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Professor Shuyang Sheng, Co-Chair

The dissertation consists of three chapters on different econometric topics.

The first chapter studies jackknife bias reduction for simulated maximum likelihood

estimator of discrete choice models. We propose to reduce asymptotic biases of simulated

maximum likelihood estimators (SMLE) by using a jackknife method similar to Dhaene and

Jochmans (2015), which was originally proposed to reduce bias in nonlinear panel models.

Lee (1995) investigates the asymptotic bias of the SMLE, and derives the analytical formula

of higher order bias due to simulation. However, implementation of Lee (1995)’s method

requires analytical characterization of the higher order bias, which may not be convenient for

practice. Because the jackknife method does not require an explicit characterization of the

bias, it may be a practically attractive alternative to Lee (1995)’s estimator.

The second chapter studies estimation of average treatment effects for massively unbalanced

binary outcomes. The maximum likelihood estimator (MLE) of the average treatment effects

(ATE) in the logit model for binary outcomes may have a significant second order bias if the

event has a low probability. The analysis of rare events is relevant for economics because
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some of the big data sets are collected from online sources where the number of events

(such as “ clicks” and “ purchases”) is much smaller than the number of nonevents. The

literature about rare events (King and Zeng, 2001; Chen and Giles, 2012; Rilstone, 1996;

Wang, 2020) does not shed light on the finite sample behavior of logit MLE and ATE if events

are rare. In this chapter, we also derive the second order bias of the logit ATE estimator and

propose bias-corrected estimators of the ATE. We also propose a variation on the logit model

with parameters that are elasticities. Finally, we propose a computational trick that avoids

numerical instability in the case of estimation for rare events.

The third chapter studies a Vuong test (Vuong, 1989) for panel data models with fixed

effects. This chapter generalizes the Vuong test to nonlinear panel models where the dimension

of incidental parameters grows with the sample size. The incidental parameters (Neyman and

Scott, 1948) that affect the unbiasedness of the parameters of interest are also important for

panel data models as they capture unobserved heterogeneity. The discrepancy in incidental

parameters plays an important role in model selection; for example, as noted by MacKinnon

et al. (2020), there is a vast literature on the cluster-robust inference that assumes the

structure of the clusters is correctly specified, which is often violated. In the presence of

incidental parameters, we cannot easily apply the classical Vuong test to select a panel data

model. This chapter proposes a new model selection test for panel data models by extending

the classical Vuong test, which selects from two parametric likelihood models based on their

Kullback–Leibler information criterion (KLIC). This chapter proposes three different test

statistics for researchers who need to deal with all possible relationships between candidate

models: overlapping models, nested models, and strictly nonnested models. These three

model relationships are classified according to the structure of low-dimensional parameter

of interest and high-dimensional incidental parameters. We allow for disagreements about

incidental parameters and obtain specification tests based on a modified likelihood function.
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CHAPTER 1

Jackknife Bias Reduction for Simulated Maximum

Likelihood Estimator of Discrete Choice Models

1.1 Introduction

We address the small sample bias of the simulated maximum likelihood estimator (SMLE).

The SMLE was introduced primarily because in many models of discrete choice, the maximum

likelihood estimation (MLE) is computationally impossible for all practical purpose. See

Lerman and Manski (1981), McFadden (1989), Pakes and Pollard (1989), Lee (1992) or

Hajivassiliou and Ruud (1994) for review of early literature. In order to derive the asymptotic

normality of the SMLE, the number of simulation draws is often assumed to go to infinity

sufficiently fast as a function of the sample size. Lee (1995) investigates the asymptotic bias

of the SMLE, and derives the analytical formula of higher order bias due to simulation. Lee

(1995) then goes on and constructs bias-adjusted SMLE’s by estimating such a bias using the

analytic formula.

Implementation of Lee (1995)’s method requires analytical characterization of the higher

order bias (due to simulation), which may not be convenient for practice. We propose to

bypass the analytical characterization of the bias by modifying the split-sample jackknife

method due to Dhaene and Jochmans (2015), which was originally proposed to reduce bias

in nonlinear panel models. Dhaene and Jochmans (2015)’s intuition may be attractive for

practice because it only requires computation of the SMLE a few times.

Our main results are presented in Section 1.2. All the proofs are collected in Section 1.3.
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1.2 Main Results

We start with a review of Lee (1995). Consider a standard model of discrete responses.

Let C = {1, . . . , L} be a set of mutually exclusive and exhaustive alternatives. For each

alternative l ∈ C, let P ( l| θ, x) denote the probability that such alternative is chosen, where

x denotes the vector consisting of all distinct explanatory variable, and θ denotes the K-

dimensional parameter. Let dli denote a response indicator for individual i, equal to one

when the observed response is the alternative l and zero otherwise. With a sample of size n

of independent observations, the log likelihood function for the discrete choice model is

Lc(θ) ≡
n∑

i=1

L∑
l=1

dli lnP ( l| θ, xi) . (1.1)

The classical MLE for θ is derived from the maximization of Lc(θ). It is a solution of the

score equation

1

n

n∑
i=1

L∑
l=1

dli
∂ lnP ( l| θ, xi)

∂θ
= 0. (1.2)

If the choice probabilities P ( l| θ, xi) are difficult to compute, we may want to use an unbiased

simulators. Let γ (v) be a density chosen for simulation. Assuming that hl (v, x, θ) satisfies

P ( l| θ, x) =
∫
hl (v, x, θ) γ (v) dv, we can work with the unbiased simulator

fr,l (θ, xi) ≡
1

r

r∑
j=1

hl

(
v
(i)
j , xi, θ

)
, (1.3)

where v
(i)
j , j = 1, . . . , r denote r Monte Carlo draw for observation i from γ (v). Because

E [fr,l (θ, xi)|xi] = P ( l| θ, xi), the fr,l (θ, xi) is a conditionally unbiased simulator. The SMLE

θ̂I is obtained by maximizing the simulated likelihood function

L(θ) ≡
n∑

i=1

L∑
l=1

dli ln fr,l (θ, xi) .

Lee (1995) imposes three assumptions. His Assumptions 1 and 2 are largely technical

regularity conditions, and we impose them without explicitly spelling them out. As for his
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Assumption 3, which requires that r → ∞ as n→ ∞,1 we will replace it by a more specific

rate r = O
(
nδ
)
, where δ > 0. We now present the implication of his Theorem 3 reflecting

the assumption r = O
(
nδ
)
. We need to introduce a few symbols for this purpose: G (θ, z) ≡∑L

l=1 dl [∂ ln fl (θ, x)/ ∂θ], H (θ, z) ≡
∑L

l=1 dl [∂
2 ln fl (θ, x)/ ∂θ∂θ

′], er,l (x) ≡ fr,l (θ0, xi) −

P ( l| θ0, xi), and el (v, x) ≡ hl (v, x, θ0)− P ( l| θ0, xi).2 All proofs are collected in Section 1.3.

From a pragmatic interpretation point of view, the case δ > 1 is the least interesting

in terms of understanding the bias due to the simulation. The terms Sn, B1,n, and B2,n

do not depend on the simulation draws v
(i)
j , while the term µ̄ reflects the bias due to the

simulation. Because the µ̄ is not present when δ > 1, it implies that the impact of simulation

is ignored along with the op
(
n−1/2

)
remainder term, and the only higher order terms are the

generic3 higher order terms of the (computationally infeasible) MLE B1,n +B2,n. The case

0 < δ < 1/2 is the other extreme case, because we end up attributing the whole statistical

properties of θ̂I to the simulation bias, modulo the op (1) remainder term. If 1/2 < δ ≤ 1,

the bias n1/2r−1µ̄ due to the simulation as well as the generic higher order terms of the MLE

B1,n + B2,n converge to zero in probability, while the bias n1/2r−1µ̄ due to the simulation

becomes the first order asymptotic bias if δ = 1/2. Our main result below discusses properties

of the split sample jackknife estimator for all these cases.

Proposition 1 Suppose that Lee (1995)’s Assumptions 1 and 2 are satisfied. Further suppose

1The SMLE θ̂I satisfies the first-order condition
1
n

∑n
i=1

∑L
l=1

(
dli − fr,l

(
θ̂I , xi

)) [
∂ ln fr,l

(
θ̂I , xi

)/
∂θ
]
=

0. Because
∑L

l=1 (dli − fr,l (θ0, xi)) [∂ ln fr,l (θ0, xi)/ ∂θ] does not necessarily have zero expectation, the

SMLE is in general inconsistent unless r → ∞ as a function of the sample size n, which explains why Lee

(1995)’s imposed Assumption 3.

2Note that the last two symbols reflect Lee (1995)’s convention of suppressing θ0 when there is no

confusion.

3See Lee (1995, p. 447) for example.
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that r = O
(
nδ
)
for some δ > 0. We then have

√
n
(
θ̂I − θ0

)
= Ω

{
Sn + Ln + n1/2r−1µ̄+B1,n +B2,n +Op

(
n−δ
)}

for 1/2 < δ ≤ 1,

√
n
(
θ̂I − θ0

)
= Ω

{
Sn + Ln + n1/2r−1µ̄+Op

(
n−1/2

)}
for δ = 1/2,

√
n
(
θ̂I − θ0

)
= Ω

{
Sn +B1,n +B2,n + op

(
n−1/2

)}
for δ > 1,

r
(
θ̂I − θ0

)
= Ωµ̄+ op (1) for 0 < δ < 1/2,

where Ω denotes the inverse of the information matrix, and

Sn ≡ 1√
n

n∑
i=1

G (zi) ,

Ln ≡ 1√
n

n∑
i=1

L∑
l=1

dli
1

Pl (xi)

{
∂er,l (xi)

∂θ
− ∂Pl (xi)

∂θ
er,l (xi)

}
,

µ̄ ≡
L∑
l=1

[
1

Pl (x)

{
−Cov

(
hl (v, x) ,

∂hl (v, x)

∂θ

∣∣∣∣x)+
∂Pl (xi)

∂θ
Var (hl (v, x)|x)i

}]
,

B1,n ≡

[
n−1

n∑
i=1

H (zi)− E [H (zi)]

]
ΩSn,

B1,n ≡ n−1

2


S ′
nΩE [∂H (zi)/ ∂θ1] ΩSn

...

S ′
nΩE [∂H (zi)/ ∂θK ] ΩSn

 .
We now present the split sample jackknife estimator. For this purpose, suppose that

r = 2m, and let θ̄S1 and θ̄S2 denote maximizers of

L1(θ) ≡
n∑

i=1

L∑
l=1

dli ln fm,l,(1) (θ, xi) ≡
n∑

i=1

L∑
l=1

dli ln

(
1

m

m∑
j=1

hl

(
v
(i)
j , xi, θ

))
,

L2(θ) ≡
n∑

i=1

L∑
l=1

dli ln fm,l,(2) (θ, xi) ≡
n∑

i=1

L∑
l=1

dli ln

(
1

m

2m∑
j=m+1

hl

(
v
(i)
j , xi, θ

))
.

Applying Dhaene and Jochmans (2015)’s idea to the current situation, we define the split

sample jackknife estimator as

θ̃1/2 ≡ 2θ̂I −
1

2

(
θ̄S1 + θ̄S2

)
.

4



Dhaene and Jochmans (2015) discuss the intuition and theory underlying the split sample

jackknife estimator for panel models, which we adapt to provide the intuition underlying our

estimator here. Based on Proposition 1, we consider the intuitive approximation

√
n
(
θ̂I − θ0

)
≈ Ω

{
Sn + Ln + n1/2r−1µ̄

}
for 1/2 < δ ≤ 1,

√
n
(
θ̂I − θ0

)
≈ Ω

{
Sn + Ln + n1/2r−1µ̄

}
for δ = 1/2,

√
n
(
θ̂I − θ0

)
≈ Ω {Sn} for δ > 1,

r
(
θ̂I − θ0

)
≈ Ωµ̄ for 0 < δ < 1/2,

where generic higher order terms of the (computationally infeasible) MLE B1,n + B2,n are

ignored along with the remainder terms. This can be justified by recognizing that these

terms are all smaller than the remaining terms in the order of magnitudes. Recognizing that

the expectation of Sn + Ln is zero, we can conclude that E
[√

n
(
θ̂I − θ0

)]
≈ Ωn1/2r−1µ̄

assuming that we can exchange expectations and approximations. In other words, we have

E
[
θ̂I

]
≈ θ0 + Ωr−1µ̄,

By the same token, we have

E
[
θ̄S1

]
≈ θ0 + Ωm−1µ̄,

so we expect

E
[
2θ̂I − θ̄S1

]
≈ θ0 + 2Ωr−1µ̄− Ωm−1µ̄ = θ0.

Using that 2θ̂I − θ̄S1 is less biased than θ̂I , we can naturally think of θ̃1/2 as a more symmetric

estimator using θ̄S2 as well.

Below, we present the formal asymptotic expansion of
√
n
(
θ̃1/2 − θ0

)
:

Proposition 2 Suppose that Lee (1995)’s Assumptions 1 and 2 are satisfied. Further suppose

5



that r = O
(
nδ
)
for some δ > 0.. We then have

√
n
(
θ̃1/2 − θ0

)
= Ω

{
Sn + Ln +B1,n +B2,n +Op

(
n−δ
)}

for 1/2 < δ ≤ 1,

√
n
(
θ̃1/2 − θ0

)
= Ω

{
Sn + Ln +Op

(
n−1/2

)}
for δ = 1/2,

√
n
(
θ̃1/2 − θ0

)
= Ω

{
Sn +B1,n +B2,n + op

(
n−1/2

)}
for δ > 1,

r
(
θ̃1/2 − θ0

)
= op (1) for 0 < δ < 1/2.

Comparing Propositions 1 and 2, we can see that the expansion of θ̃1/2 does not include

the bias n1/2r−1µ̄ due to the simulation. In other words, the split sample jackknife estimator

removes such bias. Because the split sample jackknife estimator does not require separate

analytic characterization of the simulation bias, which is required for implementation of Lee

(1995)’s procedure, it may have certain practical advantage. Implementation of the split

sample jackknife requires computation of θ̄S1 and θ̄S2 , so if the computational burden is not

serious, the split sample jackknife estimator can be an attractive alternative to Lee (1995)’s

procedure.

1.3 Proofs

1.3.1 Proof of Proposition 1

Lee (1995)’s Theorem 3 gives us

√
n
(
θ̂I − θ0

)
= Ω

{
Sn + Ln +Qn +B1,n +B2,n +Op

(
max

[
n−1/2r−1/2, n−1, r−1, n1/2r−2

])}
where

Qn ≡ 1√
n

n∑
i=1

L∑
l=1

dli
1

P 2
l (xi)

{
−∂er,l (xi)

∂θ
er,l (xi) +

∂Pl (xi)

∂θ
e2r,l (xi)

}
,

and B1,n = Op

(
n−1/2

)
, and B2,n = Op

(
n−1/2

)
. If r is chosen such that r = O

(
nδ
)
with

1/2 < δ < 1, we have

Op

(
max

[
n−1/2r−1/2, n−1, r−1, n1/2r−2

])
= Op

(
max

[
n−(δ+1)/2, n−1, n−δ, n−(2δ−1/2)

])
= Op

(
n−δ
)
.

6



Using Qn − E [Qn] = Op (r
−1) = Op

(
n−δ
)
, which is implied by Lee (1995)’s Theorem 1, we

obtain
√
n
(
θ̂I − θ0

)
= Ω

{
Sn + Ln + E [Qn] +B1,n +B2,n +Op

(
n−δ
)}
,

Note that E [Qn] = n1/2r−1µ̄, where µ̄ does not depend on r, by Lee (1995)’s Equation (3.6).

Therefore, E [Qn] = O
(
n1/2r−1

)
= O

(
n(1−2δ)/2

)
, which is larger than Op

(
n−1/2

)
or Op

(
n−δ
)
.

If r = O
(
n1/2

)
, we have

Op

(
max

[
n−1/2r−1/2, n−1, r−1, n1/2r−2

])
= Op

(
max

[
n−1/2n−1/4, n−1, n−1/2, n1/2n−1

])
= Op

(
n−1/2

)
,

and therefore, Lee (1995)’s Theorem 3 results in

√
n
(
θ̂I − θ0

)
= Ω

{
Sn + Ln +Qn +Op

(
n−1/2

)}
,

where we used B1,n = Op

(
n−1/2

)
, and B2,n = Op

(
n−1/2

)
. Note that the assumption

r = O
(
n1/2

)
leads to the loss of our ability to tell B1,n and B2,n apart from the remainder

term in Theorem 3, because they are of the same order of magnitude when r = O
(
n1/2

)
. We

have Qn = E [Qn] +Op (r
−1) = E [Qn] +Op

(
n−1/2

)
, from which we further obtain

√
n
(
θ̂I − θ0

)
= Ω

{
Sn + Ln + n1/2r−1µ̄+Op

(
n−1/2

)}
.

If r is chosen such that r = O
(
nδ
)
with δ ≥ 1, we have

Op

(
max

[
n−1/2r−1/2, n−1, r−1, n1/2r−2

])
= Op

(
n−1
)
,

Qn − E [Qn] = Op

(
r−1
)
= Op

(
n−δ
)
= Op

(
n−1
)
,

E [Qn] = O
(
n1/2r−1

)
= o

(
n−1/2

)
,

so Lee (1995)’s Theorem 3 results in

√
n
(
θ̂I − θ0

)
= Ω

{
Sn + Ln +Qn +B1,n +B2,n +Op

(
n−1
)}

= Ω
{
Sn + Ln +B1,n +B2,n + op

(
n−1/2

)}
.

Finally, because Ln = Op

(
r−1/2

)
by Lee (1995)’s Theorem 1, we have Ln = o

(
n−1/2

)
, from

which we get the third result.

If 0 < δ < 1/2, the result follows from his Corollary 1 (iii).
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1.3.2 Proof of Proposition 2

Suppose that 1/2 < δ ≤ 1. From Proposition 1, we get

√
n
(
θ̄S1 − θ0

)
= Ω

{
Sn + Ln,(1) + n1/2m−1µ̄+B1,n +B2,n +Op

(
n−δ
)}

,

where we note that the Sn, B1,n, and B2,n in Proposition 1 do not depend on the simulation

draws v
(i)
j , and the counterpart of Ln,(1) is

Ln,(1) ≡
1√
n

n∑
i=1

L∑
l=1

dli
1

Pl (xi)

{
∂em,l,(1) (xi)

∂θ
− ∂Pl (xi)

∂θ
em,l,(1) (xi)

}
,

where

em,l,(1) ≡ fm,l,(1) (θ0, xi)− P ( l| θ0, xi) ≡
1

m

m∑
j=1

hl

(
v
(i)
j , xi, θ

)
− P ( l| θ0, xi) .

With similar expansion for
√
n
(
θ̄S1 − θ0

)
, we obtain

√
n
(
θ̃1/2 − θ0

)
=

√
n

(
2
(
θ̂I − θ0

)
− 1

2

((
θ̄S1 − θ0

)
+
(
θ̄S2 − θ0

)))
= Ω

{
2Sn + 2Ln + 2n1/2r−1µ̄+ 2B1,n + 2B2,n +Op

(
n−δ
)}

− 1

2
Ω
{
Sn + Ln,(1) + n1/2m−1µ̄+B1,n +B2,n +Op

(
n−δ
)}

− 1

2
Ω
{
Sn + Ln,(2) + n1/2m−1µ̄+B1,n +B2,n +Op

(
n−δ
)}

= Ω

{
Sn +

(
2Ln −

Ln,(1) + Ln,(2)

2

)
+B1,n +B2,n +Op

(
n−δ
)}

,

where we note that

2n1/2r−1µ̄− n1/2m−1µ̄+ n1/2m−1µ̄

2
= n1/2

(r
2

)−1

µ̄− n1/2m−1µ̄ = 0 (1.4)

because r = 2m. Finally, using Lemma 1 below, we obtain

√
n
(
θ̃1/2 − θ0

)
= Ω

{
Sn + Ln +B1,n +B2,n +Op

(
n−δ
)}
.

Suppose now that δ = 1/2. From Proposition 1, we get

√
n
(
θ̄S1 − θ0

)
= Ω

{
Sn + Ln,(1) + n1/2m−1µ̄+Op

(
n−1/2

)}
.
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With similar expansion for
√
n
(
θ̄S1 − θ0

)
, we obtain

√
n
(
θ̃1/2 − θ0

)
=

√
n

(
2
(
θ̂I − θ0

)
− 1

2

((
θ̄S1 − θ0

)
+
(
θ̄S2 − θ0

)))
= Ω

{
2Sn + 2Ln + 2n1/2r−1µ̄+Op

(
n−1/2

)}
− 1

2
Ω
{
Sn + Ln,(1) + n1/2m−1µ̄+Op

(
n−1/2

)}
− 1

2
Ω
{
Sn + Ln,(2) + n1/2m−1µ̄+Op

(
n−1/2

)}
= Ω

{
Sn + Ln +Op

(
n−1/2

)}
,

where we use (1.4) and Lemma 1.

For the δ > 1 case, the result follows from the fact that the three estimators θ̂I , θ̄S1 , and

θ̄S2 all have the identical expansion presented in Proposition 1.

Finally, if 0 < δ < 1/2, we have by Proposition 1

r
(
θ̃1/2 − θ0

)
= r

(
2
(
θ̂I − θ0

)
− 1

2

((
θ̄S1 − θ0

)
+
(
θ̄S2 − θ0

)))
= 2r

(
θ̂I − θ0

)
− 2m

2

(
θ̄S1 − θ0

)
− 2m

2

(
θ̄S2 − θ0

)
= 2 (Ωµ̄+ op (1))− (Ωµ̄+ op (1))− (Ωµ̄+ op (1))

= op (1) .

Lemma 1 2Ln −
Ln,(1)

+Ln,(2)

2
= Ln.
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Proof. We note that

2er,l (xi)−
em,l,(1) (xi) + em,l,(2) (xi)

2

= 2

(
1

r

r∑
j=1

hl

(
v
(i)
j , xi, θ0

)
− P ( l| θ0, xi)

)

−
1
m

∑m
j=1 hl

(
v
(i)
j , xi, θ0

)
− P ( l| θ0, xi) + 1

m

∑r
j=m+1 hl

(
v
(i)
j , xi, θ0

)
− P ( l| θ0, xi)

2

=
2

r

r∑
j=1

hl

(
v
(i)
j , xi, θ0

)
− 1

2m

r∑
j=1

hl

(
v
(i)
j , xi, θ0

)
− P ( l| θ0, xi)

=
1

r

r∑
j=1

hl

(
v
(i)
j , xi, θ0

)
− P ( l| θ0, xi) = er,l (xi) ,

which implies that

2Ln −
Ln,(1) + Ln,(2)

2

=
1√
n

n∑
i=1

L∑
l=1

dli
1

Pl (xi)

 ∂

(
2er,l(xi)−

em,l,(1)(xi)+em,l,(2)(xi)
2

)
∂θ

−∂Pl(xi)
∂θ

(
2er,l (xi)−

em,l,(1)(xi)+em,l,(2)(xi)

2

)


=
1√
n

n∑
i=1

L∑
l=1

dli
1

Pl (xi)

(
∂er,l (xi)

∂θ
− ∂Pl (xi)

∂θ
er,l (xi)

)
= Ln.
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CHAPTER 2

Estimation of Average Treatment Effects for Massively

Unbalanced Binary Outcomes

2.1 Introduction

We examine the properties of the maximum likelihood estimator (MLE) for logit models

when the outcome is the occurrence or not of a low probability event. King and Zeng (2001)

considered logistic regression for rare events data and focused on correcting the bias of

estimators of the regression coefficients and event probabilities. They were motivated by the

fact that in political science data the binary dependent variable takes the value one (for “

events”, such as wars, coups, presidential vetoes, the decision of citizens to run for political

office, or infection by an uncommon disease) much less frequently than the value zero (for “

nonevents”). The analysis of rare events is relevant for economics because some of the big

data sets are collected from online sources where the number of events (such as “ clicks” and

“ purchases”) is much smaller than the number of nonevents.

King and Zeng (2001) considered various statistical problems with rare event data,

including sample selection problems and finite sample biases. They primarily discussed issues

related to the predicted event probabilities. In this chapter, we focus on the finite sample

bias in the estimator of the average treatment effects (ATE). We derive the higher order bias

of the logit MLE and the implied bias of the estimator of the ATE, and analyze the finite

sample properties of the bias corrected estimator by Monte Carlo simulations.

We note that the higher order properties of the logit MLE have already been analyzed
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by Chen and Giles (2012). Our focus is different from Chen and Giles (2012) in that we

analyze the implied ATE, which can be interpreted to be a nonlinear transformation of the

parameters of the logit model. We recognize that Rilstone (1996) analyzed the higher order

properties of some fixed nonlinear transformations of parameter estimates. The ATE can be

understood to be a data dependent nonlinear transformation of the logit parameters, and as

such, Rilstone (1996) analysis does not apply to the ATE.

It may seem unnatural to use a higher order expansion to derive the finite sample bias in

the case of rare events. Indeed, Wang (2020) proposed an intuitive asymptotic approximation

where the intercept term of the logit model diverges to negative infinity as a function of the

sample size, so that the implied probability of the event converges to zero. We show that his

asymptotic approximation is equivalent to the usual first-order asymptotic approximation

where the sample size grows to infinity and the parameters are fixed. Therefore, Wang

(2020)’s results have implications for the efficiency of various sampling methods, but do not

shed light on the finite sample behavior of logit MLE if events are rare.

In Section 2.2, we derive the higher order bias of the logit MLE as well as of the related

estimator of the ATE. In Section 2.3, we provide intuition for the bias of the logit MLE

exploiting the invariance property of the MLE. In Section 2.4, we argue why the higher order

approach should be preferred over Wang (2020)’s intuitive asymptotics. In Section 2.5, we

propose a new binary response model with constant elasticity, and in Section 2.6, we develop

a trick to reduce the numerical instability in the calculation of the MLE for to rare events.

In Section 2.7, we present the simulation evidence.

2.2 Higher Order Bias of the Logit MLE and Related ATE Esti-

mator

In this section, we consider the logit model where the binary dependent variable yi = 1 with

probability equal to Λ (x′iθ0), where Λ (t) ≡ exp (t)/ (1 + exp (t)) denotes the cumulative
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distribution function (CDF) of the logistic distribution. We first review the second order bias

of the generic MLE as discussed in Rilstone et al. (1996), and consider the second order bias

of logit MLE, as was done in Chen and Giles (2012). We show that the second order bias

thus calculated is larger if events are rare. We go on to characterize the second order bias of

the average treatment effect (ATE).

