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Abstract 

Deep understanding of mathematical equivalence is critical 
for later mathematical understandings. However, research 
studies and national test results have repeatedly demonstrated 
that many students fail to develop adequate understanding of 
equivalence. Recent work from McNeil and colleagues 
proposes that this failure is partly due to the format of 
traditional instruction and practice with highly similar 
problems. Specifically, the change-resistance account 
(McNeil & Alibali, 2005) proposes that students struggle with 
equivalence because they have developed overgeneralized 
“rules” that affect how they process and approach math 
problems, (e.g., the operators are always on the left side, the 
equal sign means to “do something” or “give the answer”) 
and fail to see equations having two separate sides that are 
being related to one another. Extensive practice with 
problems in a similar format (e.g., those that present all 
arithmetic operations on the left side of the equal sign) 
encourages students to develop ineffective mental models of 
problem types. We replicate and extend prior work that brings 
cognitive science research to the classroom. Our findings 
indicate that applying research-based design principles to 
arithmetic practice improves student understanding of 
mathematical equivalence enough to support transfer to novel 
problem types. 

Keywords: Mathematical representations; relational 
reasoning; mathematics education; randomized control trial 

Introduction 
Can a research-based, early elementary intervention help 

students learn key concepts that may prevent later struggles 
in algebra? Research suggests that understanding 
mathematical equivalence is a critical component of 
algebraic reasoning (Carpenter, Franke, & Levi, 2003; 
Charles, 2005; Knuth, Stephens, McNeil, & Alibali, 2006). 
However, the majority of US students fail to reason with 
and apply concepts of equivalence (McNeil & Alibali, 
2005), making encoding errors when remembering 
mathematical equations (e.g., McNeil & Alibali, 2004), and 
interpreting the equal sign to mean “calculate the total” 

rather than “two amounts are the same” (e.g., Behr, 
Erlwanger, & Nichols, 1980).  

Why do so many students lack a relational understanding 
of the equal sign? McNeil and Alibali (2005) proposed a 
change-resistance account: traditional arithmetic instruction 
that focuses on procedures (i.e., solving problems such as  
3 + 4 = _) promotes a misconception of the equal sign as a 
request for an answer and interferes with the development of 
relational understanding. The majority of examples of 
arithmetic problems in early elementary math curricula 
show operations (e.g., addition and subtraction) on the left 
of the equal sign and the “answer” on the right (Seo & 
Ginsburg, 2003). Children detect and extract patterns from 
these examples and ultimately construct long-term memory 
representations. Although default representations typically 
speed computation in the problem-solving contexts that 
children encounter most frequently, these representations 
may lead to difficulties when patterns are mistakenly 
transferred to similar, but non-applicable, problem types 
(e.g., Bruner, 1957).  

McNeil and Alibali characterize the representations that 
develop in early mathematics as “operational patterns” as 
they reflect an understanding of arithmetic that focuses on 
the operators (e.g., +, –, ×, ÷) rather than the relational 
nature of mathematical equations. Research has identified 
three types of operational patterns that represent a distorted 
view of arithmetic and hinder conceptual understanding of 
the underlying mathematics. First, children learn to expect 
math problems to have all operations on the left side of the 
equal sign, with the equal sign immediately before the 
answer blank on the right, an “operations = answer” 
problem format (McNeil & Alibali, 2004). Second, children 
learn to interpret the equal sign operationally as a symbol to 
do something (Baroody & Ginsburg, 1983; Behr et al., 
1980). Third, children learn to perform operations on all 
given numbers in a math problem (e.g., add up all the 
numbers in an addition problem, McNeil & Alibali, 2005).  
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Once entrenched, children rely on these potentially 
misleading patterns when encoding, interpreting, and 
solving novel mathematics problems. Students that expect 
all problems to have operations on the left fail to correctly 
encode the problem being asked. For instance, after briefly 
viewing the problem “7 + 4 + 5 = 7 + __” many children 
rely on their knowledge of the “operations = answer” 
problem format and erroneously remember the problem as  
“7 + 4 + 5 + 7 = __” (McNeil & Alibali, 2004). Students 
also struggle to interpret what a mathematical problem is 
asking. When asked to define the equal sign—even in the 
context of a mathematical equivalence problem—many 
children treat it like an arithmetic operator (like + or –) that 
means they should calculate the total (McNeil & Alibali, 
2005). Finally, entrenched patterns mislead students to solve 
the problem “7 + 4 + 5 = 7 + __” by performing all given 
operations on all given numbers and put 23 (instead of 9) in 
the blank (McNeil, 2007; Rittle-Johnson, 2006). These 
findings support the idea that children’s difficulties with 
mathematical equivalence are partially due to inappropriate 
knowledge derived from overly narrow experience with 
traditional arithmetic.  

