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ABSTRACT: We present INQ, a new implementation of density functional theory (DFT)
and time-dependent DFT (TDDFT) written from scratch to work on graphic processing
units (GPUs). Besides GPU support, INQ makes use of modern code design features and
takes advantage of newly available hardware. By designing the code around algorithms,
rather than against specific implementations and numerical libraries, we aim to provide a
concise and modular code. The result is a fairly complete DFT/TDDFT implementation in
roughly 12 000 lines of open-source C++ code representing a modular platform for
community-driven application development on emerging high-performance computing
architectures.

I. INTRODUCTION

The density functional theory (DFT) framework1,2 provides a
computationally tractable way to approximate and solve the
quantummany-body problem for electrons,3 both in the ground
state and in the excited state.4 In last decades, DFT has been
extremely successful to the point of becoming the standard
method for first-principles simulations in computational
chemistry, solid-state physics, and material science.5−8 This
success has been possible in large part due to computer
programs that can solve the DFT equations efficiently,
accurately, and reliably.9−26

However, there are still many challenges that DFT faces in
terms of theory and computer codes to be applicable to new
kinds of problems.27 One of these challenges is the application of
data science to electronic structure, for example, through high-
throughput material screening,28−30 structure discovery,31 or
machine learning techniques,32−36 where thousands or even
millions37 of DFT calculations are performed. For this, it is
important to manage input parameters, output results,
executions, and error exceptions of simulation codes as simply
as possible.
Another issue is that the standard approximations for

exchange and correlation (XC) functionals fail for many types
of systems.38−40 This is particularly important in time-
dependent DFT (TDDFT)4,41 where the usual adiabatic
approximation for the XC functional misses part of the physics
involved in the description of excited states.41−45 For example,
the adiabatic and semilocal functionals in TDDFT cannot
describe excitons,42 which are important to simulate from first

principles as they control the optical gaps, energy relaxation and
transport pathways of semiconductors, molecular, and nano-
structured systems.
Recently, it has been shown that it is possible to describe

excitons in TDDFT using hybrid functionals and better XC
approximations.46−51 As expected, these improvements come
with considerable additional computational costs.
Fortunately, computing power has increased at a rapid pace in

the last few years, with exascale-level supercomputers coming in
the next few years.52 To use this new hardware to simulate new
physics in more realistic systems, we require new software that
can run efficiently on these modern computing platforms.
The super-scalar central processing units (CPUs) that have

dominated high-performance computing for a long time have
been largely replaced by graphic processing units (GPUs).
GPUs have a much more parallel architecture that offers a
considerably larger numerical throughput and memory
bandwidth than a CPU with similar cost and power
consumption. Unfortunately, GPUs cannot directly run codes
written for the CPU as they need code that is written in parallel
and the GPU memory needs to be managed explicitly.
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This means that existing DFT codes, many started more than
two decades ago, need to be adapted to this new paradigm. This
is not an easy task as the solution of the DFT/TDDFT equations
is quite complex. It involves a combination of algorithms and
computational kernels that need to work efficiently together.
Many of the DFT software packages contain hundreds of
thousands of lines of code. Due to these factors, the adoption of
GPUs in DFT simulations has been slow when compared with
other areas like classical molecular dynamics.53,54 Right now,
only a few DFT codes offer production-ready GPU support and
with limited performance gains for specific cases.55−59

When faced with the necessity of an efficient DFT
implementation that can make use of large GPU-based
supercomputers, we decided that it was more practical to start
an implementation from scratch, instead of modifying an
existing code. We took this opportunity to create a modern code
that profits from current design ideas and programming tools. At
the same time, it is based on years of experience that our team
has in the development of the codes OCTOPUS

14,56,60−63 and
QBALL

20,64,65 (the TDDFT implementation branch from
QBOX

15,66). This allowed us to write INQ, a streamlined
implementation of DFT and TDDFT that is very compact,
only 12 000 lines of code, and that is easy tomaintain and further
develop.
This article gives a complete overview of the design and

implementation of INQ. We show how modern approaches to
coding can be applied to DFT problems with advantageous
results. We then present results of some calculations performed
with INQ and how they compare with other DFT codes in terms
of accuracy. The numerical performance of the code will be the
subject of a future publication.
The current version of INQ uses innovative coding practices to

implement conventional DFT algorithms, including both plane-
wave and real-space strategies that have been used in other DFT
codes. This approach will allow newer algorithmic improve-
ments to be incorporated into INQ in a systematic and fail-safe
way, building upon a solid foundation of tried-and-tested
methods.

II. CODE DEVELOPMENT

We start the article by discussing our general development
strategy for INQ. This is one of the most fundamental aspects of
code development that can make the difference between a
successful piece of software or an abandoned project.
A scientific program is not a static entity that is written once

and used for years without modification. Besides the usual
problems in the code that are regularly discovered and need to
be fixed, modification is essential in software. More precise or
more computationally efficient algorithms and theories appear
and need to be tested or implemented. And finally, computa-
tional platforms change and codes need to be adapted for them.
This is why our main objective when designing and

developing INQ is that it can be easily modified and improved
while providing consistent results and behavior. At the same
time, it should offer all of the features expected of a modern
electronic structure code and the highest performance possible.
We combine several elements to achieve our objective, which we
briefly discuss next and which are expanded in the following
sections.
First, INQ does not follow the traditional code interface based

on input files. Instead, INQ is a library where the user input is a
computer program. We explain our approach in Section III.

Second, INQ has a highly modular structure where the code is
divided into several components with well-defined tasks. In this
way, the different components can be developed and tested
independently. They can also be shared with other codes to
avoid duplication of work and enable collaborative develop-
ment. In fact, we use third-party components when they are
available and, when possible, contribute to their development
(as in the case of LIBXC). This is discussed in detail in Section IV.
A third aspect is the use of modern programming in C++,

explained in Section V, that allows for a high level of abstraction
while retaining the efficiency of a low-level language. The result
is a code that is simple to write and read and that resembles as
much as possible the underlying mathematics. Details like
memory management and parallelization are hidden as much as
possible, and most programmers do not need to worry about
them. A particularly advantageous application of modern C++ is
to facilitate GPU programming. We developed a simple and
general model to write a GPU code that we describe in Section
VI.
An important aspect of the code design of INQ is that we

recognize that it is very hard to determine what is the best code
design a priori, so we do not attempt to do it. When
implementing something, our priority is to have the simplest
implementation that works, write tests, and only then figure out
what is the best way of coding it. And even then, we are always
willing to change it since the “optimal” solution might change
over time depending on other factors.
Finally, for a scientific code, the reliability of the results, and

their consistency after code modification, is essential. With this
idea in mind, we rely heavily on a systematic, exhaustive, and
continuous testing of the code. Tests are written at the same
time, or even before, a new component or feature is developed.67

They ensure that the implementation always gives the expected
results. Once the initial results are validated, the tests verify that
the results do not change when the code is modified or when it is
run on a different platform. In particular, they check that the
CPU and GPU versions of the code give the same results.
We use two types of tests: unit tests and integration tests. Unit

tests are small tests written for every individual component of
the code, a class or function. They verify that the components

Figure 1. INQ source code lines vs time since the start of the project.
Note that the test and code are developed side by side, and the amount
of lines of code is comparable. We find testing fundamental for
continuous development and maintenance of the code. The dip near
11/2019 reflects the removal of theinternal exchange and correlation
(XC) functional computation, which was replaced by the external
library LIBXC. This illustrates the importance of delegating functionality
to other high-quality libraries when possible.
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are giving proper results under all conditions. The reference
values for these tests are normally obtained from analytical
results for known conditions, including corner cases. Integration
tests in INQ are calculations for particular systems whose results
are verified analytically or with other codes. These examples are
designed to span all of the possible types of calculations and
features.
All of the development of INQ is tracked through a source

control system. For this, we use GIT
68 and keep our central

repository on the GITLAB service. As a set of changes are made to
the code, all of the tests are automatically executed by a
“continuous integration” (CI) system provided by GITLAB. We
configured this system to compile and run the code in a variety of
platforms (CPU/GPU, serial/parallel, and different compilers
and libraries). A failure in compilation, or any of the tests, blocks
the changes from being included into the code until they are
fixed.
The CI also uses the CODECOV tool to evaluate how well the

tests are checking all of the lines of code. The code coverage in
INQ is approximately 95%, which means that almost every line of
code is executed during testing.
In Figure 1, we show the number of lines of code in INQ as a

function of time since the start of the project. It illustrates several
things. In the first place, it shows that INQ offers an
implementation of DFT and TDDFT in roughly 12 000 lines
of code (not considering tests). This is quite an achievement
considering that a code that offers similar functionality like QBALL

has more than 60 000 lines. Other electronic structure codes can
reach much higher counts, in the hundreds of thousands of lines
of code. The figure also shows how the tests in INQ are developed
concurrently with the code, and that constitute a significant part
of the total amount of the code.While this might seem a waste of
effort, in fact, it makes development easier and faster by reducing
the time spent on code debugging. The tests make errors much
less likely, and when errors do appear, they are much easier to
detect and fix.

III. INQ USER INTERFACE

INQ follows a modular philosophy: the code is split into different
components with well-defined tasks. Following that idea, INQ

itself is designed as a component that can be used by other
programs. This means that in practice, INQ is not a program that
is executed by users but a C++ library that provides all of the
functionality of a DFT/TDDFT code. Instead of using an ad hoc
input-file format, INQ input files are directly written in standard C
++ and compiled, possibly taking advantage of information
specific to the desired calculation. A sample input file is shown in
Listing 1. While this may require a bit of effort from users, this
approach has several key advantages in comparison to traditional
codes. A similar approach is used by the GPAW code that uses
Python scripts as input17 and by the Atomic Simulation
Environment69 in an attempt to control uniformly different
existing codes with a single Python interface.

