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ABSTRACT OF THE DISSERTATION

Uncertainty Reduction in Supervised Learning and Online Decision Making

by

Xinghan Wang

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Tara Javidi, Chair

In machine learning, there are two primary types of uncertainty: aleatoric uncertainty,

reflecting inherent noise in observations, and epistemic uncertainty, pertaining to model uncer-

tainty which can be reduced with more data. In both supervised and reinforcement learning tasks,

understanding and managing these uncertainties is vital for improving model performance and

reliability. In this dissertation, we study three cases of uncertainty reduction, from supervised

learning to reinforcement learning, and cover the centralized and the decentralized cases.

We first investigate decentralized learning of supervised tasks using variational Bayesian

deep networks. In this setup, agents on a peer-to-peer network collaboratively learn a global

model while maintaining potentially non-IID local data. The chapter demonstrates that each agent

xiv



eventually learns the true model parameters, achieving accurate parameter estimates based on the

structure of the communication network and the agents’ relative learning capacity. Theoretical

analyses reveal that modeling epistemic uncertainty enhances generalization capabilities in

decentralized settings, where knowledge is shared without centralized data aggregation.

We then turn to RL problems involving aleatoric uncertainty, particularly due to unknown

stochastic transitions in environments. We first introduce the Contextual Shortest Path (CSP)

problem, inspired by dynamic path planning applications such as UAVs navigating stochastic,

context-dependent paths. In this episodic MDP, an agent must learn to navigate a graph with

random, context-dependent edges. To manage aleatoric uncertainty, two baseline algorithms—

Thompson Sampling and ε-greedy—are adapted for this setting, followed by a proposed algo-

rithm, RL-CSP, which optimizes exploration across time steps, ensuring under-explored states

are visited efficiently. A theoretical bound on regret for RL-CSP is derived, and simulations are

presented to validate the algorithm’s performance across network topologies.

Next, we address multi-agent RL in decentralized linear quadratic (LQ) control, where

agents operate in partially observable linear Gaussian systems with unknown transition dynamics.

Here, aleatoric uncertainty arises from unknown system properties and partial state observations.

We present an algorithm based on Certainty Equivalence that alternates between the exploration

and exploitation phases. Regret bounds are established, and extensive simulations under various

scenarios illustrate the effectiveness of this approach.

xv



Chapter 1

Introduction

In this chapter, we will first give a high-level introduction to Federated Learning and

Reinforcement Learning problems, which serve as background to the main thesis. We will

then discuss the Multi-agent Reinforcement Learning problem as well as the structure of the

remaining chapters.

1.1 Federated Learning

Federated learning is a decentralized approach to machine learning that enables models

to be trained across multiple devices or servers without requiring them to transfer their data

to a central repository. In traditional machine learning, data from multiple sources is typically

collected and centralized on one server, where the model is trained. Federated learning, however,

flips this concept by allowing each device—whether a smartphone, IoT device, or computer—to

train a local version of the model using its own unique data. Once each device completes training,

it sends the model’s learned updates (instead of the actual data) back to a central server. The

central server then aggregates these updates from many devices to improve a shared, global

model, effectively learning from distributed data without ever centralizing it. Figure 1.1 illustrates

a typical federated learning workflow in a mobile application scenario.

This method offers several significant advantages. First, it enhances user privacy by

keeping data on users’ devices and transmitting only the model updates, not raw data. This is

1



Figure 1.1. Typical federated learning setup in a text-completion mobile app
scenario [127]

particularly beneficial for applications in sensitive areas, such as healthcare [161, 126], finance

[112], or personalized mobile edge services [154, 106], where data privacy and security are

critical. Since federated learning minimizes the need to collect data in a central location, it

reduces risks associated with data breaches or misuse.

Additionally, federated learning can lower data transmission costs. In contexts where

internet bandwidth or power is limited, such as mobile devices in remote areas, reducing the

need to upload large datasets makes the system more efficient and accessible. This decentralized

approach also supports faster adaptation to local data patterns, which means models can become

more relevant and accurate for specific user groups or geographic regions.

A prototypical federated learning setup consists of a central server and K clients. Each

client k has access to a local dataset Dk, where |Dk|= nk. The learning objective of federated

learning is to find w∗ that is shared by all clients and is the minimizer of the following objective:

w∗ = argmin
w

f (w) :=
K

∑
k=1

pkFk(w)

where Fk(·) is the local objective function for client k. Usually, this is defined as the

empirical risk calculated over the private training set Dk:

Fk(w) =
1
nk

∑
(xi,yi)∈Dk

l(xi,yi;w)

2



where l(·) is an instance-level loss (e.g., cross-entropy loss or squared error in the case of

classification or regression tasks, respectively). Furthermore, each pk ≥ 0 specifies the relative

contribution of each client. Possible settings for pk are pk =
nk

n
, where n = ∑

K
k=1 nk, or pk =

1
K

.

The generic federated round at each time t is decomposed into the following steps and

iteratively repeated until convergence [115], i.e. for t = 1,2, ...:

1. Client selection: K clients selected based on availability, etc

2. Broadcast: selected clients download global weight wt

3. Local computation: clients update local model (e.g. SGD), wk
t+1 = wt−η∇Fk(wt)

4. Server aggregation: collects clients’ model weights wk
t+1 or gradient ∇Fk(wt).

5. Model update: wt+1 = ∑
K
k=1 pkwk

t+1, or wt+1 = wt−η ∑
K
k=1 pk∇Fk(wt)

Federated learning comes with unique challenges, such as handling diverse data sources

or often called Non-IID data distributions (since each device may have very different data)

[20, 168, 102, 62], ensuring efficient communication of updates [39, 140, 135], and managing

secure aggregation methods to protect privacy [101, 157, 120].

Remark 1 (Decentralized Learning). Decentralized learning is an extension of federated learn-

ing, in that data is still distributed on clients’ devices. However, federated learning uses star

topology, which puts a communication bottleneck on a central server. Decentralized Learning

allows peer-to-peer communication among clients, therefore does away with the need for a

centralized server (Figure 1.2). Usually, a doubly stochastic communication matrix W is defined,

and clients update their local models based on weighted average of neighbors’ model/gradient,

e.g. wk = ∑ j∈Nk
Wi, jw j. Decentralized learning faces similar challenges to federated learn-

ing, including Non-IID data distribution [55, 75, 149], asynchronous local updates [130, 133],

privacy [166, 55, 75] and adversarial attacks/data poisoning [22, 66].

3



Figure 1.2. Illustration of federated learning (left) and decentralized learning
(right)

1.2 Reinforcement Learning

We now turn our attention to Reinforcement Learning (RL), which is another component

of the thesis. The intuition of RL is to train decision-making entities, called "agents", to learn

by interacting with the environment instead of learning from labeled examples as in traditional

supervised learning. Here, an agent learns by interacting with an environment, making decisions,

and receiving feedback in the form of rewards or penalties. Over time, this feedback helps the

agent understand which actions lead to success and which do not.

On a high level, the fundamental components of reinforcement learning include an

agent, an environment, actions, rewards, and states. The agent is the decision-maker, while

the environment represents everything it interacts with. Actions are choices the agent can

make, and the state represents the current situation of the environment. After each action, the

agent receives a reward—a numerical score indicating how beneficial or harmful the action was

toward achieving its goal. By repeatedly interacting with the environment, the agent’s goal is to

maximize its cumulative reward over time, often by developing a strategy or policy to make the

best possible decisions in any given state (See illustration in Figure 1.3).

Reinforcement learning is unique in its ability to solve complex, sequential decision-

making problems, making it particularly useful for applications where outcomes are based on

a series of actions rather than a single decision. For instance, RL is widely used in robotics,

where agents learn to perform tasks like grasping objects or walking [83, 132]. It’s also been

instrumental in game playing, such as Atari [74] and the groundbreaking success of AlphaGo
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Figure 1.3. Illustration of Agent-Environment interaction in Reinforcement
Learning [147]

[143], which mastered the game of Go by playing millions of games against itself. Other fields,

like finance [57], healthcare [163], and autonomous driving [81], also benefit from reinforcement

learning as it can handle dynamic and uncertain environments.

1.2.1 Multi-armed and Contextual Bandits

Perhaps the most classic and simplest (in terms of description, not to solve) RL problem

is the Multi-armed Bandit (MAB) problem. Initially introduced by William R. Thompson in an

article published in 1933 in Biometrika [152], the MAB problem was revisited in the 1950s [31]

to study learning behavior in humans, where a ‘two-armed bandit’ machine was commissioned

where humans could choose to pull either the left or the right arm of the machine, each giving a

random pay-off with the distribution of payoffs for each arm unknown to the human player. The

goal is to play the slot machine in a way that maximizes total winnings over time.

What would be the strategy to play this machine? One could play each arm of the

machine a number of times, and analyze the observed payoffs before moving forward with more

pulls. But how many times should one play before deciding an arm is better than the other?

Should one explore an option that looks inferior or exploit by going with the option that looks

best currently? This dilemma captures the one of the fundamental challenges in RL: balancing

exploration v.s. exploitation [147].

Formally, in a k-armed bandit problem, each of the k actions has an unknown mean

reward of µk if that arm is pulled. Suppose we play the machine T times. For time step t ∈ [T ],
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an action At ∈ A is taken, where A is the action space which refers to any of the k arms,

and a reward Rt ∈ R is revealed. Denote q∗(a) as the value of action a, which is the expected

reward given that a is selected, then: q∗(a) := E[Rt |At = a] = µa. If q∗(a) is known, we could

always select At = argmaxa∈A q∗(a). But since it is unknown, we would need to estimate q∗(a)

empirically, i.e. from observations of rewards of each arm. We denote that estimate as Qt(a).

One straightforward way of computing Qt(a) is using the empirical mean of each arm, i.e.

Qt(a) =
∑

t
i=1 Ri ·1Ai=a

∑
t
i=11Ai=a

At any time step, we call the one action whose Qt(a) is greatest the greedy action. When

you select the greedy action, we say that you are exploiting your current knowledge of the values

of the actions. If instead, you select one of the non-greedy actions, then we say you are exploring

because this enables you to improve your estimate of the non-greedy action’s value. Exploitation

is the right thing to do to maximize the expected reward on the one step, but exploration may

produce a greater total reward in the long run. Now we can define regret as:

R(t) =
t

∑
i=1

[
max
a∈A

q∗(a)−Rt

]

Then our goal of maximizing cumulative reward is equivalent to minimizing regret.

One way to balance exploration and exploitation in MAB is called "Explore-then-Commit

(ETC)" [136], which explores all arms uniformly at the beginning before committing to one.

Another way is called "ε-greedy" [147], where we select the greedy action most of the time but

take a little exploration with probability ε . A more involved and influential algorithm, "Upper-

Confidence-Bound (UCB)" [88, 89, 13], employs the intuition that it would be better to select

among the non-greedy actions according to their potential for actually being optimal, formally:

At = argmaxa∈A

[
Qt(a)+ c

√
ln t

Nt(a)

]
, where Nt(a) is the number of times a is selected up to t.

Another line of randomized exploration strategies is probability matching or posterior sampling,
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now more commonly known as "Thompson Sampling" [152, 139, 36], reflects the idea that the

number of pulls for a given arm should match its actual probability of being the optimal arm.

Stochastic Contextual Bandits, or usually just referred to as Contextual Bandits [15, 151],

is an extension to MAB. In contextual bandits, before choosing an action At , one is presented

with a random context Ct ∈ C . Given this context, one selects action At and receives reward Rt

in the form:

Rt = r(Ct ,At)+ηt

where r(·, ·) : C ×A →R is the reward function and ηt is some noise. If r is given, then

best action in each round is: At = argmaxa∈A r(Ct ,a). In this setting, you are essentially facing

multiple MABs: on observing Ct , you decide which MAB you are likely facing and select the

best arm corresponding to that MAB. In other words, the action you choose is conditioned on

context, At = π(a|Ct). In RL, π : C →A is called policy. The regret for contextual bandits is

therefore defined as:

R(t) = E
[ t

∑
i=1

max
a∈A

r(Ct ,a)−
t

∑
i=1

Rt

]

where the expectation is taken over the randomness of context and noise. One way to

eventually learn an optimal policy is to estimate r(c,a) for each (c,a) pair, but that space can

get prohibitively large. A simplifying assumption can be made that there exists a feature map

ψ : C ×A → Rd , and for an unknown parameter θ ∗ ∈ Rd , it holds that:

r(c,a) = ⟨θ ∗,ψ(c,a)⟩

This gives rise to Stochastic Linear Bandits [3], where in round t, one chooses an action

7



At ∈A , and receives reward:

Rt = ⟨θ ∗,At⟩+ηt

Note that if A = {e1, ...,ed}, the linear bandit reduces to a MAB. On the other hand, if

A ⊆ {0,1}d , then we have a Combinatorial Bandit [35]. Similar to MAB, where one estimates

q∗(a) while maximizing cumulative rewards, linear bandit usually requires estimating unknown

vector θ ∗. Due to this parallelism, intuitions gained from MAB can usually be transferred to

linear bandits, including UCB-type algorithms [47, 14, 72], Thompson Sampling style algorithms

[6] and Epoch-greedy [97].

1.2.2 Markov Decision Processes (MDP)

In contextual bandits, for round t, the agent sees context Ct , takes action At and receives

reward Rt ; then for round t +1, a new context Ct+1 is presented, independent from Ct , and the

process repeats. What if Ct+1 is dependent on Ct and At? This motivates us to consider a more

complex kind of RL problem: Markov Decision Processes (MDPs).

A Markov Decision Process (MDP) is usually defined by the 4-tuple: (S ,A ,r, p), where

S is called the state space, A the action space, r : S ×A → R the reward function, and

p : S ×A ×S → R the transition probabilities. At time step t, the agent observes current

state St ∈S , takes action At ∈A , and receives reward Rt = r(At ,St). It then transitions to the

next state St+1, according to p(St+1|St ,At). The goal is to maximize cumulative rewards, as in

MAB and contextual bandits. For episodic tasks, such as plays of a game or trips through a

maze, each episode ends in a special state called the terminal state. For continuing tasks, such

as process-control, there is no finite time horizon, in order for the objective to be meaningful

a discount factor γ is introduced so that the sum of the discounted rewards it receives over the

future is maximized.

Two important notions in MDPs are policies and value functions. Similar to the policy
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defined in contextual bandits, the policy for an MDP is a mapping from states to probabilities of

selecting each possible action. If the agent is following policy π at t, then π(a|s) is probability

that At = a if St = s. Given a policy π , the value function vπ(s) of a state s, is the expected reward

if the agent starts in s and follows π afterward. It is also useful to define the action-value function,

qπ(s,a), which is the expected return of taking action a in state s and following π afterward.

The optimal policy is therefore: π∗ = argmaxπ vπ(s) for state s or π∗ = argmaxπ qπ(s,a) for

state-action pair (s,a).

When transition probabilities and reward functions are known, and state/action spaces are

finite, optimal policies to achieve maximum reward can be derived through Dynamic Program-

ming type algorithms utilizing Bellman recursions, namely policy iteration and value iteration

[147], where value functions are approximated iteratively. These algorithms are called model-

based since information about the underlying MDP (i.e. the model) is required. Another line of

work named Q-learning employs the idea from temporal-difference learning (TD) and directly

approximates the action-value function q, and does away with the need for model parameters and

thus called model-free. Examples include Q-learning [155], SARSA [138, 146]; when dealing

with infinite state/action spaces, deep networks are involved for function approximation, resulting

in works like Deep Q-Networks (DQN) [116], Deep Deterministic Policy Gradient (DDPG)

[105] and TD3 [49].

It is worth mentioning that for finite state/action spaces (sometimes called tabular

MDPs), when transition probabilities and reward functions are unknown, there are model-based

algorithms that learn the model online while minimizing regret. Examples include Explicit

Explore or Exploit (E3) [76], UCB-type algorithms R-Max [29], UCRL [17] and UCRL2 [16],

and Thompson Sampling style algorithms like [129].

1.2.3 Linear Quadratic Regulators (LQR)

The MDP problem is deeply rooted in the field of optimal control [86, 87]. A simple

yet well-studied problem in optimal control is called Linear Quadratic Regulator (LQR). In
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discrete-time, the system dynamics for LQR are often represented as:

x(t +1) = Ax(t)+Bu(t)+w(t),w(t) i.i.d. noise∼N (0,σwI)

with step cost defined as (Q,R are positive semi-definite):

c(t) = x(t)T Qx(t)+u(t)T Ru(t)

The goal is to find π : X → U , that minimizes the infinite horizon averaged cost:

Jπ(θ) = limsupT→∞

1
T
Eπ [∑T

t=1 c(t)]. Notice the parallel between MDP and LQR: if we write

P(xt+1|xt ,ut) =N (Axt +But ,σwI), r(xt ,ut) = xT
t Qxt +uT

t Rut , then LQR is essentially an MDP

with infinite state/action space and infinite horizon. It is known that the cost-minimizing control

takes the form: u(t) = −K(θ)x(t), where K(θ) is derived from Algebraic Riccati Equation

(ARE) [42].

When system dynamics θ ∗ = (A,B) are unknown, RL algorithms are involved in estimat-

ing θ ∗ while minimizing costs. For model-free approaches, [63] utilizes policy gradient and [113]

considers zeroth-order methods. For model-based approaches, there exist three lines of work:

Certainty equivalence (CE), Optimism in the Face of Uncertainty (OFU) i.e. UCB-type, and

Thompson Sampling (TS). Certainty equivalence (CE) probes system with noise with diminishing

variance and estimates θ ∗ [19, 38, 46]. Optimism in the Face of Uncertainty (OFU) maintains a

confidence ellipsoid around θ ∗ and selects the most "optimistic" model [1, 40, 45, 65, 90]. Lastly,

Thompson Sampling (TS) puts prior over θ ∗ and samples model from the posterior [4, 11, 52].

1.3 Multi-Agent Reinforcement Learning Problem

Multi-Agent Reinforcement Learning (MARL) is an extension of reinforcement learning

where multiple agents interact with each other within a shared environment. In traditional

(centralized) reinforcement learning, a single agent learns to make decisions in isolation, aiming
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to maximize its cumulative reward. In MARL, each agent’s actions and decisions not only affect

its own outcomes but also potentially influence the experiences and rewards of other agents in

the environment. This introduces a layer of complexity, as agents must learn to adapt to each

other while striving to achieve their individual or shared goals.

In MARL, agents can be cooperative [109, 98], where agents work together toward a

common goal, like coordinating robots to move objects in a warehouse. They can be competitive

[108], where agents compete with each other, trying to maximize their individual rewards, as in

many games like chess or soccer. Or they can be a mixture of both [144], for instance in a driving

scenario, cars (agents) may act in their self-interest but must cooperate to avoid accidents.

