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problem to the‘analyst who seeks to evaluate even its static stress dis-
tribution. The complete analysis of the dynamic response of such struc-
tures to earthquake excitation appears to be beyond the present capabili-
ties of even the best digital computers. However, the earthquake behavior
of earth dams is an extremely important subject; many important dams are
being built in regions of high seismicity at the present time, and others
will be built in the future. Thus, it is essential to obtain some theo-
retical understanding of the response of such structures to earthquake
excitation so that improved methods may be developed for assessing their
factors of safety against rupture.

In order to render the dynamic response problem mathematically trac-
table, it is necessary to make many sweeping assumptions regarding the
geometry and material properties of the earth dam structure. 1In all
analyses to date, including the work described herein, the material has
been assumed to be linearly elastic, and the true three-dimensional nature
of the geometry has been ignored.

The first mathematical treatments of the dynamic response of earth
dams reduced the problem to a one-dimensional form. The structure was
assumed to be of prismatic wedge-shaped form, of infinite length, and
loaded uniformly along the length so as to produce plane strain behavior
of the cross section. Furthermore, displacements within the cross sec-
tions were assumed to involve only horizontal shear. Thus, the system was

reduced to a vertical sghear beam with linearly varying width. The vibratory
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properties of such a system were first discussed by Mononobe, et.al. Fur-

ther studies of the earthquake behavior of the wedge-shaped shear beam
i shed b en F9D 6,7, - ;
were published by Hatanaska. Ambraseys extended the analyses to in-

clude the effects of end constraint, assuming that shear distortions could
develop along vertical sections as well as horizontal.

All of these analyses took account only of shearing distortions in
the earth dam material, a very limited approximation of the true behavior.
The first attempt to include the complete two-dimensional nature of the
cross section deformations in a dynamic analysis was made by Ishizaki and
Hatakeyama,S They treated the dynamic plane strain problem using finite
differences to solve the Navier equations of equilibrium at discrete in-
tervals of time. Comparison of these results with the shear wedge type

analysis demonstrated: {1) that the assumption of pure shear deformation

is reasonable near the vertical axis of the cross section, but is in signi-
ficant error near the upstream and downstream faces, and {2) that horizon-

tal displacements near the faces of the dam may be significantly different

3. Mononobe, N., Takata, A. and Matumura, M., "Seismic Stability of an
Earth Dam”, Trans. Second Congress on Large Dams, Vol. IV, Washington,
1936.

4. Hatanaka, M., "Fundamental Considerations on the Earthquake Resistant
Properties of the Earth Dam", Disaster Prevention Research Institute,
Kyoto University, Bulletin No. 11, December 1955.

5. Hatanaka, M., "Fundamental Study on the Earthquake Resistant Design
of Gravity Type Dams", Memoirs of the Faculty of Engineering, Kobe
University, No. 8, March 1961.

6. Ambraseys, N. N., "On the Shear Response of a Two-Dimensional Trun-
cated Wedge Subjected to an Arbitrary Disturbance’, Bull. Seis. Soc.
Am., Vol. 50, No. 7, January 1960, pp. 45-60.

7. Ambraseys, N. ., "The Seismic Stability of Earth Dams", Proc. Second
World Conference on Earthquake Engineering, Vol, 2, Japan, 1960.

8. Ishizaki, H. and Hatakeyama, N., "Considerations on the Vibrational
Behaviors of Earth Dems", Disaster Prevention Research Institute, Kyoto
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University, Bulletin No. 52, FPebruary 1962.




from the centerline displacements given by the shear wedge theory. Be-
cause the design criteria for earth dams are based largely on slope

stability which is controlled by conditions near the faces of the dam,

it is cleear that the shear wedge analysis does not give an adequate mea-

The finite difference method, however, does not appear to be the
most advantageous method for studying the two~-dimensional dynamic re-
sponse problem. The arbitrary geometry and non-homogeneity of a typical
earth dam cross section must inevitably lead to difficulties in the finite
difference formulation. On the other hand, the finite element methodg’lo’ll
automatically takes account of any arbitrary geometry or material property
variations, thus, it is ideally suited to earth dam analysis. The pur-
pose of this paper is to describe the application of the finite element
method to the earthquake stress analysis of an earth dam cross section.
The example considered is a simple triangular section with homogeneous
elastic properties, subjected to the vertical and horizontal acceleration

history recorded at the EL Centro earthquake of May 18, 19ko.

