C1 and C2, the codes involved will be clear from context.

Code C1 is said to competitively dominate code C2 if P (W) ≥ P (L), and strictly competitively dominate code C2

if P (W) > P (L). A prefix code is competitively optimal for a source of size n if it competitively dominates all

other prefix codes for the same source. The notion of competitive optimality dates back at least to 1980 in the field

of financial investment [1].

In 1991, Cover proved that Shannon-Fano codes are competitively optimal for dyadic sources. Since

Huffman and Shannon-Fano codes are length equivalent for dyadic sources (via [7, Theorem 5.3.1]), Huffman

codes are also competitively optimal in this case, as reworded below.

Theorem 6.1.3 (Cover [6, Theorem 2]). Huffman codes are competitively optimal for all dyadic sources.

Cover’s proof also showed that for all dyadic sources the Huffman code strictly competitively dominates

all other (i.e., not length equivalent) prefix codes. Additionally, he showed that for all non-dyadic sources Shannon-

Fano codes competitively dominate all other prefix codes if an extra one-bit penalty is assessed to the non-Shannon-

Fano code during each symbol encoding. This comparison favorably treats ties as if they were wins for the Shannon-

214

Fano code and treats one-bit losses for the Shannon-Fano code as if they were ties, thus giving the Shannon-Fano

code a one-bit handicap in betting parlance. As dyadic sources are rare among all sources, it is natural to ask

whether Cover’s (non-handicapped) competitive optimality result extends in some way to non-dyadic sources.

In 1992, Feder [9] showed that for all non-dyadic sources Huffman codes competitively dominate all other

prefix codes if an extra one-bit penalty is assessed to the non-Huffman code during each symbol encoding. This

result is analogous to (but uses a different proof technique from) Cover’s result for Shannon-Fano codes.

In 1995, Yamamoto and Itoh [16] illustrated a non-dyadic source whose Huffman code was not compet-

itively optimal. They presented a prefix code for the source which strictly competitively dominates the Huffman

code, and whose win and loss probabilities are P (W) = 0.5 and P (L) = 0.4, respectively. Their example consists

of a source of size 4 and distinct prefix codes C1, C2, and C3, such that Ci competitively dominates Cj when-

ever (i, j) ∈ {(1, 2), (2, 3), (3, 1)}. This example demonstrates that the relation of competitive dominance is not

transitive. One of these codes was the Huffman code, so the Huffman code is not competitively optimal, and no

competitively optimal code exists in this case. They also provided a sufficient condition for a source not to have a

competitively optimal Huffman code.

Their results, however, do not provide an indication of how many or few source codes would have com-

petitively optimal Huffman codes.

In 2001, Yamamoto and Yokoo [17] studied competitive optimality for almost instantaneous variable-to-

fixed length codes.

In 2021, Bhatnagar [3] studied the use of competitive optimality for analyzing error probabilities in artifi-

cial intelligence systems.

The Cover-Thomas textbook [7, p. 131] gives the following gambling interpretation of competitive opti-

mality and acknowledges the difficulty of mathematically analyzing Huffman codes:

“To formalize the question of competitive optimality, consider the following two-person

zero-sum game: Two people are given a probability distribution and are asked to design an

instantaneous code for the distribution. Then a source symbol is drawn from this distribution,

and the payoff to player A is 1 or −1, depending on whether the codeword of player A is shorter

or longer than the codeword of player B. The payoff is 0 for ties.

Dealing with Huffman code lengths is difficult, since there is no explicit expression for

the codeword lengths.”

To determine whether a code is competitively optimal, one must determine if the difference between the

probabilities of winning and losing a competition for shortest codeword length is nonnegative for every possible

opponent code. When a code C1 is determined not to be competitively optimal, at least one other code C2 has a

larger probability of winning against C1 than C1 has against C2. It has not previously been known how large or

small the difference between those probabilities can be when, say, C1 is a Huffman or Shannon-Fano code. We

215

define terminology for that probability difference and then proceed to derive an upper bound for it, and describe

the tightness of the bound.

For a given source, the competitive advantage of code C1 over code C2 is the quantity

∆ = P (W)− P (L).

Thus, |∆| ≤ 1, and C1 competitively dominates C2 if and only if ∆ ≥ 0. Whereas competitive optimality

indicates whether one code always dominates other codes, competitive advantage quantifies by how much one

code dominates over another code. If the codes C1 and C2 are complete, then their Kraft sums each equal 1

by Lemma 6.1.2; if additionally C1 and C2 are monotone and differ in codeword lengths for at least one source

symbol, then it is impossible for C1 to have codewords that are shorter than or equal in length to those of C2 for

every source symbol, so ∆ 6= 1.

The example in [16] gives a non-competitively-optimal Huffman code with a competitive advantage of

0.5 − 0.4 = 0.1 over a Huffman code. Under the game-playing description of source coding in [7] quoted above,

the competitive advantage of Player A’s code over Player B’s code is equal to the total expected earnings of Player

A.

Example 6.1.4 (Golf analogy). One round of professional golf typically consists of a collection of players compet-

ing for 18 holes. Each player’s score for a hole is the number of strokes it takes that player to get the ball in the hole.

A player’s total score for the round is the sum of the player’s scores for all 18 holes. The player with the lowest

total score for the 18 holes is the winner of that round. This scoring method is sometimes called “stroke play”

or “medal play”. Another form of golf scoring is known as “match play”, where (perhaps two) players compete

against each other, and each hole results in either a “win”, a “loss”, or a “tie” depending on which player had the

lowest number of strokes for that hole. A player’s total score for the round is then the total number of wins that

player achieved. A player wins the round if the player has more wins than the other player. Stroke play and match

play golf scoring are analogous to average codeword length and competitive advantage, respectively, in lossless

coding, if one associates the golf players with prefix codes, golf holes with uniformly drawn source symbols, and

player scores for a hole with codeword lengths produced by a prefix code.

The following questions have not previously been answered in the literature: (i) How likely or unlikely is

it for a Huffman code to be competitively optimal, allowing for non-dyadic sources?; (ii) If a Huffman code is not

competitively optimal for a particular source, how large can the competitive advantage ∆ of another code be over

the Huffman code?; (iii) Do Huffman codes always (perhaps, strictly) competitively dominate Shannon-Fano codes

for non-dyadic sources, and how large can the competitive advantage ∆ of another code be over the Shannon-Fano

216

code?

One approach we exploit to answer the first question is to choose a source “at random” and seek the

probability that a resulting Huffman code is competitively optimal. For the second and third questions, one can

seek the best possible upper bound on the competitive advantage over a Huffman code or over a Shannon-Fano

code.

In this paper we address these questions by proving the following main results: (1) Competitively optimal

codes can exist for a given source only if some Huffman code is competitively optimal for that source (Theo-

rem 6.2.7); (2) The probability that a Huffman code for a rather generally chosen random source is competitively

optimal converges to zero as the source size grows (Theorem 6.3.5), and therefore the probability that competitively

optimal codes exist for such sources also converges to zero (Corollary 6.3.7); (3) For all non-dyadic sources, Huff-

man codes strictly competitively dominate Shannon-Fano codes (Theorem 6.5.1); (4) For all non-dyadic sources,

the competitive advantage ∆ of any code over a Huffman code is strictly less than 1
3 (Theorem 6.6.6); (5) For

each integer n > 3, there exists a non-dyadic source of size n and some prefix code whose competitive advantage

∆ over a Huffman code is arbitrarily close to 1
3 (Theorem 6.6.7); (6) For each positive integer n, there exists a

non-dyadic source of size n and a prefix code for the source such that the competitive advantage ∆ of the code

over a Shannon-Fano code for the source becomes arbitrarily close to 1 as n −→ ∞, and the average length of

the code becomes arbitrarily close to one bit less than the average length of the Shannon-Fano code as n −→ ∞

(Theorem 6.7.1).

We also analyze “small” sources and show that for all sources of size at most 3, Huffman codes are

competitively optimal (Theorem 6.8.1), and sources of size 4 for which Huffman codes are competitively optimal

can be characterized in terms of a certain convex polyhedral condition (Theorem 6.8.2).

Finally we conducted computer simulations that drew a million random sources from a flat Dirichlet

distribution for each source size up to 34 source symbols and determined whether the resulting Huffman code

satisfies a sufficient condition for competitively optimality. Our numerical observations are given in Section 6.9 and

indicate that the convergence proven in Theorem 6.3.5 is very rapid for relatively small source sizes (Figure 6.2).

6.2 Existence of competitively optimal codes

In this section, we use a result of Yamamoto and Itoh to show that competitively optimal codes can exist

for a given source only if some Huffman code is competitively optimal for that source (Theorem 6.2.7). This result

is later used in Section 6.3 to show that competitively optimal codes usually do not exist for large randomly chosen

sources (Corollary 6.3.7).

If a source is dyadic, then there can be only one Huffman code (up to length equivalence) and this code

217

is length equivalent to a Shannon-Fano code. However, for non-dyadic sources, somewhat unusual circumstances

can arise. In what follows, Example 6.2.1 illustrates a source where one Huffman code is competitively optimal

but another Huffman code for the same source is not, and Example 6.2.2 illustrates a source with two Huffman

codes and a non-Huffman code that form a cycle of strict competitive domination, as well as another non-Huffman

code that is expected length optimal.

Example 6.2.1 (Two Huffman codes).

A source with symbols a, b, c, d and corresponding probabilities 1
3 ,

1
3 ,

1
6 ,

1
6 has a Huffman code H1 with code-

word lengths 2, 2, 2, 2, and another Huffman code H2 with lengths 1, 2, 3, 3. Each Huffman code has competitive

advantage zero over the other. However, one can verify that H1 is competitively optimal, whereas H2 is not.

Example 6.2.2 (Two Huffman codes and two other codes).