Listing 1: Example of an INQ program (equivalent to an input
file) for the DFT calculation of the nitrogen molecular ground
state. The input is a regular C++ source code file that is compiled
normally. Up to line 9, we initialize the code to use INQ. In line
12, we define the interatomic distance for our molecule; note
that the user needs to explicitly give the units, in this case
angstrom. Lines 14−16 create the geometry of the molecule
inside a standardC++ dynamic array (std::vector). In line
18, the ionic configuration geometry and the cell are brought
together in an ionic subsystem. In line 19, an electronic
subsystem (Kohn−Sham (KS) electrons) is created and
allocated across all message passing interface (MPI) tasks
available. Line 20 initializes the electronic plane-wave
coefficients with a guess for the ground-state calculation. In
line 23, a convenience function called “calculate” optimizes the
KS system to the ground state for fixed ion configuration.
Finally, the calculated total energy is printed on the screen.In the

past, quantum simulations were quite expensive and researchers
could only afford to make a few simulations in a research project.
Today, fast computers, efficient and reliable codes, and data
analysis techniques have made it feasible for a single user to
perform large numbers of DFT/TDDFT simulations. In
particular, this has led to the concept of high-throughput
computational materials screening.
The library approach of INQ offers a considerable advantage in

this scenario. In the first place, users need not learn an additional
syntax for writing input files. With INQ, since the input file is
already a program in a general programming language, all of the
automation can be done directly and the code can be easily
integrated with other libraries. For example, we have written a C
++ program that can connect to the materials project70 to
download a structure and use it as an input for INQ.
A particularly complicated part of writing scripts that call a

third-party code is the parsing and postprocessing of results from
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the output files. In INQ instead, users can directly access the
results as data structures instead of having to write parsing
routines for output files. Any postprocessing of the data can be
also done directly and make use of the functionality already
provided by INQ.
An additional advantage is that users do not have to face a

barrier when they need to modify or extend INQ. Since they are
already using C++, it is natural to explore the code and its lower-
level interfaces to tailor INQ for their specific needs. For example,
if a user needs to implement a new observable, they can directly
access the data structures and use INQ operations over them.
The difference between the usual paradigms of calculations

and INQ is illustrated in Figure 2. INQ blurs the boundaries

between the electronic structure code, the input file, and the
calculation processing scripts and merges them all into a
continuum with different levels of abstraction and detailed
access. This continuum gives more power to the users, and
developers of other programs, to adapt the code to their specific
needs.
Another purpose of INQ is to provide highly efficient GPU-

accelerated routines that can be used by other DFT codes that
do not support GPUs natively. As shown in Figure 3, in this
modality, users can run INQ through another code that acts as a
front end, instead of running it directly. The advantage would be
that higher-level functionality can be directly implemented on
top of INQ and that users can use INQ through a familiar interface.
All of the source code for INQ is freely accessible online from

our GITLAB website https://gitlab.com/NPNEQ/inq/. The
code is released under the Lesser General Public License version
3 (LGPLv3). This is an open-source license that allows anyone

access to the source code of INQ and works that derive from it.
We think that this is important to ensure the reproducibility and
transparency of the results and to ensure open access to
science.71,72 Note, however, that this specific license allows other
codes to link with INQ as a library independently of their license.
As developers, we are aware that the installation of a scientific

code can become cumbersome. To make it easier for users to
compile INQ, we aim to provide an easy-to-use build system that
works out of the box in most cases. The build system for INQ is
based on CMAKE, but we use a wrapper script to offer the familiar
configured script. We limit the number of library depend-
encies to the standard ones for scientific codes and include in the
software package libraries that would be difficult for the users to
obtain and compile.

IV. MODULAR STRUCTURE OF INQ

The implementation of INQ is based on a modular design. We
have identified from the code some components that perform
different tasks and turned them into independent components.
It is remarkable how modern coding techniques can make
several separate libraries work together with absolutely no code
interdependence. This is achieved by writing code against
“concepts” or interfaces rather than leaning on specific
implementations.73

This movement toward libraries rather than monolithic codes
is slowly picking up in the community. For example, the
CECAM Electronic Structure Library (ESL)74 is a collection of
modules for electronic structure calculations written in several
languages to help reduce duplicate effort.
The main components of INQ are shown in Figure 4. In the

following subsections, we briefly describe these components. In

Figure 2. Schematically, we develop INQ with the idea of blurring the
distinction between the input and main program. We offer all of the
available opportunities to drive simulations in the same framework that
the low-level functionality is implemented in. This paradigm obviates
the need for input files, output files for postprocessing, and the potential
need to deal with three different languages. A coherent organization of
the information of a simulation is accessible in memory at any level of
the framework. Simple or complex programs can be written in the same
language than the rest of the library; there is no need to invent an ad hoc
input format or language to specify the desired simulation. Simple
simulation tasks (e.g., plain ground-state calculation, time-dependent
propagation) correspond to simple programs that use the library.
Complex uses of the system may need to access advanced levels of
functionality, further development of the library, or interaction with
other third-party libraries (e.g., other molecular codes, machine
learning libraries).

Figure 3. Different paradigms of numerical simulation in relation with
the usage and development. On the left, a traditional paradigm: the
users interact with a monolithic code. The code defines its own
interface and uses the underlying hardware. Even if some users become
developers themselves, the task of developing and the task of usage are
clearly separated. Each new development has to be reflected in the
interface (e.g., input format) for the users. This has the advantage that
the monolithic code has stability and gives well-defined access to
functionality at the cost of development turnaround and efficiency, e.g.,
postprocessing and interaction with other codes are always a separate
task. On the right, the proposed paradigm: the system is prepared in
such a way that users have access to low-, intermediate-, or high-level
functionality. The resulting library offers a trade-off between the level of
access and the level of difficulty (knowledge on the part of the user).
The library hides for the most part specialized interaction with the
hardware (e.g., CPU or GPU) but no more. Simple or complex
programs can be written in the same language than the rest of the
library. Optionally, a more traditional “DFT code” can be adapted on
top of the INQ library, allowing the DFT code to use the high-
performance components and GPU support of INQ while retaining the
traditional interface and capabilities.
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the future, we plan to integrate other components, like SPGLIB,75

to handle symmetries and k-point generation. We also plan to
split other parts of the code into independent libraries once they
have a mature enough interface.
IV.I. MULTI: Multidimensional Arrays. An essential

component needed to implement DFT in a simple and elegant
way is multidimensional arrays. The type of basis that defines
regular grids in real and reciprocal space and the utilization of
massive GPU parallelism make regular contiguous arrays the
ideal data structure to perform numeric operations. Historically,
C++ does not provide any particular kind of multidimensional
arrays, leaving to the user the option to implement or use
different libraries that emulate multidimensional indexed access.
We found that no pre-existing library was particularly suitable for
use in the GPU and with a sufficiently modern design that
matched our needs and therefore choose to implement it
ourselves.
MULTI provides multidimensional array access and descrip-

tion of the data layout in memory, in both CPUs and GPUs. Its
key goal is to abstract as much as possible operations over arrays
and make it easier to write algorithms without compromising
maximum performance. The library also provides interoper-
ability with existing libraries, in particular, numerical ones such
as linear algebra (basic linear algebra subprograms (BLAS)-like)
and fast Fourier transforms (FFTs),76 and the C++ Standard
Library (STL) algorithms.
MULTI is currently heavily used in the INQ implementation and

it is its main internal data structure. Specifically, electronic state
data (complex coefficients) is viewed simultaneously, depending
on the part of the code, as two-dimensional (2D) or four-
dimensional. Three-dimensional (3D) subarrays can represent
the spatial (volumetric) structure of the problem in either real or
reciprocal space. This referential manipulation of arrays (also
known as “views”) allows us to minimize copies and especially
avoid copies between GPU and CPU.
In addition, arrays can support different memory spaces (e.g.,

GPUs) through custom pointers. The use of custom pointers
allows us to syntactically separate (at compilation-time) GPU
and CPU memories and their corresponding operation (e.g.,
choose between a GPU and CPU code to dispatch an abstract
operation). Finally, the library is responsible for memory
allocations, which are notoriously slow in the GPU. In INQ, the
library allows reducing the number of allocations by optionally
managing internal blocks of preallocated memory.

The fact that this library is used in a completely different HPC
code, QMCPACK,77 is witness to the general purpose aspect of
this library.

IV.II. B-MPI3: Message Passing for C++. INQ achieves
distributed-memory parallelism (parallelism between several
nodes) using the message passing interface (MPI) infra-
structure, including extensions that allow direct GPU to GPU
data transfer. The problemwith standardMPI is that its interface
can be quite cumbersome to use since it requires a large amount
of user-provided information (explicit types, data pointers,
layout) even for constructing simple messages. To avoid this
issue, the low-levelMPI calls in INQ are wrapped by a higher-level
library called B-MPI3.
B-MPI3 is a C++ library wrapper for version 3.1 of the MPI

standard that simplifies its utilization, maintaining a similar level
of performance. We find this C++ interface more convenient,
powerful, and less error-prone than the standard MPI C-based
interface. For example, pointers are not utilized directly and it is
replaced by an iterator-based interface and most data, in
particular, arrays and complex objects are serialized automati-
cally into messages by the library. B-MPI3 interacts well with the
C++ Standard Library and containers and can take advantage of
the aforementioned MULTI array library. The library is general
purpose and, as a standalone open-source project, it can be
reutilized in other scientific projects, also includingQMCPACK.77

IV.III. PSEUDOPOD Pseudopotential Parser. Pseudopoten-
tials are an essential part of electronic structure codes that rely
on uniform representations like plane waves or real-space grids.
They provide two benefits: make the wave functions smoother
around the nuclei and avoid the explicit simulations of the core
electrons. There are many types of pseudopotentials, and even
within each type, there are multiple ways of generating them.
This means that users normally have to carefully select the
pseudopotentials they want to use from dozens of options.
To make things worse, pseudopotentials come in many

different file formats that are not compatible with each other.
The idea of INQ is to support as many formats as possible instead
of introducing a new one, as this gives the largest possible
flexibility for users. This means we need to know how to parse
most pseudopotential formats. This is a task that is fairly
disconnected from the rest of a DFT code, which only needs to
access the pseudopotential information in memory. Based on
this, we decided to make an independent library, named
PSEUDOPOD, that could take care of this task and other
pseudopotential-related functionalities.

