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Abstract

We consider a generic representation problem of internal coordinates (bond lengths, valence 

angles, and dihedral angles) and their transformation to 3-dimensional Cartesian coordinates 

of a biomolecule. We show that the internal-to-Cartesian process relies on correctly predicting 

chemically subtle correlations among the internal coordinates themselves, and learning these 

correlations increases the fidelity of the Cartesian representation. We developed a machine 

learning algorithm, Int2Cart, to predict bond lengths and bond angles from backbone torsion 

angles and residue types of a protein, which allows reconstruction of protein structures better 

than using fixed bond lengths and bond angles, or a static library method that relies on backbone 

torsion angles and residue types in a local environment. The method is able to be used for structure 

validation, as we show that the agreement between Int2Cart-predicted bond geometries and those 

from an AlphaFold 2 model can be used to estimate model quality. Additionally, using Int2Cart 

to reconstruct an IDP ensemble is able to decrease clash rate during modelling. The Int2Cart 
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algorithm has been implemented as a publicly accessible python package at https://github.com/

THGLab/int2cart.

Graphical Abstract

INTRODUCTION

Biomolecular structures are described using two widely used mathematical representations: 

internal coordinates and Cartesian coordinates. The internal coordinate representation is 

defined by a set of bond lengths, bond angles, and dihedral or torsion angles, and provides a 

compact description in terms of the Z-matrix. In contrast, a Cartesian representation defines 

all of the atomic positions in Euclidean x,y,z coordinates and additionally captures the 

orientation of a molecule in space. Both representations are useful in certain contexts and 

applications. Internal coordinates can be beneficial for geometry optimizations 1 and are the 

preferred description for NMR structure determination and refinement as an intermediate 

step towards an atomistic structure. The bond lengths and bond angles are typically taken 

as fixed2 in these scenarios. Cartesian coordinates are the preferred format of molecular 

dynamics simulations3 and X-ray crystallography, NMR, and cryo-EM structures deposited 

in the Protein Data Bank (PDB) repository.4

Figure 1 considers the internal coordinates of a protein backbone that contains the three 

torsion angles ϕ C − N − Cα − C , ψ N − Cα − C − N , and ω Cα − C − N − Cα , bond lengths 

N − Cα d1 , Cα − C d2 , and C − N d3 , and bond angles N − Cα − C θ1 , Cα − C − N θ2 , and 

C − N − Cα θ3 ; side chain information that may affect the backbone could also include 

Cα − Cβ r1  and N − Cα − Cβ α1  for example. When all of these quantities are specified exactly, 
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the back-transformation from internal coordinates will also result in a perfect 3D Cartesian 

reconstruction of the protein backbone structure, using algorithms such as the natural 

extension reference frame (NeRF).5 However, in certain areas of protein modelling, such 

as fragment-based protein folding and loop modelling,6,7 the Cartesian reconstruction is 

almost universally defined by only the backbone torsions while holding the bond lengths 

and angles fixed at mean values to decrease the complexity of the problem. Sometimes the 

variations on the ω torsion angles are also ignored and taken as fixed values of 0° or 180°, 

due to the planar nature of the peptide bond.8 One might assume that a protein structure can 

be reconstructed in Cartesian coordinates quite well utilizing fixed bond lengths and angles 

since they typically have quite small variations around their means. However, even small 

deviations from the mean of the stiff degrees of freedom can strongly influence the Cartesian 

reconstruction.

The origin of this error arises especially clearly from the nature of chain molecules: as 

the protein chain gets longer, small errors in bond lengths and bond angles can quickly 

accumulate and result in significant differences in the final back-transformed structure. 

According to a study by Holmes et al.9 on globular proteins, the RMSD errors incurred 

in the internal coordinate back-transformations to Cα Cartesian positions under fixed bond 

lengths and angles is ~6 Å for an average 150-amino-acid protein, and can be as high as 40 

Å for larger proteins.

Alternatively, one could replace the assumption of fixed bonds and bond angles with a 

statistical approach that uses variable bond lengths and bond angles according to sequence 

or structural correlations in the PDB. Given the many types of correlations that exist 

between the internal coordinates of globular proteins, such as the ϕ and ψ torsion angles 

of the Ramanchandran plot,10 restraints on ω torsion angles as a function of ϕ and ψ,11 and 

the correlation between backbone and sidechain torsion angles used in the Dunbrack rotamer 

library,12 the correlations among the stiff bond lengths and angles with the flexible torsions 

should not be surprising. Earlier studies on the relationship between bond angles and ϕ, 

ψ torsion angles or amino acid types were mostly focused on the N − Cα − C bond angle, 

using both statistical methods and quantum mechanics calculation on model dipeptides. 
13–16 The work by Berkholz17 found that by using a static library for backbone bond 

angles dependent on backbone ϕ, ψ angles and residue types, the median RMSDs of protein 

reconstruction normalized to 100 amino acids is 2.85 Å. Following this pioneering study, 

more recent work by Roberto and co-workers have extended the correlation to all bond 

lengths and bond angles centered on backbone N, Cα and C atoms.18,19 Similarly, Lundgren 

et al. studied the correlation between protein backbone angles, secondary structure, and 

sidechain orientations.,20 and Ashraya et al. evaluated the steric-clash Ramanchandran 

maps conditioned on bond geometries.21 However, none of these studies have considered 

the correlations in internal coordinates beyond local amino acid context and backbone 

geometries.