A source with symbols a, b, c, d, e, f and corresponding probabilities 1
3 ,

1
3 ,

1
9 ,

1
9 ,

1
18 ,

1
18 has a Huffman code H1

with codeword lengths 1, 2, 3, 4, 5, 5 and another Huffman code H2 with lengths 2, 2, 3, 3, 3, 3 (see Figure 6.1),

each with average codeword length equal to 7
3 . Two other trees for codes C1 and C2 are shown, which are

relabeled versions of the trees for H2 and H1, respectively. H1 strictly competitively dominates H2 since its

competitive advantage is P (a)−P (d, e, f) = 1
9 , whileC1 strictly competitively dominatesH1 since its competitive

advantage is P (b, c) − P (a) = 1
9 , and H2 strictly competitively dominates C1 since its competitive advantage is

P (a, d, e, f) − P (b, c) = 1
9 . That is, H1, H2, and C1 form a cycle, which illustrates the non-transitivity of strict

competitive dominance. Also, C2 is an expected length optimal code, but it is non-Huffman since nodes e and f

were not merged.

As observed in the example, although Huffman codes are always expected length optimal for any given

source, expected length optimal prefix codes need not be Huffman codes. But it turns out that any expected length

optimal code is length equivalent to some Huffman code for the source.

Lemma 6.2.3 (e.g., [10, p. 670]). For any source, if a prefix code is expected length optimal, then it is monotone.

The following lemma may be hinted at in the proof of [7, Lemma 5.8.1, p. 123], and is also a special case

of Lemma 6.4.3 in Section 6.4.

Lemma 6.2.4 ([5]). For any source, every expected length optimal prefix code is length equivalent to some

Huffman code.

Lemma 6.2.5 (Yamamoto and Itoh [16, Theorem 3]). For any source, every competitively optimal code is expected

length optimal.

218

H1 H2 C1 C2

1

1
3

2
3

1
3

1
3

1
9

2
9

1
9

1
9

1
18

1
18

0 1

0 1

0 1

0 1

0 1

a

b

c

d

e f

1

2
3

1
3

1
3

1
3

2
9

1
9

1
9

1
9

1
18

1
18

0

0 1

1

0

0 1

1

0 1

a b

c d e f

1

1
3

2
3

1
9

5
9

1
3

4
9

1
9

7
18

1
18

1
18

0 1

0 1

0 1

0 1

0 1

b

c

a

d

e f

1

2
3

1
3

1
3

1
3

1
6

1
9

1
18

1
6

1
9

1
18

0

0 1

1

0

0 1

1

0 1

a b

c e d f

Figure 6.1. Code trees of four prefix codes for a source of size 6.

The following corollary follows immediately from Lemma 6.2.5 and Lemma 6.4.3 (in Section 6.4).

Corollary 6.2.6. For any source, every competitively optimal code is length equivalent to some Huffman code.

Note that the premises in Lemma 6.2.5 and Corollary 6.2.6 might be vacuous if no competitively optimal

code exists for a particular source, in which case no conclusion can be drawn.

The following theorem shows that competitively optimal codes for a given source can exist only if some

Huffman code is competitively optimal for the source.

Theorem 6.2.7. For any source, if no Huffman code is competitively optimal, then no prefix code is competitively

optimal.

Proof. To prove the contrapositive, suppose some prefix code C is competitively optimal for a given source. Corol-

lary 6.2.6 implies that some Huffman code maps source symbols to codewords of the same length as the codewords

assigned by C. Thus, for any prefix code C′, the competitive advantage of C over C′ is nonnegative and is equal

to the competitive advantage of the Huffman code over C′, so the Huffman code also dominates C′. Thus, the

Huffman code is competitively optimal. �

6.3 Asymptotic converse to Cover’s theorem on competitive optimality

of Huffman codes

In this section, our goal is to analyze how likely it is that a source will have a competitively optimal

Huffman code (and more generally any competitively optimal code). To address this question, we need to make

219

precise what “how likely” means in this context. There are many possible ways to choose a source “at random”.

By some means we wish to randomly obtain numbers p1, . . . , pn ∈ (0, 1) whose sum equals 1, interpret them as

probabilities, and then determine whether a Huffman code constructed from these probabilities is competitively

optimal.

One commonly used way to randomly obtain such probabilities is to sample from a “flat Dirichlet dis-

tribution”. A flat Dirichlet distribution of size n has a uniform probability density on the (n − 1)-dimensional

simplex {(x1, . . . , xn) ∈ [0, 1]n : x1 + · · ·+ xn = 1} embedded in R
n (e.g., see [14]). For example, when n = 3,

the point (p1, p2, p3) is chosen uniformly from the (2-dimensional) triangle embedded in R
3, whose vertices are

(0, 0, 1), (0, 1, 0), and (1, 0, 0). Choosing a random source from a flat Dirichlet distribution tends to be a natural

approach since it treats all coordinates equally and uniformly. This method of random source selection was used,

for example, to analyze average Huffman code rate redundancy in [11] and [15].

Another way to randomly create a source of size n is to choose n positive i.i.d. samples X1, . . . , Xn

according to some probability distribution on the positive reals, form their sum Sn = X1 + · · · + Xn, and then

construct the normalized sequence X1

Sn
, . . . , Xn

Sn
. This technique specializes to a flat Dirichlet distribution when

X1, . . . , Xn are i.i.d. exponentials with mean one, as given in the following lemma.

Lemma 6.3.1 (e.g., [8, Chapter 11, Theorem 4.1]). If X1, . . . , Xn are i.i.d. exponential random variables with

mean one and Sn = X1+ · · ·+Xn, then the joint distribution of X1

Sn
, . . . , Xn

Sn
is the same as that of a flat Dirichlet

distribution of size n.

Using this more general method for randomly generating a source of size n, we prove in this section that

if the density of the i.i.d. sequence is positive on at least some interval (0, ǫ) with ǫ > 0, then the probability a

Huffman code is competitively optimal shrinks to 0 as n grows (Theorem 6.3.5). In other words, competitively

optimal codes become rare for large sources. This result can be viewed as an asymptotic converse to Cover’s

theorem for dyadic sources (i.e., Theorem 6.1.3). It also indicates that Cover’s result cannot be extended to many

large sources beyond the dyadic ones.

We also examine an important special case of Theorem 6.3.5 when the random variables X1, . . . , Xn are

i.i.d. exponential.

Our Corollary 6.3.6 notes that the result of Theorem 6.3.5 is true when choosing a source at random from

a flat Dirichlet distribution, which we use in Section 6.9 to gather experimental evidence of the convergence rate

as n −→∞.

The next lemma shows that if one set of leaves of a Huffman code has a smaller Kraft sum than that of a

second disjoint set of leaves, then one can find a prefix code that competitively wins against the Huffman code on

220

the set of smaller Kraft sum, loses on the set of larger Kraft sum, and ties on all other leaves.

Lemma 6.3.2. For any source, if H is a Huffman code, and U and V are disjoint subsets of the source’s alphabet

S whose Huffman-Kraft sums satisfy K(U) < K(V), then there exists a prefix code C such that

U = {x ∈ S : lC(x) < lH(x)}

V = {x ∈ S : lC(x) > lH(x)}.

Proof. Let k be an integer such that

K(U) ≤ (1− 2−k)K(V) (6.2)

and for each x ∈ S, define the following integer:

l(x) =





lH(x)− 1 if x ∈ U

lH(x) + k if x ∈ V

lH(x) if x 6∈ U ∪ V.

Then

∑

x∈S

2−l(x) =
∑

x∈U

2 · 2−lH(x) +
∑

x∈V

2−k · 2−lH(x) +
∑

x 6∈U∪V

2−lH(x)

= 2K(U) + 2−kK(V) + (1−K(U)−K(V)) (6.3)

= 1 +K(U)− (1− 2−k)K(V)

≤ 1, (6.4)

where (6.3) follows since the Kraft sum of all the Huffman codewords is 1, by Lemma 6.1.2; and (6.4) follows

from (6.2). Therefore, the Kraft inequality (Lemma 6.1.1) implies that there exists a prefix codeC whose codeword

lengths are the values of l(x) for all x ∈ S. That is, lC(x) = lH(x) − 1 for all x ∈ U ; lC(x) = lH(x) + k for all

221

x ∈ V ; and lC(x) = lH(x) for all x 6∈ U ∪ V , and therefore

U = {x ∈ S : lC(x) < lH(x)}

V = {x ∈ S : lC(x) > lH(x)}.

�

Lemma 6.3.3. For any source and any Huffman code for the source, if U and V are disjoint subsets of the source

alphabet whose Huffman-Kraft sums satisfy K(U) < K(V) and whose probabilities satisfy P (U) > P (V), then

the Huffman code is not competitively optimal for the source.

Proof. Let S denote the source alphabet and let H be a Huffman code. By Lemma 6.3.2, since K(U) < K(V),

there exists a prefix code C such that

U = {x ∈ S : lC(x) < lH(x)}

V = {x ∈ S : lC(x) > lH(x)}.

The competitive advantage of C over the Huffman code H is thus P (U)− P (V) > 0, so the Huffman code is not

competitively optimal. �

The following lemma is essentially given in [16, equation (4)], but we give an alternate short proof here

for completeness.

Lemma 6.3.4. For any source, if y and y′ are sibling nodes in a Huffman tree, z is a leaf node descendant of y,

and P (z) < P (y)− P (y′), then the Huffman code is not competitively optimal for the source.

Proof. We may assume P (y) > P (y′) since P (z) > 0. Let U and V be the sets of leaf node descendants of y and

y′, respectively. Let U ′ = U −{z}. Then, K(U ′) < K(U) = K(V) (since siblings have the same Kraft sum) and

P (U ′) = P (U) − P (z) > P (U) − (P (U) − P (V)) = P (V). Then by Lemma 6.3.3, the Huffman code is not

competitively optimal. �

A hypothetical converse to Theorem 6.1.3 would say that Huffman codes for non-dyadic sources are never

competitively optimal. This is not true (e.g., Theorem 6.8.1), but we are able to demonstrate that such a converse

becomes probabilistically true as the source size grows.

Our next theorem, one of our main results, demonstrates an asymptotic converse to Theorem 6.1.3, by

showing that competitively optimal Huffman codes become rare for randomly chosen sources as their size grows.