Virtually all the aforementioned single agent RL problems have their multi-agent coun-

terpart: from multi-agent MAB (MAMAB) [96, 142], to multi-agent contextual/linear bandits

[150], to multi-agent MDP [70, 171], and to multi-agent LQR [11, 51]. MARL faces the same

exploration/exploitation dilemma as single agent RL, plus its own challenges, including scala-

bility, effective communication strategies, and nonstationarity. Like federated learning, these

challenges are common for a decentralized machine learning system. For a complete overview

of MARL, please see [32] and more recent [165].

1.4 Research Overview

In machine learning, there are two major types of uncertainty one can model: Aleatoric

uncertainty and epistemic uncertainty. Aleatoric uncertainty, also called statistical uncertainty,

captures noise inherent in the observations. On the other hand, epistemic uncertainty accounts

for uncertainty in the model – uncertainty which can be explained away given enough data [78].

For supervised learning tasks, recent advances in Bayesian Neural Networks (BNN)

make it possible to capture epistemic uncertainty [25]. In BNN, epistemic uncertainty is modeled

by placing a prior distribution over a deep learning model’s weights, and then trying to capture

how much these weights vary given some data. For reinforcement learning problems, aleatoric
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uncertainty originates from the stochastic nature of the environment and interactions with the

environment. There are 3 main potential sources of aleatoric uncertainty in reinforcement learning

(effectively one for each component of the MDP): stochastic rewards, stochastic observations,

and stochastic actions. The stochastic observations can stem from incomplete observations or

stochastic transition dynamics. If the transition function p in the MDP is nondeterministic, then

the transition from one state to the next is a source of aleatoric uncertainty [111].

In this dissertation, we study three cases of uncertainty reduction, from supervised

learning to reinforcement learning, and cover the centralized and decentralized (federated) cases.

In Chapter 2, we consider decentralized learning of supervised tasks with variational

Bayesian deep networks, over a peer-to-peer communication graph. We show that for the

realizable case, each agent will eventually learn the true parameters associated with the global

model, with potentially non-IID local data distributions. We further provide an analytical

characterization of the rate of convergence of the posterior probability, essentially epistemic

uncertainty for model weights, at each agent in the network as a function of network structure and

local learning capacity as measured by the relative entropy. Empirically, allowance of epistemic

uncertainty enables better generalization capabilities in a decentralized learning setting.

In Chapter 3 and 4, we turn our attention to reinforcement learning problems, focusing

on uncertainties originating from unknown stochastic transition dynamics. In Chapter 3, we

study a new class of episodic MDP problems, which we call the Contextual Shortest Path (CSP)

problems. The problem is motivated by dynamic path planning and obstacle avoidance for

UAV and drone applications. An agent navigates an undirected graph with stochastic edges,

where random edge realizations are augmented with richer contexts that can change over time.

Aleatoric uncertainty in this case is from unknown stochastic context distributions given each

state-action pair. When the context distributions are unknown and need to be learned online, we

first adapt two algorithms as our baselines, one based on Thompson Sampling and the other based

on ε-greedy exploration. We then propose a novel reinforcement learning algorithm, RL-CSP,

which intelligently distributes exploration episodes over the time horizon and ensures the agent
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visits under-explored states. We bound the regret for RL-CSP, and augment the theoretical

results with simulations over various network topologies.

In Chapter 4, we study a class of Multi-Agent Reinforcement Learning (MARL) problem

called the decentralized linear quadratic (LQ) control problem. In this case, aleatoric uncertainty

stems from unknown transition dynamics and partial state observations in a linear Gaussian

system. In our proposed algorithm, we partition time steps into exploitation and exploration

intervals. During the exploration phase, we employ Least Square Estimation (LSE) techniques to

obtain local partial system model estimates. These estimates are then shared between agents at

the end of each exploration interval. Subsequently, both agents compute Certainty Equivalence

controllers, which they apply during the exploitation interval. We analyze the algorithm in terms

of its regret bound, and provide extensive numerical analysis under three scenarios that support

our theoretical results.
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Chapter 2

Peer-to-Peer Variational Federated Learn-
ing over Graphs

In this chapter, we consider decentralized learning of supervised tasks. We propose

a federated supervised learning framework over a general peer-to-peer network with agents

that act in a variational Bayesian fashion. The proposed framework consists of local agents

where each of which keeps a local "posterior probability distribution" over the parameters of

a global model; the updating of the posterior over time happens in a local fashion according

to two subroutines of: 1) variational model training given (a batch of) local labeled data, and

2) asynchronous communication and model aggregation with the 1-hop neighbors. Inspired by

the popular federated learning (model averaging), the framework allows the training data to

remain distributed on mobile devices while utilizing a peer-to-peer model aggregation in a social

network.

The proposed framework is shown to allow for a systematic treatment of model aggrega-

tion over any arbitrary connected graph with consistent (in general, non-iid) local labeled data.

Specifically, under mild technical conditions, the proposed algorithm allows agents with local

data to learn a shared model explaining the global training data in a decentralized fashion over

an arbitrary peering/connectivity graph. Furthermore, the rate of convergence is characterized

and shown to be a function of each individual agent’s data quality weighted by its eigenvector

centrality. Empirically, the proposed methodology is shown to work well with efficient variation
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Bayesian inference techniques to train Bayesian neural networks in a decentralized manner even

when the local data batches are not identically distributed.

2.1 Introduction

Personal edge devices can often use their locally observed data to learn machine learning

models that improve the user experience. However, the use of local data for learning globally

rich machine learning models has to address two important challenges. First of all, this type

of localized data, in isolation from the data collected by other devices, might be statistically

insufficient to learn a global model. Secondly, there might be severe restrictions on sharing raw

forms of personal/local data due to privacy and communication cost concerns. In light of these

challenges and restrictions, an alternative approach has emerged which leaves the training data

distributed on the edge devices while enabling the decentralized learning of a shared model. This

alternative, known as Federated Learning, is based on edge devices’ periodic communication

with a central (cloud-based) server responsible for iterative model aggregation. While addressing

the privacy constraints on raw data sharing, and significantly reducing the communication

overload as compared to synchronized stochastic gradient descent (SGD), this approach falls

short in fully decentralizing the training procedure. Many practical peer-to-peer networks are

dynamic and a regular access to a fixed central server, which coordinates the learning across

devices, is not always possible. Existing methods based on federated learning cannot handle such

general networks where central server is absent and/or when the data has severe heterogeneity

across the network.

To summarize, some of the major challenges encountered in a fully decentralized learning

paradigm are: (i) Statistical Insufficiency and non-IID Data Distributions: The local and

individually observed data distributions are likely to be less rich than the global training set.

For example, a subset of features associated with the global model may be missing locally. (ii)

Restriction on Data Exchange: Due to privacy concerns, agents do not share their raw training
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data with the neighbors. Furthermore, model parameter sharing has been shown to reduce

the communication requirements significantly. (iii) Lack of Synchronization: There may not

be a single agent with whom every agent communicates, which can synchronize the learning

periodically. (iv) Localized Information Exchange: Agents are likely to limit their interactions

and information exchange to a small group of their peers which can be viewed as the 1-hop

neighbors on the social network graph. Furthermore, information obtained from different peers

might be viewed differently, requiring a heterogeneous model aggregation strategy.

Contributions: We consider a fully decentralized learning paradigm where agents

iteratively update their models using local data and aggregate information from their neighbors

to their local models. In particular, we consider a learning rule where agents take a variational

(Bayes) learning approach via the introduction of a posterior distribution over a parameter space

characterizing the unknown global model.

Our contributions are as follows:

1. On the algorithmic side, our decentralized learning rule is inspired by works on social

learning, distributed hypothesis testing literature [94, 141, 124, 92]. Our social learning

rule builds on our recent work on federated log posterior averaging [95, 93] and generalizes

posterior averaging proposed in [7].

2. We provide the first theoretical guarantees for the realizable case where the hypothesis

(parametric model) class contains the true labeling function.

• We prove that, under mild technical assumptions, each agent will eventually learn

the true parameters associated with global model, with potentially non-IID local data

distributions.

• We provide analytical characterization of the rate of convergence of the posterior

probability at each agent in the network as a function of network structure and local

learning capacity as measured by the relative entropy.
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3. Unlike prior work, we allow a general network structure as well as non-IID data dis-

tributions. As a consequence, our work provides first known theoretical guarantees on

convergence for a variational federated learning on an arbitrary connected graph.

4. In addition to our theoretical results, we investigate the performance of our proposed

variational learning empirically.

• We show that the practical advantage of our approach for non-IID data over the

classical federated averaging especially as the complexity of the task increases.

• We illustrate the impact of social network structure on the model convergence.

• We also demonstrate the ability of our approach to scale up in a time-varying asyn-

chronous network.

• We demonstrate the ability of our approach to deal with all 4 cases of non-IID local

data.

In this regard, our work bridges the theoretical gap between decentralized training

methodologies, Bayesian statistical learning, distributed hypothesis testing, and the computa-

tional advantages of variational Bayes’ methods.

Related Work: Our fully decentralized training methodology extends federated learn-

ing [84, 85, 115] to general graphs in a Bayesian setting and does away with the need of having

a centralized controller or IID data distribution across the network. Our learning rule generalizes

various Bayesian inference techniques such as [125, 25, 30, 80] and variational continual learning

techniques such as [125, 30] to the decentralized learning/training case.

Our work can be viewed as a Bayesian variant of communication-efficient methods

based on Stochastic Gradient Descent (SGD) [145, 37, 107] that allow the agents to make

several local computations and then periodically average the local models, with the consensus

step inspired by previous works on social learning and distributed hypothesis testing [94, 141,

124, 92]. We contrast our work with the vast literature on decentralized optimization based on
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SGD [43, 156, 148, 27, 103, 68, 71, 123, 104, 69, 122, 12], where local (stochastic) gradients

are computed for each instance of data and communication happens at a rate comparable to

number of local updates. The communication rules of decentralized SGD methods originate

from prior works on distributed averaging [28, 160], and are either gossip-based for doubly

stochastic communication matrix [104, 68, 103], or PushSum-based [77] for column stochastic

communication matrix [122, 12]. In these works typically strong convexity of local objective

functions is assumed, with nodes having IID data, and the algorithms and theoretical results

are presented in the realizable setting, where there exist a parameterization of the model that

agrees with the true underlying data generating model. For an overview on the decentralized

optimization methods refer to the survey [123].

We also note the relation and difference between our work and decentralized variational

Bayesian inference [34, 30]. While these works and ours utilize Bayesian learning agents, [34]

merges the local posteriors in a one-shot manner after observing all data, and [30] works in a

streaming setting where data is distributed from a central server and the goal is infer the posterior

relevant to the most recent data. Our work combines the advantage of allowing uncertainty

from using a Bayesian-like posterior, and the periodic averaging aspect from FedAvg [115]. A

recent work [7] fits Gaussian posteriors to local datasets in a federated way, however it is unable

to provide theoretical guarantees on convergence rate and can be viewed as a special case to

our work when the problem is realizable and posterior distribution can shown to remain in the

Gaussian family.

Notations: We use boldface for vectors v and denote its i-th element by vi. Let [n] = {1,2, . . . ,n}.

Let P(A) and |A| denote the set of all probability distributions and the number of elements

respectively on a set A. Let G(θ ,σ2) denote the pdf of a Gaussian random variable with mean

θ and variance σ2. Let DKL(PZ||P′Z) be the Kullback–Leibler (KL) divergence between two

probability distributions PZ,P′Z ∈P(Z ).
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2.2 The Model: Decentralized Learning

In this section, we formally describe the label generation model at each node, the

communication graph, and a criterion for successful learning over the network.

Consider a group of N individual nodes. Each node i ∈ [N] has access to a dataset

D (i) consisting of instance-label pairs,
(

X (i)
t ,Y (i)

t

)
where i ∈ [N] and t ≥ 1. Each instance

X (i)
t ∈Xi ⊆X , where Xi denotes the local instance space of node i and X denotes a global

instance space X ⊆ ∪N
i=1Xi. Similarly, let Y denote the set of all possible labels over all the

nodes1. The samples
{

X (i)
1 ,X (i)

2 , . . . ,X (i)
t

}
are independent and identically distributed (IID) over

time, and are generated according to a distribution P
(i)
X ∈P(Xi). We view the model generating

the labels for each node i as a probabilistic model with a distribution PY |X(y|x), ∀y∈Y ,∀x∈X .

The learners’ objective is to (collaboratively) approximate the probabilistic labeling

function PY |X(y|x) with a parametric probabilistic model f (· |X ,θ) with θ ∈Θ⊆Rd representing

the model parameter(s). The next two examples highlight the two complementary and necessary

components of learning here: 1) model training utilizing local data, and 2) communication and

model aggregation across many agents.

Example 1 (Decentralized Linear Regression). Consider a linear regression problem [24]

with PX denoting the input distribution over Rd and latent variable θ ∗ ∈ Rd , which for

each input x ∈ Rd generates a label y ∈ R as y = ⟨θ ∗,x⟩+η , where η ∼N (0,α2). Now

consider the problem of two agents learning labeling function PY |X(· | x)∼N (⟨θ ∗,x⟩,α2)

where the agents’ local input distributions is restricted to the marginal distributions over

sets X1 := {x ∈ Rd : [x1, . . . ,xm,0, . . . ,0]} and X2 := {x ∈ Rd : [0, . . . ,0,xm+1, . . . ,xd]}

for some integer m. Let P(1)
X be the input distribution with support over X1 and P

(2)
X be

the input distribution with support over X2 and define PX(x) := P
(1)
X (x1:m)×P

(2)
X (xm+1:d)

for any x ∈ Rd . It is clear that the observed input distribution for learner 1 lies in X1,

hence learner 1, in isolation, can only learn the first m coordinates of the inputs; similarly,

1Some examples include, Y = R for regression and Y = {0,1} for binary classification.
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learner 2 can only access the remaining d−m coordinates locally.

Example 2 (Decentralized Classification with Bayesian Neural Networks). Consider the

problem of training a neural network (NN) with weights θ ∈Rd and output layer f (· | x,θ)

to approximate the true probabilistic labeling function PY |X(· | x)2 generating labels in Y .

Two variational (Bayesian) learners rely on labeled training data (X (i)
t ,Y (i)

t ) which are

generated according to a distribution P
(i)
X ∈P(Xi) to calculate the posterior distribution

of the weights P(θ | D) given the training data3. Two agents are tasked to arrive at a

classifier even when their observations are restricted to non-overlapping partitions of the

label space, Y1 and Y2 and the input distributions P(1)
X , and P

(2)
X .

In both examples above, neither learners can learn the global modeling in isolation unless

there is a method for communication and model aggregation.

Centralized Variational Learning: We first consider the centralized setting as a bench-

mark in which a (super-)learner is assumed to have access to all agents’ training data samples

D = {(X (i)
t ,Y (i)

t ) ∈ (X ,Y )}i∈[N],t≥1, where samples are independent and identically distributed

(IID) across time with joint distribution PXY = PXPY |X and PX is a measure on X . This central-

ized learner approximates the true probabilistic labeling function with a parametric probabilistic

model with θ ∈Θ.

Towards this objective, a variational (Bayesian) learner places a prior q(0) = pθ ∈P(Θ)

on the latent parameter/variable θ and computes the posterior distribution q(t)(θ |D) ∈P(Θ)

after observing D1:t = {(Xs,Ys)}1≤s≤t = {(X
(i)
s ,Y (i)

s ) ∈ (X ,Y )}i∈[N],1≤s≤t . These updates

follow the variational learner’s preference and iterative fashion:

q(t) = argmin
π∈Q

{
DKL

(
π

∥∥∥q(t−1)
)
+Eπ [− log f (Yt | Xt , ·)]

}
. (2.1)

2For the case of classification, f (· | x,θ) denotes the final softmax layer, and for the case of regression, f (· | x,θ)
is a Gaussian distribution with mean as NN output f (· | x,θ)

3While exact Bayesian inference on the weights of a neural network is intractable due to large parameter space,
in the recent years variational methods to approximate exact Bayesian updates enables Bayesian NN to be learned
in a computationally efficient manner [80, 25, 54].
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Bernstein–von Mises theorem under model misspecification [82] (See Theorem 4 in

Appendix A) asserts that the posterior converges to a point mass at θ ∗, explaining the observed

labeling distribution:

θ
∗ ∈ argmin

θ∈Θ

EPX [DKL(PY |X(· | X)|| f (· | X ,θ))] (2.2)

Note that given posterior q(t)(θ |D1:t), the predictive distribution of the label of a new

test input X̂ sampled from PX is given by

Pt(· | X̂) :=
∫

f (· | X̂ ,θ)dq(t)(θ |D1:t)

This means that as the posterior q(t)(θ |D1:t) concentrates on θ ∗, the predictive label distribution

converges to the best explanation for the observed data.

Definition 1. A learning problem is said to be realizable if there exists a θ ∗ ∈ Θ such that

f (· | X ,θ ∗) = PY |X(· | X) almost surely under PX . In this case, as shown in Equation (2.2), it is

possible to derive the expected loss to zero.

Decentralized Variational Learning: In this setting, while that the data samples across

all learners are labeled by the same unknown probabilistic labeling function PY |X(y | x) for all

y ∈ Y given any x ∈X , each agent only has access to local data. In other words, each agent

i ∈ [N] approximates this labeling function by f (i)(· | X ,θ) for any X ∈X . The goal is to agree

on a global labeling function f parameterized by θ ∈Θ which approximates PY |X optimally with

respect to the global distribution PX . Formally, the agents are required to collectively optimize

the following objective function:

θ
∗ = argmin

θ∈Θ

N

∑
i=1

EPX [DKL(PY |X(· | X)|| f (i)(· | X ,θ))].

In this work, we assume variational (Bayesian) agents: agent i places a prior q(0)i = p(i)
θ
∈
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P(Θ) on the latent variable θ and infers the posterior distribution q(t)i (θ |D (i)
1:t ) ∈P(Θ) after

observing t batches of local data, D
(i)
1:t = (X (i)

s ,Y (i)
s )1≤s≤t , drawn IID from the distribution P

(i)
XY .

Let us first consider the case of an isolated variational learner whose posterior updates

are limited to D (i). In this setting, agent i’s observation is shaped by the local data distribution

and might be informationally deficient with respect to the global model. When P
(i)
XY = PXY for

all i, then Bernstein-Von Mises Theorem states that the posterior distribution P(θ |D (i)
1:t ), where

D
(i)
1:t := {(X (i)

τ ,Y (i)
τ ) : τ ∈ [t]}, is guaranteed to converge to a globally consistent parameter. In

this case, statistically the agents can all learn the global model from local data and there is no

need for communication except for boosting the convergence rate.

Definition 2. We call the local datasets to have non-IID data distributions when there exists

i ∈ [N] for which P
(i)
XY ̸= PXY . Prior work in federated learning [73, 100, 169] summarizes the

following cases of non-IID data distribution:

1. label distribution skew: PY ̸= P
(i)
Y .

2. feature distribution skew: PX ̸= P
(i)
X .

3. same label different features: PX |Y ̸= P
(i)
X |Y .