The ICUE Intervention 
Current math practice seems to promote the development 

of faulty representations, and the change-resistance 
account’s focus on “operational patterns” offers design 
principles for instruction to improve students’ understanding 
of equivalence. Initially, researchers hypothesized that 
greater exposure to “non-traditional” arithmetic practice 
(e.g., presenting operations on the right side of the equation, 
“__ = 2 + 4,” [McNeil et al., 2011], organizing practice by 
equivalent sums [McNeil et al., 2012], and using relational 
phrases such as “is equal to” instead of the equal sign in 
problems [Chesney, McNeil, Petersen, & Dunwiddie, 
2012]). may prevent students from developing operational 
patterns. Though practice with non-traditional arithmetic in 
a classroom intervention led to improved outcomes over 
traditional instruction, a number of students failed to reach 
proficiency (McNeil, Fyfe, & Dunwiddie, 2015). 

To further promote mastery of equivalence, McNeil and 
colleagues added additional design features beyond non-
traditional arithmetic practice. The current version of the 
materials, dubbed Improving Children’s Understanding of 
Equivalence (ICUE), consists of second grade student 
activities that reduce reliance on operational patterns and 
promote deep understanding of mathematical equivalence 
through four key components that have independently been 
shown to be effective:  

 
1. Non-traditional arithmetic practice (Chesney et al., 

2012; McNeil et al., 2012, 2015, 2011); 
2. Lessons that first introduce the equal sign outside of 

arithmetic contexts (e.g., “28 = 28”) before 
introducing arithmetic expressions (e.g., Baroody & 
Ginsburg, 1983; McNeil, 2008); 

3. Concreteness fading exercises in which concrete, 
real-world, relational contexts (e.g., sharing stickers, 

balancing a scale) are gradually faded into the 
corresponding abstract mathematical symbols (e.g., 
Fyfe, McNeil, Son, & Goldstone, 2014); and 

4. Activities that require students to compare and 
explain different problem formats and problem-
solving strategies (e.g., Carpenter et al., 2003; Rittle-
Johnson, 2006). 

The Current Study: Improving Children’s 
Understanding of Equivalence 

A pilot study found the ICUE intervention was successful 
in improving student understanding of mathematical 
equivalence (Byrd, McNeil et al. 2015; McNeil, Hornburg, 
Brletic-Shipley, & Matthews, under review). The current 
study sought to replicate the findings with a new population 
of students and additionally investigate whether the learning 
transferred to the mathematical practice of generating 
explanations.  

To replicate Byrd et al.’s (2015) pilot study, we compared 
the full ICUE intervention to a control condition consisting 
solely of non-traditional mathematical practice and 
measured students’ ability to encode equations, solve 
problems, and define the relational function of the equal 
sign. 

To test whether the learning transferred to the ability of 
students to generate mathematical explanations related to 
arithmetic problems, we gave students performance tasks 
from the Silicon Valley Mathematics Initiative’s (SVMI) 
Mathematics Assessment Collaborative (MAC). MAC 
partners with the Mathematics Assessment Resource 
Service (MARS) to develop tasks that assess core 
mathematical ideas and practices taught in each grade level. 
Tasks require students to solve complex math problems as 
well as give open-ended explanations of their reasoning. For 
each task, MARS provides scoring rubrics and scorer 
training procedures, student performance statistics, and 
examples of common student errors (Foster & Noyce, 
2004).  

Our research questions were: 
1. Does ICUE promote measurable gains in 

children’s understanding of equivalence?  
2. Do the benefits of ICUE activities transfer to 

generating mathematical explanations?  