2.2.1 Second Order Bias of MLE

The idea underlying the second order expansion of the generic MLE is straightforward.

Suppose that the density of the random vector zi is given by f (z; θ0), and the MLE θ̂ maximizes

the joint log likelihood
∑n

i=1 log f (zi; θ). The first order condition is 1
n

∑n
i=1 v

(
zi; θ̂

)
= 0,

where v (z; θ) = ∂ log f (z; θ)/ ∂θ. By manipulating this first order condition, we can derive

the implication that θ̂ − θ0 can be decomposed into the sum of the first order term of order

Op(n
−1/2), the second order term of order Op(n

−1), and the third order term of the smaller

order. Specifically, it can be shown1 that

θ̂ − θ0 =
1√
n
θϵ (0) +

1

2n
θϵϵ (0) + op

(
n−1
)
, (2.1)

where

θϵ (0) ≡ −
(
E

[
∂v (zi; θ0)

∂θ′

])−1
(

1√
n

n∑
i=1

v (zi; θ0)

)
,

1

2
θϵϵ (0) ≡ −1

2

(
E

[
∂v (zi; θ0)

∂θ′

])−1


θϵ (0)′

(
E
[
∂2v1(zi;θ0)

∂θ∂θ′

])
θϵ (0)

...

θϵ (0)′
(
E
[
∂2vK(zi;θ0)

∂θ∂θ′

])
θϵ (0)


−
(
E

[
∂v (zi; θ0)

∂θ′

])−1
(

1√
n

n∑
i=1

(
∂v (zi; θ0)

∂θ′
− E

[
∂v (zi; θ0)

∂θ′

]))
θϵ (0) .

Letting B denote a consistent estimator of E
[
1
2
θϵϵ (0)

]
, the bias corrected estimator θ̃ is

calculated as θ̃ = θ̂ −B/n. In Appendix 2.9.3, we review the characterization of the second

1See Appendix 2.9.4 for details.
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order bias for generic MLE, and in Section 2.9.4, we discuss the second order bias for logit

MLE, replicating Chen and Giles (2012).2 The discussion in Section 2.9.4 indicates that the

bias corrected estimator can be computed by the following algorithm:

1. Calculate the MLE θ̂.

2. Let

Λ̂i ≡
exp

(
x′iθ̂
)

1 + exp
(
x′iθ̂
) .

3. Let

A ≡ − 1

n

n∑
i=1

Λ̂i

(
1− Λ̂i

)
xix

′
i. (2.2)

4. Let

Ck ≡ − 1

n

n∑
i=1

Λ̂i

(
1− Λ̂i

)(
1− 2Λ̂i

)
xi,kxix

′
i. (2.3)

5. Let

Tk =
1

2
trace

(
CkA

−1
)
. (2.4)

6. Let

B = A−1


T1
...

Tk

 . (2.5)

7. Let θ̃ = θ̂ −B/n.

2Our bias formula looks somewhat different from the one presented in King and Zeng (2001), which

in turn is based on McCullagh and Nelder (2019). It can be shown that the two bias formulae are in fact

identical. See Appendix 2.9.5.
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2.2.2 Second Order Bias of the ATE

We now present the main result of this section. We consider the treatment effect model where

we have yi = 1 with probability Λ
(
x′iθ0,(1)

)
under treatment (D = 1), and with probability

Λ
(
x′iθ0,(0)

)
under control (D = 0). We can estimate the θ0,(1) and θ0,(0) for the two sub-samples

with D = 1 and 0.3 The average treatment effect is equal to E
[
Λ
(
x′iθ0,(1)

)]
−E

[
Λ
(
x′iθ0,(0)

)]
,

which can be estimated by the natural estimator

1

n

n∑
i=1

Λ
(
x′iθ̂(1)

)
− 1

n

n∑
i=1

Λ
(
x′iθ̂(0)

)
,

where θ̂(1) and θ̂(0) denote the MLE of θ0,(1) and θ0,(0) using the treated and control subsamples.

When the outcome 1 is a rare event under treatment and/or control, the bias of the natural

estimator above can be corrected, where the bias correction has to reflect the nonlinearity of

Λ as well as the finite sample bias of the MLE. In particular, the bias correction follows from

the second order expansion

1

n

n∑
i=1

Λ
(
x′iθ̂(1)

)
− 1

n

n∑
i=1

Λ
(
x′iθ0,(1)

)
=

1

n

n∑
i=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

))
x′i

(
θ̂(1) − θ0,(1)

)
+

1

2

1

n

n∑
i=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

)) (
1− 2Λ

(
x′iθ0,(1)

)) (
x′i

(
θ̂(1) − θ0,(1)

))2
+ op

(
n−1
)
. (2.6)

In the expansion (2.6), the remainder term is noted to be of order op(n
−1). This reflects

the assumption that the number of treated n1 is the same order of magnitude as n, i.e.,

n1/n = O(1). If the number of treated (or the number of control n0) is very small relative to

the sample size, the above approximation may not be very accurate. The bias of the ATE

estimator derives from the two terms on the right. From (2.1), we can see that the first term

3We assume that the treatment assignment is unconfounded
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on the right of (2.6) has the expansion(
1

n

n∑
i=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

))
x′i

)(
1

√
n1

θϵ(1) (0) +
1

2n1

θϵϵ(1) (0) + op
(
n−1
1

))
,

and likewise, the second term on the right of (2.6) has the expansion

trace


(
1
2
1
n

∑n
i=1 Λ

(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

)) (
1− 2Λ

(
x′iθ0,(1)

))
xix

′
i

)
·
(

1√
n1
θϵ(1) (0) +

1
2n1
θϵϵ(1) (0) + op

(
n−1
1

))(
1√
n1
θϵ(1) (0) +

1
2n1
θϵϵ(1) (0) + op

(
n−1
1

))′
 .

Here, the θϵ(1) (0) and θ
ϵϵ
(1) (0) are the counterparts of θϵ(1) (0) and θ

ϵϵ
(1) (0) for θ̂(1). Ignoring all

the terms of order op (n
−1) while using the assumption n1/n = O(1), we get that the second

order bias through θ̂(1) is equal to

1

2n1

(
1

n

n∑
i=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

))
x′i

)
E(1)

[
θϵϵ(1) (0)

]
+

1

2n1

trace


(
1
n

∑n
i=1 Λ

(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

)) (
1− 2Λ

(
x′iθ0,(1)

))
xix

′
i

)
·E(1)

[
θϵ(1) (0) θ

ϵ
(1) (0)

′
]

 , (2.7)

where E(1) denotes the expectation taken with respect to the distribution of the treated. The

first term of (2.7) depends on E(1)

[
θϵϵ(1) (0)

]
, and hence, is directly related to the second order

bias of θ̂(1) itself. The second term of (2.7) is the expected value of the second term of (2.6).

It comes from the second order Taylor series expansion of 1
n

∑n
i=1 Λ

(
x′iθ̂(1)

)
, and as such, it

reflects the nonlinearity of Λ. See Section 2.2.3 below for details on implementing the bias

correction, if this expansion is applied to both 1
n

∑n
i=1 Λ

(
x′iθ̂(1)

)
and 1

n

∑n
i=1 Λ

(
x′iθ̂(0)

)
.

2.2.3 Details of Estimating the Bias of the ATE

Applying the same reasoning as (2.7) to θ̂(0), and combining it with the information equality

that leads to the simplification

E(1)

[
θϵ(1) (0) θ

ϵ
(1) (0)

′] = −
(
E(1)

[
∂v

∂θ′

])−1

,

E(0)

[
θϵ(0) (0) θ

ϵ
(0) (0)

′] = −
(
E(0)

[
∂v

∂θ′

])−1

,
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we can conclude that the second order bias of the ATE is given by

1

2n1

(
1

n

n∑
i=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

))
x′i

)
E(1)

[
θϵϵ(1) (0)

]
− 1

2n0

(
1

n

n∑
i=1

Λ
(
x′iθ0,(0)

) (
1− Λ

(
x′iθ0,(0)

))
x′i

)
E(0)

[
θϵϵ(0) (0)

]
− 1

2n1

trace

{(
1

n

n∑
i=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

)) (
1− 2Λ

(
x′iθ0,(1)

))
xix

′
i

)(
E(1)

[
vθ
])−1

}

+
1

2n0

trace

{(
1

n

n∑
i=1

Λ
(
x′iθ0,(0)

) (
1− Λ

(
x′iθ0,(0)

)) (
1− 2Λ

(
x′iθ0,(0)

))
xix

′
i

)(
E(0)

[
vθ
])−1

}
.

(2.8)

which can be estimated in the standard way.

1. Suppose that there are n1 observations such that D = 1. We estimate θ0,(1) by MLE θ̂(1)

from this sample. Our preceding discussion implies that the counterparts of Ê [θϵϵ (0)]

and Ê
[
vθ
]
, which we will denote as Ê(1)

[
θϵϵ(1) (0)

]
and Ê(1)

[
vθ
]
can be characterized

by the following steps:

(a) Calculate the MLE θ̂(1).

(b) Let

Λ̂i,(1) =
exp

(
x′iθ̂(1)

)
1 + exp

(
x′iθ̂(1)

) . (2.9)

(c) Let

Ê(1)

[
vθ
]
≡ A(1) = − 1

n1

∑
D=1

Λ̂i,(1)

(
1− Λ̂i,(1)

)
xix

′
i. (2.10)

(d) Let

Ck,(1) = − 1

n1

∑
D=1

Λ̂i,(1)

(
1− Λ̂i,(1)

)(
1− 2Λ̂i,(1)

)
xi,kxix

′
i.

(e) Let

Tk,(1) =
1

2
trace

(
Ck,(1)A

−1
(1)

)
.
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(f) Let

Ê(1)

[
θϵϵ(1) (0)

]
≡
(
A(1)

)−1


T1,(1)
...

Tk,(1)

 . (2.11)

2. Likewise, we calculate the Ê(0)

[
θϵϵ(0) (0)

]
and Ê(0)

[
vθ
]
:

(a) Calculate the MLE θ̂(0).

(b) Let

Λ̂i,(0) ≡
exp

(
x′iθ̂(0)

)
1 + exp

(
x′iθ̂(0)

) . (2.12)

(c) Let

Ê(0)

[
vθ
]
≡ A(0) = − 1

n0

∑
D=0

Λ̂i,(0)

(
1− Λ̂i,(0)

)
xix

′
i. (2.13)

(d) Let

Ck,(0) = − 1

n0

∑
D=0

Λ̂i,(0)

(
1− Λ̂i,(0)

)(
1− 2Λ̂i,(0)

)
xi,kxix

′
i.

(e) Let

Tk,(0) =
1

2
trace

(
Ck,(0)A

−1
(0)

)
.

(f) Let

Ê(0)

[
θϵϵ(0) (0)

]
≡
(
A(0)

)−1


T1,(0)
...

Tk,(0)

 . (2.14)
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3. The second order bias is computed to be

BATE

n
≡ 1

2n1

(
1

n

n∑
i=1

Λ̂i,(1)

(
1− Λ̂i,(1)

)
x′i

)
Ê(1)

[
θϵϵ(1) (0)

]
− 1

2n0

(
1

n

n∑
i=1

Λ̂i,(0)

(
1− Λ̂i,(0)

)
x′i

)
Ê(0)

[
θϵϵ(0) (0)

]
− 1

2n1

trace

{(
1

n

n∑
i=1

Λ̂i,(1)

(
1− Λ̂i,(1)

)(
1− 2Λ̂i,(1)

)
xix

′
i

)(
Ê(1)

[
vθ
])−1

}

+
1

2n0

trace

{(
1

n

n∑
i=1

Λ̂i,(0)

(
1− Λ̂i,(0)

)(
1− 2Λ̂i,(0)

)
xix

′
i

)(
Ê(0)

[
vθ
])−1

}
(2.15)

using (2.9), (2.10), (2.11), (2.12), (2.13), and (2.14) computed in previous steps.

2.3 Intuition

In this section, we provide the intuition underlying the second order bias. Using a model

without regressors, we explain that the bias is due to the inherent nonlinearity of the logit

model. We show this using the invariance property of the MLE. The invariance is also used

to explain the bias of the predicted probabilities in models without regressors.

We consider the binary response model where y = 1 with probability equal to Λ (θ) =

exp (θ)/ (1 + exp (θ)). The second order bias of the logit MLE, presented in Appendix 2.9.4,

simplifies to

− 1

2n

(1− 2Λ)

Λ (1− Λ)
(2.16)

with Λ = Λ(θ0). Note that if Λ ≈ 0, the bias is negative. Also note that

lim
Λ→0

(
− (1− 2Λ)

Λ (1− Λ)

)
= −∞

so the bias is larger if we are dealing with rare events. In order to understand the bias, we

note that the first order condition can be rewritten as 1
n

∑n
i=1

(
yi − Λ

(
θ̂
))

= 0. In other
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words, the logit MLE solves

Λ
(
θ̂
)
= y (2.17)

and hence

θ̂ = Λ−1 (y) = ln
y

1− y
.

By the CLT, we have
√
n (y − Λ) → N (0,Λ (1− Λ)), so we can write that

y = Λ+
1√
n

(√
Λ (1− Λ)Z + op (1)

)
where Z ∼ N (0, 1). It follows that

θ̂ = ln

 Λ + 1√
n

(√
Λ (1− Λ)Z + op (1)

)
1− Λ− 1√

n

(√
Λ (1− Λ)Z + op (1)

)


= ln

(
Λ

1− Λ

)
+

n−1/2√
Λ (1− Λ)

Z − n−11

2

1− 2Λ

Λ (1− Λ)
Z2 + op

(
n−1
)

= θ0 +
n−1/2√
Λ (1− Λ)

Z − n−11

2

1− 2Λ

Λ (1− Λ)
Z2 + op

(
n−1
)

It follows that the second order bias of θ̂ is

−n−11

2

1− 2Λ

Λ (1− Λ)
E
[
Z2
]
= −n−11

2

1− 2Λ

Λ (1− Λ)
(2.18)

confirming the second order bias calculation in (2.16).

Remark 1 The first order condition of the MLE can be a convenient tool to understand the

(lack of) bias of the average of the predicted probabilities in a logit model with regressors.

For this purpose, we note that the probability E [Λ (x′θ0)] of y = 1 can be estimated by

1
n

∑n
i=1 Λ

(
x′iθ̂
)
. We will assume that the first component of xi is an intercept term. If so,

we recall by the first order condition that 1
n

∑n
i=1

(
yi − Λ

(
x′iθ̂
))

= 0, and therefore, so

E

[
1

n

n∑
i=1

Λ
(
x′iθ̂
)]

= E

[
1

n

n∑
i=1

yi

]
=

1

n

n∑
i=1

Λ (x′θ0) .

It follows that the bias is exactly zero. Now note that the second order bias is merely an

approximation of the actual bias, and one may want to assess whether the higher order
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approximation does a good job by asking whether the second order bias for the predicted

probability is close to the actual bias (i.e., zero). The same second-order expansion as in

Section 2 gives

1

n

n∑
i=1

Λ
(
x′iθ̂
)
− 1

n

n∑
i=1

Λ (x′iθ0) =
1

n

n∑
i=1

Λ (x′iθ0) (1− Λ (x′iθ0))x
′
i

(
θ̂ − θ0

)
+

1

2

1

n

n∑
i=1

Λ (x′iθ0) (1− Λ (x′iθ0)) (1− 2Λ (x′θ0))
(
x′i

(
θ̂ − θ0

))2
+ op

(
n−1
)

Straightforward algebra shows that the second order bias of the 1
n

∑n
i=1 Λ

(
x′iθ̂
)
is indeed zero,

confirming the intuition. See Appendix 2.9.6.

Remark 2 The second order bias of the ATE estimator can be shown to be zero if the

treatment is randomly assigned. See Appendix 2.9.7 for a proof. By random assignment, we

mean that D is independent of x so that the propensity score Pr (Di = 1|xi) is constant in

x. Under random assignment, the distribution of x is identical across the two subsamples

D = 1 and D = 0. Therefore, the intuition to be discussed in Remark 1 applies, and the

second order bias is zero. Under unconfounded treatment assignment we should expect some

amount of second order bias. Its magnitude is an empirical matter.

Remark 3 Note that the ATE estimator is the difference of the average predicted probabilities

for the treated and the controls. This estimator is biased because the average is over the full

sample and not over the subsamples of the treated and the controls. Under random assignment,

though, the distribution of X is the same in the subsamples, so that the ATE estimator is

unbiased, even if events are rare.

2.4 Comparison with Wang (2020)

We now compare our higher order asymptotics with Wang (2020)’s asymptotics where the

probability of y = 1 is assumed to converge to zero as a function of the sample size. Using the
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same model without regressors that was discussed in the previous section, we examine Wang

(2020)’s asymptotic analysis, and argue that his asymptotics is identical to the traditional

fixed parameter asymptotics for all practical purposes.

The data are y1, . . . , yn which are IID Bernoulli variables such that yi = 1 with probability

pn. We assume that pn ∝ n−δ with 0 ≤ δ < 1, and consider the normalized sum

n∑
i=1

yi − pn√
npn (1− pn)

.

In Appendix 2.9.8 we show that the Lyapunov condition is satisfied4 and

√
n (y − pn)√
pn (1− pn)

=
n∑

i=1

yi − pn√
npn (1− pn)

→ N (0, 1) , (2.19)

so we can write

y = pn +

√
pn (1− pn)√

n
Zn,

where Zn = Op (1) is such that E [Zn] = 0 and Var (Zn) = 1. In Appendix 2.9.9 we derive

the expansion√
npn (1− pn)

(
θ̂ − θ0

)
= Zn −

1

2

1− 2pn√
npn (1− pn)

Z2
n +Op

(
n−(1−δ)

)
. (2.20)

The expansion (2.20) implies that the higher order bias can be calculated as

E

[
−1

2

1− 2pn
npn (1− pn)

Z2
n

]
= −1

2

1− 2pn
npn (1− pn)

.

If we compare this expression with the higher order bias (2.18) based on the fixed probability

Λ, equating Λ and pn, we see that the higher order bias under the asymptotics where pn → 0 is

identical to the higher order bias under the asymptotics where pn is fixed at Λ. In other words,

Wang’s asymptotics gives the same higher order bias as the fixed parameter asymptotics.

This analysis raises the question about the relevance of Wang (2020)’s asymptotic frame-

work for our purpose. It is helpful to make an explicit link between pn and the logit

4Appendix 2.9.8 also notes that δ = 1 (so that pn ∝ n−1) is not compatible with asymptotic normality,

and that this rate is not appropriate for logit models.
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model, which we will do by writing pn = Λ(θn). The sum of yi over the entire sample is

binom(n,Λ (θn)). Using Wang’s notation, we have n1 ∼binom(n,Λ (θn)). His equation (2)

means that he is considering pn ∝ n−δ with 0 ≤ δ < 1, as we do here.5

His Theorem 1 boils down to
√
n1

(
θ̂ − θ

)
→ N (0, 1) in the model with only an intercept.

Using his equation (3), this is equivalent to the approximation
√
nΛ (θn)

(
θ̂ − θ

)
≈ N (0, 1)

or

θ̂ ≈ N

(
θ,

1

nΛ (θn)

)
= N

(
θ,

1

npn

)
.

If we ignore the higher order term involving Z2
n, our (2.20) along with (2.19) implies√

npn (1− pn)
(
θ̂ − θ

)
→ N (0, 1) or

θ̂ ≈ N

(
θ,

1

npn (1− pn)

)
,

which is the same approximation that we obtain when pn = Λ and does not vary as a function

of the sample size. When pn ≈ 0, the difference between the two standard errors is small

1/ (npn)

1/ (npn (1− pn))
= 1− pn ≈ 1.

Therefore, Wang (2020)’s asymptotic framework leads to the same first order asymptotic

approximation as our (2.20) that was derived using the classical first order asymptotics with

fixed parameters. A straightforward calculation suggests that even with regressors, Wang

(2020)’s asymptotic framework does not offer a substantively different approximation than

the classical first order asymptotic approximation. In particular Wang is silent on the second

order bias.

5His equation (2) implies that Λ (θn) → 0, nΛ (θn) → ∞. Note that Λ (θn) → 0 means that

1/ (1 + exp (θn)) → 1, which in turn means that exp (θn) → 0, or θn → −∞. Also note that nΛ (θn) → ∞

rules out the Poisson approximation, because if Λ (θn) ∝ n−1, we cannot have nΛ (θn) → ∞. On the other

hand, nΛ (θn) → ∞ is satisfied as long as Λ (θn) ∝ n−δ with 0 ≤ δ < 1.
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2.5 A New Binary Response Model for Rare Events

In this chapter, the primary object of interest is the ATE if the outcome is the occurrence of

a rare event. On the other hand, in some applications it is more useful to have an estimate of

the elasticity of the rare event probability with respect to the independent variables. Consider

the logit model where y = 1 with probability Λ (α + xβ), where x is a scalar that is measured

on the log scale. The elasticity of the event probability with respect to x is equal to

Λ′ (α + xβ) β

Λ (α + xβ)
= (1− Λ (α + xβ)) β,

where we used ∂Λ (t)/ ∂t = Λ(t) (1− Λ (t)). Note that 1 − Λ (α + xβ) ≈ 1 if the event is

rare, so the logit model exhibits near constant elasticity for rare events. If the elasticity

is approximated by β, one may be interested in correcting the bias of the MLE of β. The

simulation results in Tables 2.2, 2.3, and 2.4 show, that the bias in the MLE for β is modest

but may be important depending on the application.6 Therefore, one can use the bias

corrected estimator of the slope coefficient as the bias corrected estimator of the elasticity in

the rare event case.

Given that the β is only an approximate elasticity, the case for bias correction may not

be so compelling for logit models. Instead one may choose to work with a model that has a

constant elasticity. Let P (x) denote the probability that y = 1 as a function of x. A model

that has a constant elasticity should satisfy

P ′ (x)

P (x)
= constant

assuming that x is measured in logs. This is equivalent to

d lnP (x)

dx
= β

6In Table 2.2, for the α0 = −2.5 and n = 500 combination, the bias of β̂ is 0.0168, where the true value of

β is 1. So, the MLE overestimates the elasticity by 1.68 %, which is reduced to 0.41 % by the bias corrected

estimator.
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for some β, so by integration we obtain lnP (x) = α + βx, or

P (x) = exp (α + βx)

as a model of constant elasticity.7 Because exp (α + βx) ≈ exp (α + βx)/ (1 + exp (α + βx))

when exp (α + βx) ≈ 0,8 one can argue that this new model is an approximation of the logit

model but with the convenient feature of a constant elasticity.

2.6 Artificial Censoring - Overcoming the Numerical Instability

In our Monte Carlo simulations, we encountered numerical stability problems with the

computation of the MLE for extremely small values of α. The problem is that the optimization

algorithm does not converge for such values of α that may be visited during the search for

the MLE. As a consequence, we could not calculate the MLE for these data sets. Given that

the log likelihood of the logit model is globally concave, in theory this sort of problem should

not happen. The problem is that the Hessian of the log-likelihood is close to singular for rare

events. We offer a simple solution, which seems to resolve the problem.

Consider the logit model where y = 1 with probability Λ (α + xβ), where x is a scalar.

We would normally maximize the log-likelihood

L (α, β) =
n∑

i=1

(yi log Λ (α + xiβ) + (1− yi) log (1− Λ (α + xiβ))) .

7When α ≈ −∞ and the support of x is bounded, we can guarantee that exp (α+ βx) < 1. If the support

of x is not bounded, but if we are sure that α + βx < 0 for most values of x, we may want to adopt a

parameterization

P (x) = Ψ (α+ βx)

where Ψ (t) = 1
2 exp (t) if t < 0, and Ψ (t) = 1− 1

2 exp (−t) if t > 0.

8It is in the sense that
t

1 + t
= t+O

(
t2
)
.
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It is straightforward to see that

∂2L (α, β)

∂α2
= −

n∑
i=1

Λ (α + xiβ) (1− Λ (α + xiβ)) ,

∂2L (α, β)

∂α∂β
= −

n∑
i=1

Λ (α + xiβ) (1− Λ (α + xiβ))xi,

∂2L (α, β)

∂β2
= −

n∑
i=1

Λ (α + xiβ) (1− Λ (α + xiβ))x
2
i ,

so the second derivative is in theory strictly negative definite. On the other hand, if α ≈ −∞,

we have Λ (α + xiβ) ≈ 0 and as a consequence, the second derivative matrix is close to zero,

and therefore close to singular. Because the step length of the Newwton-Raphson algorithm

depends on the inverse of the Hessian, the algorithm may not converge.

In order to overcome this problem, we consider artificial censoring of the y = 0 out-

comes. The rare event logit model is unchanged and x is always observed. However we

censor observations with y = 0 with probability π. So there are three possible outcomes,

y = 1 (and observed), with probability Λ (α + xβ), y = 0 and observed with probability

(1− π) (1− Λ (α + xβ)), and y = 0 and not observed with probability π (1− Λ (α + xβ)).

Therefore, the probability that the econometrician observes outcome y = 1 conditional on

x, is

Λ (α + xβ)

Λ (α + xβ) + (1− π) (1− Λ (α + xβ))
=

exp(α+xβ)
1+exp(α+xβ)

exp(α+xβ)
1+exp(α+xβ)

+ exp (δ) 1
1+exp(α+xβ)

=
exp (α + xβ)

exp (α + xβ) + exp (δ)

=
exp (α∗ + xβ)

exp (α∗ + xβ) + 1

= Λ (α∗ + xβ) ,
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and the probability the econometrician observes y = 0 given x is

(1− π) (1− Λ (α + xβ))

Λ (α + xβ) + (1− π) (1− Λ (α + xβ))
=

exp (δ) 1
1+exp(α+xβ)

exp(α+xβ)
1+exp(α+xβ)

+ exp (δ) 1
1+exp(α+xβ)

=
exp (δ)

exp (α + xβ) + exp (δ)

=
1

exp (α∗ + xβ) + 1

= 1− Λ (α∗ + xβ) ,

where Λ (α + xβ) + (1− π) (1− Λ (α + xβ)) is the probability that the outcome is observed,

and

exp (δ) ≡ 1− π, α∗ ≡ α− δ.

Note that δ < 0. If we choose δ (i.e., π) such that α∗ is not close to −∞, the Hessian for the

censored sample is not (close to) singular. In general π can be chosen so that the expected

number of observed 0 outcomes is about equal to the number of observed 1 outcomes.