Figure 4. Simplified architecture of the INQ code and the main library dependencies. The first layer of libraries corresponds to facilities directly related
to the implementation of DFT and TDDFT. The facilities are understandable for a professional researcher in the theory of electronic structure: access
to different exchange and correlation functionals and pseudopotential information. Various array representations of states, and spatial discretizations,
high-level linear algebra operation, like orthogonalization, application of Hamiltonian, and representation of potential fields and the communication
patterns. At the lowest level, we have very specialized libraries, usually vendor-specific, that can be switched depending on the platform.
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The goal of PSEUDOPOD is to provide a fully standalone library
that can be used for other electronic structure codes. PSEUDOPOD
is based on code written for OCTOPUS and QBALL, and as such, it
has been tested quite extensively. It provides INQ and any code
that uses it, a unified interface, independent of the file format, to
access the information in pseudopotential files. This interface is,
in addition, GPU-aware, so that the construction of the potential
and projectors by the calling code can be done directly from a
GPU kernel.
PSEUDOPOD can parse several popular formats likeUPF1 and2

(QUANTUM ESPRESSO (QE)), PSML78 (SIESTA), psp8 (ABINIT),
and QSO (QBOX). This includes Optimized Norm-Conserving
Vanderbilt (ONCV) pseudopotentials.79 The formats based on
XML files are parsed using the RAPIDXML library. (RAPIDXML is a
simple library that is distributed with PSEUDOPOD, so the users
need not install it separately.)
PSEUDOPOD also has additional functionality, as it includes

routines to filter pseudopotentials to remove high-frequency
components and avoid aliasing effects,11,80 something that INQ

uses and that is essential for real-space DFT codes. It also
provides auxiliary routines like Bessel transforms, range
separation, and spherical harmonics that codes might need to
process and apply pseudopotentials.
Finally, a very important functionality of PSEUDOPOD is to

handle pseudopotential sets. Pseudopotential sets are a relatively
recent development that makes it much simpler and reliable to
run DFT calculations. Several research groups have provided a
collection of pseudopotentials for most of the elements in the
periodic table,81−88 which have been curated and validated. This
means that users do not need to select individual pseudopoten-
tials but they can just pick a consistent set of them.
PSEUDOPOD contains as part of its files two of these sets:

Pseudodojo88 and SG15;86 so they can be used directly by the
code without needing to download separately by the user. The
calling code only needs to select the set and requests the
pseudopotential for the specific element.
IV.IV. LIBXC and GPU Support. LIBXC is a standalone library

of exchange and correlation (XC) functionals initially developed
byMarques.89,90We rely on LIBXC to calculate the XC energy and
potential for DFT calculations. This refers to a number of
programmed analytic functions that map values of the density
and density gradients to energies (and higher derivatives
thereof). This is a part of an electronic structure code that
requires a lot of code and that is quite cumbersome and error-
prone to implement. The effect of adopting LIBXC can be seen in
Figure 1; it shows a big drop in INQ’s line of code count early on
when we started to rely on this external library instead of a few
internal functionals.
One previous limitation of LIBXC is the lack of native GPU

support. In general, the cost of the XC evaluation is
comparatively small in a DFT code, so the computational cost
difference is not very large. However, a CPU-only implementa-
tion forces the code to copy data back and forth between the
CPU and the GPU, which is expensive. So, for an efficient GPU
code, we need to evaluate the XC functional on the GPU.
As part of the development on INQ, we implemented a GPU

version of LIBXC based on CUDA and contributed it back to the
official version of the library. Our implementation makes
minimal changes to the library and relies on CUDA “unified
memory” to store the internal data structures on LIBXC.

V. MODERN C++ PROGRAMMING

Ideally, a programming language should allow us to express the
physics clearly, without exposing too much the implementation
details or the underlying data structures. At the same time, it
should be efficient so that the programmer has control of what
the low-level code is doing and it does not introduce spurious
operations. Additionally, the availability of compilers, port-
ability, and compatibility with GPU computing are key to this
project. Considering all of these factors, we decided to use C++
for INQ.
C++ is an evolving programming language that is especially

attractive to create high-performance applications. Due to its
legacy, it is a system language that allows us to control low-level
hardware operations while at the same time offering various
abstraction mechanisms to represent complex problems.
Separate compilation and linking allow interoperability with
hardware, vendor-specific libraries, as well as abstraction
libraries. The combination is ideal for simulation problems
that require high performance but also require expressing
simulation steps with reasonable simplicity.
In C++, there is no single way to use the language; a rather

complex syntax allows paradigms to coexist in a single unit of
code, usually correlated with the level of abstraction. The
absence of a single paradigm requires certain discipline, which
we describe below as modern techniques. Techniques change as
the language evolves and the community continues research.
Yet, some characteristics tend to stick as they are deemed to
produce good code. Here, we mention some of these techniques
that are relevant to this simulation code, in particular.
A simulation code usually deals with the manipulation of a

simulated system whose state is represented by a set of program
variables stored in memory. Historically, academic codes tend to
make this state global to the program since usually only one
system is simulated at a time. This state is usually represented by
global variables or variables that are designed to live for the
whole duration of the program execution. A global state makes it
easy to access the data of the simulation from any place in the
program; it makes the code very easy to change and reduces the
number of arguments taken by functions that otherwise run in
the tens of arguments. In addition, the memory associated with
the system does not need to be managed by any special
mechanism; in the worst case, memory is released by the
operating system itself once the program shuts down.
Global state has a long-term maintenance cost though; the

program becomes hard to reason about because changes to the
state of the simulation can be made by any part of the code in an
inconsistent way, by parts that can be far removed from each
other. Global state also implies the existence of a single
simulation object at a time; generalizing the code to simulate
several systems simultaneously is hard to achieve or requires the
use of isolated instances of the program.
As explained, we designed the code to be run as a standalone

code or as a library. As a library, the constraint of a single
simulated object is not natural and overly restrictive. Besides, a
library needs to interact with other unknown-in-advance parts of
the program and therefore cannot take over all of the resources
or memory to itself. Therefore, we rejected the idea of a single
global simulated system from the start of our design.
It turns out that this fundamental decision led us to use other

interesting techniques. First, since simulated systems had to be
manipulated by functions, and there is no single instance of it,
functions have to take the simulation variables explicitly.
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Therefore, sets of variables associated with a system are naturally
bunched together as objects or user-defined C++ classes. Also,
objects can be more easily protected against inconsistent
modifications (or against modifications at all) by certain
functions if they do not naturally need to modify the state.
In all realistic settings, computers have limited resources. Each

object or subobject requires controlled access to resources.
Since an object’s lifetime is not indefinite, in general, in our
programming paradigm, the request for resources should be
accompanied by release when the resource is no longer needed.
It is key to recognize that resources include more than just
memory; it includes file handles, MPI communicators, threads,
mutexes, GPU memory, or anything that is limited in a
computer. Any resource can leak if not properly managed.
Ideally, this management should be automatic and not explicitly
coded.
C++ can emulate automatic and deterministic management,

by which any resource that needs explicit control can be
requested on the construction of a manager object and released
upon its destruction; after that, most resources are managed
automatically by scopes or logical units of the code (such as
functions or other higher-level classes).
Finally, in scientific programming, the code is an expression of

equations and mathematical operations of a certain model or
theory. Ideally, the code should represent as closely as possible
the mathematics to make the software simple to understand,
write, and verify. Unfortunately, this is not always possible to
achieve as programming languages offer limited expressiveness
and when they do, they usually come with a considerable
performance overhead. The key point is that performance (or
scalability or computational complexity) itself cannot be
abstracted away or hidden from the user. In modern C++, it is
possible to design the code such that simple expressions can be
written without penalizing performance. For example, in INQ, the
application of the Hamiltonian, and other operators, in the code
looks as simple as

while in most DFT codes, the Hamiltonian operator (if it exists
as such) is a complicated function with many arguments.
Moreover, the above syntax achieves optimal performance
without unnecessary copies, an issue that plagued old ways of
utilizing the C++ language.
Such simplicity allows the developers to focus on writing

algorithms and equations and not on the intricacies of the
specific data structures in the code. Additionally, it is a
polymorphic code that can work with any type of Hamiltonian
operator. The previous line is an example of code that is written
with a “concept” in mind, rather than a specific implementation
of the phi or Hamiltonian objects. For example, in INQ,
many algorithms are tested with a simple “Hamiltonian” given
by a simple dense Hermitian matrix, using exactly the same
routine that works for any type of operator. The idea is that as
long as the operation makes sense syntactically and that
reasonable developer(s) of the code agree on the semantic
meaning of an operation, a function can be written
simultaneously for different classes that share the same
conceptual meaning. This type of code becomes a template, a
fundamental C++ feature, that can be compiled into very
different machine code, even using different underlying
numerical libraries, but still representing the same conceptual
operation. C++ templates not only make code more generally
applicable but also have the side effect of “late binding”. This is a

feature by which the actual machine code is compiled only when
all information about the code is available. More importantly,
template functions can have injected code, allowing the compiler
to optimize code across function boundaries, including inlining.
These ideas are part of a very productive trend in C++ called
generic programming, which is based on a well-defined
mathematical reasoning.91