9. Clough, R. W., "The Finite Element Method in Flane Stress Analysis”,
Second Conference on Electronic Computation, ASCE, Pittsburgh, Pa.,
September 196G,

10. Wilson, E. L., "Finite Element Analysis of Two-Dimensional Struc-
tures", Institute of Engineering Research, Report No. 63-2, Univer-
sity of California, Berkeley, California, June 1963.

11. Sims, F. W., Rhodes, James, A., and Clough, Ray W., "Cracking in
Norfork Dam', Journal of the American Concrete Institute, Vol. 61,
No. 3, March 1964, p. 265,



THE FINITE ELEMENT METHOD

The finite element method has been fully described in many publica-
tions and need not be discussed in detail here. Only the essential fea-
tures of the method will be ocutlined, with particular reference to the
dynamic response analysis.

The basic concept of the finite element procedure is the idealiza-
tion of an actual elastic continuum as an assemblage of discrete elementsg
interconnected at their nodal points. For the analysis of two-dimensional
stress fields it has been found convenient to employ triangular plate
elements in the idealization., In order to maintain compatibility between
the edges of adjacent elements, it is assumed that the deformations with-
in each element vary linearly in the x and y directions. On the basis of
this assumption, it is possible to calculate the stiffness properties of
the elements, i.e., the nodal force-deflection relationships. Finally
the stiffness of the complete structural sssemblage is obtained by mere-
ly superposing the appropriate stiffness coefficients of the individual
elements connecting to each nodal point.

If the vector of all nodal point displacements in the complete as-
semblage is designated {r} and the vector of the corresponding nodal
forces is {R}, the Structﬁre gtiffness matrix [K] (which is obtained by
superposing the finite element stiffnesses) expresses the relationship

between these guantities as follows:

] 1



The order of these matrices is 2N if there are N nodal points in the
structural idezlization; that is, each nodal displacement may include
both x and y components in general. Where boundary conditionsg impose
displacement constraints on any of the nodal points, the matrices may
be reduced by eliminating the corresponding rows and columns,

In the standard static finite element analysis, these linear equa-
tions of equilibrium are solved for the nodal displacements resulting
from the given nodal forces. Then the stresses in all of the elements

{U}fare obtained from the nodal displacements by the matrix transfor-

(6

The stress transformation matrix [S} in this eguation takes account of
the agsumed linear displacement patterns in the elements, as well as
their given material properties.

Concerning the finite element plane strain analysis procedure in
general, it may be noted that: (1) compatibility is satisfied everywhere
in the system, (2) equilibrium is satisfied within each element, and (3)
equilibrium of stresses is not satisfied along the element boundaries, in
general, but the nodal forte resultants are in equilibrium. This local
discrepancy in stress eguilibrium represents the type and extent of the

approximation involved in the finite element method of analysis.



ANALYSIS OF DYNAMIC RESPONSE

The equations of motion of the nodal points in the finite element

system may be expressed in matrix form as follows:

5+ (101 )

is the nodal stiffness matrix obtained by the finite element

[
wherein FK

—

proceduré described above, [M] is the mgss matrix assoéiated with the
inertia forces in the system9~and {CJ is a viscous damping matrix. The
dots represent differentiation,witg respect to time. The mass matrix
mey be defined in various ways, including the consistent mass matrix pro-
cedure described by Archerql2 However, in the present study it was con-
venient merely to lump one-third of the mass of each element at each of
its nodal points, and thus to include only diagonal terms in the mass
metrix.

The load vector {R(t)}~in Eg. 3 is a listing of the horizontal and
vertical force components applisd at each nodal point at time "t". It

13

mey be shown ~ that the effective force induced in a structure by an
esrthguake acceleration yg(t) applied at the base is equal to the lumped

macs at each polint multiplied by the ground =zcceleration; it acts in

ot

he direction opposite to the ground acceleration. Thus, horizontal
ground accelerations prcduce only horizontal effective forces and verti-

cel ground accelerations produce vertical forces. The load vector associated

12. ‘frcher, J. S., "Consistent Mass Matrix for Distributed Mass Systems”,
Proceedings, ASCE, Vol. 89, Wo. ST-L4, August 1963.