This work provides a more comprehensive machine learning approach that both quantifies 

and learns internal coordinate correlations within a deeper amino acid sequence context, 

that in turn provides a more accurate prediction of the 3D Cartesian coordinates relative to 
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the errors incurred under the standard assumptions of fixed bond lengths and angles. By 

capturing the subtle correlations observed among internal coordinates, the Int2Cart (Internal 

to Cartesian) algorithm reduces the reconstruction RMSD error to ~2.07 Å for test proteins 

normalized to 100-amino-acids, and an average RMSD of ~3.74 Å over the entire test set 

for globular proteins as large as 599 amino acids. While many current protein modelling 

algorithms have adopted pairwise distance-based constraints22–24 or directly output 3D 

coordinates, thereby bypassing the internal-to-Cartesian conversions,25,26 the applicability of 

the Int2Cart algorithm is multi-fold.

First, our bond geometry prediction module is capable of providing more accurate references 

for internal coordinates, making our method a helpful tool for structural validation and 

refinement. We demonstrate this Int2Cart application by showing that the agreement 

between bond lengths and bond angles from AlphaFold2 (AF2) predicted structures27 and 

Int2cart predictions is a strong indicator of AF2 model quality. Second, torsion-angle based 

approaches are still widely used in loop modelling28 and in generating conformational 

ensembles of intrinsically disordered proteins (IDPs).29 We find that Int2Cart is able to 

reproduce a structural ensemble of the disordered Sic-1 IDP with lower RMSD error when 

back-calculated to experimental observables, and generates fewer undesirable steric clashes. 

We also envision that Int2Cart should be applicable in the development of protein force 

fields that could benefit from more accurate valence models of backbone bond lengths and 

bond angles conditioned on other geometrical or sequence features. 30

METHODS

Dataset preparation.

We have adopted SidechainNet31 as a preprocessed dataset that uses clustering techniques to 

extract protein sequences and structures with defined similarity cutoffs, to reduce bias in the 

original PDB structures, and to prevent information leakage from the training set to the test 

set relevant to assessing the machine learning generalization.31,32 The SidechainNet dataset 

represents each protein by its amino acid sequence, backbone and sidechain torsion angles 

(ϕ, ψ, ω, χ1, χ2, etc), backbone bond angles θ1 − θ3, as well as the all-atom 3D coordinates. 

For this study we ignore the sidechain torsions as we are only reconstructing backbones, 

and supplement the protein dataset with backbone bond lengths d1 − d3 calculated from the 

3D coordinates for training, validation and test sets. We also identified some θ2 and θ3 bond 

angles that were incorrect due to missing atoms in the next residue, and they were masked 

out along with the residue at the end of the protein chain. We used the latest available 

version of the SidechainNet dataset (CASP12) under 70% thinning and combined validation 

sets from 10% to 50% similarity cutoffs with the test set. This then defines the final test data 

for our algorithm while keeping track of the similarity for each individual test data point. 

When needed, we separated test set proteins at any broken chain positions and only retained 

chains longer than 50 consecutive amino acids.32

Our final training dataset contains 41,380 proteins with a minimum sequence length of 20 

and maximum length of 4914 amino acids. Most structures in the training set have reported 

structural resolution < 4Å. The test set was comprised of 182 protein or protein fragments 
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with sequence lengths between 23 and 599 amino acids. We have additionally compiled an 

IDP structural ensemble comprised of 1000 conformations for the N-terminal 92 residues 

of the Sic1 protein33,34 to validate the transferability of our model in a more challenging 

application scenario. We extracted the backbone torsions and rebuilt the Cartesian structures 

for each conformer under different assumptions about the bond lengths and bond angles as 

reported in Results. In addition, 20 randomly selected proteins from the human proteome 

were downloaded from the AlphaFold2 database 27 to illustrate the application of Int2Cart 

in validating protein structure models. The identification codes for these 20 proteins are 

provided in the Supplementary Information.

Neural network design.