VI. GRAPHIC PROCESSING UNITS

Programming on GPU presents some unique challenges for
code developers. The main ones are that the GPU has its own
memory space where data must be stored prior to use and that
the code has to be explicitly parallelized. Because of this, it is
challenging to adapt an existing code to run on the GPU, as
extensive modifications to the whole code are needed. This is
one of the reasons we decided to start a new code, designed from
the ground up to run on GPUs (but that also runs on CPUs).
This effort is guided by our previous experience in the GPU port
of the code OCTOPUS.56,62,92

Since GPUs from different vendors are available or will be
available in the near future, it is essential to design a code that is
portable and that ideally is performance portable. That is, the
code can run on different platforms and moreover it can run
efficiently on all of them without extensive retuning.
With this objective in mind, we studied the different available

platforms for high-level GPU programming like RAJA,93

KOKKOS,94 OPENMP,95 and SYCL.96 Unfortunately, we could
not find the one that was directly suitable for the operations
needed for DFT/TDDFT and that was mature enough at the
moment we started the project (mid-2019). So we decided to
design our code using the CUDA C++ extensions with a thin layer
of abstraction on top, which allows us to make most of the code
independent of the GPU backend. This layer has two
components that take care of different tasks; a scheme of this
approach is shown in Figure 5. The first component is theMULTI

library that takes care of allocations, array copies and
transpositions, and GPU-accelerated libraries for linear algebra

Figure 5. Two components that INQ uses to run GPU code. MULTI is an
array library, which, besides the multidimensional indexing abstraction,
takes care of memory allocations and memory copy and provides an
interface for lineal algebra and fast Fourier transforms. gpu::run is a
simple abstraction layer to run kernels and perform reductions on the
GPU. This layer of abstraction allows us to write code that is agnostic to
the specific processors that are used. Right now, we are based on CUDA,
but in the near future, we plan to support the code on AMD and Intel
GPUs. Both MULTI and gpu::run also support execution on the
CPU, so we do not need to write duplicated code for each processor
type.
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and FFTs. The second one is a routine we wrote called
gpu::run. It executes kernels on the GPU and adds some
extra functionality like the calculation of reductions. To adapt
INQ to other GPUs, we will just need to extend these two
components and not the whole code.
To simplify the code and its development, we use what Nvidia

calls managed memory, a type of memory that can transparently
be accessed from the CPU and GPU. However, a large
performance price is paid when the memory is accessed (even
inadvertently) from the wrong processor. Our memory
management philosophy is to assume that all of the data will
be kept in the GPU memory. We think this is reasonable since
the amount of memory on the GPU is increasing substantially
and that the individual GPU memory requirements can be
reduced using more MPI nodes with GPUs. This contrasts with
the upgrade strategy followed by many CPU legacy codes, in
which some identified tasks are delegated to the GPU together
with a two-way copy of data from CPU to GPU and back.
In the code, we use MULTI arrays that are allocated in CUDA-

managed memory, so that they can be accessed from both CPU
and GPU codes. This completely hides both the allocation and
memory location in most of the high-level code. However, our
experience in the optimization of the code shows that managed
memory can slow down significantly GPU kernels accessing
large memory blocks, memory that has been just allocated. To
avoid this problem, it is necessary to selectively use a “prefetch”
call after allocation to speed up kernel execution considerably.97

The MULTI library offers generic operations like matrix
multiplications and FFTs that, behind the scenes, are dispatched
by the compiler to the corresponding library. For example, BLAS
for the CPU data and CUBLAS for (Nvidia) GPU data. This
allows us to abstract a large part of the operations and make
them run as efficiently as possible using vendor-optimized
libraries under a common syntax.
There are, however, several operations in a DFT code that are

quite specific and are not available from external libraries. For
them, we have to write our own GPU kernels in the CUDA

language, which is an extension of the C++ language. We use
modern C++ to do this in a simple, readable, and portable way.
C++ offers a nice way of defining functions locally (inside

another function) called lambdas. These lambdas can “capture”
local information and they can be passed to other functions, such
as GPU kernels. Based on this functionality, we wrote a simple
function to execute lambdas on the GPU called gpu::run.
The idea behind this function is that it can replace loops in a way
that is similarly readable. Unlike the C++ STL, gpu::run is
oriented to the index execution pattern in multiple dimensions
and not to one-dimensional (1D) data structures.
This is a simple example of gpu::run. Consider the

following double loop that is how a standard CPU code would
be written

With gpu::run, we would write this code like this

(Where the lambda “capture” arguments [...] are omitted for
brevity.)
The number of size arguments (2 in this case) determines

how many loops there are and what are the corresponding index
ranges (0 to m and 0 to n in this case). The last argument is a
lambda function that indicates the work that each iteration does.
When compiling for the CPU, the code above is interpreted as
normal loops, just like the original code. When compiling for the
GPU, the lambda is executed in parallel inside a GPU kernel
instead of loops.
Many operations can be written in this fashion, such as

element-by-element transformations or copies. The main
exception happens when there are sums (or in general
reductions) inside some of the loops. So we have implemented
a special case of gpu::run for these cases.
Take, for example, the case of a matrix multiplication. This can

be written in a loop like this

Notice that there is a sum in the loop over k. In that case, to use
the version of gpu::run we just showed, we would need to
include the loop with the reduction inside the lambda, like this

The problem with this strategy is that it is not very efficient on a
GPU in the case when m and n are relatively small compared to
k. So we need a more general solution that also parallelizes the
loop over k on the GPU.
In general, performing reductions in parallel over GPU code is

not simple since horizontal communication between threads is
not straightforward. The main strategy for reductions is to
perform a tree-based approach,98 even though more advanced
hardware-dependent strategies exist. Our approach in INQ was to
implement this reduction algorithm and expose it through a
special gpu::run interface. This would make the matrix
multiplication look like this

As before, the m and n are normal iterations, while the
gpu::reduce tag around k indicates that a reduction should
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be performed over this dimension (third index). The result of
the reduction is returned as an array c of dimensions n by m.
Note that in this case the lambda must return a value for each
iteration; this is the value that will be accumulated.
This strategy allows us to easily write operations that

otherwise are complicated to implement on the GPU. Plus,
they hide the reduction algorithm that could be optimized
depending on the specific hardware.
Please note that we used the matrix multiplication just as an

example in this section. In INQ, we always use gemm for matrix
multiplications, as it is much more efficient as it is optimized by
the vendor for each platform (e.g., as part of CUBLAS). Themain
objective of gpu::run is to allow us to quickly write GPU
code for many operations. Some kernels that are critical for
performance might need further optimization.
It is well known that allocation (explicit request of memory)

and deallocation (release of memory) of GPU memory are
relatively time consuming. Therefore, it is paramount to avoid
these types of requests in performance-critical parts of the code.
A naive approach, such as making the variables live in larger
scopes, or even making them global, can spoil the architecture of
the program. Instead, INQ adds another layer of abstraction by
utilizing custom memory allocators that can optimize memory
management for particular use patterns. Specifically, large
chunks of memory can be recycled across different objects
avoiding the costly system-level release of memory.

VII. DISTRIBUTED-MEMORY PARALLELIZATION (MPI)

If we want to model large systems, it is essential to use
distributed-memory parallelization, where the code runs
simultaneously over multiple nodes at the same time (up to
hundreds of thousands in some cases). For this parallelization,
we use the standard message passing paradigm, where each
process has its own data and can exchange information with
other processes.
The simplest and more efficient method of parallelization for

message passing is to distribute the data among processors, with
processors executing mostly the same code (single-program
multiple data).99 It allows us to increase the number of
processors as the problem size increases. The challenge is to use
an optimal data distribution to avoid communication as much as
possible. In the case of INQ, this means a distribution of the arrays
that is optimal for parallel FFTs (this is explained in detail in
Section VIII.III).
DFT and TDDFT have traditionally performed very well in

CPU-based parallel supercomputers.20,61,66,100,101 However,
GPUs present additional challenges for parallel programming.
While GPUs can compute much faster than a CPU, network
communication hardware has not seen a similar jump in
performance. This means that the relative cost of communica-
tion with respect to computation has increased in GPU-based
supercomputers. On top of that, communicating data between
GPUs through MPI can be challenging to implement for
vendors.
In INQ, we directly callMPI over data in GPUmemory. Ideally,

most modern MPI implementations are GPU-aware and can
recognize the GPU memory space and they can directly access
data. In the best scenario, they can also communicate the data to
and from GPU memory without passing through the main
memory, but this is not always the case. For non-GPU-aware
implementations, managed memory residing on the GPUwould
be automatically copied to main memory before MPI calls.

Unfortunately, this last case has a non-negligible overhead in the
communication cost.