12. Clough, R. W., "Dynamic Effects of Earthguakes”, Trans., ASCE, Vol.
126, Part II, 1961, pp. 8L47-876.
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with the earthquake acceleration of an earth dam therefore may be written.

{R(t)}:~{EX} E?gxeit) - {Ey} %r’gy(t} (&)
b PR
fal (t) i {EX} ) %7 ; {Ey} _
; ;

{r)} 4 v

o Xp, M. |
R, (t) 2

< ng(t) : < ? <M27

in which

o

Rnx(t) 0 Mn
Rn¥ (t) ~ J U

.

and where ;gx(t) and Q;y(t) represent the horizontal and vertical components
of the ground accelerations. In this analysis, it is assumed that the en-

tire base section under the dam moves as a rigid body, and thus is subjected
to the same accelerations at all points. Introducing Eq. 4 into Eq. 3 leads

to the following expression for the equations of motion.

] {eh e [e] 4+ [ 4o CHRACIE RARAS ()

In the present study, the dynamic response of the structure was evalu-
ated by the mode-superposition method. To carry out the analysis it was

necessary first to solve the characteristic value problem

« {oaf = [ e ] (7)
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for the undamped free vibration mode shapes [@J and freguencies {u}n

These mode shapes have the following orthogonality properties
{oo) [r] oo}
m ; n
o) [}
m nj

and it is assumed in this study that the damping matrix of the finite

0

il

m # n (8)

it
o

element system satisfies the equivalent orthogonality condition

b ) o rns

In this case the damped system has the same free vibration mode shapes
as the undamped system.
If the nodal co-ordinates are transformed to the mode shape or

"normal" co-ordinates as follows:
frh= [o]4 20)

in which {Y}* is the modal amplitude vector, the coupled equations of
motion (Eq. 6) can be reduced to a set of uncoupled normal equations by
virtue of the orthogonality properties of Egqs. 8 and 9. Each normal

response equation has the form:

*
.- : P (t)

+ + S
T 2p % 1, “n ¥ * (11)
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using the notation:

{oaf? [

e

[)n
{ PK {@n} = wf M: (12)
{} c{}:zxn wnMn*

The generalized earthquake force in Eq. 11 is given by

Pn*(t)= - {%}T{ EX}{{gx(t) - {¢H}T {Ey} ;;gy(t) (13)

It should be noted that either of the ground acceleration com-

L__J

[ |

ponents can be considered separately, or they can be combined to give

the total effective force.

DIGITAL COMPUTER PROGRAM

The analysis of the dynamic response of any significant plane strain
system by the finite element method involves such voluminous calculations
that it is practicable only when done by a digital computer. The computer
program used in the present study consists of four parts:

(1) Analysis of the element stiffnesses and assembling to form the stiff-
ness matrix of the structural idealization, formation of the mass
matrix, and reduction of both matrices by eliminating fixed support
components. This phase of the program was taken, with minor modifi-

cations, from an existing plane strain analysis program.



(2) Solution of the eigenvalue problem (of order 2N reduced by the number
of support constraints) for the mode shapes and fregquencies of the
system.

(3) Solution of the normal equations (Eq. 11) for the response of each
mode, using the linear acceleration method of step-by-step integra-
‘tionlu5 and superposition of the modal responses by means of Eq. 10
to obtain the time history of nodal displacements {r(t)} .

(L) Analysis of element stresses from nodal displacements for each instant
of time, using Eq. 2.

The input information to the program consists of the geometric de-
scription of the structure (x and y co-ordinates of each nodal point), the
material property definition (elastic properties and unit weight of each
element), the load data (x and y components of the ground accelerations
listed at egual increments of time), and the damping ratio assumed for each
mode.

%mcmﬂmtoftMem@gﬁmimQMMStMEmﬁM‘M§mﬂwmmtcmmmmM£
and the element stresses, listed at equal increments of time during the
earthquake. The direct output of the program is stored on magnetic tape.
Plotting routines then automatically plot the output in the form of time
histories of stresses at any specified points in the structure, or in the
form of stress contours for the entire system at any specified instants

of time.