Method 

Design 
We used a cluster-randomized control trial design to 

examine the efficacy and generalizability of the ICUE 
intervention relative to an active control program. Teachers 
were randomly assigned to use the either the ICUE 
intervention or Active Control materials. The active control 
consisted of workbook activities to control for time on task. 
The active control contained non-traditional arithmetic 
practice but not the additional components present in ICUE, 
described above. 
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Participants. Five second-grade teachers (three treatment, 
two control) from three California schools used the 
activities in their classrooms. Class sizes ranged from 21 to 
32, and we analyzed data from 81 students who completed 
the ICUE activities and measures and 49 students who 
completed the Active Control activities and measures.  

Procedure and Materials 
The procedure for ICUE Treatment and Active Control 

conditions were identical, differing only in the content of 
the materials used by teachers and students. Each teacher 
received training on the study purpose, features of the 
activities, and strategies for integrating the activities into 
their typical mathematics curriculum.  

Prior to starting the study, participating teachers 
completed online surveys assessing their mathematics 
teaching experience and classroom structure and dynamics.  

After administering a pretest, teachers used the study 
materials for approximately 15 minutes twice each week for 
16 weeks. In both conditions, teachers were asked to use the 
study materials to supplement, rather than replace, current 
instruction, and to limit session duration to 20 minutes.  

After completing the 32 sessions, teachers administered 
the same pretest measure of mathematical equivalence, a 
proximal transfer measure, two measures of transfer to 
mathematical explanations, and the Math Concepts subtest 
of the Iowa Test of Basic Skills. 

 
Active Control. Teachers in the Active Control condition 
received a set of student workbooks (see Figure 1) and a 
teacher guide. 
 

 
 

Figure 1. Sample workbook page from the Active Control 
condition materials featuring non-traditional math practice. 

 
ICUE. Teachers in the ICUE Treatment condition received 
a set of student workbooks (see Figure 2), a teacher guide, 
and a set of classroom manipulatives including balance 
scales and flashcards. 

Measures 
Pre- and post-test measures of mathematical 
equivalence. We assessed children’s understanding of 

mathematical equivalence before and after the interventions 
using similar measures of equation encoding, equation 
solving, and defining the equal sign used in previous work 
by McNeil and colleagues (Byrd et al., 2015; McNeil & 
Alibali, 2005; McNeil et al., 2015). 

 

 
 

Figure 2. Sample workbook page from the ICUE Treatment 
condition materials featuring a concreteness fading exercise. 

  
Equation encoding. The encoding measure consisted of 

recalling four mathematical equivalence problems (e.g., 5 + 
4 = 3 + __) presented one at a time. Each equation was 
visible for five seconds and students were instructed to 
remember and write down exactly what they saw after the 
equation was hidden from view. Responses were coded as 
correct if the student wrote the equation exactly as shown 
(i.e., the correct numbers and symbols in the correct order). 

Equation solving. The equation solving measure 
consisted of eight equations with operations on both sides of 
the equal sign (e.g., 3 + 5 + 6 = 3 + __).   

Defining the equal sign. The defining the equal sign 
measure prompted students to write responses to three 
questions about the equal sign symbol (=): 1) What is the 
name of this math symbol? 2) What does this math symbol 
mean? And, 3) Can it mean anything else? Teachers read 
each question aloud and waited for students to write their 
responses before moving on to the next question. Responses 
were coded as relational if the response defined the equal 
sign as relating two sides of the equation (e.g., two amounts 
are the same, something is equivalent to another thing).1  
 
Measures of knowledge transfer. 

Proximal transfer measure. The proximal transfer 
measure, used by Byrd et al. (2015), consisted of nine more 
advanced problems of mathematical equivalence, not strictly 
aligned with the ICUE intervention. The transfer questions 
included equations with operations on both sides of the 
equal sign involving subtraction (e.g., 2 + 5 + 3 = 14 – __), 

                                                             
1 Although many students in this age range have poor spelling, 

coders did not have trouble determining what a given child had 
written, even when words were misspelled (e.g., “the toltal”, “write 
the anser next”). Inter-rater agreement between coders on whether 
a given definition was relational ranged from 95-100%. 
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larger numbers (e.g., 13 + 18 = __ + 19), “word problem” 
items featuring story-to-equation translation, and an 
“explaining equivalence” problem, which asked students to 
decide whether the same number should appear in two 
equations and explain their reasoning.  