The structure of the deep neural network, Int2Cart, is depicted in Figure 2. The recurrent 

neural network architecture is chosed due to its capability to capture long-range correlations 

in internal coordinates, such as torsion angles that are exemplified in applications including 

protein folding35 and IDP modelling.36 We utilized 3 layers of stacked bidirectional gated 

recurrent units (GRU) as the central component, each of which contains a hidden state ℎt

with its information updated by the reset and update mechanisms for each element in the 

input sequence through the following set of equations: 37

rt = σ W rxt + Urℎt − 1 + br (1)

zt = σ W zxt + Uzℎt − 1 + bz (2)

ℎt = tanh W nxt + bnx + rt ⊙ Unℎt − 1 + bnℎ
(3)

ℎt = 1 − zt ⊙ ℎt + zt ⊙ ℎt − 1 (4)

where [W r, W z, W n, Ur, Uz, Un, br, bz, bnx, bnℎ] are the trainable parameters of the model, 

xt is the input to the cell at the current timestep, and rt and zt represent the reset and 

update gates, which are numbers between (0, 1) that control how much information to retain 

in the new update vector ℎt and how the new hidden state vector ℎt is composed from 

the update vector ℎt and the old hidden state ℎt − 1. σ denotes the sigmoid function, and ⊙
represents element-wise multiplication. Dropout was applied to the hidden states between 

layers, so that xt
(l) = ℎt

(l − 1) ⊙ δt
(l − 1), where each δt

(l − 1) is a Bernoulli random variable that zeros 

out elements in the hidden state vector with a probability defined by the dropout rate.

The inputs into the first layer of GRU cells are the ϕ, ψ and ω torsion angles and the 

amino acid type. Since we are using a bidirectional recurrent neural network architecture, 

information about previous/following residues should already be included in the hidden state 

at any “timestep” in an implicit way in the GRU, which is sufficient information to allow 

the network to make predictions accurately enough without formulating it explicitly as the 

input. Each torsion angle, a, was represented by a Gaussian smearing function discretized to 

a vector of length 180 to account for uncertainty in the data, denoted xia
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xia = exp − diff αi, xa

2σ2 (5)

where αi is the actual ϕ, ψ or ω angle and xa = ( − 180 + 2 ∗ a) (both in degrees), and in this 

work we used σ = 0.5∘. The custom diff function

diff αi, xa = min αi − xa , min αi − xa − 360 , αi − xa + 360 (6)

ensures that the periodicity of the angles is taken into account. Each smeared torsion angle 

vector is further transformed through two fully-connected layers with 90 and 64 units each 

and Rectified Linear Units (ReLU) activation38 to generate latent representations of the 

torsion angles. The residue types are encoded by a trainable embedding dictionary and 

formulated into latent vectors of length 64; the hidden dimension size of 64 was chosen after 

a careful hyperparameter search and found to be the optimal value. The torsion angle latent 

vectors and the embedded residue types are then concatenated and transformed together 

through 2 fully-connected layers with 128 and 64 units and ReLU activation and constitute 

the inputs into the GRU cells.

The hidden state output from the last GRU layer is connected with multiple outputs to 

predict the backbone bond lengths and bond angles, or optionally sidechain bond lengths 

and bond angles as well. Each output is a fully-connected neural network with a hidden 

layer of size 100 and activation ReLU, and the output has size of 1 without any activation. 

The raw outputs are scaled by the standard deviation and translated by the mean value 

of that data type in the training dataset. The means and standard deviations we used are 

provided in Supplementary Table 1.

Training details of the Int2Cart machine learning method.

The neural network was trained by minimizing the weighted mean square error loss function

L = ∑
i

wi yi − y i
2

(7)

where wi controls the weighting for different data types in the loss function, yi are the 

predictions from the model and y i are the actual values from the data set. In practice we 

used the same weighting for all the data types. Missing data targets were masked out during 

the training. We used the Adam optimizer39 with an initial learning rate of 0.001 and an 

exponentially decayed learning rate schedule, so lri = exp −i ∗ α  where i is epoch number 

and α = 0 . 05 in our case. The model was trained for a total of 100 epochs using a batch size 

of 128.

Building all-atom Cartesian structures from internal angle model predictions.

With the full profile of backbone torsion angles and predictions of bond lengths and bond 

angles from the model, the 3D Cartesian structure of the protein containing all backbone 

atoms is reconstructed using the SidechainNet package.31 It utilizes the natural extension 

reference frame (NeRF) algorithm5 to sequentially calculate the position of the next atom 
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with the positions of three previous atoms and the new bond length, bond angle and torsion 

angle. The all-atom backbone Cartesian structures for all the protein fragments in our test 

data set are built from either the Int2Cart algorithm vs. a standard baseline of using fixed 

bond lengths and bond angles (Fixed), or using bond lengths and bond angles from the 

Protein Geometry Database (PGD)17 which uses bond geometries that depend on local 

torsions or amino acid type.

RESULTS

Statistical analysis of the protein training set.