VIII. DFT AND TDDFT IMPLEMENTATION
In this section, we describe the physical model that INQ

simulates, the solution algorithms, the main data representation,
and the computational kernels we need to use.
The density functional framework provides a way to calculate

the density, and other observables, of an interacting many-body
system using a non-interacting system as reference.4 The main
quantities are then the density n and the set of Kohn−Sham
(KS) orbitals (or states) φk of the reference non-interacting
system. Mathematically, these objects are fields or functions:
they have a value associated with each point in space. The
density is generated from the occupied orbitals by the formula

∑ φ= | |r rn t t( , ) ( , )
k

k
2

(1)

The operator that generates the dynamics of φk is the KS
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The first term is the Laplacian operator that represents the
kinetic energy. The second term is the sum of the potentials of
the ions, at positions RI, represented by a nonlocal
pseudopotential. vpert represents a possible time-dependent
perturbation, for example, an external electric field. The two last
terms vh[n](r) and vxc(r) mimic the electronic interaction in the
density functional approach. They are, in principle, functionally
dependent on the density at all points and, for the time-
dependent case, at all past times.4

The actual dynamics of the electrons is obtained from the
time-dependent KS equation
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Note that because of the density dependence in Ĥ, this equation
is coupled with eq 1, so both must be solved self-consistently.
In the stationary case, eq 3 yields the ground-state KS

equation2
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The real-time equation for the electrons (eq 3) can be coupled
with a set of classical equations of motions for the ions under the
force generated by the electrons. This produces Ehrenfest
dynamics102,103 that approximates the nonadiabatic dynamics of
the system.
Our idea is to provide a computational toolkit that allows not

only to solve eqs 3 and 4 but also to perform all of the operations
that appear in the density functional approach as distinct code
routines. All of these routines are well tested and implemented
so that they can execute efficiently and transparently on CPUs,
GPUs, and MPI parallelization. This will allow INQ developers
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and users to implement new functionalities and test new theories
in a simple-to-use and fast framework.
The main choice for a density functional code is to select a

basis where the orbitals, densities, and other fields are going to
be represented by a finite amount of data. In INQ, we use the
popular plane-wave approach, which, despite the name, actually
uses two representations. One is the basis of plane waves or
Fourier space (FS), while the second one is a real-space grid.
This is advantageous because the Laplacian operator is diagonal
in Fourier space, while the potential terms are local or semilocal
in real space and because we can go efficiently between the two
representations using FFTs. Of course, other alternatives exist
for the discretization of the equations. In chemistry, the
dominant approach is to expand the fields into a set of atomic
orbitals, usually represented by Gaussian wave functions.104,105

In real-time TDDFT, it is quite common to use real-space grids
where the Laplacian operator is approximated by high-order
finite differences.10

VIII.I. Ground-State Solution. To obtain the ground state
of an electronic system in DFT, we need to solve the KS
equation (eq 4) numerically. We follow the standard approach
of directly solving the nonlinear eigenvalue problem through a
self-consistent iteration that deals with the nonlinearity, which
appears through the density dependency.12 Each iteration, we
need to solve a linear eigenvalue problem for the Hamiltonian
operator for a given guess density. The solution gives a new
density that is mixed with the previous guess density as a guess
for the next iteration. When the input and output densities are
sufficiently similar, the solution is converged.
The mixing of the density in each step is relatively simple to

implement and does not require much computation while, at the
same time, stabilizing the convergence of the iterative solution.
In INQ, we use the Broyden method106 by default. The code also
implements (static) linear mixing and Pulay mixing12,107 as
alternatives.
The computationally expensive part comes from the solution

of the eigenvalue problem. Since the dimension of our space can
be very large, it is not practical to use a method that directly
works over a dense matrix (e.g., the basis representation of Ĥ).
Instead, we use eigensolver algorithms that only need the
application of the operator over trial vectors.108 These methods
are usually called iterative since they progressively refine
approximate eigenvectors until convergence is achieved.
(However, it must be noted that as a corollary of the Abel−
Ruffini theorem all eigensolvers, including the dense-matrix
ones, must be iterative in some sense.109)
In practice, it is not necessary or convenient to fully solve the

eigenvalue problem in each self-consistency iteration. Instead, a
few iterations of the eigensolver are done at each step, so
eigenvector and self-consistency convergence are achieved
together.
The eigensolver we use in INQ by default is the preconditioned

steepest (SD) descent algorithm. This is a simple method that
has the advantage that it can work simultaneously and
independently on all eigenvectors, which is particularly useful
for GPUs, as it makes a lot of data parallelism available. (We are
working on the implementation of the RMM-DIIS method12

that converges faster than SD and is also highly parallelizable.)
We also implement the conjugate gradient110 and Davidson111

eigensolvers; however, they do not perform as efficiently as SD at
themoment. For preconditioning, we use themethod of Teter et
al.112 that is applied in Fourier space.

As part of the eigensolver process, we need two operations
that involve rotations in the space of eigenvectors: orthogon-
alization and subspace diagonalization.12 The cost of these
procedures is dominated by linear algebra operations that scale
cubically with the number of atoms, while other operations are
quadratic. As this linear algebra becomes dominant for large
systems, it is important to perform them efficiently. In the serial
case, this is not complicated to do, since highly optimized
versions of BLAS113 and LAPACK

114 are available for the CPU and
GPU. For the parallel case, the situation is more complicated at
the moment. While the SCALAPACK

115 library provides a set of
parallel linear algebra routines, it only runs on CPUs. The SLATE

library,116 currently under development, in the near future will
provide a modern replacement for SCALAPACK. Until SLATE is
complete or another library becomes available, INQ cannot fully
run in parallel for ground-state calculations. Only domain
parallelization is available.
An important aspect of the solution of the ground state is

selecting an appropriate initial guess for the density and the
orbitals. The density is initialized as a sum of the atomic density
of the atoms obtained from the pseudopotential files. The
orbitals are initialized as random values for each coefficient in
real space, uniformly distributed in a symmetric range around 0.
We have found that this produces orbitals that are linearly
independent and that contain components of the ground-state
orbitals.
However, special care must be taken when running in parallel,

both in the GPU and in MPI, with the generation of random
numbers. If each parallel domain uses a different random
number generator, the initial guess would depend on the
number of processors used, making it difficult to get consistent
and repeatable results. (And this is without even considering the
issue of correlation between generators, which can happen in
parallel.) Our solution was to use a permuted congruential
generator (PCG)117 that can be fast-forwarded by skipping steps
in logarithmic time. So, when running in parallel, for each point,
we can forward the generator to obtain the same number it
would have in the serial case. This approach produces random
orbitals that are exactly the same independently of the number
or processors used and independently of whether we are running
on the CPU or GPU. The overall cost of the randomization is
quasi-linear, and in practice, we see that it is negligible compared
to other operations. For the implementation, we use the small
library provided by the author of PCG, which wemodified to run
on GPUs.
Having a consistent starting point that does not depend on the

parallelization is essential for testing. Otherwise, it would be very
hard to determine whether differences in the results come from
errors in the MPI or GPU parallelization or from the differences
in the starting guess.

VIII.II. Real-Time Propagation. Time propagation is used
to calculate excited-state properties by following the real-time
dynamics of the electrons under external perturbations. It can be
used to calculate a large number of linear and nonlinear response
properties. It requires the integration in time of the time-
dependent KS equation (eq 3).
How to perform the real-time propagation efficiently is an

area of active research, and many methods have been
proposed.64,118−123We use the enforced time-reversal symmetry
(ETRS) propagator with the exponential approximated by a
first-order Taylor expansion.118 This is a quite popular method
due to its efficiency, numerical stability, and relatively simple
implementation. However, we have introduced an additional
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“trick” with respect to previous implementations that allows us
to reduce the computational time by 33%.
In ETRS, the propagator is

φ δ δ φ| + ⟩ = − + − | ⟩i
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Since H(t + dt) is not known due to the nonlinearity of the
equations, we need to approximate it. This approximation is
usually obtained from performing a full-step propagation of the
states

φ δ φ| + ⟩ = − | ⟩t t tH t t( d ) exp( i ( )) ( )n n
approx

(7)

From |φn
approx(t + dt)⟩, we then get an approximation for n(r, t +

dt), and from there, H(t + dt).
Hence, for each step of ETRS, we need to calculate three

exponentials, two in eq 6 and one in eq 7. The important detail is
that two of these exponentials, exp(−iδ/2tH(t))|φn(t)⟩ and
exp(−iδtH(t))|φn(t)⟩, have a very similar form. They only differ
by a factor of 2 in the exponent.
Let us consider the truncated Taylor approximation of the

exponential of an operator multiplied by a scalar
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When we evaluate this expression numerically, the expensive
part is Ak|v⟩. It is easy to see then that we can evaluate this
expression for several values of λ for almost the same cost of a
single value, since λ only appears as a multiplicative coefficient.
In practice, this means we can calculate together two of the three
exponentials needed for ETRS, reducing the cost to only two
exponentials per step.
For Ehrenfest dynamics, we propagate the ions with the

velocity Verlet124 algorithm using the forces given by eq 11. Both
electrons and ions must be propagated consistently to ensure
that the ionic potential is evaluated at the correct time in eq 6.
Otherwise, the time-reversal symmetry is broken and a drift
appears in the total energy.
The propagation of the ion that coordinates itself is not

numerically expensive. However, it is the calculation of the
forces from the electronic state and the recalculation of the ionic
potential that can be the most time consuming when including
ion dynamics. For these reasons, these operations must be
implemented efficiently and run on the GPU.
One significant advantage of TDDFT is its potential for

parallelization. The real-time propagation in TDDFT conserves
orthogonality of the KS states mathematically and also
numerically.103 The first consequence of this property is that,
unlike the ground state, we do not need the orthogonalization
operation, which makes the overall cost of the time propagation
quadratic with the size of the system instead of cubic. The
second consequence is that the propagation of each state is
independent of the rest, with the only “interaction” between
them coming from the self-consistency of the equations. This
means that it is very efficient to parallelize the propagation by
distributing states among processors.61

VIII.III. Fields. A fundamental data structure in INQ is the
field type, which represents a mathematical function or field in
a finite domain. The information it contains is a basis and the
coefficients of the field in that basis. Quantities represented by
field are, for example, the density and the local potential.