14, Wilson, E. L., and Clough, R. W., "Dynamic Response by Step-by-Step
Matrix Analysis’, Symposium on the Use of Computers in Civil Engi-
neering, Lisbon, Portugal, October 1962.
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EXAMPLE ANALYSIS

As an example of the type of results which may be obtained auto-
matically by this procedure, the earthquake analysis of the 300 ft. high
triangular dam sectioh shown in Fig. l‘will be described. This struc-
ture has side slopes of 1-1/2: 1 ; the materiai is homogeneous, isotropic,
and linearly elastic with a modulus E =‘81,360 psi, Poisson's ratio
p = 0.45, and a unit weight ¥ = 130 pcf. (These properties are associ-
ated with a shear wave propagation velocity of 1000 fps.) Damping was
assumed to be 20 per cent of critical in each mode. It is important to
note, however, fhat the simple geometry and homogeneity considered here
is not essential to the procedure. Arbitrary geometry and material pro-
perty variations could have been treated with equal ease.

The structural idealization consisted of 100 finite elements with
66 nodal points, as shown in the figure. Of these nodal points, 11 were
assumed fixed to the base, thus the remaining 55 provided the structure
with 110 degrees of freedom. The first 15 vibration mode shapes and
frequencies of the system, computed by a standard eigenvalue program,
are shown in Figs. 2 and 3. It is of interest to note that only the
first mode resembles a pure shear distortion, of the type assumed in
previous shear wedge analyses. Vertical motions, rocking, etc., are
clearly involved in a2ll other modes.

This structure was subjected simultaneously to two components of

the ground acceleration history recorded at the El Centro earthquake of
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May 18, 1940: the north-south and vertical components as shown in Fig,
4. The static stresses computed by an independent static finite element
analysis also were considered in the analysis because the static stress
in an earth dam represents a major part of the total stress state during
an earthquake. Thus, the dynamic stresses computed in this analysis

are changes of stress from the initial static condition.

The time history of stresses plotted for four selected nodal points
of the structure are presented in Figs. 5 and 6. Each graph shows the
variation at the specified nodal points of both principal normal stresses,
the principal shear stress and of the shear stress on a horizontal sur-
face. The nodal point stresses were obtained by averaging the stresses
in the individual finite elements associated with each nodal point. The
relative importance of the initial static stress at each point is clearly
evident,

The distributions of stresses in the entire cross section at various
instants of time are illustrated by the stress contour plots in Figs.

7, 8, and 9, showing the maximum tensile (or least compressive), the maxi-
mum compressive, and the horizontal shear stresses, respectively. The
successive sketches in each figuré show the initial static state of stress
(at time t = 0) and the stress state at t = 2.0 seconds and at t =2.25
seconds. It will be noted in Fig. 5 that these times are associated with
a nearly maximum oscillation of stress conditions in the upper central

portion of the cross section. The corresponding shift of the shear stress
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contours from right to left is clearly evident in Fig. 9. The fact that
ertical as well as horizontal accelerations nhave been applied should

be kept in mind, however. The system is not only subject to a lateral

oscillation, even though a major part of the response appears to be

associated with this type of moticn.

CONCLUSIONS

It has been shown in this study that the finite element method, which
previously had demonstrated its effectiveness in static analysis of plane
stress or plane strain problems, provides an equally powerful tool for
the dynamic analysis of such systems. The advantages of the method with
regard to treatment of arbitrary geometry or material property variations
are just as significant in dynamic anslysis as in static cases. Although
the technique has been described here with reference to the earthquake
analysis of dams, it 1s equally applicable to the analysis of any elastic
system subjected to any type of dynsmic loading.

The earthguake analysis presented here, which includes the true two-
dimensional deformation behavior of the dam cross section and which pro-
vides the time history of zll stress components, clearly demonstrates
the inadequacies of the shear wedge approsch. Only by evaluating the
complete state of stress near the faces of the dsm will it be possible
to estimate factors of safety of these surfaces against sliding. More-

over, in practical cases the wvariation of meterial properties in cross



sections including impervious cores is an important factor which cannot

be treated rationally by the shear wedge theory. Another factor of possible
significance is that the finite element method can be adapted to take
account of non-uniform base motionss that is, of the effects of seismic
waves passing under the dam in which the wave lengths are sghort compared
with the cross sectional width of the dam base.

In spite of the relative refinement’of the solution presented here,
however, it must be recognized that the assumed linearly elastic material
property is only a crude approximation of the actual material behavior.
Techniques are available for considéring nonlinear materials under static
condition§£l and it is intended to extend the present investigation to

ineclude certain idealized nonlinezr properties in the dynamic analysis.
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