Given the large collection of deposited protein structures in the PDB, we first consider a 

statistical analysis of protein bond lengths and bond angles when analyzed over the training 

set. Overall the distributions of these internal coordinate values are mostly Gaussian with 

relatively small standard deviations of ~ 0.01 Å for bond lengths and ~ 2.6° for bond 

angles. Figure 3 (a–f) depicts the deviations from the mean bond length and angle values 

for a given (ϕ, ψ) combination, and confirms the existence of strong correlations among the 

internal coordinates averaged over the training data set. Specifically, the θ1 angle is larger for 

the right-hand and left-hand helix regions in the Ramanchandran plot, while the beta-sheet 

regions have more narrow θ1 angles, with deviations from the mean as large as 7.5°.

The θ2 values are strongly correlated with the ψ torsion angle, with larger angles when ψ
is between −100 and 0 degrees, and smaller angles than the mean otherwise. The θ3 values 

for nearly all of the (ϕ, ψ) combinations are larger than average, but have smaller angles 

for helix regions. Similarly, the d1 and d2 bond lengths show greater correlations with the ϕ
torsion angle, with a preference for larger values when ϕ is between −50 and +50 degrees, in 

which the bond lengths change by as much as 0.02 Å. Finally the correlation for the peptide 

d3 bond with the backbone torsions is weak, consistent with its partial double bond character, 

except for a few hot spots where it can vary up to 0.04 Å. These correlations are statistically 

meaningful, because the standard deviations in each bin are smaller than the mean value 

differences (Supplementary Figure 1), which means the statistical bias is more significant 

than the variance.

We have also considered the relationships between backbone ω torsion angles with bond 

angles (Figure 3 g–i) and bond lengths (Supplementary Figure 2), and found interesting 

correlations between internal coordinates and ω torsion angles. The majority of peptide 

bonds in proteins are in the trans-conformation, with ω torsion angles close to 180°. 

However, cis- peptide bonds tend to be associated with smaller θ1 angles and larger θ2

and θ3 angles. This result also makes structural sense since cis- peptide bonds incur more 

steric repulsion between sidechains of two consecutive residues, and larger θ2, θ3 and smaller 

θ1 values allow the sidechains to be more separated. On the other hand, the correlation 

between bond lengths and ω torsion angles are not obvious (Supplementary Figure 2). These 

correlations dependent on ω are also important for accurately predicting internal coordinates 

from backbone torsion angles as we will show later.
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When we consider the observed distributions of all six internal coordinates as a function of 

the residue type (Supplementary Figure 3), we find that the distributions are quite similar 

between amino acids with only subtle differences in the shape of the peaks, with the 

exception of glycine, which tends to have d1 and d2 values that are smaller, and θ1 angles 

that are larger than other residues. Proline also defines an exception, with larger d1 values 

due to the formation of the five-membered ring that requires longer bond lengths. However 

the bond length and angle distributions as a function of backbone torsions and residue type 

exhibit notable variations across all twenty amino acids as seen in Figure 4 for the θ1 bond 

angle, as well as for the other backbone bonds and angles shown in Supplementary Figures 

4–8. To test whether structural resolution quality has an effect on the conclusion drawn 

from the statistical analysis, we further separated the training dataset by structure resolution 

categories of higher quality (resolution ¡= 2 Å) and lower quality (2 Å¡ resolution ¡= 4 Å) 

and compared the dependence of bond angles on ω torsion angles. The results are provided 

in Supplementary Figure 9. No significant discrepancies exist on the correlations between 

two groups of structures with different qualities, which supports utilizing the whole training 

dataset without filtering based on resolution.

Machine learning of sequence and structural correlations.

While the correlation graphs just described could serve as a source for bond lengths and 

angles when backbone torsion angles and residue types are provided, we are still missing the 

sequence-dependent correlations that are buried beneath the statistics of the single residue 

results. Therefore, we trained a deep neural network on the same data in order to capture 

the more subtle correlations among the internal coordinates conditioned on amino acid 

sequence. After training, the Int2Cart neural network was used to predict the test set which 

has low sequence and structural similarity with the training proteins. The root-mean-square 

error (RMSE) and Pearson correlation coefficients (R) on the test set are summarized in 

Supplementary Table 2. We find that the RMSE in bond length predictions are within 

the variance determined from the data set, while predictions on the bond angles are more 

successful in terms of the RMSEs that are smaller than the dataset variance.

Cartesian coordinate reconstructions.

Given the three torsion angles [ϕ, ψ, ω] for each residue over the entire protein sequence 

as input, we next consider how well the Cartesian coordinates are reconstructed based on 

whether bond and angle geometries are held fixed, using PGD, or learned from Int2Cart. 

Table 1 provides a general overview of the performance of the three approaches using a 

Cα RMSD100  metric, which is the Cα RMSD values divided by the length of the protein and 

then multiplied by 100, as well as the Cα RMSD over all test set proteins regardless of 

length.