4. quantity skew: PXY = P
(i)
XY , but the number of data samples on each learner is different.

When the data available to agents locally have non-IID distributions, i.e. P(i)
XY ̸= PXY ,

there is no guarantee that the local models will converge in a globally consistent manner.

Therefore, each learner i must aim not only to arrive at a good approximation to its local

observations, D (i) = {(X (i)
t ,Y (i)

t )}t≥1, but also collaborate with other agents to ensure consenting

on a consistent model across. This all suggests that minimizing (2.2) requires communications

across learners, which gives rise to our communication model and necessitates our decentralized

learning rule.

Before we provide the communications/social network graph model, we note that if

P
(i)
XY = PXY for all learners i ∈ [N], then the distributions of local dataset of all learners are
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identical with the global distribution. This case, which is known as federated learning with IID

data distribution, is not the focus of this work. It is simple to note that if D (i)= {(X (i)
t ,Y (i)

t )}t≥1 is

identically distributed across nodes according to the joint distribution PXY (x,y) = PX(x)PY |X(y |

x) = PY (y)PX |Y (x | y), then each agent is informationally equivalent to the centralized learner in

that the agent is only required to wait longer to essentially receive n times more training data.

In other words, in our analysis, we do not consider the problem of data quantity skew across

the agents [169] since when PXY = P
(i)
XY , the difference in the number of data samples on each

learner only impacts the rate of learning and not the convergence to θ ∗ itself which is the focus

of this work. We do, on the other hand, consider this phenomenon in our experiments.

Arbitrary Graph for Communication and Model Aggregation: We model the commu-

nication between learners via a directed graph with vertex set [N]. We define the neighborhood

of learner i, denoted by N (i), as the set of all learners j who have an edge going from j to i. We

assume i ∈N (i). Furthermore, if learner j ∈N (i), learner i receives information from learner

j. The social interaction of the learners is characterized by a stochastic matrix W , ∑
N
j=1Wi j = 1

and Wii = 1−∑
N
j=1, j ̸=iWi j. The weight Wi j ∈ [0,1] is strictly positive if and only if j ∈N (i).

The weight Wi j denotes the confidence learner i has on the information it receives from learner j.

2.3 Peer-to-peer Variational Learning over an Arbitrary
Graph

We now present our peer-to-peer variational learning rule. We assume that at each

time instant t ≥ 0, every learner i ∈ [N] gets a batch of B observations in the following form:

(X(i)
t ,Y(i)

t ) = (X (i)
Bt+1:B(t+1),Y

(i)
Bt+1:B(t+1)). Let Θ denote the latent variable space and typically

we choose Θ = Rd for some d > 1. Each learner takes a Bayesian-like approach and places

a prior distribution p(i)
θ
∈P(Θ) over the latent variable. Let q(t)i denote the density of the

posterior maintained by each learner i at time t. We introduce a decentralized learning rule which

generalizes a learning rule considered in the social learning literature [124, 141, 92], to obtain
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the posterior q(t)i at each learner i at every time instant t. We restrict posterior distributions to a

predetermined family of parametric distributions. This allows us to implement the decentralized

algorithm in a computationally tractable manner. Let Q ⊆P(Θ) be a family of posterior

parametric distributions.

Each learner i starts with q(0)i = p(i)
θ

and at every time step t ≥ 0 the following events

happen at every learner i ∈ [N]:

1. Draw a batch of B i.i.d samples
(

X(i)
t ,Y(i)

t

)
from distribution P

(i)
XY .

2. Approximate Bayesian Update Step: Approximate the local Bayesian update on q(t−1)
i

to form a public posterior b(t)i using the following rule:

b(t)i = argmin
π∈Q

{
DKL

(
π

∥∥∥q(t−1)
i

)
+Eπ

[
− log f

(
Y(i)

t | X
(i)
t , ·
)]}

. (2.3)

3. Communication Step: Learner i sends b(t)i to learner j if i ∈N ( j) and receives b(t)j from

neighbors j ∈N (i).

4. Consensus Step: Update posterior distribution by averaging the log posterior distributions

received from neighbors, i.e., for each θ ∈Θ,

q(t)i (θ) =
exp
(

∑
N
j=1Wi j logb(t)j (θ)

)
∫

Θ
exp
(

∑
N
j=1Wi j logb(t)j (φ)

)
dφ

. (2.4)

Remark 2 (Approximate Bayesian update). Minimization performed in Equation (2.3) is referred

to as Variational Inference (VI) and the minimand is referred to as the variational free energy or

evidence lower bound (ELBO) [121, 25, 80, 54].

Remark 3 (Gaussian Case). The variational computation as well as the normalization involved

in consensus step (Equation (2.4)) require multi-dimensional integration. However, in most

practical application Gaussian posterior distributions are used to approximate the true posterior
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and the consensus step reduces to updating the mean and covariance matrices. We will show

this in Lemma 1 in Section Sec. 2.4. This also shows that our algoirthm is closely related to the

algorithm proposed in [7] where instead of following a consensus step on log posteriors, the

authors propose a direct averaging of posteriors.

2.4 Main Results

In this section, we first provide our analytical guarantee for the convergence of our pro-

posed algorithm. Additionally, we provide a special case of our algorithm where the variational

posterior class Q is chosen to be Gaussian. This special case, which later is used in Section 2.5

is shown to reduce the complexity of the algorithm substantially and allow for a closed form

characterization of our consensus step.

We now make the following assumptions for the main theorem.

Assumption 1. The network is a connected aperiodic graph. Specifically, W is an aperiodic and

irreducible stochastic matrix.

Assumption 2. For all agents i ∈ [N], assume: (i) The prior b(0)i (θ)> 0 for all θ ∈Θ. (ii) There

exists an α > 0, L > 0 such that α < f (i)(y | x,θ)< L, for all y ∈ Y , θ ∈ Θ and x ∈X . This

guarantees the log-likelihood ratio
∣∣∣∣ log f (i)(y|x,θ)

f (i)(y|x,θ ′)

∣∣∣∣ is bounded for all i ∈ [N], y ∈ Y , θ ∈Θ and

x ∈X .

Assumption 3. Let parameter set Φ be a compact subset of Rd , and assume there exists a

quantization of Φ with quantization points in Θ such that Θ is an r-covering of Φ. Specifically,

we assume there exists a set Θ ⊂ Φ of finite cardinality M that is an r-covering of Φ, i.e.

Φ⊂ ∪θ∈ΘBr(θ), where Br(θ) :=

{
ψ ∈Φ :

1
N

N

∑
i=1

EPX [DKL( f (i)(· | X ,θ)|| f (i)(· | X ,ψ))]≤ r
}
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Assumption 4. For all agents i ∈ [N], there exists an optimal θ ∗ ∈Φ, such that f (i)(· | X ,θ ∗) =

PY |X(· | X) almost surely under PX .

These assumptions are natural. Assumption 1 states that one can always restrict attention

to the connected components of the social network where the information gathered locally by the

agents can be disseminated within the component. Assumption 2 prevents the degenerate case

where a zero Bayesian prior prohibits learning. Assumption 3 assumes when θ is continuous it

belongs to a compact set Φ⊂ Rd . Assumption 4 assume the learning problem is realizable for

all agents.

Theorem 1. Let Q = P(Θ) and ε > 0. Under assumptions 1, 2, 3 and 4, with potentially

non-IID local dataset as defined in Definition 2, using the decentralized learning algorithm

in Sec. 2.3, with probability at least 1−δ we have

max
i∈[N]

max
θ∈Θ\Br(θ∗)

b(T )i (θ)< e−T (K(Θ)−ε)

when the number of communication rounds satisfies T ≥ 8C log N|Θ|
δ

ε2(1−λmax(W ))
, where we define the rate

of convergence of the posterior distribution as follows

K(Θ) := min
θ∈Θ\Br(θ∗)

N

∑
j=1

v jI j(θ
∗,θ), (2.5)

and I j(θ
∗,θ) := E

P
( j)
X
[DKL(PY |X(·|X)|| f ( j)(· | θ ,X)) - DKL(PY |X(·|X)|| f ( j)(· | θ ∗,X))],

where eigenvector centrality v = [v1,v2, . . . ,vN ] is the unique stationary distribution of W with

strictly positive components, furthermore define λmax(W ) := max1≤i≤N−1 λi(W ), where λi(W )

denotes i-th eigenvalue of W counted with algebraic multiplicity and λ0(W ) = 1, and C :=∣∣log L
α

∣∣.
Proof of the Theorem 1 is provided in the Appendix A and relies on the following remark.
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Remark 4. If Q =P(Θ), then update performed in equation (2.3) reduces to a Bayesian update

with prior q(t−1)
i and likelihood function f (i)

(
Y(i)

t | X
(i)
t , ·
)

, i.e., for θ ∈Θ,

b(t)i (θ) =
f (i)
(

Y(i)
t | X

(i)
t ,θ

)
q(t−1)

i (θ)∫
Θ

f (i)
(

Y(i)
t | X

(i)
t ,φ

)
q(t−1)

i (φ)dφ

. (2.6)

Remark 5. Proof of Theorem 1 relies on Assumption 4, i.e. the realizable learning problems.

We conjecture that this assumption can be relaxed to arrive at a decentralized variant of of

Bernstein-Von Mises Theorem. While, this extension remains an interesting future research

direction, we investigate relaxing the assumption empirically in Section 2.5 where we consider

the non-realizable case of decentralized training of a neural networks over an arbitrary network

with non-IID data.

Remark 6. Theorem 1 indicates the posterior belief over the parameters θ outside of Br(θ
∗)

shrinks to zero exponentially fast, with exponent characterized by K(Θ). The rate of convergence

characterized by (2.5) is a function of the agent’s ability to distinguish between the parameters

given by the KL-divergences and structure of the weighted network which is captured by the

eigenvector centrality v of the agents. Hence, every agent influences the rate in two ways. Firstly,

if the agent has higher eigenvector centrality (i.e. the agent is centrality located), it has larger

influence over the posterior distributions of other agents as a result has a greater influence over

the rate of exponential decay as well. Secondly, if the agent has high KL-divergence (i.e highly

informative local observations that can distinguish between parameters), then again it increases

the rate. If an influential agent has highly informative observations then it boosts the rate of

convergence. We will illustrate this through extensive simulations in Sec. 2.5.

Corollary 1 (Average expected loss). Define θ̂
(t)
i := argmaxθ∈Θ b(t)i (θ). Let l(ŷ,y) denote

the loss function of predicting ŷ given true label y. The expected loss of agent i under θ is

given by Li(θ) = EPX [
∫
Y l(ŷ,y) f (i)(ŷ | x,θ)dy]. Assume |l(ŷ,y)| ≤ B for any ŷ,y ∈ Y . Under

assumptions 1, 2, 3 and 4, using the decentralized learning algorithm in Sec. 2.3, with probability
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at least 1−δ we have

1
N

N

∑
i=1
|Li(θ

∗)−Li(θ̂
(T )
i )| ≤ B

√
r

2

When the number of communication rounds satisfies T ≥ 8C log N|Θ|
δ

ε2(1−λmax(W ))
.

Proof of Corollary 1 is provided in the Appendix A.

Corollary 2. Let Θ⊂Rd be a finite set, i.e. Θ = {θ1, ...,θM}. Let Q =P(Θ) and ε > 0. Under

assumptions 1, 2, and assume for all agents i ∈ [N], there exists an optimal θ ∗ ∈ Θ, such that

f (i)(· | X ,θ ∗) = PY |X(· | X) almost surely under PX . Then using the decentralized learning

algorithm in Sec. 2.3, with probability at least 1−δ we have

max
i∈[N]

max
θ ̸=θ∗

b(T )i (θ)< e−T (K(Θ)−ε)

when T ≥ 8C log NM
δ

ε2(1−λmax(W ))
, and the rate of convergence is: K(Θ) = minθ ̸=θ∗∑

N
j=1 v jI j(θ

∗,θ).

At the end of this section, we discuss a special case of our algorithm where in both

variational training and consensus step, we restrict our attention to the family of Gaussian

distributions. Let Q denote the family of Gaussian posterior distributions with pdf given by

G(µ,Σ).

Here we first note that If Q ⊊ P(Θ), equation (2.3), finds a distribution π ∈Q which

satisfies the following

argmin
π∈Q

DKL

π

∣∣∣∣∣∣
∣∣∣∣∣∣

f (i)
(

Y(i)
t | X

(i)
t ,θ

)
q(t−1)

i (θ)∫
Θ

f (i)
(

Y(i)
t | X

(i)
t ,φ

)
q(t−1)

i (φ)dφ

 . (2.7)

In other words, equation (2.7) projects the distribution obtained via equation (2.6) onto the

allowed family of posterior distributions Q by employing KL-divergence minimization.
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Lemma 1 (Posterior merging with Gaussians). Let (µ(t)
i ,Σ

(t)
i ) denote the mean and the covari-

ance matrix of b(t)i at learner i. Then the posterior distribution q(t)i obtained after the consensus

step also belongs to Q. Furthermore, the closed-form update of the mean and covariance matrix

(µ̃
(t)
i , Σ̃

(t)
i ) of q(t)i is given as follows

(Σ̃
(t)
i )−1 =

N

∑
j=1

Wi jΣ
(t)
j
−1
, µ̃

(t)
i = Σ̃

(t)
i

N

∑
j=1

Wi j(Σ
(t)
j )−1

µ
(t)
j . (2.8)

Derivation of equation (2.8) is provided in the Appendix A.

2.5 Experiments

We construct experiments in the decentralized Bayesian linear regression setup (Example

1) and decentralized classification setup (Example 2) over synthetic and real-world benchmark

datasets. We demonstrate the performance of the proposed decentralized learning rule in all

cases of non-IID data distributions mentioned in Definition 2. Furthermore, we discuss the effect

of eigenvector centrality on the rate of convergence, compare our learning rule with FedAvg

[115] over a federated dataset, and show how our method scales with larger number of agents in

a time-varying network.

2.5.1 Decentralized Bayesian Linear Regression

To illustrate our approach, we construct an example of Bayesian linear regression (Exam-

ple 1) in the realizable setting over the network with 4 agents. Let θ
∗ = [−0.3, 0.5, 0.5, 0.1]T

and let noise be distributed as η ∼N (0,α2) where α = 0.8. Agent i makes observations (x,y),

where x = [0 . . . ,0,xi,0, . . . ,0]T and xi is sampled from Unif[−1,1] for i = 1, Unif[−1.5,1.5]

for i = 2, Unif[−1.25,1.25] for i = 3, and Unif[−0.75,0.75] for i = 4. We assume each agent

starts with a Gaussian prior over θ with zero mean vector and covariance matrix given by

diag[0.5,0.5,0.5,0.5], where diag(x) denotes a diagonal matrix with diagonal elements given by

vector x. The social interaction weights are given as W1 = [0.5,0.5,0,0], W2 = [0.3,0.1,0.3,0.3],
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Figure 2.1. Mean Squared Error (MSE) of the predictions over a test dataset un-
der two cases: (i) all agents, despite the severe deficiency of their observations,
learn without cooperation using local training data only, and (ii) agents learn
using the proposed decentralized learning rule. The black curve represents a
benchmark scenario a central agent learns the model with access to all coordi-
nates of the training data.

W3 = [0,0.5,0.5,0] and W4 = [0,0.5,0,0.5]. Since each agent starts with a Gaussian prior over

Θ, the posterior distribution after a Bayesian update remains Gaussian, which implies Q remains

fixed as the family of Gaussian distributions and the consensus step reduces to equation (2.8).

We show that our proposed social learning framework enables a fully decentralized and

fast learning of a global model even when the local data is severely deficient. More specifically,

we assume that each agent makes observations along only one coordinate of x even though the

global test set consists of observations belonging to any x. Note that this is a case of extreme

non-IID data partition across the agents and corresponds to case (2) of non-IID in Definition 2.

Fig. 2.1b shows that the MSE of all agents, when trained using the decentralized learning rule, is

much lower than training separately with no communication, and matches that of a central agent,

implying that the agents converge to the true θ
∗ as our theory predicts.

2.5.2 Decentralized Image Classification

To illustrate the performance of our learning rule on real datasets we consider the problem

of decentralized training of Bayesian neural networks for an image classification task on the
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MNIST digits dataset [99], the Fashion-MNIST (FMNIST) dataset [159] and the Federated

Extended-MNIST dataset from LEAF [33]. For all our experiments we consider multilayered

Bayesian NN and employ Monte Carlo to obtain the predictions.

We divide the training dataset into non-overlapping subsets. Hence, agents must learn

b(n)
i such that the resulting predictive distribution can perform well over the global dataset

without sharing the local data and hence not having seen input example associated with the labels

that are missing locally.

Comparison to FedAvg on federated dataset

In this section, we compare the proposed decentralized update rule with Federated

Averaging (FedAvg) [115] on a public federated dataset called Federated Extended-MNIST

(FEMNIST) [33]. The Federated Extended-MNIST (FEMNIST) dataset is part of LEAF, a

benchmark dataset for federated learning [33]. The dataset has handwritten digits and lower/upper

case alphabets by different writers, therefore there is a total of 62 labels, namely [0, ...,9] and

[a, ...,z,A, ...,Z]. The dataset has a total of 3550 writers with an average of 226 images per

writer, where the images are of size 28 by 28. In the experiment setup, each learner only sees

digits/alphabets from a single writer, therefore there is significant feature skew (case (2) of

non-IID in Definition 2).

For this experiment we use a multi-layer Convolutional Neural Network. The input

image is first passed through a convolution layer with 6 channels, size 5 by 5, followed by a

2DMaxpool of size 2 by 2 and a ReLU. Then the output goes through another convolution layer

with 16 channels, size 5 by 5, followed by a 2DMaxpool of size 2 by 2 and a ReLU. Then the

output is forwarded to 2 linear layers with 784 and 120 hidden units each. We choose Q to be the

family of Gaussian mean-field approximate posterior distributions with pdf given by G(θ ,µ,Σ),

where Σ is a strictly diagonal matrix [25, 125]. As discussed in Remark. 4 this corresponds

to performing variational inference to obtain a Gaussian approximation of the local posterior

distribution, i.e., minimizing the variational free energy given in equation (2.3) over Q. While
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Figure 2.2. Figure shows average accuracies over all nodes of proposed decen-
tralized learning algorithm and FedAvg on FEMNIST dataset.

we compute the KL divergence in (2.3) in a closed form, we employ simple Monte Carlo to

compute the gradients using Bayes by Backprop [25, 80].

To emulate the federated learning setup, where the beliefs of all learners are merged

with equal weight to form a public belief, we use a densely connected network with Wi j = 1/N

for all i, j ∈ [N]. We note that FedAvg can also be viewed as a decentralized SGD method

over a fully connected network. We use a total of 50 learners, chosen randomly from the 3550

available writers. We use local training batch size B = 10, local epochs E = 1 and a total of 3000

communication rounds for digits only and 5000 communication rounds for digits and alphabets.