222

Theorem 6.3.5. Let ǫ > 0 and let X1, X2, . . . be an i.i.d. sequence of positive random variables with a density

which is positive on at least (0, ǫ), and let Sn = X1 + · · · + Xn. Then the probability that a Huffman code for

X1

Sn
, . . . , Xn

Sn
is competitively optimal converges to zero as n −→∞.

Proof. Let F denote the distribution function for each Xi. Let δ = ǫ/24. For each k ∈ {1, . . . , 24}, define the

interval

Ik = (ǫ − kδ, ǫ− (k − 1)δ).

The intervals I1, . . . , I24 are disjoint and their union lies in (0, ǫ).

Denote the indicator function for any E ⊆ R by 1E(x) = 1 if x ∈ E and 1E(x) = 0 otherwise. For each

k ∈ {1, . . . , 24}, since the binary random variables 1Ik(Xi) are i.i.d. for all i, we have

|{i ∈ {1, . . . , n} : Xi ∈ Ik}|

n
=

1

n

n∑

i=1

1Ik(Xi)

a.s.
−−→ E[1Ik(X1)] (6.5)

= P (X1 ∈ Ik)

= F (ǫ− (k − 1)δ)− F (ǫ− kδ)

> 0, (6.6)

where (6.5) follows from the strong law of large numbers (e.g., [4, Theorem 6.1]); and (6.6) follows since F is

increasing on (0, ǫ). Let A be the event that all 24 of the convergences in (6.5) occur. The intersection of finitely

many events with probability 1 has probability 1, so P (A) = 1.

We will show that for any outcome ω ∈ A, there exists N ≥ 1 such that for all n ≥ N , any Huffman

code for
X1(ω)
Sn(ω) , . . . ,

Xn(ω)
Sn(ω) is not competitively optimal. Suppose this has been done, and for each n ≥ 1 let Bn be

the event containing the outcomes ω such that a Huffman code for
X1(ω)
Sn(ω) , . . . ,

Xn(ω)
Sn(ω) is competitively optimal. If

ω ∈ A, then ω appears in only finitely many Bn, so ω 6∈ lim sup
n→∞

Bn =
⋂

n≥1

⋃

j≥n

Bj . Therefore lim sup
n→∞

Bn ⊆ Ac,

and so the theorem is proved using

lim sup
n→∞

P (Bn) ≤ P (lim sup
n→∞

Bn) ≤ P (Ac) = 0

where the first inequality follows from Fatou’s Lemma (e.g., [4, Theorem 4.1]).

We will now prove what we promised. Let ω ∈ A, and consider the sequence X1(ω), X2(ω), Let

223

H be a Huffman tree constructed from the n probabilities
X1(ω)
Sn(ω) , . . . ,

Xn(ω)
Sn(ω) . Since ω ∈ A, the convergence in

(6.5) holds for all k ∈ {1, . . . , 24}, so for each such k there exists Nk ≥ 1 such that for all n ≥ Nk we have

|{i ∈ {1, . . . , n} : Xi(ω) ∈ Ik}| ≥ 1.

Let n ≥ max(N1, . . . , N24). Then for each k ∈ {1, . . . , 24}, let Yk equal Xi(ω)/Sn(ω) for some

Xi(ω) ∈ Ik. That is, Y1 > Y2 > · · · > Y24 are probabilities corresponding to 24 of the n leaves in the Huffman

tree H . Note that for all k, we have YkSn(ω) ∈ Ik, so

ǫ − kδ

Sn(ω)
< Yk <

ǫ− (k − 1)δ

Sn(ω)
. (6.7)

The sibling in H of the leaf for Y14 has probability at most Y13, for otherwise the leaf for Y14 and its

sibling would not have been nodes with two of the smallest available probabilities for merging as required by the

Huffman construction. Then the probability Ŷ14 of the parent of the leaf for Y14 satisfies (using (6.7))

Ŷ14 ≤ Y14 + Y13 <
ǫ− 13δ

Sn(ω)
+

ǫ − 12δ

Sn(ω)
=

ǫ− δ

Sn(ω)
< Y1.

Then since the Huffman code H is monotone by Lemma 6.2.3, the leaf for Y1 appears on a row in H that is at least

as high as the row on which the parent of Y14 appears, so the leaf for Y1 appears on a row strictly higher than the

row on which the leaf for Y14 appears. Since Y1 > Y2 > · · · > Y14, monotonicity of Huffman codes shows the

row numbers on which the leaves for these 14 probabilities appear are non-decreasing, so the conclusion from the

previous sentence implies the leaf for some probability in the sequence Y1, Y2, . . . , Y14 appears on a row strictly

higher in H than the leaf for the next probability in the sequence. Specifically, there exists m ∈ {1, . . . , 13} such

that the leaf for Ym appears on a row r strictly higher than the row r′ on which the leaf for Ym+1 appears, i.e.,

r < r′.

Similarly, the sibling for the leaf for Y21 has probability at most Y20, so the probability Ŷ21 of the parent

of the leaf for Y21 satisfies (using (6.7))

Ŷ21 ≤ Y21 + Y20 <
ǫ− 20δ

Sn(ω)
+

ǫ− 19δ

Sn(ω)
=

ǫ− 15δ

Sn(ω)
< Y14 ≤ Ym+1. (6.8)

Then since Huffman codes are monotone, the leaf for Ym+1 appears on a row that is at least as high as the row on

which the parent of Y21 appears, so the row r′ on which the leaf for Ym+1 appears is strictly higher than the row

r′′ on which the leaf for Y21 appears, i.e., r′ < r′′.

Let U be the set consisting of the leaves for Ym+1 and Y21, and let V be the set consisting of the leaf for

224

Ym. Then

K(U) = 2−r′ + 2−r′′ < 2−(r′−1) ≤ 2−r = K(V),

and again using (6.7),

P (V)− P (U) = Ym − (Ym+1 + Y21) <
ǫ− (m− 1)δ

Sn(ω)
−

(
ǫ− (m+ 1)δ

Sn(ω)
+

ǫ− 21δ

Sn(ω)

)
=
−δ

Sn(ω)
< 0.

Then Lemma 6.3.3 implies the Huffman code for
X1(ω)
Sn(ω) , . . . ,

Xn(ω)
Sn(ω) is not competitively optimal, which is what

we wanted to show. �

The requirements for the density of the random variables chosen in the statement of Theorem 6.3.5 are

not very restrictive and are satisfied by a wide range of random variables. Such densities include various versions

of at least the following: beta, chi-square, Erlang, exponential, gamma, Gumbel, log-normal, logistic, Maxwell,

Pareto, Rayleigh, uniform, and Weibull.

The following corollary follows from Lemma 6.3.1 and Theorem 6.3.5. It shows that competitively opti-

mal Huffman codes become rare for large sources selected uniformly at random from a simplex.

Corollary 6.3.6. Let X1, . . . , Xn be the probabilities of a source chosen randomly from a flat Dirichlet distribution

in R
n. Then the probability that a Huffman code for this source is competitively optimal converges to zero as

n −→∞.

The next corollary follows immediately from Theorem 6.2.7 and Theorem 6.3.5. It shows that as the

source size grows the existence of any competitively optimal codes becomes unlikely.

Corollary 6.3.7. Let ǫ > 0 and let X1, X2, . . . be an i.i.d. sequence of nonnegative random variables with a

density which is positive on at least (0, ǫ), and let Sn = X1 + · · ·+Xn. Then the probability that a competitively

optimal code exists for the source X1

Sn
, . . . , Xn

Sn
converges to zero as n −→∞.

6.4 Lemmas for future sections

In this section, we give a number of lemmas that are used in the remainder of this paper.

Huffman codes are expected length optimal and Gallager [10, Theorem 1] characterized such codes in

terms of a “sibling property”, which says the code is complete and if the nodes in the code tree can be listed in

order of non-increasing probability with each node being adjacent in the list to its sibling.

However, Huffman codes are not the only expected length optimal prefix codes. Expected length op-

timal prefix codes are characterized as those which are length equivalent to some Huffman code for the source.

225

Below we prove a second characterization of expected length optimal prefix codes, or equivalently prefix codes

which are length equivalent to a Huffman code. Namely we show that such codes are strongly monotone. Strong

monotonicity is a weaker condition than the sibling property, and thus a broader class of prefix codes are strongly

monotone.

Let C be a prefix code a source has alphabet S. If U ⊂ S, then denote the Kraft sum of C’s codeword

lengths corresponding to the source symbols in U by

KC(U) =
∑

x∈U

2−lC(x).

Definition 6.4.1. Given a source with alphabet S, a prefix code C for the source is strongly monotone if for any

subsets A,B ⊆ S, if there exist integers i, j ≥ 0 such that KC(A) = 2−i > 2−j = KC(B), then P (A) ≥ P (B).

The following lemma notes several properties that are preserved under length equivalence between prefix

codes.

Lemma 6.4.2 ([5]). If two prefix codes are length equivalent, then each of the following properties holds for one

code if and only if it holds for the other code:

• completeness

• strong monotonicity

• expected length optimality.

Lemma 6.4.3 ([5, Theorem 2.4]). For any source and any prefix code C for the source, the following are equiva-

lent:

(1) C is complete and strongly monotone

(2) C is length equivalent to a Huffman code

(3) C is expected length optimal.

For a given source and a Huffman code, if A is a nonempty proper subset of the source alphabet whose

Huffman-Kraft sum has binary expansion K(A) = 0.b1b2 . . ., then we define a Huffman-Kraft partition of A to be

any sequence A1, A2, . . . of disjoint (possible empty) subsets of A whose union is A and such that K(Ai) = bi2
−i

for each i. If bk = 1 and bi = 0 for all i ≥ k + 1, then it suffices to specify the first k sets A1, . . . , Ak in a

Huffman-Kraft partition.

Lemma 6.4.4. Every nonempty proper subset of a source’s alphabet has a Huffman-Kraft partition.

226

Proof. Let A be a nonempty proper subset of a source’s alphabet and let 0.a1a2 . . . ak be the binary expansion of

the Huffman-Kraft sum K(A), where ak = 1.

We use induction onN = a1+· · ·+ak. Since A is nonempty,K(A) > 0, so N ≥ 1. First, supposeN = 1.