Because δ is chosen by the econometrician, from an estimate α∗ for the artificially censored

sample we can back out α.

In order to see whether this trick is useful, we drew one sample of size n = 50, 000 and

another sample of size n = 100, 000 such that α = −10, β1 = · · · = β9 = 1, and all the

nine independent variables are independent and N(0, 1). We used β1 = · · · = β9 = 0 as

the starting value of the Newton-Raphson algorithm. As for the starting value for α, we

chose the true value of α (i.e., -10) for the full sample, while we used α∗ = −10− δ for the

subsample after the random censoring. In our sample of n = 50, 000, the number of 1’s was

116 and the missing probability is set to π = 1− 0.002, implying that δ = ln(0.002) = −6.21.)

Convergence results for Newton-Raphson method are shown in Table 2.1.
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2.7 Monte Carlo Simulations

2.7.1 Bias-corrected MLE

We examined the performance of MLE estimators and bias-corrected MLE estimators in

a sampling experiment. We consider a logit model in which yi = 1 with probability pi =

eα+xiβ
/ (

1 + eα+xiβ
)
. For simplicity, we assume that xi is a scalar random variable with the

uniform distribution U[0,1]. We let α̂ and β̂ denote the MLE estimators of α and β, and α̃

and β̃ the bias corrected estimators, using the formula discussed in Section 2.2.

Tables 2.2, 2.3, and 2.4 present the mean biases of these estimators for various combinations

of parameters, based on Monte Carlo simulations with 5000 runs. Note that the αs were

chosen of so that events are rare. Consistent with the theory, the bias corrected estimators

remove most of the bias.

The bias of the MLE increases if the probability of the event decreases, and the bias

decreases with the sample size.The mean bias of the bias corrected MLE does not follow

the same pattern which confirms that the bias correction removes the systematic bias of the

MLE.

2.7.2 Bias-corrected ATE Estimator

In this section, we report properties of bias corrected estimators of the average treatment

effect (ATE). The treatment assignment is assumed to be unconfounded. In our simulations,

we generate the conditioning variable x separately for the treated and the controls. The

distribution of x is allowed to be different for these two sub-samples. When they are equal,

the treatment assignment is independent of x so that the propensity score is constant, and

the treatment is randomly assigned. When the distribution of x is different for the treated

and controls, the treatment is not randomly assigned.

Total sample size is n; n1 is the number of Di = 1, the treated, and n0 is the number of
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Di = 0, the controls. The number of replications is 1000. We let ÂTE1 and ÂTE2 denote

the estimator of the ATE based on the MLE
(
θ̂(1), θ̂(0)

)
, and on the biased corrected MLE,(

θ̃(1), θ̃(0)

)
, respectively, i.e.,

ÂTE1 ≡
1

n

n∑
i=1

Λ
(
x′iθ̂(1)

)
− 1

n

n∑
i=1

Λ
(
x′iθ̂(0)

)
, (2.21)

ÂTE2 ≡
1

n

n∑
i=1

Λ
(
x′iθ̃(1)

)
− 1

n

n∑
i=1

Λ
(
x′iθ̃(0)

)
.

Let ÃTE1 and ÃTE2 denote the bias corrected versions of ÂTE1 and ÂTE2. The higher

order bias of ÂTE1 can be removed by using (2.15) in Appendix 2.2.3. Likewise, the higher

order bias of ÂTE2 can be removed, noting that the first two terms in (2.15) can be ignored

because
(
θ̃(1), θ̃(0)

)
already are bias-corrected.

In Tables 2.5 - 2.18, we report the mean bias of these estimators. The mean biases over

the Monte Carlo replications are calculated as the averages of ÂTE1−ATE0, ÂTE2−ATE0,

ÃTE1 − ATE0, ÃTE2 − ATE0, where

ATE0 ≡
1

n

n∑
i=1

Λ
(
x′iθ0,(1)

)
− 1

n

n∑
i=1

Λ
(
x′iθ0,(0)

)
.

We will discuss the Monte Carlo results separately for the “ random assignment” case,

where the distribution of x is identical across the treatment and control subsamples, and for

the “ nonrandom assignment”, where the distribution of x is different across the treatment

and control subsamples.

We adopt a different notation for the parameters of the model:

θ0,(0) = (α0 β0)
′ θ0,(1) = (α1 β1)

′

with α0, α1 the intercepts and β0, β1 the slope coefficients in the logit outcome models for the

treated and controls.
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2.7.2.1 Bias-corrected ATE - Constant Propensity Score

As was discussed in Remark 2, the second order bias of the ATE is zero when the propensity

score is constant. In order to verify this result, we will first consider the case that the

distributions of x are identical over the D = 1 and D = 0 subsamples. In Tables 2.5 - 2.14,

we evaluate the performance of various estimators of the ATE under random assignment.

Overall, we see that the original ATE estimator ÂTE1 is largely free of bias, consistent with

Remark 2. All estimators are unbiased even in the rare event case and if the treatment

assignment is unbalanced. The bias also does not depend on the sample size and the event

probability.

In Table 2.5, β1 = 2 and α1 = α0 + 1 for Di = 1. For Di = 0, we let β0 = 1, and we

consider the different values of α0 listed in Table 2.5. In Table 2.13, the treatment effect is

larger, β1 = 4. The rest of the data generating process (DGP hereafter) is unchanged. The

conclusions are the same as for Table 2.5. In Table 2.14, we let β1 = β0 = 1, and we consider

different values of α1 = α0 listed in Table 2.14. For each parameter value the ATE is 0. The

rest of the DGP is unchanged. The conclusions are the same as for Table 2.5.

2.7.2.2 Bias-corrected ATE - General Propensity Score

As was discussed in Remark 2, the second order bias of the ATE is in general not equal

to zero when the propensity score is not constant, and therefore, the distribution of x is

different for the treated and the controls. In Tables 2.15 - 2.18, we consider such “ nonrandom

assignment”. The discussion in Remark 2 suggests that the bias is large if there is a stark

difference between the distribution of x in the two subsamples. Table 2.15 is meant to

represent such a situation: for Di = 1, X ∼ N [4, 1], and for Di = 0, X ∼ N [0, 1]. Figure

2.1 shows the implied propensity scores for the DGPs considered in Table 2.15 and Table

2.16. We see a modest bias for the selected parameter values. In any case, the bias corrected

estimator removes most of the bias. The estimator based on the bias-corrected MLE is as
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Figure 2.1: Distribution of Propensity Scores

biased as that based on the non-corrected MLE. The bias induced by the curvature of Λ is

relatively large.

Based on Remark 2, we can speculate that if the difference of the distributions is not

as stark, we expect the ATE to have a smaller bias. In order to verify this conjecture, we

consider in Table 2.16 the case where the X is distributed as N [2, 1] and N [0, 1] in the treated

and control subsamples, respectively. In general, the bias in ÂTE1 is a lot smaller than in

Table 2.15.

The bias formula (2.33) shows that it is an average of (2.31) and (2.32) weighted by the

density of X. If the θs are identical across the two subsamples, then the counterparts of

(2.31) and (2.32) are also identical across the two subsamples. Therefore, the bias of θ̂(1)

and θ̂(0) may be similar, with the difference only arising from the possible difference of “

weights”. Therefore, one may think that the biases of the two terms on the right of (2.21) may
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almost cancel each other out when the θs are similar. In order to examine this conjecture,

we considered cases where the θs are identical across the two subsamples in Tables 2.17 and

2.18. In Table 2.17, we consider nonrandom assignment, for Di = 1: X ∼ N [4, 1]; for Di = 0:

X ∼ N [0, 1]. For both Di = 1 and Di = 0: β0 = β1 = 1, α0 = α1 is listed in the table. In

Table 2.18, we consider nonrandom assignment and same parameters of interests, for Di = 1:

X ∼ N [2, 1]; for Di = 0: X ∼ N [0, 1]. For both Di = 1 and Di = 0: β0 = β1 = 1, α0 = α1 is

listed in the table. We conclude that the intuition that the biases cancel is not correct.

2.7.3 Tables

Table 2.1: Non-convergence and Artificial Censoring

Initial guess α β1 β2 β3 β4 β5 β6 β7 β8 β9

n=50000

Full Sample

α = −10 NA NA NA NA NA NA NA NA NA NA

Random Censoring

α = −10− (−6.21) -9.81 0.79 1.06 0.97 0.57 0.78 1.00 0.91 0.76 0.89

n=100000

Full Sample

α = −10 NA NA NA NA NA NA NA NA NA NA

Random Censoring

α = −10− (−6.91) -10.4 0.95 1.44 1.19 1.02 1.21 0.99 1.24 1.41 0.77
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Table 2.2: Mean Bias of MLE; β0 = 1

α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

p9 = 12.25% p = 7.83% p = 4.91% p = 3.04%

Mean bias of α

α̂ α̃ α̂ α̃ α̂ α̃ α̂ α̃

n=500 -0.0249 -0.0033 -0.0357 -0.0005 -0.0703 -0.0109 -0.1164 -0.0130

n=750 -0.0179 -0.0036 -0.0243 -0.0013 -0.0435 -0.0053 -0.0784 -0.0135

n=1000 -0.0060 0.0046 -0.0143 0.0028 -0.0297 -0.0016 -0.0499 -0.0028

n=5000 -0.0021 0.0000 -0.0055 -0.0021 -0.0076 -0.0021 -0.0115 -0.0025

Mean bias of β

β̂ β̃ β̂ β̃ β̂ β̃ β̂ β̃

n=500 0.0168 0.0041 0.0183 -0.0006 0.0391 0.0088 0.0630 0.0112

n=750 0.0152 0.0068 0.0165 0.0042 0.0319 0.0124 0.0564 0.0239

n=1000 -0.0007 -0.0068 0.0070 -0.0021 0.0189 0.0046 0.0285 0.0054

n=5000 -0.0002 -0.0014 0.0030 0.0012 0.0036 0.0008 0.0036 -0.0007

9p denotes the probability of y=1 for each parameter combination.
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Table 2.3: Mean Bias of MLE; β0 = 1.5

α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

p = 15.62% p = 10.19% p = 6.48% p = 4.05%

Mean bias of α

α̂ α̃ α̂ α̃ α̂ α̃ α̂ α̃

n=500 -0.0243 -0.0043 -0.0345 -0.0028 -0.0617 -0.0098 -0.1049 -0.0169

n=750 -0.0155 -0.0023 -0.0224 -0.0017 -0.0374 -0.0037 -0.0674 -0.0116

n=1000 -0.0058 0.0018 -0.0128 0.0027 -0.0252 -0.0004 -0.0395 0.0013

n=5000 -0.0022 -0.0003 -0.0045 -0.0014 -0.0075 -0.0027 -0.0105 -0.0027

Mean bias of β

β̂ β̃ β̂ β̃ β̂ β̃ β̂ β̃

n=500 0.0190 0.0031 0.0270 0.0042 0.0444 0.0092 0.0724 0.0146

n=750 0.0168 0.0063 0.0193 0.0043 0.0278 0.0052 0.0585 0.0219

n=1000 0.0040 -0.0060 0.0076 -0.0034 0.0190 0.0023 0.0274 0.0011

n=5000 0.0008 -0.0007 0.0025 0.0037 0.0042 0.0009 0.0060 0.0010
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Table 2.4: Mean Bias of MLE; β0 = 2

α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

p = 19.76% p = 13.23% p = 8.58% p = 5.43%

Mean bias of α

α̂ α̃ α̂ α̃ α̂ α̃ α̂ α̃

n=500 -0.0240 -0.0054 -0.0309 -0.0023 -0.0532 -0.0079 -0.0888 -0.0142

n=750 -0.0136 -0.0013 -0.0195 -0.0007 -0.0322 -0.0026 -0.0535 -0.0056

n=1000 -0.0062 0.0030 -0.0120 0.0020 -0.0194 0.0025 -0.0342 0.0010

n=5000 -0.0027 -0.0010 -0.0044 -0.0016 -0.0064 -0.0021 -0.0087 -0.0019

Mean bias of β

β̂ β̃ β̂ β̃ β̂ β̃ β̂ β̃

n=500 0.0232 0.0048 0.0270 0.0021 0.0487 0.0118 0.0720 0.0140

n=750 0.0170 0.0049 0.0192 0.0028 0.0306 0.0066 0.0447 0.0077

n=1000 0.0044 -0.0046 0.0084 -0.0038 0.0146 -0.0031 0.0280 0.0009

n=5000 0.0023 0.0006 0.0035 0.0010 0.0046 0.0011 0.0058 0.0005
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Table 2.5: Mean Bias of ATE Estimators; Random Assignment

β0 = 1 α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

β1 = 2 α1 = −1.5 α1 = −2 α1 = −2.5 α1 = −3

x|D = 1 ∼ N(0, 1) p1 = 28.61% p1 = 22.45% p1 = 17.17% p1 = 12.86%

x|D = 0 ∼ N(0, 1) p0 = 10.45% p0 = 6.89% p0 = 4.41% p0 = 2.76%

n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 0.0005 0.0005 0.0000 0.0000 0.0005 0.0005 0.0003 0.0003

n=1500 -0.0001 -0.0001 0.0004 0.0004 0.0001 0.0001 -0.0004 -0.0004

n=2000 0.0004 0.0004 0.0003 0.0003 0.0003 0.0003 0.0000 0.0000

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 -0.0003 0.0006 -0.0009 0.0004 -0.0005 0.0012 -0.0007 0.0007

n=1500 -0.0007 0.0000 -0.0002 0.0004 -0.0005 0.0000 -0.0011 -0.0004

n=2000 0.0000 0.0004 -0.0001 0.0003 -0.0002 0.0002 -0.0004 0.0002

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 0.0000 0.0000 -0.0007 -0.0007 -0.0006 -0.0006 -0.0008 -0.0008

n=2250 0.0000 0.0000 0.0000 0.0000 0.0008 0.0008 0.0005 0.0005

n=3000 -0.0006 -0.0006 -0.0002 -0.0002 0.0002 0.0002 0.0003 0.0003

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 -0.0011 0.0000 -0.0019 -0.0008 -0.0019 -0.0003 -0.0021 -0.0006

n=2250 -0.0006 0.0002 -0.0007 0.0000 0.0000 0.0009 -0.0004 0.0008

n=3000 -0.0011 -0.0006 -0.0008 -0.0003 -0.0004 0.0002 -0.0004 0.0003
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Table 2.6: Mean Bias of ATE Estimators; Random Assignment

β0 = 1 α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

β1 = 4 α1 = −1.5 α1 = −2 α1 = −2.5 α1 = −3

x|D = 1 ∼ N(0, 1) p1 = 36.57% p1 = 32.39% p1 = 28.40% p1 = 24.68%

x|D = 0 ∼ N(0, 1) p0 = 10.45% p0 = 6.89% p0 = 4.41% p0 = 2.76%

n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 0.0004 0.0004 0.0002 0.0002 0.0012 0.0012 0.0008 0.0008

n=1500 -0.0003 -0.0003 0.0000 0.0000 0.0007 0.0007 0.0005 0.0005

n=2000 0.0008 0.0008 0.0004 0.0004 -0.0002 -0.0002 0.0003 0.0004

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 -0.0007 0.0005 -0.0010 0.0006 -0.0002 0.0019 -0.0006 0.0013

n=1500 -0.0011 -0.0003 -0.0009 0.0000 -0.0002 0.0007 -0.0005 0.0005

n=2000 0.0002 0.0007 -0.0002 0.0004 -0.0008 -0.0002 -0.0003 0.0004

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 0.0002 0.0002 -0.0005 -0.0005 -0.0004 -0.0004 -0.0002 -0.0002

n=2250 0.0002 0.0002 0.0000 0.0000 0.0004 0.0004 0.0005 0.0005

n=3000 -0.0003 -0.0003 -0.0005 -0.0005 -0.0002 -0.0002 -0.0002 -0.0002

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 -0.0010 0.0004 -0.0018 -0.0006 -0.0019 -0.0001 -0.0019 0.0000

n=2250 -0.0005 0.0004 -0.0010 0.0000 -0.0006 0.0005 -0.0006 0.0008

n=3000 -0.0009 -0.0003 -0.0011 -0.0005 -0.0010 -0.0003 -0.0010 -0.0001
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Table 2.7: Mean Bias of ATE Estimators; Random Assignment

β0 = 1 α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

β1 = 1 α1 = −1.5 α1 = −2 α1 = −2.5 α1 = −3

x|D = 0, 1 ∼ N(0, 1) p1 = p0 = 10.45% p1 = p0 = 6.89% p1 = p0 = 4.41% p1 = p0 = 2.76%

n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 0.0006 0.0006 0.0007 0.0007 0.0006 0.0006 0.0004 0.0004

n=1500 -0.0009 -0.0009 -0.0003 -0.0003 0.0000 0.0000 0.0000 0.0000

n=2000 -0.0003 -0.0003 -0.0001 -0.0001 0.0000 0.0000 0.0000 0.0000

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 0.0006 0.0008 0.0007 0.0012 0.0006 0.0016 0.0004 0.0006

n=1500 -0.0009 -0.0009 -0.0003 -0.0002 0.0000 0.0000 0.0000 0.0001

n=2000 -0.0003 -0.0004 -0.0001 -0.0002 0.0000 0.0000 0.0000 0.0000

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 -0.0005 -0.0005 -0.0005 -0.0005 -0.0002 -0.0002 -0.0003 -0.0003

n=2250 0.0003 0.0003 0.0000 0.0000 0.0004 0.0004 0.0003 0.0003

n=3000 0.0000 0.0000 -0.0004 -0.0004 0.0000 0.0000 0.0001 0.0001

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 -0.0011 -0.0004 -0.0013 -0.0007 -0.0010 -0.0011 -0.0012 -0.0002

n=2250 0.0000 0.0005 -0.0004 0.0002 -0.0001 0.0005 -0.0003 0.0007

n=3000 -0.0003 0.0000 -0.0007 -0.0004 -0.0004 0.0000 -0.0003 0.0002
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Table 2.8: Mean Bias of ATE Estimators; Non-random Assignment

β0 = 1 α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

β1 = 1 α1 = −3 α1 = −3 α1 = −3 α1 = −3

x|D = 1 ∼ N(4, 1) p1 = 69.60%

x|D = 0 ∼ N(0, 1) p0 = 10.45% p0 = 6.89% p0 = 4.41% p0 = 2.76%

n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 0.0049 -0.0010 0.0061 -0.0010 0.0068 -0.0004 0.0033 -0.0014

n=1500 0.0037 -0.0002 0.0064 0.0015 0.0079 0.0028 0.0085 0.0051

n=2000 0.0022 -0.0007 0.0027 -0.0010 0.0038 -0.0003 0.0009 -0.0024

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 0.0061 -0.0012 0.0073 -0.0019 0.0073 -0.0019 0.0025 -0.0030

n=1500 0.0045 -0.0004 0.0072 0.0014 0.0083 0.0027 0.0079 0.0046

n=2000 0.0029 -0.0006 0.0033 -0.0010 0.0040 -0.0006 0.0005 -0.0032

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 0.0056 -0.0008 0.0062 -0.0017 0.0072 -0.0006 0.0047 0.0003

n=2250 0.0053 0.0010 0.0090 0.0034 0.0102 0.0041 0.0091 0.0051

n=3000 0.0037 0.0005 0.0067 0.0024 0.0088 0.0041 0.0068 0.0033

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 0.0071 -0.0011 0.0077 -0.0014 0.0080 -0.0018 0.0040 -0.0013

n=2250 0.0064 0.0004 0.0100 0.0033 0.0107 0.0038 0.0083 0.0040

n=3000 0.0046 0.0004 0.0075 0.0025 0.0091 0.0041 0.0062 0.0027
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Table 2.9: Mean Bias of ATE Estimators; Non-random Assignment

β0 = 1 α0 = −2 α0 = −3 α0 = −3.5 α0 = −4

β1 = 1 α1 = −2 α1 = −2 α1 = −2 α1 = −2

x|D = 1 ∼ N(2, 1) p1 = 50.05%

x|D = 0 ∼ N(0, 1) p0 = 10.45% p0 = 6.89% p0 = 4.41% p0 = 2.76%

n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 0.0002 -0.0002 0.0000 0.0000 -0.0003 0.0005 -0.0023 -0.0004

n=1500 0.0006 0.0003 0.0014 0.0014 0.0014 0.0020 0.0007 0.0021

n=2000 0.0000 -0.0002 -0.0003 -0.0003 -0.0004 0.0000 -0.0014 -0.0005

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 0.0006 -0.0002 -0.0003 0.0002 -0.0013 0.0008 -0.0041 -0.0007

n=1500 0.0009 0.0003 0.0012 0.0014 0.0007 0.0019 -0.0005 0.0023

n=2000 0.0002 -0.0002 -0.0004 -0.0003 -0.0008 0.0002 -0.0023 0.0000

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 -0.0008 -0.0010 -0.0023 -0.0018 -0.0030 -0.0016 -0.0045 -0.0017

n=2250 0.0010 0.0089 0.0017 0.0020 0.0013 0.0023 -0.0002 0.0018

n=3000 0.0000 0.0000 0.0006 0.0008 0.0005 0.0013 -0.0008 0.0007

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 -0.0005 -0.0010 -0.0027 -0.0018 -0.0044 -0.0014 -0.0069 -0.0012

n=2250 0.0012 0.0009 0.0014 0.0020 0.0003 0.0022 -0.0020 0.0017

n=3000 0.0002 0.0000 0.0004 0.0008 -0.0002 0.0013 -0.0021 0.0013
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Table 2.10: Mean Bias of ATE Estimators; Non-random Assignment

β0 = 1 α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

β1 = 1 α1 = −2.5 α1 = −3 α1 = −3.5 α1 = −4

x|D = 1 ∼ N(4, 1) p1 = 77.81% p1 = 69.60% p1 = 60.19% p1 = 50.05%

x|D = 0 ∼ N(0, 1) p0 = 10.45% p0 = 6.89% p0 = 4.41% p0 = 2.76%

n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 0.0044 -0.0021 0.0061 -0.0010 0.0062 -0.0005 0.0027 -0.0013

n=1500 0.0041 -0.0003 0.0064 0.0015 0.0083 0.0034 0.0090 0.0061

n=2000 0.0025 -0.0008 0.0027 -0.0010 0.0040 0.0002 0.0010 -0.0020

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 0.0058 -0.0023 0.0073 -0.0019 0.0066 -0.0019 0.0018 -0.0028

n=1500 0.0050 -0.0005 0.0072 0.0014 0.0086 0.0033 0.0083 0.0056

n=2000 0.0033 -0.0007 0.0033 -0.0010 0.0043 0.0000 0.0006 -0.0027

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 0.0047 -0.0019 0.0062 -0.0017 0.0073 -0.0004 0.0042 0.0000

n=2250 0.0051 0.0006 0.0090 0.0034 0.0104 0.0045 0.0092 0.0054

n=3000 0.0037 0.0003 0.0067 0.0024 0.0085 0.0039 0.0066 0.0032

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 0.0062 -0.0023 0.0077 -0.0014 0.0081 -0.0016 0.0036 -0.0015

n=2250 0.0062 0.0000 0.0100 0.0033 0.0109 0.0041 0.0084 0.0043

n=3000 0.0045 0.0002 0.0075 0.0025 0.0089 0.0038 0.0060 0.0026

41



Table 2.11: Mean Bias of ATE Estimators; Non-random Assignment

β0 = 1 α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

β1 = 1 α1 = −2.5 α1 = −3 α1 = −3.5 α1 = −4

x|D = 1 ∼ N(2, 1) p1 = 39.93% p1 = 30.38% p1 = 22.13% p1 = 15.50%

x|D = 0 ∼ N(0, 1) p0 = 10.45% p0 = 6.89% p0 = 4.41% p0 = 2.76%

n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 -0.0001 -0.0005 -0.0006 -0.0005 -0.0009 0.0000 -0.0026 -0.0006

n=1500 0.0003 0.0000 0.0010 0.0010 0.0008 0.0014 -0.0002 0.0012

n=2000 0.0001 -0.0001 -0.0002 -0.0002 -0.0006 -0.0001 -0.0017 -0.0007

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 0.0003 -0.0004 -0.0007 -0.0003 -0.0017 0.0003 -0.0042 -0.0010

n=1500 0.0006 0.0000 0.0009 0.0010 0.0002 0.0014 -0.0013 0.0014

n=2000 0.0003 0.0000 -0.0002 -0.0001 -0.0010 0.0000 -0.0025 -0.0003

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 -0.0008 -0.0010 -0.0024 -0.0020 -0.0035 -0.0020 -0.0046 -0.0017

n=2250 0.0009 0.0008 0.0014 0.0017 0.0012 0.0022 -0.0004 0.0016

n=3000 -0.0002 -0.0003 0.0005 0.0007 0.0003 0.0010 -0.0007 0.0007

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 -0.0005 -0.0010 -0.0027 -0.0019 -0.0046 -0.0019 -0.0068 -0.0013

n=2250 0.0012 0.0008 0.0011 0.0017 0.0003 0.0021 -0.0020 0.0015

n=3000 0.0000 -0.0003 0.0003 0.0007 -0.0003 0.0011 -0.0019 0.0014
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Table 2.12: Mean Bias of ATE Estimators; Random Assignment

β0 = (1, 1) α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

β1 = (2, 2) α1 = −1.5 α1 = −2 α1 = −2.5 α1 = −3

x | D = 1 ∼ N

 0

0

 ,
 1

2
0

0 1
2

 x | D = 0 ∼ N

 0

0

 ,
 1

2
0

0 1
2


n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 -0.0003 0.0006 -0.0003 0.0008 0.0006 0.0019 0.0012 0.0025

n=1500 -0.0003 0.0004 0.0006 0.0013 0.0000 0.0009 0.0004 0.0012

n=2000 -0.0021 -0.0016 -0.0012 -0.0006 -0.0004 0.0003 -0.0003 0.0004

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 -0.0006 0.0006 -0.0005 0.0008 0.0005 0.0019 0.0011 0.0025

n=1500 -0.0005 0.0004 0.0004 0.0013 0.0000 0.0009 0.0003 0.0012

n=2000 -0.0022 -0.0016 -0.0013 -0.0006 -0.0004 0.0003 -0.0003 0.0004

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 -0.0006 0.0005 -0.0001 0.0011 -0.0003 0.0011 0.0001 0.0016

n=2250 -0.0003 0.0004 0.0000 0.0009 0.0002 0.0011 0.0003 0.0012

n=3000 -0.0003 0.0002 0.0000 0.0006 0.0002 0.0009 0.0003 0.0011

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 -0.0011 0.0005 -0.0007 0.0011 -0.0008 0.0010 -0.0004 0.0015

n=2250 -0.0007 0.0004 -0.0003 0.0009 -0.0002 0.0011 0.0000 0.0012

n=3000 -0.0006 0.0002 -0.0003 0.0006 0.0000 0.0009 0.0000 0.0011
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Table 2.13: Mean Bias of ATE Estimators; Random Assignment