For all agents, we use Adam optimizer [79] with initial learning rate of 0.001 and learning rate

decay of 0.99 per communication round.

On only digits, our method is on par with FedAvg, with accuracy ∼ 96%. On both

digits and alphabets, our method significantly outperforms FedAvg with accuracy over 83%

after 5000 communication rounds, comparing to ∼ 69% from FedAvg. We note that classifying

both digits/alphabets is significantly harder than just digits, and by putting a prior on the latent

parameters our method encodes uncertainty in the local estimates of the true parameter and thus

prevents premature convergence to local data, as is suffered by FedAvg.
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Effect of eigenvector centrality

In this section, we investigate how the eigenvector centrality of an agent affect the rate of

convergence to the true parameter. We examine this on a network with a star topology, where a

central agent is connected to 8 other edge agents. Let the social interaction weights for the central

agent be W1 = [1/9, . . . ,1/9]. For a ∈ (0,1), we assume that an edge agent i puts a confidence

Wi1 = a on the central agent, Wii = 1−a on itself and zero on others. Note that as the confidence

a which the edge agents put on the central agent increases, the eigenvector centrality of the

central agent v1 increases i.e., central agent becomes more influential over the network.

We consider two datasets: (i) the MNIST digits dataset [99] where each image is assigned

a label in Y = [0, . . . ,9] and (ii) the Fashion-MNIST (FMNIST) dataset [159] where each image

is assigned a label in Y = [ t-shirt, trouser, pullover, dress, coat, sandal,

shirt, sneaker, bag, ankle-boot]. Both datasets consist of 60,000 training images and

10,000 testing images of size 28 by 28. For all our experiments we consider a fully connected

NN with 2-hidden layers with 200 units each using ReLU activations which is same as the

architecture considered in the context of federated learning in [115]. Again as in Section 2.5.2,

we choose Q to be the family of Gaussian mean-field approximate posterior distributions.

We partition the dataset such that the central agent has more informative local obser-

vations. Specifically, the central agent sees more labels and also has the largest number of

samples, which corresponds to label skew (case (1)) and quantity skew (case (4)) of non-IID data

distribution in Definition 2.

We vary confidence a which the edge agents put on the central agent over

[0.1,0.2,0.3,0.5,0.7], and therefore the eigenvector centrality of the central agent v1 increases as

[0.1,0.18,0.25,0.36,0.44]. We partition the MNIST dataset into two subsets so that the central

agent dataset has all images of labels [2, . . . ,9] and edge agents has all images of labels [0,1]. To

ensure all the edge agents has equal number of images, we shuffle the images with labels [0,1]

and partition them into 8 non-overlapping subsets. Similarly, for Fashion-MNIST (FMNIST)
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(b) On FMNIST dataset

Figure 2.3. Figure shows the variation in the average accuracy over a star
network topology as the eigenvector centrality of the central agent is varied.

dataset, we first partition into two subsets so that central agent has access to labels [t-shirt,

pullover, dress, coat, shirt, bag] and edge agents have access to labels [trouser,

sandal, sneaker, ankle-boot]. We shuffle the images with labels [trouser, sandal,

sneaker, ankle-boot] and partition them into 8 non-overlapping subsets.

We ensure that all agents has same number of local updates u per communication round,

which is equal to (
⌊
nedge/B

⌋
)E, here nedge denotes the number of training samples for each edge

node. For the central agent, this means that for each local epoch, the central agent is trained on

a random subset of its local dataset, whereas the edge agents use all the local dataset. For all

agents, we use Adam optimizer [79] with initial learning rate of 0.001 and learning rate decay of

0.99 per communication round.

Table 2.1. Settings for Star Topology Network Experiment: E is number of
local epochs, B is the local minibatch size, u is the number of local updates
per communication round, η is the initial learning rate for all agents, ε is the
learning rate decay rate, ncenter is the dataset size of the central agent, nedge is
the dataset size of each of the edge agent.

Experiment E B u η ε ncenter nedge comm rounds
MNIST 5 50 155 0.001 0.99 47335 1583 800
FMNIST 5 100 150 0.001 0.99 36000 3000 800
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(b) Accuracy over all 100 nodes.

Figure 2.4. Figure shows the accuracies of selected agents in a time-varying
network.

From equation (2.5) we know that placing more confidence a on the central agent

increases the rate of convergence to the true parameter and increases rate of convergence of the

test dataset accuracy. This is demonstrated in Fig. 2.3a and Fig. 2.3b where both accuracy and

the rate of convergence improve as a increases. In other words, rate of convergence and the

average accuracy is the highest when the agent with most informative local observations has

most influence on the network. Note that assigning too much confidence on the most informative

agents can potentially hinder other nodes from learning from their local dataset.

Asynchronous Decentralized Learning on Time-varying Networks

Now we implement our learning rule on time-varying networks which model practical

peer-to-peer networks where synchronous updates are not easy or very costly to implement. We

consider a time-varying network of N +1 agents numbered as {0,1, . . . ,N}. At any give time,

only N0 agents are connected to agent 0 in a star topology. For k ∈ [N/N0], let Gk denote a graph

with a star topology where the central agent 0 is connected to edge agents whose indices belong

to {N0(k−1)+1, . . . ,N0k}. This implies at any given time only a small fraction of agents N0/N

are training over their local data. Note that ∪N/N0
k=1Gk is strongly connected network over all N +1

agents. The social interaction weights for the central agent are W0 = [1/N0+1, . . . ,1/N0+1]. Let
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a = 0.5. An edge agent i ∈ Gk puts a confidence Wi0 = a on the central agent 0, Wii = 1−a on

itself and zero on others. The MNIST dataset is divided in an i.i.d manner, i.e., data is shuffled

and each agent is randomly assigned approximately (60,000/N+1) samples. As demonstrated in

Fig. 2.4, for N = 25,N0 = 5, we obtain an average accuracy of 96.5% over all agents and 95.1%

accuracy at the central agent and for N = 100,N0 = 10, we obtain an average accuracy of 92.3%

over all agents and 93.1% accuracy at the central agent. This also demonstrates that decentralized

learning can be achieved with as few as 600 samples locally.

Table 2.2. Settings for Time-varying Network Experiment: E is number of
local epochs, B is the local minibatch size, u is the number of local updates
per communication round, η is the initial learning rate for all agents, ε is the
learning rate decay rate, n is the dataset size of any agent. Since all agents have
same number of samples, they automatically have equal number of local updates
per communication round. Adam optimizer is used for all agents.

Experiment E B u η ε n comm rounds
N = 25 1 50 47 0.001 0.99 2307 1000
N = 100 2 10 120 0.001 0.998 594 1000

2.6 Conclusion and Future Work

In this chapter, we consider the problem of peer-to-peer decentralized variational learning

over an arbitrary social network, which is an extension of the classical Federated Learning setup

by allowing peer-to-peer communications. Building on prior work on distributed hypothesis

testing [94] and variational Bayesian inference [25, 30, 80], we propose a fully decentralized

variational learning algorithm consisting of two main components of variational updating based

on local data and log-posterior averaging. In the realizable setting, we show this method to

converge to the correct global labeling function and provide an analytical and closed-form

characterization of the rate of convergence. Empirically, we validate our theoretical finding,

illustrate the advantages over existing methods such as federated averaging when the data is
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non-IID across the agents. We also illustrate how the choice of the underlying social network

impacts the rate of convergence.
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Chapter 3

Contextual Shortest Path: a Centralized
RL problem

We have familiarized ourselves with the Federated Learning portion of Multi-Agent

Reinforcement Learning in Chapter 2. Now we turn our attention to Reinforcement Learning,

specifically, a centralized one: a single agent interacts with the unknown stochastic environment,

while attempting to make better decisions given limited feedback information.

In this chapter, we study a new class of stochastic decision problems, which we call the

Contextual Shortest Path (CSP) problems. The problem is motivated by dynamic path planning

and obstacle avoidance for UAV and drone applications. More specifically, in path planning

applications, there is a need to compute the path between two pre-determined locations in space

while avoiding various spontaneous obstacles in the environment. In general, finding the optimal

path in a stochastic environment with time-varying obstacles generalizes the problem of finding

the shortest path over an undirected graph with stochastic edges, where random edge realizations

are augmented with richer contexts that can change over time and require online inspection.

Under perfect knowledge of context distributions, we provide an extended Dijkstra’s

algorithm to solve the associated dynamic program efficiently. When the context distributions

are unknown and need to be learned online, we first adapt two algorithms as our baselines, one

based on Thompson Sampling and the other based on ε-greedy exploration. We then propose a

novel reinforcement learning algorithm, RL-CSP, which intelligently distributes exploration
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episodes over the time horizon and ensures the agent visits under-explored states. We bound the

regret for RL-CSP, and augment the theoretical results with simulations over various network

topologies. We further demonstrate the improved robustness of our RL-based algorithm in the

stochastic shortest path setting.

3.1 Introduction

Classic shortest path algorithms aim to find the optimal path between a pair of source

and destination vertices in a directed or undirected graph. The optimal path is defined to be

the path with the least total cost when edge costs are fixed, [41, 21, 48], and the path with the

least expected cost when edge costs are drawn from unknown distributions, [53, 110, 18, 170].

However, in many applications, such as autonomous vehicle navigation, the optimal path is not

fixed, but depends on contextual information which may be received at any time. For example,

a drone navigating towards a destination may observe an obstacle using its on-board sensors,

this additional context could force the drone to take an alternative path. Naively, the agent

can re-plan the optimal path using classic shortest path algorithms each time a new context is

observed, but this is costly and makes no use of past experiences. However, if the agent has

learned that obstacles appear with high frequency at a given location, it can more efficiently plan

by avoiding that location on future interactions with the environment. Our goal, therefore, is to

solve the shortest path problem in the presence of time-varying contexts while also learning the

environment.

The Contextual Shortest Path problem can be cast as a multi-armed bandit (MAB)

problem. In the MAB formulation, at each time step an agent selects one of M independent

arms and incurs a random cost drawn i.i.d. from an unknown distribution for that arm. The goal

of the agent is to minimize cumulative regret over horizon T , relative to an omniscient player

who always picks the optimal arm. It has been shown by [89] that cumulative regret grows

at least logarithmically with time. If the arms are independent of each other, then each arm
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must be explored directly as they offer no information about each other, so optimal regret grows

linearly with the number of arms. We identify our contextual shortest path problem with the

MAB formulation by treating each contextual path selection policy as an arm. However, since

there exist M!∼ O(MM) possible distinct policies for a MDP with M states, the optimal regret

grows at least exponentially with the number of states. So, directly applying any standard MAB

algorithm by rank ordering all possible contextual path selection policies results in excessive

regret. In this paper, we propose a learning-based algorithm that leverages local information

about the states and transitions within the model to more efficiently learn optimal behavior. This

allows better cumulative regret scaling in both the number of states and contexts.

Contributions: Our contribution is threefold. First, we formulate a new class of Markov

decision problems which we call Contextual Shortest Path (CSP). We then provide an extended

Dijkstra’s algorithm to solve the associated dynamic program when the distributions of contexts

are known. Second, we adapt two standard algorithms, based on Thompson Sampling and ε-

greedy exploration, to solve the CSP problem without knowledge of the context distributions. We

then propose a novel reinforcement learning algorithm, RL-CSP, which intelligently distributes

exploration episodes over the time horizon, with sparser exploration as the agent learns its

environment, and ensures that the agent visits under-explored states. We further prove that the

cumulative regret of RL-CSP is polynomial in both the number of states and contexts and is

logarithmic in time. Lastly, we empirically evaluate the performance of our RL-CSP algorithm

and compare it to the baseline provided by our adapted algorithms. We run experiments on

three different graph topologies designed to exhibit challenging instances of CSP problems. We

report the cumulative regret for all three algorithms, demonstrating that our RL-CSP algorithm

more quickly converges to optimal behavior and accumulates lower regret than either of the

baseline algorithms. We also adapt RL-CSP to the Stochastic Shortest Path (SSP) problem

to demonstrate its improved robustness relative to the baseline Thompson Sampling algorithm

when edge costs are less distinguishable.

Related Work: This work is related to Stochastic Shortest Path (SSP), episodic Markov
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Decision Process, and Contextual Markov Decision Process (CMDP).

1) Stochastic Shortest Path (SSP): SSP problems as widely studied in [53, 110, 18, 170]

generally assume the transition cost of each edge is drawn i.i.d from some probability distribution.

In the absence of statistical knowledge, the agent chooses the optimal route base on the current

estimation of these probability distributions. Our CSP problem can be reduced to a SSP problem

with Bernoulli distributed transition costs if acquisition actions are fixed and each state, under

any given context, only has a single available neighbor.

2) Episodic Markov Decision Process: Our CSP formulation can be viewed as a special

case of an extended episodic MDP [64, 172, 137], where each episode in episodic MDP is the

random interval from origin state to termination state. Despite minor difference between CSP

and episodic MDP, we benchmark our proposed algorithms against Thompson Sampling [64].

We note that our CSP problem does not satisfy the loop-free [172] or the fully connected [137]

assumptions, and [172, 137] cannot be readily applied in our setting.

3) Contextual Markov Decision Process (CMDP): Our proposed CSP problem is inher-

ently distinct from a Contextual Markov Decision Process (CMDP). The CMDP formulation

[117, 56] is an episodic MDP in which the context is fully revealed before each episode. CMDP

then maps the context to an unknown MDP from a finite set of candidate MDPs and, within an

episode, the transition probabilities of the MDP are fixed. In our setting, a context is acquired

prior to each state transition and that context then governs the transition probabilities. In other

words, the optimal policy has to account the observed context at each time step during an episode.

3.2 Problem formulation

We consider a type of episodic Markov Decision Process (MDP), which we refer to

as the Contextual Shortest Path (CSP). Let G = (V ,E ) be an undirected graph. Let s ∈ V be

source state and d ∈ V be destination state. Let T be the total number of episodes, where each

episode t = 1,2, ...,T begins from state s at n = 0 and ends at n = τt = min{τmax,τd,t}, where
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τd,t is the time the agent reaches d in episode t and τmax is maximum episode duration. Let in,t

denote the current state at timestep n of episode t. The agent then takes context acquiring action

an,t ∈A , which reveals context Xn,t . Specifically, given state i and context acquiring action a,

the observed context X ∈Xi is drawn from the probability distribution Pa
i := P(·|i,a), where Xi

is the finite space of contexts observable in state i. The agent then incurs context acquisition cost

cA(in,t ,an,t).

After the agent observes context Xn,t in state in,t , it takes transition action un,t ∈NXn,t (in,t),

where NXn,t (in,t) denotes available neighbors for in,t , including in,t itself, under context Xn,t . Note

that the context may constrain which neighbors the agent can transition to. The agent then

reaches next state in+1,t = un,t and incurs transition cost cU(in,t ,Xn,t ,un,t). The reward rt for

episode t is R if the agent reaches d before τmax (τd,t ≤ τmax), and 0 otherwise.

The goal of the CSP problem is to find a sequence of actions an,t and un,t for n= 0,1, ...,τt

and t = 1,2, ...,T , such that the expected reward JT is maximized:

JT = E
[ T

∑
t=1
{rt−

τt

∑
n=0

[cU(in,t ,Xn,t ,un,t)+ cA(in,t ,an,t)]}
]

Here the expectation is taken over context realizations, context acquisition actions and

state transition actions. If J∗ denotes the optimal expected reward under perfect knowledge of

the model, then maximizing total expected reward is equivalent to minimize the regret defined

as: Rπ(T ) = T J∗− JT .

3.3 Algorithms for Contextual Shortest Path

3.3.1 Known context distributions Pa
i

We propose a Dijkstra-type algorithm that gives the optimal context acquiring actions

and state transition actions for all states and possible contexts, when the context distributions Pa
i

are fully known. Define the value function V ∗ : V → R by the following system of equations:
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V ∗(d) = R

V ∗(i) = max

{
0,max

a∈A

{
− cA(i,a)+

∑
X∈Xi

P(X |i,a) max
j∈NX (i)

{(V ∗( j)− cU(i,X , j)}
}}

for i ̸= d

This value function rewards states for their proximity to the destination, while penalizing

them for the associated context acquisition and transition costs. We propose a Dijkstra-type

algorithm, EXTENDED-DIJKSTRA-CSP to solve for the value functions. For any subset of

vertices, C ⊆ V , define the associated frontier of vertices accessible from C

N (C ) := { j : ∃i ∈ C ,s.t.P(X |i,a)> 0,X ∈Xi, j ∈NX(i)}

Our EXTENDED-DIJKSTRA-CSP algorithm solves for the optimal V ∗ and in doing so

finds the optimal context acquisition action a∗(i) for each i ∈ V . Then, for state i, given context

X ∈Xi, the optimal transition action is u∗(i) = argmax j∈NX (i){V
∗( j)− cU(i,X , j)}.

3.3.2 Unknown context distributions Pa
i

In the case where contexts are drawn from unknown distributions, Pa
i , we first present two

baseline model-based algorithms: an ε-greedy approach and a Thompson Sampling based ap-

proach. We then present our novel algorithm, RL-CSP, which adaptively distributes exploration

and exploitation episodes and in exploration episodes, optimizes for information acquisition by

its choice of context acquisition actions and by prioritizing under-explored states.

ε-greedy-CSP

We first present a model-based ε-greedy algorithm for the CSP problem, which we call ε-

greedy-CSP. We maintain counting variable N(i,X ,a) which tracks the number of times context
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Algorithm 1. EXTENDED-DIJKSTRA-CSP. Inputs: G = (V ,E ), Pa
i , cU , cA, source s, destina-

tion d. Outputs: V ∗(i) and a∗(i) for all i ∈ V .
1: Initialize O = d, V ∗(d) = R, A = V −d
2: while A ̸= /0 do
3: for each i ∈A ∩N (O) and X ∈Xi do
4: W (X , i) = max

u∈O∩NX (i)
{−cU(i,X ,u)+V ∗(u)}

5: X (Y, i) := {X ∈Xi : W (X , i)≥W (Y, i)}
6: if W (X , i)< 0 for all X then
7: V (i) = 0
8: else {set X0(i) = {X : W (X , i)≥ 0}}
9: V (i) =

max
a,Y∈X0(i)

−cA(i,a)+∑X∈X (Y,i)P(X |i,a)W (X , i)

∑X∈X (Y,i)P(X |i,a)
10: a(i),Y (i) =

argmax
a,Y∈X0(i)

−cA(i,a)+∑X∈X (Y,i)P(X |i,a)W (X , i)

∑X∈X (Y,i)P(X |i,a)
11: end if
12: end for
13: l = argmaxi∈A V (i)
14: Set O = O ∪{l} and A = A −{l}
15: Set V ∗(l) =V (l) and a∗(l) = a(l)
16: end while
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X is observed in state i, after taking context acquiring action a. We use these counts to main-

tain an empirical estimate of the context distributions, P̂(X |i,a) = N(i,X ,a)/∑X∈Xi N(i,X ,a).