Then ai = 0 for all i ∈ {1, . . . , k − 1}, so K(A) = 2−k. Setting Ak = A and Ai = ∅ for i ∈ {1, . . . , k − 1}

gives a Huffman-Kraft partition of A.

Now let m ≥ 2 and suppose the lemma holds for N = m − 1. We will next show the lemma must hold

for N = m. Let X = {u ∈ A : K(u) ≤ 2−k}. Then K(A − X) is an integer multiple of 2−k+1, since for

all v ∈ A − X we have K(v) = 2−k+i for some i ≥ 1. Thus, the binary expansion of K(A −X) has 0s in all

positions i ≥ k. Therefore, since ak = 1 and K(A) = K(X) +K(A−X), the binary expansion of K(X) has a

1 in position k, so K(X) ≥ 2−k.

Let Y be a subset of X whose Huffman-Kraft sum is minimum among all subsets of X with Huffman-

Kraft sum at least 2−k. We will show that K(Y) = 2−k. Suppose to the contrary that K(Y) > 2−k. Let y ∈ Y be

an element with minimum probability among the elements of Y . Since y ∈ X , we know K(y) ≤ 2−k, and also

K(y) = 2−i for some integer i. Therefore, 2−k is an integer multiple of K(y). Also, K(Y) is an integer multiple

of K(y), since for all u ∈ Y there exists an i ≥ 0 such that K(u) = 2iK(y). Therefore, K(Y) ≥ 2−k +K(y)

since K(Y) > 2−k. But then K(Y −{y}) = K(Y)−K(y) ≥ 2−k and K(Y −{y}) = K(Y)−K(y) < K(Y),

so the Huffman-Kraft sum of Y − {y} is at least 2−k but is smaller than that of Y , contradicting the minimality

assumption on Y . Therefore, K(Y) = 2−k.

Set Ak = Y . Since m ≥ 2, the set A − Ak is nonempty, and since A is a proper subset of the source’s

alphabet, so is A−Ak. Also, the Huffman-Kraft sum K(A−Ak) = K(A)−K(Ak) = K(A)− 2−k has exactly

m − 1 ones in its binary expansion. Thus, the induction hypothesis implies that A − Ak has a Huffman-Kraft

partition A1, . . . , Ak−1. Then A1, . . . , Ak is a Huffman-Kraft partition of A. �

Lemma 6.4.5. Let A and B be subsets of a source alphabet whose Huffman-Kraft sums satisfy K(A) = K(B) =

2−i for some integer i ≥ 0, and such that |A| ≥ 2. Then P (A) ≤ 2P (B).

Proof. By Lemma 6.4.3, Huffman codes are strongly monotone, so Huffman-Kraft sums obey the strong mono-

tonicity condition.

Let a ∈ A be an element of minimum Huffman-Kraft sum among the elements of A. Since |A| ≥ 2,

there exists m ≥ i + 1 such that K(a) = 2−m, for otherwise K(A) ≥ 2 · 2−i > 2−i = K(A), a contradiction.

Therefore, the binary expansion of K(A− {a}) = K(A)−K(a) = 2−i − 2−m has 1s in positions i + 1, . . . ,m

and 0s in all other positions. By Lemma 6.4.4, there exists a Huffman-Kraft partition A1, . . . , Am of A− {a}. In

particular, K(Ai+1) = 2−(i+1), and so K(A−Ai+1) = K(A)−K(Ai+1) = 2−i− 2−(i+1) = 2−(i+1). Then by

227

strong monotonicity P (Ai+1), P (A−Ai+1) ≤ P (B), and so P (A) = P (Ai+1) + P (A−Ai+1) ≤ 2P (B). �

Lemma 6.4.6. Given a source with alphabet S, suppose there is a subset U ⊆ S whose Huffman-Kraft sum K(U)

is an integer multiple of 2−i for some integer i ≥ 0. If A ⊆ U with 0 < K(A) < 2−j for some integer j ≥ i, then

there exists a subset B ⊆ U −A with K(A ∪B) = 2−j .

Proof. Since K(A) > 0 and K(U − A) = K(U) − K(A) > 2−i − 2−j ≥ 0, Lemma 6.4.4 shows there exist

Huffman-Kraft partitions A1, A2, . . . of A, and B1, B2, . . . of U −A. Let

B =
⋃

k>j

Bk.

Then K(B) = K(Bj+1)+K(Bj+2)+ · · · ≤ 2−(j+1)+2−(j+2) + · · · = 2−j , so K(A∪B) = K(A)+K(B) <

2−(j−1). Since K(U) = K(A∪B)+K(B1∪· · ·∪Bj), and both K(U) and K(B1∪· · ·∪Bj) are integer multiples

of 2−j , it must be the case that K(A ∪ B) is an integer multiple of 2−j as well. Then 0 < K(A ∪B) < 2−(j−1)

implies K(A ∪B) = 2−j . �

Lemma 6.4.7. Given a source with alphabet S, suppose A,B ⊆ S with Huffman-Kraft sums satisfying 2K(B) ≤

2−i ≤ K(A) for some integer i. Then P (A) ≥ P (B), with equality possible only if K(A) = 2K(B).

Proof. If B is empty, then P (B) = 0 and the result follows, so assume B is nonempty.

If K(B) < 2−(i+1), then by Lemma 6.4.6 (where A, B, U , i, j in Lemma 6.4.6 respectively correspond

to B, B′, S, 0, i + 1 here) there exists a subset B′ ⊆ S − B with K(B′) = 2−(i+1) − K(B). Alternatively, if

K(B) = 2−(i+1) then we will let B′ = ∅. In either case, K(B ∪B′) = 2−(i+1).

By Lemma 6.4.4, there exists a Huffman-Kraft partition A1, A2, . . . of A. Let k be the smallest integer

such that Ak 6= ∅. Since K(A) ≥ 2−i, we have k ≤ i.

If k < i, then since 0 < K(B ∪B′) = 2−(i+1) < 2−(k+1), Lemma 6.4.6 implies (where A, B, U , i, j in

Lemma 6.4.6 respectively correspond to B ∪B′, E, S, 0, i+1 here) there exists a subset E ⊆ S− (B ∪B′) such

that K(E) = 2−(k+1) −K(B ∪B′). If k = i, then instead let E = ∅. In either case, K(B ∪B′ ∪E) = 2−(k+1).

228

We have

P (A) = P (Ak) + P (A−Ak)

≥ P (Ak) (6.9)

≥ P (B ∪B′ ∪ E) (6.10)

= P (B) + P (B′) + P (E) (6.11)

≥ P (B). (6.12)

where (6.10) follows the Huffman-Kraft sum equality K(Ak) = 2−k = 2K(B ∪ B′ ∪ E) since Huffman codes

are strongly monotone by Lemma 6.4.3; and (6.11) follows since B, B′, and E are disjoint.

Now suppose K(A) > 2K(B). Then either K(B) < 2−(i+1) or K(A) > 2−i. In the first case, we have

P (B′) > 0 since K(B ∪B′) = 2−(i+1), so the inequality in (6.12) becomes strict. Now consider two subcases of

the second case. If K(A) < 2−(i−1), then i − 1 < k ≤ i, so k = i which implies K(A− Ak) = K(A − Ai) =

K(A)−K(Ai) = K(A)−2−i > 0, and thus the inequality in (6.9) becomes strict. Otherwise, if K(A) ≥ 2−(i−1),

then k < i, and so K(E) = 2−(k+1)−K(B ∪B′) = 2−(k+1)− 2−(i+1) > 0. Thus P (E) > 0, and the inequality

in (6.12) becomes strict. �

6.5 Huffman codes competitively dominate Shannon-Fano codes

For dyadic sources, there can be only one Huffman code (up to length equivalence) and such a code is

length equivalent to a Shannon-Fano code [7, Theorem 5.3.1], and thus the competitive advantage of either code

over the other code is ∆ = 0. In this section, Theorem 6.5.1 shows that for all non-dyadic sources, every Huffman

code always strictly competitively dominates every Shannon-Fano code.

This result shows that Shannon-Fano codes are never competitively optimal for non-dyadic sources. Ac-

tually, as the source size grows, Huffman codes themselves are usually not competitively optimal either, as shown

in Section 6.3.

The following theorem shows that when a source is not dyadic, every Huffman code always has a positive

competitive advantage over the Shannon-Fano code.

Theorem 6.5.1. Huffman codes strictly competitively dominate Shannon-Fano codes if and only if the source is

not dyadic.

Proof. Suppose a non-dyadic source has alphabet S and a Huffman code H . By Lemma 6.4.3, Huffman codes are

strongly monotone, so Huffman-Kraft sums obey the strong monotonicity condition.

229

Denote the Huffman and Shannon-Fano codeword lengths for each y ∈ S by lH(y) and lSF(y), respec-

tively. Let W = {i ∈ S : lSF(y) < lH(y)} and L = {i ∈ S : lSF(y) > lH(y)} and T = S − (W ∪ L), as in (6.1).

It suffices to show P (W) < P (L).

If y ∈W then

log2
1

P (y)
≤

⌈
log2

1

P (y)

⌉
= lSF(y) ≤ lH(y)− 1,

and if y ∈ L then

log2
1

P (y)
>

⌈
log2

1

P (y)

⌉
− 1 = lSF(y)− 1 ≥ lH(y).

Therefore, probabilities and Huffman-Kraft sums of wins, losses, and ties are bounded as

P (y) ≥ 2 · 2−lH(y) = 2K(y) if y ∈W

P (y) < 2−lH(y) = K(y) if y ∈ L

K(y) = 2−lH(y) ≤ P (y) < 2 · 2−lH(y) = 2K(y) if y ∈ T.

Thus, for any nonempty subset A ⊆ S,

P (A) ≥ 2K(A) if A ⊆W (6.13)

P (A) < K(A) if A ⊆ L (6.14)

K(A) ≤ P (A) < 2K(A) if A ⊆ T, (6.15)

since P (A) =
∑

y∈A

P (y) and K(A) =
∑

y∈A

K(y) for any subset A ⊆ S.