A property of the basis used inside a field is the type of
representation, for example, real space (RS) or Fourier space
(FS). This type of basis is represented through C++ types, which
allows us to define polymorphic functions that work over a
field, independently of the basis on which it is represented. For
example, the gradient function can both accept a field in
RS or FS as input and perform the correct operation for each
case. Of course, INQ provides functions to transform a field from
one representation to the other by an FFT.
In both RS and FS, the coefficients in a field have a

geometrical structure as a three-dimensional (3D) array.
However, for many operations that do not rely on a geometric
context, it is more convenient to access the coefficients as a one-
dimensional (1D) array. Thanks to MULTI, a field object offers
both a linear and 3D view of the coefficient data. Both
representations share the underlying data so no copies are done,
and the access is done without any overhead in both cases.
When running in parallel, a field is distributed by giving each

processor a part of the coefficients. A large part of the operations
we need to perform are local; they do not mix information from
different coefficients. Integrals can be calculated efficiently by
computing the local sums on each processor and then
performing a reduction operation over all of the processors.
For this, the field also includes a communicator that allows
communication between all processors that contain parts of the
field. The operations that really mix information from all points,
and use the larger amount of communication, are the FFTs
required to move from RS to FS and vice versa. It is the FFT
operation then that determines the way we divide our points
among processors so that communication is minimized.
A 3D FFT is calculated as a sequence of 1D FFTs in each

direction. To minimize communication, we distribute the 3D
grid into slabs by dividing one dimension evenly among
processors, as shown in Figure 6. For an RS-field, the x-
dimension is the one that is split. So we Fourier transform the y-

Figure 6. Distribution of the three-dimensional grid into slabs for
optimal communication when performing FFTs in parallel. The order
of spatial axis corresponds to a real-space field; in reciprocal space, x and
z are interchanged.
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and z-dimensions first as those transforms can be done locally.
Now, we redistribute the array among nodes, so that the z
dimension is split. Of course, this is the step that involves
communication as all nodes need to exchange information.
Once this is done, we can perform the FFT in the remaining x-
dimension that now is local. Note that in the case of FS-field, we
end up with a 3D grid that is split along the z-direction.
The approach we describe above is the standard approach for

the parallelization of 3D FFTs and it is implemented for the
CPU in FFTW and other libraries. For the GPU unfortunately,
there is not a general MPI library yet that provides all of the
required functionality for INQ, so we need to use our own
implementation. TheHeFFTe125 library promises to fill this gap,
and we expect to use it in the near future.
VIII.IV. Field Sets and Kohn−Sham States. One of the

fundamental objects we need to represent in DFT is the KS
states. As they are just a group of several fields, it would be
natural to represent them as an array of field objects. However,
this is not practical for numerical performance as we will end up
with separated blocks of memory. In code, it is much more
efficient to operate over data all at once instead of one by one,126

especially on the GPU.56,92

Instead, we define a specialized field-set data structure that
represents a group of several fields. As well as the basis
information, it contains the coefficients for the whole set stored
in a single array. This array can be seen as two-dimensional
(2D), or equivalently a matrix, where one index corresponds to
the coefficient index and the other to the index in the set. This
representation is particularly useful for linear algebra operations
that can be done directly using MULTI. The array of coefficient
can also be accessed as a four-dimensional array with indices
corresponding to the three spatial dimensions of the coefficients
plus the set index. We use this representation for operations with
geometrical context including FFTs.
The parallelization strategy for a field set is to use a 2D

decomposition of the coefficient array. The coefficient
dimension is divided in the same way done for field. The
second division is done along the set indices, distributing the
states among processes. In practice, we are giving each processor
a 2D block of the orbitals, as shown in Figure 7.
Using such a decomposition has several advantages. In the

first place, as the system size grows, both the number of states
and the number of basis coefficients grow linearly. So, a two-level
parallelization can keep the amount of data local to each
processor constant, if the number of processors is grown
accordingly (this is the weak-scaling scenario). Second, each
parallelization level is naturally limited by either cost of
communication or Ahmdal’s law. By combining multiple levels
of parallelization, we can use a larger number of processors than
with a single one (this would be the strong scaling case).
Most parallel operations are trivially parallelizable in one of

these two levels while requiring communication in the other
level. For example, a parallel FFT requires the mixing of
coefficients, which implies communication, as discussed in
Section VIII.III; however, it is trivially parallelizable for the
different states. On the other hand, the calculation of the density,
eq 1, is trivially parallelizable in RS points but requires a parallel
reduction over states. The case where we need communication
across both levels of parallelization is linear algebra operations
that only appear for the ground-state case and that need to be
handled by linear algebra libraries (as mentioned in Section
VIII.I).

VIII.V. Implementation of the KS Hamiltonian. The KS
Hamiltonian, eq 2, is the main operation in the density
functional formalism. Even though it is a linear operator (for a
given density, in each self-consistency iteration), it would not be
convenient to store it explicitly as a dense, or even as a sparse,
matrix. Instead, we use it in operator form by having a routine
that applies the Hamiltonian over a field set. This way, each one
of the terms that appear in eq 2 can be calculated in the optimal
way.
The kinetic energy operator, given by the Laplacian in eq 2, is

calculated in Fourier space, where it is diagonal. The local
potential is diagonal in real space instead. And the nonlocal part
of the pseudopotential is also applied in real space, where the
projectors are localized (this is discussed in detail in the next
section). This means that the main operations inside the
Hamiltonian are two Fourier transforms to switch back and forth
between real space and Fourier representations using FFTs.

VIII.VI. Pseudopotentials. The current version of INQ uses
Optimized Norm-Conserving Vanderlbit (ONCV) pseudopo-
tentials.79 In comparison to ultrasoft pseudopotentials127 and
projector-augmented waves (PAWs),128 ONCVs are simpler to
apply, do not introduce additional terms in the equations, and
still produce accurate results.63,81,88,129

In INQ, the pseudopotentials are fully applied in real space in
the Kleinman−Bylander (KB) form. In this form, there are two
terms for the pseudopotential, the local part and a nonlocal part.
The local part is, in RS, a simple multiplicative potential that is

applied together with the Hartree and XC potentials. Since the
local part is long range, it needs to take into account the effect of
all of the periodic replicas of the atoms when the system is
periodic. To calculate it, we separate the local term into two
terms, short range and long range, using the standard error
function separation. The short-range potential is calculated
directly in the grid. The long-range potential is given by the error
function, which is generated by a Gaussian charge distribution.
So, the solution of the Poisson equation for the Gaussian charges

Figure 7. Representation of parallel distribution of the Kohn−Sham
states in a two-dimensional (2D) data decomposition. We can consider
the states as a 2Dmatrix where one dimension is the state index and the
other is the basis coefficient index (where the three-dimensional indices
have been flattened). In parallel, this matrix is distributed in blocks to
the different processors. For convenience, we can think of the
processors as arranged in a 2D grid, where each one is labeled by two
coordinates that indicate which range of states they have and which
range of coefficients. For example, if there are 400 coefficients and 50
states, task (2,1) (shown in blue) would have coefficients 200−299
from states 10 to 19.
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of all atoms gives us the long-range part with the correct
boundary conditions.
The nonlocal part requires a bit more attention to apply it

efficiently. The KB separation yields a nonlocal potential of the
form
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where βlm
I are the projector functions for each angular

momentum component m for each atom I. The important
property is that the projectors are localized in space, so the
integral in eq 9 can be done over a sphere around each atom
instead of over the whole RS grid. This means that the cost of
applying the pseudopotential is proportional to Natoms, a scaling
similar to the other components of the KS Hamiltonian.
The problem of applying the pseudopotentials in real space is

that there is a spurious dependency of the energy with respect to
the relative position of the atoms (point particles) and grid
points. This is known as the egg-box effect. The cause of the
problem is the aliasing of the high-frequency components of the
pseudopotential that cannot be represented in the grid. When
the pseudopotential is applied in Fourier space, these
components are naturally filtered out.
To control the egg-box effect, most real-space codes use some

sort of filtering that removes those high-frequency compo-
nents.11 A hard cutoff in Fourier space would not work, as it
introduces ripples in real space that destroy the localization of
the projectors. So, a more sophisticated approach is needed that
yields a localized and soft pseudopotential in real space. In INQ,
we use the approach by Tafipolsky and Schmid,80 which in our
experience with OCTOPUS has produced good results.60,130 The
filtering process is done once per run and calculated directly in
the radial representation of the pseudopotential by the
PSEUDOPOD library, so it does not add any additional computa-
tional cost.
VIII.VII. Poisson Solver.The Poisson solver is needed in INQ

to obtain the long-range ionic potential and the Hartree
potential (produced by the electron density itself). We solve the
equation in FS, where the Poisson equation becomes a simple
algebraic equation. To solve the equation in RS, additionally two
FFTs are needed to go to FS and back.
In principle, the solution obtained in Fourier space has natural

periodic boundary conditions. For finite systems, where neither
the density nor the potential is periodic, this method introduces
spurious interactions between cells, slowing the convergence
with the size of the supercell. In this case, we use a modified
kernel that exactly reproduces the free boundary conditions.131

Unfortunately, this approach needs the simulation cell to be
duplicated in each direction, making the cost of the Poisson
solution 8 timesmore expensive for finite systems. Even with this
factor of 8, this method is quite competitive in comparison with
other approaches for free boundary conditions.132 Both kinds of
boundary conditions are implemented in INQ and can be chosen
by the user depending on the physical system.
VIII.VIII. Forces. An accurate and efficient calculation of the

forces is essential for adiabatic and nonadiabatic molecular
dynamics. In the density functional framework, the forces are
given by the formula
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Note that for the adiabatic forces in ground-state DFT, this
expression comes from applying the Hellmann−Feynman
theorem. While in the nonadiabatic case, this is directly the
expression for the forces since φk and RI are independent
variables.103

The problem of eq 10 is that the gradient of the ionic potential
appears. This gradient has higher-energy components than the
potential itself. This means that the force calculated using eq 10
would be the bottleneck in the convergence with the basis. The
gradient can also be complicated to calculate since it can have
many terms, in particular, in the case of spin−orbit coupling. We
can avoid this problem by transforming eq 10 into an expression
that contains the gradients of the orbitals instead133

∑ φ φ= ⟨∇ | ̂ − | ⟩ +F r Rv ( ) c. cI
k

k I I k
(11)

Since the orbitals are smoother than the ionic potential, this last
expression has better numerical properties as it converges much
faster with the basis set. It is also much simpler to implement
since the derivatives of the ionic potential are not needed. It only
needs the calculation of the gradient of a field that, just like the
Laplacian, is a local operation in Fourier space. The approach
has also been extended for second-order derivatives,62 which will
be needed in the calculation of phonon frequencies.134

IX. RESULTS
In this section, we show some of the results obtained with the
INQ code. The main objective is to validate the results and show
that INQ can be reliably used for production runs. For these
reasons, all of the calculations shown were done on GPUs; still,
the CPU version of the code gives the same results to a high
precision. In future work, we will show in detail numerical
performance benchmarks; our focus here is on the physical
predictions. We start by comparing the results of INQ with other
codes using the same simulation parameters to show that the
results are practically the same. Additionally, RT-TDDFT-based
electronic stopping power, which investigates the system
response to time-dependent spatially localized perturbations,
is simulated and compared to previously published results.