P̂(X |i,a) is used to update optimal context acquiring action â(·) and value function V̂ (·) by

EXTENDED-DIJKSTRA-CSP at the end of each episode. For each episode, when the agent

is in state i, it takes context acquiring action â(i), observes context X , and with probabil-

ity (1− ε(i,X)) where ε(i,X) = 1
1+∑a∈A N(i,X ,a) , takes greedy transition action (exploitation)

j = argmax j∈NX (i) V̂ ( j)−cU(i,X , j). Otherwise, a uniform random action is taken (exploration).

Thompson Sampling

We also adapt Thompson Sampling, [139, 64], to the CSP problem. For an episodic

MDP defined by the tuple (S ,A ,P,R,H), where S is the state space, A is the action space,

P = P(·|s,a) are the unknown transition probabilities, R = R(·|s,a) is the unknown stage cost

distribution and H is the horizon, Thompson Sampling algorithms put prior distributions on the

transition and cost distributions. For each episode t, Pt and Rt are sampled from the current

distribution over P and R. This fixes an MDP defined by (S ,A ,Pt ,Rt ,H) for which an optimal

policy is calculated. Then, given the transitions and costs observed by the agent under that policy,

a Bayesian update is performed on the distributions over P and R.

Here, for the CSP problem, our unknowns are the context distributions, Pa
i := P(X |i,a).

Since Xi is finite, we put a Dirichlet prior on Pa
i with |Xi| parameters. The Dirichlet distribution

is the conjugate prior for multinomial distributions and so allows for a simple, closed form

posterior update. All parameters of each of the Dirichlets are initialized to 1, but we examine in

our experiments the strong dependence the performance of this algorithm has on this choice of

prior.

RL-CSP with Least Traversed Node

We now propose a reinforcement-learning based algorithm, RL-CSP, with distinct

exploration and exploitation episodes. In exploration episodes, the agent is routed through the
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least visited state via a path that prioritizes visiting under-explored states along the way. Whereas

in exploitation episodes, the agent takes greedy actions based on V̂ (·) and â(·) calculated under

the same running estimate of context distributions, P̂(X |i,a), as in ε-greedy-CSP. We ensure that

at every episode, t we have performed g log t exploration episodes, where g is a constant that

depends on the size of the context spaces and how distinguishable values of different states are

This bound guarantees optimal regret scaling in both time and the size of the problem while

ensures that the algorithm will explore more frequently in early episodes and become greedier as

it learns its environment.

In the exploration episodes we employ the following scheme: for each state i ∈ V , let

N(i) be number of times i is visited and let i∗ = argmin j N( j) be the least visited state. Let P be

set of all paths from s to d, and let P ∋ p = (s,v1,v2, ...,d) be one of the paths. The exploration

route p∗ is taken to be the minimizer p∗ = argmin{p∈P:i∗∈p}∑ j∈p N( j). That is, the path which

visits state i∗ and minimizes the total number of times that each state along the path has already

been visited. This can be solved by Dijkstra’s shortest path algorithm with the counts as the

costs.

Theorem 1 (Regret bound for RL-CSP) Let B be the maximum cardinality of any of the context

spaces, i.e. |Xi| ≤ B, ∀i ∈ V . Let ∆ = mini∈V {min j∈N (i) |V ∗(i)−V ∗( j)|}. Now if we let

g =
Nα2B2

2∆2 , where α = R∑
|V |
i=1 ∑u ∑a

1
cU(i,X ,u)+ cA(i,a)

and R is the reward for reaching

state d and let M = |V |, then the algorithm RL-CSP achieves regret O(Mg log(T )).

Proof See Appendix B for complete proof.

3.4 Experiments

We use stochastic graphs as a test-bed for these three algorithms, using each to solve

shortest path problems both with and without context on a variety of graph topologies. These

topologies, displayed in Figure 3.1, are chosen to illustrate problem instances where the ε-greedy

and Thompson sampling based algorithms struggle, and to demonstrate the practical convergence
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Algorithm 2. RL-CSP. Inputs: G = (V ,E ), constant g, number of exploration phases Nexp.
Initialize N(i),N(i,X ,a) to 0. Initialize V̂ (i) = 0 for i ̸= r, and V̂ (r) = R. Initialize â(i) randomly.
p∗k denotes the kth state in the route p∗.

1: for t = 1 to T do
2: if Nexp < g log(t) then
3: p∗ = argminp∈P∩i∈p ∑ j∈p N( j)
4: for k = 0 to p∗.length()−1 do
5: Take â(p∗k), observe X , N(p∗k ,X , â(p∗k))++
6: while p∗k+1 /∈NX(i) do
7: u(p∗k) = p∗k , N(p∗k)++
8: Take â(p∗k), observe X , N(p∗k ,X , â(p∗k))++
9: end while

10: u(p∗k) = p∗k+1, N(p∗k+1)++
11: end for
12: Update P̂(X |i,a) = N(i,X ,a)/∑X∈Xi N(i,X ,a)
13: Obtain V̂ (·), â(·) by EXTENDED-DIJKSTRA-CSP
14: Nexp ++
15: else
16: Take greedy actions based on using V̂ (·), â(·)
17: For all (i,X ,a) triplets observed on path:
18: N(i)++, N(i,X ,a)++
19: Update P̂(X |i,a) = N(i,X ,a)/∑X∈Xi N(i,X ,a)
20: end if
21: end for
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improvements offered by our RL-CSP algorithm.

1) Contextual Shortest Path (CSP): Our first simulations apply each of the three presented

algorithms to Contextual Shortest Path problems. We consider a graph with stochastic edges,

which are only available with some probability p ∈ [0,1] at each time step, and an agent which

must learn the edge probabilities while solving the shortest path problem between vertices s

and d. The context acquisition actions here are to observe some subset of the agent’s current

neighbor vertices and see which are available — the agent is unable to transition to a state

without first observing that it is currently available. Let in,t denote current state at timestep n and

episode t. The agent acquires context Xn,t ∈ {0,1}|N (in,t)|, which indicates the current available

neighbors from state in,t . For any state i ∈ V , let Pa
i = P(X |i,a) = P([X1,X2, ...,X|N (i)|]|i,a)

denote the conditional probability distribution of observing context X ∈ {0,1}|N (i)|. If all edges

are independent from each other, then

P([X1, ...,X|N (i)|]|i,a) =
|N (i)|

∏
k=1

P(Xk|i,a) =
|N (i)|

∏
k=1

pa
i,k

where pa
i,k is the probability that the edge between states i and k exists given that context

acquisition action a was taken.

For simplicity, we assume equal transition costs cU(i,X , j). We also assume that transition

costs cU and context acquisition costs cA are known. This is realistic since these quantities will

generally be known parameters of the agent, e.g. the energy cost to run the sensors in a drone.

Setup: For the three graphs considered, the edges in the underlying model are indepen-

dent for simplicity of demonstration.

• The grid network (Figure.3.1(a)) has a 4-by-4 grid between s and d. For all the edges (i, j),

pi, j = 0.7. There can be more than one optimal route at a time.

• The wide network (Figure.3.1(b)) has 8 parallel 3-hop routes from s to d. For all the links

(i, j), pi, j = 0.3, except for the middle link (k, l) of the red route which has pk,l = 0.9,
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which makes it the optimal route.

• The long network (Figure.3.1(c)) has two routes from s to d. For link (i, j) on the upper,

sub-optimal route, pi, j = 0.4. For link (k, l) on the lower, optimal route, pk,l = 0.9.

(a) CSP: grid (b) CSP: wide

(c) CSP: long (d) SSP

Figure 3.1. Network topologies. s denotes source and d denotes destination.
For (b) and (c), the red route is the expected optimal route. For (d) the red edges
are those with smaller expected weights.

Results: Figure 3.2 displays the cumulative regret, averaged over 50 trials for each of the

three algorithms over the different topologies shown in Figure 3.1(a)(b)(c).

Figure.3.2(a) shows that all three algorithms achieve optimal asymptotic regret order

of O(log t). Here RL-CSP and Thompson Sampling have comparable performance, while the

ε-greedy algorithm incurs significant additional regret over the early episodes as its unguided

exploration learns the network much more slowly.
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(a) R(t)/log(t) for grid network (b) R(t)/log(t) for wide network

(c) R(t)/log(t) for long network
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Figure 3.2. (a)(b)(c) Regret under different network topologies for CSP. (d)
Regret for SSP.
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Figures 3.2(b) and (c) demonstrate the practical shortcomings of Thompson Sampling on

certain graph topologies. The wide network in (b) and the long network in (c) demonstrate two

instances where Thompson Sampling under-performs our RL-CSP algorithm. This occurs for

two primary reasons: first, Thompson Sampling is very sensitive to the choice of prior, and in

the case where the prior is not chosen concentrated near the true value of the parameters, it may

require many updates to converge to accurate estimates of the model. And second, Thompson

Sampling has no way of prioritizing high-information but low-reward exploration and so it may

never take costly actions that facilitate quickly learning the environment. In contrast, RL-CSP

requires no specification of any prior distribution or detailed model and, in its exploration

episodes, prioritizes information acquisition over cost. These advantages are evident in the faster

regret convergence displayed in Figure 3.2(b),(c). We also note that the value of g in Theorem

2, which governs number of exploration episodes, is a conservative choice to guarantee our

theoretical convergence results. In the simulations we are able to achieve O(logT ) regret with a

much smaller choice of g.

2) Stochastic Shortest Path (SSP): We note that the idea from RL-CSP can be applied

to the widely studied Stochastic Shortest Path (SSP) problem [53, 110, 18, 170]. Consider an

undirected graph G = (V ,E ) with m edges and n vertices. Let P be set of all simple (loop-free)

paths from s to r. At episode t, a m dimensional binary vector a(t)∈P is chosen, where ai(t) = 1

means the ith edge is on the path. At time t, the cost Wi(t) of for each edge i ∈ E is drawn

i.i.d. from a distribution with unknown mean, E[Wi(t)] = θi. Here, we use a normal distribution,

Wi(t)∼N (θi, σ̃
2), where σ̃ is known. The total cost of of path a(t) is: C(t) = ∑

m
i=1 ai(t)Wi(t)

and the regret of a policy π is: Rπ(T ) = Eπ [∑
T
t=1C(t)]−TC∗, where C∗ is the expected cost of

optimal path.

Here we present RL-SSP, which is an adaptation of RL-CSP to the SSP problem.

RL-SSP proceeds by taking forced exploration steps with diminishing frequency, each of which

selects paths that include the least visited states in the graph. And we compare this to TS-SSP,

which applies Thompson Sampling as in [139] by placing N (µi,σ
2
i ) priors on the unknown
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Algorithm 3. RL-SSP(P,g,T ). Initialize (θ̂)1×m (empirical mean of edge cost), (k)1×m (No.
of visits to edges), Nexp = 0.

for t = 1 to T do
if Nexp < g log(t) then

Take p∗ = argmin
p∈P∩i∈p

∑ j∈p k j, i = argmin
j

k j

Update ki,θ̂i from Wi(t) for edges i on p∗, Nexp ++
else

p = argminp∈P ∑i∈E piθ̂i

Update ki,θ̂i from Wi(t) for edges i on p
end if

end for

Algorithm 4. TS-SSP (P, σ̃2,T ). Initialize (µi,σ
2
i ) for i ∈ E .

for t = 1 to T do
sample θ̂i ∼N (µi,σ

2
i )

Take p = argmin
p∈P

∑i∈E piθ̂i, observe Wi(t) for i ∈ p

for i ∈ p do

(µi,σ
2
i )← (

1
σ2

i
µi+

1
σ̃2 Wi(t)

1
σ2

i
+ 1

σ̃2
, 1

1
σ2

i
+ 1

σ̃2
)

end for
end for
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edge means θi.

Results: To compare these algorithms and further examine the influence of TS’ priors,

we use the topology shown in Figure.3.1(d). The edges in red have mean θi = 10 while the

remaining edges have θi = 20, which creates a single optimal path through the top branch

alongside many sub-optimal paths. We consider a range of variances for the edge costs, σ̃ ∈

{1,5,10} and observe the cumulative regret for both TL-SSP and RL-SSP for each value of σ̃

in Figure.3.2(d). We observe that TS-SSP’s performance is on par with RL-SSP when σ̃ is

small, since in that case it is relatively easy to distinguish the optimal route from others. However,

as σ̃ increases, TS-SSP incurs nearly linear regret. This occurs when Thompson Sampling has

a mis-specified prior and is unable to explore sufficiently to compensate, and so the algorithm

converges to a sub-optimal path. We note that under-exploration caused by an inaccurate prior is

also addressed by [131]. Furthermore, if the underlying distribution family of θi is unknown, a

poorly chosen prior for Thompson Sampling based algorithm can also lead to poor regret [60].

Our RL-SSP algorithm avoids these pitfalls as it guarantees sufficient exploration of each edge

and does not require any specification of a prior distribution or detailed model.

3.5 Conclusion

In this chapter, the Contextual Shortest Path problem, a generalization of the standard

graph shortest path problem that allows for the inclusion of contexts as side information, is

considered. We propose a Dynamic Programming based algorithm that is optimal when the

conditional distribution of contexts is known. Under unknown context distributions, we propose

two algorithms, ADAPT-CSP, based on Q-learning, and RL-CSP which trades off exploration

and exploitation. We prove the time-averaged regret of ADAPT-CSP converges to zero and the

cumulative regret of RL-CSP is logarithmic in time and polynomial in the size of the graph.

Simulations on different network topologies confirms our theoretical results, and empirically

demonstrates that our algorithm outperforms Thompson Sampling in some scenarios for both
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CSP and SSP problems.
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Chapter 4

Federated Certainty Equivalence Control:
a Decentralized RL problem

In this chapter, we study a class of Multi-Agent Reinforcement Learning (MARL)

problem, namely the decentralized linear quadratic (LQ) control problem. In this scenario, the

agents are facing a linear Gaussian system with unknown transition dynamics where agents have

partial state observations and can control partial inputs over an additive channel. We propose

an algorithm that strikes a balance between system identification (exploration) and certainty

equivalence control (exploitation) in order to minimize regret and communication cost. Our

non-asymptotic analysis demonstrates that regret of our algorithm scales at a rate of O(
√

T )

for a time horizon of T , while maintaining low communication between agents. Numerical

analysis provides validation for our regret analysis and facilitates comparisons between various

exploration strategies.

4.1 Introduction

Decentralized multi-agent systems are ubiquitous across various applications such as

decentralized control of robots and drones [8, 5], decentralized autonomous vehicles [153],

non-cooperative games [50], among others. Extensive research in the literature has focused on

decentralized multi-agent systems with known system dynamics, exploring various frameworks

such as decentralized optimal control [119, 158, 164], multi-agent planning [128], and non-
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cooperative game theory [58]. However, realistically, the environment model is often only

partially observed or entirely unknown. Multi-agent reinforcement Learning (MARL) [165] is

designed to address the broader context of multi-agent sequential decision-making, where the

agents lack complete knowledge of the environment model. In such conditions, agents learn the

environment by interacting with the system and gathering rewards.

In this study, we focus on decentralized LQ problem, which is a multi-agent learning

problem with linear system dynamics and quadratic cost function. In particular, we consider

a scenario with two agents, each of which observes the system state partially. The system is

controlled by the collective actions of the two agents, i.e., the sum of the actions. Leveraging

LQ systems as a learning benchmark holds considerable advantages due to their theoretical

tractability and extensive relevance across diverse engineering domains. Our particular problem

arises for instance when robots that are decoupled in their dynamics and observations are tasked

with collaborating to have coupled behavior.

Reinforcement Learning (RL) and MARL can be broadly categorized into two ap-

proaches: model-based and model-free. In model-free approaches [63], the policy is directly

optimized by interacting with the environment and reward collection. Conversely, model-based

approaches [118] involve learning the environment model through interaction with the system

and subsequently determining the optimal policy based on the estimated system model.

The model-based approaches for decentralized LQ problem are very limited. In [11, 10]

the authors consider a decentralized multi-agent system with nested information structure. Our

work compliments this line of work by considering a more general information structure. In

the absence of nested information structure, there needs to be carefully designed collaboration

strategies in place for the agents to learn the system collaboratively.

In this paper, we propose FedCE, a collaborative learning policy which allows agents to

efficiently explore and exploit. In our proposed algorithm, we partition time into exploitation

and exploration intervals, carefully designing their durations to achieve high performance in

both system model learning and minimizing regret. During the exploration phase, we employ
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Least Square Estimation (LSE) techniques to obtain local partial system model estimates. These

estimates are then shared between agents at the end of each exploration interval. Subsequently,

both agents compute Certainty Equivalence controllers, which they apply during the exploitation

interval. As time progresses and the model estimates improve, the relative length of exploration

intervals compared to exploitation intervals decreases, leading to reduced communication be-

tween agents over time. We analyze FedCE in terms of its regret bound and demonstrate that the

regret scales at a rate of O(
√

T ) for a time horizon of T .

In summary, our contributions in this paper are as follows.

• We propose FedCE, the first federated (decentralized yet collaborative) algorithm con-

sisting of three building blocks; (1) Certainty equivalence controller for exploitation, (2)

Coordinated exploration, and (3) Communication and knowledge sharing.

• We show that it is possible to schedule the algorithm components such that the rate of

communication and control policy computation is negligible.

• We show that the regret in FedCE scales at a rate of O(
√

T ) for a time horizon of T .

• We provide results confirming the value of collaboration between the two agents.

• We provide extensive numerical analysis that support our theoretical results.

The remainder of the paper is structured as follows. In Section 4.2, we review the problem

of linear quadratic (LQ) control with known system model and the associated optimal linear

controller. In Section 4.3, we formally introduce the problem of decentralized LQ control with

unknown system model. We then propose our adaptive algorithm for the considered problem in

Section 4.4, which we call FedCE. In Section 4.5, we analyze the learning of FedCE algorithm,

as well as the growth rate of the regret. We conclude with extensive simulations in Section 4.6

that validate our theoretical analysis.
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4.1.1 Notation

We use lowercase and uppercase letters for vectors and matrices, respectively. We denote

the i-th element of vector v by vi. We use || · || to denote the Euclidean norm for vectors and

matrices. N (θ ,σ) denotes the pdf of a Gaussian random variable with mean θ and variance σ2.

We denote the trace of matrix A by tr(A). The identity matrix of size n×n is denoted by In.

4.2 Preliminaries

In this section, we provide some background on the well-known problem of centralized

LQ control as the baseline of the problem that we have studied in this paper and present the

known results in this area.

4.2.1 Centralized LQ control with known system model

Consider a discrete-time linear system with the following system dynamics:

x(t +1) = Ax(t)+Bu(t)+w(t),

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rd is the control input from some controller,

and w(t) ∈ Rn is the random disturbance which is sampled i.i.d. from a Gaussian distribution

N (0,σwIn). A ∈ Rn×n and B ∈ Rn×d are matrices representing the system model. We denote

the system model by θ = [A,B]T .