The reconstructed RMSDs for the Int2Cart structures are centered around lower median 

values of Cα RMSD100  of 2.07 Å, and Cα RMSD of 3.74 Å over all test proteins. By contrast 

the Fixed model yields a median RMSD of 3.22 Å when all proteins are normalized to 100 

amino acids, and the average over the entire test set is 5.39 Å. Table 1 also shows that 

the Int2Cart results are notably better than the PGD method which provides bond lengths 
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and bond angles as a function of local ϕ, ψ and amino acid type, in which the median 

(2.92 Å) and mean (3.32 Å) Cα RMSD100  are much higher than that found with Int2Cart. 

Furthermore, to investigate the tranferability of the Int2Cart model, the test dataset was 

broken down into subsets that have 10%–50% sequence similarity to any protein in the 

training dataset, and proteins from CASP12. The results reported in Table 1 indicate that the 

sequence similarity to the training dataset has little effect on the reconstruction quality of the 

proteins. Therefore, our model is expected to be generalizable to proteins it has not seen.

To provide a more statistical view of the predictions, Figure 5a reports the distribution of 

RMSDs for all backbone atoms with respect to the actual PDB structure for all proteins in 

the test set using Int2Cart and the Fixed method, as well as the pairwise RMSDs for the test 

proteins (Figure 5b), and the RMSD difference between the two methods as a function of 

sequence length (Figure 5c). It is evident that the vast majority of the test set proteins benefit 

from the machine learned bond lengths and bond angles, with an average improvement 

of 2 – 4 Å RMSD over using Fixed bond lengths and bond angles. There is no obvious 

correlation between the RMSD improvements made by Int2Cart over Fixed with respect 

to sequence length, although the largest improvements occur in those proteins with longer 

amino acid sequences.

Figure 5d illustrates that proteins reconstructed by assuming fixed bond lengths and 

bond angles have lost significant secondary structure integrity compared to the reference 

structures, whereas the Int2Cart structures retain a much higher proportion of intact 

secondary structural elements. Beyond this anecdotal case, we performed a more extended 

analysis of Int2Cart and Fixed performance regarding the radius of gyration Rg  and 

secondary structure recovery rate (SS-match) over the whole test dataset. Although we find 

that the Int2Cart Cartesian predictions have closer Rg values to the ground truth structures, 

the Fixed Cartesian structures still yields a comparably good result as seen in Supplementary 

Figure 10. Figure 5e shows that Int2Cart systematically improves upon Fixed in regards the 

SS-match values, defined as the proportion of helix, strand, and coil DSSP assignments41 

for each residue that matches the reference structure. It is seen that Int2Cart has a higher 

proportion of test set proteins that have SS-match values larger than 0.8 (Figure 5f), which 

translates to more than 80% of the residues having correct secondary structure assignments.

Comparison of sequence-length-dependent reconstruction quality among methods.

Due to the sequential nature of the process of modelling protein 3D structures with 

internal coordinates, the reconstruction error is expected to increase as the protein sequence 

increases in length. In Figure 6 the reconstruction error evaluated as the RMSD on the 

Cα atoms compared to the initial structures from the PDB are plotted as a function of 

sequence length, in which proteins were reconstructed using either Int2Cart-predicted bond 

geometries, using fixed bond lengths and bond angles, or using the local-conformation 

dependent Protein Geometry Database (PGD) as described in Ref.17 Test proteins are 

grouped by sequence lengths with increments of 100 amino acids, and the standard 

deviations in each group are described by the shaded regions in Figure 6. Compared to 

using fixed bond lengths and bond angles, the PGD method has slight improvements in 

almost all sequence length ranges except around 400 amino acids. Even so, the Int2Cart has 
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a more significant improvement in Cα RMSD compared to PGD, suggesting its superiority is 

likely due to the fact that Int2Cart is able to learn deeper sequence correlations.

Ablation studies.

To understand the importance of various inputs for prediction accuracy of Int2Cart and how 

accuracy effects reconstructing the Cartesian structures, we performed an ablation study 

by training separate deep learning models using subsets of the inputs, and reconstructing 

structures using only predicted bond lengths, only predicted bond angles, or using both. We 

have also trained models with additional inputs of χ1 torsion angles, along with r1 and α1

sidechain bond lengths and bond angles as additional outputs, to evaluate how including 

sidechain information could improve prediction and reconstruction of backbone structures. 

All ablation trials are reported in Table 2.

We see that the differences in predictions of the backbone bond lengths from different 

deep learning models are not significant, but prediction accuracy for backbone bond 

angles RMSE and reconstructed Cartesian structure RMSD are highly dependent on what 

information is available to the model. Specifically, a machine learning model that only 

knows about the residue types performs the worst with >5 Å in the reconstruction RMSD. 