IX.I. Validation with Other Codes. For a scientific code, it
is fundamental to produce results that are consistent with other
approaches and codes. For that, in this section, we compare the
results of INQ with other established codes for a few cases. They
illustrate a wider validation work that has been consistently done
since we started the development on INQ. Our ultimate goal is to
use the Delta factor129 to assess the reliability of the codes for a
large number of systems. However, some missing functionality
like symmetry reduction of the Brillouin zone and non-
orthogonal cells prevents us from performing that at the
moment. (These features are not a priority for large-scale real-
time simulations.)
INQ currently implements DFT total energies, forces, and real-

time propagation of the time-dependent KS equations for both
molecular and solid-state systems within a periodic supercell
framework. In the following, results from INQ are compared with
corresponding quantities obtained from established plane-wave
and real-space grid codes: QUANTUM ESPRESSO (QE)21 and
OCTOPUS.14 The quantities we compare are molecular bond
lengths and crystal lattice parameters based on total energy
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minimization, as well as the linear optical response from real-
time propagation. The total energy and optical response
simulations employed standard norm-conserving scalar rela-
tivistic PBE pseudopotentials from Pseudodojo,88 which are
compatible with all of the codes used in the validation.
Figure 8a shows the total energy of the N2 molecule as a

function of the bond length as obtained from INQ and QE at a
plane-wave cutoff of 80 au. Figure 8b shows the total energy
dependence on the lattice constant for an eight-atom conven-
tional unit cell of bulk Si. A plane-wave cutoff of 40 au was used
in this instance, and the Brillouin zone was sampled only at the
zone center. In each case, we find that the absolute total energies
from INQ are within 0.3 mhartree/atom of the QE reference. The
residual difference in total energies is attributed to the real-space
treatment of the nonlocal pseudopotential term within INQ in
contrast to the traditional reciprocal space treatment in plane-
wave codes such as QE. As mentioned in Section VIII.VI, the
real-space approach is expected to scale more favorably for larger
system sizes, which INQ aims to target for applications.
In Figure 8c,d, the electronic response of a gas-phase water

molecule to a time-localized “kick” electric field perturbation is
plotted, as obtained from INQ and OCTOPUS. The simulation cell
consists of a water molecule enclosed in a 10 Å × 10 Å × 10 Å
box at a plane-wave cutoff of 40 au. Within INQ following the
perturbation applied at the initial time t = 0, the time-dependent
dipole moment of the system is recorded as given by the first
moment of the time-evolving charge density distribution. In
OCTOPUS, the time-dependent current is first calculated within
the velocity gauge RT-TDDFT approach135 and the dipole is
then estimated as the time integral of the current. It is clear from
Figure 8c, which shows the real-time evolution of the dipole
moment for a perturbation along the C2 symmetry axis of H2O,
that the INQ and OCTOPUS results are consistent as expected for a
finite system. The above procedure is repeated for perturbations
applied along three orthogonal coordinate directions, and

subsequently from the Fourier transform of the time-dependent
dipole moments, the optical absorption spectrum is calculated
and plotted in Figure 8d. It is apparent that excitation
frequencies predicted by INQ and OCTOPUS are in good agreement
over a wide frequency range, validating the real-time evolution
algorithm implemented in INQ.

IX.II. Electronic Stopping. Stopping power in materials is a
fundamental physical process by which energetic particles
penetrating matter are slowed down by generating excitations of
the material media, such as atomic displacements, phonons,
electron−holes, secondary electrons, or plasmons.136 If these
fast particles move at velocities that are at least a fraction of that
of the electrons in the materials (e.g., the Fermi velocity), the
dissipative process is dominated by a continuum of electronic
excitations. For example, this can happen as a result of an
energetic nuclear event or by artificial ion accelerators,
Electronic stopping power results are typically condensed into
curves that relate dissipation rate, energy loss per unit distance,
versus projectile velocity. Extensive databases of experimental
curves exist in the literature.137 Besides being a quantity of great
importance in nuclear technology,138 ion implantation,139 and
medicine,140 the modeling of electronic stopping power is
deeply intertwined with the development of the atomistic theory
of matter141−143 and the electron gas.144−146

Electronic stopping power is, from the point of view of the ion
dynamics, a fundamentally nonadiabatic and dissipative process.
As such, the process can, in principle, be tackled by direct
simulations based on real-time TDDFT. If we imagine the
process as a specific realization of a particle (projectile)
traversing tens or hundreds of lattice parameters in a well-
defined trajectory, we realize that the simulation naturally calls
for a large supercell. The interaction between the projectile and
the electron gas is simultaneously an aperiodic localized
perturbation in space and also it is extended spatially as the
simulation progresses. Therefore, simulations of stopping power

Figure 8.Comparison between INQ and the established electronic structure codes QUANTUM ESPRESSO (QE) and OCTOPUS. Results for ground-state total
energies and real-time TDDFT optical response are shown. (a) Total energy vs bond length in N2. (b) Total energy vs lattice constant in bulk silicon.
(c) Time evolution of the dipole moment in gas-phase H2O following a “kick” perturbation. (d) Linear optical absorption of molecular H2O. In all
cases, there is a high level of agreement between the codes.
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had become one of the most important applications of large-
scale TDDFT simulations, both for their predictive power and as
a benchmark of different approximations of TDDFT. By varying
a single parameter (projectile velocity), different technical
limitations of the methods can be reached; for example, (i) the
position of the maximum of the stopping curve is sensitive to the
completeness of the basis set,147 (ii) the asymptotic behavior is
affected by supercell size effects,65 (iii) accuracy of the low-
velocity limit is affected by the ability of simulating long
times,148 and (iv) highly charged projectiles (high Z) probe
deep core electrons and the pseudopotential approximation.149

For a full review and details on this type of calculation, see ref
150.
In this section, we present a benchmark calculation of

stopping power in the prototypical case of a proton projectile in
face-centered cubic (fcc) aluminum. Briefly, stopping power is
extracted from simulation by forcing the projectile ion to move
across a well-defined direction in the supercell and monitoring
the additional energy gained by the system in the process. The
average rate of increase in the energy corresponds to the kinetic
energy loss by the projectile to the electronic system. The rate is
generally obtained by linear fitting an energy−distance curve
resulting from the real-time simulation.151

We use a plane-wave cutoff of 25 au to simulate three valence
electrons per aluminum ion. Figure 9 shows how the energy

transfer achieves a steady state whose slope corresponds to the
stopping power at that velocity. This information is collected as
an electronic stopping curve (Figure 10) of energy dissipation
per unit length as a function of velocity.
These electronic stopping results illustrate that INQ is ready for

state-of-the-art large-scale time-dependent computations, re-
taining accuracy for high-energy excitation processes such as in
stopping power and other particle radiation-related applications
thanks to a robust plane-wave basis.

X. FUTURE OF INQ
INQ is designed to be extensible. Not by any means a finished
code, INQ allows new features to be added easily so as to tackle
scientifically challenging problems that cannot be addressed

with current codes. These problems might require a unique
combination of functionalities not found in a single existing code
base or might require modification of current algorithms or
implementation of new ones.
The support of exact exchange152−154 is planned for a future

release of INQ. Exact exchange is needed for the accurate
description of many transition-metal oxides. Manganite perov-
skites155−157 and vanadium oxides VO2

158,159 undergo metal−
insulator transitions following optical excitation, likely asso-
ciated with the emergence of ferromagnetic correlations on sub-
picosecond time scales. Similarly, the melting of antiferromag-
netic order in photoexcited nickelates within a few pico-
seconds160 is suggested to be directly linked to the melting of
charge order. The combination of exact exchange and GPU
scalability is needed for real-time TDDFT simulations at sizes
and time scales required to investigate coherent dynamics in
these systems. These simulations will clarify the roles of defects,
dynamic disorder, and phonons beyond the accuracy of
simplified models.161−165 This will enable comparisons with a
broad range of experimental techniques that now exist for
probing these coupled electronic and structural dynamics
including time-resolved optical and terahertz spectrosco-
py,166,167 as well as ultrafast X-ray and electron scattering
approaches.168,169

Support of relativistic effects will also be included in a future
release of INQ. The spin−orbit interaction is important in
topological materials and in systems with heavy atoms with
effects such as Rashba/Dresselhaus splittings.170,171 Other
relativistic effects, such as Fermi contact and spin−dipole
interactions,172,173 are often neglected in solid-state DFT
simulations but can be of importance in quantum information
science applications.174 INQ provides a framework where these
effects can be implemented in an incremental and unintrusive
way. As an example application, two-dimensional layered van
derWaals systems with 5d heavy transitionmetals are a materials
class where electron−electron interactions and the spin−orbit
coupling are important energy scales. Thesematerials are known
to exhibit newly broken symmetry or topological phases,
including charge density waves and metastable metallic
states.175−179 Real-time TDDFT will clarify details of the
mechanisms behind the evolution of charge instabilities,

Figure 9. Energy dissipation as a function of distance covered by a
proton in a rectilinear trajectory in the ⟨100⟩ channel for different
velocities in an aluminum fcc supercell as calculated by a real-time
calculation with the INQ code. Note that at low velocity the dissipation
rate is proportional to the velocity; instead, above a certain velocity, the
dissipation rate decays. Since the ions in the host material are fixed, the
dissipation rate in the steady state is defined as the electronic stopping
power for proton in aluminum shown in Figure 10.