Suppose that L = ∅. Then from (6.13) and (6.15) we have P (y) ≥ K(y) for all y ∈ S. Since K(y) is an

integer power of 1/2 for all y ∈ S, there exists at least one element y ∈ S with P (y) > K(y), or else the source

would be dyadic. But then

1 =
∑

y∈S

P (y) >
∑

y∈S

K(y) = 1,

which is a contradiction. Thus, in fact L 6= ∅, and therefore P (L) > 0. This implies P (W) < 1.

If W = ∅ then P (W) − P (L) < 0, and we are done. Suppose W 6= ∅. By Lemma 6.4.4, there exist

Huffman-Kraft partitions W1,W2, . . . and L1, L2, . . . of W and L, respectively. Let k be the smallest integer such

230

that Wk 6= ∅.

If k = 1, then W1 6= ∅, so K(W1) = 1
2 and therefore we get the contradiction that 1 > P (W1) ≥

2K(W1) = 1 by (6.13). Thus k ≥ 2.

We will use the following fact in the remainder of the proof. If A ⊆ S and K(A) = 2−(k−1), then

P (A) ≥ P (Wk) (6.16)

≥ 2K(Wk) (6.17)

= 2−(k−1) (6.18)

= K(A) (6.19)

where (6.16) follows from strong monotonicity; (6.17) follows from (6.13); and (6.18) follows fromP (Wk) = 2−k

since Wk 6= ∅. Also, Lk−1 = ∅, for otherwise K(Lk−1) = 2−(k−1), which by (6.19) would imply P (Lk−1) ≥

K(Lk−1), contradicting P (Lk−1) < K(Lk−1) by (6.14), as Lk−1 ⊆ L.

Suppose K(L) < 2−(k−2). Then since Lk−1 = ∅, at least the first k − 1 bits in the binary expansion

of K(L) are zero, so K(L) < 2−(k−1). By Lemma 6.4.6, (where i, j, U , A, B, in Lemma 6.4.6 respectively

correspond to 0, k − 2, S, Wk ∪ L, A here), since 0 < K(Wk ∪ L) < 2−k + 2−(k−1) < 2−(k−2) ≤ 1 = K(S),

there exists a subset A ⊆ S − (Wk ∪ L) such that K(A) = 2−(k−2) −K(Wk ∪ L). Then

K(L ∪A) = K(Wk ∪ L ∪ A)−K(Wk)

= K(Wk ∪ L) +K(A)−K(Wk)

= 2−(k−2) −K(Wk)

= 2−(k−2) − 2−k

= 2−(k−1) + 2−k

so the Huffman-Kraft partition of L∪A provided by Lemma 6.4.4 consists of 2 disjoint subsets, E and F , of L∪A

such that E ∪ F = L ∪ A, along with K(E) = 2−k and K(F) = 2−(k−1). Then P (E) > 0, and P (F) ≥ K(F)

by (6.19).

Since L ⊆ L ∪ A = E ∪ F , we have S − (Wk ∪ E ∪ F) ⊆ S − L ⊆W ∪ T . Therefore, P (S − (Wk ∪

231

E ∪ F)) ≥ K(S − (Wk ∪ E ∪ F)) = 1− 2−(k−2) by (6.13) and (6.15). But we also have

P (S − (Wk ∪ E ∪ F)) = 1− P (Wk)− P (E)− P (F)

< 1− P (Wk)− P (F)

≤ 1− 2K(Wk)−K(F) (6.20)

= 1− 2−(k−1) − 2−(k−1)

= 1− 2−(k−2)

= K(S − (Wk ∪ E ∪ F)),

which is a contradiction, where (6.20) follows from (6.13). Therefore, our assumption was false that K(L) <

2−(k−2), so in fact K(L) ≥ 2−(k−2). Thus, k 6= 2, for otherwise K(L) ≥ 1 which contradicts W 6= ∅. Therefore,

k ≥ 3. Since W1 = · · · = Wk−1 = ∅, we have 2K(W) < 2−(k−2) ≤ K(L), and so Lemma 6.4.7 shows

P (W) < P (L). �

Theorem 6.5.1 guarantees that for each n, and for all non-dyadic sources of size n, Huffman codes

always strictly competitively dominate Shannon-Fano codes. On the other hand, we saw in Section 6.3 that as the

source size grows, an increasingly large fraction of non-dyadic sources have prefix codes that strictly competitively

dominate Huffman codes. Said more casually, Huffman codes usually are dominated by another code but always

dominate Shannon-Fano codes.

6.6 Bound on competitive advantage over Huffman codes

In this section, we derive an upper bound on the competitive advantage of an arbitrary prefix code over

a Huffman code for a given source, and show that for every source of size at least four the upper bound can be

approached arbitrarily closely by some sources. We show that no prefix code can have a competitive advantage

of 1
3 or higher over any Huffman code (Theorem 6.6.6), and in fact this upper bound is tight in that it can be

approached arbitrarily closely from below for all source sizes, by at least some sources (Theorem 6.6.7).

If A is a subset of a source’s alphabet, then at least one of the following three Huffman-Kraft sum condi-

tions is satisfied: (i) A is empty and K(A) = 0; (ii) A is the entire alphabet and K(A) = 1; or (iii) K(A) is a finite

sum of negative integer powers of 2, and has a binary expansion of the form K(A) = 0.b1b2 . . ., with bi ∈ {0, 1}

for all i, and where the number of nonzero bits is at least one and is finite.

If A is a subset of a source alphabet, then the probability P (A) and the Huffman-Kraft sum K(A) are

related. When A is empty, P (A) = K(A) = 0, and when A is the entire source alphabet, P (A) = K(A) = 1. If

232

the source is dyadic, then P (A) = K(A) is always true. For non-dyadic sources, the relationship between P (A)

and K(A) is more complicated. We next establish some lemmas that are used to prove Theorem 6.6.6. Some of

these lemmas relate the probabilities and the Huffman-Kraft sums of source alphabet subsets.

In this section, for any given source, if C is a prefix code that competes against a Huffman code for the

same source, then define the events W (i.e., C “wins”), L (i.e., C “loses”), and T (i.e., C “ties”), as in (6.1) (taking

C1 = C, and C2 as the Huffman code).

In what follows, the definitions of W , L, and T from (6.1) (taking C2 as the Huffman code) are used in

Lemma 6.6.1, Lemma 6.6.2, and Theorem 6.6.6.

Lemma 6.6.1. For any source, if a prefix code C has a positive competitive advantage over a Huffman code, then

for at least one source symbol, C produces a longer codeword than the Huffman codeword.

Proof. It suffices to show that L is nonempty. Since C has a positive competitive advantage over a Huffman code

H , we have P (W) > P (L). Then,

0 ≤ E[lC(X)]− E[lH(X)] (6.21)

=
∑

y∈W

(lC(y)− lH(y))P (y) +
∑

y∈L

(lC(y)− lH(y))P (y) (6.22)

<
∑

y∈L

(lC(y)− lH(y))P (y) (6.23)

where (6.21) follows since a prefix code C cannot have a lower expected length than the Huffman code for a given

source; (6.22) follows since lC(y)− lH(y) = 0 for all y ∈ T ; and (6.23) follows since lC(y)− lH(y) < 0 for all

y ∈W and P (W) > P (L) ≥ 0, so W 6= ∅. If L = ∅, then (6.23) would yield a contradiction. �

Lemma 6.6.2. For any source, if a prefix code C has a positive competitive advantage over a Huffman code, then

the Huffman-Kraft sums of the set W of wins and set L of losses of C satisfy K(W) < K(L).

Proof. Let H denote the Huffman code and suppose, to the contrary, that

K(W) ≥ K(L). (6.24)

233

Let S be the source’s alphabet and let T = S − (W ∪ L) be the set of ties. Then

1 ≥
∑

x∈S

2−lC(x) (6.25)

=
∑

x∈W

2−lC(x) +
∑

x∈T

2−lC(x) +
∑

x∈L

2−lC(x)

>
∑

x∈W

2−lC(x) +
∑

x∈T

2−lC(x) (6.26)

=
∑

x∈W

2−lC(x) +
∑

x∈T

2−lH(x) (6.27)

≥
∑

x∈W

2−lH(x)+1 +
∑

x∈T

2−lH(x) (6.28)

= 2K(W) +K(T)

≥ K(W) +K(T) +K(L) (6.29)

= 1, (6.30)

a contradiction, where (6.25) is the Kraft inequality (6.1.1) applied to the prefix codeC; (6.26) follows fromL 6= ∅

by Lemma 6.6.1; (6.27) follows from lC(x) = lH(x) when x ∈ T ; (6.28) follows from lC(x) ≤ lH(x) − 1 when

x ∈W ; (6.29) follows from (6.24); and (6.30) follows since the Huffman tree is complete. �

Lemma 6.6.3. If b > a, then x+a
x+b is monotonically increasing in x for all x 6= −b.

Proof. d
dx

(
x+a
x+b

)
= b−a

(x+b)2 > 0. �

Lemma 6.6.4. Given a source with alphabet S, let U and V be disjoint subsets of S with Huffman-Kraft sums

satisfying K(U) < 2−i ≤ K(V) for some integer i ≥ 0. Then P (U) < 2P (V).

Proof. Since K(V) ≥ 2−i, we have P (V) > 0. If K(U) = 0 then P (U) = 0 < 2P (V), so we may assume

K(U) > 0.

By Lemma 6.4.4, there exists a Huffman-Kraft partition V1, V2, . . . of V . Let k ≥ 0 be the smallest

integer such that Vk 6= ∅. Since K(V) ≥ 2−i, we have k ≤ i. By Lemma 6.4.6 (taking B = U ′, U = S, A = U ,

and j = k), there exists a subset U ′ ⊆ S−U such that K(U ′) = 2−k−K(U) > 0. Then |U ∪U ′| ≥ 2 since both

U and U ′ are nonempty, and also K(U ∪U ′) = 2−k = K(Vk), so P (U ∪U ′) ≤ 2P (Vk) by Lemma 6.4.5 (taking

A = U ∪ U ′, B = Vk , and i = k). Therefore

P (U) ≤ 2P (Vk)− P (U ′) < 2P (Vk) ≤ 2P (V).