Unsurprisingly based on statistical analysis of the PDB, backbone ϕ and ψ torsion angles 

provide more information than residue types alone, and allows the reconstruction RMSD to 

decrease to 4.56 Å on average. Including both ϕ, ψ and residue types further decreases the 

average reconstruction error to 4.29 Å. As expected from the correlation of bond lengths and 

bond angles with ω torsion angles as well, including exact values for ω torsion angles also 

significantly improves the model and allows the reconstructed structure RMSD to decrease 

further to 3.77 across the whole test set, and to 2.38 Å for proteins normalized to 100 amino 

acids. When we tested the inclusion of sidechain χ1 torsion angles, we find that the 3D 

reconstruction model is even better, achieving an average reconstruction structure RMSD of 

3.30 Å regardless of protein length. This is probably due to the fact that χ1 torsion angles are 

indicative of avoidable steric clashes between protein backbones and side chains to create 

more accurate descriptions of subsequent backbone bond geometries, even though side chain 

atoms are not explicitly treated during structure reconstruction in this work.

To bolster these conclusions, Table 2 shows that the reconstruction quality does not depend 

on the direct prediction of bond lengths, as it essentially has no effect on the reconstructed 

structures, which may have been anticipated from the fact that bond length errors are on 

par with the variance. But this final ablation study provides direct evidence that accurate 

predictions of bond angles are of primary importance for the quality of the reconstructed 

Cartesian structures. In addition, using accurate ω torsion angles in the reconstruction is of 

great importance, since treating ω as binary greatly deteriorates the quality of reconstructed 

structures.

Using Int2Cart internal coordinate agreements to validate AlphaFold2 structures.

AlphaFold2 (AF2) has been a huge success in predicting atomic structures of proteins 

with astonishing accuracy.26 Nevertheless its predictions have variety of quality, which is 

also reflected in its internal confidence estimations for each residue called the predicted 
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local distance difference test (pLDDT) score, with values greater than 90 indicating high 

confidence, and values below 50 indicating low confidence. To investigate the relationship 

between AF2 model quality and how much the bond lengths and bond angles in these AF2 

models agree with the same Int2Cart quantities, we randomly collected 20 AF2 predicted 

protein structures from the human proteome, and calculated the bond lengths and bond 

angles using Int2Cart and the AF2 torsion angles. The results are summarized in Figure 7 

and Supplementary Figures S11–S13.

On a per-residue basis, we observe strong correlation between the agreement of AF2 and 

Int2Cart bond geometries, and AF2 prediction confidence, as we illustrate in Figure 7(a). We 

see that the most confident residue predictions in AF2 models have better correlation in θ1

values between AF2 models and Int2Cart predictions, compared to the residues with lower 

confidence. Figure 7(b) further discretizes the absolute differences into bins of 1° increments 

and shows that the residues that have a larger discrepancy between bond geometries in AF2 

structures and Int2Cart predictions have on average lower quality in terms of pLDDT scores. 

Similar plots are generated for the θ2, θ3, d1, d2 and d3 data where the Int2Cart and AF2 

agreement is less good, but still exhibit strong correlations between geometry differences 

and pLDDT values (Supplementary Figures 11 and 12).

Finally, we aggregrate all three bond angle results into correlations and mean absolute 

differences over the entirety of all 20 AF2 protein models we have tested, and compared 

with their average structure confidence score. Figure 7(c–d) indicate that the agreement 

between Int2Cart predicted bond angle geometries and the AF2 model strongly correlates 

with overall model quality, thus supporting using Int2Cart for structure validations. Similar 

conclusions are reached for the bond lengths as given in Supplementary Figure 13.

Using Int2Cart to rebuild an IDP ensemble.

Finally we consider a test case that is quite different from the originally defined test set 

from SidechainNet, in which we show that our Int2Cart method can improve upon the 

Cartesian reconstruction of an ensemble of structures of a disordered protein compared 

to Fixed bond lengths and angles. Figure 8 compares the Cartesian reconstruction RMSD 

distributions for Int2Cart and Fixed for the Sic1 IDP ensemble, in which we find that the 

Int2Cart method is overall closer to the original ensemble, with a 3.1 Å average RMSD 

compared to the Fixed method that has a mean RMSD of 3.4 Å. We have also checked 

the number of steric clashes in the structures generated from these two methods. A steric 

clash is defined as two atoms in the structure that are closer to 0.6 times the sum of the 

van der Waals radii of the two atoms.42 Out of the 1000 conformations, 73 structures 

generated from Int2Cart contained steric clashes, which means 92.7% of the structures are 

clash-free. By comparison, 102 structures generated using fixed bond lengths and bond 

angles contained steric clashes, which translates to 89.8% of clash-free structures. A higher 

proportion of clash-free structures is meaningful because typically structures containing 

clashes are discarded, and a method with higher proportion of clash-free structures wastes 

less computational resources, and supports the application of the Int2Cart algorithm to the 

modelling of disordered protein ensembles.
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DISCUSSION AND CONCLUSION