β0 = (1, 1) α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

β1 = (4, 4) α1 = −1.5 α1 = −2 α1 = −2.5 α1 = −3

x | D = 1 ∼ N

 0

0

 ,
 1

2
0

0 1
2

 x | D = 0 ∼ N

 0

0

 ,
 1

2
0

0 1
2


n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 0.0000 0.0013 0.0009 0.0025 0.0006 0.0024 0.0000 0.0021

n=1500 -0.0001 0.0008 -0.0002 0.0009 0.0006 0.0019 0.0000 0.0014

n=2000 -0.0009 -0.0003 -0.0008 0.0000 -0.0012 -0.0003 -0.0007 0.0003

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 -0.0003 0.0013 0.0006 0.0025 0.0004 0.0024 0.0000 0.0021

n=1500 -0.0003 0.0008 -0.0003 0.0009 0.0005 0.0019 0.0000 0.0014

n=2000 -0.0011 -0.0003 -0.0010 0.0000 -0.0013 -0.0003 -0.0007 0.0003

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 0.0000 0.0013 0.0000 0.0014 -0.0005 0.0012 0.0000 0.0017

n=2250 0.0005 0.0013 0.0011 0.0021 0.0008 0.0019 0.0002 0.0014

n=3000 0.0002 0.0008 0.0003 0.0011 0.0002 0.0010 0.0001 0.0011

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 -0.0005 0.0013 -0.0007 0.0013 -0.0010 0.0012 -0.0006 0.0017

n=2250 0.0001 0.0013 0.0007 0.0021 0.0004 0.0019 -0.0002 0.0014

n=3000 -0.0001 0.0008 0.0000 0.0011 -0.0001 0.0010 -0.0001 0.0011
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Table 2.14: Mean Bias of ATE Estimators; Random Assignment

β0 = (1, 1) α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

β1 = (1, 1) α1 = −1.5 α1 = −2 α1 = −2.5 α1 = −3

x | D = 1 ∼ N

 0

0

 ,
 1

2
0

0 1
2

 x | D = 0 ∼ N

 0

0

 ,
 1

2
0

0 1
2


n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 -0.0002 0.0002 0.0003 0.0007 0.0012 0.0015 0.0007 0.0009

n=1500 0.0000 0.0003 0.0000 0.0003 0.0009 0.0011 0.0004 0.0006

n=2000 -0.0012 -0.0009 -0.0008 -0.0006 -0.0009 -0.0007 -0.0004 -0.0003

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 -0.0005 0.0002 0.0002 0.0007 0.0010 0.0015 0.0005 0.0009

n=1500 -0.0002 0.0003 0.0000 0.0003 0.0008 0.0011 0.0003 0.0006

n=2000 -0.0013 -0.0009 -0.0009 -0.0006 -0.0009 -0.0007 -0.0005 -0.0003

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 0.0000 0.0008 0.0006 0.0014 0.0003 0.0011 0.0004 0.0014

n=2250 0.0000 0.0004 0.0001 0.0007 0.0004 0.0010 0.0004 0.0011

n=3000 -0.0002 0.0002 -0.0003 0.0000 0.0003 0.0007 0.0002 0.0007

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 -0.0005 0.0008 0.0000 0.0014 -0.0003 0.0011 -0.0001 0.0013

n=2250 -0.0005 0.0004 -0.0002 0.0007 0.0000 0.0010 0.0000 0.0010

n=3000 -0.0004 0.0002 -0.0006 0.0000 0.0000 0.0007 0.0000 0.0007
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Table 2.15: Mean Bias of ATE Estimators; Non-random Assignment

β0 = (1, 1) α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

β1 = (1, 1) α1 = −3 α1 = −3 α1 = −3 α1 = −3

x | D = 1 ∼ N

 2

2

 ,
 1

2
0

0 1
2

 x | D = 0 ∼ N

 0

0

 ,
 1

2
0

0 1
2


n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 0.0032 -0.0007 0.0035 -0.0003 0.0038 0.0002 0.0038 0.0003

n=1500 0.0013 -0.0013 0.0011 -0.0012 0.0014 -0.0009 0.0013 -0.0008

n=2000 0.0006 -0.0013 0.0009 -0.0009 0.0010 -0.0007 0.0012 -0.0005

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 0.0018 -0.0007 0.0020 -0.0003 0.0022 0.0002 0.0022 0.0003

n=1500 0.0004 -0.0012 0.0002 -0.0012 0.0004 -0.0009 0.0004 -0.0008

n=2000 0.0000 -0.0013 0.0002 -0.0009 0.0003 -0.0007 0.0004 -0.0005

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 0.0014 0.0000 0.0013 0.0001 0.0010 0.0000 0.0012 0.0004

n=2250 0.0003 -0.0006 0.0009 0.0002 0.0011 0.0005 0.0008 0.0003

n=3000 0.0002 -0.0005 0.0004 -0.0002 0.0005 0.0000 0.0004 0.0000

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 0.0003 0.0000 0.0001 0.0001 -0.0002 0.0000 0.0000 0.0003

n=2250 -0.0004 -0.0006 0.0002 0.0002 0.0003 0.0005 0.0000 0.0003

n=3000 -0.0004 -0.0005 -0.0002 -0.0002 -0.0001 0.0000 -0.0002 0.0000
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Table 2.16: Mean Bias of ATE Estimators; Non-random Assignment

β0 = (1, 1) α0 = −2 α0 = −3 α0 = −3.5 α0 = −4

β1 = (1, 1) α1 = −2 α1 = −2 α1 = −2 α1 = −2

x | D = 1 ∼ N

 1

1

 ,
 1

2
0

0 1
2

 x | D = 0 ∼ N

 0

0

 ,
 1

2
0

0 1
2


n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 0.0017 0.0009 0.0006 0.0003 0.0009 0.0008 0.0009 0.0009

n=1500 -0.0017 -0.0021 -0.0015 -0.0017 -0.0011 -0.0013 -0.0012 -0.0012

n=2000 -0.0014 -0.0018 -0.0008 -0.0009 -0.0006 -0.0007 -0.0005 -0.0005

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 0.0018 0.0009 0.0005 0.0003 0.0007 0.0008 0.0007 0.0009

n=1500 -0.0016 -0.0021 -0.0016 -0.0017 -0.0013 -0.0013 -0.0014 -0.0012

n=2000 -0.0014 -0.0018 -0.0008 -0.0009 -0.0007 -0.0007 -0.0006 -0.0005

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 0.0009 0.0009 0.0008 0.0013 0.0006 0.0012 0.0008 0.0015

n=2250 0.0001 0.0001 0.0008 0.0011 0.0010 0.0014 0.0007 0.0012

n=3000 0.0000 0.0001 0.0004 0.0007 0.0006 0.0009 0.0004 0.0008

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 0.0005 0.0009 0.0003 0.0013 0.0000 0.0012 0.0001 0.0015

n=2250 0.0000 0.0001 0.0005 0.0011 0.0006 0.0014 0.0003 0.0012

n=3000 0.0000 0.0001 0.0002 0.0007 0.0003 0.0009 0.0001 0.0008
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Table 2.17: Mean Bias of ATE Estimators; Non-random Assignment

β0 = (1, 1) α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

β1 = (1, 1) α1 = −2.5 α1 = −3 α1 = −3.5 α1 = −4

x | D = 1 ∼ N

 2

2

 ,
 1

2
0

0 1
2

 x | D = 0 ∼ N

 0

0

 ,
 1

2
0

0 1
2


n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 0.0052 -0.0024 0.0035 -0.0003 0.0014 0.0000 0.0013 0.0012

n=1500 0.0034 -0.0015 0.0011 -0.0013 0.0005 -0.0004 0.0003 0.0003

n=2000 0.0021 -0.0016 0.0009 -0.0009 0.0003 -0.0004 0.0002 0.0002

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 0.0023 -0.0023 0.0020 -0.0003 0.0006 0.0000 0.0007 0.0011

n=1500 0.0015 -0.0015 0.0002 -0.0013 0.0000 -0.0004 0.0000 0.0003

n=2000 0.0007 -0.0015 0.0002 -0.0009 -0.0001 -0.0004 0.0000 0.0002

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 0.0017 -0.0014 0.0013 0.0001 0.0010 0.0010 0.0011 0.0018

n=2250 0.0010 -0.0011 0.0009 0.0002 0.0012 0.0012 0.0009 0.0014

n=3000 0.0009 -0.0006 0.0004 -0.0002 0.0009 0.0009 0.0005 0.0008

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 0.0000 -0.0014 0.0001 0.0001 0.0000 0.0010 0.0002 0.0018

n=2250 -0.0002 -0.0011 0.0002 0.0002 0.0006 0.0012 0.0004 0.0014

n=3000 0.0000 -0.0006 -0.0002 -0.0002 0.0004 0.0009 0.0000 0.0008
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Table 2.18: Mean Bias of ATE Estimators; Non-random Assignment

β0 = (1, 1) α0 = −2.5 α0 = −3 α0 = −3.5 α0 = −4

β1 = (1, 1) α1 = −2.5 α1 = −3 α1 = −3.5 α1 = −4

x | D = 1 ∼ N

 1

1

 ,
 1

2
0

0 1
2

 x | D = 0 ∼ N

 0

0

 ,
 1

2
0

0 1
2


n1

n
= 1

2

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1000 0.0004 0.0003 0.0003 0.0008 0.0006 0.0014 0.0007 0.0018

n=1500 -0.0002 -0.0002 0.0000 0.0004 0.0005 0.0010 0.0002 0.0009

n=2000 -0.0002 -0.0002 -0.0005 -0.0003 -0.0005 -0.0001 -0.0003 0.0003

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1000 0.0005 0.0003 0.0005 0.0007 0.0007 0.0014 0.0007 0.0018

n=1500 0.0000 -0.0002 0.0002 0.0004 0.0005 0.0010 0.0002 0.0009

n=2000 -0.0001 -0.0002 -0.0005 -0.0003 -0.0005 -0.0001 -0.0002 0.0003

n1

n
= 2

3

ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1 ÂTE1 ÃTE1

n=1500 0.0015 0.0020 0.0007 0.0015 0.0002 0.0013 0.0005 0.0018

n=2250 0.0006 0.0009 0.0011 0.0017 0.0011 0.0019 0.0008 0.0017

n=3000 0.0006 0.0009 0.0006 0.0010 0.0005 0.0011 0.0004 0.0011

ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2 ÂTE2 ÃTE2

n=1500 0.0011 0.0020 0.0003 0.0015 -0.0003 0.0013 0.0000 0.0018

n=2250 0.0003 0.0009 0.0009 0.0017 0.0008 0.0019 0.0005 0.0017

n=3000 0.0005 0.0009 0.0004 0.0010 0.0003 0.0011 0.0002 0.0011
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2.8 Conclusion

If the treatment assignment is unconfounded, then the MLE of the ATE in the logit model

for binary outcomes is biased both because the MLE of the parameters of the logit model are

biased and the curvature of the logit model contributes to the bias of the ATE estimator.

The bias is larger if the event has a low probability, the case we focus on in this chapter.

The logit ATE estimator is unbiased if the treatment assignment is random. This is

obvious if there are no covariates, but it is also true with covariates.

We derive the second order bias of the logit ATE estimator. We also propose bias-corrected

estimators of the ATE.

Simulation experiments show that it is not sufficient to bias correct the MLE of the

logit parameters, that the bias of the logit ATE estimator is moderately large, and that the

bias-corrected estimators remove most of the bias.

Finally we propose a variation on the logit model with parameters that are elasticities. We

also propose a computational trick that avoids numerical instability in the case of estimation

for rare events.

2.9 Appendix

2.9.1 Second Order Bias of Logit MLE

We derive the second order bias of the logit MLE. For notational simplicity, we will omit the

i subscript whenever obvious.

50



2.9.2 Second Order Expansion of Generic MLE

The MLE θ̂ maximizes the joint log likelihood
∑n

i=1 log f (zi; c), and satisfies the first order

condition 0 = 1
n

∑n
i=1 v

(
zi; θ̂

)
. Let F denote the collection of (marginal) distribution

functions of z. Let F̂ denote the empirical distribution function. Define F (ϵ) ≡ F +

ϵ
√
n
(
F̂ − F

)
for ϵ ∈

[
0, n−1/2

]
. For each fixed ϵ, let θ (ϵ) be the solution to the estimating

equation

0 =

∫
v [·; θ (ϵ)] dF (ϵ) . (2.22)

Note that (2.22) is equivalent to 0 = 1
n

∑n
i=1 v

(
zi; θ

(
n−1/2

))
when evaluated at ϵ = n−1/2, so

we can see that θ
(
n−1/2

)
= θ̂. By a Taylor series expansion, we have

θ̂ − θ0 = θ

(
1√
n

)
− θ (0) =

1√
n
θϵ (0) +

1

2

(
1√
n

)2

θϵϵ (0) +
1

6

(
1√
n

)3

θϵϵϵ (ϵ̃) , (2.23)

where θϵ (ϵ) ≡ dθ (ϵ)/ dϵ, θϵϵ (ϵ) ≡ d2θ (ϵ)/ dϵ2, ..., and ϵ̃ is somewhere in between 0 and n−1/2.

Let

h (·, ϵ) ≡ v [·; θ (ϵ)] . (2.24)

The first order condition may be written as

0 =

∫
h (·, ϵ) dF (ϵ) . (2.25)

Differentiating repeatedly with respect to ϵ, we obtain

0 =

∫
dh (·, ϵ)
dϵ

dF (ϵ) +

∫
h (·, ϵ) d∆n, (2.26)

0 =

∫
d2h (·, ϵ)
dϵ2

dF (ϵ) + 2

∫
dh (·, ϵ)
dϵ

d∆n, (2.27)

0 =

∫
d3h (·, ϵ)
dϵ3

dF (ϵ) + 3

∫
d2h (·, ϵ)
dϵ2

d∆n, (2.28)

where ∆n ≡
√
n
(
F̂ − F

)
. We will ignore the third order term, which can be justified under

the type of regularity conditions discussed in Hahn and Newey (2004), and find the analytic

expression for the second order bias.
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Rewrite (2.26) as

0 =

(∫
vθ [·; θ (ϵ)] dF (ϵ)

)
θϵ (ϵ) +

∫
v [·; θ (ϵ)] d∆n,

where

vθ ≡ ∂v [·; θ (ϵ)]
∂θ′

.

Evaluating it at ϵ = 0, and noting that E [vi] = 0, we obtain

0 =

(∫
vθ [·; θ (0)] dF

)
θϵ (0) +

∫
v [·; θ (0)]∆n,

so

θϵ (0) = −
(
E
[
vθ
])−1

(
1√
n

n∑
i=1

vi

)
. (2.29)

Recall that dim (θ) = K, and write

v [·; θ (ϵ)] =


v1 [·; θ (ϵ)]

...

vK [·; θ (ϵ)]

 .
We can then write

d2h (·, ϵ)
dϵ2

=


d2h1 (·, ϵ)/ dϵ2

...

d2hK (·, ϵ)/ dϵ2

 =


θϵ (ϵ)′ ∂2v1[·;θ(ϵ)]

∂θ∂θ′
θϵ (ϵ) + ∂v1[·;θ(ϵ)]

∂θ′
θϵϵ (ϵ)

...

θϵ (ϵ)′ ∂2vK [·;θ(ϵ)]
∂θ∂θ′

θϵ (ϵ) + ∂vK [·;θ(ϵ)]
∂θ′

θϵϵ (ϵ)

 ,
so we can rewrite (2.27) as

0 =


θϵ (ϵ)′

(∫ ∂2v1[·;θ(ϵ)]
∂θ∂θ′

dF (ϵ)
)
θϵ (ϵ)

...

θϵ (ϵ)′
(∫ ∂2vK [·;θ(ϵ)]

∂θ∂θ′
dF (ϵ)

)
θϵ (ϵ)

+

∫ ∂v1[·;θ(ϵ)]

∂θ′
dF (ϵ)

...∫ ∂vK [·;θ(ϵ)]
∂θ′

dF (ϵ)

 θϵϵ (ϵ)+2


∫ ∂v1[·;θ(ϵ)]

∂θ′
d∆n

...∫ ∂vK [·;θ(ϵ)]
∂θ′

d∆n

 θϵ (ϵ) .
Evaluating it at ϵ = 0, we obtain

0 =


θϵ (0)′

(
E
[

∂2v1
∂θ∂θ′

])
θϵ (0)

...

θϵ (0)′
(
E
[
∂2vK
∂θ∂θ′

])
θϵ (0)

+


E
[
∂v1
∂θ′

]
...

E
[
∂vK
∂θ′

]
 θϵϵ (0) + 2


∫ ∂v1[·;θ(ϵ)]

∂θ′
d∆n

...∫ ∂vK [·;θ(ϵ)]
∂θ′

d∆n

 θϵ (0) ,
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so

1

2
θϵϵ (0) = −1

2

(
E
[
vθ
])−1


θϵ (0)′

(
E
[

∂2v1
∂θ∂θ′

])
θϵ (0)

...

θϵ (0)′
(
E
[
∂2vK
∂θ∂θ′

])
θϵ (0)

−(E [vθ])−1

(
1√
n

n∑
i=1

(
vθi − E

[
vθi
]))

θϵ (0) .

2.9.3 Second order bias

We now calculate E
[
1
2
θϵϵ (0)

]
. We first compute the expectation of

E
[
vθ
](1

2
θϵϵ (0)

)
= −1

2


θϵ (0)′

(
E
[

∂2v1
∂θ∂θ′

])
θϵ (0)

...

θϵ (0)′
(
E
[
∂2vK
∂θ∂θ′

])
θϵ (0)

−

(
1√
n

n∑
i=1

(
vθi − E

[
vθi
]))

θϵ (0) .

The kth component of the first term has an expectation equal to

−1

2
E

[
θϵ (0)′

(
E

[
∂2vk
∂θ∂θ′

])
θϵ (0)

]
= −1

2
E

[
trace

(
θϵ (0)′

(
E

[
∂2vk
∂θ∂θ′

])
θϵ (0)

)]
= −1

2
E

[
trace

(
E

[
∂2vk
∂θ∂θ′

]
θϵ (0) θϵ (0)′

)]
= −1

2
trace

(
E

[
∂2vk
∂θ∂θ′

]
E
[
θϵ (0) θϵ (0)′

])
.

Because

E
[
θϵ (0) θϵ (0)′

]
= E

[(
−
(
E
[
vθ
])−1

(
1√
n

n∑
i=1

vi

))(
−
(
E
[
vθ
])−1

(
1√
n

n∑
i=1

vi

))′]
=
(
E
[
vθ
])−1

E [vv′]
(
E
[
vθ
])−1

= −
(
E
[
vθ
])−1

,

where we used the information equality, we can write

−1

2
E

[
θϵ (0)′

(
E

[
∂2vk
∂θ∂θ′

])
θϵ (0)

]
=

1

2
trace

(
E

[
∂2vk
∂θ∂θ′

] (
E
[
vθ
])−1

)
.
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The kth component of the second term has an expectation equal to

− E

[(
1√
n

n∑
i=1

(
vθk,i − E

[
vθk,i
]))

θϵ (0)

]

= −E

[(
1√
n

n∑
i=1

(
vθk,i − E

[
vθk,i
]))(

−
(
E
[
vθ
])−1

(
1√
n

n∑
i=1

vi

))]

= E

[(
1√
n

n∑
i=1

(
∂vk,i
∂θ′

− E

[
∂vk,i
∂θ′

]))((
E
[
vθ
])−1

(
1√
n

n∑
i=1

vi

))]

= E

[
trace

{(
1√
n

n∑
i=1

(
∂vk,i
∂θ′

− E

[
∂vk,i
∂θ′

]))((
E
[
vθ
])−1

(
1√
n

n∑
i=1

vi

))}]

= E

[
trace

{((
E
[
vθ
])−1

(
1√
n

n∑
i=1

vi

))(
1√
n

n∑
i=1

(
∂vk,i
∂θ′

− E

[
∂vk,i
∂θ′

]))}]

= trace

((
E
[
vθ
])−1

E

[
vi

(
∂vk,i
∂θ′

− E

[
∂vk,i
∂θ′

])])
= trace

(
E

[
v

(
∂vk
∂θ′

− E

[
∂vk
∂θ′

])] (
E
[
vθ
])−1

)
.

Therefore, the kth component of E
[
vθ
]
E
[(

1
2
θϵϵ (0)

)]
is equal to

1

2
trace

(
E

[
∂2vk
∂θ∂θ′

] (
E
[
vθ
])−1

)
+ trace

(
E

[
v

(
∂vk
∂θ′

− E

[
∂vk
∂θ′

])] (
E
[
vθ
])−1

)
= trace

((
1

2
E

[
∂2vk
∂θ∂θ′

]
+ E

[
v

(
∂vk
∂θ′

− E

[
∂vk
∂θ′

])])(
E
[
vθ
])−1

)
. (2.30)

2.9.4 Getting back to Logit model

We now consider the general logit model. We assume that y is equal to 1 with probability

equal to

Λ (x′θ) =
exp (x′θ)

1 + exp (x′θ)
,

where x is the vector of regressors that may include the intercept term. The log likelihood is

then given by

log f = y log Λ (x′θ) + (1− y) log (1− Λ (x′θ)) .
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Using that d
dt
Λ (t) = Λ (t) (1− Λ (t)), we obtain

v =
∂ log f

∂θ
=

(
y

Λ
− 1− y

1− Λ

)
Λ (1− Λ)x = (y − Λ)x,

vθ =
∂2 log f

∂θ∂θ′
= −Λ (1− Λ)xx′,

∂vk
∂θ′

=
∂ ((y − Λ)xk)

∂θ′
= −Λ (1− Λ)xkx

′, (2.31)

∂2vk
∂θ∂θ′

=
∂2 ((y − Λ)xk)

∂θ∂θ′
= −Λ (1− Λ) (1− 2Λ)xkxx

′. (2.32)

Note that

E
[
vvθk
]
= E [((y − Λ)x) (−Λ (1− Λ)xkx

′)] = 0,

because the conditional expectation of y given x is equal to Λ. It follows that E
[
v
(
∂vk
∂θ′

− E
[
∂vk
∂θ′

])]
=

0 and the second order bias (2.30) simplifies; for the logit model, the kth component of

E
[
vθ
]
E
[(

1
2
θϵϵ (0)

)]
is equal to

1

2
trace

(
E

[
∂2vk
∂θ∂θ′

] (
E
[
vθ
])−1

)
. (2.33)

Remark 4 In (2.2) and (2.3), it can be seen that A is an estimator of E
[
vθ
]
and Ck is an

estimator of E
[

∂2vk
∂θ∂θ′

]
.

2.9.5 Comparison with King and Zeng (2001)’s Bias Formula

In terms of comparison with King and Zeng (2001)’s (11), we note that their bias formula can

be rewritten
(
1
n
X ′WX

)−1 ( 1
n
X ′Wξ

)
, where W in our context is equal to a diagonal matrix

with diagonal elements equal to Λ̂i

(
1− Λ̂i

)
, ξi =

Qii

2

(
2Λ̂i − 1

)
, and Q = X (X ′WX)−1X ′.

Note first that
1

n
X ′WX =

1

n

n∑
i=1

xiΛ̂i

(
1− Λ̂i

)
x′i = −A, (2.34)

where A is from (2.2). Also note that Q = 1
n
X
(
1
n
X ′WX

)−1
X ′ = − 1

n
XA−1X ′, so we have

Qii = − 1
n
x′iAxi = − 1

n
trace (xix

′
iA). It follows that the k-th component of 1

n
X ′Wξ is equal to
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1

n

n∑
i=1

xi,kΛ̂i

(
1− Λ̂i

)
ξi

=
1

n

n∑
i=1

xi,kΛ̂i

(
1− Λ̂i

) 1

2

(
− 1

n
trace (Axix

′
i)

)(
2Λ̂i − 1

)
=

1

2n

1

n

n∑
i=1

Λ̂i

(
1− Λ̂i

)(
1− 2Λ̂i

)
trace (xix

′
iA)

=
1

2n
trace

((
1

n

n∑
i=1

Λ̂i

(
1− Λ̂i

)(
1− 2Λ̂i

)
xix

′
i

)
A

)
= − 1

2n
trace (CkA) = − 1

n
Tk,

where Ck and Tk are from (2.3) and (2.4). Therefore, we can understand that

1

n
X ′Wξ = − 1

n


T1
...

Tk

 . (2.35)

Combining (2.34) and (2.35), we obtain

(
1

n
X ′WX

)−1(
1

n
X ′Wξ

)
= (−A)−1

− 1

n


T1
...

Tk


 = B

for B in (2.5).

2.9.6 Zero Second Order Bias of the Average Predicted Probability

Similar calculation as in the previous section indicates that the second order bias of is

1
n

∑n
i=1 Λ

(
x′iθ̂
)
can be estimated by

1

2n

(
1

n

n∑
i=1

Λ̂i

(
1− Λ̂i

)
x′i

)
Ê [θϵϵ (0)]

− 1

2n
trace

{(
1

n

n∑
i=1

Λ̂i

(
1− Λ̂i

)(
1− 2Λ̂i

)
xix

′
i

)(
Ê
[
vθ
])−1

}
.
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Recalling that the first component of xi is an intercept term, i.e., 1, we may rewrite it as

1

2n

(
1

n

n∑
i=1

Λ̂i

(
1− Λ̂i

)
xi,1x

′
i

)
Ê [θϵϵ (0)]

− 1

2n
trace

{(
1

n

n∑
i=1

Λ̂i

(
1− Λ̂i

)(
1− 2Λ̂i

)
xi,1xix

′
i

)(
Ê
[
vθ
])−1

}
. (2.36)

Recalling that Ê
[
vθ
]
= − 1

n

∑n
i=1 Λ̂i

(
1− Λ̂i

)
xi,1x

′
i, we can understand the first term

above as

− 1

2n

(
1st row of Ê

[
vθ
])
Ê [θϵϵ (0)] .