Distal transfer to mathematical explanations. We 
selected two MARS items that tested students’ 
understanding of mathematical equivalence, described 
below. Items were scored by project staff following scorer 
training, calibration, and reliability procedures established 
by MARS (Foster & Noyce, 2004). 

Incredible Equations. In this task, students are asked to 
fill in the missing parts of equations such as “__ + 8 + __ = 
16” and “11 + 5 = __ + 8.” Students are asked to explain 
how they know their answer is correct. When 6,305 students 
took the task in 2007, the mean score was 6.08 out of 10 
with a standard deviation of 2.5 (MARS, 2007). 

Agree or Disagree? In this task, students are asked if they 
agree or disagree with two number sentences: 
“8 + 5 = 5 + 8” and “6 – 4 = 4 – 6”. Students are asked to 
explain their answers using words, numbers, or pictures. 
MARS administered this task to 4,585 second graders in 
2004 and found the mean score was 3.10 out of 6 with a 
standard deviation of 1.94 (MARS, 2004). 

 
Iowa Test of Basic Skills. To make sure any gains in 
understanding of equivalence do not come at the expense of 
problem-solving fluency, students completed the Math 
Concepts subtest of Level 8 of the Iowa Tests of Basic 
Skills (ITBS), which served as a measure of general 
mathematical reasoning. Participation in the ICUE 
Treatment neither helped nor hurt students’ performance on 
this measure, relative to the Active Control group 
(t(83)=1.48, ns), establishing that the intervention does not 
improve understanding of equivalence at the expense of 
general computational fluency.  

Results 

Does ICUE promote measurable gains in children’s 
understanding of equivalence, relative to an Active 
Control? 

We assessed three critical abilities identified by McNeil 
and colleagues as necessary for success in reasoning about 
equivalence (Byrd et al., 2015; McNeil et al., under review):  

1. Equation encoding: the ability to accurately encode 
and recreate an equation after seeing it briefly;  

2. Equation solving: the ability to solve equations that 
feature operations on both sides of the equal sign; and 

3. Defining the equal sign (=): the ability to identify “=” 
as a symbol that signals a relation between two equal 
numbers or quantities. 

 
Specifically, we examined students’ gains in performance 

on identical pre-intervention and post-intervention tests that 
assessed the three abilities above. For each of the target 
abilities, we compared the gains made by students in the 

ICUE Treatment condition to those of students in the Active 
Control condition (Figure 3).  

There were no reliable differences between pretest scores 
for each group, and students in the ICUE Treatment 
condition made substantially greater gains during the 
intervention than students in the Active Control condition. 
The proportion of correct responses for Equation solving 
items increased by 0.65 for ICUE students, compared to 
only 0.065 for Active Control students (t(119)=48.8, 
p<.001; Cohen’s d > 3); the proportion of correct responses 
for Equation encoding items increased by 0.34 for ICUE 
compared to 0.26 for Active Control (t(52)=5.31, p<.001; 
Cohen’s d > 3); and the proportion of correct definitions of 
the equal sign increased by 0.38 for ICUE compared to 0.02 
for Active Control (t(125)=8.42, p<.001; Cohen’s d > 3). 
These results suggest that the ICUE Treatment intervention 
leads to systematic and measureable gains in children’s 
understanding of and reasoning about mathematical 
equivalence.  

 
Figure 3. Mean performance gains from pre- to post-test for 

children in the ICUE and Active Control groups. 

Do the benefits of ICUE activities transfer to more 
challenging material and generating mathematical 
explanations? 

We explored whether the knowledge that children gained 
from the intervention activities transferred to problem-
solving tasks that were not strictly aligned with the content 
and goals of the ICUE or Active Control interventions. We 
first examined performance on a proximal researcher-
developed measure that included a series of complex 
equation solving items, word problem items that required 
translating story content into mathematical equations, and 
an explaining equivalence item that required students to 
justify why two sides of an equation were equal (i.e., “Is the 
number that goes in the � the same number in the following 
two equations? Explain your reasoning.”). We compared the 
performance of ICUE and Active Control students on the 
measure, which was administered after each group 
completed all intervention activities (Figure 4). 
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Figure 4. Mean ICUE and Active Control group 

performance for researcher-developed transfer items. 
 