234

�

For any Huffman-Kraft partition A1, A2, . . . of a subset A of a source alphabet and for any integer k ≥ 1

we will define the notation A<k = A1∪· · ·∪Ak−1 and A≤k = A1∪· · ·∪Ak, as well as A>k = Ak+1∪Ak+2 . . .

and A≥k = Ak ∪ Ak+1

Lemma 6.6.5. Given a source with alphabet S, suppose U, V ⊆ S are disjoint subsets with Huffman-Kraft sums

satisfying K(U) < K(V). Then P (U)− P (V) < 1
3 .

Proof. If K(U) = 0 then P (U)− P (V) ≤ 0 < 1
3 , so suppose K(U) > 0. By Lemma 6.4.4, there exist Huffman-

Kraft partitions U1, U2, . . . of U and V1, V2, . . . of V . Let m ≥ 0 be the smallest integer such that Vm 6= ∅ and

Um = ∅; such an integer exists because K(U) < K(V). Since P (U) − P (V) ≤ P (U) − P (V≤m), and U and

V≤m are disjoint, without loss of generality we will assume Vi = ∅ for all i > m.

We now assert that for certain nonnegative integers k ≤ m−1, there exists A ⊆ S satisfying the following

three conditions:

K(A) = 2−k (6.31)

U≥k+1 ∪ V≥k+1 ⊆ A (6.32)

P (U≥k+1)− P (V≥k+1) <
1

3
P (A). (6.33)

Specifically, we will first show that this assertion is true when k = m − 1. Then, we will show inductively that

whenever the assertion is true for some positive k it must also be true for some smaller nonnegative k. We then

will conclude that the assertion must be true for k = 0.

Once we have established the assertion is true for k = 0, we can further infer that

P (U)− P (V) = P (U≥1)− P (V≥1) <
1

3
P (A) =

1

3
,

where P (A) = 1 since K(A) = 1, thus proving the lemma.

Base Step: k = m− 1. Since K(S − (U<m ∪ V<m)) = 1 −K(U<m ∪ V<m) is an integer multiple of

2−(m−1), and

0 < K(Vm) ≤ K(U≥m ∪ V≥m) = K(U>m) +K(Vm) < 2−(m−1),

Lemma 6.4.6 shows (taking A← U≥m ∪ V≥m, B ← U ′, U ← S − (U<m ∪ V<m), i = j ← m− 1) there exists

235

U ′ ∈= S − (U ∪ V) such that K(U ′ ∪ U≥m ∪ V≥m) = 2−(m−1). Then setting

A = U ′ ∪ U≥m ∪ V≥m (6.34)

gives

K(A) = 2−(m−1). (6.35)

Also, since K(U≥m) = K(U>m) < 2−m = K(Vm) = K(V≥m), Lemma 6.6.4 shows P (U≥m) < 2P (V≥m).

Therefore,

P (U≥m)− P (V≥m)

P (A)
<

P (U≥m)− P (V≥m)

P (U≥m) + P (V≥m)
(6.36)

<
P (V≥m)

3P (V≥m)
(6.37)

=
1

3
, (6.38)

where (6.36) follows from P (U ′) > 0 since K(U ′) = K(A)−K(U≥m ∪ V≥m) > 2−(m−1)− 2−(m−1) = 0; and

(6.37) follows from P (U≥m) < 2P (V≥m) and Lemma 6.6.3.

By (6.35), (6.34), and (6.38), these conditions hold for k = m− 1.

Inductive Step: 1 ≤ k ≤ m − 1. Notice that if m = 1, then the base case of k = m − 1 automatically

proves the assertion for k = 0, so we may assume m ≥ 2.

Assume that (6.31) – (6.33) hold for some positive integer k ≤ m− 1 and for some A ⊆ S. We will show

that there exists A′ ⊆ S that satisfies the three conditions above for some index j ∈ {0, . . . , k − 1}.

From the definition of m, we have K(Ui) = K(Vi) for all i < m. In particular, K(Uk) = K(Vk) since

k ≤ m − 1. Then K(Uk) + K(Vk) ∈ {0, 2
−(k−1)}, so K(U≤k ∪ V≤k) = K(U<k ∪ V<k) + K(Uk ∪ Vk) is

an integer multiple of 2−(k−1). Therefore, K(S − U≤k ∪ V≤k) = 1 − K(U≤k ∪ V≤k) is an integer multiple

of 2−(k−1). Since 0 < K(A) = 2−k < 2−(k−1), and A ⊆ S − U≤k ∪ V≤k , Lemma 6.4.6 shows (taking

A ← A, B ← B, U ← S − (U≤m ∪ V≤m), i = j ← k − 1) there exists B ⊆ S − (A ∪ U≤k ∪ V≤k) with

K(B) = 2−(k−1) −K(A) = 2−k.

Case 1: K(Uk) = K(Vk) = 0. Let A′ = A ∪B. Then K(A′) = K(A) +K(B) = 2−(k−1) and

U≥k ∪ V≥k = U≥k+1 ∪ V≥k+1 ⊆ A ⊆ A′

236

from (6.32). Also,

P (U≥k)− P (V≥k) = P (U≥k+1)− P (V≥k+1) <
1

3
P (A) <

1

3
P (A′)

from (6.33) and K(A) = K(A′)−K(B) < K(A′). Thus A′ satisfies conditions (6.31) – (6.33) except the index

k has been reduced to j = k − 1 ≥ 0.

Case 2: K(Uk) = K(Vk) = 2−k. Let j ≤ k be the smallest integer such that K(Ui) = 2−i = K(Vi) for

all i ∈ {j, . . . , k}. Then j ≥ 2, since otherwise, j = 1 would imply 1 ≥ K(U)+K(V) > 2K(U) ≥ 2K(U1) = 1,

a contradiction. Also, from the definition of j, we have K(Uj−1) = K(Vj−1) = 0. Let

A′ = A ∪B ∪ (U≥j − U>k) ∪ (V≥j − V>k). (6.39)

Then

U≥j−1 ∪ V≥j−1 = U≥j ∪ V≥j

= (U≥j − U>k) ∪ (V≥j − V>k) ∪ U≥k+1 ∪ V≥k+1

⊆ (U≥j − U>k) ∪ (V≥j − V>k) ∪A (6.40)

⊆ A′ (6.41)

where (6.40) follows from (6.32); and

K(A′) = K(A) +K(B) +K(U≥j − U>k) +K(V≥j − V>j)

= 2−k + 2−k + 2

k∑

i=j

2−i

= 2−(j−2). (6.42)

Now let E ∈ {A,B} such that P (E) = min(P (A), P (B)). Note K(E) = 2−k, since K(A) = K(B) =

2−k. Since

K((V≥j − V>k) ∪ E) =

k∑

i=j

2−i +K(E) = 2−(j−1) − 2−k + 2−k = 2−(j−1) > 2−j = K(Uj),

strong monotonicity of Huffman-Kraft sums and Lemma 6.4.3 imply P (Uj) ≤ P (V≥j − V>k) + P (E).

Suppose j < k. Then for all i ∈ {j + 1, . . . , k}, we have P (Ui) ≤ P (Vi−1) by strong monotonicity of

237

Huffman-Kraft sums, since K(Ui) = 2−i < 2−(i−1) = K(Vi−1). Thus

P (U≥j+1 − U>k) = P (Uj+1) + · · ·+ P (Uk)

≤ P (Vj) + · · ·+ P (Vk−1)

= P (V≥j − V>k−1).

Therefore

P (U≥j − U>k) = P (Uj) + P (U≥j+1 − U>k)

≤ P (V≥j − V>k) + P (E) + P (V≥j − V>k−1)

= 2P (V≥j − V>k−1) + P (Vk) + P (E). (6.43)

On the other hand, suppose j = k. Then V≥j − V>k−1 = ∅, so we also have

P (U≥j − U>k) = P (Uj)

≤ P (V≥j − V>k) + P (E)

= 2P (V≥j − V>k−1) + P (Vk) + P (E). (6.44)

Now we combine both the cases j < k and j = k. Since Vm ⊆ A and K(Vm) = 2−m < 2−k = K(A),

neither Vm nor A−Vm is empty, so |A| = |Vm|+ |A−Vm| ≥ 2. Then since K(A) = 2−k = K(Vk), Lemma 6.4.5

shows P (A) ≤ 2P (Vk). Thus

P (E) = min(P (A), P (B)) ≤ min(2P (Vk), P (B)),

and so

2P (Vk) + P (E) + P (B) ≥ 3P (E). (6.45)

238

Finally, we apply Lemma 6.6.3 by using the values

x = P (U≥j − U>k)

a = −P (V≥j − V>k)

b = P (V≥j − V>k) + P (B)

x′ = 2P (V≥j − V>k−1) + P (Vk) + P (E).

It is clear that a < b, and we have x ≤ x′ from (6.43) (for j < k) and (6.44) (for j = k), Thus,

x+ a

x+ b
≤

x′ + a

x′ + b
P (U≥j − U>k)− P (V≥j − V>k)

P (U≥j − U>k) + P (V≥j − V>k) + P (B)
≤

P (V≥j − V>k−1) + P (E)

3P (V≥j − V>k−1) + 2P (Vk) + P (E) + P (B)

≤
P (V≥j − V>k−1) + P (E)

3P (V≥j − V>k−1) + 3P (E)
(6.46)

=
1

3
, (6.47)

where (6.46) follows from (6.45). Therefore,

P (U≥j−1)− P (V≥j−1) = P (U≥j)− P (V≥j)

= P (U≥j − U>k)− P (V≥j − V>k) + P (U≥k+1)− P (V≥k+1)

<
1

3
(P (U≥j − U>k) + P (V≥j − V>k) + P (B) + P (A)) (6.48)

=
1

3
P (A′), (6.49)

where (6.48) follows from (6.47) and (6.33); and (6.49) follows from (6.39). Thus A′ satisfies the three conditions

(6.31) – (6.32) by way of (6.42), (6.41), and (6.49), except the index k has been reduced to j − 2 ∈ {0, . . . , k −

2}. �

Theorem 6.6.6. For any source, the competitive advantage of any prefix code over a Huffman code is less than 1
3 .