The step cost incurred at time t, given current state x(t) and input u(t), is a quadratic

function defined as

c(t) = x(t)T Qx(t)+u(t)T Ru(t). (4.1)

The goal is to find a control policy π : Rn→ Rd , that minimizes the infinite-horizon average

expected cost:

Jπ(θ) = limsup
T→∞

1
T
Eπ [

T

∑
t=1

c(t)]

It is common to make the following assumptions to solve the above problem.
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Assumption 5. The cost matrices Q and R are symmetric and positive definite. Without loss of

generality, we assume that the minimum singular value of R is greater than or equal to 1.

Assumption 6. The system dynamics (A,B) is stabilizable, i.e. there exists K such that (A+BK)

is stable.

When θ is known, given Assumptions 5 and 6, we have a well-studied stochastic Linear

Quadratic Control problem, where it is known that the optimal controller is a linear feedback

controller (Linear Quadratic Regulator, or LQR) of the form: u(t) =−K(θ)x(t), where K(θ) is

given by

K(θ) = (R+BT P(θ)B)−1BT P(θ)A, (4.2)

and P∗ is the solution to the Algebraic Riccati Equation:

P(θ) = Q+AT P(θ)A

−AT P(θ)B(R+BT P(θ)B)−1BT P(θ)A. (4.3)

We also know that the optimal cost under this LQR is:

J∗(θ) = σ
2
wtr(P(θ))

4.2.2 Centralized Adaptive LQ control with unknown system model

When the system model θ = [A,B]T is unknown, we are facing an online setting where

the system dynamics need to be learned as the agent interacts with the system. The performance

of a policy π is measured by the cumulative regret in horizon T , which is defined as:

R(π,T ) =
T

∑
t=1

[
c(t)− J∗(θ)

]
which is the difference between the cost incurred by π and the optimal infinite horizon

averaged cost. The goal is to find adaptive policy π that minimizes the cumulative regret.
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4.3 Problem Statement: Decentralized LQ control with
unknown system model

In this paper, we study the decentralized version of the LQ problem stated in section

4.2 with unknown system model. Consider a discrete-time linear system jointly controlled by

N agents, each having a partial observation of the system state. We define N = {1, · · · ,N} to

be the set of all agents. The agents are distributed over an undirected graph G = (N ,E ), over

which they can communicate with each other. The system dynamics is given by



x1(t +1)

x2(t +1)

· · ·

xN(t +1)


=



A11 0 · · · 0

0 A22 · · · 0
. . .

0 0 · · · ANN





x1(t)

x2(t)

· · ·

xN(t)


+



B11 0 · · · 0

0 B22 · · · 0
. . .

0 0 · · · BNN


( N

∑
i=1

ui(t)
)
+



w1(t)

w2(t)

· · ·

wN(t)



Each agent i observes a partial state xi(t) ∈ Rni , with ∑
N
i=1 ni = n and Aii ∈ Rni×ni for

i ∈ N . Furthermore, each agent i is associated with a local control input ui(t) ∈ Rd , and

Bii ∈ Rni×d . The joint control input to the system is u(t) = ∑
N
i=1 ui(t). We assume the additive

noise is sampled i.i.d. from a Gaussian distribution N (0,σwIn). We also assume that the system

model matrices are unknown to both of the agents.

Let x(t) =


x1(t)

· · ·

xN(t)

, w(t) =


w1(t)

· · ·

wN(t)

, and
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A∗ =


A11 · · · 0

. . .

0 · · · ANN

 , B∗ =


B11 · · · 0

. . .

0 · · · BNN

 ,

then, the system dynamics can be rewritten as

x(t +1) = A∗x(t)+B∗u(t)+w(t).

Given state x(t) and joint control u(t), the agents receive a quadratic cost of

c(t) = x(t)T Qx(t)+u(t)T Ru(t) (4.4)

We assume the above problem satisfies assumptions 5, 6.

The above cost function can represent a variety of costs that we often see in real-world

scenarios. The following corollary presents some of the examples of the well-known objectives

that can be modeled by the above quadratic cost function.

Corollary 3. The following scenarios are some examples with an objectives that can be modeled

with a quadratic cost function c(t) = x(t)T Qx(t)+u(t)T Ru(t):

• Zero Target Control: This is the simplest case that can be modeled by the quadratic cost

function of c(t) = x(t)T Qx(t)+u(t)T Ru(t), where x(t) is the state that is targeted to reach

zero.

• Waypoint Target Control: This control scenario corresponds to a case where the target

of the system state is a waypoint, x∗. This objective can be initially represented by the

cost function c(t) = (x(t)− x∗)T Q(x(t)− x∗)+u(t)T Ru(t). However, to present this cost

function in the form of a simple quadratic cost function, one can augment the system state

x(t) with x∗ to create constant and linear terms as follows. If we define x̂(t) =

x(t)

x∗

,

then by defining Q̂ =

Q,−Q

−Q,Q

, the cost function c(t) = ˆx(t)
T

Q̂ ˆx(t)+u(t)T Ru(t) will be

equal to the desired cost function.
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• Route Tracking Control: This scenario captures the cases where there is a predetermined

path, x∗(t) that the state x(t) needs to follow. To fall within the linear model assumption of

this paper, we assume that x∗(t) also has a linear dynamic as follows.

x∗(t +1) = Hx∗(t),

where the parameter H is known to all agents.

To mimic such path following scenario, we set the cost function to be c(t) = (x(t)−

x∗(t))T Q(x(t)− x∗(t))+u(t)T Ru(t). To fit this cost function into the format of equation

(4.9), we define the augmented state x̂ =

 x(t)

x∗(t)

. Then, the system dynamic parameters

would be Â =

A 0

0 H

, and B̂ =

B 0

0 0

. We also define Q̂ =

Q,−Q

−Q,Q

. Then, we can

write c(t) = x̂(t)T Q̂x̂(t)+u(t)T Ru(t).

Given the decentralized nature of the problem, the goal is to find control policies π(t) =

(π1(t),π2(t)), where πi(t) : Rni→Rd and ui(t) = πi(t)[xi(t)], that minimizes the infinite-horizon

average expected cost

Jπ(θ) = limsup
T→∞

1
T
Eπ [

T

∑
t=1

c(t)]

In the rest of the paper, we will refer to the above problem as the DecLQ problem.

In the next lemma, we present the optimal controllers when the system model θ ∗ =

[A∗,B∗]T is known. The structure of this controller will later be used for the case when the

system model is not known.

Lemma 2. In DecLQ problem, if the system model θ ∗= [A∗,B∗]T is known, the optimal controller

is given by

ui(t) =


K1i(θ

∗)

· · ·

KNi(θ
∗)

xi(t),

62



where

K(θ ∗) =


K11(θ

∗) · · · K1N(θ
∗)

. . .

KN1(θ
∗) · · · KNN(θ

∗)


is calculated from equations (4.2) and (4.3). We also have the optimal cost to be J∗(θ ∗), which

is the optimal cost of the centralized controller.

As mentioned before, the structure of the optimal control for the case where the system

model is known will be used in the algorithm that we propose for the the case where the system

model is unknown. If θ ∗ is unknown, the agents need to learn it in order to minimize the infinite

horizon average cost. The performance of the learners is measured by the cumulative regret over

horizon T ,

R(π,T ) =
T

∑
t=1

[
c(t)− J∗(θ ∗)

]

4.4 Adaptive Algorithm for DecLQ

In this section, we propose an algorithm for the DecLQ problem, which is based on the

certainty equivalence controller used in the literature for the centralized LQ problem. When the

system model is unknown, the agent(s) need to learn the system model over time by interacting

with the system through an adaptive algorithm. The learning usually happens by forming a belief

over the system model and updating it over time. This belief will then be used to construct a

controller, which is usually time-varying and adaptive due to the belief evolving by time. There

are different ways that one can utilize the belief over the system model to construct the controller.

Thompson Sampling (TS) [2, 4], Optimization in the Face of Uncertainty (OFU) [1, 45, 65], and

Certainty Equivalence (CE) [114, 44] are the most well-known algorithms used in the literature.

We note that since in CE, one only needs to have an estimation of the system model, it is sufficient

to only keep track of the estimation as opposed to an entire belief over the system model. We

will use CE to build our adaptive algorithm for the DecLQ problem. We refer to this algorithm
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as the FedCE (Federated Certainty Equivalence) algorithm. Before describing FedCE algorithm,

we highlight the main ideas used in its design and how they contribute to the overall performance

of the algorithm.

Key Idea 1, Coordinated Exploration: It is evident that in our decentralized decoupled

setting with partial state observation, the agents can not learn the system dynamics if both of

them are exerting actions in all dimensions. The reason is that the actions are not shared with

each other and the ambiguity in the control action of the other agent prevents them from learning

the system. Instead, we devised coordinated exploration intervals in which, each agent only

controls its own part of the state and stays silent for the other parts. During these intervals,

we have a completely decoupled system in terms of dynamics and the agents can learn their

corresponding system dynamics.

Key Idea 2, Federated Learning: In FedCE, agents learn the whole system model in a

federated fashion. As mentioned, in the exploration intervals, the agents learn their corresponding

model dynamics. However, in order to learn the optimal controller, the agents need the whole

system dynamics. Therefore, they learn the other parts of the system dynamics through federated

learning.

Key Idea 3, Balanced Exploration vs Exploitation: Due to the decentralized and

decouples nature of our system model, the agents can only learn the system dynamics in the

exploration intervals. Therefore, the longer the exploration intervals, the faster agents can learn

the system dynamics. In addition, during the exploration intervals, the actions are not optimal or

even near optimal. Therefore, the agents incur a linear regret over those intervals. Consequently,

we need to set a balance between the exploration and exploitation interval durations.

4.4.1 FedCE Algorithm

FedCE is summarized in Alg. 5 and in the following, we will explain it in detail. FedCE

algorithm consists of three different phases. A Warm-up period to form a good initial estimation
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of the system model; Certainty Equivalence (CE) phase to exploit the model estimation and

apply semi-optimal control actions; and Exploration phase to learn the system model. Note that

CE and Exploration phases are distributed across separate time intervals.

Warm-up: In the Warm-up period, which starts from time t = 0 and ends at t = Tw for

some predetermined Tw, agents apply decoupled actions to enable decentralized learning of the

system model (system identification). Decoupled actions are defined as

ui(t) =
[

0 · · · u(i)i (t) · · · 0

]T

, (4.5)

where u(i)i (t)∼ σ1
i and σ1

i is a predetermined probability distribution over Rni .

During the warm-up period, each agent learns its corresponding system model using

the least square estimate (LSE) method. In particular, agent i learns θ ∗i = [Aii,Bii]
T according

to the sequential LSE method, in which the estimates on the system model, denoted by θ̂i(t),

are updated sequentially for every new decoupled observation. We denote φi(t) =

 xi(t)

u(i)i (t)

 for

i ∈N . The LSE update rule is as follows for i ∈N :

θ̂i(t +1) = θ̂i(t)+Vi(t)−1
φi(t)(xi(t +1)T −φi(t)T

θ̂i(t))

Vi(t +1) =Vi(t)+φi(t)φi(t)T

We define θ̂i to be the most up-to-date estimate on θ ∗i that agent i has at the current time

(t). Note that although the agents have learned their corresponding system model parameters

during the warm-up period, they have not communicated their estimates with each other yet. This

communication will happen over the next phase. We define ˆ̂
θ = [ ˆ̂A, ˆ̂B]T to be the most up-to-date

estimate that all agents agree on. At the end of the warm-up period, we have ˆ̂
θ to be the prior

(initial) estimates of the agents over the model parameter, which we assume they all agree on.

65



Certainty Equivalence (CE): At the beginning of the CE phase, the agents will first

compute the certainty equivalence controllers, K( ˆ̂
θ), using their latest model estimate that they

all agree on which is denoted by ˆ̂
θ , using equations (4.2) and (4.3). We note that the CE controller

is the optimal controller for a hypothetical system with system model equal to ˆ̂
θ . The control

actions will be generated according to the computed CE controller. This phase is distributed into

intervals of length T n
CE , where n denotes the nth CE interval. In the first D time slots of the CE

phase, the agents also communicate and pass on their most up-to-date learned estimates on the

model parameter, θ̂i. At the end of the CE phase, all agents agree on the estimates θ̂i and they

will update ˆ̂
θ accordingly. We assume that TCE > D. Each CE interval is followed by an interval

of Exploration phase, which will be explained next.

Exploration: Exploration phase is similar to the warm-up phase but it is distributed into

intervals of length T n
Exp, where n denotes the nth Exploration phase. Each exploration interval

follows a CE interval and the agents apply the decoupling actions of the warm-up phase defined

in (4.5) with u(i)i (t)∼ σn
i , and σn

i is a predetermined probability distribution over Rni . We will

specify the required conditions on σn
i in the next section. Over the exploration phase, the agents

will learn their estimates θ̂i similar to the warm-up phase. Each exploration phase is followed by

a CE phase.

The Exploration intervals should get sparser as time increases because the model estimates

become better through time, and therefore, there is less need for exploration. In Section 4.5,

we will describe the necessary conditions for the scheduling method and an example of such

scheduling to have the desired regret behavior.

4.5 Convergence and Regret Analysis

In order to analyze the regret of FedCE algorithm, we first describe the conditions that

we need to put on the exploration action distributions σn
i , for i = N and n = 1,2, · · · , and

on the CE/Exploration interval scheduling; More specifically, the values of T n
CE and T n

Exp, for

66



Algorithm 5. FedCE

Inputs: ˆ̂
θ , σ0

i , Tw, σn
i , T n

CE , and T n
Exp for n = 1,2, · · · .

for t = 0, · · · ,Tw do
Let ui(t) =

[
0 · · · u(i)i (t) · · · 0

]T
,

u(i)i (t)∼ σ0
i , for i ∈N .

Agent i learns Aii,Bii using Eq. (4.6).
end for
for n = 1,2, · · · do

Compute K( ˆ̂
θ) according to Eq. (4.2).

for s = 1, · · · ,T n
CE do =⇒ CE Phase

t = t +1.
Let

ui(t) =

K1i(θ
∗)

· · ·
KNi(θ

∗)

xi(t)

if s≤ D then communicate and pass on θ̂i, i ∈N with the neighbors.
end if

end for
Agents update ˆ̂

θ with their computed and received model estimates.
for s = 1, · · · ,T n

Exp do =⇒ Exploration Phase
t = t +1.

Let ui(t) =
[
0 · · · u(i)i (t) · · · 0

]T
,

u(i)i (t)∼ σn
i , for i ∈N .

Agent i learns Aii,Bii using Eq. (4.6).
end for

end for
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n = 1,2, · · · . We define (û(i)i (s))s=1,2,··· to be agent i’s control action sequence during Exploration

intervals (s stands for the sth exploration time). In particular, we have û(i)i (s) = u(i)i (t), where t

corresponds to the sth exploration time. We refer to (û(i)i (s))s=1,2,··· as the exploration control

action sequence.

The next two definitions are extracted from [87].

Definition 3 (Persistent Excitation). The exploration control action sequence (û(i)i (s))s=1,2,··· is

said to be persistently exciting if there exists a positive definite matrix U such that for large S,

we have
1
S

S

∑
s=1

û(i)i (s)û(i)i (s)T ≥U

The above definition states the condition when the exploration control actions are rich

enough to facilitate the system model learning.

The next definition is about the stability of the system during the exploration intervals.

Definition 4 (Exploration Stability). The exploration control action sequence (û(i)i (s))s=1,2,··· is

said to satisfy the Exploration Stability condition if there exists a positive definite matrix V such

that for large S, we have
1
S

S

∑
s=1

û(i)i (s)û(i)i (s)T ≤V

Definition 5 (Rich and Stable Exploration). If Persistent Excitation and Exploration Stability

conditions hold for the control sequence (û(i)i (s))s=1,2,··· that is generated according to the

distributions û(i)i (s)∼ σn
i , when sth exploration time belongs to the nth exploration episode, then

(σn
i )n=1,2,··· satisfies the Rich and Stable Exploration condition.

Using the above definitions, we can have the following lemma on the system model

learning rate of FedCE.

Lemma 3. Let A∗ and B∗ be the true system model matrices, and Â(s) and B̂(s) be least square

mean estimates of A∗ and B∗ using s samples of the system (after s exploration times). Assume
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that the Rich and Stable Exploration condition holds for (σn
i )n=1,2,··· for i = 1,2. Then with

probability close to 1, ||A∗− Â(s)|| and ||B∗− B̂(s)|| are bounded by O(

√
1
s
) for large enough s.

Proof. According to [87], if Persistent Excitation and Exploration Stability conditions hold, then

the estimation θ̂i(s) converges to the true system model θ ∗i almost surely, and we can write the

following.

θ̂i(s) = θ
∗
i +(

s

∑
k=1

φi(k)φi(k)T )−1
s

∑
k=1

φi(k)w(k)T (4.7)

Persistent Excitation condition indicates that sU ≤ ∑
s
k=1 φi(k)φi(k)T ≤ sV and conse-

quently, λmax((∑
s
k=1 φi(k)φi(k)T )−1)≤ 1

s l for some positive l, and tr((∑s
k=1 φi(k)φi(k)T ))≤ sm

for some positive m. By writing equation (4.7) for column c of θ̂i(s)−θ ∗i , denoted by θ̂i(s)[:

,c]−θ ∗i [:,c], and taking the L2 norm, we have

||(θ̂ i(s)[:,c]−θ
∗
i [:,c])||22

≤ 1
s2 l2(

s

∑
k=1

φi(k)T w(k)[c])(
s

∑
k=1

φi(k)w(k)[c])

≤ 1
s2 l2(

s

∑
k=1

φi(k)T
φi(k)w(k)[c]2)

≤ 1
s2 l2(

s

∑
k=1

φi(k)T
φi(k))γσ

2
w ≤

1
s

l2mγσ
2
w

The last two inequalities are valid with a probability close to 1, and this probability

quickly approaches 1 as γ is increased. When γ is set to 4, the probability is nearly equal to

0.9999.

Therefore, ||A∗− Â(s)|| and ||B∗− B̂(s)|| are bounded by O(

√
1
s
) for large enough s.

In Lemma 3, we provided the learning rate with respect to the number of exploration

times. The next theorem provides a bound on the learning rate with respect to the total time

horizon, T .
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Theorem 2 (Bounded Error). If Rich and Stable Exploration condition holds for (σn
i )n=1,2,···

and if the total number of exploration times is O(
√

T ), where T is the total time horizon, then

||A∗− ˆ̂A(T )|| and ||B∗− ˆ̂B(T )|| are bounded by O(T−
1
4 ).

We skip the proof of the above theorem since it is evident by using Lemma 3. The

transition from θ̂ to ˆ̂
θ does not affect the proof because ˆ̂

θ is a delayed version of θ̂ with a

constant time.

In the next theorem, we present the bound on the regret of the FedCE algorithm.