Students in the ICUE condition scored reliably higher, on 

average, than students in the Active Control condition on 
both complex equation solving items (t(81)=3.44, p<.01; 
Cohen’s d = 1.5) and word problem items (t(129)=5.31, 
p<.001; Cohen’s d = 2.5). However, the groups did not 
differ in their mean performance on the explaining 
equivalence item (t(81)=0.15, ns). 

We also examined transfer to the MARS items. We 
measured post-intervention performance on the “Incredible 
Equations” task (scored out of a possible 10 points) and the 
“Agree or Disagree?” task (scored out of a possible 6 
points). As before, we compared performance by students in 
the ICUE and Active Control conditions, shown in Figure 5. 
As one teacher from each condition failed to return the 
MARS posttest materials, results are reported from two 
treatment teachers and one control teacher. 

Students in the ICUE condition performed reliably better 
than Active Control students on both the Incredible 
Equations (t(54)=2.83, p<.05; Cohen’s d = 0.32) and Agree 
or Disagree? tasks (t(47)=2.36, p<.05; Cohen’s d = 0.43). 

Conclusions   
A deep understanding of mathematical equivalence is a 

key building block for later mathematical understandings. 
However, research studies and national test results have 
repeatedly demonstrated that many students fail to develop 
this understanding. The change-resistance account suggests 
that traditional instruction that relies on extensive practice 
with problems in a single format may be contributing to 
students’ difficulties by encouraging students to develop 
ineffective mental models of problem types. 

In the current study, we sought to replicate and extend 
prior work that brings research from the lab into the 
classroom. The change-resistance account proposes that 
students struggle with equivalence because they have 
developed overgeneralized “rules” that affect how they 
process and approach math problems, (e.g., the operators are 
always on the left side, the equal sign means to “do 
something” or “give the answer”) and fail to see equations 
having two separate sides that are being related to one 
another.  

 
Figure 5. Mean ICUE and Active Control group 

performance for MARS transfer items. 
 

Overall, our findings indicate that applying research-
based design principles in the form of multiple types of 
practice improved student understanding of the critical 
concept of mathematical equivalence. 

Our findings replicate Byrd et al. (2015), who found that 
activities that include the use of the equal sign outside of 
arithmetic contexts, that start with concrete examples and 
fade to extractions, and that explicitly prompt students to 
compare and explain different problem formats and 
strategies improve student understanding of mathematical 
equivalence beyond non-traditional arithmetic practice 
alone.   

Students receiving the ICUE materials demonstrated 
improved performance in equation solving, equation 
encoding, and providing relational definitions of the equal 
sign. These improvements did not come at the expense of 
arithmetic problem-solving fluency, as measured by the 
ITBS. Further, the learning in ICUE transferred to greater 
student abilities to solve complex equations and word 
problems.  

Students in both conditions struggled with the researcher-
developed item that required students to explain 
equivalence. Their poor performance may reflect confusion 
with equivalence that persists for more complicated 
problems with multiple “terms” and different types of 
operators (both addition and subtraction), a confusion that 
was reflected in students’ explanations of their answers. 

The robust improvements on the MARS items supports 
the possibility that the lack of transfer in the equivalence 
explanation question was due to confusion regarding 
multiple terms and operators rather than the ability to 
generate the explanation. These established items, 
developed externally, also asked students to explain 
equivalence, but used blanks, rather than variables, to reflect 
the unknown entities. On both items, students in the ICUE 
condition outperformed the students in the active control 
condition. These findings suggest that the additional 
practice comparing and explaining different problem 
formats helped students gain a deeper understanding of not 
only whether different examples were equivalent, but also 
why or why not. 
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Why is it important to test the synergistic effect of 
research-based design principles? Instructional designers 
face a large number of decisions in selecting appropriate 
activities and tasks for students. Though much research 
seeks to identify how different facets work independently, if 
research in cognitive science is to extend meaningfully to 
practice the cumulative effects of using multiple strategies 
must be tested. Our small-scale cluster-randomized trial 
suggests that the multi-component ICUE intervention was 
more effective than an active control of non-traditional 
arithmetic practice (which in prior work was also more 
effective than traditional instruction).  

Future work, in progress, will test the efficacy of the 
ICUE intervention in a large-scale cluster-randomized trial 
with diverse students across the state of California. This 
work demonstrates how findings in the lab can be 
successfully implemented in authentic classroom settings to 
improve student learning outcomes.  
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