In Appendix 2.9.1, we saw that the kth component of Ê
[
vθ
]
Ê [θϵϵ (0)] is

− trace

{(
1

n

n∑
i=1

Λ̂i

(
1− Λ̂i

)(
1− 2Λ̂i

)
xi,kxix

′
i

)(
Ê
[
vθ
])−1

}
,

so we can see that (2.36) can be rewritten

− 1

2n

(
1st row of Ê

[
vθ
])
Ê [θϵϵ (0)] +

1

2n

(
1st component of Ê

[
vθ
]
Ê [θϵϵ (0)]

)
= 0.

2.9.7 Zero Second Order Bias of the ATE Under Random Assignment

In view of (2.8) in Appendix 2.2.3, it suffices to prove that

n

2n1

(
1

n

n∑
i=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

))
x′i

)
E(1) [θ

ϵϵ (0)]

− n

2n1

trace

{(
1

n

n∑
i=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

)) (
1− 2Λ

(
x′iθ0,(1)

))
xix

′
i

)(
E(1)

[
vθ
])−1

}
= op (1) , (2.37)

and

1

2n0

(
1

n

n∑
i=1

Λ
(
x′iθ0,(0)

) (
1− Λ

(
x′iθ0,(0)

))
x′i

)
E(0) [θ

ϵϵ (0)]

− 1

2n0

trace

{(
1

n

n∑
i=1

Λ
(
x′iθ0,(0)

) (
1− Λ

(
x′iθ0,(0)

)) (
1− 2Λ

(
x′iθ0,(0)

))
xix

′
i

)(
E(0)

[
vθ
])−1

}
= op (1) ,

57



under random assignment. We will only prove the former, because the latter can be established

similarly.

Write

1

n

n∑
i=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

))
x′i =

n1

n

1

n1

∑
Di=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

))
x′i

+
n0

n

1

n0

∑
Di=0

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

))
x′i.

Under the random assignment, the xi has the identical distribution so

1

n1

∑
Di=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

))
x′i =

1

n0

∑
Di=0

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

))
x′i + op (1) ,

and hence, we can write(
1

n

n∑
i=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

))
x′i

)
E(1) [θ

ϵϵ (0)]

=

(
1

n1

∑
Di=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

))
x′i

)
E(1) [θ

ϵϵ (0)] + op (1)

=
(
1st row of − E(1)

[
vθ
])
E(1) [θ

ϵϵ (0)] + op (1) . (2.38)

Likewise, we can write

1

n

n∑
i=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

)) (
1− 2Λ

(
x′iθ0,(1)
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xix

′
i

=
1

n1

∑
Di=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

)) (
1− 2Λ

(
x′iθ0,(1)

))
xix

′
i + op (1)

= −E(1)

[
∂2v1
∂θ∂θ′

]
+ op (1)

under random assignment, so

trace

{(
1

n

n∑
i=1

Λ
(
x′iθ0,(1)

) (
1− Λ

(
x′iθ0,(1)

)) (
1− 2Λ

(
x′iθ0,(1)
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xix

′
i

)(
E(1)

[
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}

= −E(1)

[
∂2v1
∂θ∂θ′

] (
E(1)

[
vθ
])−1

+ op (1)

= −1st component of Ê
[
vθ
]
Ê [θϵϵ (0)] + op (1) . (2.39)
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Combining (2.38) and (2.39), we conclude that (2.37) under random assignment as long

as n1, n0 → ∞ at the same rate.

2.9.8 Lyapunov Condition

Note that

E

∣∣∣∣∣ yi − pn√
npn (1− pn)

∣∣∣∣∣
3

=

(
1− pn√

npn (1− pn)

)3

pn +

(
pn√

npn (1− pn)

)3

(1− pn)

=
1

n
√
n

2p2n − 2pn + 1√
pn (1− pn)

,

so
n∑

i=1

E

∣∣∣∣∣ yi − pn√
npn (1− pn)

∣∣∣∣∣
3

=
1√
n

2p2n − 2pn + 1√
pn (1− pn)

→ 0

if pn ∝ n−δ with 0 ≤ δ < 1.

If pn ∝ 1
n
, we can see that

lim
n→∞

1√
n

2p2n − 2pn + 1√
pn (1− pn)

= 1,

so Lyapunov condition is violated. This is consistent with the fact that we should expect

Poisson approximation not normal approximation when pn is very small. For concreteness,

we will assume that pn = λ
n
and analyze

θ̂ − θ = ln
y

1− y
− ln

pn
1− pn

= ln
y

pn
− ln

1− y

1− pn

= ln
ny

λ
− ln

1− y

1− λ
n

.

As for the second term, we can use ny = Op (1) to conclude that

ln
1− y

1− λ
n

= ln
1−Op

(
1
n

)
1− λ

n

= op (1) ,

while ln ny
λ
is asymptotically equivalent to log of Poisson(λ) divided by its own mean. Problem

is that we need to confront the fact that a Poisson distribution has a positive probability of

being equal to 0, at which point the ln is not well-defined.
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2.9.9 Derivation of (2.20)

We analyze

θ̂ − θ = ln
y

1− y
− ln

pn
1− pn

= ln
y

pn
− ln

1− y

1− pn
.

As for the second term, we have
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)
noting that
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= O
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)
. As for the first term, we have
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. To conclude, we have
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and using
√
npn (1− pn) = Op

(
n−(1−δ)/2

)
, we conclude that

√
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CHAPTER 3

A Vuong Test for Panel Data Models with Fixed Effects

3.1 Introduction

When researchers working with panel data seek to select among models in terms of a few

parameters of interest, they can turn to model selection tests. The classical test is the

Vuong test. However, incidental parameters—high-dimensional parameters that affect the

unbiasednesss of the parameters of interest—are also important for panel data models as

they capture unobserved heterogeneity. In the presence of incidental parameters, we cannot

easily apply the classical Vuong test to select a panel data model.

An advantage of panel models is to deal with unobserved heterogeneity, which can be

modeled as time-invariant individual-specific effects. With the fixed effects approaches to

panel data models, we do not need to impose distributional assumptions on the unobserved

effects, thereby allowing the unobserved effects to be arbitrarily related with the observed

covariates. The fixed effect estimators treat the unobserved effects as parameters to be

estimated. It is well-known that maximum likelihood estimates of the panel data models

suffer from the incidental parameters problem as noted by Neyman and Scott (1948); that is,

the estimation of the fixed effects when the time dimension is short can be severely biased.

Some approaches circumvent the inconsistency problem based on the intuition that there are

clever ways to avoid estimating the fixed effects; for instance, in linear models, fixed effects are

numerically equivalent to the within-group estimator that removes the individual effects by

taking differences within each individual, so that first differencing yields models free of fixed
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effects. However, such estimators generally only apply to specific models, and the existence

of such estimators seems to be quite rare when we want to analyze fixed effects estimation of

average partial effects (APEs), which are averages of functions of the data, parameters, and

unobserved effects. Moreover, fixed effects are unavoidable if we are interested in settings

where individuals are clustered at different levels. For example, students may be clustered at

class, school, and district level; or observations are clustered according to household, county,

and state codes. Therefore, dealing with the incidental parameter problem coming from the

noise of estimation of fixed effects is important for panel data models. From this perspective,

it is natural to propose a test for model selection among various panel data models in the

presence of incidental parameters.

The fixed-T approximation limitations can be overcome by an alternative asymptotic

approximation that considers sequences of panels where both N and T increase to infinity, see

Arellano and Hahn (2007), Hahn and Kuersteiner (2011) and Hahn and Newey (2004). This

large-T approximation makes the incidental parameter problem of fixed effects estimation

become an asymptotic bias problem that is easier to tackle. These bias-corrected estimators

are designed to remove the O(1/T) bias and generally applicable. There are several ways

to achieve this goal in the literature: Hahn and Newey (2004) and Hahn and Kuersteiner

(2011) construct an analytical or numerical bias correction of a fixed-effects estimator for

nonlinear panel data models. Another approach is to consider estimators from bias-corrected

moment equations, see Woutersen (2002), Arellano (2003), Carro (2007) and Fernández-Val

(2005). In addition, Pace and Salvan (2006) and Arellano and Hahn (2007) propose estimation

from a bias-corrected objective function relative to some target criterion. Another strand of

literature focuses on a modified objective function where the correction term is designed to

remove the O(1/T) bias of the resulting estimator (Bester and Hansen, 2009; Arellano and

Hahn, 2016). The correction term could be trace-based or determinant-based.

A vast literature assumes that incidental parameters are correctly specified. But often this

may not be the case. For example, a researcher may incorrectly specify incidental parameters
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if she clusters her data at zip code, city, or country level when in fact the data are actually

clustered at the individual level. In fact, the specification problem in panel data models is

more severe than in cross sectional data because incidental parameters change over time,

thereby generating a different set of potential model specifications for every period of time.

At present, we do not have a test for model selection for these situations where there

are many incidental parameters. Without a test specifically designed for panel data with

incidental parameters, the misspecifications of discrepancy in the structure of incidental

parameters could have serious consequences for model selection. Because it affects the

unbiasedness of the low-dimensional parameters of interests. If we ignore the specifications of

incidental parameters and only select models based on low-dimensional parameters, we may

choose the wrong model.

This chapter proposes a new model selection test for panel data models by extending

the classical Vuong test, which selects from two parametric likelihood models based on their

Kullback–Leibler information criterion (KLIC). Suppose there are two panel models, for

example, panel probit and panel logit. We do not know whether both or one of the two

models would be misspecified because the true model is unknown. But it is of interest to

know whether one of the two models is superior to the other. Following Vuong (1989), we

derive an LR based test of the null hypothesis that two models are equivalent in terms of

their distances to the true model. Under the null hypothesis, both models are equally close to

the true data distribution in terms of the Kullback–Leibler (KL) divergence. When the null

does not hold, the tests direct the researcher to the model closer to the true distribution with

probability approaching one. An important feature of panel data models is the specification

of incidental parameters or fixed effects, which is different from the classical Vuong test. We

exploit a modified objective function to deal with infinite-dimensional nuisance parameters.

This chapter is different from Lee and Phillips (2015) in that they assume the parameter

space of fixed effects is common across the candidate models. Therefore their tests choose

the model that best fits the data generating process when only a subset of the parameters is
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of central interest, which is a special case in this chapter.

This chapter provides a test to select a better model from two competing nonlinear panel

models with incidental parameters. It may seem that we can easily extend the criterion

function in classical Vuong test to panel data models. Indeed, when there is no incidental

parameter, the classical Vuong test allows the researcher to select between two parametric

likelihood models based on their Kullback–Leibler information criterion (KLIC) . However,

with incidental parameters, the estimators for panel data models are severely biased. This is

called the incidental parameters problem, as noted by Neyman and Scott (1948).

In order to extend classical Vuong test to panel data with incidental parameters, we

propose three new test statistics based on a new criterion function. In classical Vuong

test, the object function is maximized at pseudo-true values. However, the expectation

of the concentrated likelihood for panel data with incidental parameters is not maximized

at the true value of the parameter. To be consistent with classical Vuong test, we use a

modified likelihood function as the new criterion function. The purpose is to generate a closer

approximation to the target likelihood function.

The discrepancy in incidental parameters could have serious consequences for model

selection; for example, as noted by MacKinnon et al. (2020), there is a vast literature on

cluster-robust inference that assumes the structure of the clusters is correctly specified, which

is often violated. An interesting case investigated in their paper is a test for the appropriate

clustering level in linear regression models. They show that clustering at either the classroom

or school level is better than no clustering using data from the Tennessee Student Teacher

Achievement Ratio (STAR) experiment. More generally, if we have observations taken from

individuals in different geographical locations, there could possibly be clustering at the

zip-code, city, county, state, or country level. Even in this simple cross-sectional setting, we

need to choose one model among many different specifications of fixed effects. In panel data

models, it highly possible that the fixed effects change over time, thereby generating different

model specifications for every period of time. This chapter’s main goal is to provide a way to
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select a better model from two competing nonlinear panel models with fixed effects, which

allows for disagreements about both parameters of interests and incidental parameters.

We offer three different test statistics for researchers who need to deal with all possible

relationships between candidate models: overlapping models,nested models, and strictly

nonnested models. These three model relationships are classified according to the structure

of low-dimensional parameter of interest and high-dimensional incidental parameters. It is

shown that these three test statistics have different convergence rates. Users can choose one

test according to the specific model relationship.

Since both finite-dimensional parameters of interest and infinite-dimensional incidental

parameters present in the model, the non-nested hypotheses is different from the literature

featuring Cox (1961), Atkinson (1970), Pesaran (1974), Pesaran and Deaton (1978), Mizon

and Richard (1986), Gourieroux and Monfort (1995), Ramalho and Smith (2002), Bontemps

et al. (2008), among others. There are three possible situations in which two models are

strictly non-nested. First, they share the same structure of incidental parameters but have

different parameters of interest, which are non-nested. For example, panel logit and panel

probit with identical individual-level fixed effects. Second, they have the same parameters

of interest but different specifications of incidental parameters, such as panel logit models

clustered at different levels. Third, both the parameters of interest and incidental parameters

are different in those two models. Continue with the example, panel logit and panel probit

clustered at different levels.

The classical Vuong test suffers from a discontinuity problem in the asymptotic distribution

of the test statistic, which means that the asymptotics depends on whether the models are

nested, non-nested, or overlapping, as noted by Shi (2015), Hsu and Shi (2017), Liao and

Shi (2020), Liu and Lee (2019) and so on. Shi (2015) shows that the classical Vuong tests

either have severe size distortion or poor power due to this discontinuity problem and propose

a one-step nondegenerate Vuong-type test for moment-based models. Liao and Shi (2020)

then extend the test to semi/nonparametric models. Hsu and Shi (2017) introduce some
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additional randomness into the test statistic and derive a one-step test for model selection

between conditional moment restriction models. Liu and Lee (2019) show that their intuition

carries over to spatial models. This chapter follows the manner of Shi (2015) and Liao and

Shi (2020), to construct bias-corrected test statistics for panel model selection. The test

achieves uniformly asymptotic size control and is consistent regardless of the true DGPs for

non-nested, nested, and overlapping models.

This chapter is organized as follows. Section 3.2 sets up the objective function for model

selection and compares it with the classical Vuong test. Section 3.3 conducts the test for

non-nested models, Section 3.4 is for nested models, and Section 3.5 is for overlapping models.

Useful lemmas and some important proofs are in Section 3.6.

3.2 The classical Vuong test and extension to panel data models

3.2.1 The classical Vuong test

When there is no incidental parameter, the classical Vuong test allows the researcher to

select between two parametric likelihood models based on their Kullback–Leibler information

criterion (KLIC). In this section, we review the classical Vuong test and show that how it

could be adopted to panel data models with fixed effects.

Assume that we have two parametric models F and G to choose from, their densities are

yi ∼ f(y; θ) : θ ∈ Θ ⊂ Rdθ and yi ∼ g(y; γ) : γ ∈ Γ ⊂ Rdγ respectively. Since we do not know

the true underlining data generating process (DGP), we are interested in the comparison

between these two models: which one is closer to the truth. The classical Vuong test (Vuong,

1989) looks at their distances to the DGP in terms of the Kullback and Leibler Information

Criterion (KLIC). Let ψi(ϕ) be the logarithm of the ratio of the two p.d.f.s:

n∑
i=1

ψi(ϕ) =
n∑

i=1

log f(yi; θ)−
n∑

i=1

log g(yi; γ)

ϕ0 = (θ′0, γ
′
0) is the concatenated vector of the pseudo-true values that maximizes the
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expectation under the density functions f(yi; θ) and g(yi; γ):

θ0 = argmax
θ∈Θ

E

[
n∑

i=1

log f(yi; θ)

]

γ0 = argmax
γ∈Γ

E

[
n∑

i=1

log g(yi; γ)

]

The distance between the DGP and these two models is measured by the minimum KLIC

among distributions in the model. And we would like to select the best model among a

collection of competing models is the one that is closest to the true model. In order to do

that, Vuong (1989) adopts the following test hypotheses:

H0 : E

[
n∑

i=1

ψi(ϕ0)

]
= 0

Hf : E

[
n∑

i=1

ψi(ϕ0)

]
> 0

Hg : E

[
n∑

i=1

ψi(ϕ0)

]
< 0

Under H0, F and G are equally good since they are equally distant from true distribution

in the Kullback-Leibler sense. If F is a “better” model, E[
∑n

i=1 ψi(ϕ0)] is expected to be

“big”, therefore under Hf , f is favored since it is closer to the true distribution. Under Hg, g

is “better” as E[
∑n

i=1 ψi(ϕ0)] is small. The test statistics LRn =
∑n

i=1 ψi(ϕ̂n) is the sample

analogue of LR0 =
∑n

i=1 ψi(ϕ0), where ϕ̂n =
(
θ̂′n, γ̂

′
n

)
, and that

θ̂n = argmax
θ∈Θ

n∑
i=1

log f(yi; θ)

γ̂n = argmax
γ∈Γ

n∑
i=1

log g(yi; γ)

If these two models are strictly non-nested: F ∩ G = ∅, which is the easiest case, we have

n−1/2LRn = n−1/2

n∑
i=1

ψi

(
ϕ̂n

)
d−→ N

(
0, ω2

)
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The estimator for the variance term is

ω̂2
n = n−1

n∑
i=1

[
ψi

(
ϕ̂n

)]2 p−→ ω2

Thus we have the following asymptotics:

H0 : n
−1/2LRn/ω̂n

d−→ N(0, 1)

Hf : n−1/2LRn/ω̂n
a.s.−→ +∞

Hg : n
−1/2LRn/ω̂n

a.s.−→ −∞

If these two models are nested, for example, F nests G: G ⊂ F . Assume that dim (θ) ≥

dim (γ), under H0:

2LRn
d→ χ2(dim (θ)− dim (γ))

H0 is rejected if 2LRn > c
(
Q̂n, 1− α

)
, c
(
Q̂n, 1− α

)
is 1 − α quantile of Y ′QY . Q̂n is a

consistent estimator of Q.

3.2.2 Incidental parameter problem in panel data models

With incidental parameters, the estimators for panel data models are severely biased. This

is called the incidental parameters problem, as noted by Neyman and Scott (1948). Since

it violates the unbiasedness properties in classical Vuong test, we need to tackle with it for

model selection tests.

In this part, we review the bias-corrected estimator and explain why the modified likelihood

function behaves more like a genuine likelihood function. Consider panel observations {yit}

for i = 1, 2, . . . , n and t = 1, 2, . . . , T . The density function is yit ∼ f(y|θ0, αi0), where θ0 is

the common parameter of interest and αi0 denotes individual fixed effect, which are considered

to be non-stochastic constants. A maximization estimator is defined by

(
θ̂, α̂1, . . . , α̂n

)
= argmax

θ,γ1,...,γn

n∑
i=1

T∑
t=1

log f (xit; θ, αi)
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We assume that if n is fixed and T → ∞, the estimator
(
θ̂, α̂1, . . . , α̂n

)
is consistent for

(θ0, α10, . . . , αn0) .To simplify notation, we assume dim (αi) = 1, concentrating out the αi

leads to the characterization

θ̂ ≡ argmax
θ

∑
i

∑
t

log f (yit | θ, α̂i(θ))

α̂i(θ) ≡ argmax
α

∑
t

log f (yit | θ, α)

The α̂i(θ) on the data only through the i-th observation so there are only T observations to

estimate αi. Let

θT ≡ argmax
θ

lim
n→∞

1

n

n∑
i=1

E

[
T∑
t=1

log f (yit | θ, α̂i(θ))

]

is biased in general θT ̸= θ0 (incidental parameters problem). Before proceeding to the

bias-corrected estimator, it will be useful to define some notation:

uit(θ, α) ≡
∂

∂θ
log f (yit | θ, α)

vit(θ, α) ≡
∂

∂α
log f (yit | θ, α)

Uit(θ, α) ≡uit(θ, α)− vit(θ, α)E [vαi
it ]

−1E [uαi
it ]

bi (θ0) =−
(
E [vitU

αi
it ]

E [vαi
it ]

− E [Uαiαi
it ]E [v2it]

2 (E [vαi
it ])

2

)
Ii ≡− E

[
∂Uit (θ0, α0)

∂θ

]
B =

(
lim
n→∞

1

n

n∑
i=1

Ii

)−1

lim
n→∞

1

n

n∑
i=1

bi (θ0)

We use the short-hand notation uit ≡ uit (θ0, α0) , vit ≡ vit (θ0, α0) , Uit ≡ Uit (θ0, α0) and we

denote by vαit and v
αα
it the first and second derivatives of vit with respect to αi. We denote θ̃

as biased-corrected MLE estimator, which is

θ̃ ≡ θ̂ − B̂

T
(3.1)
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B̂ is an estimator of the bias term, which can be a sample analogue of B.1 The idea

behind this method is to expand the incidental parameters bias of the estimator on the

order of magnitude T, and to subtract an estimate of the leading term of the bias from the

estimator. The bias stems from the fact that we use
∑

i

∑
t log f (yit | θ, α̂i(θ)) rather than∑

i

∑
t log f(yit; θ0, αi(θ0)) to estimate θ.

3.2.3 The new criterion function

It may seem that we can easily extend the criterion function in classical Vuong test to panel

data models, but the incidental parameter problem induces a difficulty. Using a modified

likelihood function as the new criterion function, we extend the classical Vuong test to panel

data models with incidental parameters.

Intuitively, we can treat the likelihood function which is evaluated at bias-corrected

estimator θ̃ in equation (3.1) as criterion function ψf

(
yit, θ̃, α̂i(θ̃)

)
:

∑
i

∑
t

ψf

(
yit, θ̃, α̂i(θ̃)

)
≡
∑
i

∑
t

log f
(
yit; θ̃, α̂i(θ̃)

)
In classical Vuong test, the object function is maximized at pseudo-true values. However,

the expectation of the concentrated likelihood ψf

(
yit, θ̃, α̂i(θ̃)

)
is not maximized at the true

value of the parameter. If we use plug-in estimator of incidental parameters α̂i(θ) instead of

αi(θ0), the first-order derivative of
∑

i

∑
t log f (yit | θ, α̂i(θ)) with respect to θ is not centered

at zero when θ = θ̃. In order to be consistent with classical Vuong test, we use a modified

1According to Arellano and Hahn (2007), we can estimate the bias term using B̂(θ̂) =(
1
n

∑n
i=1 Îi

)−1
1
n

∑n
i=1 b̂i(θ̂), Îi = −

(
ÊT

[
ûθ
it

]
− ÊT [ûαi

it ] ÊT [v̂αi
it ]

−1
ÊT

[
ûαi′
it

])
, and

b̂i(θ̂) =

(−ÊT

[
v̂2it
]

ÊT [v̂αi
it ]

)− 1(
−ÊT [v̂2it]

) (ÊT [v̂itû
αi
it ]− ÊT [v̂itv̂

αi
it ]

ÊT [ûαi
it ]

ÊT [v̂αi
it ]

)
1

2ÊT [v̂αi
it ]

(
ÊT [ûαiαi

it ]− ÊT [v̂αiαi
it ]

ÊT [ûαi
it ]

ÊT [v̂αi
it ]

)
where ÊT (.) =

∑T
t=1(.)/T, û

θ
it = uθ

it

(
θ̂, α̂i(θ̂)

)
, ûαi

it = uαi
it

(
θ̂, α̂i(θ̂)

)
, etc.
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likelihood function instead:

LMnT (θ̃) ≡
∑
i

∑
t

ψf

(
yit, θ̃, α̂i(θ̃)

)
−
∑
i

R̂∗
fi(θ̃)

The purpose of including an extra modification term
∑

i R̂
∗
fi(θ̃), which is defined in equation

(3.3), is to generate a closer approximation to the target likelihood function
∑

i

∑
t ψf (θ0, αi(θ0)).

For example, Bester and Hansen (2009), Arellano and Hahn (2016) and Lee and Phillips

(2015) consider trace-based correction term R̂∗
fi(θ̃), which depends exclusively on the Hessian

and the outer product of the scores of the fixed effects. In the literature, it is shown that the

modified likelihood function has zero first-order derivative at θ̃. We will discuss the formula

of R̂∗
fi(θ̃) in different models.

Based on the modified likelihood functions, we offer three different test statistics for

researchers who need to deal with all possible relationships between candidate models.

3.3 The non-nested models

There are three possible situations in which two models are strictly non-nested. First, they

share the same structure of incidental parameters but have different parameters of interest,

which are non-nested. For example, panel logit and panel probit with identical individual-level

fixed effects.

Second, they have the same parameters of interest but different specifications of incidental

parameters, such as panel logit models clustered at different levels, e.g. the zip-code, city,

county, state, or country level.

Third, both the parameters of interest and incidental parameters are different in those

two models. For instance, panel logit clustered at individual level and panel probit clustered

at zip-code level.

Suppose there are two panel models f and g which are strictly non-nested but have

same structure of fixed effects, for example, the binary panel model with fixed effects is
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characterized by yit = 1(γi0 + z′itθ0 + εit ≥ 0),where εit conditional on zit either has a logistic

or standard normal distribution. The former one is defined by model f and the latter

one is model g, they are considered as non-nested cases. It is necessary to consider both

finite-dimensional parameters of interest and infinite-dimensional incidental parameters when

determining model relationships. Continue with the previous example in the introduction,

we have observations taken from individuals in different geographical locations, there could

possibly be clustering at the zip-code, city, county, state, or country level.

The main assumption we make about nonnested models is as follows:

Assumption 1 Suppose that f and g have different parameters of interest and structure of

incidental parameters but they are non-nested, i.e., there is no (θ0, γ0, αi0, λi0) ∈ Θ×Υ×A×Λ

such that f (yit, θ0, αi) = g (yit, γ0, λi)∀yit ∈ Y.