Theorem 3 (Regret Bound). Assume that Rich and Stable Exploration condition holds for

(σn
i )n=1,2,··· for i ∈N . Also, assume that the total exploration time is O(

√
T ) for the total time

horizon of T . Then the expected regret of the proposed FedCE algorithm satisfies

R(FedCE,T ) = O(
√

T )

Proof. The regret of Algorithm 5 consists of two parts that we denote by RCE and RExp. In

particular, we have

R(FedCE,T ) = RCE(FedCE,T )+RExp(FedCE,T ).

The first part, RCE , is related to CE intervals and the fact that we have an error in

estimating the model and consequently, we have an error in constructing the optimal controller

through certainty equivalence. The second part of the regret, RExp, is related to Exploration

phase due to not exerting the optimal action over those intervals. In the following, we will

compute these two parts of the regret separately.

In order to compute RCE , we borrow some results from [114]. In particular, we use

Theorem 2 of this reference, which gives an upper bound on the suboptimality of the certainty

equivalence controller as a function of the model estimation error. In that theorem, they show

that if the model estimation error is less than or equal to ε , then the average cost incurred through

CE controller, denoted by JCE , minus the optimal average cost, denoted by J∗, is bounded by

a quadratic function of ε . We know from Theorem 2 that the model estimation error scales
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as O(T
−1
4 ). Therefore, JCE − J∗ scales as O(T

−1
2 ). From the definition of regret, we have

RCE = O(T (JCE − J∗)). Therefore, we have RCE = O(T ∗T
−1
2 ) = O(

√
T ).

It is easy to see that the second part of the regret, RExp scales linearly with the time of

exploration. Note that this is the worst possible regret. The reason is that for every time step that

we do not exert the optimal action, we pay a constant regret. Furthermore, assuming the state has

deviated too much from the CE path (the path it would have taken if we were only applying CE

controller), we can force it back to its path with at most the same time steps that have caused

the deviation. Therefore, this part of the regret would be linear in the exploration time and we

have RExp = O(TExp), where TExp is the total exploration time. Based on the assumption in the

theorem, we have TExp = O(
√

T ). Consequently, we have RExp = O(
√

T ).

Combining the above results for RCE and RExp, we have R(FedCE,T ) = O(
√

T ).

4.5.1 Satisfying Rich and Stable Exploration

In this subsection, we provide an example of probability distributions (σn
i )n=1,2,··· for

i = 1,2, and CE/Exploration scheduling, i.e., T n
EX and T n

Exp for n = 1,2, · · · , that satisfies the

Rich and Stable Exploration. According to Theorem 3, we also need to have the total exploration

time to be O(
√

T ). Therefore, our example must also satisfy this condition.

Lemma 4. If we have σn
i to be an element-wise Bernouli distribution over the set {an,−an}

with parameter pn = 0.5, an = max{ a1
√

n ,δ} for some positive a1, and TExp = kn, then Rich and

Stable Exploration condition holds.

Proof. Consider the nth exploration episode containing times b+ 1, · · · ,b+ T n
Exp. For large

enough n, we have
b+T n

Exp

∑
k=b+1

û(i)i (k)û(i)i (k)T ≈ T n
ExpCov(û(i)i (b+1))

We also have

δ
2Ini ≤Cov(û(i)i (b+1))≤ (a1)2Ini
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Consequently, for large enough s, we can write

δ
2Ini ≤

1
s

s

∑
k=1

û(i)i (k)û(i)i (k)T ≤ (a1)2Ini

Setting U = δ 2Ini and V = (a1)2Ini will conclude the proof.

Lemma 5. If we set T n
Exp = kn and T n

EX = kn3, then the total exploration time is O(
√

T ).

Proof. We denote the total time horizon with n CE/Exploration intervals with T (n), and we

have T (n) = Tw +∑
n
l=1(T

n
CE + T n

Exp). We also denote the total exploration time in T (n) by

TExp(n). According to the scheduling of T n
CE = kn3 and T n

Exp = kn, we have T (n) = O(n4),

and TExp(n) = O(n2). Therefore, we have TExp(n) = O(
√

T (n)). We can drop n and write

TExp = O(
√

T ), where TExp is the total exploration time in T total steps.

4.6 Numerical Analysis

In this section, we illustrate the performance of our proposed FedCE algorithm through

numerical simulations. We first consider the zero-target case, where the goal is to reach the

reference x∗ = 0. We then consider two more general cases: 1) nonzero target and 2) tracking

trajectory generated by a known linear system of equations.

4.6.1 Zero-target control

In this section, we consider the problem of zero-target control, where the goal is to

stabilize the system around the origin x∗ = 0 in a gradual fashion. We use the following dynamics

and cost matrices:

A =

0.95 0

0 0.95

 ,B = I,Q = 0.05∗

1 1

1 1

 ,R = I

We set the horizon to be T = 40000 and the length of the the warm-up phase Tw = 20.

Each simulation setting is averaged over 100 independent runs, and the cumulative regret

72



R(FedCE,T ) and estimation error ||A− Â|| are recorded. We set the initial state x(0) = 0 and

the process noise variance σw = 0.2. We use the example of Section 4.5.1 for σn
i , T n

EX , and T n
Exp

for FedCE algorithm (set δ = 0.01 and consider different k and a1 in our experiments). In our

numerical analysis results, when we refer to FedCE, we are referring to this case. We further

compare this version with cases when other alternative examples are utilized. We compare the

performance of FedCE with the following alternative algorithms:

• Non-cooperative Adaptive Algorithm (Non-Coop-Adapt): Similar to FedCE, except

for the control policy applied in the CE intervals. Instead of applying CE controller,

apply the sub-optimal control: u1(t) =

K(θ̂ 11)

0

x1(t),u2(t) =

 0

K(θ̂ 22)

x2(t). Where

K(θ̂ 11),K(θ̂ 22) are computed from Eq.(4.2) with (Â11, B̂11,Q11,R11), (Â22, B̂22,Q22,R22)

respectively.

• Local Certainty Equivalence (Loc-CE): Similar to FedCE but during Exploration inter-

vals, set u1(t) =

K11(θ̂)

0

x1(t),u2(t) =

 0

K22(θ̂)

x2(t).

• Perturbed Local Certainty Equivalence (Pert-Loc-CE): Similar to FedCE but during

Exploration intervals, set u1(t) =

K11(θ̂)

0

x1(t)+

I

0

η1(t),u2(t) =

 0

K22(θ̂)

x2(t)+0

I

η2(t), where η1(t),η2(t)∼N (0,an) for the nth exploration episode.

In Figure 4.1, we show the mean regret and model estimation error of FedCE and other

alternative algorithms. For the analysis in this figure, we set a1 = 0.2, k = 2 using a grid search.

Figure 4.1(a) verifies the O(
√

T ) regret bound for FedCE as indicated by Theorem 3. We also

show in this figure that the regret of Non-Coop-Adapt scales almost linearly, resulting from

the fact that it treats the cost matrices as completely decoupled, incurring linear regret from

the off-diagonal entries of Q,R. This result shows that sublinear regret is hopeless without
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(a)

(b)

Figure 4.1. Performance of FedCE and other alternative algorithms. (a) Mean
Regret, (b) Model Estimation Error.

74



communication between the two agents. Allowing communication significantly improves regret,

as shown by Loc-CE and Pert-Loc-CE plots. However, the choice of exploration actions in

Loc-CE provide insufficient excitation and therefore hinders the learning of system dynamics, as

illustrated in 4.1(b). Although the added perturbations in Pert-Loc-CE improved the performance

of the algorithm compared to Loc-CE, this exploration scheme performs much worse than FedCE.

Since the exploration in Loc-CE and Pert-Loc-CE is based on CE controller, the actions are

relatively “conservative", meaning the states are pulled back towards the lowest cost state (in this

case 0) with little magnitude, causing smaller signal to noise ratios and consequently inaccurate

system identification from least squares.

In Figure 4.2, we carry out an ablation study on Exploration/CE length scaling factor k

and initial excitation a1. In Figure 4.2(a), we study the effect of k on the regret. As k becomes

smaller, exploration episodes are more frequent but less lengthy, creating a trade-off between the

exploration regret and system learning. In Figure 4.2(b), FedCE is initialized with different a1.

Similarly, there appears to be a trade-off between system model learning (better with larger a1)

and the regret per exploration period (more with larger a1).

In Figure 4.3, we apply FedCE to the same system as Figure 4.1, with the following

differences. x(0) = [0,10]′, and Q = 0.05∗

 1 −1

−1 1

. For this system the lowest cost state is

when x1 = x2. We study the effect of R, i.e. cost matrix for actions, on the speed by which x1

and x2 converge to each other. As R takes larger magnitudes, larger actions are more penalized,

therefore x1 and x2 converge more slowly since it is preferred to take several smaller steps instead

of a giant leap.

In Figure 4.4, we apply FedCE to an unstable system. with A =

1.05 0

0 1.05

. Due to

the instability of the system, each exploration phase incurs more regret since random actions

can bring the system further from the lowest cost state. Despite this fact, FedCE is still able to

achieve a sublinear regret bounded by O(
√

T ), and the rate of learning is of the order of O(T−
1
4 )
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(a)

(b)

Figure 4.2. Ablation studies of FedCE under different (a) scaling factor k, and
(b) initial excitation a1.

that matches the theoretical results from Theorem 2.

4.6.2 Beyond zero-target Decentralized LQ Problems

In sections 4.4 and 4.5, the problem of Decentralized LQ control with zero target is

introduced and analyzed. Most existing literature in LQ control considers this zero target case,

where the goal of the controller is to gradually bring the system to the zero state and to maintain

that state over the infinite horizon. However, in real-world applications, the target is often
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Figure 4.3. Convergence of x1 and x2 to each other for various R.

nonzero, or even time-variant. For instance, in building thermal control problems, one might

want to maintain the temperature at a certain level; for drones to robotic navigation systems, we

might want to follow a certain trajectory or maintain some kind of formations.

Driven by these potential application scenarios, we propose three extensions to the

aforementioned Decentralized LQ problem with zero target. In the first case, the agents of the

system aim to track fixed nonzero point references. In the second case, the agents aim to follow

respective trajectories generated by a known linear dynamic model. In the last case, the agents

aim to track fixed nonzero point references, while trying to maintain certain distance from each

other. The algorithms for these problems are variants of FedCE, where they differ slightly in the

Certainty Equivalence (CE) control phase.

Waypoint Target Control

In this setting, each agent tracks its respective non-zero reference points. Formally, given

state x(t) and joint control u(t), as defined in section 4.3, the agents receive a quadratic step cost

of

c(t) = (x(t)− x∗(t))T Q(x(t)− x∗(t))+u(t)T Ru(t) (4.8)

77



(a)

(b)

Figure 4.4. Performance of FedCE for an unstable system.

where x∗(t) :=

x∗1(t)

x∗2(t)

 is the reference point for the system and has the same dimension

as x(t), x∗(t) ∈ Rn1+n2 . Since we are considering a fixed reference point, we can drop the

dependence on t, so x∗(t) = x∗.

The goal is to find control policies π(t) = (π1(t),π2(t)), where πi(t) : Rni → Rd and

ui(t) = πi(t)[xi(t)], that minimizes the infinite-horizon average expected cost
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Jπ(θ) = limsup
T→∞

1
T
Eπ [

T

∑
t=1

c(t)]

In the following lemma, we present the optimal controllers when the system model

θ ∗ = [A∗,B∗]T is known. This controller will be the basis of the Certainty Equivalence (CE)

control phase in FedCE.

In the Decentralized LQ problem with nonzero reference point, if the system model

θ ∗ = [A∗,B∗]T is known, the optimal controllers are given by [9]

u(t) = K(θ ∗)x(t)+ K̄(θ ∗)x∗

where

K(θ ∗) =−(R+BT P(θ ∗)B)−1BT P(θ ∗)A,

and

K̄(θ ∗) =−(R+BT P(θ ∗)B)−1BT (I− (A+BK))−1Q,

and P(θ ∗) is the solution to the Algebraic Riccati Equation (4.3).

Therefore if we denote K(θ ∗) =

K11(θ
∗) K12(θ

∗)

K21(θ
∗) K22(θ

∗)

,

and K̄(θ ∗) =

K̄11(θ
∗) K̄12(θ

∗)

K̄21(θ
∗) K̄22(θ

∗)

, we have the optimal control for the two agents as:

u1(t) =

K11(θ
∗)

K21(θ
∗)

x1(t)+

K̄11(θ
∗)

K̄21(θ
∗)

x∗1,

u2(t) =

K12(θ
∗)

K22(θ
∗)

x2(t)+

K̄12(θ
∗)

K̄22(θ
∗)

x∗2,

The above can be proved from Corollary 3.

Simulations: We designated 3 waypoints for each agent. Each agent should aim to reach

each waypoint before a certain time limit while minimizing cumulative costs. Specifically, the
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time limits for the 3 waypoints are [500,1000,1500], and corresponding waypoint coordinates

are: x∗1 = [(1,2),(2,1),(2.5,2.5)] and x∗2 = [(1,0.5),(2,1.5),(2.5,2)]. We assume that the agents

are moving at different (fixed) heights, simulating drone movements. See Figure 4.5), where we

have plotted the trajectory of two agents with FedCE against reference trajectories generated if

[A∗,B∗] are known in advance.

Figure 4.5. Trajectory of two agents in the case of nonzero reference.

In Figure 4.5, we plotted the trajectory of two agents with FedCE against reference

trajectories generated if [A∗,B∗] are known in advance. In Figure 4.6, we plotted the cumulative

regret and observed that it is bounded by O(
√

T ).
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Figure 4.6. Cumulative regret in the case of nonzero reference.

Route Tracking Control

In this setting, each agent tracks a trajectory generated by a known linear system, with

state equations defined as:

z(t +1) = Fz(t),x∗(t) = Hz(t)

Same as in previous section, given state x(t) and joint control u(t), as defined in section

4.3, the agents receive a quadratic step cost of

c(t) = (x(t)− x∗(t))T Q(x(t)− x∗(t))+u(t)T Ru(t) (4.9)

where x∗(t) :=

x∗1(t)

x∗2(t)

 is the reference point for the system and has the same dimension

as x(t), x∗(t) ∈ Rn1+n2 . In the following lemma, we present the optimal controllers when

the system model θ ∗ = [A∗,B∗]T is known. This controller will be the basis of the Certainty

Equivalence (CE) control phase in FedCE.

Lemma 6. In the Decentralized LQ tracking problem with trajectory generated from a known

linear system, if the system model θ ∗ = [A∗,B∗]T is known, one can first construct an auxiliary
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system defined as [9]:

Â =

A 0

0 F

 , B̂ =

B

0

 , Q̂ =

 Q −QH

−HT Q HT QH


then the optimal control is given by:

u(t) = K1x(t)+K2z(t)

where

K1 =−R−1BT P

K2 =−R−1BT P12

where P is from P̂ =

 P P12

P21 P22

, where P̂ is calculated from the Discrete Algebraic

Ricatti Equations with the auxiliary system:

P = Q̂+ ÂT PÂ− ÂT PB̂(R+ B̂T PB̂)−1B̂T PÂ.

Therefore, if we denote K1(θ
∗) = [K1,1(θ

∗),K1,2(θ
∗)],

and K2(θ
∗) = [K2,1(θ

∗),K2,2(θ
∗)], we have the optimal control for the two agents as:

u1(t) = K1,1(θ
∗)x1(t)+K2,1(θ

∗)z1(t),

u2(t) = K1,2(θ
∗)x2(t)+K2,2(θ

∗)z2(t),

Certainty Equivalence (CE): In the CE phase, the agents will compute the certainty

equivalence controllers, K1(θ̂),K2(θ̂), using their latest model estimate, θ̂ , using equations (6)

and (6).

Simulations: For the simulation, each agent aims to track a trajectory generated from a
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known linear system. We use F =

F1 0

0 F2

, and H = I, so the two trajectories are decoupled.

We let F1 = F2 =

0.98 0.1

−0.1 0.75

 and x1(0) = (0.1,0.1), x2(0) = (0.2,0.2). In Figure 4.7 and

4.8, we plotted the trajectory of two agents with FedCE against trajectories generated if [A∗,B∗]

are known in advance.

Figure 4.7. Trajectory of agent 1 in the case of tracking a trajectory generated
from a known linear system.

Figure 4.8. Trajectory of agent 2 in the case of tracking a trajectory generated
from a known linear system.
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4.7 Conclusions and Future Work

In this chapter, we studied the challenging decentralized linear quadratic control problem

with unknown transition dynamics, where agents observe states partially and can control partial

inputs over an additive channel. We proposed FedCE, an algorithm that balances system

identification with least squares (exploration) and certainty equivalence control (exploitation).

Theoretically, we showed that given Rich and Stable Explorations, FedCE achieves a regret that

scales at a rate of O(
√

T ) for a time horizon of T (Theorem 3), and gave an example such that

the Rich and Stable Explorations can be achieved. Numerical simulations completed our analysis

by confirming the theoretical results, and provided ablation studies for various parameters in the

algorithm.

One natural extension to the DecLQ problem is coupled dynamics, where A,B matrices

are dense instead of block-diagonal. In this case agents have to perform system identification

with partial observations, which might involve Ho-Kalman type algorithms [59, 91]. Moreover,

DecLQ with more complex global controls instead of pure addition of local inputs is also an

interesting direction for future work, and new algorithms can be developed that exploits the

structure of global controls. Finally, settings where observed states are corrupted, such as by an

adversarial attacker, or settings that require reliability and safety guarantees, are also crucial for

future investigations.
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Chapter 5

Conclusion and Future Directions

This thesis presents three case studies of managing and modeling uncertainties in ma-

chine learning. In the supervised learning setting, we focus on epistemic uncertainty (model

uncertainty) by employing a Bayesian learning framework and studying models’ convergence

behavior under a peer-to-peer decentralized learning setting. Our proposed method combines

Variational Bayes and Bayesian merge rule, allowing local models to eventually learn the true

model parameters under potentially non-IID local data. In the reinforcement learning (RL)

setting, we consider both aleatoric and epistemic uncertainties. In RL problems, aleatoric

uncertainty can potentially come from stochastic transitions in environments, while epistemic

uncertainty usually comes from insufficient exploration of the environment. For the two RL case

studies, we take model-based approaches: we first derive optimal policies under known stochastic

transition models, then design efficient exploration strategies to guarantee sufficient exploration

of the environment. The keys to designing exploration strategies are sufficient exploration phases

and adequate estimation strategy of unknown model parameters.

There are many potential future directions for each of the three cases considered in this

thesis. For the decentralized learning problem, common challenges include: 1) adversarial

attacks [23], 2) node dropouts [61], 3) local distribution shifts or sometimes called drifts [134].

Given the rapid development of new machine learning models, it is also interesting to consider

Bayesian decentralized learning for Large Language Models (LLM) [167], Diffusion Models
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[162], or Foundation Models [26]. For the Contextual Shortest Path problem, learning under more

complex context distributions can be an extension of the presented work. For the decentralized

LQ problem, one direction is to go from LQR to MDP and devise strategies for a decentralized

MDP problem. One can also study other model-based approaches, such as Thompson Sampling.