In this work we have developed a new machine learning approach to the generic 

representation problem of internal coordinates (bond lengths, valence angles, and dihedral 

angles) and how to increase the fidelity of the back-transformation to 3D Cartesian 

coordinates. The Int2Cart algorithm utilizes a gated recurrent unit neural network to predict 

real-valued backbone bond lengths and bond angles for each residue of a complete protein 

sequence given its torsion angle profile. In summary, Int2Cart can reconstruct the Cartesian 

structure of proteins with RMSDs that are significant improvements over the fixed backbone 

bond lengths and bond angles that are the standard practice in a large variety of protein 

modelling approaches, or some recent approaches such as the Protein Geometry Database. 

The success of our algorithm across IDP ensembles further validates that the Int2Cart 

algorithm is transferable among different types of proteins, and can consistently improve 

the quality of Cartesian structure reconstruction. We have also exposed the potential of 

Int2Cart in validating structure quality by showing the agreement on bond geometries 

between Int2Cart predictions and values in an AlphaFold2 model has strong correlation with 

the AlphaFold2 pLDDT confidence metric. Possibilities in refining AF2 structures using 

Int2Cart will be investigated in the future.

In its current form the Int2Cart algorithm only generates backbone structures for the 

target proteins, although we can improve Cartesian reconstruction performance with the 

inclusion of the χ1 torsion and predicting r1 and α1. Theoretical approaches such as the Monte 

Carlo Side Chain Ensemble (MC-SCE) method can utilize the backbone from Int2Cart to 

calculate side chain ensembles in order to complete the full structure. 42 It is also clear 

that there is still room for improvement in the Cartesian reconstruction of larger proteins, 

and the inherent scaling of error with respect to sequence length is inevitable for a deep 

learning model that predicts internal coordinates in a sequential manner (i.e., a GRU model). 

Therefore, it may be possible to improve the quality of Cartesian structure reconstruction 

with a distance-based neural network model, i.e., by representing the 3D coordinates of the 

structure directly.

Nevertheless, the model in its current form already provides a useful computational tool 

to greatly improve the quality of protein structures reconstructed from backbone torsion 

angles alone, whether globular folded proteins or disordered protein ensembles. We envision 

Int2Cart should see broad use in structure refinement and validation43,44 and development of 

protein force fields that could benefit from more accurate valence models of backbone bond 

lengths and bond angles conditioned on other geometrical or sequence features. 45 Finally, 

the Int2Cart GRU neural network model could also be useful for other chain molecules, only 

requiring retraining with new data if available for systems such as nucleic acids and lipids.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Schematic of the polypeptide backbone and internal degrees of freedom.
Definition of the prediction targets: backbone bond angles θ1 − θ3, backbone bond lengths 

d1 − d3, Cα − Cβ sidechain bond lengths r1 and N − Cα − Cβ sidechain bond angles α1.

Li et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2023 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Schematic of the Int2Cart neural network architecture.
The neural network is a gated recurrent unit (GRU) recurrent neural network. The inputs 

at each timestep are the concatenated latent vectors from Gaussian-smeared ϕ, ψ and ω
torsion angles and embedded residue types; variations on the Int2Cart network can include 

the use of χ sidechain angles as well. The latent vector output from GRU are connected with 

multiple output networks to predict different targets.
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Figure 3: Variations of bond angles and bond lengths as a function of (ϕ, ψ), or ω torsion 
angles.
a-f) Bond angle and bond length deviations from the mean values averaged over ϕ and ψ
angles of the training set. The regions of red correspond to wider angles and longer bonds 

while the region in blue show reduced angle and bond values relative to the mean. The 

bond lengths and bond angles were categorized according to ϕ and ψ angles rounded to the 

closest tens, and the data are aggregated by calculating the means and standard deviations in 

each bin. The standard deviations are provided in Figure S1. g-i) Mean values and standard 

deviations of bond angles as a function of ω. The blue solid line represents mean values of 

bond angles at specific ω torsion angles, and the gray regions correspond to one standard 

deviation.
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Figure 4: N − Cα − C bond angle deviations from the mean values averaged over ϕ and ψ
angles as a function of residue type.
The regions of red correspond to longer bonds while the region in blue show reduced bond 

values relative to the mean. The N − Cα − C bond angles were categorized according to ϕ and 

ψ angles rounded to the closest tens.
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Figure 5: Comparison of 3D Cartesian reconstructions of test set proteins using Int2Cart and 
compared to Fixed bonds and angles.
(a) Distribution of the RMSD in reconstructed Cartesian coordinates using Int2Cart and 