We consider the strictly non-nested models and denote the modified likelihood function

evaluated at θ̃ in equation (3.1) as (take model f as an example):

LMnT (θ̃) ≡
∑
i

∑
t

ψf (yit, θ̃, α̂i(θ̃))−
∑
i

R̂∗
fi(θ̃) (3.2)

Without the modification term
∑

i R̂
∗
fi(θ̃),

1
nT

∑
i

∑
t ψf

(
yit, θ̃, α̂i(θ̃)

)
does not have zero

first-order derivatives at θ̃, which violates the property of objective function in the classical

Vuong test. Expanding equation (3.2) around (θ0, α̂i(θ0)) , the Taylor’s Theorem implies that

for
˜̃
θ in between θ0 and θ̃:

∑
i

∑
t

ψf

(
yit, θ̃, α̂i(θ̃)

)
−
∑
i

R̂∗
fi(θ̃)

=
∑
i

∑
t

ψf (yi,t; θ0, α̂i(θ0))−
∑
i

R̂∗
fi(θ0) (i)

+
∂
[∑

i

∑
t ψf (yi,t; θ0, α̂i(θ0))−

∑
i R̂

∗
fi(θ0)

]
∂θ

(θ̃ − θ0) (ii)

+
1

2
(θ̃ − θ0)

′∂
2([
∑

i

∑
t ψf (yi,t;

˜̃
θ, α̂i(

˜̃
θ))−

∑
iRfi(

˜̃
θ)])

∂θ∂θ′
(θ̃ − θ0) (iii)
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where

R̂∗
fi (θ) ≡− 1

2

1
T

∑
t v

2
fi,t (θ, αi (θ))

E
[
vαfi,t (θ, αi (θ))

]
R̂∗

fi (θ0) ≡− 1

2

1
T

∑
t v

2
fi,t

E
[
vαfi,t

]
R̂∗

fi(θ̃) ≡− 1

2

1
T

∑
t v̂

2
fi,t

1
T

∑
t v̂

α
fi,t

(3.3)

and v ≡ v (θ0, αi (θ0)), v
α
fi,t ≡ vαfi,t (θ0, αi (θ0)),v̂fi,t ≡ vfi,t[θ̃, α̂i(θ̃)], v̂

α
fi,t ≡ vαi,t[θ̃, α̂i(θ̃)]. Ac-

cording to Proposition 4 in the appendix, we prove that in the first term (i):

∑
i

∑
t

ψf (yi,t; θ0, α̂i(θ0))−
∑
i

Rfi(θ0) =
∑
i

∑
t

ψf (yit, θ0, αi(θ0)) + op(1) (3.4)

where Rfi (θ0) ≡ −1
2

(
1√
T

∑
t vfi,t

)2

E[vαfi,t]
. Therefore the first term (i) can be written as:

∑
i

∑
t

ψf (yit, θ0, αi(θ0)) +
∑
i

Rfi(θ0)−
∑
i

R̂∗
fi(θ0) (3.5)

In Proposition 3, the second term (ii) is shown to be(
1√
nT

n∑
i=1

T∑
t=1

Uit

)
I−1
f

(
1√
nT

n∑
i=1

T∑
t=1

Uit

)
+ op(1) (3.6)

where If ≡ limn→∞
1
n

∑n
i=1 Ifi. We deduce that the third term (iii) becomes:

−1

2

(
1√
nT

n∑
i=1

T∑
t=1

Uit

)
I−1
f

(
1√
nT

n∑
i=1

T∑
t=1

Uit

)
+ op(1) (3.7)

Combining equations (3.5), (3.6) and (3.7):

∑
i

∑
t

ψf

(
yit, θ̃, α̂i(θ̃)

)
−
∑
i

R̂∗
fi(θ̃) (3.8)

=
∑
i

∑
t

ψf (yit, θ0, αi(θ0)) +
∑
i

Rfi(θ0)−
∑
i

R̂∗
fi(θ0) (a)

+
1

2

(
1√
nT

n∑
i=1

T∑
t=1

Uit

)
I−1
f

(
1√
nT

n∑
i=1

T∑
t=1

Uit

)
(b)
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The first term (a) is Op

(√
nT
)
since we know that from Proposition 6 and 9 in the appendix:

1√
n

∑
i

[
Rfi (θ0)− R̂∗

fi(θ0)
]

d→ N(0, σ2
Uf
)

1√
nT

∑
i

[∑
t

ψf (yit, θ0, αi(θ0))− E

(∑
t

ψf (yit, θ0, αi(θ0))

)]
d→ N(0, ω2

f )

where

σ2
Uf

≡ lim
n→∞

1

2n

∑
i

(
E
[
v2fi,t

])2(
E
[
vαfi,t

])2 (3.9)

ω2
f ≡ lim

n→∞

1

n

∑
i

E [ψf (yit, θ0, αi(θ0))− E (ψf (yit, θ0, αi(θ0)))]
2 (3.10)

The second term (b) is Op (1). We divide the equation (3.8) by
√
nT at both sides, we have:

1√
nT

[∑
i

∑
t

ψf

(
yit, θ̃, α̂i(θ̃)

)
−
∑
i

R̂∗
fi(θ̃)

]
=

1√
nT

∑
i

∑
t

ψf (yit, θ0, αi(θ0))

+
1√
nT

∑
i

[
Rfi (θ0)− R̂∗

fi(θ0)
]
+ op (1)

=
1√
nT

∑
i

∑
t

ψf (yit, θ0, αi(θ0)) + op (1)

and hence

1√
nT

∑
i

∑
t

ψf

(
yit, θ̃, α̂i(θ̃)

)
− 1√

nT

∑
i

R̂∗
fi(θ̃) =

1√
nT

∑
i

∑
t

ψf (yit, θ0, αi(θ0)) + op(1)

(3.11)

we further denote:

LMnT

(
θ̃, γ̃
)
≡

(∑
i

∑
t

ψf

(
yit, θ̃, α̂i(θ̃)

)
−
∑
i

R̂∗
fi(θ̃)

)
−

(∑
i

∑
t

ψg (yit, γ̃, α̂i(γ̃))−
∑
i

R̂∗
gi(γ̃)

)
LMnT (θ0, γ0) ≡

∑
i

∑
t

ψf (yit, θ0, αi(θ0))−
∑
i

∑
t

ψg (yit, θ0, αi(θ0))

Equation (3.11) becomes:

1√
nT

LMnT (θ̃, γ̃) =
1√
nT

LMnT (θ0, γ0) + op(1) (3.12)
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Theorem 1 If assumption 1 and condition 1 hold, then under H0 : E [LMnT (θ0, γ0)] = 0 :

1√
nT
LMnT (θ̃, γ̃)

ω̂n

d→ N(0, 1)

Hf : E [LMnT (θ0, γ0)] > 0 :

1√
nT
LMnT (θ̃, γ̃)

ω̂n

a.s.→ +∞

Hg : E [LMnT (θ0, γ0)] < 0 :

1√
nT
LMnT (θ̃, γ̃)

ω̂n

a.s.→ −∞

where ω̂2
n is an estimator for ω2, and ω̂2

n = 1
nT

∑
i

∑
t[ψf

(
θ̃, α̂i(θ̃)

)
− ψg (γ̃, α̂i(γ̃))]

2, ω2 =

limn→∞
1
n

∑
iE [ψf (θ0, αi(θ0))− ψg (γ0, αi(γ0))]

2.

Proof. See Proposition 7, 9 and appendix 3.6.4.

3.4 The nested models

When we consider the nested cases, there are two possibilities: (i) there is no disagreement

about low-dimensional parameters; (ii) the high-dimensional incidental parameters is un-

changing over these specifications. For the first case, the test converges at root n, which is

slower than the classical Vuong test. This is because the test is driven by the discrepancy in

high-dimensional incidental parameters. For the second case, we have chi-sqaure distribution

based on modified criterion function, which is identical to classical Vuong test.

Example 1 (Different cluster levels) As noted by MacKinnon et al. (2020), there is a vast

literature on cluster-robust inference that assumes the structure of the clusters is correctly

specified, which is often violated. An interesting case investigated in their paper is a test for

the appropriate clustering level in linear regression models. They show that clustering at either

the classroom or school level is better than no clustering using data from the Tennessee Student
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Teacher Achievement Ratio (STAR) experiment. More generally, if we have observations

taken from individuals in different geographical locations, there could possibly be clustering at

the zip-code, city, county, state, or country level.

Consider the panel model with fixed effects with known variance of the error term, but the

cluster levels change over time:

ψf (yi,t; θ, αi) = −1

2
lnσ2 − 1

2

(yit − xitθ − αi)
2

σ2
for t = 1, 2, . . . , 2J

ψg(yi,t; θ, αi) =

 −1
2
lnσ2 − 1

2
(yit−xitθ−αi1)

2

σ2 for t = 1, 2, . . . , J

−1
2
lnσ2 − 1

2
(yit−xitθ−αi2)

2

σ2 for t = J + 1, 2, . . . , 2J

For model f , the fixed effects αi is constant across different time periods, while for model g,

αi changes with time. For instance, observations are clustered at individual level at first half

period of time, but clustered at county level later on. We can treat αi as different cluster

levels of observations. Model f is nested in model g since f is equivalent to g when αi1 = αi2.

Assume that σ2 = 1, and the initial value is taken from a stationary distribution, and we

obtain

ψf (yi,t; θ, αi) = −1

2
(yit − xitθ − αi)

2

We note that for model f :

αi (θ) = E (yit − xitθ) , α̂i

(
θ̃
)
=
∑t=2J

t=1

(
yit − xitθ̃

)
.

Rfi (θ0) = −1
2

[
1
2J

∑t=2J
t=1 (yit − xitθ0 − αi)

]2
, R̂fi

(
θ̃
)
= −1

2

[
1
2J

∑t=2J
t=1

(
yit − xitθ̃ − α̂i

(
θ̃
))]2

.

R∗
fi (θ0) = −1

2
E
[

1
2J

∑t=2J
t=1 (yit − xitθ0 − αi)

2
]
, R̂∗

fi

(
θ̃
)
= −1

2

[
1
2J

∑t=2J
t=1

[
yit − xitθ̃ − α̂i

(
θ̃
)]2]

.

We can also compute the modification terms for model g for t = 1, 2, . . . , J and t =

J + 1, 2, . . . , 2J , respectively.

3.4.1 Case (i) no disagreement about parameters of interest

We consider the first case and define the nested relationship as follows:
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Assumption 2 Suppose that f and g share the parameters of interest θ0, but g nests

f , i.e., there exists a function ϕα(.) from AF to AG such that for any αfi(θ0) in AF :

f (yit, θ0, αfi(θ0)) = g (yit, θ0, ϕ(αgi(θ0)))∀yit ∈ Y .

Divide equation (3.8) by
√
n at both sides, since the term (b) is Op (1), we have the following

expansion for model g:

1√
n

∑
i

t=2J∑
t=1

ψf (yi,t; θ0, αi (θ0)) +
∑
i

1√
n

[
Rfi(θ0)− R̂∗

fi(θ0)
]

(3.13)

=
1√
n

∑
i

t=2J∑
t=1

ψf

(
yit, θ̃, α̂i(θ̃)

)
− 1√

n

∑
i

R̂∗
fi(θ̃) + op(1) (3.14)

where R̂∗
fi(θ̃) ≡ −1

2

1
2J

∑t=2J
t=1 v̂2fi,t

1
2J

∑t=2J
t=1 v̂αfi,t

. Similarly, for model model g, we compute the statistic for

two different time periods separately, the corresponding modification terms are:

R̂∗
1gi(θ̃) ≡ −1

2

1
J

∑t=J
t=1 v̂21gi,t

1
J

∑t=J
t=1 v̂α1gi,t

, R̂∗
2gi(θ̃) ≡ −1

2

1
J

∑t=2J
t=J+1 v̂

2
2gi,t

1
J

∑t=2J
t=J+1 v̂

α
2gi,t

.

We define

LMnT

(
θ̃, α̂i, α̂i1, α̂i2

)
≡
∑
i

{
t=2J∑
t=1

ψf

(
yit, θ̃, α̂i(θ̃)

)
−

t=J∑
t=1

ψg

(
yit, θ̃, α̂i1(θ̃)

)
−

t=2J∑
t=J+1

ψg

(
yit, θ̃, α̂i2(θ̃)

)}
−
∑
i

[
R̂∗

fi(θ̃)− R̂∗
1gi(θ̃)− R̂∗

2gi(θ̃)
]

Theorem 2 If assumption 2 and condition 1 hold, then under H0 : E [LMnT (θ0, αi, αi1, αi2)] =

0 :

1√
n
LMnT (θ̃, α̂i, α̂i1, α̂i2)

σ̂Unested

d→ N(0, 1)

Under Hg : E [LMnT (θ0, αi, αi1, αi2)] < 0 :

1√
n
LRnT (θ̃, α̂i, α̂i1, α̂i2)

σ̂Unested

a.s.→ −∞
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where σ̂2
Unested is an estimator for σ2

Unested:

σ̂2
Unested ≡

J − 1

2nJ

∑
i

(
1
J

∑t=J
t=1 v̂

2
1gi,t

)2
(

1
J

∑t=J
t=1 v̂

α
1gi,t

)2
σ2
Unested ≡ lim

n→∞

1

2n

∑
i

(
E
[
v21gi,t

])2(
E
[
vα1gi,t

])2
If the information matrix identity holds, σ2

Unested =
1
2
.

Proof. See Proposition 8 and proof of Theorem 3.6.4 in the appendix.

3.4.2 Case (ii) no disagreement about incidental parameters

We assume that the parameter of interest θ is different across candidate models while the

incidental parameters αi is unchanging over these specifications. Take the following case as

an example:

f : yit = αi + xitθ1 + εit

g : yit = αi + xit1θ1 + xit2θ2 + εit

Similar to nested case (i), model f is a special case for model g when θ2 = 0. A formal

definition is as follows:

Assumption 3 Suppose that f and g have same structure of incidental parameters but g nests

f , i.e., there exists a function ϕ(.) from Θ to Γ such that for any θ in Θ: f (yit, θ0, αi(θ0)) =

g (yit, ϕ(θ0), αi (ϕ(θ0)))∀yit ∈ Y .

Under the null hypothesis, Rfi (θ0) = Rgi(γ0) and R̂
∗
fi(θ0) = R̂∗

gi(γ0) since these two models

have same structure of fixed effects. We obtain the following expansion from equation (3.8):

LMnT

(
θ̃, γ̃
)
= LMnT (θ0, γ0) +

NT

2
(θ̃ − θ0)

′If (θ̃ − θ0)−
NT

2
(γ̃ − γ0)

′Ig(γ̃ − γ0) + op(1)
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therefore under null assumption, assume that dim (γ) ≥ dim (θ) (see proof in the appendix

3.6.4),

−2LMnT

(
θ̃, γ̃
)

d→ χ2(dim (γ)− dim (θ))

Theorem 3 If assumption 3, the information matrix identity holds for model f , condition 1

holds, then under H0 : E [LMnT (θ0, γ0)] = 0, for any x > 0,

Pr
(
−2LMnT

(
θ̃, γ̃
)
< x

)
− c

(
Q̂n, 1− α

)
a.s.→ 0

Under Hg : E [LMnT (θ0, γ0)] < 0 :

−2LMnT

(
θ̃, γ̃
)

a.s.→ +∞

where c(Q, 1− α) is the 1− α quantile of χ2(dim (γ)− dim (θ)).

Proof. See the appendix 3.6.4.

Lee and Phillips (2015) assume that the parameter space of fixed effects is common across

the candidate models, their tests choose the model that best fits the data generating process

when only a subset of the parameters is of central interest, which is equivalent to our results

if the information matrix identity holds (see a proof of equivalence in the appendix 3.6.4).

3.5 The overlapping models

Here we consider two models that are overlapping and they are not non-nested. We consider

the case when the variance term might be zero, and the converge rate of the test is root n.

This case is different from classical Vuong test as there is no uniform formula for overlapping

models in the literature.

Assumption 4 Suppose that f and g are overlapping and they are not non-nested.
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The test statistic for overlapping models are similar to case (i) in nested models, since

the asymptotic distribution is mostly driven by differences in incidental parameters. It is

pointed out by Shi (2015) that the high-order bias may dominate the leading terms in LRn

and result in size distortion if we follow Vuong (1989)’s framework and construct a two-step

test for overlapping nonnested models. Some recent papers propose one-step nondegenerate

test for different data models: Shi (2015) shows that the classical Vuong tests either have

severe size distortion or poor power due to this discontinuity problem and propose a one-step

nondegenerate Vuong-type test for moment-based models, Liao and Shi (2020) then extend

the test to semi/nonparametric models. Hsu and Shi (2017) introduce some additional

randomness into the test statistic and derive a one-step test for model selection between

conditional moment restriction models, Liu and Lee (2019) show that their intuition carries

over to spatial models. This chapter follows the manner of Shi (2015) and Liao and Shi

(2020), to construct bias-corrected test statistics for panel model selection. The test achieves

uniformly asymptotic size control and is consistent regardless of the true DGPs for non-nested,

nested, and overlapping models.

Consider a simple case when LMnT (θ0, γ0) = 0, and the degeneracy problem is considered

under the assumption that f and g share the parameters of interest θ0, while they have

different structures of incidental parameters, which corresponds to previous analysis for nested

case (i):

1√
n
LMnT

(
θ̃, γ̃
)
=

1√
n

∑
i

[
Rfi (θ0)−Rgi (γ0)−

(
R∗

fi −R∗
gi

)]
+ op(1)

d→N
(
0, σ2

U

)
where σ2

U is defined in equation (3.15), the proof is included in Proposition 7 in the appendix.

Theorem 4 If assumption 4 and condition 1 hold, then under H0 : E [LMnT (θ0, γ0)] = 0 :

1√
n
LMnT (θ̃, γ̃)

σ̂U

d→ N(0, 1)
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under Hf : E [LMnT (θ0, γ0)] > 0 :

1√
n
LMnT (θ̃, γ̃)

σ̂U

a.s.→ +∞

under Hg : E [LMnT (θ0, γ0)] < 0 :

1√
n
LMnT (θ̃, γ̃)

σ̂U

a.s.→ −∞

where σ̂2
U is an estimator for σ2

U , and that

σ̂2
U ≡ T − 1

2nT

∑
i

[
1
T

∑t=T
t=1 v̂

2
fi,t

1
T

∑t=T
t=1 v̂

α
fi,t

−
1
T

∑t=T
t=1 v̂

2
gi,t

1
T

∑t=T
t=1 v̂

α
gi,t

]2

σ2
U ≡ lim

n→∞

1

2n

∑
i

E

[
E
[
v2fi,t

]
E
[
vαfi,t

] − E
[
v2gi,t
]

E
[
vαgi,t
]]2 (3.15)

3.6 Appendix

3.6.1 Regularity Conditions

Condition 1

1. n, T → ∞ such that (n/T ) → ρ,where 0 < ρ <∞.

2. (i) The function log f (.; θ, α) is continuous in (θ, α) ∈ Y ; (ii) the parameter space Y is

compact; (iii) there exists a function such that |∂ log f (yit; θ, αi) | ≤M (yit) ,∣∣∣∣∂ log f (yit; θ, αi)

∂ (θ, αi)

∣∣∣∣ ≤M (yit)

and supiE
[
M (yit)

33] <∞.

3. For each η > 0,

inf
i

[
G(i) (θ0, αi0)− sup

|(θ,α):|(θ,α)−(θ0,α0)|>η|
G(i)(θ, α)

]
> 0
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where

Ĝ(i) (θ, αi) ≡ T−1

T∑
t=1

log f (yit; θ, αi) ≡ T−1

T∑
t=1

g (yit; θ, αi)

G(i) (θ, αi) ≡ E [log f (yit; θ, αi)]

Let Ii ≡ E [UitU
′
it] .

4. (i) There exists some M (yit) such that∣∣∣∣∂m1+m2 log f (zit; θ, αi)

∂θm1∂αm2
i

∣∣∣∣ ≤M (zit) , 0 ≤ m1 +m2 ≤ 1, . . . , 6

and supiE
[
M (yit)

Q
]
<∞ for some Q > 64; (ii) Ē [Ii] > 0; (iii) miniE [v2it] > 0.

5. supi

[
1
T

∣∣∂Sn(θ)
∂θ′

∣∣] = op(1), where

Sn (θ0) =
1

n

n∑
i=1

∞∑
l=−∞

E
[
Uαi
i Ṽit−l

]
+

1

2

1

n

n∑
i=1

E [Uαiαi
i ] vec

(
∞∑

l=−∞

E
[
ṼitṼ

′
it−l

])
+ op(1)

and 1
T

∑T
t=1 Ṽit = −

(
E
[
∂vi
∂αi

])−1 (
1
T

∑T
t=1 vit

)
.

3.6.2 Lemmas

Lemma 2 (Arellano and Hahn, 2016, Theorem 2) Under condition 1,

√
nT (θ̃ − θ0) = I−1

f

{
1√
nT

∑
i

∑
t

Ufi,t (θ0, αi0)

}
+ op(1)

and that
√
nT (θ̃ − θ0)

d→ N
(
0, I−1

f

)
Lemma 3 (Hahn and Kuersteiner, 2011, Lemma 7) Assume that {Qt, t = 1, 2...} is a sta-

tionary, mixing sequence with E [Qt] = 0 and E
[
|Qt|2r+δ

]
< ∞ for any positive integer r,

some δ > 0 and all t. Let At ≡ σ (Qt, Qt−1, Qt−2, . . .) ,Bt ≡ σ (Qt, Qt+1, Qt+2, . . .) , and

α(m) ≡ sup
t

sup
A∈At,B∈Bt+m

|P (A ∩B)− P (A)P (B)| (3.16)
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Then, for any m such that 1 ≤ m < C (r)n,

E

( n∑
i=1

Qi

)2r
 ≤ C (r) |Qt|2r+δ [nrm2r

]
(3.17)

Lemma 4 (Hahn and Kuersteiner, 2011, Lemma 1) Suppose that, for each i, {ξit, t = 1, 2, ...}

is a mixing sequence with E [ξit] = 0 for all i, t. Let Aξi
t ≡ σ (ξit, ξit−1, ξit−2, . . .) ,Bξi

t ≡

σ (xit, xit+1, xit+2, . . .) , and

αi(m) ≡ sup
t

sup
A∈Aξi

t ,B∈Bξi
t+m

|P (A ∩B)− P (A)P (B)| (3.18)

Assume that supi |αi(m)| ≤ Cam for some a such that 0 < a < 1 and some 0 < C <∞. We

assume that {ξit, t = 1, 2, 3, ...} are independent across i. We also assume that n = O (T ).

Finally, assume that E
[
|ξit|6+δ

]
<∞ for some δ > 0. We then have

P

[
max
1≤i≤n

∣∣∣∣∣ 1T
T∑
t=1

ξit

∣∣∣∣∣ > η

]
= o

(
T−1

)
(3.19)

for every η > 0. Now assume that E
[
|ξit|10q+12+δ

]
< ∞ for some δ > 0 and some integer

q ≥ 1. Then,

P

[
max
1≤i≤n

∣∣∣∣∣ 1T
T∑
t=1

ξit

∣∣∣∣∣ > ηT
1
10

−v

]
= o

(
T−q

)
(3.20)

for every η > 0 and 0 < v < (100q + 120)−1.

Lemma 5 (Hahn and Kuersteiner, 2011, Lemma 3) Assume that yit satisfies condition 1,

and let ξ (yit, ϕ) be a function indexed by the parameter ϕ ∈ intΦ, where Φ is a convex subset

of Rp. For any sequence ϕi ∈ intΦ, assume that E [ξ (yit, ϕi)] = 0. Further assume that

supϕ ∥ξ (yit, ϕ)∥ ≤ M (yit) for some M (yit) such that E
[
M (yit)

4] <∞. Let ΣnT =
∑n

i=1 Σ
ξξ
iT

with Σξξ
iT = V ar

(
1√
T

∑T
t=1 ξ (yit, ϕi)

)
. Denote the smallest eigenvalue of Σξξ

iT by λξiT , and

assume that infi infT λ
ξ
iT > 0. Then,

1√
nT

n∑
i=1

T∑
t=1

ξ (yit, ϕi)
d→ N

(
0, f ξξ

)
, and sup

i

∥∥∥Σξξ
iT − f ξξ

i

∥∥∥→ 0, (3.21)

where f ξξ ≡ lim 1
n

∑n
i=1 f

ξξ
i , and f ξξ

i ≡
∑∞

j=−∞E
[
ξ(yit, ϕi)ξ (yit−j, ϕi)

′].
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Lemma 6 (Hahn and Kuersteiner, 2011, Theorem 4) P
[
max1≤i≤nmax0≤ϵ≤ 1√

T
|α̂i (ϵ)− αi0| ≥ η

]
=

o (T−1) for every η > 0.

Lemma 7 (i) αθ
i = −E[vθit]

E[vαit]
; (ii) ∂α̂i

∂θ
= −

∑T
t=1 v

θ
it∑T

t=1 v
α
it

.

Proof. Consider αi (θ, Fi (ε)) solves the estimating equation∫
vi [θ, αi (θ, Fi (ε))] dFi (ε) = 0 (3.22)

Differentiating the LHS with respect to θ and ε, we obtain

0 =

∫ θ

i

dFi (ε) + αθ
i

∫
vαi dFi (ε) (3.23)

0 = αε
i

∫ αi

i

dFi (ε) +

∫
i

d∆iT (3.24)

where

∆iT =
dFi (ε)

dε
=

√
T
(
F̂i − Fi

)
(3.25)

We solve for these equations and evaluate them at ε = 0 gives (i):

αθ
i = −E [vαit]

−1E
[
vθit
]
= Op (1) (3.26)

For (ii), by the definition of α̂i (θ),

T∑
t=1

vit (θ, α̂i (θ)) = 0 (3.27)

Differentiating the LHS with respect to θ, we obtain

T∑
t=1

vθit +
T∑
t=1

vαit

[
∂α̂i

∂θ

]
= 0 (3.28)

it follows that

∂α̂i

∂θ
= −

∑T
t=1 v

θ
it∑T

t=1 v
α
it

(3.29)
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Lemma 8

1

nT

∑
i

√
T (α̂i (θ0)− αi (θ0)) =− 1

nT

∑
i

(
1√
T

∑
t vi,t

)
E
[
vαi,t
] +Op

(
1

T
√
T

)
(3.30)

1

nT

∑
i

(
√
T (α̂i (θ0)− αi (θ0)))

2 =
1

nT

∑
i

(
1√
T

∑
t vi,t

)2
(E
[
vαi,t
]
)2

+Op

(
1

T
√
T

)
(3.31)

1

nT

∑
i

(
√
T (α̂i (θ0)− αi (θ0)))

3 =− 1

nT

∑
i

(
1√
T

∑
t vi,t

)3
(E
[
vαi,t
]
)3

+ op

(
1

T
√
T

)
(3.32)

Proof.