In addition, the problem setup can be extended to coupled dynamics and beyond additional joint

controls.
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Appendix A

Appendix to Chapter 2

A.1 Bernstein-Von Mises Theorem under model misspecifi-
cation

Theorem 4. Let q(t)(θ | D) ∈ P(Θ) be the posterior distribution after observing D1:t =

{(Xs,Ys)}1≤s≤t = {(X
(i)
s ,Y (i)

s ) ∈ (X ,Y )}i∈[n],1≤s≤t , where D1:t is drawn i.i.d. from PXY =

PXPY |X . Let pθ ∈P(Θ) be the prior distribution over Θ. The Bernstein-Von Mises Theorem

asserts that, for any measurable set A⊂Θ, we have,

sup
A
| q(t)(A)−N

θ̂t ,(tVθ∗)−1(A) |
PXY−−→ 0

where

θ
∗ ∈ argmin

θ∈Θ

EPX [DKL(PY |X(· | X)|| f (· | X ,θ))]

and Vθ∗ is the negative Hessian matrix of the above expected KL divergence, and θ̂t is

some suitable estimators, typically taken as the maximum likelihood estimator that satisfies

the sequence
√

t(θ̂t − θ ∗) is asymptotically normal with zero mean. Here, it is not required

that there exists a θ ∗ ∈Θ such that f (· | X ,θ ∗) = PY |X(· | X) almost surely under PX . In other

words, Bernstein-Von Mises Theorem under model misspecification guarantees convergence of

the posterior regardless of realizability.
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A.2 Consensus Step on Gaussian distributions

Let (µ(t)
i ,Σ

(t)
i ) denote the mean and the covariance matrix of b(t)

i at agent i at time t.

Using equation (2.4), we have
N

∑
j=1

Wi j lnG(θ ,µ
(t)
j ,Σ

(t)
j )

=−1
2

N

∑
j=1

Wi j

(
(θ −µ

(t)
j )T

Σ
(t)
j
−1
(θ −µ

(t)
j )

)

− 1
2

N

∑
i=1

Wi j ln(2π)k|Σ(t)
j |

=−1
2

(
θ

T
N

∑
j=1

Wi jΣ
(t)
j
−1

θ +
N

∑
j=1

µ
(t)
j

T
Wi jΣ

(t)
j
−1

µ
(t)
j

)

+
1
2

(
N

∑
j=1

µ
(t)
j

T
Wi jΣ

(t)
j
−1

θ +θ
T

N

∑
j=1

Wi jΣ
(t)
j
−1

µ
(t)
i

)

− 1
2

N

∑
j=1

Wi j ln(2π)k|Σ(t)
j |.

Noting that (θ −A)T Σ
−1(θ −A) = θ

T
Σ
−1

θ −AT Σ
−1

θ −θ
T

Σ
−1A+AT Σ

−1A. By completing

the squares we obtain q(t)
i is Gaussian distribution with the last term becoming part of the

normalization constant after exponentiating. and we have

Σ̃i
(t)−1

=
N

∑
j=1

Wi jΣ
(t)
j
−1
,

and

Σ̃i
(t)−1

µ̃
(t)
i =

N

∑
j=1

Wi jΣ
(t)−1

j µ
(t)
j

=⇒ µ̃
(t)
i = Σ̃

(t)
i

N

∑
j=1

Wi jΣ
(t)
j
−1

µ
(t)
j .

A.3 Proof of Theorem 1

Before proving the theorem we first present a lemma on the stochastic matrix W .

Lemma 7 ( [141]). For an irreducible and aperiodic stochastic matrix W, the stationary

distribution v = [v1,v2, . . . ,vN ] is unique and has strictly positive components and satisfies
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vi = ∑
n
j=1 v jWji. Furthermore, for any i ∈ [N] the weight matrix satisfies

n

∑
k=1

N

∑
j=1

∣∣∣[W k]i j− v j

∣∣∣≤ 4logN
1−λmax(W )

,

where λmax(W ) = maxi∈[N−1]λi(W ), and λi(W ) denotes eigenvalue of W counted with algebraic

multiplicity and λ0(W ) = 1.

The proof of Theorem 1 is based the proof provided in [124, 141, 92]. For the ease of

exposition, let b(0)i (θ) = 1
|Θ| for all θ ∈Θ. We begin with the following recursion for each node

i ∈ [N] and for any θ ∈Θ\Br(θ
∗),

1
T

log
b(T )i (θ ∗)

b(T )i (θ)
=

1
T

N

∑
j=1

T

∑
t=0

[W t ]i jz
(T−t)
j (θ ∗,θ),

where

z(t)j (θ ∗,θ) = log
f ( j)
(

Y( j)
t | X

( j)
t ,θ ∗

)
f ( j)
(

Y( j)
t | X

( j)
t ,θ

) .

From the above recursion, we have
1
T

log
b(T )i (θ ∗)

b(T )i (θ)
=

1
T

N

∑
j=1

v j

(
T

∑
t=0

z(T−t)
j (θ ∗,θ)

)

+
1
T

N

∑
j=1

(
T

∑
t=0

(
[W t ]i j− v j

)
z(T−t)

j (θ ∗,θ)

)

≥ 1
T

N

∑
j=1

v j

(
T

∑
t=0

z(t)j (θ ∗,θ)

)

− 1
T

N

∑
j=1

T

∑
t=0

∣∣[W t ]i j− v j
∣∣ ∣∣∣z(t)j (θ ∗,θ)

∣∣∣
(a)
≥ 1

T

N

∑
j=1

v j

(
T

∑
t=0

z(t)j (θ ∗,θ)

)
− 4C logN

T (1−λmax(W ))

where (a) follows from Lemma 7 and the boundedness assumption of log-likelihood

ratios. Now fix T ≥ 8C logN
ε(1−λmax(W )) , since b(T )i (θ ∗)≤ 1 (since b(T )i (·) is a pmf over Θ) we have

− 1
T

logb(T )i (θ)≥−ε

2
+

1
T

N

∑
j=1

v j

(
T

∑
t=0

z(t)j (θ ∗,θ)

)
.
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Furthermore, we have

P

(
− 1

T
logb(T )i (θ)≤

N

∑
j=1

v jI j(θ
∗,θ)− ε

)

≤ P

(
1
T

N

∑
j=1

v j

T

∑
t=0

z(t)j (θ ∗,θ)≤
N

∑
j=1

v jI j(θ
∗,θ)− ε

2

)
.

where recall that

I j(θ
∗,θ) = E[z j(θ

∗,θ)]

= E
P
( j)
X

[
DKL

(
PY |X(·|X)|| f ( j)(· | θ ,X)

)
−DKL

(
PY |X(·|X)|| f ( j)(· | θ ∗,X)

)]
.

Now for any j ∈ [N] note that
N

∑
j=1

v j

T

∑
t=0

z(t)j (θ ∗,θ)−T
N

∑
j=1

v jI j(θ
∗,θ)

=
T

∑
t=0

(
N

∑
j=1

v jz
(t)
j (θ ∗,θ)−

N

∑
j=1

v jE[z
(t)
j (θ ∗,θ)]

)
.

For any θ ̸∈Br(θ
∗), applying McDiarmid’s inequality for all ε > 0 and for all T ≥ 1 we

have

P

(
T

∑
t=0

(
N

∑
j=1

v jz
(t)
j (θ ∗,θ)−

N

∑
j=1

v jE[z
(t)
j (θ ∗,θ)]

)
≤−εT

2

)

≤ e−
ε2T
2C .

Hence, for all θ ̸∈Br(θ
∗), for T ≥ 8C logN

ε(1−λmax(W )) we have

P

(
−1
T

logb(T )i (θ)≤
N

∑
j=1

v jI j(θ
∗,θ)− ε

)
≤ e−

ε2T
4C ,

which implies

P
(

b(T )i (θ)≥ e−T (∑N
j=1 v jI j(θ

∗,θ)−ε)
)
≤ e−

ε2T
4C .

Using this we obtain a bound on the worst-case error over all θ and across the entire

network as follows

P

(
max
i∈[N]

max
θ∈Θ\Br(θ∗)

b(T )i (θ)≥ e−T (K(Θ)−ε)

)
≤ N|Θ|e−

ε2T
4C ,

where K(Θ) := minθ∈Θ\Br(θ∗)∑
N
j=1 v jI j(θ

∗,θ). From Lemma 7 we have that K(Θ)> 0.

Then, with probability at least 1−δ we have

max
i∈[N]

max
θ∈Θ\Br(θ∗)

b(T )i (θ)< e−T (K(Θ)−ε),
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when the number of samples satisfies

T ≥
4C log N|Θ|

δ

ε2 .

However, recall we require T ≥ 8C logN
ε(1−λmax(W )) , a reasonable lower bound is therefore

T ≥
8C log N|Θ|

δ

ε2(1−λmax(W ))
.

A.4 Proof of Corollary 1

1
N

N

∑
i=1
|Li(θ

∗)−Li(θ̂
(T )
i )|

≤ B
N

N

∑
i=1

EPX

[∫
Y

∣∣∣∣ f (i)(ŷ | x,θ ∗)− f (i)(ŷ | x, θ̂ (T )
i )

∣∣∣∣dy
]

≤ B
2N

N

∑
i=1

EPX

[√
DKL( f (i)(ŷ | x,θ ∗)|| f (i)(ŷ | x, θ̂ (T )

i ))

]

≤ B
2

√
1
N

N

∑
i=1

EPX

[
DKL( f (i)(ŷ | x,θ ∗)|| f (i)(ŷ | x, θ̂ (T )

i ))

]
≤ B
√

r
2

where the third to last inequality follows from Pinsker’s Inequality, the second to last

inequality follows from Jensen’s Inequality, and the last line follows from Theorem 1 and

Assumption 3.
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Appendix B

Appendix to Chapter 3

Proof of Theorem 1 The regret of RL-CSP algorithm consists of two parts: Rexplore(T ), the

regret incurred from exploration phases, and Rexploit(T ), the regret from exploitation phases

before the value functions have not converged which results in sub-optimal rank ordering of

states.

Bounding Rexplore(T ): Note that the number of exploration phases is bounded by

O(glog(t)). For each exploration phase, a state can be at most M transitions away from the

source. Therefore, the total regret from exploration is bounded by O(Nglog(T )).

Bounding Rexploit(T ): Let VP̂(i) be the optimal value function of state i under empirical

context distribution P̂a
i = P̂(X |i,a). It is shown in [67] that |V ∗(i)−VP̂(i)| ≤ α maxi,a σ(Pa

i , P̂
a
i ),

where α = R∑
N
i=1 ∑u ∑a

1
cU(i,X ,u)+ cA(i,a)

and σ is the total variation metric. For exploitation

episode t, define L(t) as the event that the policy under VP̂(i) is different from the policy under

V ∗(i). Notice that if |V ∗(i)−VP̂(i)| ≤
∆

2
,∀i ∈ V , then the optimal policy under P̂a

i and Pa
i are

the same. Therefore, {maxi,a σ(Pa
i , P̂

a
i (t))≤ ∆/2α} ⊆ Lc(t). Thus we have:

Pr(L(t))≤∑
a

N

∑
i=1

Pr(σ(Pa
i , P̂

a
i (t))> ∆/2α)

Now within the summation on the right, we have:
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Pr(σ(Pa
i , P̂

a
i (t))> ∆/2α)

= Pr(
1
2 ∑

X∈Xi

|P̂t(X |i,a)−P(X |i,a)|> ∆/2α)

≤ ∑
X∈Xi

Pr(|P̂t(X |i,a)−P(X |i,a)|> ∆

Bα
)

Let ni(t) be the number of times state i is visited upon time t, then by applying a Chernoff

Bound we obtain:

Pr(σ(Pa
i , P̂

a
i (t))> ∆/2α)≤ 2Bexp(−2ni(t)(

∆

Bα
)2)

Since by time t, there are at least g log t exploration episodes, where for each exploration

episode the least visited state is reached, we have:

ni(t)≥ g/Mlog(t)≥ α
2B2/(2∆

2)log(t),∀i ∈ V

Thus we have:

Pr(σ(Pa
i , P̂

a
i (t))> ∆/2α)≤ 2Bexp(−2ni(t)(

∆

Bα
)2)

≤ 2B
t

Pr(L(t))≤∑
a

M

∑
k=1

2B
t
≤ 2BM|A |

t
Thus the regret from exploitation can be bounded as:

Rexploit(T )≤ R∑
t

Pr(L(t))≤ 2RMB|A |(log(T ))

Now, recall α = O(M), so Rexplore(T ) = O(M4B2log(T )/∆2) which is a larger bound

than 2RMB|A |(log(T )). Thus, R(T ) = O(Mglog(T )).
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Appendix C

Appendix to Chapter 4

Proof of Lemma 2. When θ ∗ is known, one can look at DecLQ problem from a centralized

agent’s point of view. Meaning, assume we have a centralized agent that observes both x1(t) and

x2(t) and generates the control action u(t). Therefore, we know that the optimal controller will

be u(t) = K(θ ∗)x(t). Therefore, we can write

u(t) =
N

∑
i=1


K1i(θ

∗)

· · ·

KNi(θ
∗)

xi(t),

by setting ui(t) =


K1i(θ

∗)

· · ·

KNi(θ
∗)

xi(t), we can achieve the above optimal control. Therefore, in

a decentralized case, if θ ∗ is known, all of the agents can compute the matrix K(θ ∗) and

generate their corresponding control actions that will collectively achieve the optimal cost of the

centralized controller, J∗(θ ∗) (which is the best one can achieve in a decentralized setting).
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[85] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated Learning: Strategies for Improving Communication
Efficiency. arXiv preprint arXiv:1610.05492, 2016.

[86] Panqanamala Ramana Kumar. A survey of some results in stochastic adaptive control.
SIAM Journal on Control and Optimization, 23(3):329–380, 1985.

102



[87] PR Kumar and Pravin Varaiya. Stochastic systems: estimation, identification and adaptive
control, 1986.

[88] Tze Leung Lai. Adaptive treatment allocation and the multi-armed bandit problem. The
annals of statistics, pages 1091–1114, 1987.

[89] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules.
Advances in applied mathematics, 6(1):4–22, 1985.

[90] Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, and Anima Anandkumar. Explore
more and improve regret in linear quadratic regulators. ArXiv, abs/2007.12291, 2020.

[91] Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, and Anima Anandkumar. Adap-
tive control and regret minimization in linear quadratic gaussian (lqg) setting. In 2021
American Control Conference (ACC), pages 2517–2522, 2021.

[92] A. Lalitha, T. Javidi, and A. D. Sarwate. Social Learning and Distributed Hypothesis
Testing. IEEE Transactions on Information Theory, 64(9):6161–6179, Sept 2018.

[93] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. Peer-to-peer
federated learning on graphs, 2019.

[94] Anusha Lalitha, Anand Sarwate, and Tara Javidi. Social learning and distributed hy-
pothesis testing. In 2014 IEEE International Symposium on Information Theory, pages
551–555, 2014.

[95] Anusha Lalitha, Shubhanshu Shekhar, Tara Javidi, and Farinaz Koushanfar. Fully de-
centralized federated learning. In Third NeurIPS workshop on Bayesian Deep Learning,
2018.

[96] Peter Chal Landgren. Distributed multi-agent multi-armed bandits. PhD thesis, Princeton
University, 2019.

[97] John Langford and Tong Zhang. The epoch-greedy algorithm for contextual multi-armed
bandits. Advances in neural information processing systems, 20(1):96–1, 2007.

[98] Martin Lauer and Martin A Riedmiller. An algorithm for distributed reinforcement learn-
ing in cooperative multi-agent systems. In Proceedings of the seventeenth international
conference on machine learning, pages 535–542, 2000.

[99] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[100] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid
data silos: An experimental study. Technical report, 2021.

[101] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and
Bingsheng He. A survey on federated learning systems: Vision, hype and reality for
data privacy and protection. IEEE Transactions on Knowledge and Data Engineering,
35(4):3347–3366, 2021.

103



[102] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the
convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

[103] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can
decentralized algorithms outperform centralized algorithms? a case study for decentralized
parallel stochastic gradient descent. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5330–5340. Curran Associates, Inc., 2017.

[104] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel
stochastic gradient descent. In International Conference on Machine Learning, pages
3043–3052. PMLR, 2018.

[105] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning, 2019.

[106] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang
Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated learning in mobile
edge networks: A comprehensive survey. IEEE communications surveys & tutorials,
22(3):2031–2063, 2020.

[107] Tao Lin, Sebastian U. Stich, and Martin Jaggi. Don’t use large mini-batches, use local
SGD. CoRR, abs/1808.07217, 2018.

[108] Michael L Littman. Markov games as a framework for multi-agent reinforcement learning.
In Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

[109] Michael L Littman. Value-function reinforcement learning in markov games. Cognitive
systems research, 2(1):55–66, 2001.

[110] K. Liu and Q. Zhao. Adaptive shortest-path routing under unknown and stochastically
varying link states. In 2012 10th International Symposium on Modeling and Optimization
in Mobile, Ad Hoc and Wireless Networks (WiOpt), pages 232–237, 2012.

[111] Owen Lockwood and Mei Si. A review of uncertainty for deep reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 18, pages 155–162, 2022.

[112] Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning for open
banking. In Federated learning: privacy and incentive, pages 240–254. Springer, 2020.

[113] Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter Bartlett, and
Martin Wainwright. Derivative-free methods for policy optimization: Guarantees for linear
quadratic systems. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings
of the Twenty-Second International Conference on Artificial Intelligence and Statistics,
volume 89 of Proceedings of Machine Learning Research, pages 2916–2925. PMLR,
16–18 Apr 2019.

104



[114] Horia Mania, Stephen Tu, and Benjamin Recht. Certainty equivalence is efficient for
linear quadratic control. Advances in Neural Information Processing Systems, 32, 2019.

[115] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera
y Arcas. Communication-efficient learning of deep networks from decentralized data. In
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
AISTATS 2017, volume 54 of Proceedings of Machine Learning Research, pages 1273–
1282. PMLR, 2017.

[116] Volodymyr Mnih. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[117] Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov decision processes
with continuous side information. volume 83 of Proceedings of Machine Learning
Research, pages 597–618. PMLR, 07–09 Apr 2018.

[118] Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-
based reinforcement learning: A survey. Foundations and Trends® in Machine Learning,
16(1):1–118, 2023.

[119] Nader Motee, Ali Jadbabaie, and Bassam Bamieh. On decentralized optimal control and
information structures. In 2008 American Control Conference, pages 4985–4990. IEEE,
2008.

[120] Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang, Ali Dehghantanha,
and Gautam Srivastava. A survey on security and privacy of federated learning. Future
Generation Computer Systems, 115:619–640, 2021.

[121] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
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