Fixed. (b) Comparison of Cartesian reconstruction error between Int2Cart and Fixed relative 

to the reference structure. (c) Improvement of Int2Cart over Fixed as a function of amino 

acid length. (d) An example of the backbone representation using Int2Cart and Fixed for 

the CASP12 TBM0872 protein,40 (e) The SS-match distribution and (f) comparison of 

SS-match for Int2Cart vs. Fixed across the test set.
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Figure 6: Comparison of reconstructed structure Cα RMSD values in the test set as a function of 
sequence length using different sources of bond lengths and bond angles.
The Cα RMSDs were calculated against ground truth structures after using only their torsion 

angles for reconstruction. Shaded regions represent 1 standard deviation. The blue line 

represents Int2Cart, the orange line represents fixed bond lengths and angles, and the green 

line is the PGD method.17
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Figure 7: Correlation between AlphaFold2 (AF2) structure quality and the agreement between 
bond geometries from the AF2 predicted structures and Int2Cart predicted values using torsion 
angles from AF2 structures
(a) Correlation between θ1s (N − Cα − C bond angles) from AF2 structures and Int2Cart 

predictions colored by AF2 pLDDT scores of the relevant residues. (b) Box plot showing 

distribution of AF2 pLDDT scores of individual residues based on absolute difference in θ1

between AF2 structures and Int2Cart predictions. The boxes represent the quartiles of the 

distribution and the whiskers represent the rest of the distribution. Individual data points are 

outliers identified from the inter-quartile range. (c) Relationship between the average AF2 

structure prediction confidence (pLDDT score) and all bond angle correlations between AF2 

and Int2Cart in an AF2 predicted protein structure (d) Relationship between the average 

AF2 structure prediction confidence (pLDDT score) and all bond angle absolute difference 

between AF2 and Int2Cart in an AF2 predicted protein structure.
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Figure 8: Comparison of distribution of reconstruction RMSD for individual conformaions in the 
Sic1 IDP ensemble.
Structures reconstructed with Int2Cart method on average has lower RMSD to their original 

structures compared with using fixed bond lengths and bond angles.
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Table 1:
Quality of Cartesian reconstructed structures using Int2Cart, Fixed, and PGD methods 
normalized by sequence length, and Int2Cart results on different test data categories.

Accuracy is assessed in terms of the median and mean Cα RMSD100 , the root-mean-square error of the 

predicted Cα positions to the reference PDB structure normalized to 100 amino acids based on the test dataset. 

The second half of the table shows the breakdown of Int2Cart results in different similarity categories of data 

in the test dataset including CASP12 (which were after the time cutoff for proteins in the training dataset). All 

units in Å.

Method Median Mean±std

Fixed 3.22 3.47±1.83

PGD 2.92 3.32±1.87

Int2Cart 2.07 2.38±1.36

Test data category Median Mean±std

10% similarity 2.32 2.87±2.07

20% similarity 2.22 2.44±1.15

30% similarity 1.79 1.96±0.84

40% similarity 1.89 2.11±1.35

50% similarity 2.47 2.36±0.94

CASP12 2.06 2.39±1.22
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Table 2:
Ablation studies of internal coordinate inputs and Cartesian coordinate reconstructions.

Upper table: predicted bond lengths and bond angles RMSEs of Int2Cart taking different internal coordinate 

inputs, and corresponding RMSD of the reconstructed Cartesian structure. Each ablation of the input is 

repeated 3 times with different initializations of the machine learning model to obtain statistically meaningful 

results. Standard deviations reflect fluctuations of mean values among 3 parallel experiments. Lower table: 

cartesian structure reconstruction RMSD using different Int2Cart predicted and Fixed combinations of bond 

lengths and angles and binary ω torsion angles. Standard deviations reflect range of reconstructed structure 

RMSDs among different proteins.

Training Model inputs <d> RMSE(Å) < θ > RMSE (°) Reconstructed RMSD (Å)

Residue type 0.010±1E-5 1.84±0.0008 5.21± 0.04

ϕ + ψ 0.010±1E-4 1.69±0.02 4.56±0.07

ϕ + ψ + Residue type 0.010±5E-5 1.63±0.001 4.29±0.02

ϕ + ψ + ω + Residue type 0.010±1E-4 1.50±0.006 3.77±0.03

ϕ + ψ + ω + χ1 + Residue type 0.009±1E-4 1.37±0.004 3.30±0.03

Source of bond geometries Reconstructed RMSD (Å)

Predicted bond lengths and bond angles 3.74±2.94

Fixed bond lengths and predicted bond angles 3.74±2.94

Predicted bond lengths and fixed bond angles 5.38±3.70

Fixed bond lengths and angles 5.39±3.71

Fixed bond lengths, bond angles and using 0∘/180∘ω angles 9.52±6.49
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