Since we have
1

T

T∑
t=1

v (yi,t; θ0, α̂i (θ0)) = 0

Let F ≡ (F1, . . . , Fn) denote the collection of marginal distribution functions of yit.Let

F̂i denote the empirical distribution function for the observation i. Define Fi(ϵ) ≡ Fi +

ϵ
√
T
(
F̂i − Fi

)
for ϵ ∈

[
0, T−1/2

]
. For each fixed θ and ϵ, let αi(ϵ) be the solution to the

estimating equation

0 =

∫
v [·; θ0, αi(ϵ)] dFi(ϵ)

By a Taylor series expansion, we have

α̂i (θ0)− αi0 = αi

(
1√
T

)
− αi(0) =

1√
T
αϵ
i(0) +

1

2

(
1√
T

)2

αϵϵ
i (0) +

1

6

(
1√
T

)3

αϵϵϵ
i (ϵ̃)

where αϵ
i(ϵ) ≡ dαi(ϵ)/dϵ, α

ϵϵ
i (ϵ) ≡ d2αi(ϵ)/dϵ

2, . . . , and ϵ̃ is somewhere in between 0 and 1√
T
.

Let hi(·, ϵ) ≡ v [·; θ0, αi(ϵ)] , the first order condition could be written as

0 =

∫
hi(·, ϵ)dFi(ϵ)

Differentiating repeatedly with respect to ϵ,we obtain

0 =

∫
dhi(·, ϵ)
dϵ

dFi(ϵ) +

∫
hi(·, ϵ)d∆iT (A.1)

0 =

∫
d2hi(·, ϵ)
dϵ2

dFi(ϵ) + 2

∫
dhi(·, ϵ)
dϵ

d∆iT (A.2)

0 =

∫
d3hi(·, ϵ)
dϵ3

dFi(ϵ) + 3

∫
d2hi(·, ϵ)
dϵ2

d∆iT (A.3)
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where ∆iT ≡
√
T
(
F̂i − Fi

)
.

(A.1) αϵ
i(0) Evaluating (A.1)

0 =

(∫
vα [·; θ0, αi(ϵ)] dFi(ϵ)

)
αϵ
i(ϵ) +

∫
v [·; θ0, αi(ϵ)] d∆iT

at ϵ = 0, and noting that E [vi,t] = 0, we obtain

0 =

(∫
vα [·; θ0, αi(0)] dFi

)
αϵ
i(0) +

∫
v [·; θ0, αi(0)] d∆iT

so αϵ
i(0) = −

(
E
[
vαi,t
])−1

(
1√
T

∑T
t=1 vi,t

)
.

(A.2) αϵϵ
i (0) Evaluating (A.2)

0 =

(∫
vαα [·; θ0, αi(ϵ)] dFi(ϵ)

)
(αϵ

i(ϵ))
2 +

(∫
vα [·; θ0, αi(ϵ)] dFi(ϵ)

)
αϵϵ
i (ϵ)

+ 2

(∫
vα [·; θ0, αi(ϵ)] d∆iT

)
αϵ
i(ϵ)

at ϵ = 0, we obtain

0 = E
[
vααi,t
]
(αϵ

i(0))
2 + E

[
vαi,t
]
αϵϵ
i (0) + 2

(∫
vα [·; θ0, αi(0)] d∆iT

)
αϵ
i(0)

so that

αϵϵ
i (0) =−

(
E
[
vαi,t
])−1

E
[
vααi,t
]
(αϵ

i(0))
2 − 2

(
E
[
vαi,t
])−1

(
1√
T

T∑
t=1

(
vαi,t − E

[
vαi,t
]))

αϵ
i(0)

=−
(
E
[
vαi,t
])−1

E
[
vααi,t
] (
E
[
vαi,t
])−2

(
1√
T

T∑
t=1

vi,t

)2

+ 2
(
E
[
vαi,t
])−1

(
1√
T

T∑
t=1

(
vαi,t − E

[
vαi,t
])) (

E
[
vαi,t
])−1

(
1√
T

T∑
t=1

vi,t

)

=
(
E
[
vαi,t
])−1

(
1√
T

T∑
t=1

vi,t

)
1√
T

T∑
t=1

[
2 ∗

vαi,t − E
[
vαi,t
]

E
[
vαi,t
] −

E
[
vααi,t
]
vi,t(

E
[
vαi,t
])2
]

=2
(
E
[
vαi,t
])−1

(
1√
T

T∑
t=1

vi,t

)(
1√
T

T∑
t=1

wi,t

)

where wi,t ≡
vαi,t−E[vαi,t]

E[vαi,t]
− E[vαα

i,t ]
2(E[vαi,t])

2vi,t.
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(A.3) αϵϵϵ
i (ϵ) Evaluating (A.3)

0 =

(∫
vααα [·; θ0, αi(ϵ)] dFi(ϵ)

)
(αϵ

i(ϵ))
3 +

(∫
vα [·; θ0, αi(ϵ)] dFi(ϵ)

)
αϵϵϵ
i (ϵ)

+ 3

(∫
vαα [·; θ0, αi(ϵ)] d∆iT

)
(αϵ

i(ϵ))
2 + 2

(∫
vα [·; θ0, αi(ϵ)] d∆iT

)
αϵϵ
i (ϵ)

we see that

P
[
max

i
|αϵϵϵ

i (ϵ)| > C
]
= o

(
1

T

)

so that

P

[
1

n

∑
i

|αϵϵϵ
i (ϵ)| > C

]
≤ P

[
max

i
|αϵϵϵ

i (ϵ)| > C
]
= o

(
1

T

)
We therefore have:

1

nT

∑
i

√
T [α̂i (θ0)− αi (θ0)] =

1

nT

∑
i

[
αϵ
i(0) +

1

2

(
1√
T

)
αϵϵ
i (0) +

1

6

(
1√
T

)2

αϵϵϵ
i (ϵ̃)

]

=
1

nT

∑
i

{
−
(
E
[
vαi,t
])−1

(
1√
T

T∑
t=1

vi,t

)}

+
1

nT

∑
i

(
1√
T

)(
E
[
vαi,t
])−1

(
1√
T

T∑
t=1

vi,t

)(
1√
T

T∑
t=1

wi,t

)

+
1

nT

∑
i

[
1

6

(
1√
T

)2

αϵϵϵ
i (ϵ̃)

]

=− 1

nT

∑
i

(
1√
T

∑
t vi,t

)
E
[
vαi,t
] +Op

(
1

T
√
T

)
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and that

1

nT

∑
i

[√
T (α̂i (θ0)− αi (θ0))

]2
=

1

nT

∑
i

[
αϵ
i(0) +

1

2

(
1√
T

)
αϵϵ
i (0) +

1

6

(
1√
T

)2

αϵϵϵ
i (ϵ̃)

]2

=
1

nT

∑
i

[αϵ
i(0)]

2 +
1

4

(
1

T

)
1

nT

∑
i

[αϵϵ
i (0)]

2 +
1

36

(
1

T

)2
1

nT

∑
i

[αϵϵϵ
i (ϵ̃)]2

+
1

nT
√
T

∑
i

αϵ
i(0)α

ϵϵ
i (0) +

1

3

(
1√
T

)2
1

nT

∑
i

αϵ
i(0)α

ϵϵϵ
i (ϵ̃)

+
1

6

(
1√
T

)3
1

nT

∑
i

αϵϵ
i (0)α

ϵϵϵ
i (ϵ̃)

=
1

nT

∑
i

(
1√
T

∑
t vi,t

)2
(E
[
vαi,t
]
)2

+Op

(
1

T
√
T

)
also,

1

nT

∑
i

[√
T (α̂i (θ0)− αi (θ0))

]3
=

1

nT

∑
i

[
αϵ
i(0) +

1

2

(
1√
T

)
αϵϵ
i (0) +

1

6

(
1

T

)
αϵϵϵ
i (ϵ̃)

]3
=

1

nT

∑
i

[αϵ
i(0)]

3 +
1

nT 2
√
T

∑
i

[
1

2
αϵϵ
i (0)]

3 +
1

nT 4

∑
i

[
1

6
αϵϵϵ
i (ϵ̃)

]3
+ 3

1

nT
√
T

∑
i

[αϵ
i(0)]

21

2
αϵϵ
i (0) + 3

1

nT 2

∑
i

αϵ
i(0)

1

4
αϵϵ
i (0)

+ 3
1

nT 2

∑
i

[αϵ
i(0)]

21

6
αϵϵϵ
i (ϵ̃) + 3

1

nT 3

∑
i

αϵ
i(0)

1

36
[αϵϵϵ

i (ϵ̃)]2

+ 3
1

nT 3
√
T

∑
i

1

2
αϵϵ
i (0)

1

36
[αϵϵϵ

i (ϵ̃)]2 + 3
1

nT 3

∑
i

1

4
[αϵϵ

i (0)]
21

6
αϵϵϵ
i (ϵ̃)

+ 6
1

nT 2
√
T

∑
i

αϵ
i(0)

1

2
αϵϵ
i (0)

1

6
αϵϵϵ
i (ϵ̃)

=− 1

nT

∑
i

(
1√
T

∑
t vi,t

)3
(E
[
vαi,t
]
)3

+ op

(
1

T
√
T

)

Lemma 9 (Arellano and Hahn, 2016, Theorem 5):

∂
[
1
n

∑
i R̂

∗
fi(θ̃)

]
∂θ

=
1

n

n∑
i=1

E
[
Uαi
it Ṽit

]
+

1

2

1

n

n∑
i=1

E [Uαiαi
it ]E

[(
Ṽit

)2]
+ op (1)
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where 1
T

∑T
t=1 Ṽit = −

(
E
[
∂vi
∂αi

])−1 (
1
T

∑T
t=1 vit

)
.

Lemma 10 (Rao and Mitra, 1971, Theorem 9.2.1) Let Y ∼ Np (µ,Σ), where Σ may be

singular, then Y ′AY
d→ χ2(k) iff

ΣAΣAΣ = ΣAΣ (3.33)

where k = tr (AΣ).

Lemma 11 Under condition 1 in the appendix,

˜̃
Af,n =

∂2( 1
nT

[
∑

i

∑
t log f(yi,t;

˜̃
θ, α̂i(

˜̃
θ))−

∑
iRfi(

˜̃
θ)])

∂θ∂θ′
= − 1

n

∑
i

Ii

Proof. To prove
˜̃
Af,n = − 1

n

∑
i Ii, it suffices to prove −∂2( 1

nT
[
∑

i

∑
t log f(yi,t;

˜̃
θ,α̂i(

˜̃
θ))])

∂θ∂θ′
=

1
n

∑
i Ii and

∂2( 1
nT

[
∑

i Ri(
˜̃
θ)])

∂θ∂θ′
= op(1). Since

∂2( 1
nT

[
∑

i

∑
t log f(yi,t;

˜̃
θ, α̂i(

˜̃
θ))])

∂θ∂θ′
=

1

nT

∑
i

∑
t

∂u(yi,t;
˜̃
θ, α̂i(

˜̃
θ))

∂θ

=
1

nT

∑
i

∑
t

uθ(yi,t; ˜̃θ, α̂i(
˜̃
θ))− vθ(yi,t;

˜̃
θ, α̂i(

˜̃
θ))

(
∂α̂i(

˜̃
θ)

∂θ

)
=

1

nT

∑
i

∑
t

[
uθ(yi,t;

˜̃
θ, α̂i(

˜̃
θ))− vθ(yi,t;

˜̃
θ, α̂i(

˜̃
θ))

( 1
T

∑
t v

θ
it

1
T

∑
t v

αi
it

)]
=

1

nT

∑
i

∑
t

U θ
it

(˜̃
θ, α̂i(

˜̃
θ)

)
+ op(1)

the first and second equalities hold by the definition of u
(
yit, θ̃, α̂i(θ̃)

)
, the third equality

follows from Lemma 7, the fourth equality hold by the definition of U(yit; θ, α (θ)), and we

have ∣∣∣∣∣ 1

nT

∑
i

∑
t

uθit

(˜̃
θ, α̂i(

˜̃
θ)

)
− 1

nT

∑
i

∑
t

uθit (θ0, αi (θ0))

∣∣∣∣∣ (3.34)

≤

(
max

i

1

T

∑
t

M (yi,t)

)
×
(
|˜̃θ − θ0|+max

i

∣∣∣∣α̂i(
˜̃
θ)− αi (θ0)

∣∣∣∣ ) (3.35)
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and that ∣∣∣∣∣ 1

nT

∑
i

∑
t

uαit

(˜̃
θ, α̂i(

˜̃
θ)

)
− 1

nT

∑
i

∑
t

uαit (θ0, αi (θ0))

∣∣∣∣∣ (3.36)

≤

(
max

i

1

T

∑
t

M (yi,t)

)
×
(
|˜̃θ − θ0|+max

i

∣∣∣∣α̂i(
˜̃
θ)− αi (θ0)

∣∣∣∣ ) (3.37)

follows from 4 in Condition 1, we have maxi
1
T

∑
tM (yi,t) = Op(1). Because of Lemma 2,

P

(
|˜̃θ − θ0| ≥ η

)
= o

(
T−1

)
for
˜̃
θ lies in between θ̃ and θ0. P

[
max1≤i≤n |α̂i(

˜̃
θ)− αi (θ0) | ≥ η

]
= o (T−1) is proved in

Lemma 8. Therefore we conclude that

1

nT

∑
i

∑
t

U θ
it

(˜̃
θ, α̂i(

˜̃
θ)

)
=

1

nT

∑
i

∑
t

U θ
it (θ0, αi (θ0)) + op(1) (3.38)

=
1

n

∑
i

E
[
U θ
it

]
+ op(1) = − 1

n

∑
i

Ii + op(1) (3.39)

The second equality follows from Lemma 5. As it is shown in Lemma 9, 1
n

∑
i
∂Rfi(θ0)

∂θ
=

Sfn (θ0). According to Condition 1, we have

∂2 1
nT

∑
iRi(

˜̃
θ)

∂θ∂θ′
= op(1)

given (n/T ) → ρ.

Lemma 12 Suppose that

Ki (·; θ0, αi(θ0, ϵ)) =
∂m1+m2ψ (yit; θ0, αi(θ0, ϵ))

∂αm
i

(3.40)

for some m ≤ 1, ..., 5. Then for any η > 0, we have

P

[
max

0≤ϵ≤ 1√
T

∣∣∣∣∣ 1n
n∑

i=1

∫
Ki (·; θ0, αi(θ0, ϵ)) dFi(ϵ)−

1

n

n∑
i=1

E [Ki (yit; θ0, αi0)]

∣∣∣∣∣ > η

]
= o

(
T−1

)
(3.41)
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and

P

[
max

i
max

0≤ϵ≤ 1√
T

∣∣∣∣∫ Ki (·; θ0, αi(θ0, ϵ)) dFi(ϵ)− E [Ki (yit; θ0, αi0)]

∣∣∣∣ > η

]
= o

(
T−1

)
(3.42)

Also,

P

[
max

i
max

0≤ϵ≤ 1√
T

∣∣∣∣∫ Ki (·; θ0, αi(θ0, ϵ)) d∆iT

∣∣∣∣ > CT
1
10

−v

]
= o

(
T−1

)
(3.43)

for some constant C > 0 and 0 < v < (100q + 120)−1.

Proof. Note that∥∥∥∥∫ Ki (·; θ0, αi(θ0, Fi(ϵ))) dFi(ϵ)−
∫
Ki (yit; θ0, αi0) dFi

∥∥∥∥ (3.44)

≤
∥∥∥∥∫ Ki (·; θ0, αi(θ0, Fi(ϵ))) dFi(ϵ)−

∫
Ki (yit; θ0, αi0) dFi(ϵ)

∥∥∥∥ (3.45)

+

∥∥∥∥∫ Ki (yit; θ0, αi0) dFi(ϵ)−
∫
Ki (yit; θ0, αi0) dFi

∥∥∥∥ (3.46)

≤
∫
M (yit) (|αi(θ0, Fi(ϵ))− αi0|) d |Fi(ϵ)| (3.47)

+ ϵ
√
T

∥∥∥∥∫ Ki (yit; θ0, αi0) d
(
F̂i − Fi

)∥∥∥∥ (3.48)

Therefore, we have∥∥∥∥∥ 1n
n∑

i=1

∫
Ki (·; θ0, αi(θ0, Fi(ϵ))) dFi(ϵ)−

∫
Ki (yit; θ0, αi0) dFi

∥∥∥∥∥ (3.49)

≤

(
1

n

n∑
i=1

(αi(θ0, Fi(ϵ))− αi0)
2

) 1
2

 1

n

n∑
i=1

(
E [M (yit)] +

1

T

T∑
t=1

M (yit)

)2
 1

2

(3.50)

+

∥∥∥∥∥ 1n
n∑

i=1

(
1

T

T∑
t=1

Ki (yit; θ0, αi0)− E [Ki (yit; θ0, αi0)]

)∥∥∥∥∥ (3.51)

the RHS of which can be bounded by using Lemmas 4 and 6 in absolute value by some η > 0
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with probability 1− o (T−1). Because∣∣∣∣∫ Ki (·; θ0, αi(θ0, Fi(ϵ))) dFi(ϵ)− E [Ki (yit; θ0, αi0)]

∣∣∣∣ (3.52)

≤ |αi(θ0, Fi(ϵ))− αi| ·

(
E [M (yit)] +

1

T

T∑
t=1

M (yit)

)
(3.53)

+

∣∣∣∣∣ 1T
T∑
t=1

M (yit)− E [M (yit)]

∣∣∣∣∣ (3.54)

we can bound

max
i

max
0≤ϵ≤ 1√

T

∣∣∣∣∫ Ki (·; θ0, αi(θ0, Fi(ϵ))) dFi(ϵ)− E [Ki (yit; θ0, αi0)]

∣∣∣∣ (3.55)

in absolute value by some η > 0 with probability 1 − o (T−1). Using 4 in Condition 1

and Lemma 4, we also deduce that maxi
∣∣∫ Ki (·; θ0, αi(θ0, Fi(ϵ))) d∆iT

∣∣ can be bounded by

in absolute value by CT
1
10

−v for some constant C > 0 and 0 < v < 1
160

with probability

1− o (T−1).

Lemma 13 (Arellano and Hahn, 2016, Lemma 14)

P

[
max

i
max

0≤ϵ≤ 1√
T

|αϵ
i (ϵ)| > CT

1
10

−v

]
= o

(
T−1

)
(3.56)

P

[
max

0≤ϵ≤ 1√
T

|µϵ(ϵ)| > CT
1
10

−v

]
= o

(
T−1

)
(3.57)

P

[
max

i
max

0≤ϵ≤ 1√
T

|αϵϵ
i (ϵ)| > C

(
T

1
10

−v
)2]

= o
(
T−1

)
(3.58)

P

[
max

0≤ϵ≤ 1√
T

|µϵϵ(ϵ)| > C
(
T

1
10

−v
)2]

= o
(
T−1

)
(3.59)

P

[
max

i
max

0≤ϵ≤ 1√
T

|αϵϵϵ
i (ϵ)| > C

(
T

1
10

−v
)3]

= o
(
T−1

)
(3.60)

P

[
max

0≤ϵ≤ 1√
T

|µϵϵϵ(ϵ)| > C
(
T

1
10

−v
)3]

= o
(
T−1

)
(3.61)

for some constant C > 0 and 0 < v < (100q + 120)−1.
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Lemma 14

1√
nT

n∑
i=1

T∑
t=1

U (yit; θ0, α̂i (θ0)) =
1√
nT

n∑
i=1

T∑
t=1

Uit +

√
n

T

1

n

n∑
i=1

(
1√
T

T∑
t=1

Uαi
it

)(
1√
T

T∑
t=1

Ṽit

)

+

√
n

T

1

2

1

n

n∑
i=1

E [Uαiαi
it ]

(
1√
T

T∑
t=1

Ṽit

)2

+ op (1)

where α̂i (θ0)− αi (θ0) = −
(
E
[
∂vi
∂αi

])−1 (
1
T

∑T
t=1 vit

)
+ op

(
1√
T

)
= 1

T

∑T
t=1 Ṽit + op

(
1√
T

)
.

Proof. Let F ≡ (F1, . . . , Fn) denote the collection of marginal distribution functions of

yit.Let F̂i denote the empirical distribution function for the observation i. Define Fi(ϵ) ≡

Fi + ϵ
√
T
(
F̂i − Fi

)
for ϵ ∈

[
0, T−1/2

]
. For each fixed θ and ϵ, let αi(ϵ) be the solution to the

estimating equation

0 =

∫
vi [·; θ0, αi(θ0, Fi(ϵ))] dFi(ϵ)

and let µ (F (ϵ)) be the solution to the estimating equation

0 =
n∑

i=1

∫
[Ui (yit; θ0, αi (θ0, Fi(ϵ)))− µ (F (ϵ))] dFi(ϵ) (3.62)

Note that µ (F (0)) = 0, and

µ
(
F̂
)
≡ µ

(
F

(
1√
T

))
=
1

n

n∑
i=1

Ui

(
yit; θ0, αi

(
θ0, Fi

(
1√
T

)))
(3.63)

=
1

nT

n∑
i=1

T∑
t=1

U (yit; θ0, α̂i (θ0)) (3.64)

By a Taylor series expansion, we have

µ
(
F̂
)
− µ (F ) =

1√
T
µϵ(0) +

1

2

(
1√
T

)2

µϵϵ(0) +
1

6

(
1√
T

)3

µϵϵϵ(ϵ̃) (3.65)

where µϵ(ϵ) ≡ dµ(F (ϵ))/dϵ, µϵϵ(ϵ) ≡ d2µ(F (ϵ))/dϵ2, . . . , and ϵ̃ is somewhere in between 0 and

1√
T
.

(C.1) µϵ(0) Let

hµi (·, ϵ) ≡ Ui (yit; θ0, αi (θ0, Fi(ϵ)))− µ(F (ϵ)) (3.66)
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The first order condition could be written as

0 =
1

n

n∑
i=1

∫
hµi (·, ϵ)dFi(ϵ)

Differentiating repeatedly with respect to ϵ, we obtain

0 =
1

n

n∑
i=1

∫
dhµi (·, ϵ)
dϵ

dFi(ϵ) +
1

n

n∑
i=1

∫
hµi (·, ϵ)d∆iT (C.1)

0 =
1

n

n∑
i=1

∫
d2hµi (·, ϵ)
dϵ2

dFi(ϵ) + 2
1

n

n∑
i=1

∫
dhµi (·, ϵ)
dϵ

d∆iT (C.2)

0 =
1

n

n∑
i=1

∫
d3hµi (·, ϵ)
dϵ3

dFi(ϵ) + 3
1

n

n∑
i=1

∫
d2hµi (·, ϵ)
dϵ2

d∆iT (C.3)

where ∆iT ≡
√
T
(
F̂i − Fi

)
. Evaluating (C.1)

0 =
1

n

n∑
i=1

∫
[Uαi

i (yit; θ0, αi (θ0, Fi(ϵ)))α
ϵ
i (θ0, Fi(ϵ))− µϵ(F (ϵ))] dFi(ϵ) (3.67)

+
1

n

n∑
i=1

∫
[Ui (yit; θ0, αi (θ0, Fi(ϵ)))− µ(F (ϵ))] d∆iT (3.68)

at ϵ = 0, and noting that E [Uαi
i ] = 0, combining Lemma 8, we obtain

µϵ(0) =
1

n

n∑
i=1

∫
Uid∆iT (3.69)

(C.2) µϵϵ(0) Evaluating (C.2)

0 =− 1

n

n∑
i=1

∫
µϵϵ(F (ϵ))dFi(ϵ)

+
1

n

n∑
i=1

∫
Uαiαi
i (yit; θ0, αi (θ0, Fi(ϵ))) (α

ϵ
i(θ0, Fi(ϵ)))

2 dFi(ϵ)

+
1

n

n∑
i=1

∫
Uαi
i (yit; θ0, αi (θ0, Fi(ϵ)))α

ϵϵ
i (θ0, Fi(ϵ))dFi(ϵ)

+
2

n

n∑
i=1

∫
[Uαi

i (yit; θ0, αi (θ0, Fi(ϵ)))α
ϵ
i(θ0, Fi(ϵ))− µϵ(F (ϵ))] d∆iT
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at ϵ = 0, and noting that E [Uαi
i ] = 0, combining Lemma 8, we obtain

µϵϵ(0) =
1

n

n∑
i=1

E [Uαiαi
i ] (αϵ

i)
2 +

2

n

n∑
i=1

(

∫
Uαi
i (yit; θ0, αi (θ0)) d∆iT )α

ϵ
i(θ0, Fi(0))

=
1

n

n∑
i=1

E [Uαiαi
i ]

[(
E

[
∂vi
∂αi

])−1
(

1√
T

T∑
t=1

vit

)]2

− 2

n

n∑
i=1

(
1√
T

T∑
t=1

Uαi
it

)(
E

[
∂vi
∂αi

])−1
(

1√
T

T∑
t=1

vit

)

(C.3) We can ignore 1
6

(
1√
T

)3
µϵϵϵ(ϵ̃) according to Lemma 13.