Figure 10. Electronic stopping power obtained by direct simulation of a
proton projectile moving in aluminum atom fcc supercell with different
codes: INQ, QBALL (from ref 65), and SIESTA with atom-centered double-ζ
plus polarization basis (DZP) (from ref 147). Each point is obtained by
evaluating the steady energy rate dissipation, e.g. from Figure 9. All
simulations are with three valences (explicitly simulated) electrons per
aluminum, which is enough for channeling stopping power.
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periodic lattice distortions, and coherent phonon generation in
these 2D-layered systems. In systems with antiferromagnetic
order, magnon modes may emerge as collective excitations.
Twisted boundary conditions are often used to simulate such
systems and those with incommensurate spiral physics in
general.180 These capabilities can be included in INQ by
modifying the currently available boundary conditions (Section
VIII.VII).

INQ supports Ehrenfest dynamics and can be extended to other
forms of nonadiabatic molecular dynamics.181,182 A variety of
proposed dynamics departing from Born−Oppenheimer (BO)
and beyond Ehrenfest would be faster to experiment with. For
example, it has been noted recently that friction terms can be
added ab initio to model electron−phonon coupling with
classical ions. These dissipative terms can be calculated on-the-
fly by launching tangential short TDDFT simulations (in parallel
to the main trajectory evolution). The dissipative contributions
can then be added to Newton’s equation of motion by terms in
the form of MR̈ = FBO − βṘ + ξ, where β and ξ are a friction
tensor and correlated noise, respectively.183

These functionalities are required for applications that involve
any form of coupled electron−ion dynamics and become
especially useful in challenging materials systems that also
require advanced electronic structure methods such as those
above. For instance, the bulk photovoltaic effect involves a
number of nonlinear photocurrent generation effects driven by
different mechanisms.184−189 Recent tight binding model
simulations have predicted an enhanced bulk photovoltaic
effect due to coupled spin and phonon dynamics in a strongly
correlated manganite perovskite.190 First-principles exploration
and comparison of this enhancement effect across a variety of
materials systems will result in materials design insights for
maximizing its magnitude.
Another interest area of application for INQ is high-throughput

screening and machine learning methods combined with
DFT.191 Since INQ is a library, it allows for a horizontal
integration with other libraries and software packages (for
example, materials informatics, machine learning, or data
analysis tools) rather than having one software depending on
the other. Programs that need to collect data for large numbers
of DFT calculations can directly run INQ through function calls.
This way, they can directly control the execution of the
simulation and naturally pass the input and receive the output
through data structures in memory, instead of files that need to
be parsed.
Thanks to its flexibility, INQ could be used as well for more

advanced integration with machine learning. One of these
applications is fully differentiable DFT that can be used to
improve exchange−correlation approximations.35,192 In C++,
this differentiation can be done automatically, with minimal
modifications of the code, through templates and operator
overloading.193,194

INQ is written with the intention that the user can take an
active role in developing electronic structure calculations
according to their needs. While the above examples provide
some possible future directions, the user is in fact limited only by
their imagination when it comes to new feature developments.

XI. CONCLUSIONS
We have presented a new framework for the computational
simulation of electronic systems. It has several new design
characteristics that offer unique advantages over existing legacy
DFT codes. Using a modern approach to coding, based on the C

++ language, has allowed us to write a very compact code that
directly expresses the formulation of the problem and not the
implementation details. When combined with an extensive use
of testing of the code, we can develop and implement new
features very fast. The code was designed from scratch to work
with GPUs and MPI parallelization, which means it can make
use of modern supercomputing platforms and be quickly
adapted for future ones. Within the scope of basic DFT, DFT-
MD, and TDDFT, the code is production ready.
This collection of features makes INQ an ideal platform to

apply TDDFT to a range of physical problems that are hard to
approach with current software. Of course, this will require
further development of the code and theoretical tools by INQ

developers and the broader electronic structure community. In
this spirit, we look to make INQ an open platform that other
researchers can use and adapt for their research and that can
interact with other software components.
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Á.; Deb, A. K.; Sadeghi, A.; Deutsch, T.; Goedecker, S. Norm-
conserving pseudopotentials with chemical accuracy compared to all-
electron calculations. J. Chem. Phys. 2013, 138, No. 104109.
(82) Dal Corso, A. Pseudopotentials periodic table: From H to Pu.
Comput. Mater. Sci. 2014, 95, 337−350.
(83) Garrity, K. F.; Bennett, J. W.; Rabe, K. M.; Vanderbilt, D.
Pseudopotentials for high-throughput DFT calculations. Comput.
Mater. Sci. 2014, 81, 446−452.
(84) Kucukbenli, E.; Monni, M.; Adetunji, B.; Ge, X.; Adebayo, G.;
Marzari, N.; De Gironcoli, S.; Corso, A. D. Projector Augmented-Wave
and All-Electron Calculations across the Periodic Table: A Comparison
of Structural and Energetic Properties. 2014, arXiv:1404.3015.
arXiv.org e-Print archive. https://arxiv.org/abs/1404.3015.
(85) Topsakal, M.; Wentzcovitch, R. Accurate projected augmented
wave (PAW) datasets for rare-earth elements (RE= La−Lu). Comput.
Mater. Sci. 2014, 95, 263−270.
(86) Schlipf, M.; Gygi, F. Optimization algorithm for the generation of
ONCV pseudopotentials. Comput. Phys. Commun. 2015, 196, 36−44.
(87) Prandini, G.; Marrazzo, A.; Castelli, I. E.; Mounet, N.; Marzari,
N. Precision and efficiency in solid-state pseudopotential calculations.
npj Comput. Mater. 2018, 4, No. 72.
(88) Van Setten, M.; Giantomassi, M.; Bousquet, E.; Verstraete, M. J.;
Hamann, D. R.; Gonze, X.; Rignanese, G.-M. The PseudoDojo:
Training and grading a 85 element optimized norm-conserving
pseudopotential table. Comput. Phys. Commun. 2018, 226, 39−54.
(89) Marques, M. A.; Oliveira, M. J.; Burnus, T. Libxc: A library of
exchange and correlation functionals for density functional theory.
Comput. Phys. Commun. 2012, 183, 2272−2281.
(90) Lehtola, S.; Steigemann, C.; Oliveira, M. J.; Marques, M. A.
Recent developments in libxc − A comprehensive library of functionals
for density functional theory. SoftwareX 2018, 7, 1−5.
(91) Stepanov, A.; Rose, D. From Mathematics to Generic
Programming; Addison-Wesley, 2014.
(92) Andrade, X.; Genovese, L. Fundamentals of Time-Dependent
Density Functional Theory; Springer, 2012; pp 401−413.
(93) Beckingsale, D. A.; Burmark, J.; Hornung, R.; Jones, H.; Killian,
W.; Kunen, A. J.; Pearce, O.; Robinson, P.; Ryujin, B. S.; Scogland, T. R.
In RAJA: Portable Performance for Large-Scale Scientific Applications,
2019 IEEE ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2019; pp 71−81.
(94) Edwards, H. C.; Trott, C. R.; Sunderland, D. Kokkos: Enabling
manycore performance portability through polymorphic memory
access patterns. J. Parallel Distrib. Comput. 2014, 74, 3202−3216.
(95) Lee, S.; Eigenmann, R. In OpenMPC: Extended OpenMP
Programming and Tuning for GPUs, SC’10: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, 2010; pp 1−11.

(96) Alpay, A.; Heuveline, V. In SYCL beyond OpenCL: The
Architecture, Current State and Future Direction of hipSYCL, Proceedings
of the International Workshop on OpenCL, 2020; pp 1.
(97) Chien, S.; Peng, I.; Markidis, S. In Performance Evaluation of
Advanced Features in CUDA Unified Memory, 2019 IEEE/ACM
Workshop on Memory Centric High Performance Computing
(MCHPC), 2019; pp 50−57.
(98) Harris, M. et al.Optimizing Parallel Reduction in CUDA; NVIDIA
Developer Technology, 2007; Vol. 2, pp 1−39.
(99) Pacheco, P. Parallel Programming with MPI; Elsevier Science,
1997.
(100) Jornet-Somoza, J.; Alberdi-Rodriguez, J.; Milne, B. F.; Andrade,
X.; Marques, M. A.; Nogueira, F.; Oliveira, M. J.; Stewart, J. J.; Rubio, A.
Insights into colour-tuning of chlorophyll optical response in green
plants. Phys. Chem. Chem. Phys. 2015, 17, 26599−26606.
(101) Hasegawa, Y.; Iwata, J.-I.; Tsuji, M.; Takahashi, D.; Oshiyama,
A.; Minami, K.; Boku, T.; Shoji, F.; Uno, A.; Kurokawa,M. et al. In First-
Principles Calculations of Electron States of a Silicon Nanowire with
100,000 Atoms on the K Computer, Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage
and Analysis, 2011; pp 1−11.
(102) Ehrenfest, P. Bemerkung über die angenaḧerte Gültigkeit der
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