Proof. Let C denote an arbitrary prefix code for the source. Let W and L denote the sets of wins and losses,

respectively, of C over the Huffman code. It suffices to assume the competitive advantage of C over the Huffman

code is positive, so W 6= ∅. Then Lemma 6.6.1 implies L 6= ∅, and Lemma 6.6.2 implies K(W) < K(L).

Therefore, P (W)− P (L) < 1
3 by Lemma 6.6.5. �

The following theorem shows that for any size at least four, sources can be found whose competitive

239

advantages over Huffman codes are arbitrarily close to 1/3 and whose average lengths are arbitrarily close to that

of a Huffman code.

Theorem 6.6.7. For every n ≥ 4, there exists a source of size n and a prefix code that has a competitive advantage

over a Huffman code arbitrarily close to 1
3 and the code’s average length is arbitrarily close to that of the Huffman

code.

Proof. Let n ≥ 4 and ǫ > 0, and define α = ǫ/2
1−2−n+3 . Let the source be of size n and with symbol probabilities:

p1 =
1

3
+ ǫ

p2 =
1

3

p3 =
1

3
− 2ǫ

pk = α24−k (4 ≤ k ≤ n).

One can verify that p1+ · · ·+ pn = 1 and for each k ∈ {2, . . . , n} we have pk > pk+1+ · · ·+ pn, so the Huffman

code for the source assigns a word of length k to pk for k = 1, . . . , n− 1, and also a word of length n− 1 to pn.

Define a prefix code C which is identical to the Huffman code, except that it reassigns p1, p2, and p3

to codewords of lengths 3, 1, and 2, respectively. The code C will produce a shorter codeword than that of

the Huffman code with probability p2 + p3 and will produce a longer codeword with probability p1. Thus, the

competitive advantage of C over the Huffman code is ∆ = p2 + p3 − p1 = 1
3 − 3ǫ.

Denote the codeword lengths of the Huffman code by li. The average length of the Huffman code is

1 ·

(
1

3
+ ǫ

)
+ 2 ·

(
1

3

)
+ 3 ·

(
1

3
− 2ǫ

)
+

n∑

k=4

pili

and the average length of C is

1 ·

(
1

3

)
+ 2 ·

(
1

3
− 2ǫ

)
+ 3 ·

(
1

3
+ ǫ

)
+

n∑

k=4

pili

so their difference is − 14
3 ǫ.

In summary, the code C achieves a competitive advantage over the Huffman code of 1
3 − 3ǫ and has an

average length at most 14
3 ǫ greater than that of the Huffman code. Taking ǫ arbitrarily small makes the competitive

advantage approach 1
3 and the average length difference approach zero. �

240

6.7 Bound on competitive advantage over Shannon-Fano codes

On one hand, Shannon-Fano codes are efficient, since they suffice in proving Shannon’s source coding

theorem that says the average length of optimal block codes arbitrarily approaches from above the entropy of a

source, as the block size grows. The proof uses the fact that the average length of a Shannon-Fano code is always

within one bit of the source entropy, and so the average length per symbol of a Shannon-Fano code for a source

block of size n is within 1
n bit of the source entropy.

One the other hand, Huffman codes are strictly better than Shannon-Fano codes in an average length

sense for non-dyadic sources, and perform equally well for dyadic sources. Similarly, in a competitive sense,

Theorem 6.5.1 showed that Huffman codes strictly competitively dominate Shannon-Fano codes if and only if the

source is not dyadic.

The competitive advantage of one code over a Shannon-Fano code (or, actually, any other code) is trivially

upper bounded by one, and the average length of a code can be at most one bit less than that of a Shannon-Fano

code. The following theorem shows that there exist increasingly large sources with prefix codes that can approach

both of these extremes over Shannon-Fano codes simultaneously.

Theorem 6.7.1. For every positive integer n, there exists a source of size n and a prefix code that has a competitive

advantage of at least 1 − 2−n+2 over a Shannon-Fano code for the source, and the code’s average length is at

least 1− 2−n+2 less than the average length of the Shannon-Fano code.

Proof. Let ǫ ∈ (0, 4−n) and let X be a source of size n whose probabilities are

pk =





2−k − ǫ if 1 ≤ k ≤ n− 1

2−n+1 + (n− 1)ǫ if k = n.

Since
⌈
log2

1
p

⌉
= m if and only if 2−m ≤ p < 2−m+1, a Shannon-Fano code for this distribution has codeword

lengths

lk =

⌈
log2

1

pk

⌉
=





k + 1 if 1 ≤ k ≤ n− 1

n− 1 if k = n.

Note that ln was determined from the fact that for all n ≥ 1,

(n− 1)4−n < 2−n+1. (6.50)

241

Let C be a prefix code that assigns the word 1k−10 to the outcomes that have probability pk when k < n,

and assigns the word 1n−1 to the outcome with probability pn. This prefix code produces a shorter codeword

than a Shannon-Fano code whenever 1 ≤ k ≤ n − 1, and ties when k = n, so its competitive advantage over a

Shannon-Fano code is lower bounded as

∆ = 1− pn = 1−
1

2n−1
− (n− 1)ǫ ≥ 1−

1

2n−1
−

n− 1

4n
> 1−

1

2n−2
. (6.51)

where (6.51) follows from (6.50).

The difference between the average lengths of the Shannon-Fano code and the code C is

(n− 1)pn +
n−1∑

k=1

(k + 1)pk − (n− 1)pn −
n−1∑

k=1

kpk =
n−1∑

k=1

pk = 1− pn, (6.52)

the same quantity as the competitive advantage previously computed in (6.51).

�

In the preceding proof, the average length of the code C is at most 2−n+2 more than the source entropy,

since

E[lC(X))] < E[lCSF
(X))]− 1 +

1

2n−2
(6.53)

< H(X) + 1− 1 +
1

2n−2
(6.54)

= H(X) +
1

2n−2
.

where (6.53) follows from (6.51) and (6.52); and (6.54) follows from Shannon’s source coding theorem. We also

note that the term 2−n+2 that occurs in the bounds of the theorem can be sharpened to be arbitrarily close to 2−n+1

but we chose to keep the proof simple instead.

6.8 Small codes

In this section, we analyze which sources of size at most 4 have competitively optimal Huffman codes.

Theorem 6.8.1. Huffman codes are competitively optimal for all sources of size at most 3.

Proof. If the source is of size 1 or 2, the result is trivial, so suppose the size is 3. Denote the source symbols

by 1, 2, 3 such that P (1) ≥ P (2) ≥ P (3) > 0. The word lengths of a Huffman code H are lH(1) = 1 and

lH(2) = lH(3) = 2. Let C denote any other prefix code, and use the notation W and L, as in (6.1). It is not

242

possible for 1 ∈ W , since lC(1) ≥ 1 = lH(1). If 2 ∈ W , then lC(2) = 1 and therefore lC(1), lC(3) ≥ 2, so

1 ∈ L and 3 6∈W , which implies the competitive advantage of C over the Huffman code is ∆ = P (W)−P (L) =

P (2) − P (L) ≤ P (2) − P (1) ≤ 0. Alternatively, if 3 ∈ W , then we similarly conclude ∆ ≤ 0. Finally, if

2, 3 6∈W , then P (W) = 0, so ∆ ≤ 0. �

Theorem 6.8.2. Let Q be the hexahedron with vertices (12 ,
1
2 , 0), (

2
5 ,

1
5 ,

1
5), (

1
3 ,

1
3 ,

1
3), (

1
3 ,

1
3 ,

1
6), (

1
2 ,

1
4 ,

1
4). For

every source of size 4 with probabilities p1 ≥ p2 ≥ p3 ≥ p4 > 0, a Huffman code is competitively optimal if the

triple (p1, p2, p3) lies in the exterior of Q, and is not competitively optimal if the triple lies in the interior of Q.

Proof. Denote the source symbols by 1, 2, 3, 4 and their probabilities by p1, p2, p3, p4, respectively. We will de-

termine conditions on p1, . . . , p4 such that there exists a prefix code with a positive competitive advantage over a

Huffman code. It suffices to consider complete prefix codes, since any non-complete prefix code contains at least

one codeword that could be shortened without decreasing its competitive advantage. The only possible codeword

length distributions for such size-4 codes are 1, 2, 3, 3 and 2, 2, 2, 2. In either case, the Huffman algorithm merges

the source symbols 3 and 4 to form a new symbol with probability p3 + p4.

Suppose p3+p4 > p1. Then the Huffman algorithm merges 1 and 2 and then the (3, 4) symbol is merged

with the (1, 2) symbol to get a balanced tree with codeword lengths 2, 2, 2, 2. If a size-4 prefix code achieves a

positive competitive advantage over this Huffman code, then it must have codeword lengths 1, 2, 3, 3, for otherwise

only ties would occur. In this case, the competitive advantage would be the probability of the new code’s length-1

word minus the sum of the probabilities of its two length-3 words, which equals p1 − (p3 + p4) < 0, so in fact the

new code would be strictly competitively dominated by the Huffman code. The competitive advantage would still

not be positive even if p3 + p4 = p1 and the Huffman algorithm created codewords with lengths 2, 2, 2, 2.

Alternatively, assume p3 + p4 ≤ p1 with the Huffman algorithm merging the (3, 4) symbol with 2, and

then merging the resulting (2, (3, 4)) symbol with 1. The resulting codeword lengths are 1, 2, 3, 3. The competitive

advantage of any depth-2 balanced tree over the Huffman code would be p3 + p4 − p1 ≤ 0, so such codes are

competitively dominated by the Huffman code. Thus, any code C with a positive competitive advantage∆ over the

Huffman code must have lengths 1, 2, 3, 3, and hence C just permutes the Huffman code’s assignment of codeword

lengths to source symbols.

Suppose lC(1) = 1. If lC(2) = 2, then ∆ = 0. If lC(2) = 3 and lC(3) = 2, then ∆ = p3 − p2 ≤ 0. If

lC(2) = 3 and lC(4) = 2, then ∆ = p4 − p2 ≤ 0.