Lemma 15 1
nT

∑
i (
∑

t vi,t) (α̂i (θ0)− αi (θ0)) = − 1
nT

∑
i

(
1√
T

∑
t vi,t

)2

E[vαi,t]
+Op

(
1

T
√
T

)
Proof. From Lemma 8, we deduce that

1

nT

∑
i

(∑
t

vi,t

)
[α̂i (θ0)− αi (θ0)] =

1

nT

∑
i

(
1√
T

∑
t

vi,t

)
√
T [α̂i (θ0)− αi (θ0)]

=
1

nT

∑
i

(
1√
T

∑
t

vi,t

)[
−

1√
T

∑
t vi,t

E
[
vαi,t
]

+
1√
T

(
1√
T

∑
t vi,t

)(
1√
T

∑
twi,t

)
E
[
vαi,t
] +

1

6

(
1√
T

)2

αϵϵϵ
i (ϵ̃)]

=
1

nT

∑
i

(
1√
T

∑
t

vi,t

)[
−

1√
T

∑
t vi,t

E
[
vαi,t
] ] (B1)

+
1

nT

∑
i

(
1√
T

∑
t

vi,t

) 1√
T

(
1√
T

∑
t vi,t

)(
1√
T

∑
twi,t

)
E
[
vαi,t
]


(B2)

+
1

nT

∑
i

(
1√
T

∑
t

vi,t

)[
1

6

(
1√
T

)2

αϵϵϵ
i (ϵ̃)

]
(B3)
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It can be shown that

(B1) = − 1

nT

∑
i

(
1√
T

∑
t vi,t

)2
E
[
vαi,t
]

(B2) = Op

(
1

T
√
T

)
(B3) = op

(
1

T
√
T

)
Since

(
1√
T

∑
t vi,t

)
= Op(1), and

1
n

∑
i α

ϵϵϵ
i (ϵ̃) = op

(
1
T

)
, 1
nT

∑
i α

ϵϵϵ
i (ϵ̃) = op

(
1
T 2

)
,

1

nT

∑
i

(
1√
T

∑
t

vi,t

)[
1

6

(
1√
T

)2

αϵϵϵ
i (ϵ̃)

]
= Op(1) ∗

1

T 2

1

n

∑
i

αϵϵϵ
i (ϵ̃) = op

(
1

T
√
T

)
Therefore we have

1

nT

∑
i

(∑
t

vi,t

)
(α̂i (θ0)− αi (θ0)) = − 1
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Lemma 16 1
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It can be shown that
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∑
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Lemma 17 1
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∑
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∑
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according to condition 1. Then we have
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∑
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According to Lemma 8, we have
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We further write
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Follows from Lemma 8, we write
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Lemma 19 (Hahn and Newey, 2004, Lemma 22, Lemma 24, Lemma 25)
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3.6.3 Propositions
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Proof. We can The first order derivative can be written as:

∂
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Ṽit

)2

+ op (1)

where

α̂i (θ0)− αi (θ0) = −
(
E

[
∂vi
∂αi

])−1
(

1

T

T∑
t=1

vit

)
+ op

(
1√
T

)
=

1

T

T∑
t=1
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we therefore have
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and that
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Proof. We decompose the left hand side of the above equation into a sum of three terms.
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We write
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Observe that, for t ≥ 2, let Nft,t′,i =
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for this purpose, it is sufficient to verify the following Lyapunov condition: as n→ ∞,
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T 2, we also have
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The first inequality holds by the definition of Nft,t′,i. The second inequality follows from
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Holder’s inequality. Likewise, we have
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we also have
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E
[
vαfi,t

]
E
[
vαgi,t
] ]

(3.112)

=
T − 1

2nT

∑
i

(
E
[
v2fi,t

]
E
[
v2gi,t
])

E
[
vαfi,t

]
E
[
vαgi,t
]
(3.113)

the first equality holds because E [vfi,tvgi,t′vfi,t′vgi,t′′ ] = 0 and E [vfi,tvgi,t′vfi,t′′vgi,t′′′ ] = 0 for

any t ̸= t′ ̸= t′′ ≠ t′′′ ̸= t, the second equality follows from
∑T−1

t=1 (T − t) = T (T−1)
2

. We

conclude that

1√
n

∑
i

[
Rfi (θ0)−Rgi (γ0)−

(
R̂∗

fi(θ0)− R̂∗
gi(γ0)

)]
d→ N(0, σ2

U)

Proposition 8

1√
n

∑
i

{[
Rfi(θ0)−

∑
i

R̂∗
fi(θ0)

]
−

[
R1gi(θ0)−

∑
i

R̂∗
1gi(θ0)

]
−

[
R2gi(θ0)−

∑
i

R̂∗
2gi(θ0)

]}
d→ N(0, σ2

Unested
t,n

)

where

σ2
Unested
t,n

≡ σ2
U1g

= lim
n→∞

1

2n

∑
i

(
E
[
v21gi,t

])2(
E
[
vα1gi,t

])2
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Proof. We denote Pfi =
1√
2J

∑t=2J
t=1 vfi,t, P1gi =

1√
J

∑t=J
t=1 v1gi,t, P2gi =

1√
J

∑t=2J
t=J+1 v2gi,t,

Gfi = E
(

1√
2J

∑t=2J
t=1 vfi,t

)2
, G1gi = E( 1√

J

∑t=J
t=1 v1gi,t)

2, G2gi = E
(

1√
J

∑t=2J
t=J+1 v2gi,t

)2
, under

null hypothesis, αi1 = αi2 = αi, E
[
vαfi,t

]
= E

[
vα1gi,t

]
= E

[
vα2gi,t

]
, E

(
v22gi,t

)
= E

(
v21gi,t

)
=

E
(
v2fi,t

)
, Pfi =

1√
2
(P1gi + P2gi), and that

Rfi (θ0)−R1gi (θ0)−R2gi (θ0)−
[
R̂∗

fi(θ0)− R̂∗
1gi(θ0)− R̂∗

2gi(θ0)
]

=− 1

2

[
1√
2
(P1gi + P2gi)

]2
− P 2

1gi − P 2
2gi

E
[
vαfi,t

] −

[
−1

2

Gfi −G1gi −G2gi

E
[
vαfi,t

] ]

=
1
2
P 2
1gi +

1
2
P 2
2gi − P1giP2gi −Gfi

2E
[
vαfi,t

]
=

1
2

(
P 2
1gi −G1gi

)
2E
[
vαfi,t

] +
1
2

(
P 2
2gi −G2gi

)
2E
[
vαfi,t

] − P1giP2gi

2E
[
vαfi,t

]
From Proposition 6, we deduce that

1√
n

∑
i

[
R1gi (θ0)− R̂∗

1gi(θ0)
]
=

1√
n

∑
i

[
−1

2

(
P 2
1gi −G1gi

)
E
[
vα1gi,t

] ]
d→ N(0, σ2

U1g
)

1√
n

∑
i

[
R2gi (θ0)− R̂∗

2gi(θ0)
]
=

1√
n

∑
i

[
−1

2

(
P 2
2gi −G2gi

)
E
[
vα2gi,t

] ]
d→ N(0, σ2

U2g
)

Since E [P1giP2gi] = 0,the mean becomes:

E[
1√
n

∑
i

{[
Rfi(θ0)−

∑
i

R̂∗
fi(θ0)

]
−

[
R1gi(θ0)−

∑
i

R̂∗
1gi(θ0)

]
−

[
R2gi(θ0)−

∑
i

R̂∗
2gi(θ0)

]}
] = 0

and that

V ar

[
1√
n

∑
i

(Rfi (θ0)−R1gi (θ0)−R2gi (θ0))

]

=
1

2
σ2
U1g

+ E

[
1√
n

∑
i

P1giP2gi

2E
[
vαfi,t

]]2 = σ2
U1g

(3.114)

where the first equality holds by σ2
U1g

= σ2
U2g

under the null hypothesis and E
[
P 3
1giP2gi

]
= 0,

E
[
P1giP

3
2gi

]
= 0. The second equality holds by the definition of P1gi, P1gi, and E

[
P 2
1gi

]
=

E
[
P 2
2gi

]
under the null hypothesis.
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Proposition 9 under H0 : E [LRnT (θ0, γ0)] = 0:

1√
nT

∑
i

∑
t

{(ψf (yit, θ0, αi)− ψg (yit, γ0, λi))}
d→ N(0, ω2) (3.115)

where ω2 = 1
nT

∑
i .
∑

t [(ψf (yit, θ0, αi)− ψg (yit, γ0, λi))]
2.

Proof. Similar to Proposition 7, we denote

Li,T =
1√
nT

∑
t

(ψf (yit, θ0, αi)− ψg (yit, γ0, λi)) (3.116)

it is sufficient to verify the following Lyapunov condition: as n→ ∞,

ω−3
∑
i

E
(
|Li,T |3

)
→ 0 (3.117)

which which is satisfied since as n→ ∞, let Pt,i = ψf (yit, θ0, αi)− ψg (yit, γ0, λi).Then,

ω−3
∑
i

E
(
|Li,T |3

)
=n− 3

2T− 3
2ω−3

∑
i

E

∣∣∣∣∣∑
t

(ψf (yit, θ0, αi)− ψg (yit, γ0, λi))

∣∣∣∣∣
3


≤n− 3
2T− 3

2ω−3
∑
i

E

[∑
t

|Pt,i|3
]
+ n

3
2T

3
2ω3

∑
i

E

[∑
t̸=t′

|Pt,i|P 2
t′,i

]

+ n− 3
2T− 3

2ω−3
∑
i

E

[ ∑
t̸=t′ ̸=t′′ ̸=t

∣∣∣Pt,iPt′,i
Pt′′,i

∣∣∣]

Since

n− 3
2T− 3

2ω−3
∑
i

E

[∑
t

|Pt,i|3
]
≤ n− 3

2T− 1
2ω−3

∑
i

sup
i

(E [M (yi,t)])
3 = op (1) (3.118)

According to Lemma 19, we deduce that

n− 3
2ω−3

∑
i

E

[
T− 3

2

∑
t̸=t′

|Pt,i|P 2
t′,i

]

≤ n− 3
2ω−3

∑
i

E [T− 3
2

∑
t̸=t′

|Pt,i|P 2
t′,i

]2 1
2

= op (1)
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and that

n− 3
2ω−3

∑
i

E

[
T− 3

2

∑
t̸=t′ ̸=t′′ ̸=t

∣∣∣Pt,iPt′,i
Pt′′,i

∣∣∣]

≤ n− 3
2ω−3

∑
i

E [T− 3
2

∑
t̸=t′ ̸=t′′ ̸=t

∣∣∣Pt,iPt′,i
Pt′′,i

∣∣∣]2
 1

2

=op (1)

Therefore, we conclude that

1√
nT

∑
i

∑
t

{(ψf (yit, θ0, αi)− ψg (yit, γ0, λi))} =
∑
i

Li,T
d→ N(0, ω2) (3.119)

Proposition 10 1√
n
LRnT (θ0, γ0) +

1√
n

∑
i

[
Rfi (θ0)−Rgi (γ0)−

(
R∗

fi −R∗
gi

)] d→ N(0, σ2
W ),

where σ2
W = Tω2 + σ2

U .

Proof. We denote

Wi,T = Vi,T + Li,T (3.120)

Vi,T = − 1√
n

1

T

∑T
t=2 vfi,t

(∑t−1
t′=1 vfi,t′

)
E
[
vαfi,t

] +
1√
n

1

T

∑T
t=2 vgi,t

(∑t−1
t′=1 vgi,t′

)
E
[
vαgi,t
] (3.121)

Li,T =
1√
n

[∑
t

(ψf (yit, θ0, αi)− ψg (yit, γ0, λi))− E

[∑
t

(ψf (yit, θ0, αi)− ψg (yit, γ0, λi))

]]
(3.122)

Therefore we can write

1√
n
LRnT (θ0, γ0) +

1√
n

∑
i

[
Rfi (θ0)−Rgi (γ0)−

(
R∗

fi −R∗
gi

)]
(3.123)

=
∑
i

Vi,T +
∑
i

Li,T =
∑
i

Wi,T (3.124)
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From Proposition 7 and 9, we know that

1√
n
LRnT (θ0, γ0) =

∑
i

Li,T
d→ N(0, Tω2)

1√
n

∑
i

[
Rfi (θ0)−Rgi (γ0)−

(
R̂∗

fi(θ0)− R̂∗
gi(γ0)

)]
=
∑
i

Vi,T
d→ N(0, σ2)

it is sufficient to verify the following Lyapunov condition: as n→ ∞,

σ−3
W

∑
i

E
(
|Wi,T |3

)
→ 0 (3.125)

which is satisfied since as n→ ∞,

σ−3
W

∑
i

E
(
|Wi,T |3

)
≤σ−3

W

∑
i

E
(
|Vi,T |3 + |Li,T |3

)

=
σ3
U

σ3
W

σ−3
U

∑
i

E
(
|Vi,T |3

)
+

(√
Tω
)3

σ3
W

(√
Tω
)−3∑

i

E
(
|Li,T |3

)
→ 0

The first inequality holds by the convexity of the function f (x) = |x|3. The first equality

follows from Proposition 7 and 9. We denote

Vn,t = (vf1,t, vf2,t, . . . vfn,t,−vg1,t,−vg2,t, . . .− vgn,t)
′

V α
n,t = diag

(
vαf1,t, v

α
f2,t, . . . v

α
fn,t,−vαg1,t,−vαg2,t, . . .− vαgn,t

)
Hn = E

[
V α
n,t

]
Dn = E

[
Vn,tV

′
n,t

]
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and further consider

∑
i

E [Li,TVi,T ]

=− 1

nT

∑
i

E

[[∑
t

(ψf (yit, θ0, αi)− ψg (yit, γ0, λi))

]

∗

[∑T
t=2 vfi,t

(∑t−1
t′=1 vfi,t′

)
E
[
vαfi,t

] − 1√
n

1

T

∑T
t=2 vgi,t

(∑t−1
t′=1 vgi,t′

)
E
[
vαgi,t
] ]]

=− 1

nT
E

[
T∑
t=2

t−1∑
t′=1

LP (θ0, γ0)V
′
n,t [Hn]

−1 Vn,t′

]

=− 1

nT
E

[
T∑
t=2

t−1∑
t′=1

ϱ′n,tD
1/2
n [Hn]

−1 Vn,t′

]

where LP (θ0, γ0) =
∑

i [(ψf (yit, θ0, αi)− ψg (yit, γ0, λi))], ϱn,t =
(
D

1/2
n

)+
Cov [LP (θ0, γ0) , Vn,t] ,

and
(
D

1/2
n

)+
denotes the Moore-Penrose inverse of D

1/2
n . Note that

((
D1/2

n

)+
Cov [LP (θ0, γ0) , Vn,t]

)′
D1/2

n = Cov [LP (θ0, γ0) , Vn,t]
′

Then,

∑
i

E [Li,TVi,T ] = − 1

n

T−1∑
t=1

(
1− t

T

)
ϱ′n,tD

1/2
n [Hn]

−1 Vn,t′ = op (1)

follows from the fact that:

E

[∑
i

E [Li,TVi,T ]

]2

=
1

n2

T−1∑
t=1

(
1− t

T

)2

ϱ′n,tD
1/2
n [Hn]

−1Dn [Hn]
−1D1/2

n ϱn,t

≤κ
2
max

n
= op (1)

where κ2max is the maximum eigenvalue of matrix
(
Dn [Hn]

−1)2. According to Lemma E.1 in

Liao and Shi (2020), we have ϱ′n,tAϱn,t ≤ κmax (A) for any positive semi-definite matrix A.

κmax (A) is the maximum eigenvalue of matrix A. The inequality holds by
(
1− t

T

)2 ≤ 1 .
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Therefore, we conclude that

1√
n
LRnT (θ0, γ0) +

1√
n

∑
i

[
Rfi (θ0)−Rgi (γ0)−

(
R∗

fi −R∗
gi

)] d→ N(0, σ2
W )

3.6.4 Theorems

Proof of Theorem 1. From equation 3.12, we have:

1√
nT

[LRnT

(
θ̃, γ̃
)
− E [LRnT (θ0, γ0)]]−

1√
nT

∑
i

[
R̂fi(θ̃)− R̂gi(γ̃)

]
=

1√
nT

[LRnT (θ0, γ0)− E [LRnT (θ0, γ0)]] + op(1) (T.1.1)

under H0 : E [LRnT (θ0, γ0)] = 0:

1√
nT

LRnT

(
θ̃, γ̃
)
− 1√

nT

∑
i

[
R̂fi(θ̃)− R̂gi(γ̃)

]
=

1√
nT

LRnT (θ0, γ0) + op(1) (3.126)

from Proposition 9, we know that

1√
nT

LRnT (θ0, γ0)
d→ N(0, ω2) (3.127)

we denote ω̂2
n as an estimator for ω2, and ω̂2

n = 1
nT

∑
i

∑
t[ψf

(
θ̃, α̂i(θ̃)

)
− ψg (γ̃, α̂i(γ̃))]

2,

ω2 = limn,T→∞
1
nT

∑
i

∑
t [ψf (θ0, αi(θ0))− ψg (γ0, αi(γ0))]

2. The consistency results for ω̂2
n

can be similarly proved as previous part, more specifically, let

ω2
n =

1

nT

∑
i

∑
t

[ψf (θ0, αi(θ0))− ψg (γ0, αi(γ0))]
2
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let
∂u

(
yi,t;

˜̃̃
θ,α̂i(

˜̃̃
θ)

)
∂θ

= u
˜̃̃
θ
fi,t, then we can prove that:

ω̂2
n − ω2 =

1

nT

∑
i

∑
t

2 [ψf (θ0, αi(θ0))− ψg (γ0, αi(γ0))]

∗
{[
ψf

(
θ̃, α̂i(θ̃)

)
− ψg (γ̃, α̂i(γ̃))

]
− [ψf (θ0, αi(θ0))− ψg (γ0, αi(γ0))]

}
+

1

nT

∑
i

∑
t

2
{[
ψf

(
θ̃, α̂i(θ̃)

)
− ψg (γ̃, α̂i(γ̃))

]
− [ψf (θ0, αi(θ0))− ψg (γ0, αi(γ0))]

}2

=
1

nT

∑
i

∑
t

2[ψf (θ0, αi(θ0))− ψg (γ0, αi(γ0))]

∗ {u
˜̃̃
θ
fi,t(

˜̃θ − θ̂)
(
θ̃ − θ0

)
+ vfi,t [α̂i(θ0)− αi(θ0)] +

1

2
vαfi,t [α̂i(θ0)− αi(θ0)]

2

+
1

6
ṽααfi,t [α̂i(θ0)− αi(θ0)]

3 − u
˜̃̃
γ
gi,t(˜̃γ − γ̂) (γ̃ − γ0)− vgi,t [α̂i(γ0)− αi(γ0)]

− 1

2
vαgi,t [α̂i(γ0)− αi(γ0)]

2 − 1

6
vααgi,t [α̂i(γ0)− αi(γ0)]

3}

+
1

nT

∑
i

∑
t

2 ∗
{
u
˜̃̃
θ
fi,t(

˜̃θ − θ̂)
(
θ̃ − θ0

)
+ vfi,t [α̂i(θ0)− αi(θ0)] +

1

2
vαfi,t [α̂i(θ0)− αi(θ0)]

2

+
1

6
ṽααfi,t [α̂i(θ0)− αi(θ0)]

3 − u
˜̃̃
γ
fi,t(

˜̃γ − γ̂) (γ̃ − γ0)− vgi,t [α̂i(γ0)− αi(γ0)]

− 1

2
vαgi,t [α̂i(γ0)− αi(γ0)]

2 − 1

6
vααgi,t [α̂i(γ0)− αi(γ0)]

3}2

=op(1)

Proof of Theorem 2. Since the asymptotic result is established, we only need to prove

the consistency of σ̂2
Unested . As

σ̂2
Unested − σ2

Unested =
J − 1

2nJ

∑
i


(

1
J

∑t=J
t=1 v̂

2
1gi,t

)2
(

1
J

∑t=J
t=1 v̂

α
1gi,t

)2 −
(
E
[
v21gi,t

])2(
E
[
vα1gi,t

])2
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, it suffices to show that

1

n

∑
i


(

1
J

∑t=J
t=1 v̂

2
1gi,t

)2
(

1
J

∑t=J
t=1 v̂

α
1gi,t

)2 −
(
E
[
v21gi,t

])2(
E
[
vα1gi,t

])2
 (3.128)

=
1

n

∑
i


( 1

J

t=J∑
t=1

v̂21gi,t

)2

−
(
E
[
v21gi,t

])2( 1

J

t=J∑
t=1

v̂α1gi,t

)−2
 (3.129)

+
1

n

∑
i

(E [v21gi,t])2
( 1

J

t=J∑
t=1

v̂α1gi,t

)−2

−
(
E
[
vα1gi,t

])−2

 (3.130)

= op(1) (3.131)

Since we can prove that

v̂1gi,t

(
θ̃, α̂i(θ̃)

)
− v1gi,t (θ0, αi(θ0)) =v̂1gi,t

(
θ̃, α̂i(θ̃)

)
− v1gi,t (θ0, α̂i(θ0))

+ v1gi,t (θ0, α̂i(θ0))− v1gi,t (θ0, αi(θ0))

=
∂v1gi,t(

˜̃̃
θ, α̂i(

˜̃̃
θ))

∂θ

(˜̃
θ − θ̂

)(
θ̃ − θ0

)
︸ ︷︷ ︸

Op( 1
nT)

+ vα1gi,t [α̂i(θ0)− αi(θ0)]︸ ︷︷ ︸
Op( 1√

T
)

+
1

2
vαα1gi,t [α̂i(θ0)− αi(θ0)]

2︸ ︷︷ ︸
Op(1

T)

+
1

6
ṽααα1gi,t [α̂i(θ0)− αi(θ0)]

3︸ ︷︷ ︸
Op( 1

T
√
T
)
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where ṽααα1gi,t = vααα1gi,t (θ0, α̃i(θ0)), α̃i(θ0) is between α̂i(θ0) and αi(θ0). Therefore it is shown that

1

J

∑
t

v̂21gi,t

(
θ̃, α̂i(θ̃)

)
− 1

J

∑
t

v21gi,t(θ0, αi(θ0))

=
1

J

∑
t

2v1gi,t (v̂1gi,t − v1gi,t) +
1

J

∑
t

2 (v̂1gi,t − v1gi,t)
2

=

 1

J

∑
t

2v1gi,t
∂v1gi,t(

˜̃̃
θ, α̂i(

˜̃̃
θ))

∂θ

(˜̃θ − θ̂

)(
θ̃ − θ0

)
︸ ︷︷ ︸

Op( 1
nT)

+ [
1

J

∑
t

2v1gi,tv
α
1gi,t] [α̂i(θ0)− αi(θ0)]︸ ︷︷ ︸
Op( 1√

T
)

+[
1

J

∑
t

v1gi,tv
αα
1gi,t] [α̂i(θ0)− αi(θ0)]

2

︸ ︷︷ ︸
Op(1

T)

+ [
1

J

∑
t

1

3
v1gi,tṽ

ααα
1gi,t] [α̂i(θ0)− αi(θ0)]

3

︸ ︷︷ ︸
Op( 1

T
√
T
)

+Op

(
1

T

)

= op(1)

and

(E
[
vα1gi,t

]
)−2

( 1

J

t=J∑
t=1

v̂21gi,t

)2

−
(
E
[
v21gi,t

])2 = op(1) (T.1.4)

Applying similar analysis to 1
J

∑
t v̂

α
1gi,t, we have

1

J

∑
t

v̂α1gi,t −
1

J

∑
t

vα1gi,t =
1

J

∑
t

[
v̂α1gi,t

(
θ̃, α̂i(θ̃)

)
− vα1gi,t (θ0, α̂i(θ0))

]
+

1

J

∑
t

[
vα1gi,t (θ0, α̂i(θ0))− vα1gi,t(θ0, αi(θ0))

]

=
1

J

∑
t

∂vα1gi,t(
˜̃̃
θ, α̂i(

˜̃̃
θ))

∂θ

(˜̃
θ − θ̂

)(
θ̃ − θ0

)
+

(
1

J

∑
t

vαα1gi,t

)
[α̂i(θ0)− αi(θ0)]

+
1

2

(
1

J

∑
t

vααα1gi,t

)
[α̂i(θ0)− αi(θ0)]

2 +
1

6

(
1

J

∑
t

vαααα1gi,t

)
[α̂i(θ0)− αi(θ0)]

3

=Op(1)Op

(
1

nT

)
+Op(1)Op

(
1√
T

)
= op(1) (T.1.5)
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Based on law of large numbers,

1

J

∑
t

vα1gi,t − E
[
vα1gi,t

]
= op(1) (T.1.6)

1

J

∑
t

v21gi,t − E
[
v21gi,t

]
= op(1) (T.1.7)

Combining equation (T.1.4), (T.1.5), (T.1.6) and (T.1.7), we can prove that (T.1.2) is op(1).

Proof of Theorem 3. Since

 √
nT (θ̃ − θ0)

√
nT (γ̃ − γ0)

 d→ N(0,Σθγ)

−LMnT

(
θ̃, γ̃
)
= −NT

2
(θ̃ − θ0)

′If (θ̃ − θ0) +
NT

2
(γ̃ − γ0)

′Ig(γ̃ − γ0) + op(1)

−2LMnT

(
θ̃, γ̃
)
can be considered as a quadratic form of a vector of normally distributed

random variables:  √
nT (θ̃ − θ0)

√
nT (γ̃ − γ0)

′

Qθγ

 √
nT (θ̃ − θ0)

√
nT (γ̃ − γ0)


where

Σθγ =

 Σθ; Covθγ

Covθγ; Σγ

 ;Qθγ =

 −If 0

0 Ig


According to Lemma 10, −2LMnT

(
θ̃, γ̃
)
is asymptotically distributed as a central chi-square

if and only if

ΣθγQθγΣθγQθγΣθγ = ΣθγQθγΣθγ (3.132)

If the information matrix identity holds:

If = E
[
Ufit (θ0, α0)U

′
fit (θ0, α0)

]
Ig = E

[
Ugit (θ0, α0)U

′
git (θ0, α0)

]
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then equation (3.132) implies that

If −
(
E
[
Ufit (θ0, α0)U

′
git (θ0, α0)

])
I−1
g

(
E
[
Ugit (θ0, α0)U

′
fit (θ0, α0)

])
= 0 (3.133)

which holds under the null hypothesis, it is also known that the degree of freedom is:

tr (QθγΣθγ) = dim(γ)− dim(θ)

Lee and Phillips (2015) consider the following profile likelihood information criterion:

1

nT

n∑
i=1

T∑
t=1

log f
(
zi,t; θ̃, α̂i(θ̃)

)
− 1

nT

n∑
i=1

R̂∗
fi(θ̃) +

1

nT
tr
{
Jf (Ĝ)

−1If (Ĝ)
}

where

Jf (Ĝ) = − 1

nT

n∑
i=1

T∑
t=1

∂2 log f
(
zi,t; θ̃, αi(θ̃)

)
∂θ∂θ′

If (Ĝ) =
1

nT

n∑
i=1

T∑
t=1

∂ log f
(
zi,t; θ̃, αi(θ̃)

)
∂θ

∂ log f
(
zi,t; θ̃, α̂i(θ̃)

)
∂θ′

Under H0, the information matrix identity holds and gives

tr
{
Jf (Ĝ)

−1If (Ĝ)
}
=

dim(θ)

nT

it means that chi-square distribution is also achieved, which is equivalent to our results.
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Proof of Theorem 4. Since under H0, the estimator of variance of LRnT (θ0, γ0) is:

1

nT

∑
i

∑
t

[ψf

(
θ̃, α̂i(θ̃)

)
− ψg

(
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(
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{
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T
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Thus we have the estimator of variance of 1√
n
LRnT (θ0, γ0) is:

1

n

∑
i

∑
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[ψf

(
θ̃, α̂i(θ̃)

)
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(
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It means that 1
n

∑
i

∑
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[
ψf

(
θ̃, α̂i(θ̃)

)
− ψg

(
γ̃, λ̂i(γ̃)

)]2
is a biased estimator of σ2

W , we

propose the bias-corrected variance term as follows:
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∑
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(
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