Alternatively, suppose lC(1) 6= 1. There are 9 possible cases for (lC(1), lC(2), lC(3), lC(4)):

(2,1,3,3): ∆ = p2 − p1 ≤ 0

(2,3,1,3): ∆ = p3 − p1 − p2 ≤ 0

243

(2,3,3,1): ∆ = p4 − p1 − p2 ≤ 0

(3,2,1,3): ∆ = p3 − p1 ≤ 0

(3,2,3,1): ∆ = p4 − p1 ≤ 0

(3,3,1,2): ∆ = p3 + p4 − p1 − p2 ≤ 0

(3,3,2,1): ∆ = p3 + p4 − p1 − p2 ≤ 0

(3,1,2,3): ∆ = p2 + p3 − p1

(3,1,3,2): ∆ = p2 + p4 − p1.

So the only codes C that can yield ∆ > 0 are the cases (3, 1, 2, 3) and (3, 1, 3, 2).

Let us denote the following inequalities:

(I1) : p1 ≥ p2

(I2) : p2 ≥ p3

(I3) : p3 ≥ p4

(I4) : p4 > 0

(I5) : p3 + p4 ≤ p1

(I6) : p2 + p3 > p1

(I7) : p2 + p4 > p1.

Inequalities (I1) – (I6) determine a set in R
3 whose interior is a hexahedron specified by the 5 vertices

(12 ,
1
2 , 0), (

1
3 ,

1
3 ,

1
3), (

2
5 ,

1
5 ,

1
5), (

1
3 ,

1
3 ,

1
6), (

1
2 ,

1
4 ,

1
4). The first 3 vertices satisfy ∼(I7) with equality, the 4th vertex

satisfies (I7), and 5th vertex satisfies ∼(I7). Therefore, the hexahedron is cut into two tetrahedra by (I7) and is

known as a triangular dipyramid.

The Huffman code is competitively optimal in the exterior of this hexahedron, is not competitively optimal

in the interior of this hexahedron, and is sometimes competitively optimal on the boundary. �

Corollary 6.8.3. If a source of size 4 is chosen uniformly at random from a flat Dirichlet distribution, then the

probability its Huffman code is competitively optimal is 2/3.

Proof. The hexahedron in Theorem 6.8.2 is a union of two tetrahedra, whose volumes are computed using deter-

244

minants as (e.g., [13])

1

6
·

∣∣∣∣∣∣∣∣∣∣∣∣∣

1/2 1/2 0 1

2/5 1/5 1/5 1

1/3 1/3 1/3 1

1/3 1/3 1/6 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

6
·

1

180

1

6
·

∣∣∣∣∣∣∣∣∣∣∣∣∣

1/2 1/2 0 1

2/5 1/5 1/5 1

1/3 1/3 1/3 1

2/5 1/5 1/5 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

6
·

1

120
.

The set of all p1, p2, p3, p4 satisfying p1 ≥ p2 ≥ p3 ≥ p4 > 0 and p1 + p2 + p3 + p4 = 1 is determined by the 4

inequalities

p1 ≥ p2

p2 ≥ p3

p1 + p2 + 2p3 ≥ 1

p1 + p2 + p3 < 1.

These form a tetrahedron with vertices (1, 0, 0), (12 ,
1
2 , 0), (

1
3 ,

1
3 ,

1
3), (

1
4 ,

1
4 ,

1
4) whose volume is

1

6
·

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 1

1/2 1/2 0 1

1/3 1/3 1/3 1

1/4 1/4 1/4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

6
·
1

24
.

Thus the probability of randomly selecting a source from a flat Dirichlet distribution whose Huffman code is not

competitively optimal is (1
180 + 1

120)/
1
24 = 1

3 . So the probability the Huffman code is competitively optimal is

2
3 . �

6.9 Experimental evidence

We demonstrate numerically that if a source is chosen at random, then as the source size grows, the prob-

ability becomes nearly zero that a Huffman code will be competitively optimal. Experimentally, this probability is

less than 1% when the source size is at least 20. That is, with near certainty each Huffman code will be competi-

tively dominated by some other prefix code as the source size increases. This indicates that for most sources, from

a competitive advantage point of view, there really is no “best” code to use. Each code can be strictly competitively

dominated by another in never-ending cycles of code sequences.

245

One way to generate source probabilities p1, . . . , pn chosen according to a flat Dirichlet distribution is

to choose n points independently and uniformly on a circle of circumference 1 and then use the n arc lengths

between neighboring points as the desired probabilities. Such a procedure treats all sources equally and indeed

yields interesting results.

For any source of size n, exhaustively checking whether each complete prefix code competitively dom-

inates the Huffman code appears to become a computationally infeasible task as n grows, since the number of

such prefix codes grows quickly. However, Lemma 6.3.4 gives a sufficient condition for a Huffman tree to not be

competitively optimal, which allows us to obtain a lower bound on the probability that a Huffman code is not com-

petitively optimal for a given source. Thus we can randomly select many sources and determine if such a condition

holds, in which case we can then declare the Huffman code not competitively optimal. This suboptimal condition

turns out to be overwhelmingly sufficient to observe that the probability is practically zero that the Huffman code

of a randomly chosen source is competitively optimal even for relatively small source sizes.

For each source size n ∈ {3, . . . , 34}, we generated 106 sources from a flat Dirichlet distribution, i.e.,

chosen uniformly at random on the (n − 1)-dimensional simplex embedded in R
n. For each such source we

determined whether the sufficient condition of Lemma 6.3.4 was satisfied. Fig 6.2 plots for each n the fraction of

the randomly generated sources that satisfied the sufficient condition. That is, the true fraction of the randomly

generated sources for which a Huffman code was not competitively optimal lies above the plotted curve. The

observed lower bound curve quickly tends toward 1, so the true fraction of the randomly generated sources with

competitively non-optimal Huffman codes tends toward 1 as well.

For the case of n = 3, Theorem 6.8.1 guarantees that 100% of the randomly chosen sources will have

competitively optimal Huffman codes, which is exactly what was observed experimentally.

For the case n = 4, Corollary 6.8.3 gives a 2/3 probability of a randomly chosen source to have a

competitively optimal Huffman code. The experimentally observed upper bound was 66.6992%.

For n ≥ 5, one can see that the probability a randomly chosen source has a competitively optimal Huffman

code rapidly decreases towards 0, and in fact no such competitively optimal Huffman codes were observed out of

the million chosen for each n ≥ 31.

Chapter 6 is a reprint of the material as it appears in: S. Congero and K. Zeger, “Competitive advantage of

Huffman and Shannon-Fano codes”, submitted to IEEE Transactions on Information Theory, November 13, 2023.

246

n
5 10 15 20 25 30 35

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6.2. Lower bound on the fraction of 106 randomly chosen sources whose Huffman code is not competitively

optimal, as a function of the source size n. For n = 15 Huffman codewords, about 99% of randomly selected

sources did not have competitively optimal Huffman codes. For n ≥ 31, all 106 randomly chosen sources had

Huffman codes that were not competitively optimal.

247

References

[1] R. Bell and T. M. Cover, “Competitive optimality of logarithmic investment”, Mathematical Operations

Research, vol. 5, no. 2, pp. 161 – 166, May 1980.

[2] J. Berstel, D. Perrin, and C. Reutenauer, Codes and Automata, Encyclopedia of Mathematics and its Applica-

tions, Cambridge University Press, 2009.

[3] J.R. Bhatnagar, “Competitive optimality: A novel application in evaluating practical AI Systems”, Engineer-

ing Applications of Artificial Intelligence, vol. 102, article 104241, June 2021.

[4] P. Billingsley, Probability and Measure, John Wiley & Sons, New York, 1986.

[5] S. Congero and K. Zeger, “Characterizations of minimal expected length codes”, IEEE Transactions on

Information Theory, (submitted on November 13, 2023). Also available at: arXiv:2311.07007 [cs.IT].

[6] T. M. Cover, “On the competitive optimality of Huffman codes”, IEEE Transactions on Information Theory,

vol. 37, no. , pp. 172 – 174, January 1991.

[7] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd edition, New Jersey, Wiley-Interscience,

2006.

[8] L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.

[9] M. Feder, “A note on the competitive optimality of Huffman codes”, IEEE Transactions on Information

Theory, vol. 38, no. 2, pp. 436 – 439, March 1992.

[10] R. G. Gallager, “Variations on a theme by Huffman”, IEEE Transactions on Information Theory, vol. 24, no.

6, pp. 668 – 8674, November 1978.

[11] M. Khosravifard, H. Saidi, M. Esmaeili, and T. A. Gulliver, “The minimum average code for finite memo-

ryless monotone sources”, IEEE Transactions on Information Theory, vol. 53, no. 3, pp. 955 – 975, March

2007.

[12] T. Linder, V. Tarokh, K. Zeger, “Existence of optimal prefix codes for infinite source alphabets”, IEEE Trans-

actions on Information Theory, vol. 43, no. 6, pp. 2026 – 2028, November 1997.

[13] H. B. Newson, “Volume of a polyhedron”, Annals of Mathematics, vol. 1, no. 1/4, pp. 108 – 110, September

1899.

[14] K. W. Ng, G.-L. Tian, and M.-L. Tang, Dirichlet and Related Distributions: Theory, Methods and Applica-

tions, John Wiley & Sons, 2011.

[15] P. Rastegari, M. Khosravifard, H. Narimani, and T. A. Gulliver, “On the structure of the minimum average

redundancy code for monotone sources”, IEEE Communications Letters, vol. 18, no. 4, pp. 664 – 667, April

2014.

[16] H. Yamamoto and T. Itoh, “Competitive optimality of source codes”, IEEE Transactions on Information

Theory, vol. 41, no. 6, pp. 2015 – 2019, November 1995.

[17] H. Yamamoto and H. Yokoo, “Average-sense optimality and competitive optimality for almost instantaneous

VF codes”, IEEE Transactions on Information Theory, vol. 47, no. 6, pp. 2174 – 2184, September 2001.

248

